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ABSTRACT 

This thesis focuses on two main principal topics, regarding respectively the pre-
processing performance analysis and the ECG classification process. 

The pre-processing performance analysis was achieved with the combined use of 
two indexes including the SNR percentual increment and the diagnostic distortion 
measure (DDM) that were used to optimize filters parameters for respectively 
maximizing denoising effect and minimizing filtering signal distortion. 

The ECG classification process includes a new algorithm for AF detection from ultra-
short (10 seconds) single lead ECG records. The AF detection algorithm is composed 
by two successive classification stages. Firstly, HRV signal is extracted from ECG 
record and it is then decomposed in 5 beats ROI from which a set of HRV features 
are extracted and used in the first ROI classification stage through MLP NN. Then, 
the sequence of classified ROI extracted from each ECG record is transformed into a 
grey levels image where each ROI corresponds to a pixel. A set of features are 
extracted from grey levels image and are used in the second image classification 
stage through MLP NN. 

AF detection algorithm was validated with 5-fold cross-validation technique and 
average performances show a sensibility, specificity, and accuracy of 92.62%, 
91.44% and 92.21% respectively.   
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1 INTRODUCTION 

1.1 ELECTROPHYSIOLOGICAL ANALYSIS 

 

Figure 1 

Atrial fibrillation (AF) refers to a disturbance in heart rate that is caused by abnormal 
electrical activity in the upper chambers of the heart (atria) and no recognizable P 
waves on electrocardiogram (ECG). During AF episodes, regular action potentials 
produced by the sinus node for a normal sinus rhythm (NSR) are polluted by rapid 
electrical impulses produced in the atria. Generally, the two components that favour 
the establishment of arrhythmia includes slow conduction velocity of cardiac action 
potential and short refractory period. If the action potential has fast conduction, 
with a long refractory period, an AF focus would not be established. On the 
contrary, hearts with shorter duration of action potential and refractory period 
allow the conduction of re-entrant waves causing non-uniformity of electrical 
conduction and the insurgent of arrhythmia. 

On the surface ECG, AF is described by the irregularity of RR intervals and the 
presence of irregular and chaotic atrial activation, the fibrillatory f-waves instead of 
distinct repetitive P-waves. Atrial activity analysis is essential for unquestionable 
diagnosis of the atrial fibrillation, but a stable, high quality signal without extensive 
noise is required for the analysis, which is hardly achievable by the ambulatory ECG 
monitoring. In addition, high heart rate makes it even more difficult to identify atrial 
activities. Irregular ventricular response, however, is commonly caused by atrial 
fibrillation, which makes the detection easier. So, an irregular ventricular rhythm 
may raise suspicion for atrial fibrillation. However, the irregular QRS complexes are 
just a secondary phenomenon, at the same time there are also other cardiac 
arrhythmias with irregular heartbeats. 
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1.2 CLINICAL ANALYSIS 

 

Figure 2 

Atrial fibrillation is the most common cardiac arrhythmia worldwide. Its prevalence 
varies between continents and ethnicity and globally is estimated to be around 30 
million. However, AF can be asymptomatic, and it is likely that the estimated 
prevalence is an underestimate of the true prevalence. Moreover, it is expected to 
increase significantly in the next 30–50 years due to spreading of risk factors 
including ageing, high blood pressure, obesity and diabetes. Many other AF risk 
factors can be identified, and their prevention requires a tailored approach to the 
individual patient.  

AF reduces the efficiency of the heart to move blood into the ventricles, increasing 
the risk of several complication including heart failure, heart infarction and 
thrombo-embolic events with consequent strokes.  

AF natural evolution usually progresses from short self-terminating rare episodes 
with little or no symptoms (paroxysmal AF) to longer and more frequent episodes 
(persistent AF) and finally to permanent AF. An earlier detection of AF could thus 
allow an earlier adequate management to avoid later complications like circulatory 
instability, stroke and other ischemic events.  

The precise prevalence of patients with asymptomatic or clinically silent AF is by 
definition unknown, but it has been estimated that among patients with diagnosed 
AF, one-third does not report symptoms or may experience both symptomatic and 
asymptomatic episodes of AF. Moreover, the presence or absence of symptoms 
associated with AF were not associated with differences in the risk of stroke or 
death. Therefore, detecting patients with paroxysmal AF plays crucial role in earlier 
protection to developed stage, but data to guide screening are currently 
unavailable.  
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When AF is diagnosed, its management is focused on preventing temporary 
circulatory instability, stroke and other ischemic events. The factors determining AF 
treatment are duration and evidence of circulatory instability. In order to reduce the 
risk of systemic-thromboembolism events, oral anticoagulation drugs with the 
vitamin K antagonists (VKA) can be used. Moreover, rhythm instability can be 
managed with cardioversion that is indicated with new onset AF episode started 
within 48 hours. It can be performed with drugs in a chemical way or through the 
application of a DC electrical shock. If cardioversion is not able to control hear 
rhythm, it may be necessary to perform electrophysiological studies of abnormal 
electrical pathways that can be treated is a surgical way with ablation or with 
cardiac implantable electronic device to control heart rhythm. 

1.3 AF DIAGNOSIS PROCESS 
Despite its higher prevalence worldwide and its high related risk of stroke, screening 
for AF is not yet recommended by all scientific AF guidelines, even in specific ‘at risk’ 
populations. Early detection of AF at the stage of an asymptomatic arrhythmia, can 
be discovered incidentally during a routine physical examination, during blood 
pressure measurement or at a preoperative ECG or cardiology visit. 

In general AF is diagnosed at a developed stage when symptoms are evident and the 
patient go to their general practitioner (GP) with signs and symptoms commonly 
associated with AF such as feeling dizzy, being short of breath, feeling tired and 
having heart palpitations.  

At the moment, GPs check hear rhythm by taking the patient’s pulse by hand. If the 
GP thinks the patient might have AF, a 
12-lead ECG is arranged (Fig. 3). 12-lead 
ECGs use several pads stuck to the 
patient’s arms, legs and chest to 
measure how the heart is working. The 
guidelines for the diagnosis of atrial 
fibrillation developed by the European 
Society of Cardiology (ESC) with the 
special contribution of the European 
Heart Rhythm Association (EHRA) and 
endorsed by the European Stroke 
Organisation (ESO), express that AF 
diagnosis requires at least 30 s of 
absolutely irregular RR intervals and no 
discernible, distinct P waves on 
electrocardiogram.  Figure 3 
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Sometimes a 12-lead ECG can be carried out in the GP practice on the same day as 
the original appointment. However, it may not be possible to get an appointment on 
the same day or the GP practice may not have its own 12-lead ECG. If the 12-lead 
ECG cannot be carried out on the same day, patients may have to travel to be tested 
and the arrhythmia may have subsided by the time the 12-lead ECG is recorded. 

Lead-I ECGs can be a useful tool for 
testing whether people may have AF 
(Fig. 4). Lead-I ECGs are handheld 
devices with software to detect AF. By 
using lead-I ECG devices during GP 
appointment may mean that AF can be 
detected earlier than traditional 
diagnosis practice. Any clinical suspicion 
of AF, or irregular heart rate evidenced 
by these devices, should however be 
confirmed by a 12-lead ECG. However, if 
AF is detected by using lead-I ECG 
devices in the GP surgery, high risk 
people can benefit from anticoagulation 
to prevent stroke earlier than they 
currently do because of the asymptomatic nature of AF.  

Many non-invasive devices for a simplified lead-I ECG recording are improving, and 
the key issue becomes whether AF screening can be conducted in a more 
systematic, comprehensive, and cost-effective manner. Repeated registrations are 
more effective in catching intermittent episodes compared to single ECG recordings 
or 24–48 h of long-term ECG. Significant problem with screening studies is the 
burden of work related to ECG analysis performed with visual control of the tracings. 
Therefore, automatic algorithms capable to efficiently discriminate normal sinus 
rhythm from any kind of supraventricular arrhythmias including AF are most 
welcome.  

Given that many patients have associated comorbidities and would seek medical 
attention, opportunistic screening may be one way of improving detection of AF. 
Available screening technologies are improving, and the key issue becomes whether 
AF screening can be conducted in a more systematic, comprehensive, and cost-
effective manner. However, given the possible paroxysmal nature of AF, any 
screening, apart from continuous monitoring, will only give single or occasional 
snapshots, resulting in possible false negative results. Single led portable devices are 
an opportunity to improve AF screening capabilities allowing patients to record 
short ECG signals in any moment so that AF events can be more easily detected with 
repeated registrations. 

Figure 4 
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1.4 PROPOSED SOLUTION 
In this context, a new wearable single lead ECG device for medical diagnosis and 
patient monitoring is being developed in Neuronica Labs of Politecnico of Turin. It is 
called “ECG Watch” and it is a watch-like recorder equipped with two electrodes 
positioned on the back and on the top sides of the case. Its design is generally 
reported in Fig. 5. The case is a 3D-printable plastic case that has been designed in 
partnership with two students of Department of Architecture and Design (DAD) of 
Politecnico di Torino.  

 
Figure 5 

The back electrode is always in contact with the skin. When the patient places 
opposite harm thumb on the top electrode, 10 seconds lead-I ECG can be recorded 
and are sent via Bluetooth connection to a mobile app for following elaborations 
(Fig. 6).

 
Figure 6 
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The guidelines for the diagnosis of atrial fibrillation express that AF diagnosis 
requires at least 30 s of absolutely irregular RR intervals and no discernible P waves 
on electrocardiogram. The aim of this thesis is to assess the accuracy of AF detection 
within 10 seconds ECG signals by providing and analysing classification results of 
very short ECG records. 

Firstly, it is important to notice that the recorded ECG signal can be affected by 
several noise sources and artifacts that can compromise the morphological and 
diagnostic interpretability of the ECG signal. In particular, these ECG records are 
mostly contaminated by electrode motion artifacts and muscle noise artifacts 
caused by the instability of the contact between the front electrode and the thumb. 
Detailed characteristic about the ECG signal and noises will be provided in chapter 2 
and several filtering techniques are discussed in chapter 3. In particular, two filtering 
parameters have been considered to compare several filtering techniques. The first 
parameter is the filtering performances expressed as the increment of SNR between 
noisy and filtered signal. The second parameter is the diagnostic distortion measure 
(DDM) that measure the distortion between the filtered and clean signal introduced 
by filters.  

When the mobile application receives the ECG record, firstly a pre-processing stage 
is applied, and it has been built with selected filtering techniques that achieves best 
performance of SNR increment and lowest distortion. 

Then QRS complexes are detected by using two different detector algorithms, that 
will be detailed in chapter 4. The first is an originally developed wavelet-based 
algorithm and the second is the well-known Pan-Tompkins algorithm. These two 
QRS detectors have different performance specially when noisy ECG signals are 
processed. Thus, by comparing QRS detectors results with each other, a discriminant 
condition for assessing signal quality can be retrieved when results differ from each 
other. It is the first important classification stage in which too noisy ECG signal that 
are not suitable for following elaboration can be detected and classified as 
unacceptable. Further details of signal quality assessment process will be provided 
in chapter 5.  

If the signal quality is acceptable, a new originally atrial fibrillation (AF) detection 
process (Fig.7) has been applied. The AF detection algorithm, that is detailed in 
chapter 6, is based on heart rate variability (HRV) features extracted from RR time 
intervals exploiting the natural AF characteristic to be “irregularly irregular” heart 
rhythm that consequently increases both variability and complexity of RR intervals 
series. The P wave features require very good quality signals to be extracted and 
analysed due to small P wave amplitudes that can be easily corrupted by noises. 
Therefore, P wave detection process is currently not considered but will be 
developed in a future work.  
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Figure 7 

The algorithm is composed by two consecutive classification processes. The first 
process decomposed the ECG signal into a collection of 5 beats ROI (region of 
interest) from which several HRV features have been extracted and reduced to 
improve classification performances. Each ROI was then classified using MLP (multi-
layer perceptron) NN which output is a continuous function that has been used as 
input for the second classification stage. The output of the first classification stage 
has been transformed into a grey scale image where each pixel corresponds to a ROI 
of the original ECG signal. Several density and probability distributions features have 
extracted from the image and was finally classified using a second MLP NN into AF 
class or NSR class. 
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2 ECG & NOISE 
The electrocardiogram (ECG) shows the electrical 
activity of the heart, where each heartbeat is 
displayed as a series of electrical waves (Fig.8). 
ECG signal is characterized by five peaks and 
valleys labelled by the letters P, Q, R, S, T that 
express heart functions information. Mainly an 
ECG tracing is a repeating cycle of three electrical 
entities: P wave (atrial depolarization), QRS 
complex (ventricular depolarization) and a T wave 
(ventricular repolarization). Normally, the 
frequency range of an ECG signal is of 0.05–50 Hz 
in which the P wave lies in 0.67 to 5 Hz, QRS complex in 10 – 50 Hz and T-wave in 1 
to 7 Hz.  

ECG signal is affected by different noises during its acquisition and transmission. 
Several noise sources can corrupt the ECG signal and they can be generally grouped 
basing on their power spectral density (PSD) (Fig. 9). Noises with high frequency 
include electromyogram (EMG) noise, additive white Gaussian noise, and power line 
interference which their principal power spectral density in localized on higher 
frequencies than ECG signal frequency range. Noises with low frequency include 
baseline wandering that affect the ECG signal in lower frequency range. Moreover, 
several artifacts can corrupt ECG including electrodes motion artifacts and muscle 
artifacts which PSD mostly overlap ECG signal bandwidth and therefore are the most 
difficult to remove.  

 

Figure 9 

  

Figure 8 
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2.1  NOISES ANALYSIS 
Baseline Wander: 

Baseline wander or baseline drift is the effect 
where the base axis (x-axis) of a signal appears 
to ‘wander’ or move up and down rather than 
be straight. This causes the entire signal to 
shift from its normal base that normally is a 
zero-mean signal. The baseline wander is 
caused due to improper electrodes (electrode-skin impedance), patient’s movement 
and breathing (respiration). The frequency content of the baseline wander is in the 
range of 0.5 Hz. However, increased movement of the body during exercise or stress 
test increase its frequency content. 

Power line interference: 

Electromagnetic fields caused by a powerline 
represent a common noise source in the ECG, 
as well as to any other bioelectrical signal 
recorded from the body surface. Such noise is 
characterized by 50 (or 60 Hz) sinusoidal 
interference, possibly accompanied by 
several harmonics. Such narrowband noise 
renders the analysis and interpretation of the ECG more difficult since the 
delineation of low-amplitude waveforms becomes unreliable and spurious 
waveforms may be introduced. The interference is mainly caused by 
electromagnetic field (EMF) interference generated by the alternating current fields 
in power line or nearby machines. 

Electromyogram (EMG) Noise 

The presence of muscle noise represents a 
major problem in many ECG applications, 
especially in recordings acquired during 
exercise, since lower amplitude ECG 
waveforms may become completely 
obscured. Muscle noise is not removed by 
narrowband filtering, but presents a much 
more difficult filtering problem since the spectral content of muscle activity 
considerably overlaps that of the PQRST complex. 

  

Figure 10 

Figure 11 

Figure 12 
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Electrode Motion Artifacts 

Electrode motion artifacts are mainly caused 
by skin stretching which alters the 
impedance of the skin around the electrode. 
Motion artifacts resemble the signal 
characteristics of baseline wander but are 
more problematic to combat since their 
spectral content considerably overlaps that 
of the PQRST complex. They occur mainly in the range from 1 to 10 Hz. In the ECG, 
these artifacts are manifested as large-amplitude waveforms which are sometimes 
mistaken for QRS complexes. Electrode motion artifacts are particularly 
troublesome in the context of ambulatory ECG monitoring where they constitute 
the main source of falsely detected heartbeats.  

  

Figure 13 
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3 PRE-PROCESSING 
Noise sources contaminating in the ECG signal may lead to wrong diagnostic 
interpretation and therefore it is necessary to remove them. Pre-processing aim 
focuses on attenuating noises and artifacts components while preserving PQRST 
morphological characteristics that are important in diagnostic interpretation of the 
signal.  

In this section, several signal processing methods have been investigated and their 
performance compared. Moreover, filtering noise performances have been 
evaluated considering one single noise source at a time (Fig. 14). The aim is to select 
best filters and combine them to create a noise reduction process. Generally, a 
denoising process consists of a low pass filter to remove high frequency noises 
including random noise, a high pass filter to remove base line drifts including base 
wander noise and a notch filter to remove 50 Hz power line interference. Therefore, 
the investigation has been mainly focused on tuning the design of proposed filter to 
find optimal design configuration for each noise source. Filtering performances have 
been evaluated using two quantitative indexes that will be discussed later that 
quantify SNR increment and the morphological distortion induced by filters. Great 
attention has been focused on choosing most suitable filters that are good in 
preserving diagnostic morphological information of ECG signal.  

The proposed denoising techniques can be generally grouped into three filters 
types: 

• Moving window filters including moving average filters, moving median filters, 
and moving regression filters are often used for noise reduction but their 
performances are highly sensitive to the selection of window length. 

• Finite impulse response (FIR) filters are broadly used because of their stability 
but they can introduce considerable distortion in the ECG signal. 

• Wavelet filters are very efficient, but the selection of appropriate wavelet 
function and threshold plays an important role in signal denoising. 

 

Figure 14 



15 
 

 

3.1 MOVING WINDOW FILTERS 
Moving Average Filter 

The moving average filter smooths data by replacing each data with the average of 
its neighbouring data defined within the span. This process is equivalent to lowpass 
filtering with the smoothing response given by the following form: 

𝑦𝑛 =  
1

𝑀
∑ 𝑥𝑛−𝑖

1
2(𝑀−1)

𝑖= −
1
2(𝑀−1)

 

where 𝑥𝑛denotes a noisy ECG signal, 𝑦𝑛is the smoothed signal and M is the length of 
the moving window.  

By subtracting the output y of this filter from original signal x, the data equivalent to 
high pass filtering.  

The high or low cut-off frequency (fc) is determined by the window length 

𝑓𝑐 =  
𝑓𝑠

2𝑀
 

Moving average filtering is a simple method for both low and high frequency noise 
reduction. However, since the QRS complex of the ECG signal has an extreme 
amplitude that affects the average, this method introduces signal distortions 
depending by the choice of filter length M.  

Moving Median Filter 

The moving median filter is based on same principles as the moving average filter, in 
which the median within a moving window of a given length is calculated instead of 
the average.  

Median operator has different properties respect the average operation especially 
when working with outliers.  The non-linear nature of median filter allows it to be 
less sensitive to outliers than average filter. This is important when referred to 
abrupt spikes, like QRS complexes, where extreme amplitude values can be 
considered as outliers.  

Generally, moving window filters work well with spikes shorter than window length 
while preserving larger spikes. Thus, it is recommended to use a window length 
shorter than QRS complex length in order to preserve QRS morphology. 

Polynomial Regression Filter 

Polynomial local regression method, initially developed for scatterplot smoothing, is 
a LOESS method (locally estimated scatterplot smoothing) that combines much of 
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the simplicity of linear least squares regression with the flexibility of nonlinear 
regression.  

It can be used as non-parametric denoising technique by fitting simple polynomial 
model to a localized subset of ECG signal windowed using a sliding window. By using 
higher-order polynomials the likelihood of producing an accurate smoothed signal 
increases, although it is obviously linked to an increased computational complexity. 
LOESS method with a 2nd degree polynomial model has been chosen for following 
evaluations.  

3.2 FIR FILTER 
Finite impulse response (FIR) filters are characterized by finite duration impulse 
response, in contrasts with infinite impulse response (IIR) filters, which may have 
internal feedback and may continue to respond indefinitely (usually decaying). The 
impulse response of an Nth-order discrete-time FIR filter lasts exactly N + 1 samples 
(from first nonzero element through last nonzero element) before it then settles to 
zero. 

For a discrete-time FIR filter of order N, each value of the output signal is computed 
by a weighted sum of the most recent input values as described by the following 
equation that perform a discrete time convolution operation:  

𝑦(𝑛) =  ∑ 𝑏𝑚𝑥(𝑛 − 𝑚)

𝑁−1

𝑚=0

 

where 𝑏𝑚 are the coefficients of the filter, N - 1 is the order of the filter, N is the 
length of the filter, x(n) is the input signal, y(n) is the filtered signal.  

Generally, FIR filters have some properties which sometimes make them preferable 
to infinite impulse response (IIR) filters. Firstly, FIR filters do not require feedback 
loop so that rounding errors are not compounded by summed iterations and the 
same relative error occurs in each calculation. Secondly, they are inherently stable 
since they can be easily designed to be linear phase by making the coefficient 
sequence symmetric. This property is desired for reducing signal distortion because 
of non-linear phase response. The main disadvantage of FIR filters is that are 
considerably more computation power compared to an IIR filter with similar design 
filter requirements. 

FIR filters are designed by finding the coefficients and filter order that meet certain 
specifications settled by the user.  In this study, three different design methods have 
been discussed: Window design method, least squares design and Parks-McClellan 
method. 
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WINDOWED FIR FILTERS 

The window design method truncates an IIR filter by multiplying it with a finite 
length window function. Multiplying the infinite impulse by the window function in 
the time domain results in the frequency response of the IIR being convolved with 
the Fourier transform of the window function. The result the frequency domain 
convolution is FIR filter whose frequency response is modified from that of the IIR 
filter because the edges of the rectangle are tapered, and ripples appear in the 
passband and stopband. Working backward, filter specification can be initially 
settled by specifying the slope (or width) of the tapered region (transition band) and 
the height of the ripples, and thereby derive the frequency domain parameters of an 
appropriate window function.  

LEAST SQUARE FIR FILTERS 

The weighted least squares design uses an error criterion that is based on the 
energy of the signal and the design equations are linear. However, the designs 
sometimes have frequency response with oscillations or overshoots that may be 
undesirable. Since the energy of the signal is related to the square of the signal, a 
squared error approximation criterion is often appropriate.  

PARKS-McCLELLAN FIR FILTERS 

The Parks–McClellan algorithm, is an iterative algorithm for finding the optimal 
Chebyshev finite impulse response (FIR) filter. It is utilized to design and implement 
efficient and optimal FIR filters by calculating optimal filter coefficients through an 
indirect method. The goal of the algorithm is to minimize the error in the pass and 
stop bands by utilizing the Chebyshev approximation. The Parks–McClellan 
algorithm is a variation of the Remez exchange algorithm, with the change that it is 
specifically designed for FIR filters. It has become a standard method for FIR filter 
design. 

3.3 WAVELETS FILTERS 
Wavelet filters are created by a “mother” wavelet and a scaling function associated 
to that wavelet. The wavelet function satisfies the admissibility conditions for zero 
mean and for square norm one, that imply  wavelet is a finite energy function. 

The discrete wavelet transforms (DWT) of the signal x(t) is defined as follow: 

𝐷𝑊𝑇𝑥(𝑏, 𝑎) =  
1

√𝑎
∫ 𝑥(𝑡)𝑔∗ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

+ ∞

−∞

 

where g(x) is the wavelet function, and b and a are the translation and dilation 
parameters, respectively. The duration of the mother wavelet g(t) is either 
compressed or expanded depending upon the choice of a. In discrete wavelet 
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transform, the scaling function is discretized and is expressed on a dyadic scale 

2𝑗where (j=1, 2…, n) represent each scale. With smaller scales, the support for the 
wavelet decreases and the wavelet transform becomes more sensitive to high-
frequency components of the signal. On the contrary, lower frequency components 
of the signal are reflected with larger scales. 

The DWT can also be considered as the output of a bank of bandpass filters whose 
centre frequencies and bandwidths vary depending on the dilation parameter a in 
addition to the spectral properties of the wavelet function. The variable bandwidth 
introduces different resolutions at different scales and thus, the DWT has a 
multiresolution capability. 

The discrete wavelet multi-resolution analysis allows to compute wavelet filters 
coefficients at every possible scale. The original signal frequency spectrum is 
iteratively decomposed into high and low frequency signals by using series of 
conjugate mirror filter pairs that usually denote the filter banks at reconstruction.  

The signal is iteratively projected onto a multi-resolution approximation space that 
is decomposed into a lower resolution (approximation) space representing lower 
frequency components obtained by the low pass filter, and a detail space 
representing higher frequency components obtained by the symmetric high pass 
filter. The orthogonal basis in the lower resolution space is then divided into two 
new orthogonal bases at each iteration step (Fig. 15). At decomposition, the wavelet 
coefficients are generated by low pass and high pass filters and they are called 
approximates and detail coefficients respectively.  

 

Figure 15 

Therefore, signal bandwidth is iteratively divided in the approximation and detailed 
space for each scale analysed.  

It is important to identify which mother wavelet is best suited for the detection of 
given pattern. Several wavelet functions have been considered in this study and 
their performances compared. The analysed wavelets belong to different wat family 
types: the Daubechies wavelets and the Symlets wavelets (Fig.16). 
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Figure 16 

3.4  PERFORMANCE EVALUATION METHOD 

3.4.1 SYNTHETIZED NOISY SIGNALS 
To evaluate and compare noise reduction performance of different signal-processing 
techniques, synthetic noisy ECG signals were constructed by adding thoughtful 
amount of different types of noise to a clean ECG. The experimental signals were 
synthesized from 10 seconds clean ECG recording by adding 10 seconds of different 
noisy sources including electrode motion artifacts, muscle artifacts, baseline wander 
noise, power line (50 Hz) interference noise and random white gaussian noise 
(Fig.17). Noises records (from Physionet Database) are weighted by a gain factor in 
order to add a calibrated amount of noise to obtain specific SNR ratio for each 
synthesized noisy signal. The gain factor is computed with the Newton method that 
iteratively find the optimal gain factor to obtain the closest SNR ratio to the desired 
one.  

 

Figure 17 

In order to evaluate noise reduction performance, various method can be used. 
These methods can be divided into two main groups: subjective methods and 
objective methods. Subjective methods are based on the assessment of ECG signal 
quality by cardiologists or other experts while objective methods are based on 
mathematical equations, and hence there is no need for expert human assessment. 
The subjective methods for ECG quality evaluation are medically accepted, and they 
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can be used to qualitatively assess filtering performances. Objective methods were 
used to quantitatively evaluate the performance of different denoising methods. In 
this study, two parameters where chosen for quantitative analysis: SNR index ratio 
that quantify the ratio of signal power to noise power, and the diagnostic distortion 
measures (DDM) that quantifies the distortion percentage of the filtered signal from 
the original one focusing on diagnostic characteristics of PQRST complexes. Both 
parameters for noise reduction performance analysis need ECG signal to be 
characterized by localizing peaks and valley of principal ECG waves. 

3.4.2 ECG CHARACTERIZATION 

 

Figure 18 

The first step for every ECG signal analysis is the characterization of peak and valley 
by localizing PQRST waves of each heartbeat (Fig.18). The characterization starts 
from R peaks detection algorithm results that provides R waves time localization. R 
peak waves are the first and easiest waves to be localized due to their extremely 
high amplitude from all other ECG waves. In this study two automatic R peak 
detectors have been developed and they will be detailed in the next chapter.  

Starting from R peaks positions each heartbeat can be windowed and characterized 
by localizing following points: 

• QRS complex points including the on-set and the off-set points that define 
QRS complex width. 

• P wave including the onset P wave point that defines the start of heartbeat 
window. 

• T wave including the off-set T wave point that define the end of heartbeat 
window. 
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3.4.3 SNR INDEX 

 

Figure 19 

Signal to noise ratio (SNR) is a commonly used index to measure the relative signal 
power from noise power corrupting the signal. In ECG signal application, noise 
power can be computed on the isoelectric period between two consecutive 
heartbeat where no heart electrical activity exists and only noise is present (Fig.19). 
By assuming noise is a standard gaussian distribution, noise power can be computed 
as the standard deviation of the isoelectric period. Signal power is computed as 
squared peak-to-peak signal amplitude.  

𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10 (
𝐴𝑝𝑝

4 ∗ 𝑠𝑡𝑑(𝑛𝑜𝑖𝑠𝑒)
) 

In this study, the normalized SNR difference (ΔSNR) between the noisy synthesized 
ECG signal and the filtered one has been considered. The normalized SNR difference 
corresponds to the percentage variation of SNR that is positive if filtered SNR index 
increase, while is negative if SNR index decrease.  

3.4.4 DIAGNOSTIC DISTORTION MEASURE 
The diagnostic distortion measure is computed as linear combination of normalized 
difference of several morphological features between the clean ECG signal and 
filtered one.  

Starting from the characterization of the ECG record, several amplitude and time 
features are extracted from each single windowed beat (Fig. 20). These features are: 
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• 4 AMPLITUDE FEATURES including 
the peak-to-peak amplitude between 
RS, QR, RT waves and the ST segment 
elevation from the S amplitude 
depolarization level. 

• 4 TIME INTERVAL FEATURES including 
QRS complex interval, PQ, ST, QT 
interval. 

• 2 AREA FEATURES including PQ 
interval area under curve and ST 
interval area under curve.  

For each windowed beat, a vector of features 
β and 𝛽⦁ is extracted by the original clean ECG windowed signal and the filtered one, 
respectively. For each beat the diagnostic distortion measure (𝐷𝐷𝑀𝑏𝑒𝑎𝑡) is 
computed as linear combination normalized difference of the n morphological 
features: 

𝐷𝐷𝑀𝑏𝑒𝑎𝑡 = ∑ |
β − 𝛽⦁ 

β
|

𝑛

𝑖=1

  𝑥 100 

The total distortion measure (𝐷𝐷𝑀𝑡𝑜𝑡)between the original ECG and the filtered 
signal is computed as the average value of each beat distortion measure: 

𝐷𝐷𝑀𝑡𝑜𝑡= 
1

𝑀
∑ 𝐷𝐷𝑀𝑖

𝑀
𝑖=1  

Where M is the number of beats in ECG signal. 

  

Figure 20 
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3.5   FILTERING PERFOMANCE ANALYSIS 
The aim of this section is to analyse several filtering performances technique among 
those previously described and select the most suitable filter techniques to create 
optimal noise reduction process. Generally, noise reduction process is composed by 
the combination of low pass, high pass and power line interference filters. Filtering 
performances are evaluated considering synthetized noisy signals where one noise 
source is considered individually. In particular to investigate low pass, high pass and 
notch filters performances, a clear ECG signal is respectively corrupted by base 
wander noise, random white gaussian noise and power line noise. 

Each filter belonging to filter families under investigation have been tested and their 
designs have been optimized tuning their parameters. Denoising performances have 
been evaluated using the diagnostic distortion measure (DDM) and SNR variation 
percentage (ΔSNR). For each noise source the optimal design that maximise ΔSNR 
and minimize DDM is selected. By comparing the optimal filter design of each filter 
family, the best filter technique is selected for each noise source including base 
wander noise, random white gaussian noise and power line interference. 

Finally, by combining the selected low, high and notch filters, a noise reduction 
process has been assembled. The assembled noise reduction process has been 
tested and validated on ECG signal corrupted with muscle and electrode motion 
artifacts which power spectral density (PSD) mostly overlap ECG bandwidth. 

3.5.1  BASE WANDER NOISE REDUCTION 
For each filter family, high pass filters have been tuned to optimize their designs in 
order to maximise SNR percentage variation (ΔSNR) and minimize diagnostic 
distortion measure (DDM). Filters have been tested using corrupted ECG signal with 
different amount of BW noise so that the resulting SNR index was settled to be 20 
dB, 15dB, 10 dB (Fig.21) 

In order to reduce low frequency noises, the 1990 
American Heart Association (AHA) document 
recommended that “the low-frequency cut-off be 0.05 
Hz for routine filters but that this requirement could be 
relaxed to 0.67 Hz or below for linear digital filters with 
zero phase distortion”. In this recommendation, the 
requirement of linear digital filters with zero phase 
distortion is critical because if digital filters have non-
linear phase response, phase distortion is introduced 
into the signal, resulting in distortion of the low-
frequency components of the ECG signal.  

Figure 21 
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Both FIR and wavelet filters under analysis have linear phase response and are 
always stable, so their cut off frequency can be settled to 0,5 Hz.  

For each family filter, including moving window filters, FIR filter and wavelets filter, 
filter design optimization and performance are evaluated for each SNR noisy signal 
(Fig. 22, 23, 24). For each family type, the best performance filter corresponding to 
higher SNR difference and lower DDM is highlighted and selected.  

Considering moving 
window filters family 
(Fig.22), several window 
lengths between 1 and 2 
seconds have been tested 
for moving average filter, 
moving median filter and 
polynomial regression 
filter. Best performance 
occurs by using polynomial 
regression filter with window 
length 1,5 seconds.  

Considering FIR filters types 
(Fig.23), several orders 
between 400 and 2000 have 
been tested for windowed 
FIR filters, Parks-McClellan 
filter, and least square filter. 
Analysing and comparing 
their performance, best filter 
performance occurs using 
least square filter with order 
500.  

Considering wavelets filters 
(Fig.24), only scale between 1 
and 8 were considered, 
corresponding to a high pass 
filter with cut-off frequency of 
0.7 Hz. Several wavelets have 
been tested including haar 
wavelet, Daubechies wavelets 
and the Symlets wavelets. Best 
performance occurs with sym8 
wavelet.  

Figure 22 

Figure 23 

Figure 24 
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Finally, considering best performance filters 
previously selected for each family filter, their 
comparison is evaluated for all SNR noisy signals 
(Fig. 25). It is evident that best performance that 
maximise SNR variation (ΔSNR) and minimize 
distortion measure (DDM) is achieved with 
polynomial regression filter with window length 
of 1,5 seconds. 

This selected high pass filter will be used to build 
a noise reduction process in combination with 
high and notch filters that are going to be 
selected in next pages.  

  
Figure 25 
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3.5.2  RANDOM WHITE GAUSSIAN NOISE REDUCTION 
For each filter family, low pass filters have been tuned to optimize their designs in 
order to maximise SNR percentage variation (ΔSNR) and minimize diagnostic 
distortion measure (DDM). Filters have been tested using corrupted ECG signal with 
different amount of RANDOM white Gaussian noise so that the resulting SNR index 
was settled to be 20 dB, 15dB, 10 dB (Fig. 27). 

In order to reduce high frequency noise, several low pass FIR 
filters with cut-off frequency of 45 Hz have been analysed. 
Moreover, moving window filters have been tested focusing 
on their smoothing ability.  

For each family filter, including moving window filters, FIR 
filter and wavelets filter, filter design optimization and 
performance are evaluated for each SNR noisy signal (Fig. 26, 
27, 28). For each family type, the best performance filter 
corresponding to higher SNR difference and lower DDM is 
highlighted and selected.  

Considering moving window 
filters family (Fig.26), several 
window lengths between 
0,005 and 0,07 seconds have 
been tested for moving 
average filter, moving median 
filter and polynomial 
regression filter. Their 
corresponding cut-off 
frequency depends upon the 
choice of window length (M) and is 

computed as 
1

2𝑀
; therefore, the corresponding cut-off frequencies tested vary 

between 100 Hz and 7,15 Hz. Best performance occurs by using polynomial 
regression filter with window length 0,035 seconds that is equivalent to 14,3 cut-off 
frequency. 

Figure 27 

Figure 26 
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Analysing FIR filter family, 
(Fig.27), several orders 
between 10 and 100 have been 
tested for windowed FIR filters, 
Parks-McClellan filter, and least 
square filter. Analysing and 
comparing their performance, 
best filter performance occurs 
using windowed FIR filter with 
order 30.  

Considering wavelets filters 
(Fig.28), only scale between 3 and 
9 were considered, corresponding 
to a low pass filter with cut-off 
frequency of 45 Hz. Several 
wavelets have been tested 
including haar wavelet, 
Daubechies wavelets and the 
Symlets wavelets. Best 
performance occurs with sym8 
wavelet 

Finally, considering best performance filters 
previously selected for each family filter, 
their comparison is evaluated for all SNR noisy signals (Fig. 30). It is evident that best 
performance that maximise SNR variation (ΔSNR) and minimize distortion measure 
(DDM) is achieved using windowed FIR filter with order 30. 

This selected low pass filter will be used to build a noise 
reduction process in combination with low pass filter 
previously selected and notch filter that is going to be 
selected in next pages. 

 

 

 

 

  

Figure 28 

Figure 29 

Figure 30 
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3.5.3  POWER LINE INTERFERENCE REDUCTION 

For each filter family, 50 Hz notch FIR filters have been tuned to optimize their 
designs in order to maximise SNR percentage variation (ΔSNR) and minimize 
diagnostic distortion measure (DDM). Filters have been tested using corrupted ECG 
signal with different amount of 50 Hz noise so that the resulting SNR index was 
settled to be 20 dB, 15dB, 10 dB (Fig. 31). 

In order to reduce power line interference, several 
notch FIR filters with cut-off frequency of 50 Hz have 
been analysed.  

FIR filter design optimization and performance are 
evaluated for each SNR noisy signal (Fig. 32). several 
orders between 10 and 140 have been tested for 
windowed FIR filters, Parks-McClellan filter, and least 
square filter. The best performance filter corresponding 
to higher SNR difference and lower DDM is highlighted 
and selected occurs using Parks McClellan FIR filter with 
order 50.  

This selected notch filter 
will be used to build a 
noise reduction process 
in combination with low 
pass filter and high pass 
filter previously selected. 

 

 

 

 

 

 

 

 

  

Figure 31 

Figure 32 
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3.6  NOISE REDUCTION PROCESS 
Considering the three noise sources previously analysed, the filter that achieved 
best results have been selected and used to build the noise reduction process (Fig. 
33). 

 

Figure 33 

3.6.1 VALIDATION 
In order to evaluate noise reduction process performances, it has been validated by 
filtering noisy synthetized ECG signal corrupted with thoughtful amount of muscle 
artifacts and electrode noise artifacts individually. These noise sources are different 
from previously analysed noises because these noises power spectral density mostly 
overall ECG bandwidth and therefore is much more difficult to obtain good filtering 
performance using traditional denoising process.  

However, considering filtering performance results of these artifacts (Fig. 34), 
acceptable results were achieved specially when referred to muscle artifacts results.  

 

Figure 34 
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4 QRS DETECTION 
The detection of the QRS complex is the most important task in automatic ECG 
signal analysis. The QRS complex detection is the first step for further ECG 
examinations including signal quality assessment and heart rate analysis. 

The detection of the QRS complex in an electrocardiogram (ECG) signal is a difficult 
problem since it has a time-varying morphology and can be affected by several noise 
sources previously described.  

In this section two different QRS detection algorithms have been proposed and their 
characteristics and performances discussed. The first QRS detector is the well known 
and diffused Pan-Tompkins algorithm; the other is an own implemented QRS 
detector based on wavelet transforms. These algorithms have different properties 
and performance specially when dealing with noisy signals. Therefore, it is possible 
to discover noisy signal by comparing and matching both QRS locations resulted by 
the two different detectors (Fig. 35). If results are comparable withing a small error, 
then the ECG signal is classified as good quality and QRS locations are determined. In 
other cases, in which results are different, ECG signal is classified as bad quality and 
therefore discarded from successive analysis. More detailed information about the 
Signal Quality Assessment will be given in the next chapter.  

 

Figure 35 

Raw ECG signals are firstly preprocessed so that both QRS detectors algorithms can 
work on filtered ECG signals with reduced noise content and emphasized QRS 
complexes. ECG signals are filtered using previously described noise reduction 
process to which a high pass filter with cut-off frequency 10 Hz was added to reduce 
T wave prominence and emphasize QRS complex (Fig. 36). 
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Figure 36 

Generally, QRS detector algorithms can be divided into two stages: a first 
preprocessing stage where the input signal is manipulated and transformed using 
different techniques. In particular wavelet based QRS detector applies wavelet 
transform to the input signal, while Pan Tompkins algorithm applies a series of filters 
to emphasize the QRS complexes. Then, in the decision stage, each algorithm 
applies decision algorithm based on thresholds to detect R peaks. Moreover, in the 
decision stage, many settings have to be settled including refractory period that was 
chosen to be 200 ms so that any peak that occurs within 200 ms from the R-peak is 
discarded.  

Both QRS detection algorithms have been tested using MIT-BHI Arrhythmia 
database that includes 48 half hours I-lead ECG recording from 47 subjects. This 
database in commonly used for algorithm performance evaluation. 

Moreover, since the aim of this study is focused on application analysis of Vital-ECG 
watch device that records 10 seconds ECG signal, each ECG signal is windowed using 
a sliding window 10 seconds long and each ECG window is provided to the input of 
both QRS detection algorithm.  
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4.1  WAVELET BASED DETECTOR 
The algorithm is based on multiresolution wavelet transform which is robust to time 
varying QRS complex morphology and to noise. Haar wavelet is chosen as “mother” 
wavelet and scales between 1 to 4 were chosen for the analysis due to spectral 
characteristics of the electrocardiogram (ECG) signal where high frequency content 
of QRS complexes are more evident than other ECG waves. Considering each signal 
is acquired using a sampling rate of 360 Hz, each decomposition level focuses on 
different frequency bands: the first decomposition level focuses on a frequency 
band bounded between 90 – 180 Hz; the second level between 45 – 90 Hz; the third 
level between 22,5 – 45 Hz; the fourth level between 11,25 – 22,5 Hz. 

Starting from the last decomposition level and progressing towards the first level, a 
peak detection process is applied for each level. It is important to know that the 
maxima and minima points of the decomposed signal correspond to the zero 
crossing points of the original signal so that each R wave can be delimited within its 
zero crossing points.  

The maxima and minima points of the decomposed signal are localized with a 
threshold-based searching algorithm that uses global thresholds computed 
considering whole 10 seconds ECG windowed signal, and local thresholds computed 
on an overlapping sliding window 1 second long (Fig. 37). The sliding window of 1 
second width is moved with an overlap of 200 ms corresponding to the refractory 
period settled by user settings.  

In each sliding window the maxima and minima peaks that are respectively greater 
than the upper and lower global and local thresholds are detected. The analysis of 
several decomposition levels starting from larger scale towards the finest scale 
allows to manage the presence of noises that can corrupt ECG records resulting in 
false peak detection. The key condition is that the detection process analyzing lower 
scales only preserves maxima and minima points that match with previously 
detected points in larger scales. In this way false peaks resulting from low frequency 
noise effect are deleted when compared to finest scale analysis. Moreover, false 
peaks resulting from high frequency noise effect are not considered because do not 
match with previously detected points in lower scales.  

The analysis of the decomposition levels is computationally expensive and, to 
reduce time consuming, it proceeds until matching of maxima and minima points 
are founded between two consecutive levels. Finally, R peaks are detected in the 
range determined by the zero crossing points. 
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Figure 37 

Threshold levels play vital role in QRS detector algorithm and it is important to 
choose most appropriate threshold level. Both global and local thresholds are 
specular around zeros to allow maxima and minima points detection. The global 
threshold settled to be very low for lower amplitude false peak removal and it is 
computed using a small factor as a percentage of maxima and minima ECG value 
respectively. Local threshold, on the contrary is settled to have a great 
discriminating effect and is computed using doubled value of global multiplicative 
factor on maxima and minima ECG value within 1 second sliding window. In this 
way, by settling global threshold percentage, local threshold is automatically 
defined.  

4.2  PAN TOMPKINS DETECTOR 
The Pan–Tompkins algorithm is commonly used to detect QRS complexes.  

The algorithm first applies a series of filter to emphasize extremely sharp and fast 
signal variation that characterize QRS complexes and to reduce noise effects that 
contaminate the signal (Fig. 38). Starting from the previously filtered signal, the 
algorithm applies a derivative filter, then squares the signal and finally integrates 
the signal using a moving window 20 ms long. In this way, the algorithm highlights 
QRS complexes and reduce T wave prominence. Finally, the algorithm thresholds 
the integrated signal to detect the region above the threshold value. Threshold 
values are computed as a percentage of the signal energy. The algorithm localizes 
the regions of the integrated signal greater than threshold value and then detects R 
peaks in the original signal searching the highest peak in each localized region. 
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Figure 38 
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4.3 QRS DETECTORS PERFORMANCES 
The choice of optimal threshold level is important to optimize QRS detection 
performance. By using the MIT-BHI arrhythmia database several thresholds values 
have been tested for both algorithms (Fig. 39). By using smaller thresholds, 
detection algorithms are more sensible to detect smaller peak of the signal. On the 
other hand, by using greater thresholds, more specific and less sensible detections 
are obtained.  

Considering wavelet-based detection algorithm, by comparing performances of 
different threshold values it is evident that best results occurs using global 
thresholds equal to 0,15% of maxima and minima values. Detailed results of 
wavelet-based detector performance on MIT-BHI arrhythmia database are available 
in appendix B. 

Considering Pan-Tompkins algorithm, by comparing performances of different 
thresholds values it is evident that best results occurs using threshold level equal to 
0,2 % of the energy content of the signal. Detailed results of Pan-Tompkins detector 
performance on MIT-BHI arrhythmia database are available in appendix C. 

 

  

Figure 39 
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5 SIGNAL QUALITY ASSESSMENT 
ECG signal quality assessment (SQA) plays a vital role in significantly improving the 
diagnostic accuracy and reliability of unsupervised ECG analysis systems. The 
presence of noise and artifacts can produce large errors in the estimation of 
characteristics of signals values, leading to false alarms in detection of QRS 
complexes and therefore corrupting heart rate variability signal on which AF 
detection is based.  

In order to increase ECG analysis performances, a noisy signals detection process 
based on SQA algorithm has been introduced to detect and discard bad quality 
signals that are not adequate to be correctly processed. The SQA algorithm relies 
upon three principal conditions associated to a low-quality signal including signal 
saturation level, missed QRS complex and false detected QRS complexes (Fig. 40).  

The signal saturation level condition focuses on the amplitude signal dynamics and 
detect abrupt amplitude variations caused by noises and artifacts that can lead the 
signal to saturate. When the saturation level is reached, the signal is classified as 
unacceptable. 

The missed QRS complexes condition is based on QRS detection algorithms results. 
The RR time intervals are analyzed to verify that RR intervals do not exceed a settled 
maximum threshold of 3 seconds. If the threshold is exceeded, the signal is classified 
as unacceptable because of probable missed QRS detection. 

The false detected QRS complexes condition is the most important condition to 
improve performances of noisy signals detection process. The key idea is to apply 
both QRS detection algorithms previously described and compare their results. A 
good quality signal lead to comparable identical QRS detection results within 10 ms 
precision range, while results differs more than 10ms precision range considering 
too noisy signals which quality is not sufficient to provide accurate results and 
therefore, are classified as unacceptable.  

Figure 40 
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This last condition relies upon different QRS detection algorithm characteristics and 
properties in managing noise and artifacts corrupting analyzed signals. By using 
respectively the previously selected thresholds, each algorithm was tested using the 
MIT-BHI Noise Stress Database that include 2 minutes of calibrated amount of EM 
artifacts added to a 30 minutes long clean signal in order to obtain specific SNR 
levels (Fig. 41). It is evident that for lower SNR ratio, algorithms accuracy decrees 
due to false positive peaks and missed peaks more rapidly in Pan-Tompkins 
algorithm than in Wavelet-based algorithm. Considering sensitivity performances 
that measures only missed peaks ratio, Pan Tompkins algorithm achieves higher 
sensitivity levels even with lower SNR ratio.  

 

Figure 41 

By analyzing and comparing performances trend of both algorithms, their different 
characteristics in managing noises are evident. Wavelet-based algorithm appears to 
be more specific and more robust against false peaks detections than Pan-Tompkins 
algorithm that, in contrast, is more sensible to detect peaks but also to detect false 
positive peaks. 

By combining both algorithms properties, it is possible to detect noisy signals by 
comparing both QRS detected complexes and searching for differences among 
results. Good quality signals are expected to return identical results for both 
algorithms. Noisy signals, on the contrary, can generate same differences in false 
peaks detection or missed peaks.  

5.1  SQA PERFORMANCES 
The reliability of SQA system has been evaluated using the MIT-BHI Noise Stress 
Database that include a 30 minute long clean signal from MIT-BHI Arrhythmia 
Database corrupted by 2 minutes of calibrated amounts of EM artifacts added every 
2 minutes. In order to study the sensibility of noise detection, several SNR levels 
corresponding to several amount of noise have been considered (Fig.42).  
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Each signal have been windowed using 10 seconds non overlapping sliding window. 
Each windowed signal has been analyzed with both QRS detection algorithms and 
their results have been used in the SQA process that classifies each window as 
acceptable or not acceptable. Good noise detection performance are achieved with 
lower SNR ratio when all windows belonging to 2 minutes added noise are correctly 
classified as unacceptable. For higher SNR ratio, noise effects are less evident and 
therefore more difficult to be detected.  

 

Figure 42  
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6 AF DETECTION ALGORITHM 
In this chapter a new original atrial fibrillation (AF) detection algorithm is described, 
and its classification performances are then discussed. The algorithm is based on 
heart rate variability (HRV) signal that is one of the mostly used methods for 
assessing the heart activity and discrimination of cardiac abnormalities. The HRV is a 
nonlinear and nonstationary signal that represents the autonomic activity and its 
influence on the cardiovascular system. It is extracted from time RR intervals 
between consecutive peaks and, therefore, exact R peak detection is essential to 
correctly extract HRV signals. 

HRV allows AF detection because AF is characterized to be “irregularly irregular” 
heart rhythm that consequently increases both variability and complexity of HRV 
signal. For unquestionable diagnosis of the atrial fibrillation, atrial activity analysis is 
essential, but a stable, high quality signal without extensive noise is required for the 
analysis, which is hardly achievable by portable single lead ECG monitoring. 
Therefore, P wave detection process is currently not considered. 

The proposed automated AF detection algorithm (Fig.43) is composed by two 
classification stages. In the first step, ECG signals are firstly decomposed in 5 beats 
ROI (region of interest) from which a set of HRV features are extracted and are then 
cleaned and reduced to improve classification that is achieved using MLP (Multi 
Layer Perceptron) NN. The NN output is a linear function that is used in the second 
classification step after an appropriate transformation. In particular, the post 
process maps classified ROI into 256 grey scale and each ECG ROI sequence is 
transformed into a grey-scale image where each ROI corresponds to a pixel. In the 
image classification process, several features are extracted from grey-level images 
and are then cleaned and reduced to improve classification that is achieved with a 
MLP NN that classifies the ECG record into NSR of AF class. 

 

Figure 43 

  



40 
 

6.1 ECG DATABASED CONSTRUTION 
The AF algorithm has been trained and tested starting from an ECG database built of 
AF events and NSR events extracted from several MIT-BHI annotated databases 
including MIT-BHI arrhythmia database, long term AF database (ltafdb) and AF 
database (afdb) (Fig.44).  

These databases include long-term ECG recordings of 156 patients with paroxysmal 
or sustained AF episodes diagnosed by expert cardiologists annotating start and stop 
indexes of each AF episode. Only AF episodes between 30 and 120 seconds have 
been considered for this study to reduce the risk of intermittent NSR events into a 
longer AF annotated episode that may led to validity corruption of data. Moreover, 
only NSR events longer than 120 seconds have been considered because shorter 
episode may be characterized by instable rhythm. 

The selected ECG episode are then windowed with 10 seconds window long to 
emulate VITAL-ECG recordings. Each ECG window is pre-processed and its QRS 
complexes detected with both wavelet based and Pan-Tompkins algorithms that are 
used in the signal quality assessment process to detect and discards too noisy 
records that cannot be processed. The ECG database has been constructed using 
only acceptable quality records. The constructed ECG database include 25 h 
recording AF rhythm and 25 h recording NSR rhythm belonging to 68 patients. 

 

Figure 44 
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6.2  ROI CLASSIFICATION 
 

 

Figure 45 

 

6.2.1 FEATURES EXTRACTION 
Starting from the ECG database previously constructed, each record has been 
decomposed in a sequence of 5 beats ROI from which 47 HRV features have been 
extracted. These features can be generally divided in linear and non-linear features. 
The cardiovascular system is too complex to be linear and treating it as a non-linear 
system can lead to better understanding of the system dynamics. Linear features 
include time, geometrical and frequency-based analysis. Non-linear features include 
geometrical and entropy measures. The combination of linear and non-linear 
features has been used. 

Time domain measures is the simplest method to perform RR interval analysis. The 
series of RR intervals can also be converted into a geometric pattern model and 
several metrics can be used to judge the variability based on the geometric and 
graphic properties of the resulting pattern. In this study two geometrical approaches 
have been used including Poincare plot and histogram-based analysis.  

Spectral analysis is the most popular linear technique used in the analysis of HRV 
signals because frequency-domain analysis provides for the separation of 
parasympathetic (high-frequency range) and sympathetic activity (low frequency 
range) signals. 

Entropy analysis metrics are valuable in the assessment of HRV signal, because 
‘‘hidden information’’ related to underlying mechanisms can be obtained. 
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Figure 46 

TIME DOMAIN FEATURES 

With time domain metrics either the heart rate at any point in time or the intervals between 
successive QRS complexes are determined. 

• Features based on RR interval 
1. RRmean  (ms) mean value of RR intervals 

2. RRmedian  (ms) median value of RR intervals 

3.  RRvariance  (ms) variance of RR intervals 

4. range_RR  (ms) max (RR) – min (RR) 

5.  RRskew (a.u.) skewness of RR interval distribution 

6.  RRkurt  (a.u.) kurtosis of RR interval distribution 

7. RRiqr   (ms) interquartile range (IQR) that measures statistical dispersion, being equal to   
the difference between 75th and 25th percentiles. 

8. SDrr   (ms) Standard deviation of RR intervals. 

9. CVrr   (a.u.) coefficient of variation of RR, computed as the variance normalized by the  
mean value of RR intervals. 

 

• Features based on diff (RR) 
10. RMSSD   (ms) The square root of the mean of the sum of the squares of differences between  

adjacent RR intervals. 

11. pnn50   (%) Number of pairs of adjacent RR intervals differing by more than 50 ms divided  
by the total number of all RR intervals.  

12. pnn20   (%) Number of pairs of adjacent RR intervals differing by more than 20 ms 

13. sdsd   (ms) variance of the difference of adjacent RR intervals. 

14. CVdrr   (a.u.) coefficient of variation of difference of adjacent RR intervals 

 

• Features based on the Estimated probability Density of RR intervals 
15. kurt_Prr (a.u.) kurtosis of the estimated probability density of RR intervals 

16. skew_Prr  (a.u.) skewness of the estimated probability density of RR intervals 

 

• Based on the estimated probability Density of diff (RR) 
17. kurt_Pdrr  (a.u.) kurtosis of the estimated probability density of differences of adjacent RR  
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intervals 

18. skew_Pdrr (a.u.) skewness of the estimated probability density of differences of adjacent RR  
intervals 

FREQUENCY DOMAIN FEATURES 

Spectral analysis is the most popular linear technique used in the analysis of HRV 
signals. Frequency-domain analysis (Fig. 47) provides for the separation of 
parasympathetic (high-frequency range) and sympathetic activity (low frequency 
range) signals. Spectral power in the high-frequency (HF) (0.15-0.5 Hz) band reflects 
respiratory sinus arrhythmia and thus cardiac vagal activity. Low-frequency (LF) 
(0.04-0.15Hz) power is related to baroreceptor control and is mediated by both 
vagal and sympathetic systems.  

The power spectral density (PSD) can be calculated with parametric and non-
parametric methods. Non-parametric methods do not need stationary sampling 
frequency signals and they are mostly used for HRV signal analysis because of its 
non-stationary nature. On the contrary parametric methods need the signal to be 
stationary and therefore a non-stationary signal makes the PSD instable. 

In this study both parametric and non-parametric methods have been used to 
compute PSD and frequency features have been extracted from both PSD. The 
parametric PSD is estimated with Burg method that fits an autoregressive (AR) 
model to the signal by minimizing (least-squares) the forward and backward 
prediction errors while constraining the AR parameters to satisfy the Levinson-
Durbin recursion. The non-parametric PSD is estimated using the Lomb-Scargle 
periodogram that is computed using a sampling frequency determined by the 
maximal frequency detected in RR intervals.  

• FREQUENCY FEATURES BASED ON PARAMETRIC POWER SPECTRAL DENSITY ESTIMATED 
WITH BURG METHOD 

1. ttlpwr  (ms^2) Total spectral power (approximately <0.4 Hz) 

2. lf   (ms^2) Power in low frequency range (0.04Hz <= lf < 0.15 Hz) 

3. hf   (ms^2) Power in low frequency range (default 0.15Hz <= hf < 0.4 Hz) 

4. lfhf   Ratio LF [ms^2]/HF [ms^2] 

 

Figure 47 
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• FREQUENCY FEATURES BASED ON LOMB-SCARGLE PERIODOGRAM METHOD  
5. ttlpwr2 (ms^2) Total spectral power (approximately <0.4 Hz) 

6. lf2  (ms^2) Power in low frequency range (0.04Hz <= lf < 0.15 Hz) 

7. hf2  (ms^2) Power in low frequency range (default 0.15Hz <= hf < 0.4 Hz) 

8.  lfhf2  Ratio LF [ms^2]/HF [ms^2] 

GEOMETRICAL FEATURES 

POINCARE BASED FEATURES 

Poincare plot is a technique taken from non-linear dynamics and portrays the nature 
of R-R interval fluctuations showing each R-R interval plotted against the next 
interval. Poincare plot analysis is an emerging quantitative-visual technique whereby 
the shape of the plot is categorized into functional classes that indicate the degree 
of heart failure in a subject. The plot provides summary information as well as 
detailed beat-to-beat information on the behavior of the heart.  

The Poincare plot can be analyzed quantitatively by calculating the standard 
deviations of the distances of the R-R(i) to the lines y = x and y = -x + 2*R-𝑅𝑚, where 
R-Rm is the mean of all R-R(i). The standard deviations are referred to as SD1 and 
SD2, respectively. SD1 related to the fast beat-to-beat variability in the data, and 
SD2 described the longer-term variability of R-R(i). The ratio SD1/SD 2 can also be 
computed to describe the relationship between these components. 

 

Figure 48 

1. SD1  (ms) Standard Deviation of the projection of PP on the line perpendicular to 

the line of identity (y=-x) which characterizes the short-term HRV. It 

measures the width of Poincare cloud. 

2. SD2  (ms) Standard Deviation of the projection of PP on the line perpendicular to  

the line of identity (y=x) which characterizes the long-term HRV. It measures  

the length of the Poincare cloud.  

3. SD12   (ms) SD1 / SD2 ratio 
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4.  Stepping   Mean Stepping Increment of Inter Beat Intervals 

5. Dispersion   Dispersion of points around central point on the diagonal line 

 

HISTOGRAM BASED FEATURES 

The δRR interval, defined as δRR(i) = RR(i) - RR(i-1), is a measure of irregularity. The 
Lorenz plot of δRR intervals, which is a scatter plot of δRR(i - 1) versus δRR(i), 
encodes the uncorrelated nature of RR intervals in the direction of change of three 
consecutive RR intervals. 

The 2-D histogram is a numeric representation of a Lorenz plot with bins of size 
binSize and 13 regions of the histogram (sequences) have been defined and 
characterized (Fig.49). The δRR interval distribution is studied by analyzing bin 
counts in each sequence. For example, during normal sinus rhythm (NSR), bins 
within segment 0 of the 2-D histogram are mostly populated, whereas during AF, all 
segments are populated. 

Several evidence-based metrics have been employed to measure δRR distributions, 
including origin count that measure numbers δRR populating the origin segment; 
irregularity evidence (IrrEv), density evidence (DensityEv), anisotropy evidence 
(AniEv), premature atrial contraction evidence (PACEv). Finally, atrial fibrillation 
evidence (AFEv) is computed as linear combination of all these evidence-based 
metrics. 

 

Figure 49 

1. OriginCount  (a.u.) number of δRR interval within a threshold 

2. IrrEv   (a.u.) measures the sparseness of δRR distribution 

3. PACEv   (a.u.) measure the evidence of compensatory pauses 

4.  DensityEv  (a.u.) Density evidence measures the density in a cluster 
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5. AniEv   (a.u.) measures the orientation of the distribution 

6. AFEv   (a.u.) (IrrEv-OriginCount-2*PACEv) 

 

ENTROPY BASED FEATURES 

• ENTROPY FEATURES BASED ON EMBEDDING DIMENSION (m = 1) AND TOLLERANCE ( 𝒓 =
𝟎. 𝟐 ∗ 𝒔𝒕𝒅) 

1. COFMEn1  (a.u.) coefficient of fuzzy measure entropy 

2. SampEn1  (a.u.) sample entropy  

3. ApEn1   (a.u.) approximate entropy 

 

• ENTROPY FEATURES BASED ON EMBEDDING DIMENSION (m = 2) AND TOLLERANCE (r = 
0.2*std) 

4. COFMEn2  (a.u.) coefficient of fuzzy measure entropy 

5.  SampEn2  (a.u.) sample entropy 

6. ApEn2   (a.u.) approximate entropy 

 

• OTHER ENTROPY BASED FEATURES 

7. Wen_shan  (a.u.) Shannon entropy of wavelets 

8.  Wen_log  (a.u.) logarithm energy entropy of wavelets 

 

• OTHER NON-LINEAR FEATURES 

9. MAD   (ms) median absolute deviation 

10. Dfa   (a.u.) DetrendedFluctuation Analysis  
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6.2.2 ROI DATA CLEANING 
Starting from the feature-based dataset previously extracted, the first essential step 
for further data analysis include missing values removal. In particular, non-linear 
entropy measurements can result in Nan values if analyzed HRV signal do not 
compliant some basic requirements.  

Data cleaning process manage missing values is a smart way to both preserve the 
greatest number of elements and features. Data cleaning process analyzes one by 
one each feature and searches for missing values (Fig.50). If the number of Nan 
values are greater than 2% of dataset size then the feature is removed, otherwise 
elements are removed.  

Finally, 1 feature has been removed including Sample entropy measure computed 
with embedding dimension (m=2). In addition 5 records have been removed. 

 

 

Figure 50 
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6.2.3 ROI DATA DIMENSIONALITY REDUCTION 
Starting from clean dataset containing 46 extracted features, the dimensionality 
reduction play an important role to improve classification performances because in 
the reduced space the classification can be done more accurately than in the original 
space.  

Generally, dimensionality reduction of multivariate data represents a powerful 
method for highlighting more relevant features for the system description and 
deleting those attribute that are not predictive of the final state of the system 
(irrelevant) or highly correlated with other variables (redundant). A feature can be 
defined relevant if it is essential to obtain good predictive performances of the 
system, otherwise it is irrelevant. Usually, feature relevance can be considered 
strong if it cannot be removed from the dataset without resulting in a loss of 
predictive accuracy. On the contrary, feature relevance can be considered weak if it 
may sometime contribute to predictive accuracy, but this depends on which 
features are considered. Features are considered informative if they are highly 
correlated with the decision concept but are highly uncorrelated among them. 
Usually, two features can be considered irrelevant when considered individually, but 
they can be highly predictive when they are considered together.  

Dimensionality reduction provides several benefits including improving prediction 
performance, decreasing model complexity, facilitating data visualization, reducing 
measurements and storage requirements, and reducing training times.  

Two different techniques are available for performing dimensionality reduction on 
the dataset, including feature selection and feature construction. Feature selection 
simply selects a minimal number of relevant and informative features from the 
initial set of variables so that the amount of information with respect the original 
variables is kept intact, and the meaning of features is preserved. Feature 
construction transforms the data from the high-dimensional space to a new space of 
fewer dimensions. Feature construction generates a completely new set of features 
from the original ones through a linear transformation such as Principal Component 
Analysis (PCA). Generally, PCA is based on extracting the axes on which data shows 
the highest variability through linear transformation. After the new features has 
been created, it is important to select the best subset of orthogonally transformed 
features which allow achieving the best classification. 

In this study, dimensionality reduction process has been achieved in two steps 
including feature filter techniques and PCA feature construction (Fig.51). 
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Figure 51 

6.2.3.1 FEATURES FILTER METHOD 
Filters methods are usually low computationally intensive, and they produce a 
general feature set useful for exposing features relevance and predictivity of the 
model. The filter method provides a feature ranking rather than an explicit best 
feature subset.  

Filter method selects the features by ranking them on how useful they are for the 
model. To compute the usefulness score statistical test and correlation results are 
used. In particular, the filter method remove most correlated (redundant) features 

preserving those with higher area under ROC curve. The correlation threshold was 
settled to 99 %, and 5 features was removed from the dataset. The ROC curve of 
remaining features is shown in Fig. 52. 

 

Figure 52 
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6.2.3.2 FEATURES CONSTRUCTION - PCA 
Working with the 41 remaining features, PCA transforms the data from the high-
dimensional space to a new space of fewer dimensions. Feature construction 
generates a completely new set of features from the original ones through a linear 
transformation such as Principal Component Analysis (PCA). Generally, PCA is based 
on extracting the axes on which data shows the highest variability through linear 
transformation. After the new features has been created, it is important to select 
the best subset of orthogonally transformed features which allow achieving the best 
classification.  

The selection of most relevant principal components has been done with a 
threshold technique based on eigenvalues that is proportional to the variability of 
each components. Only the first 20 components with eigenvalues higher than 1 have 
been selected (Fig. 53).  

 

 

Figure 53 
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6.2.4  ROI CLASSIFICATION MLP NN 
ROI classification process has been applied on the PCA dataset containing 20 selected principal 
components and generally composed by 50 hours of ECG recording equally balanced into AF and 
NSR episodes (Fig.54). ECG records are related to 68 different patients and they have been 
stratified into 5 clusters containing approximatively 5 hours of AF records and 5 hours of NSR 
records each.  

ROI classification has been achieved using several different feedforwards multilayer perceptron 
(MLP) neural network (NN) triangular configuration from 1 to 3 hidden layers. The number of 
neurons in the first hidden layer was ranged from 10 to 50 with steps of 10, and the number of 
neurons were halved for each addition hidden layer to obtain triangular configurations with fixed 
proportionality dimensions.  

Each MLP NN architecture configuration has been trained with a balanced training set composed 
by 4 clusters of patients containing the same number of elements between the two class that 
approximately are 20 hours AF records and 20 hours NSR records. NNs have been tested with the 
remaining cluster of patients that has been used as testing set. Each NN architecture has been 
trained and tested 5 time for statistical validation since NN weight initialization is random. 

Classification performances of each NN architecture are shown in Fig 55. It is evident that best 
results (lower variability, higher accuracy) occurs with NN of 1 hidden layer containing 30 neurons. 

 

Figure 54 
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Figure 55 

The selected NN configuration (1 hidden layer of 30 neurons) has been validated with 5 fold cross 
validation technique where iteratively each patient cluster has been used as testing set and 
remaining clusters used as training set (Fig. 56). At the end of k fold cross validation, all ROI have 
been classified and each ROI output classification was saved into the classified ROI database.  

 

Figure 56 
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6.3  POST PROCESSING 
The classified ROI database contains output values of MLP NN related to each ROI. The NN output 
neuron is a characterized by a linear activation function and output values distribution are shown 
in Fig. 57 for both ROI classes. The majority of NSR ROI values are around 0, and most AF ROI 
output values are around 1. The two classes distribution overlaps in range of values between 0 
and 1. Output values greater than 1 are almost all belonging to class 1 and values lower than 0 are 
almost all belonging to class 0.  

In the post processing step, all output values ROIs belonging to each 10 seconds ECG record have 
been put together to create a sequence of output values that have been mapped to a grey scale 
image ranged between 0 and 1 using a pixel mapping function in which all values less than 0 are 
sets to 0 and all values higher than 1 are sets to 1. 

The grey level image database contains all 10 seconds ECG records reconstructed as a grey level 
images where each pixel corresponds to a ROI.  

 

  

Figure 57 
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6.4  IMAGE CLASSIFICATION 
The grey level image database includes data related to 10 seconds ECG records belonging to 68 
different patients from which have been generally extracted 25 hours AF records and 25 hours 
NSR records (Fig.58). 

The classification problem has been resolved with MLP NN features based. A set of features have 
been extracted from each image and they have been cleaned and reduce to improve classification 
performances.  

 

 

Figure 58 

6.4.1 IMAGE FEATURES EXTRACTION 
Each ECG record is transformed to a grey scale image where each ROI is a pixel and 
the luminosity level is equal to ROI output classification value.  

Several features have been extracted from images to quantify intensity level pixel 
distribution (Fig. 59). 

 

Figure 59 

 

PROBABILITY DENSITY FUNCTION (PDF) FEATURES 

From grey-levels images, several features have been extracted considering density 
probability distribution extracted from intensity pixels histogram. 

1. PDFmean   → Image pixels intensity mean value  
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2. PDFmedian   → Image pixels intensity median value 
3. PDFvar   → Image pixel intensity variance 
4. PDFstd   → Image pixel intensity standard deviation 
5. PDFcv    → Image pixel intensity coefficient of variation 
6. PDFrange   → Image pixel intensity range values 
7. PDFkurt   → Kurtosis of Probability Density Function (PDF) 
8. PDFskew   → Skewness of Probability Density Function (PDF) 
9. PDFmax   → pixel intensity of maxima Probability Density Function (PDF) 

 

MASK PATTERN DISTRIBUTION FEATURES 

By using 0.5 fixed threshold value, a binary mask has been obtained from each grey 
level image and a set of features have been extracted from white pixels pattern. 

1. Npix   → Percentual of all white pixels 
2. N1pix  →Percentual of isolated white pixels  
3. N2pix  →Percentual of connected white pixels 
4. Nobj   →Percentual of connected objects 
5. LmaxObj →normalized length of longest object 
6. LmeanObj → objects normalized mean length value 
7. LmedianObj → objects normalized median length value 
8. LvarObj → objects length variance 
9. LstdObj → objects length standard deviation 

 

CLUSTER ANALYSIS FEATURES 

A set of features have been extracted by two pixels intensity values clusters analysis. 
Each grey level image has been divided into two cluster using an adaptive threshold 
obtained from the cutoff value of agglomerative hierarchical cluster tree.  

1. Thr_value 
2. meanCentr0 
3. meanCentr1 
4. medianCentr0 
5. medianCentr1 
6. meanClustDist 
7. medianClustDist 
8. stdClust0 
9. stdClust1 
10. varClust0 
11. varClust1 
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6.4.2 IMAGE DATA CLEANING 
Generally, 29 features have been extracted from each image and the image features 
dataset have been formed containing features from all images.  

Dataset has been cleaned with the same data cleaning process previously used for 
ROI features dataset.  

Data cleaning process manage missing values is a smart way to both preserve the 
greatest number of elements and features. Data cleaning process analyzes one by 
one each feature and searches for missing values (Fig.60). If the number of Nan 
values are greater than 2% of dataset size then the feature is removed, otherwise 
elements are removed.  

Finally, 1 feature has been removed including the coefficient of variation (cv) of PDF 
measure. 

 

Figure 60 
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6.4.3 IMAGE DATA DIMESNIONALITY REDUCTION 

In this study, dimensionality reduction process has been achieved in two steps 
including feature filter techniques and PCA feature construction (Fig.61). 

 

Figure 61 

6.4.3.1 FEATURES FILTER METHOD 
Filters methods are usually very low computationally intensive, and they produce a 
general feature set useful for exposing features relevance and predictivity of the 
model. The filter method provides a feature ranking rather than an explicit best 
feature subset.  

Filter method selects the features by ranking them on how useful they are for the 
model. To compute the usefulness score statistical test and correlation results are 
used. In particular ROC operator was used and the filter method removes most 
correlated (redundant) features preserving those with higher AUC (area under 
curve). The correlation threshold was settled to 99 %, and 8 features was removed 
from the dataset. The ROC curve of remaining features is shown in Fig. 62 

 

Figure 62 
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6.4.3.2 FEATURES CONSTRUCTION - PCA 
Working with the 20 remaining features, PCA transforms the data from the high-
dimensional space to a new space of fewer dimensions. Feature construction 
generates a completely new set of features from the original ones through a linear 
transformation such as Principal Component Analysis (PCA). Generally, PCA is based 
on extracting the axes on which data shows the highest variability through linear 
transformation. After the new features has been created, it is important to select 
the best subset of orthogonally transformed features which allow achieving the best 
classification.  

The selection of most relevant principal components has been done with a 
threshold technique based on eigenvalues that is proportional to the variability of 
each components. Only the first 8 components with eigenvalues higher than 1 have 
been selected (Fig. 63).  

 

Figure 63 
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6.4.4 IMAGE CLASSIFICATION MLP NN 
Image classification process has been applied on the PCA dataset containing 8 selected principal 
components and generally composed by 50 hours of ECG recording equally balanced into AF and 
NSR episodes. ECG records are related to 68 different patients and they have been stratified into 5 
clusters containing approximatively 5 hours of AF records and 5 hours of NSR records each (Fig. 
64).  

Image classification has been achieved using several different feedforwards multilayer perceptron 
(MLP) neural network (NN) triangular configuration from 1 to 3 hidden layers. The number of 
neurons in the first hidden layer was ranged from 10 to 50 with steps of 10, and the number of 
neurons were halved for each addition hidden layer to obtain triangular configurations with fixed 
proportionality dimensions.  

Each MLP NN architecture configuration has been trained with a balanced training set composed 
by 4 clusters of patients containing the same number of elements between the two class that 
approximately are 20 hours AF records and 20 hours NSR records. NNs have been tested with the 
remaining cluster of patients that has been used as testing set. Each NN architecture has been 
trained and tested 5 time for statistical validation since NN weight initialization is random. 

 

Figure 64 

Classification performances of each NN architecture are shown in Fig 65. It is evident that best 
results (lower variability, higher accuracy) occurs with NN of 2 hidden layer containing 30-15 
neurons respectively. 
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Figure 65 

The selected NN configuration (2 hidden layer of 30-15 neurons) has been validated with 5 fold 
cross validation technique where iteratively each patient cluster has been used as testing set and 
remaining clusters used as training set (Fig. 66). At the end of k fold cross validation, all images 
have been classified and the results shown. 

 

Figure 66 
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7 CONCLUSION 
The AF detection algorithm was developed to be used in combination with ECG-WATCH device 
that records 10 seconds single lead ECG signal.  

VITAL-ECG AF detection performances have been compared to other three single lead ECG 
portable device for AF diagnosis currently present on the market: KARDIA BAND, ImPulse, 
myDiagnostick. 

KARDIA BAND (Fig.67) is a device produced by AliveCor company and ImPulse (Fig. 68) is a device 
produced by Plessey society. They both record 30 seconds single lead ECG signal. MyDiagnotick 
(Fig. 69) is a device produced by ABS company and it records ECG signals 30 to 60 seconds long.  

  

Figure 69 

ECG-WATCH device can achieve AF diagnosis with only 10 seconds ECG signal and its AF detection 
performance are comparable to performances of other devices (Fig 70): 

• ECG-WATCH (10 sec): sensibility: 92,62%, specificity 91,44%, accuracy 92,21% 

• KARDIA BAND (30 sec): sensibility: 93%, specificity 84%, accuracy 77% 

• ImPulse (30 sec): sensibility: 96.14%, specificity 95.73%, accuracy 95.97% 

• myDiagnostick (1 min): sensibility: 94%, specificity 93%, accuracy 93,5% 

 

 

Figure 7067 
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8 APPENDIX A 
 WAVELET BASED DETECTOR 

 

  

id fp fn vp ann accuracy sensitivity F1_score precision

100 0 0 2272 2272 100 100 100 100

101 4 0 1864 1864 99,78 100 99,89 99,78

102 1 0 2186 2186 99,95 100 99,97 99,95

103 1 0 2083 2083 99,95 100 99,97 99,95

104 27 0 2228 2228 98,8 100 99,39 98,8

105 36 6 2565 2571 98,38 99,76 99,18 98,61

106 1 0 2026 2026 99,95 100 99,97 99,95

107 1 1 2135 2136 99,9 99,95 99,95 99,95

108 52 6 1756 1762 96,8 99,65 98,37 97,12

109 0 0 2531 2531 100 100 100 100

111 2 1 2122 2123 99,85 99,95 99,92 99,9

112 1 0 2538 2538 99,96 100 99,98 99,96

113 0 0 1794 1794 100 100 100 100

114 5 0 1878 1878 99,73 100 99,86 99,73

115 0 0 1952 1952 100 100 100 100

116 2 17 2394 2411 99,21 99,29 99,6 99,91

117 0 0 1534 1534 100 100 100 100

118 1 0 2277 2277 99,95 100 99,97 99,95

119 3 0 1986 1986 99,84 100 99,92 99,84

121 1 1 1861 1862 99,89 99,94 99,94 99,94

122 1 0 2475 2475 99,95 100 99,97 99,95

123 0 0 1518 1518 100 100 100 100

124 1 0 1618 1618 99,93 100 99,96 99,93

200 9 0 2600 2600 99,65 100 99,82 99,65

201 7 1 1961 1962 99,59 99,94 99,79 99,64

202 4 2 2133 2135 99,71 99,9 99,85 99,81

203 21 19 2960 2979 98,66 99,36 99,32 99,29

205 1 4 2651 2655 99,81 99,84 99,9 99,96

207 13 134 2197 2331 93,72 94,25 96,76 99,41

208 4 14 2940 2954 99,39 99,52 99,69 99,86

209 2 0 3004 3004 99,93 100 99,96 99,93

210 4 16 2633 2649 99,24 99,39 99,62 99,84

212 0 0 2747 2747 100 100 100 100

213 0 2 3248 3250 99,93 99,93 99,96 100

214 3 1 2260 2261 99,82 99,95 99,91 99,86

215 2 0 3362 3362 99,94 100 99,97 99,94

217 3 0 2207 2207 99,86 100 99,93 99,86

219 1 0 2153 2153 99,95 100 99,97 99,95

220 0 1 2046 2047 99,95 99,95 99,97 100

221 1 3 2423 2426 99,83 99,87 99,91 99,95

222 3 0 2482 2482 99,87 100 99,93 99,87

223 1 0 2604 2604 99,96 100 99,98 99,96

228 43 1 2051 2052 97,89 99,95 98,93 97,94

230 3 0 2255 2255 99,86 100 99,93 99,86

231 1 0 1570 1570 99,93 100 99,96 99,93

232 18 0 1780 1780 98,99 100 99,49 98,99

233 0 2 3076 3078 99,93 99,93 99,96 100

234 1 0 2752 2752 99,96 100 99,98 99,96

total 285 232 109688 109920 99,53 99,78 99,76 99,74
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9 APPENDIX B 
PAN-TOMPKINS DETECTOR 

 

id fp fn vp ann accuracy sensitivity F1_score precision

100 0 0 2272 2272 100 100 100 100

101 5 1 1863 1864 99,67 99,94 99,83 99,73

102 1 0 2186 2186 99,95 100 99,97 99,95

103 1 5 2078 2083 99,71 99,75 99,85 99,95

104 15 24 2204 2228 98,26 98,92 99,12 99,32

105 33 5 2566 2571 98,54 99,8 99,26 98,73

106 1 53 1973 2026 97,33 97,38 98,65 99,94

107 2 8 2128 2136 99,53 99,62 99,76 99,9

108 113 11 1751 1762 93,38 99,37 96,58 93,93

109 0 5 2526 2531 99,8 99,8 99,9 100

111 2 1 2122 2123 99,85 99,95 99,92 99,9

112 1 0 2538 2538 99,96 100 99,98 99,96

113 0 0 1794 1794 100 100 100 100

114 1 258 1620 1878 86,21 86,26 92,59 99,93

115 0 0 1952 1952 100 100 100 100

116 3 24 2387 2411 98,88 99 99,43 99,87

117 0 0 1534 1534 100 100 100 100

118 1 0 2277 2277 99,95 100 99,97 99,95

119 1 0 1986 1986 99,94 100 99,97 99,94

121 1 2 1860 1862 99,83 99,89 99,91 99,94

122 1 0 2475 2475 99,95 100 99,97 99,95

123 0 3 1515 1518 99,8 99,8 99,9 100

124 1 9 1609 1618 99,38 99,44 99,69 99,93

200 2 5 2595 2600 99,73 99,8 99,86 99,92

201 1 76 1886 1962 96,07 96,12 97,99 99,94

202 1 12 2123 2135 99,39 99,43 99,69 99,95

203 12 80 2899 2979 96,92 97,31 98,43 99,58

205 2 4 2651 2655 99,77 99,84 99,88 99,92

207 10 135 2196 2331 93,8 94,2 96,8 99,54

208 2 366 2588 2954 87,55 87,61 93,36 99,92

209 1 0 3004 3004 99,96 100 99,98 99,96

210 3 41 2608 2649 98,34 98,45 99,16 99,88

212 0 0 2747 2747 100 100 100 100

213 0 7 3243 3250 99,78 99,78 99,89 100

214 2 5 2256 2261 99,69 99,77 99,84 99,91

215 1 5 3357 3362 99,82 99,85 99,91 99,97

217 2 7 2200 2207 99,59 99,68 99,79 99,9

219 1 4 2149 2153 99,76 99,81 99,88 99,95

220 0 0 2047 2047 100 100 100 100

221 1 165 2261 2426 93,16 93,19 96,45 99,95

222 1 81 2401 2482 96,69 96,73 98,32 99,95

223 1 186 2418 2604 92,82 92,85 96,27 99,95

228 10 146 1906 2052 92,43 92,88 96,06 99,47

230 1 0 2255 2255 99,95 100 99,97 99,95

231 1 5 1565 1570 99,61 99,68 99,8 99,93

232 1 2 1778 1780 99,83 99,88 99,91 99,94

233 0 10 3068 3078 99,67 99,67 99,83 100

234 1 5 2747 2752 99,78 99,81 99,89 99,96

total 240 1756 108164 109920 98,18 98,4 99,08 99,77
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