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Summary

The Reaction-Convection-Diffusion equation is a second order elliptic partial differential
equation that can be used to model many different physical phenomena. A method to
solve this class of problems is the Virtual Element Method (VEM).

In this thesis we focus on two dimensional problems defined on polygonal meshes,
considering both the stationary and evolutive case. The aim of this thesis is to analyze
and implement the stabilization methods Streamline Upwind Petrov-Galerkin (SUPG)
and Mass Lumping in the particular case of Virtual Element space of order k = 1.

Numerical results show the positive stabilization effect of SUPG and Mass Lumping
when the problem is characterized respectively by very large Péclet and very low Karlowitz
numbers. Moreover, an error analysis on an easy stationary problem shows that the
stabilization methods preserve the rate of convergence of VEM. Finally, a simulation of
a realistic geophysical evolutive problem is carried out to show the performance of the
method on a domain characterized by a high geometrical complexity.
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Chapter 1

Introduction

Many physical phenomena are mathematically described through partial differential equa-
tions, and one of the most used methods to solve numerically these problems is the Finite
Element Method (FEM). This method requires the generation of a mesh to discretize the
space where the problem is defined. A good approximation of the solution depends on the
quality of the mesh, whose generation could be computationally expensive when certain
geometrical constraints must be satisfied.

A physical application where the meshing process becomes very costly is the simula-
tion of single phase flows in porous media with an embedded Discrete Fracture Network
(DFN). Indeed, these fractures, represented as two-dimensional objects, are usually gen-
erated stochastically, and it is common to meet very narrow angles between them. The
problem lies in the fact that the quality of a FEM mesh is related to the angles of the
discretization of the space, in particular, small angles should be avoided in order to have a
good approximation of the solution. To overcome this problem, in recent years the FEM
has been generalized in methods such as the Virtual Element Method (VEM), which re-
laxes some geometrical constraints and allows the use of a general polygonal or polyhedral
mesh.

In this thesis we will focus on the solution of a second order elliptic equation in a two-
dimensional domain by means of the VEM of order k = 1. We will consider, in particular,
the Reaction-Convection-Diffusion equation, which can be used to describe a scalar field
such as the temperature or the concentration of a pollutant in the fractures of the above
mentioned DFN. In this work we will take into account both the stationary and evolutive
problems.

As the name suggests, the equation that we are considering presents the three terms
of reaction, convection and diffusion. Each of them can be predominant over the others.
We are in particular interested in the situations of convection-dominated and reaction-
dominated problems, which can be identified respectively from the values of the Péclet
and the Karlowitz numbers. In these cases the numerical solution could show oscillations
that are not present in the exact solution. Their source does not lie in the model, but
it is of a numerical nature instead. This problem can be fixed through a stabilization
Streamline Upwind Petrov Galerkin (SUPG) in the convection-dominated case and with
Mass Lumping in the reaction-dominated case.
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1 – Introduction

The work is organized as follows: after a description of the stationary and evolutive
Reaction-Convection-Diffusion problem in Section 2 and its variational formulation in 3,
in Section 4 it is presented the VEM of order k = 1 applied to this particular problem.
The core of the thesis lies in Section 6, where the stabilization methods SUPG and Mass
Lumping are introduced and analyzed, and their implementation in C++ is discussed. To
compare their behavior to the non-stabilized numerical method, in Section 7.2 we consider
a simple DFN composed by two fractures, where we ran simulations on a stationary and
an evolutive problem depending on three different parameters: a reaction coefficient, a
transmissivity coefficient and a diffusion coefficient. We show the results of numerical
simulations carried out for different combinations of the parameters, in order to isolate
the cases of convection-dominated and reaction-dominated problems. In so doing, it is
possible to determine when it is appropriate to apply a certain stabilization method.
Besides, in this section we show through an a posteriori error analysis that the order
of convergence of non-stabilized VEM is preserved also when applying SUPG and Mass
Lumping. Finally, a realistic geophysical simulation on a large scale DFN is presented in
Section 7.3 to show the applicability of the method on a practical problem characterized
by a high geometrical complexity.
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Chapter 2

Reaction-Convection-Diffusion
Equation

In several scientific fields, such as chemistry, fluid dynamics and biology, the behavior
of some scalar physical quantities can be modeled through the Reaction-Convection-
Difffusion equation

∂u

∂t
−∇ · (ε∇u) +∇ · (βu) + σu = f

The scalar physical quantity u : [0, T ] × Ω → Rd can describe, for example, the
temperature field of a fluid at a certain point x ∈ Ω of the space, at a certain time
t ∈ [0, T ]. Each term in the equation refers to a particular aspect of the behavior of the
field.

• The evolutive term ∂u
∂t models the evolution in time of the scalar field.

• The diffusive term −∇ · (ε∇u) describes the spread of the examined quantity in the
medium with a diffusivity given by the smooth function ε : Ω→ R, with ε(x) ≥ ε0 >
0, ∀x ∈ Ω.

• The convective term ∇ · (βu) represents the advection of the scalar quantity in the
domain Ω due to the smooth convective field of the medium: β : Ω→ Rd. In many
applications, for example when we are modeling a physical quantity in a fluid flow,
the vector field β is divergence-free (the flow is incompressible). Mathematically
∇ · β = 0, therefore ∇ · (βu) = (∇ · β)u+ β · ∇u = β · ∇u.

• The reaction term σumodels the local production of the considered physical quantity.
For example, if we are analyzing the concentration of a pollutant in a fluid, chemical
reactions can occur and they can induce a change in space and time of the quantity.
We consider σ as a smooth function σ : Ω→ R.

• The forcing term f : Ω → R provides energy to the system. It represents, for
example, the dispensation of heat to a fluid.

11



2 – Reaction-Convection-Diffusion Equation

When the term ∂u
∂t is not considered, then the partial differential equation takes the

form

−∇ · (ε∇u) +∇ · (βu) + σu = f

It represents a stationary problem and the solution does not depend on time. This equation
is coupled with boundary conditions, which can be of three different types:

• Dirichlet boundary conditions: the values of the solution are imposed on the Dirichlet
boundary ΓD ⊆ ∂Ω

u = gD, ΓD

• Neumann boundary conditions: on the portion of the boundary ΓN ⊆ ∂Ω it is fixed
the out-flux of the quantity u

ε
∂u

∂n̂
= gN , on ΓN

• Robin boundary conditions on ΓR ⊆ ∂Ω, which are a weighted combination of the
previous two.

In order to guarantee a well-posedness of the problem, boundary conditions (also of
different types) have to be imposed on the whole boundary ∂Ω, meaning that ΓD ∪ ΓN ∪
ΓR = ∂Ω, and ΓD ∩ ΓN = ∅, ΓD ∩ ΓR = ∅, and ΓN ∩ ΓR = ∅.

When, instead, also the temporal term is taken into consideration, then the problem
is said to be evolutive. If we study the problem in the temporal interval [0, T ], boundary
conditions must be specified ∀t ∈ [0, T ], and also an initial conditions has to be imposed:

u(0, x) = u0(x), x ∈ Ω

The solution of the Reaction-Convection-Diffusion equation could be a complex prob-
lem, and in many cases it is also unknown how to solve it analytically. Therefore, numerical
methods have been developed in order to compute an approximate solution of the partial
differential equation.
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Chapter 3

Variational Formulation

3.1 Stationary Problem
One way to solve numerically partial differential equations is to convert the differential
problem into a system of linear algebraic equations, which is a mathematical problem
that we know how to solve efficiently. We can perform this conversion by means of the
variational formulation of the differential problem.

We firstly choose a functional space V in which we want to find a solution u ∈ V
to our problem. If we consider the stationary Reaction-Convection-Diffusion problem
with homogeneous Dirichlet boundary conditions in a bounded, convex, polygonal domain
Ω ⊂ R2: {

∇ · (−ε(x)∇u+ β(x)u) + σ(x)u = f(x) in Ω
u = 0 on ∂Ω

then a natural choice for V is the functional space H1
0 (Ω). To obtain the weak formulation

of the problem, we multiply both sides of the equation with a generic test function v ∈
H1

0 (Ω) and integrate on the domain Ω.
By integrating by parts and considering the homogeneous boundary conditions, we get

the variational formulation of the problem:{
Find u ∈ H1

0 (Ω) such that
B(u, v) = (f, v) ∀v ∈ H1

0 (Ω)

where (·, ·) represents the L2(Ω) scalar product and
B(u, v) := a(u, v) + b(u, v) + c(u, v) (3.1)

with:

a(u, v) :=
∫

Ω
ε∇u · ∇vdx (3.2)

b(u, v) := −
∫

Ω
u(β · ∇v)dx (3.3)

c(u, v) :=
∫

Ω
σuvdx (3.4)

13



3 – Variational Formulation

By assuming

• f ∈ H−1(Ω),

• ‖u‖1,Ω ≤ C‖f‖−1,Ω,

• ‖u‖2,Ω ≤ C‖f‖0,Ω

for a constant C > 0 independent of f , then the bilinear form B(·, ·) is continuous and
coercive, thus the existence and uniqueness of the solution u ∈ H1

0 (Ω) is guaranteed
(da Veiga et al. [2014]).

If the problem is not characterized by homogeneous Dirichlet boundary conditions, we
can transform the problem into an equivalent one, which shows homogeneous Dirichlet
boundary conditions and can be, therefore, solved as described before.

In the case of inhomogeneous Dirichlet boundary conditions, the problem is character-
ized by

u = gD on ΓD
with gD ∈ H

1
2 (ΓD).

We define RgD ∈ H1(Ω) as the function in H1(Ω) such that γΓD(RgD) = gD and
γ∂Ω\ΓD(RgD) = 0, where γ∂Ω : H1(Ω)→ H

1
2 (∂Ω) represents the trace operator.

If we let
u = u0 +RgD (3.5)

We can convert the problem to{
∇ · (−ε∇u+ βu) + σu = f, in Ω
u0 = 0, on ∂Ω

that can be rearranged as{
∇ · (−ε∇u0 + βu0) + σu0 = f −∇ · (−ε∇RgD + βRgD)− σRgD , in Ω
u0 = 0, on ∂Ω

If it is possible to find a function RgD with these properties, then we can solve the problem
in u0, which is characterized by homogeneous Dirichlet boundary conditions, and it has
the following variational formulation:{

Find u0 ∈ H1
0 (Ω) such that

B(u0, v) = (f, v)−B(RgD , v) ∀v ∈ H1
0 (Ω)

After solving this problem, we reconstruct the solution to the original problem recalling
(3.5).

In the case of Neumann conditions

ε
∂u

∂n̂
= gN , on ΓN

14



3.2 – Evolutive Problem

when we integrate by parts to get the variational formulation of the problem, we obtain
new terms due to the boundary condition:{

Find u ∈ H1
0 (Ω) such that

B(u, v) = (f, v) + (gN , γΓN (v))ΓN ∀v ∈ H1
0 (Ω)

Similarly, Robin boundary conditions are performed.

3.2 Evolutive Problem
In a similar way we can approach the evolutive problem of Reaction-Convection-Diffusion,
whose equation is given by

∂u

∂t
−∇ · (ε∇u) +∇ · (βu) + σu = f

Also in this case, we can reformulate a problem with generic boundary conditions (ho-
mogeneous or inhomogeneous Dirichlet, Neumann or Robin boundary conditions) in a
problem with homogeneous Dirichlet conditions. Therefore, we can reduce our analysis
to the problem:

∂u
∂t −∇ · (ε∇u) +∇ · (βu) + σu = f, on [0, T ]× Ω
uD(t, x) = 0, on [0, T ]× ∂Ω
u(0, x) = u0(x), on Ω

Given the homogeneous Dirichlet boundary conditions, we can look for solutions in the
space L2([0, T ], H1

0 (Ω)). Besides, for the problem to be well-defined, we assume

f,
∂u

∂t
∈ L2

(
[0, T ], H−1(Ω)

)
We can solve the problem through the Crank-Nicolson method - a finite difference method
that shows a second-order convergence in time.
Following this method, we firstly discretize the temporal domain [0, T ] into N intervals of
size ∆t = T

N . Thus, each time step is given by tk = k∆t, k = 0, . . . , N . We denote with
uk and fk respectively the solution and the forcing term at time step tk. We discretize
the evolutive term as

uk+1 − uk

∆t
and we average the spatial terms and the forcing term in the time steps tk and tk+1:

uk+1 − uk

∆t +

+ 1
2
((
−∇ · (ε∇uk) +∇ · (βuk) + σuk

)
+
(
−∇ · (ε∇uk+1) +∇ · (βuk+1) + σuk+1

))
=

= 1
2
(
fk + fk+1

)
15



3 – Variational Formulation

We can now multiply the equation by a generic test function v ∈ H1
0 (Ω) and integrate on

the spatial domain Ω. Considering the homogeneous Dirichlet boundary conditions, we
integrate by parts and we obtain the variational formulation of the evolutive problem:{

Find u ∈ L2 ([0, T ], H1
0 (Ω)

)
such that

uk+1−uk
∆t + 1

2
(
B(uk, v) +B(uk+1, v)

)
= 1

2
(
(fk, v) + (fk+1, v)

)
, ∀v ∈ H1

0 (Ω)
(3.6)

To solve this problem numerically, we will consider the initial condition u0 and recursively
we will determine uk+1 given uk. It is therefore useful to rearrange (3.6) as{
Find u ∈ L2 ([0, T ], H1

0 (Ω)
)

such that
(uk+1, v) + ∆t

2 B(uk+1, v) = (uk, v)− ∆t
2 B(uk, v) + ∆t

2
(
(fk, v) + (fk+1, v)

)
, ∀v ∈ H1

0 (Ω)
(3.7)
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Chapter 4

Virtual Element Method

4.1 Virtual Element Space

The Virtual Element Method is an improvement to the Finite Element Method, and it
is slightly more expensive than FEM, because basis functions are not known analytically
and it is required to solve local problems in order to compute their local polynomial
projections. Nevertheless, VEM shows the advantage of requiring a polygonal tessellation
Th of the domain Ω ⊂ R2 with polygons characterized in general by a different number
of edges from each other. As a consequence, the process of mesh generation is simplified
and it requires a lower computational cost.

More specifically, in the VEM we approximate the solution in the VEM space, that
will be defined later. These functions will not be computed exactly, nevertheless we are
interested in knowing the exact values of the bilinear forms when one of their entries is a
polynomial. Therefore, we will make extensive use of projections of VEM functions onto
the space of piecewise polynomials of order k.

As described in da Veiga et al. [2014], the elements E ∈ Th in the VEM have to satisfy
the following conditions:

• ∀E ∈ Th, E has to be star-shaped with respect to a disk of radius ρEhE , where hE
is the diameter of the element E, and it has to exist a ρ0 > 0 such that ρE ≥ ρ0 > 0,
∀E ∈ Th

• ∀E ∈ Th, ∀e ∈ Eh,E has to satisfy |e| ≥ ρEhE , where Eh,E represents the set of edges
of element E

Besides, the tessellation Th of the DFN has to be a global conforming polygonal mesh,
meaning that edges of elements have to match exactly in correspondence of traces (Berrone
et al. [2019]).
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4 – Virtual Element Method

On each element E ∈ Th we define the local VEM space of order k ∈ N as

VEh =
{
v ∈ H1(E) : ∆v ∈ Pk(E),
v|e ∈ Pk(e) ∀e ∈ Eh,E ,
v ∈ C0(∂E),
(v, p)E = (Π∇k,E(v), p)E ∀p ∈ Pk\Pk−2

}
where Π∇k,E : H1(E)→ Pk(E) is theH1(E) orthogonal projection operator, which satisfies:

(∇Π∇k,E(v),∇p)E = (∇v,∇p)E ∀p ∈ Pk(E), (4.1)
(Π∇k,E(v),1)∂E = (v,1)∂E if k = 1, (4.2)

(Π∇k,E(v),1)E = (v,1)E if k > 1 (4.3)

Pk(E) and Pk(e) are the space of polynomials of order k defined respectively on element
E and on each edge e, and Pk\Pk−2(E) is the set of polynomials p ∈ Pk(E) that are L2(E)
orthogonal to Pk−2(E).
It will also be useful the definition of the L2-projection operator Π0

k,E on the space Pk(E).
It acts on functions v ∈ Vh as follows:

(Π0
k,E , p)E = (v, p)E , ∀pk ∈ Pk

The VEM space VEh is finite dimensional, so we can find a finite basis {ϕi} for it and
every function v ∈ VEh can be identified through its degrees of freedom {vi}, that are the
scalar values such that v =

∑
i viϕi. Therefore, if we are looking for an approximation

uh ∈ VEh of a certain function u ∈ H1
0 , our objective is to find the scalar values (uh)i that

determine uh as a function of Vh.
In Section 5 we will describe an implementation of VEM of order k = 1. In this case the
functions v ∈ VEh are identified by NE degrees of freedom represented by the values of v
at the NE vertices of element E.
As basis functions of the space VEh of order k = 1 we can consider the Lagrangian basis
{ϕi}N

E

i=1, which satisfies ϕi(xj) = δij , where xj , j = 1, . . . , NE denote the vertices of
polygon E.
The global virtual element space is then defined as

Vh =
{
v ∈ H1

0 (Ω) : v|E ∈ VEh , ∀E ∈ Th
}

(da Veiga et al. [2014]).

4.2 Discrete Problem
To discretize the second order elliptic equation by the VEM, we restrict the problem on one
element E of the tessellation Th at a time. We will denote with aE(·, ·), bE(·, ·), cE(·, ·)
the restriction of the bilinear forms a(·, ·), b(·, ·), c(·, ·) defined in (3.2) - (3.4) to the
generic element E.
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4.2 – Discrete Problem

The discretization requires the introduction of a stabilizing term SE - a symmetric
bilinear form on VEh × VEh , such that

α∗a
E(vh, vh) ≤ SE(vh, vh) ≤ α∗aE(vh, vh), ∀vh ∈ VEh , Π∇k vh = 0

with α∗, α∗ parameters independent of h and satisfying 0 < α∗ ≤ α∗. In words, the sym-
metric bilinear form SE scales like aE(·, ·) on the kernel of Π∇k on VEh . This stabilization
will guarantee the coercicity and continuity of aEh (·, ·).
The simplest choice for SE(u, v), that we will use in our implementation of VEM in C++
in 5, is the scalar product of the vectors of degrees of freedom of functions u and v. Thus,
in the case k = 1 that we are considering, we define SE(u, v) as the scalar product between
the values of u and v in the vertices of element E (Berrone and Borio [2020]).

Now ∀u, v ∈ VEh we can define the discretized bilinear forms and forcing term on
element E as follows:

aEh (u, v) :=
∫
E
ε(Π0

k−1,E∇u) · (Π0
k−1,E∇v)dx+ SE((I − Π∇k,E)u, (I − Π∇k,E)v) (4.4)

bEh (u, v) := −
∫
E

(Π0
k−1,Eu)(β · Π0

k−1,E∇v)dx (4.5)

cEh (u, v) :=
∫
E
σ(Π0

k−1,Eu)(Π0
k−1,Ev)dx (4.6)

(fh, v)E :=
∫
E
f(Π0

k−1,Ev)dx (4.7)

As we did in (3.1), we define

BE
h (u, v) := aEh (u, v) + bEh (u, v) + cEh (u, v) (4.8)

We can extend the discretized bilinear forms and forcing term to the whole domain Ω, by
summing all the contributes on each element E ∈ Th:

ah(u, v) :=
∑
E

aEh (u, v)

bh(u, v) :=
∑
E

bEh (u, v)

ch(u, v) :=
∑
E

cEh (u, v)

(fh, v) :=
∑
E

(fh, v)E

and similarly

Bh(u, v) := ah(u, v) + bh(u, v) + ch(u, v) =
∑
E

BE
h (u, v)

The bilinear forms bEh and cEh are well defined ∀u, v ∈ H1(E), as well as bh and ch are
on H1

0 (Ω). However, this is not the case for aEh , because of the stabilizing term SE(·, ·).
Indeed, the latter is defined only on the space VEh .
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4 – Virtual Element Method

These definitions allow to define the discrete stationary problem as:{
Find uh ∈ Vh such that
Bh(uh, vh) = (fh, vh) ∀vh ∈ Vh

(4.9)

(da Veiga et al. [2014]).

In the evolutive case, as described in Section 3.2, we apply the Crank-Nicolson method.
Using the previous discretized bilinear forms and forcing term, at each time step tk, k =
1, . . . , N we find the discrete version of (3.7):

Find uk+1
∆t,h ∈ Vh such that

(uk+1
∆t,h, vh) + ∆t

2 B(uk+1
∆t,h, vh) =

= (uk, v)− ∆t
2 B(uk∆t,h, vh) + ∆t

2
(
(fk, vh) + (fk+1, vh)

)
, ∀vh ∈ Vh

(4.10)

4.3 Error Estimates
The VEM provides an approximate solution to the problem we are considering. It is
important to understand how good is this approximation. A way to perform it, consists
in finding an upper bound of the approximation error ‖u − uh‖ in a suitable norm ‖ · ‖
(being u and uh the exact and numerical solutions respectively). This bound usually
depends on the discretization parameters: h for the discretization in space (which could
be defined as h := maxE∈Th hE , with hE := diam(E)) and ∆t when discretizing in time.
In particular, we look for a relation of this kind:

‖u− uh‖ ≤ C(ha + ∆tb)

for constants C > 0 and a, b independent of the parameters h and ∆t.
We will say that the method is of order a in space and b in time.
In the stationary problem, since we are dealing with sufficiently regular functions that

lie in H1(Ω), then a natural choice for the approximation error is the H1-norm of the
difference between exact and approximate solution:

‖u− uh‖1 =
(
‖u− uh‖20 + ‖∇u−∇uh‖20

) 1
2

where ‖ · ‖0 denotes the L2-norm on Ω.
As proved in da Veiga et al. [2014], for h sufficiently small there exists a unique solution
uh ∈ Vh to the discrete problem 4.9, and if u ∈ Hs+1(Ω) and f ∈ Hs(Ω), uh satisfies

‖u− uh‖1 ≤ Chs(‖u‖s+1 + |f |s) (4.11)

for 0 ≤ s ≤ k, for a constant C > 0 independent of discretization parameter h, but in
general depending on the parameters of the problem : ε, β, σ.

As before, k represents the order of the VEM space. If we let k = 1, then the error
estimate (4.11) becomes:

‖u− uh‖1 ≤ Ch(‖u‖2 + |f |1) (4.12)
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4.3 – Error Estimates

When we are solving the evolutive problem, instead, we are looking for a function that
approximates the exact solution u ∈ L2([0, T ], H1

0 (Ω)). In this case the error is a com-
bination of the errors due to the discretization in time and the discretization in space.
If we are using the Crank-Nicolson method, which is second order in time, we have the
following a priori error estimate:

‖u− u∆t,h‖L2([0,T ],H1
0 (Ω)) ≤ C1∆t2 + C2h (4.13)
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Chapter 5

Implementation in C++

To perform the VEM, we implemented a code in C++, following the object oriented pro-
gramming principles.

5.1 Definition of the Problem
In the main.cpp file, after importing a DFN,
exitCode = DFNCustomImporter :: Import(dfnTag , network );

we create a mesh of cells on it
DFNMinimalMesher mesher;
mesher.SetDFN (& network );
mesher. CreateMesh ();

Then, we define and solve the primal problem that physically corresponds to the hy-
draulic head. It is characterized by the equation

−∇ · (K∇u) = f

Thus, it is required to import the data about the parameter of transmissivity K and the
source term f on each fracture of the DFN. These are defined as vectors of
GenericPhysicalParameter*. This class presents several subclasses, basing on the be-
havior of the parameters that we are dealing with:

• if the parameter is constant on the whole fracture, we define it as an object of the
subclass ConstantPhysicalParameter;

• if its values are constant on each cell of the fracture, we can use the subclass
PiecewiseConstantPhysicalParameter;
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5 – Implementation in C++

• if, instead, the parameter is defined as a function, we work with the subclass
VariablePhysicalParameter, where we set the pointer to the function that defines
the parameter on the fracture.

Similarly, for boundary conditions we created the class GenericBoundaryCondition, that
admits the subclasses ConstantBoundaryCondition (for which we define a constant value
of boundary condition on the whole border) and VariableBoundaryCondition (that re-
quires the specification of a function pointer that expresses pointwise the value of the
boundary condition). These classes can be used for all kinds of boundary conditions: bas-
ing on the value of a marker, we distinguish the case of Dirichlet and Neumann conditions.
After defining the parameters, we declare the problem as an object of class
EigenDFNVemEllipticProblem, and by means of setter functions we set DFN, parame-
ters, source function and boundary conditions.

5.2 Resolution of the problem
In the function EigenDFNVemEllipticProblem::Initialize(), we initialize the prob-
lem. In particular, we define the discrete equation

EigenDiscreteEquation_IterativeSolver * discreteEquation = new
EigenDiscreteEquation_IterativeSolver ();

and the assembler that will build the system of linear equations

assembler = new EigenDFNAssembler ();

For both objects we set a pointer to the global matrix and the right hand side that
define the linear system associated to the problem, along with the matrix for the Dirichlet
boundary conditions:

• the matrix is defined as an Eigen::SparseMatrix<double> and its size isNdof×Ndof

(where with Ndof we denote the number of degrees of freedom, meaning the number
of nodes where no Dirichlet boundary conditions are imposed);

• the right hand side is a vector of double of size Ndof

• the Dirichlet matrix is an Eigen::SparseMatrix<double> of size Ndof×ND
dof , where

ND
dof denotes the number of nodes where Dirichlet conditions are specified.

The problem is solved in the function

Output :: ExitCodes DFNVemEllipticProblem :: Solve ()
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5.2 – Resolution of the problem

The resolution happens in two main steps. Firstly the system of linear equations is
assembled through the assembler we defined before:

assembler -> AssembleDiscreteSystem ();

Secondly, the system of equations is solved iteratively:

system ->Solve ();

In particular, when the matrix of the system is symmetric - as in the hydraulic head prob-
lem - the iterative method that is used is the Conjugate Gradient method. Whereas, when
more generally the system is non-symmetric - like in the Reaction-Convection-Diffusion
problem - the Bi-Conjugate Gradient method is performed.
The solution of the linear system of equations will be a vector which components represent
the approximated value of the unknown function in the nodes of the mesh.

5.2.1 Discrete Linear System Assembler
The algorithm in the function AssembleDiscreteSystem() aims to build the discrete
system of equations: the global matrix is built after the computation of

vector < Triplet <double > > tripletList ;

as well as the Dirichlet matrix from

vector < Triplet <double > > tripletListDirichlet ;

The values of these objects, along with the right-hand-side and the Dirichlet values in
the Dirichlet nodes of the mesh, are computed locally by considering an element (cell) of
the mesh at a time. In particular, we perform a loop on each fracture of the DFN, and
for each fracture we run another loop on the cells of the mesh:

for( unsigned int fracPosition = 0; fracPosition < network .
NumberDomains (); fracPosition ++)

{
const Fracture & fracture = dynamic_cast <const Fracture &>(

network . DomainByPosition ( fracPosition ));
const GenericMesh & mesh = fracture .Mesh ();
for( unsigned int e = 0; e < mesh. NumberOfCells (); e++)
{

const GenericCell & cell = *mesh.Cell(e);
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5 – Implementation in C++

...

On each element we define a local matrix, a local right-hand-side and a local vector of
Dirichlet conditions:
MatrixXd cellStiffness ;
VectorXd cellRightHandSide ;
VectorXd cellDirichletTermValues ;

If the cell is active, then we compute the values of these matrices and vectors through
the function of the equation on the considered fracture:
equationPointer [ fracPosition ]-> BuildLocalSystem (cell ,

cellStiffness , cellRightHandSide , cellDirichletTermValues )
;

After this computation, that will be described later, these local quantities are plugged
into the global objects. We consider ordered pairs of vertices of the cell, and we took
their global indices inside the mesh. We denote this two values as globalDof_i and
globalDof_j.
To distinguish Dirichlet degrees of freedom, we decided to let the indices of Dirichlet nodes
to be negative. So
if( globalDof_i >= 0)

and
if( globalDof_j >= 0)

we plug the computed value of the stiffness matrix into the tripletList:
tripletList . push_back (Triplet <double >( globalDof_i ,

globalDof_j , cellStiffness (i,j)));

Instead,
if( globalDof_i >= 0)

and
if( globalDof_j < 0)
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5.2 – Resolution of the problem

then we are dealing with a Dirichlet condition in node j, therefore we let
tripletListDirichlet [ posDirichlet ++] = Triplet <double >(

globalDof_i , -globalDof_j -1, cellStiffness (i,j));

and we set the Dirichlet value
solutionDirichlet [-globalDof_j -1] = cellDirichletTermValues (j

);

The right-hand-side is determined as
rightHandSide [ globalDof_i ] += cellRightHandSide (i);

when globalDof_i>=0, that corresponds to the case when we have no Dirichlet condition
on node i.

5.2.2 Computation of the Local System
As anticipated before, the local values are computed in the function

Output :: ExitCodes VemEllipticEquation :: BuildLocalSystem (
const GenericCell & Gcell , MatrixXd & cellMatrix , VectorXd &
cellRightHandSide , VectorXd & cellDirichletTermValues )

Here through the line of code
vemValues . ComputeVemProjectors (cell);

we compute the Vandermonde matrix and the matrices that perform the projections.
Their computation follows the optimized implementation described in Berrone and Borio
[2020].

Vandermonde Matrices

The Vandermonde matrix of element E for the VEM of order 1 is a matrix V E
1 ∈ RNE×3.

Its entries (i, j) are given by mj(xi), i = 1, . . . , NE , j = 1,2,3, where mj are the scaled
monomials taken as basis for the local polynomial space P1(E):

m1(x, y) = 1 (5.1)

m2(x, y) = x− xE
hE

(5.2)

m3(x, y) = y − yE
hE

(5.3)
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5 – Implementation in C++

Here we denoted by (xE , yE) the centroid of the element and by hE its diameter.
We will also use the Vandermonde matrix of order 0, which has size NE × 1 and all its
entries are 1 (indeed, as basis of P0(E) we can take the set {m}, with m(x, y) = 1), and
the Vandermonde matrices of derivatives of monomials V E

1,x, V
E

1,y ∈ RNE×3.
The latter are defined as

V E
1,x = V E

1 D
E
1,x, V E

1,y = V E
1 D

E
1,y

where

DE
1,x =

0 1
hE

0
0 0 0
0 0 0

 , DE
1,y =

0 0 1
hE

0 0 0
0 0 0


Useful to our computations are also the projectors Π∇1 , Π0

0 and Π0
0∇.

Projector Π∇1

The projector Π∇1 is the H1-orthogonal projection defined by:

(∇Π∇1 (v),∇p)E = (∇v,∇p)E , ∀p ∈ P1(E)
(Π∇1 (v),1)∂E = (v,1)∂E

If we are considering the scaled monomials (5.1) - (5.3) as basis for P1(E) and the
Lagrangian basis for VEδ , then the vector (dofPk(E)(Π∇1 v))j of degrees of freedom of Π∇1 v
with respect to Pk(E) satisfies:

3∑
j=1

(∇mj ,∇mi)E(dofPk(E)(Π∇1 (v)))j = (∇v,∇mi)E , ∀j = 1, 2, 3

In matrix form, this is equivalent to

GE
1 Π∇1 = BE

1

where

• Π∇1 ∈ R3×NE ;

• GE
1 = G̃E

1 +
((
w∂E

)T
V ∂E

1
0

)
with 0 ∈ R2×3 and

(G̃E
1 )ij = (∇mi,∇mj)E

and it is performed matricially through

G̃E
1 = (V E

1,x)TWEV E
1,x + (V E

1,y)TWEV E
1,y

being WE the diagonal matrix whose diagonal elements are the quadrature weights
relative to the vertices of element E;
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5.2 – Resolution of the problem

• BE
1 = B̃E

1 +
((w∂E)T

0

)
with 0 ∈ R2×3 and

(B̃E
1 )ij = (w∂E)j

∂mi

∂n̂
(xj), j = 1, . . . , NE

given by
(B̃E

1 )ij = (V ∂E
1,x )TW ∂E

x + (V ∂E
1,y )TW ∂E

y

with Wx and Wy defined as the diagonal matrices whose elements are the values of
the quadrature weights along x and y, obtained by weighting them according to the
x and y components of the vectors normal to the edges of element E.

In the code this is performed through
MatrixXd cellG = vanderInternalDerivatives [0]. transpose ()*

cellInternalWeights . asDiagonal ()* vanderInternalDerivatives
[0] + vanderInternalDerivatives [1]. transpose ()*
cellInternalWeights . asDiagonal ()* vanderInternalDerivatives
[1], cellB(numMonomials , numDofs );

cellB. leftCols ( numBoundaryDofs ) = vanderBoundaryDerivatives
[0]. transpose ()* cellBoundaryWeightsNormal [0]. asDiagonal ()
+ vanderBoundaryDerivatives [1]. transpose ()*
cellBoundaryWeightsNormal [1]. asDiagonal ();

MatrixXd cellD(numDofs , numMonomials );

cellD. topRows ( numBoundaryDofs ) = vanderBoundary ;

cellB.row (0) = cellBoundaryWeights ;

cellG.row (0) = vanderBoundary . transpose ()* cellBoundaryWeights
;

Now we can compute Π∇1 as:
piNabla = cellG. partialPivLu ().solve(cellB);

Projector Π0
0

The L2(E)-projection Π0
0 : Vδ → P0(E) is defined through

(Π0
0(vδ), p)E = (vδ, p)E , ∀p ∈ P0(E),∀vδ ∈ Vδ

29



5 – Implementation in C++

This is matricially equivalent to

Π0
0 = (H∗E0)−1CE

0

where in general (HE
k )ij = (mi,mj)E , i, j = 1, . . . , Nk (N0 = 1, N1 = 3) is the mass

matrix of monomials and it is computed through HE
k = (V E

k )TWEV E
k , whereas

CE
0 = ((HE

1 )1, 1,2,3)Π∇1
This latter relation comes from the property of Vδ: (ϕj ,1)E = (Π∇1 (ϕj),1)E .
In C++ this is implemented in the following lines of code:
MatrixXd cellH = vanderInternal . transpose ()*

cellInternalWeights . asDiagonal ()* vanderInternal ;

cellC. bottomRows (n_km1 - numInternalDofs ) = cellH.block(
numInternalDofs ,0,n_km1 - numInternalDofs , numMonomials )*
piNabla ;

const LLT <MatrixXd >& H_km1_LU = cellH. topLeftCorner (n_km1 ,
n_km1).llt ();

projectors [" pikm1_0 "][0] = H_km1_LU .solve(cellC);

Note that, in the code, km1 corresponds to 0.

Projector Π0
0∇

Lastly, the projections of the derivatives Π0
0
∂
∂x , Π0

0
∂
∂y : Vδ → P0(E) are such that(

Π0
0
∂vδ
∂x

, p

)
E

=
(
∂vδ
∂x

, p

)
E

, ∀p ∈ P0(E)(
Π0

0
∂vδ
∂y

, p

)
E

=
(
∂vδ
∂y

, p

)
E

, ∀p ∈ P0(E)

We will denote
Π0

0∇vδ =
(

Π0
0
∂vδ
∂x

Π0
0
∂vδ
∂y

)
The matrices Π0,x

0 , Π0,y
0 ∈ R1×NE , corresponding to the projections of the x and y

derivatives, are given by

Π0,x
0 = (HE

0 )−1EE
0,x, Π0,y

0 = (HE
0 )−1EE

0,y

where
EE

0,x = (V ∂E
0 )TW ∂E

x EE
0,y = (V ∂E

0 )TW ∂E
y

This can be implemented in C++ as
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5.2 – Resolution of the problem

MatrixXd cellEx(n_km1 , numDofs );

cellEx. leftCols ( numBoundaryDofs ) = vanderBoundary . leftCols (
n_km1). transpose ()* cellBoundaryWeightsNormal [0]. asDiagonal
();

MatrixXd cellEy(n_km1 , numDofs );

cellEy. leftCols ( numBoundaryDofs ) = vanderBoundary . leftCols (
n_km1). transpose ()* cellBoundaryWeightsNormal [1]. asDiagonal
();

vector <MatrixXd >& piGradkm1xyz = projectors [" piGradkm1xyz "];

piGradkm1xyz [0] = H_km1_LU .solve(cellEx);

piGradkm1xyz [1] = H_km1_LU .solve(cellEy);

In BuildLocalSystem we define
for( unsigned int i = 0; i < dimensionValue ; i++)

vanderpiGradkm1xyz [i] = Vander_km1 * vemValues .
PiGradkm1xyz (i);

and
MatrixXd vanderPikm1_0 = Vander_km1 * vemValues . Pikm1_0 ();

Diffusion term

Now it is possible to compute the diffusion term, recalling (4.4):

aEh (u, v) :=
∫
E
ε(Π0

k−1∇u) · (Π0
k−1∇v)dx+ SE((I − Π∇k )u, (I − Π∇k )v)

We first let
vector <VectorXd > weightsTimesDiffusion ( diffusionTerm .size ());
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whose components are defined as the product between the weights of the vertices of E
and the diffusion term evaluated in these points.
Afterwards, we add the component of the diffusion term to the local matrix of the cell:

cellMatrix += vanderpiGradkm1xyz [i]. transpose ()*
weightsTimesDiffusion [0]. asDiagonal ()* vanderpiGradkm1xyz [i
];

To perform the stabilization SE((I − Π∇k )u, (I − Π∇k )v):

MatrixXd IminusPinabla = vemValues . PiNabla_vemdofs ();

IminusPinabla . diagonal ().array () -= 1.0;

cellMatrix += maxDiffTerm *pow(cell. Diameter (),dimensionValue
-2)* IminusPinabla . transpose ()* IminusPinabla ;

In the previous code, maxDiffTerm denotes the maximum value of the diffusion term in
the vertices of E. Besides, in the case we are considering, dimensionValue is 2.

Right-hand-side

To compute the right-hand-side, we have to evaluate the forcing term in the vertices of
the element, and then we use the projection Π0

0, recalling (4.7):

VectorXd forcingTermValues ;

vemValues . EvaluatePhysicalParameterInQuadraturePoints (*
forcingTerm , forcingTermValues );

cellRightHandSide = vanderPikm1_0 . transpose ()*
cellInternalWeights . asDiagonal ()* forcingTermValues ;

Boundary Conditions

Dirichlet conditions are defined in

vemValues . ComputeDirichlet (cell , * dirichletConditions ,
cellDirichletTermValues );
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5.2 – Resolution of the problem

where the Dirichlet conditions, when present, are evaluated in the vertices of element E.
Neumann boundary conditions, instead, provide a contribute to the right-hand-side. In
fact, they are originated after the integration by part in the variational formulation, and
they bring to the term ∫

ΓN
gNγΓN (v)dΓ

as discussed in Chapter 3.
In the code, this is performed in
VectorXd neumannTermValues ;

if( vemValues . ComputeNeumann (cell , * neumannConditions ,
neumannTermValues ))

cellRightHandSide . segment (0, numBoundaryDofs ) +=
neumannTermValues ;

Robin boundary conditions are executed instead in
MatrixXd robinMatrix ;

if( vemValues . ComputeRobin (cell , * robinConditions , robinMatrix
))

cellMatrix .block (0,0, numBoundaryDofs , numBoundaryDofs )
+= robinMatrix ;

5.2.3 Reaction-Convection-Diffusion problem

Through the previous algorithm it is possible to solve the diffusive problem for the hy-
draulic head. From its solution uH we can define the Darcy velocity of the flow as

β = −K∇uH (5.4)

To compute the Darcy velocity β, we created a specific class, DarcyVelocity, in which
by means of the projectors we perform
const MatrixXd Vander0 = MatrixXd :: Ones(points.size (), 1);

MatrixXd VanderPiGrad0 = Vander0 *(* PiGrad0 );

results = -transmiss (0)* VanderPiGrad0 * cellDofs ;

33



5 – Implementation in C++

In the Reaction-Convection-Diffusion problem, the Darcy velocity represents the convec-
tive term. The other two terms of reaction and diffusion are defined through the definition
of the parameters of diffusion ε and reaction σ. Also in this case, as for the hydraulic
head problem, they can be defined as GenericPhysicalParameter and can be constant,
piecewise constant or variable.
Thus, the Reaction-Convection-Diffusion problem is defined in the main.cpp file as the
problem for the hydraulic head:

EigenDFNVemEllipticProblem problem ;

and the parameters are set in the same way as for the transmissivity terms in the primal
problem.
Similarly, the problem is initialized through

problem . Initialize ();

where the equations and the assembler are defined, and it is solved in

problem .Solve ();

In addition to the previous algorithm, here we have to compute also the contribution of
the transport and the reaction terms, that are defined by (4.5) and (4.6).

and their contribution to the local matrix is implemented in VemEllipticEquation::
BuildLocalSystem by

for( unsigned int i=0; i< dimensionValue ; i++)
{

cellMatrix += vanderPikm1_0 . transpose ()*
cellInternalWeights . cwiseProduct ( transportTermValues .col(i
)). asDiagonal ()* vanderpiGradkm1xyz [i];

}

and

MatrixXd reactionMatrix = vanderPikm1_0 . transpose ()*(
cellInternalWeights . cwiseProduct ( reactionTermValues )).
asDiagonal ()* vanderPikm1_0 ;

cellMatrix += reactionMatrix ;

where transportTermValues and reactionTermValues contain respectively the evalua-
tion of the Darcy velocity and the reaction term in the vertices of the cell.
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Evolutive Problem

The evolutive Reaction-Convection-Diffusion problem is implemented as a modification
of the stationary problem. It is defined through a specific class
(EvolutiveProblemParameters) where, among the others, we have to initialize the same
parameters as in the stationary case. We point out that the parameters, the source term
and the boundary conditions are defined as before as objects of class
GenericPhysicalParameter and GenericBoundaryCondition, but in order to specify
the time dependance of these terms, we defined the subclasses
TimeDependentPhysicalParameter and TimeDependentBoundaryCondition.

In addition to these parameters, we have to specify the number of time steps
(numTimeSteps), the size of the discretization in time ∆t (timeStepSize) and the initial
conditions.

In our implementation we are performing the Crank-Nicolson method. Starting with
a given initial condition u0, we can compute iteratively the approximate values of the
solution uk+1 in the degrees of freedom at time step tk+1, k = 0, . . . ,numTimeSteps - 1
as the solution of a linear system where the right-hand-side depends on the known forcing
term and on the approximate solution at the previous time step k, as described in (4.10).

The bilinear form B(·, ·) is built similarly as before and it brings to the definition of
the RCDMatrix.

If we suppose that the parameters are independent of time, then the RCDMatrix that
we build is the same ∀k = 0, . . . ,numTimeSteps - 1.

In addition to the code for the stationary problem, here we have to implement the
L2-scalar product

(uk+1
∆t,h, vh)

that corresponds to the application of a massMatrix (that before we denoted as HE
1 ) to

the vectors of degrees of freedom at time k+1. Also this matrix does not depend on time.
Therefore, in the function
\ lstinline { EigenDFNVemEvolutiveProblem :: Solve ()}

we are going to solve a linear system of equations characterized always by the same global
matrix
globalMatrix = massMatrix + timeStepSize /2 * ( RCDMatrix );

All the components of globalMatrix are computed in function
EigenDFNAssemblerEvolutiveProblem :: AssembleMassRCDMatrices ();

created on purpose for the evolutive problem. Specifically, in this function the problem is
divided in local problems on each cell of the mesh, exactly as in the stationary case, and
in function
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EigenDFNVemEvolutiveEquation :: BuildMassRCDMatrices (const
GenericCell & Gcell , MatrixXd & cellMassMatrix , MatrixXd &
cellRCDMatrix )

we determine the cellRCDMatrix in the same way as for the cellMatrix in function
VemEllipticEquation::BuildLocalSystem.
cellMassMatrix is set as

cellMassMatrix = vanderPikm1_0 . transpose ()*
cellInternalWeights . asDiagonal ()* vanderPikm1_0 ;

and it also needs to be stabilized:

MatrixXd IminusPinabla = vemValues . PiNabla_vemdofs ();

IminusPinabla . diagonal ().array () -= 1.0;

cellMassMatrix += pow(cell. Diameter (),dimensionValue )*
IminusPinabla . transpose ()* IminusPinabla ;

Whereas these matrices are independent of the time step, at each tk+1 we have to
determine the right-hand-side of the evolutive problem. This happens in
EigenDFNAssemblerEvolutiveProblem::AssembleRightHandSide(). To compute it, we
need the solution at previous time step tk (eigenPreviousSolution), the forcing term
evaluated in the degrees of freedom at time step tk (eigenPreviousForcingTerm), and
the vectors of Dirichlet conditions both at tk and tk+1 (eigenCurrentSolutionDirichlet
and eigenPreviousSolutionDirichlet). The terms corresponding to the previous time
step have already been computed and are saved as instances of the object of class
DFNAssembler. The "current" terms, instead, must be computed. As for the computation
of the other matrices and vectors, we set a local problem on each cell of the mesh. In

Output :: ExitCodes EigenDFNVemEvolutiveEquation ::
BuildForcingTerm (const GenericCell & Gcell , VectorXd &
cellForcingTerm , VectorXd & cellDirichletTermValues , const
double& currentTime )

we compute the forcing term as

MatrixXd vanderPikm1_0 = Vander_km1 * vemValues . Pikm1_0 ();

vemValues . EvaluatePhysicalParameterInQuadraturePoints (*
forcingTerm , forcingTermValues );
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cellForcingTerm = vanderPikm1_0 . transpose ()*
cellInternalWeights . asDiagonal ()* forcingTermValues ;

and the boundary conditions, where defined:
vemValues . ComputeDirichlet (cell , * dirichletConditions ,

cellDirichletTermValues );

if( vemValues . ComputeNeumann (cell , * neumannConditions ,
neumannTermValues ))

cellForcingTerm . segment (0, numBoundaryDofs ) +=
neumannTermValues ;

The GenericPhysicalParameter and GenericBoundaryCondition are in this case of
subclasses TimeDependentPhysicalParameter and TimeDependentBoundaryCondition
respectively. Therefore, we have to set the time tk through the setter function
SetCurrentTime(currentTime);.
After determining all these terms, we can set the right-hand-side in
EigenDFNAssemblerEvolutiveProblem::AssembleRightHandSide() as
eigenRightHandSide = (* globalMassMatrixPointer - timeStepSize

/(2.0) * (* globalRCDMatrixPointer ))* eigenPreviousSolution ;
...
eigenRightHandSide += timeStepSize /(2.0) * (

eigenCurrentForcingTerm + eigenPreviousForcingTerm );
...
eigenCompleteRightHandSide -= (* dirichletMassMatrixPointer )*(

eigenCurrentSolutionDirichlet -
eigenPreviousSolutionDirichlet );

eigenCompleteRightHandSide -= (* dirichletRCDMatrixPointer ) *
timeStepSize /(2.0) * ( eigenCurrentSolutionDirichlet +
eigenPreviousSolutionDirichlet );

Finally, the problem at time step tk+1 is solved in EigenDFNVemEvolutiveProblem::
Solve() through
system ->Solve ();

After running this algorithm, we get the vectors of values of the approximate solution uk
in the nodes of the mesh at each time step tk.
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Chapter 6

Stabilization Methods

6.1 SUPG
When we try to solve a Reaction-Convection-Diffusion problem by the VEM in presence
of a diffusion term −∇ · (ε∇u) of several orders of magnitude smaller than the convective
term ∇ · (βu), then oscillations of the numerical solutions may occur. These oscillations
do not have a physical meaning and their source is of a numerical nature, rather than
being associated to an error in the model.

The occurrence of this anomalous behavior can be related to the Péclet number of the
elements E ∈ Th, that in the VEM of order k = 1 is defined as:

PeE := βEhE
6εE

(6.1)

where

βE = sup
x∈E
‖β(x)‖R2

εE = inf
x∈E

ε(x)

hE = diam(E)

Spurious oscillations occur for high values of PeE and to prevent them we can use the
Streamline Upwind Petrov-Galerkin (SUPG) stabilization method.

In the context of VEM of order k = 1, SUPG is performed by defining the bilinear
form

BSUPG := a′(·, ·) + b(·, ·) + c(·, ·) (6.2)

where b(·, ·) and c(·, ·) are defined as in (3.3) and (3.4), and a′(·, ·) is given by:

a′(u, v) := a(u, v) +
∑
E∈Th

τE

∫
E

(β · ∇u)(β · ∇v)dx

with a(·, ·) defined as in (3.2) and τE := hE
2βE min{PeE ,1}.
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Besides, we define

FSUPG(v) := (f, v) +
∑
E∈Th

τE

∫
E
f(β · ∇v)dx (6.3)

The discrete counterpart of (6.2) and (6.3) are the discrete bilinear form BSUPG,h : Vh ×
Vh → R and the discrete right-hand-side FSUPG,h : Vh → R defined as:

BSUPG,h(u, v) := ah(u, v) + bh(u, v) + ch(u, v)
where

aEh (u, v) :=
∫
E
ε(Π0

0∇u) · (Π0
0∇v)dx+

(ε′E + τEβ
2
E)SE((I − Π∇1 )u, (I − Π∇1 )v)+

τE

∫
E

(β · Π0
0∇u)(β · Π0

0∇v)dx

with ε′E = supx∈E ε(x),

bEh (u, v) := −
∫
E

(Π0
0u)(β · Π0

0∇v)dx

cEh (u, v) :=
∫
E
σ(Π0

0u)(Π0
0v)dx

ah(u, v) :=
∑
E

aEh (u, v)

bh(u, v) :=
∑
E

bEh (u, v)

ch(u, v) :=
∑
E

cEh (u, v)

and

FE
SUPG,h(v) :=

∫
E
fΠ0

0vdx+ τE

∫
E
f(β · Π0

0∇v)

FSUPG,h(v) :=
∑
E

FSUPG,h(v)

In Benedetto et al. [2016] it is proven that the order of convergence of VEM is preserved
also when introducing the SUPG stabilization. Indeed, assuming sufficient regularity of
the data functions, the following relation holds:

|||u− uh||| ≤ Ch(‖u‖2 + ‖f‖1)
for a constant C > 0 depending on the parameters of the problem ε and β and independent
of the meshsize h, and the norm |||·||| defined as:

|||v||| =
{
‖
√
ε∇v‖2 +

∑
E∈Th

τE‖β · ∇v‖2E
} 1

2

∀v ∈ H1
0 (Ω)

This norm is equivalent to the H1-seminorm | · |1, which is a norm on the subspace
H1

0 (Ω) ⊂ H1(Ω). Therefore, the order of convergence of VEM of order k = 1 with the
introduction of SUPG stabilization remains the same as the non-stabilized method. In
particular the error is linear with respect to the meshsize h.

40



6.1 – SUPG

6.1.1 Implementation in C++
SUPG stabilization can be implemented adding the stabilization terms to the cellMatrix
computed in
Output :: ExitCodes VemEllipticEquation :: BuildLocalSystem (const

GenericCell & Gcell , MatrixXd & cellMatrix , VectorXd &
cellRightHandSide , VectorXd & cellDirichletTermValues )

in the case of stationary problem, and to cellRCDMatrix in
Output :: ExitCodes EigenDFNVemEvolutiveEquation ::

BuildMassRCDMatrices (const GenericCell & Gcell , MatrixXd &
cellMassMatrix , MatrixXd & cellRCDMatrix )

in the evolutive case.
In both situations we have to compute the cell Péclet number and determine the value

of τE :
Pe = mk* supTransportTerm *cell. Diameter () /(2.0*

infDiffusionTerm );

if(Pe <1)

tau = mk*cell. Measure () /(4.0* infDiffusionTerm );

else

tau = cell. Diameter () /(2.0* supTransportTerm );

being mk = 1
3 , infDiffusionTerm the minimum value of the diffusion parameter ε and

supTransportTerm the maximum value of the Darcy Velocity in the vertices of the ele-
ment.
Both to cellMatrix for the stationary and to cellRCDMatrix for the evolutive problem,
we add
tau* vanderpiGradkm1xyz [i]. transpose ()* cellInternalWeights .

cwiseProduct ( transportTermValues .col(i)). cwiseProduct (
transportTermValues .col(j)). asDiagonal ()*
vanderpiGradkm1xyz [j];

Besides, we add a new term in the stabilization matrix
MatrixXd IminusPinabla = vemValues . PiNabla_vemdofs ();
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IminusPinabla . diagonal ().array () -= 1.0;

cellMatrix += tau*pow( supTransportTerm ,2)* IminusPinabla .
transpose ()* IminusPinabla ;

6.2 Mass Lumping
Similarly, oscillations can occur in the numerical solution of the partial differential equa-
tion when the reactive term σ(x)u is dominant with respect to the diffusion term
−∇· (ε∇u). In this case, a stabilization method that can be performed is the Mass Lump-
ing technique. It consists in the diagonalization of the mass matrix. Indeed, the reaction
term depends only on the punctual behavior of the solution, and it is independent of the
reciprocal position of the points of the mesh. That is why non-diagonal terms, which are
introduced through the discretization of the variational problem, have no sense.

In particular, in the Mass Lumping stabilization the mass matrix is substituted with
the diagonal matrix, whose elements are the sum of the elements of the respective row in
the original mass matrix.

6.2.1 Implementation in C++
Mass Lumping stabilization is performed in
Output :: ExitCodes VemEllipticEquation :: BuildLocalSystem (const

GenericCell & Gcell , MatrixXd & cellMatrix , VectorXd &
cellRightHandSide , VectorXd & cellDirichletTermValues )

and in
Output :: ExitCodes EigenDFNVemEvolutiveEquation ::

BuildMassRCDMatrices (const GenericCell & Gcell , MatrixXd &
cellMassMatrix , MatrixXd & cellRCDMatrix )

as
reactionMatrix . diagonal ().array () = reactionMatrix . rowwise ().

sum ();

VectorXd tmp = reactionMatrix . diagonal ();

reactionMatrix = tmp. asDiagonal ();

in the case of very high values of the inverse of the Karlowitz number
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double invKa = supReactionTerm *cell. Measure () /(6.0*
infDiffusionTerm );

In the code we applied Mass Lumping stabilization when invKa > 8.0.
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Chapter 7

Numerical Simulation

7.1 Description of the Problem
To test the previous mathematical methods, we consider a specific physical problem: we
simulate a single phase flow in a porous medium, as a rock matrix, in presence of an
embedded network of fractures, the so-called Discrete Fracture Network (DFN). This
problem regards many practical applications, such as geological storage of pollutants (e.g.
CO2), aquifers monitoring, nuclear waste disposal and other geothermal or environmental
issues.

The DFN is composed by fractures, which are regions of the rock that present a drastic
change in the properties of the porous medium, and they are characterized by one of the
three dimensions (the thickness) of several orders of magnitude smaller than the other
two dimensions. Therefore, fractures are geometrically represented as two-dimensional
objects.

In realistic applications, DFNs could comprise a huge number of fractures, with sizes
ranging from small to very large scales. Since the setting of the problem is affected by
a large uncertainty in both the hydrogeological parameters and the geometrical configu-
ration, usually DFNs are generated stochastically, and as a consequence a multitude of
numerical simulations is required.

In particular, we focus the attention on impervious rock matrices, assuming the absence
of longitudinal flows in the traces, which are the segments generated by the intersection
of two fractures. Moreover, we consider highly conductive fractures, which have a crucial
influence on the fluid behavior, since they can induce preferential flow paths.

More generally, the evolutive problem on the DFN is described by the following partial
differential equation in time and spatial domain:

eiρc
∂u∗

∂t∗
− ei∇∗ · (λ∇∗u∗) + eiρcβ

∗ · ∇∗u∗ + }u∗ = }u∗r

We can get a dimensionless equation through the following change of variables

• u∗ = Uu

• x∗ = Lx, y∗ = Ly, z∗ = Lz
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• t∗ = Tt = L
B t

• h∗ = Hh

• β∗ = Bβ β∗ = −Ki∇H
ei

where U,L,B, T,H are the characteristic units of temperature, length, velocity, time and
hydraulic head respectively.

The dimensionless problem takes the form:

∂u

∂t
−∇ · (ε∇u) + β · ∇u+ σu = σur

In a realistic application U ∼ 1K, L ∼ 102m, H ∼ 103m, and the parameters of this
model represent

• ei ∼ 2 · 10−3 12
√
Aim: thickness of the fracture, being i the index of the fracture and

Ai (in m2) the fracture area

• ρ ∼ 103 kg
m3 : water density

• c = 4186 J
kg·K : specific heat of water

• λ = 0.6 W
m·K : thermal conductivity of water

• Ki ∼ 10−α 4
√
Ai

kg
m·s : fracture transmissivity, with the parameter α being α = 7 in

our application

• β∗: average Darcy velocity in the fracture section. Since β∗ = Bβ and β∗ = −Ki∇H
ei

,
then B ∼ 10−α 4√

L2H
eL = 105−α. As a consequence, T = L

B ∼ 10α−3

• } ∼ 10 W
m2K : heat transfer coefficient, which is en empiric coefficient such that the

flux of heat φ entering the fracture is φ = }(urock − ufracture). We suppose the rock
as having an infinite thermal capacity, so that its temperature is considered constant
and therefore it is a heat sink.

• ε = λ
ρcLB ∼

0.6
418610α−10 the diffusivity in the fracture

• σ = L}
Bρcei

∼ 10α−2

2·4186 12√Ai
the reaction coefficient

It is clear that in such flows in DFNs the characteristic unit of Darcy velocity field B
may result of many orders of magnitude higher than the diffusivity ε, which is reflected in
high Péclet numbers. In this framework, we say that the problem is convection-dominated,
and when we try to solve it numerically through VEM, we could get a numerical solution
which may present oscillations that do not have a physical source, therefore they do not
represent the solution.

Similarly, oscillations may occur when the problem is reaction-dominated, meaning
that the reaction phenomena governed by the parameter σ, dominate over the diffusion
effects regulated through ε (this is the case of very low Karlowitz numbers).

In order to avoid these numerical instabilities, we apply stabilization methods to VEM.

46



7.2 – Simulation and Error Analysis on a simple DFN

7.2 Simulation and Error Analysis on a simple DFN
7.2.1 Stationary Problem
The numerical simulations that follow aim to solve the Reaction-Convection-Diffusion
equation on a bounded convex polygonal domain Ω ⊂ R2 with boundary ∂Ω. The strong
formulation of the stationary problems given by:

−ε∆u+ β · ∇u+ σu = f, in Ω

with the addition of boundary conditions on ∂Ω, which could be Dirichlet, Neumann or
Robin conditions as discussed previously.

In the physical context of DFNs, the unknown function u represents a scalar field such
as the temperature or the concentration of a pollutant on each fracture.

In these problems, the diffusivity ε : Ω → R and the reaction term σ : Ω → R are a
smooth functions with ε(x) ≥ ε0 > 0, ∀x ∈ Ω, and they model respectively the diffusivity
and the reaction term in the considered fracture.

The field β : Ω → R2 is a smooth vector-valued function and represents the Darcy
velocity, i.e. the convective field on the fracture. It is defined after the solution of the
primal problem of the hydraulic head u : Ω→ R. In particular, β = −K∇u, where K is
the transmissivity of the fracture.

The DFN where we run the numerical simulation is composed by two intersecting
rectangular fractures, as shown in Figure 7.1.

Figure 7.1: Discrete Fracture Network

We can map each fracture on R2 so that the vertices are:
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• (0,1), (−1,1), (−1,−1), (0,−1) for the first fracture

• (1,1), (−1,1), (−1,−1), (1,−1) for the second fracture

The primal problem on the hydraulic head u is defined as:{
−∇ · (K∇u) = 0 in Ωi

u = uDi on ∂Ωi

where K = 1 and Ωi represents the first fracture for i = 1, and the second one for i = 2,
and uD is the homogeneous Dirichlet boundary condition.

On both fractures, the parameters are set so that the solution of the hydraulic head u
is the function

u(x, y) = (y2 − 1)− (x2 − 1)

defined respectively on Ω1 and Ω2.

As a consequence, homogeneous Dirichlet uD1 = u|∂Ω1 and uD2 = u|∂Ω2 conditions are
set respectively on the boundaries ∂Ω1 and ∂Ω2.

The function u satisfies the requirement of no longitudinal flow in the trace. Indeed,
in both fractures the trace is parametrized as (x,0), x ∈ [−1,0] and ∂u

∂y

∣∣∣∣
y=0

= 2y
∣∣∣∣
y=0

= 0.

For our numerical simulation, we set the forcing term f : Ω → R so that the solution
on both domains Ω1 and Ω2 is the same solution of the primal problem for the hydraulic
head. Therefore, f = −ε∆u + β∇u + σu. Since u is a polynomial function of degree 2,
then ∆u = 0; from the definition β = −K∇u, we get

β∇u = −K∇u · ∇u = −K‖∇u‖22

In conclusion, f = −K‖∇u‖22 + σu.
Moreover, in order to have the same solution u also for the problem of our numerical
simulation, we set the same uD defined above as boundary conditions.

From the definition of Darcy velocity β = −K∇u and letting K = 1, we get β =(
−∂u
∂x ,−

∂u
∂y

)
= (2x,−2y).

The purpose of the simulation is to understand when it is appropriate to use the sta-
bilizations SUPG and Mass Lumping. For this purpose, we set ε and σ as constant func-
tions and we varied their values in order to isolate the cases of convection- and reaction-
domination.

Numerical Results

As discussed in Section 6, the need for a SUPG stabilization can be related to the Péclet
number, which is defined on each element E as Pe = βsuph

6εinf , where βsup = supx∈E ‖β(x)‖2
and εinf = infx∈E ε(x). Similarly, Mass Lumping stabilization is linked to the inverse of
the Karlowitz number: Ka−1 = σsuph2

6εinf , where σsup = supx∈E σ(x).
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We ran the simulations on the same mesh, characterized by rectangular elements. The
behavior of Péclet numbers and inverse of Karlowitz numbers for the different values of ε
and σ can be derived from the following tables.

Table 7.1: Péclet numbers statistics

ε 1 10−3 10−6 10−9

minPe 1.570360e-03 1.570360e+00 1.570360e+03 1570360
avg Pe 1.993662e-02 1.993662e+01 1.993662e+04 1.993662e+07
maxPe 4.153510e-02 4.153510e+01 4.153510e+04 41535100

Table 7.2: Inverse of Karlowitz numbers statistics - σ = 103

ε 1 10−3 10−6 10−9

minKa−1 3.255210e-01 3.255210e+02 325521 325521000
avg Ka−1 4.330881e-01 4.330881e+02 4.330881e+05 4.330881e+08
maxKa−1 6.510420e-01 6.510420e+ 02 651042 651042000

Table 7.3: Inverse of Karlowitz numbers statistics - σ = 1

ε 1 10−3 10−6 10−9

minKa−1 3.255210e-04 3.255210e-01 3.255210e+02 325521
avg Ka−1 4.330881e-04 4.330881e-01 4.330881e+02 4.330881e+05
maxKa−1 6.510420e-04 6.510420e-01 6.510420e+02 651042

Table 7.4: Inverse of Karlowitz numbers statistics - σ = 10−3

ε 1 10−3 10−6 10−9

minKa−1 3.255210e-07 3.255210e-04 3.255210e-01 3.255210e+02
avg Ka−1 4.330881e-07 4.330881e-04 4.330881e-01 4.330881e+02
maxKa−1 6.510420e-07 6.510420e-04 6.510420e-01 6.510420e+02
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Table 7.5: Inverse of Karlowitz numbers statistics - σ = 10−6

ε 1 10−3 10−6 10−9

minKa−1 3.255210e-10 3.255210e-07 3.255210e-04 3.255210e-01
avg Ka−1 4.330881e-10 4.330881e-07 4.330881e-04 4.330881e-01
maxKa−1 6.510420e-10 6.510420e-07 6.510420e-04 6.510420e-01

When we let the reaction coefficient σ = 0, then by definition of Karlowitz number
Ka−1 = 0

SUPG stabilization

To isolate the convection-dominated case, we firstly considered σ = 0 and we ran simula-
tions for values ε = 1, 10−3, 10−6, 10−9, both using the standard VEM, and the VEM with
the introduction of the stabilization SUPG term. The results show that the considered
stabilization is needed starting from Péclet numbers of order 103, which correspond to
values ε . 10−6. Indeed, without a stabilization the numerical solution shows oscillations
that are not present in the exact solution. These oscillations are prevented when the
stabilized method is applied.

The following figures show the graphs of the solutions on each of the two fractures of
the DFN, corresponding to problems with different parameters ε and σ.
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Figure 7.2: Solution of the stationary problem on Fracture 1 - ε = 1, σ = 0, P e ∼ 10−3

(a) No Stabilization (b) SUPG

Figure 7.3: Solution of the stationary problem on Fracture 1 - ε = 10−3, σ = 0, P e ∼ 1

(a) No Stabilization (b) SUPG
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Figure 7.4: Solution of the stationary problem on Fracture 1 - ε = 10−6, σ = 0, P e ∼ 103

(a) No Stabilization (b) SUPG

Figure 7.5: Solution of the stationary problem on Fracture 1 - ε = 10−9, σ = 0, P e ∼ 106

(a) No Stabilization (b) SUPG
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Figure 7.6: Solution of the stationary problem on Fracture 2 - ε = 1, σ = 0, P e ∼ 10−3

(a) No Stabilization (b) SUPG

Figure 7.7: Solution of the stationary problem on Fracture 2 - ε = 10−3, σ = 0, P e ∼ 1

(a) No Stabilization (b) SUPG
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Figure 7.8: Solution of the stationary problem on Fracture 2 - ε = 10−6, σ = 0, P e ∼ 103

(a) No Stabilization (b) SUPG

Figure 7.9: Solution of the stationary problem on Fracture 2 - ε = 10−9, σ = 0, P e ∼ 106

(a) No Stabilization (b) SUPG
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Mass Lumping stabilization

Mass Lumping stabilization is required for reaction-dominated problems, which are char-
acterized by high values of the inverse of Karlowitz number. In our simulations we consid-
ered values of σ = 10−6, 10−3, 1, 103. We applied non-stabilized VEM, VEM with SUPG
stabilization and VEM with SUPG and Mass Lumping stabilizations. It resulted that
Mass Lumping has no effective influence on the numerical solution when considering val-
ues σ ≤ 1, indeed, the numerical solution with SUPG and Mass Lumping has the same
behavior as the solution with only SUPG stabilization involved. Instead, when considering
σ = 103, SUPG is no longer sufficient to get a satisfactory numerical solution: for values
ε ≤ 1, oscillations occur. If we apply Mass Lumping stabilization, the numerical solution
is not particularly smooth, but the mentioned oscillations are significatively reduced.

Besides, it is worth noticing that for values ε ≤ 10−6, the standard VEM is not even
able to find a solution, as we get NaN values.
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Figure 7.10: Solution of the stationary problem on Fracture 1 - ε = 1, σ = 103, P e ∼
10−2, Ka−1 ∼ 10−1

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.11: Solution of the stationary problem on Fracture 1 - ε = 10−3, σ = 103, P e ∼
10, Ka−1 ∼ 102

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.12: Solution of the stationary problem on Fracture 1 - ε = 10−6, σ = 103, P e ∼
104, Ka−1 ∼ 105

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.13: Solution of the stationary problem on Fracture 1 - ε = 10−9, σ = 103, P e ∼
107, Ka−1 ∼ 108

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.14: Solution of the stationary problem on Fracture 2 - ε = 1, σ = 103, P e ∼
10−2, Ka−1 ∼ 10−1

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.15: Solution of the stationary problem on Fracture 2 - ε = 10−3, σ = 103, P e ∼
10, Ka−1 ∼ 102

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.16: Solution of the stationary problem on Fracture 2 - ε = 10−6, σ = 103, P e ∼
104, Ka−1 ∼ 105

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.17: Solution of the stationary problem on Fracture 2 - ε = 10−9, σ = 103, P e ∼
107, Ka−1 ∼ 108

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Error Analysis

As discussed in Section 4.3, an H1(Ω) a priori error estimate for the VEM of order k = 1
is given by

‖u− uh‖1 ≤ Ch(‖u‖2 + |f |1) (7.1)

To check if this rate of convergence is preserved also when applying the stabilization
methods SUPG and Mass Lumping, we refined the mesh multiple times (thus we increased
the number of degrees of freedom Ndof ) and we plotted the H1-errors versus Ndof . As the
following figures show, it is preserved the rate of convergence of VEM of 1

2 with respect
to the number of degrees of freedom, that scales as 1

h2 .
From the figures it is also evident that for small values of ε, the stabilized methods

(yellow and blue curves) are required to compute a satisfactory approximation of the
solution of the partial differential problem. Indeed, the non stabilized VEM (red curve)
leads to significant errors. For example, in Figure 7.19 we see that the error is even
increasing when doubling the order of magnitude of Ndof . The a priori error estimate for
non-stabilized VEM is supposed to be evident for very high values of Ndof .

60



7.2 – Simulation and Error Analysis on a simple DFN

Figure 7.18: Stationary problem H1-error versus Ndof - ε = 1, σ = 10−3

Figure 7.19: Stationary problem H1-error versus Ndof - ε = 10−6, σ = 10−3
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Figure 7.20: Stationary problem H1-error versus Ndof - ε = 1, σ = 10−6

Figure 7.21: Stationary problem H1-error versus Ndof - ε = 10−6, σ = 10−6
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7.2.2 Evolutive Problem
The evolutive problem or Reaction-Convection-Diffusion is governed by the equation

∂u

∂t
− ε∆u+ β · ∇u+ σu = f, [0, T ]× Ω

We ran simulations on the same DFN considered in the stationary problem. We set
the parameters so that the exact solution of the problem is

u(t, u) = t3u(x), (t, x) ∈ [0, T ]× Ω

where u(x) is the solution of the stationary problem. Therefore, we set f = 3t2u + t3fs,
being fs = −ε∆u+ β∇u+ σu the forcing term of the stationary problem.

Numerical Results

We ran several simulations, considering different constant values for the parameters of
diffusivity ε and reaction term σ, in order to isolate convection-dominant and reaction-
dominant cases, and thus to understand when it is convenient to apply stabilization tech-
niques.

We ran three simulations with the different stabilizations considered, where we set a
time step size of ∆t = 0.01 and N = 100 time steps. Thus, we simulated the scalar
field in the DFN from t = 0 to t = 1. From the following figures, it is clear that when
the problem is convection-dominated (for example for values ε = 10−6) the method with
SUPG provides a numerical solution which is smoother than the solution obtained with
the non stabilized VEM, so it is worth to apply SUPG. Instead, when ε = 1 the problem is
not convection-dominated and SUPG does not seem to provide a better numerical solution
with respect to the application of the standard VEM.
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Figure 7.22: Solution of the evolutive problem on Fracture 1 - tk = 67, ε = 1, σ = 1, P e ∼
10−2, Ka−1 ∼ 10−4

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.23: Solution of the evolutive problem on Fracture 1 - tk = 67, ε = 10−6, σ =
1, P e ∼ 104, Ka−1 ∼ 102

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.24: Solution of the evolutive problem on Fracture 1 - tk = 67, ε = 1, σ =
10−6, P e ∼ 10−2, Ka−1 ∼ 10−10

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.25: Solution of the evolutive problem on Fracture 1 - tk = 67, ε = 10−6, σ =
10−6, P e ∼ 104, Ka−1 ∼ 10−4

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.26: Solution of the evolutive problem on Fracture 2 - tk = 67, ε = 1, σ = 1, P e ∼
10−2, Ka−1 ∼ 10−4

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.27: Solution of the evolutive problem on Fracture 2 - tk = 67, ε = 10−6, σ =
1, P e ∼ 104, Ka−1 ∼ 102

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.28: Solution of the evolutive problem on Fracture 2 - tk = 67, ε = 1, σ =
10−6, P e ∼ 10−2, Ka−1 ∼ 10−10

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.29: Solution of the evolutive problem on Fracture 2 - tk = 67, ε = 10−6, σ =
10−6, P e ∼ 104, Ka−1 ∼ 10−4

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.30: Solution of the evolutive problem on Fracture 1 - tk = 100, ε = 1, σ = 1, P e ∼
10−2, Ka−1 ∼ 10−4

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.31: Solution of the evolutive problem on Fracture 1 - tk = 100, ε = 10−6, σ =
1, P e ∼ 104, Ka−1 ∼ 102

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.32: Solution of the evolutive problem on Fracture 1 - tk = 100, ε = 1, σ =
10−6, P e ∼ 10−2, Ka−1 ∼ 10−10

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.33: Solution of the evolutive problem on Fracture 1 - tk = 100, ε = 10−6, σ =
10−6, P e ∼ 104, Ka−1 ∼ 10−4

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.34: Solution of the evolutive problem on Fracture 2 - tk = 100, ε = 1, σ = 1, P e ∼
10−2, Ka−1 ∼ 10−4

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.35: Solution of the evolutive problem on Fracture 2 - tk = 100, ε = 10−6, σ =
1, P e ∼ 104, Ka−1 ∼ 102

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Figure 7.36: Solution of the evolutive problem on Fracture 2 - tk = 100, ε = 1, σ =
10−6, P e ∼ 10−2, Ka−1 ∼ 10−10

(a) No Stabilization (b) SUPG (c) Mass Lumping

Figure 7.37: Solution of the evolutive problem on Fracture 2 - tk = 100, ε = 10−6, σ =
10−6, P e ∼ 104, Ka−1 ∼ 10−4

(a) No Stabilization (b) SUPG (c) Mass Lumping
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Error Analysis

As for the stationary problem, we analyzed the behavior of the H1-norm of the difference
between the numerical and the exact solution of the evolutive problem. Whereas in the
stationary case we only varied the number of degrees of freedom of the mesh, here we also
changed the discretization time step size, and related the H1-error to it.

For the discretization in time, we considered values of ∆t = 0.05, 0.1, 0.2, 0.4, that
correspond to numbers of time steps N = 200, 100, 50, 25 respectively, if we want to
compute the solution up to a time value t = 1.

To discretize the spatial domain, we refined the mesh multiple times and we solved the
numerical problem for values of numbers of degrees of freedomNdof = 105, 546, 2576, 11738.

We solved the problem for the different combinations of the two types of discretization,
and computed the H1-error of the exact and numerical solution at the last time step, that
in each case corresponds to a value t = 1. At this value of t, all numerical problems aim
to approximate the same exact solution

u(t = 1, x, y) = (y2 − 1)− (x2 − 1)

These errors are plotted in the following figures. Each figure corresponds to a particular
method (VEM, VEM with SUPG, VEM with SUPG and Mass Lumping).

In the error-plots relative to a value of the diffusion term ε = 1 (Figures 7.38, 7.40
and 7.42), we observe that when the mesh is coarse, i.e. for Ndof = 105, the error due
to the discretization in space dominates and we cannot detect the convergence in time.
Indeed, the error does not seem to decrease, even for high values of number of time steps.
Likewise, when we set ∆t = 0.4, corresponding to N = 25, the numerical solution does not
converge when increasing Ndof , because the discretization in time prevails in the error.

On the contrary, for high values of Ndof , for example Ndof = 11738, the error converges
in time, and, in the same way, when the number of time steps is high (N = 200), the error
in space seems to converge.

When we decrease the order of magnitude of the diffusion term ε, letting ε = 10−3, we
find out that a stabilization technique is needed in order to get a satisfactory numerical
solution. Indeed, as Figure 7.39 shows, the non-stabilized version of the VEM does not
show a convergence behavior for the values of Ndof and number of time steps N that we
considered. In fact, we should refine further the mesh and the discretization of the time
interval in order to perceive the convergence of the method.

Instead, if we apply SUPG stabilization or both SUPG and Mass Lumping, we can see
that the H1-error of the solution at time t = 1 converges when increasing Ndof and the
number N of time steps. Nevertheless, the the meshes we used for the simulations are
still too coarse to detect the polynomial convergence in time of the numerical solution.

72



7.2 – Simulation and Error Analysis on a simple DFN

Figure 7.38: Evolutive problem H1-error of solution at t = 1 versus Ndof and N time
steps - No Stabilization - ε = 1, σ = 1

Figure 7.39: Evolutive problem H1-error of solution at t = 1 versus Ndof and N time
steps - No Stabilization - ε = 10−3, σ = 1
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Figure 7.40: Evolutive problem H1-error of solution at t = 1 versus Ndof and N time
steps - SUPG - ε = 1, σ = 1

Figure 7.41: Evolutive problem H1-error of solution at t = 1 versus Ndof and N time
steps - SUPG - ε = 10−3, σ = 1
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Figure 7.42: Evolutive problem H1-error of solution at t = 1 versus Ndof and N time
steps - SUPG and Mass Lumping - ε = 1, σ = 1

Figure 7.43: Evolutive problem H1-error of solution at t = 1 versus Ndof and N time
steps - SUPG and Mass Lumping - ε = 10−3, σ = 1
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7.3 Realistic Geophysical Simulation
Stabilization methods become particularly important when dealing with realistic prob-
lems, which are usually characterized by mesh with high numbers of degrees of freedom.
Besides, in problems like the computation of flows in fractured porous media, we could
first need to solve a primal problem on a physical quantity such as the hydraulic head,
and from the solution of this first problem, we could determine the convective field (the
so-called Darcy velocity). Since in general we do not know the hydraulic head field (it
is indeed the unknown function of the primal problem), then we find uncertainty on the
convective field, which could dominate on the diffusivity of the media. In order to pre-
vent numerical instabilities due to a convection-domination, we could apply the SUPG
stabilization to the VEM.

To show the applicability of SUPG, we ran a simulation on a realistic DFN, which
is generated stochastically. It represents the fracture network in an underground rock
matrix, and two wells.

We firstly solved the primal problem to find the hydraulic head field in the DFN. This
stationary problem is defined by the equation

−∇ · (K∇u) = 0

with Dirichlet conditions on the endings of the two wells: u = 0.13 on the first and u = 0
on the second.

In the simulation for the evolution of the temperature field in the fracture network,
we considered an initial condition where all the rock matrix is at the same temperature
(T = 50◦C). The evolutive problem is defined by

∂u

∂t
− ε∆u+ β · ∇u+ σu = f

Here the diffusivity has a constant value ε = 30
4.18610−5.

β is Darcy velocity, defined as usual as β = −K∇uH , with uH the solution of the
hydraulic head.

The reaction coefficient σ is σ = 10−3 in the wells, and 1
5·4.186c elsewhere, being c the

convective transfer coefficient (in our simulations c = 0.1).
Finally, we considered a source term f given by f = σ · T0, where T0 = 50◦C is the

initial temperature of the rock matrix.
We ran a simulation for a nondimensionalized time interval of length 1. Recalling that

t∗ = Tt, with T ∼ 10α−3 and α = 7 in our simulations, then this time interval corresponds
to a realistic value of the order of magnitude of the hour, that is a reasonable time scale
for geophysical phenomena.

In this time interval, we pump cold water in a well, in order to cool the underground
rock. Mathematically, we set a Dirichlet boundary condition on the edge where we pump
water with a temperature value of T = 15◦C, and homogeneous Neumann border condi-
tions on all other edges of the DFN. The simulation shows that gradually the rock matrix
is cooled, starting from regions close to the well where we are pumping cold water. The
following figures show the results of this simulation at different time steps tk.
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Figure 7.44: Realistic simulation - tk = 0

Figure 7.45: Realistic simulation - tk = 1

Figure 7.46: Realistic simulation - tk = 7
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Figure 7.47: Realistic simulation - tk = 13

Figure 7.48: Realistic simulation - tk = 41
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Chapter 8

Conclusions and Future
Developments

In this thesis we analyzed the second order elliptic problem of Reaction-Convection-
Diffusion, considering both the stationary and the evolutive versions. We derived the
variational formulation of this problem and applied the Virtual Element Method to solve
numerically the partial differential equation.

We also described the stabilization methods of Streamline Upwind Petrov Galerkin and
Mass Lumping, respectively in the cases of convection-dominated and reaction-dominated
problems. We also discussed the convergence of the methods with respect to the dis-
cretization parameters.

Then we described the implementation of this method in C++. The code was useful
to analyze the behavior of VEM, in its stabilized and non-stabilized versions. In partic-
ular, we assessed that the convergence of the non-stabilized VEM is preserved also when
applying the stabilization techniques.

Finally, we performed a simulation on a realistic geophysical problem, to show the
applicability of the VEM to problems characterized by a complex geometry.

These results lay out the groundwork for future developments. In particular, also the
VEM of order k > 1 and in dimensions greater than 2 can be analyzed and implemented
in C++, along with the study of the behavior of SUPG and Mass Lumping stabilizations.

79



80



Bibliography

Matías Benedetto, Stefano Berrone, Andrea Borio, Sandra Pieraccini, and Stefano Scialo.
Order preserving SUPG stabilization for the virtual element formulation of advection-
diffusion problems. Computer Methods in Applied Mechanics and Engineering, 311, 08
2016. doi: 10.1016/j.cma.2016.07.043.

S. Berrone and A. Borio. An optimized implementation of the Virtual Element Method
for second order PDEs, 2020.

Stefano Berrone, Andrea Borio, and Alessandro D’Auria. Refinement strategies for polyg-
onal meshes applied to adaptive VEM discretization, 12 2019.

L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Virtual Element Methods for
general second order elliptic problems on polygonal meshes, 2014.

81


	List of Tables
	List of Figures
	Introduction
	Reaction-Convection-Diffusion Equation
	Variational Formulation
	Stationary Problem
	Evolutive Problem

	Virtual Element Method
	Virtual Element Space
	Discrete Problem
	Error Estimates

	Implementation in C++
	Definition of the Problem
	Resolution of the problem
	Discrete Linear System Assembler
	Computation of the Local System
	Reaction-Convection-Diffusion problem


	Stabilization Methods
	SUPG
	Implementation in C++

	Mass Lumping
	Implementation in C++


	Numerical Simulation
	Description of the Problem
	Simulation and Error Analysis on a simple DFN
	Stationary Problem
	Evolutive Problem

	Realistic Geophysical Simulation

	Conclusions and Future Developments

