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Abstract

Left ventricular assist devices (LVADs) are used to provide haemody-
namic support to patients with critical cardiac failure. Severe complications
can occur because of the modifications of the blood flow in the aortic re-
gion. In this work, the effect of a continuous flow LVAD device on the aortic
flow is investigated by means of a non-intrusive reduced order model (ROM)
built using the proper orthogonal decomposition with interpolation (PODI)
method. The full order model (FOM) is represented by the incompressible
Navier-Stokes equations discretized by using Finite Volume (FV) and Finite
Element (FE) techniques, coupled with three-element Windkessel models to
enforce outlet boundary conditions in a multi-scale approach. A patient-
specific framework is proposed: a personalized geometry reconstructed from
Computed Tomography (CT) images is used and the individualisation of the
coefficients of the three-element Windkessel models is based on experimental
data provided by the Right Heart Catheterization (RCH) and Echocardio-
graphy (ECHO) tests. Pre-surgery configuration is also considered at FOM
level in order to further validate the model. A parametric study with re-
spect to the LVAD flow rate is considered. The accuracy of the reduced
order model is assessed against results obtained with the full order model.
We can split the reduced order model (ROM) methods in two stages: the
first one, named offline phase, is the most expensive one it is the phase in
which the so called full order solutions (or snapshots) are computed. After-
wards, in the online phase, the solution of the discrete problem is sought in
a low-dimensional space in which all the mathemat objects as matrices and
vectors are simply assembled with the objects computed in the offline phase
and, for this reason, the computation is much faster.

The idea behind this project is to try to shift, thanks to proper algo-
rithms, the computing power of a supercomputer on tablets and laptops with
important national and international collaborations between mathematics,
engineering and medicine.

If a surgeon could have a supercomputer available in the operating room,
then the reading of a patient’s ”vascular geometry” could be absolutely
immediate, however this is not the case today.

The basis of the work consists in creating computer simulations of mathe-
matical models, i.e. reconstructing the portion of the cardiovascular system
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under examination with a digital computer model. However, sometimes,
these simulations can prove to be very expensive in terms of computational
resources and what this project focuses on is to develop reduced-order nu-
merical methods that serve to combine what is calculated with the super-
computer (offline phase), with calculations that, on the other hand, can be
performed on a laptop or even on a tablet or mobile phone (online phase).
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Introduction

Nowadays, cardiovascular diseases are, unfortunately, the main cause of
death in developed countries. Heart failure is a globally increasing health
problem, in fact, as emerges from a recent survey by the World Health
Organization this kind of disease taking an estimated 17.9 million lives each
year ([48]).

The goal of this thesis is to investigate the phenomena that characterize
the Aorta (largest artery in the human body) during the cardiac cycle, in
particular we will study the instant of the pumping of blood by the left
ventricle, through the aortic valve, into the aorta; we will analyze the effects
of introducing a LVAD (Left Ventricular Assist Device), the state-of-the-art
technology that has the task of supporting the left ventricle (as the name of
the technology suggests) and in case of severe ventricular failure even take
its place if the ventricle presents functional issues during the cardiac cycle.

A ventricular assist device (VAD) consists of a mechanical pump which,
in situations where one of the heart’s natural pumps (in our case the left
ventricle) does not work properly, it is activated to increase the quantity
and therefore the flow of blood through the body.

Nowadays LVAD technology is the most viable alternative to heart trans-
plants in case of malfunction of the heart, however it remains a high risk
procedure because it is very invasive and it is severely affecting patient’s
daily life (for more details see [50]), although the implant still allows the
person with advanced heart failure to be able to return to a more normal
life than before.

The contribution that this thesis intends to provide to this area of re-
search consists in reproducing the Aorta of some patients for whom TAC
made in the hospital, are available, and to reconstruct the aorta as a compu-
tational domain, on which performing computational simulations that can
provide results to be pontentially used by medicals treating patients in hos-
pital. Considering the fact that the computational domain is actually a
subset of a much larger real domain, a fundamental role for the accuracy of
the computational setting is played by the boundary conditions, which we
will explain and analyze in more detail below. However, as stated [3] and [4]
the effect of boundary conditions on the CFD solution are very important
and so they need to be defined carefully: in this work we propose a typical
way of setting the boundary conditions in a hemodynamic problem: lumped
parameter (LP) representations of a part of the cardio-vascular system and
an external excitation of the system with a blood pump, as specified in [5].

Subsequently, the results obtained will be analyzed and discussed during
the post-processing phase.

The structure of this work could be summarized as follows:
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• at first, a description of VAD technology and cardiac cycle is illus-
trated and it is provided a short presentation of how this technology
fits in the dynamics of the cardiac cycle. At this point it is descripted
the mathematical model adopted: firstly we will present the continu-
ous model (Navier-Stokes equations adapted to the specific problem),
secondly the discretization techniques: as regards space discretization
we will analyze Finite Element Method (FEM) with backflow stabiliza-
tion and Finite Volume Method (FVM); as regards, instead, temporal
discretization we will adopt Backward Differentiation Formula of order
1 (BDF1), see [32].

• After that we will consider a first familiarization with the work soft-
ware and with the various aspects of the problem under consideration:
in order to accomplish this, we will consider an healthy case, i.e., in
this part, we will study the cardiac-cycle of an healthy person and we
will select the physical variables of interest. Our first analysis consists
in describing boundary conditions and initial conditions and analyzing
some fluid dynamic quantities of interest related to this type of case,
as for example: inlet velocity of the fluid (the blood) from the aor-
tic valve (which will be the only inlet of the model), wall shear stress
along the entire aortic surface, pressure along the entire aortic volume;
we will obtain and collect results on the healthy person case through
FOM simulations with both FEM and FVM approach. We will ascer-
tain that the two methods provide very similar results and then we
will proceed in our analysis following the latter. Once the framework
is clear, the mathematical model will be validated testing the sick per-
son pre-surgery and post-surgery cases comparing the results obtained
with experimental results.

• Once the model is validated, we will introduce the reader to ROMs,
providing some motivations and some basic concepts about theory and
applications. We will present the methodologies that we will use in this
thesis, i.e, Proper Orthogonal Decomposition (POD), with the Proper
Orthogonal Decomposition with Interpolation (PODI) variant. At this
point we will present the numerical results obtained, in the case of the
sick person case, which is the case of application interest, with the
ROM method and the results will be compared with those obtained
with the FOM method.

The reasons why we analyze the problem using these techniques, which
are synthetically called ROMs, is because one of the goals of this area of
research is reducing the complexity of a mathematical model and its nu-
merical approximation. Reduced order methods represents a wide class of
techniques developed from different communities of research. The main sci-
entifical field in which ROMs are applied is parametric Partial Differential
Equations (PDEs): a parametric PDE is a PDE ([2]) in whose expression
there are one or more parameters that we could vary, for example, to take
into account the uncertainty or different operating conditions. Sometimes
calculating and solving problems associated with parametric PDEs for par-
ticular parameter values it can be too expensive, especially for industrial
applications, moreover it may be helpful to have the solution available for
many parameter values; all this could lead to unmanageable computational
times, for this reason and in these situations the ROMs become very useful
or even, in some occasions, indispensable. The idea behind a reduced order
model is to get a solution in much less time, however, it will be an approx-
imate solution with respect to the solution that would have been obtained
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with a FOM applied to the same problem. In the effort of having a ROM
solution that reproduces as accurately as possible the FOM one, a whole
area of this research area is dedicated to the analysis of the error between
the ROM solution and the FOM solution, but we will not analyze this aspect
in this work.

In this work, we will consider just one parameter: the flow rate of the
pump.

In order to obtain a model able to re-produce clinical configurations, ge-
ometry is reconstructed from patient-specific Computed Tomography (CT)
images. Moreover, a multi-scale approach was adopted by coupling three-
element Windkessel models [52], used as boundary conditions and whose
parameters are estimated by using experimental data provided by Right
Heart Catheterization (RHC) and Echocardiography (ECHO) tests, with
the Aorta model.

This work has been carried out in the framework of an intership at SISSA,
International School for Advanced Studies, Mathematics Area, mathlab
laboratory, within ERC-AROMA-CFD project: the framework developed
within AROMA-CFD will provide attractive capabilities for several indus-
trial and medical applications (e.g. aeronautical, mechanical, naval, biomed-
ical engineering and cardiovascular surgery as well), combining high per-
formance computing (in dedicated supercomputing centers) and advanced
reduced order modelling (in common devices), to guarantee real time com-
puting and visualization.

Trieste and Torino, July 2020
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Chapter 1

Cardiovascular system and
VAD

Left ventricular assist devices (LVADs) are needed by patients with cir-
culatory issues in the left ventricle of the heart. They are currently used in
a wide range of diseases as post-infarction heart failure. Lots of works treat
about the numerical and computational investigation of the hemodynamics
in the aortic region in the presence of a LVAD device, both in a single con-
figuration [80] and varying of some physical (LVAD flow rate [36], [37]) and
geometrical (cannula angle [74, 33, 70, 71, 38] and anastomosis position [39,
73, 72, 79, 33, 70, 37, 75, 81, 40, 36. 41]) parameters. As said before, in this
work we will consider just one parameter: the flow rate of the pump.

1.1 Anatomy of the cardiovascular system

In this section we will briefly analyze the structure of the heart, in par-
ticular for the purpores of this thesis we will focus in the left ventricle. We
will also analyze the cardiac cycle, explaining how it can change once LVAD
is surgically transplanted into the patient.

1.1.1 Brief description of the heart

The hearth is a muscular organ made of two synchronised pumps in par-
allel: the right side that both perfuses the lungs and receives deoxygenated
blood carried by the systemic veins and the left side which, instead, collects
oxygenated blood from the pulmonary veins and perfuses the rest of the
body ([6]).

The heart has four cavities: left atrium and right atrium that collect the
blood from the veins, left ventricle and right ventricle that pump the blood
into the systemic and polmunary veins. For the purposes of this work we
will focus on the left ventricle: it is the largest chamber with the thicket
walls and it is located behind and leftwards from the right ventricle.

The two ventricles share a septum, which separates the heart into left
and right sides. There are four valves in the hearth, one at the exit of each
hearth cavity, the one that we are interested in for our work is the aortic
valve through which the left ventricle ejects blood into the aorta. The aortic
valve has three simple leaflets that come together without any attachments,
providing in this way mutual support when they are closed, for more details
see [6].
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1.1.2 The cardiac cycle

The cardiac cycle is what happens in the human heart during a heart-
beat, it consists in a two stage pumping action over a period of about 1 s.
These two stages are: systole that consists in the period during which the
myocardium contracts and blood is ejected from the ventricle, and diastole
that is, instead, the period when the myocardium is relaxing [6]. At rest
diastole takes about two thirds of the entire cardiac period. The most im-
portant role in the cardyac cicle is played by the left ventricle, because the
right side of the hearth tends to follow the patterns estabilished by the left
side.

There are four phases of the ventricular activity that can be defined by
the state of the inlet and outlet valves (see [6]); we will focus in the phase
useful for this work: the aortic valve opens when the pressure in left ventricle
overcomes the pressure in the aorta, starting the ventricular ejection phase
of the cardiac cycle. At this point the vessels begin to expand because of the
blood ejected from the hearth and then the aortic pressure begins to rise.
However as long as the myocardium is contracting quickly enouhg, the ∆P
(pressure difference) between the left ventricle and aorta remains negative
and for this reason the blood’s flow into the aorta keep accelerating. After a
short time the rate of contraction of the ventricle becomes less than the flow
rate of blood in the aorta and at that point the pressure difference between
left ventriculus and aorta becomes about zero and that moment coincide
with the moment of maximum flow rate into the aorta. See Figure 1.2 in
which it can appreciate that the duration of this phase is about 0.25s.

Figure 1.1: Blood flows vs time during a single cardiac cycle

Note, in the Figure 1.1, that the flow is negative because by convention
the circulatory system is measured in the direction of mean blood flow;
moreover from the 1.1 the reader can appreciate the peak flow that manifests
itself bewteen about 0.1s and 0.2s and so it confirms that the duration of
the ventricular ejection amounts to proximately 0.25 as said before.

Note that when we will introduce VAD and we will analyze the problem
of the sick patient the device will no longer provide a real cardiac cycle with
systole and diastole, in fact the pump will inject the blood into the aorta
with a constant flow rate, which will be one of the study parameters of this
work.

1.2 State of the art on VAD technology

Ventricular assist devices (VAD) have been developed to assist the heart
issues firstly as a step towards transplantation, but more recently as a step
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towards recovery. A generic VAD is a mechanical pump, also called artificial
heart, which replaces the function of the left ventricle (most of the time - in
this case it is called LVAD), of the right ventricle (RVAD), or both (BIVAD),
to increase the amount of blood in the circulation. The device is implanted
at the tip of the heart, while the control unit and the battery of the device
are located outside the body [50]. The use of LVADs has been associated
with an increased risk of thrombus formation in the aortic region because
of the formation of stagnation points and recirculation zones; indeed, while
first generation devices provided pulsatile flows, current LVADs produce
continuous flow (cf-LVADs). This constant flow to the aortic root may
lead to decreased excursion or even complete closure of the aortic valve
(AV), particularly at high pump speeds. The resultant stasis in the aortic
root forms a nidus for clot formation. Aortic root thrombosis has been
recognized as a major complication of cf-LVAD therapy which frequently
necessitates device exchange in eligible patients to restore forward flow and
prevent embolic stroke [42, 43, 44, 35]. A small incision in the abdomen
allows the passage of the connection cable. The device aspirates oxygen-rich
blood from the left ventricle to push it into the aorta through an artificial
vessel (called graft)[34]. Once the blood has reached the aorta, it is able
to flow to the rest of the body. The use of a VAD is usually considered in
case of very advanced heart failure to accompany the patient in the best
possible conditions towards heart transplantation: this kind of intervention
is, in fact, called bridge to transplant. [45]

Thanks to increasingly advanced technology capable of producing smaller
and smaller devices, today VAD are also used as permanent therapy, the so-
called destination therapy [46,47], a possibility for subjects who cannot be
transplanted for clinical reasons.

The modern VAD technology provides devices with actively pump blood
from the ventricle to the aorta, these devices can be considered turbine
pumps that mimic the fucntioning of the LV; the turbine pumps are the
most recent development [48].

For the objectives of this work, we will only analyze LVADs.
A LVAD device includes:

• a pump inserted and connected to the left ventricle;

• an external control unit, consisting of a small computer that monitors
the pump;

• an operating cable, which connects the pump to the control unit.

• power supplies that operate the pump and the control unit.

Figure 1.2: Example of positioning the VAD

As we can see from Figure 1.2 the LVAD uses a rotary blood pump to
generate flow and assist the left ventricle. It is a centrifugally-configured
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device so that the paths of the entering and exiting flow stream are perpen-
dicular to the pump axis.

22



Chapter 2

Mathematical model

In this chapter, we introduce the analytical model apt to describe the
behavior of an incompressible viscous Newtonian fluid, i.e. Navier-Stokes
equations. We will expose and analyze the main hypotheses concerning the
mathematical model and we will give more specific descriptions about the
fluid dynamic characteristics of the fluid under consideration in this work,
the blood. Once the hypotheses are defined, we will show the equations on
which our analytical model is based and the changes applied in relation to
the assumptions made, finally we will analyze the boundary conditions of
the model.

2.1 Hypothesis on the Mathematical Model

The properties of the fluid must be clarified in relation to the interac-
tion with the surroinding domain; in this case the blood can change, even
considerably, its fluid dynamic behaviour depending on the blood vessel in
which it flows [6].

Blood contains living cells and plasma, plasma takes up about 55% of
the blood volume, while the remaining volume is made up of cells, about 97
% of this remaining volume is made up of erythrocytes (red blood cells) [6].

Red blood cells are the most numerous and therefore they are the ones
that mainly discriminate the mechanical and therefore fluid dynamic behav-
iors of the blood: blood is a shear-thinning fluid (see [7]), a fluid the more
it shakes the more it fluidifies.

A shear-thinning fluid is a fluid whose viscosity decreases as the rate of
deformation increases, and this effect is more pronounced in the gradually
smaller blood vessels, because in them the red blood cells are placed and
move in the central part of the vessel, while the plasma is positioned ex-
ternally staying in contact with the vessel wall, clearly this layer of plasma
eases the movement of red blood cells, causing a decrease in viscosity (see
[8]).

Let us assume some simplifying hypotheses of the mathematical model:

• we will consider blood as a Newtonian Fluid (see Section 2.2), so in
the model we will neglect the shear thinning effects; this hypothesis is
justified by the fact that in the larger blood vessels (and in our case we
will work with the Aorta which is the largest artery in the human body)
the contribution of non-Newtonian blood behavior can be neglected
[6], in addition, in general, non-Newtonian blood behaviors can be
neglected when one is interested in the medium flow and not in the
deeper details of the flow itself;

• we will neglect the so-called fluid-structure interaction effects; this too
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is not a seemingly realistic hypothesis, since the human cardiovascular
system should not be considered as a system of pipes in which blood
flows. In fact blood vessels deform according to contingent needs,
so there is a fluid-structure interaction in the flow of blood through
the blood vessels (see [9]), however it can be shown that in the type
of simulations we will do in this work, the effects of fluid-structure
interaction can be neglected [6].

• we will consider blood as an incompressible flow

At this point we are ready to preset more deeply the mathematical model
adopted for the problem under consideration in this thesis.

2.2 Navier-Stokes equations

The mathematical equations of fluid dynamics are one of the main com-
ponents of haemodynamics modelling [6]. In this section, we introduce the
analytical mathematical model suitable to describe an incompressible vis-
cous Newtonian fluid: the Navier-Stokes equations [8]. As we said before,
we consider the blood as a constant density incompressible Newtonian fluid.

In general, in a Newtonian incompressible fluid, the stress tensor (also
called Cauchy stress tensor) and the strain rate have a linear dependence,
in formulas:

σ = σ(u, P ) = −P I + 2µD(u) = −P I + µ(∇u +∇uT), (2.1)

where P is the pressure and µ is the dynamic viscosity of the fluid. The
term 2µD(u) is the viscous stress component of the stress tensor. Since
we have decided to consider blood as a Newtonian fluid, the viscosity µ is
independent of any kinematic quantitites, if instead we had also taken into
account the non-Newtonian part of the blood we would have had to express
the viscosity as a function of the strain rate, namely:

µ = µ(D(u)).

At this point, in order to obtain the Navier-Stokes equations, we use two
conservation principles:

• mass conservation;

• momentum conservation.

2.2.1 Mass conservation equation

If ρ is the density of a continuum medium, the equation of mass conser-
vation is:

∂ρ

∂t
+∇·(ρu) = 0 in Ω(t). (2.2)

If, as previously mentioned, we assume that blood is an incompressible
fluid and therefore with constant density ρ, the equation (2.2) becomes:

∇ · u = 0 in Ω(t), (2.3)

so the equation of contintuity (2.2), in the case of incompressible fluid,
is reduced to a zero divergence condition of the velocity field u (see (2.3)).
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2.2.2 Momentum conservation equation

At this point we take into consideration the generic principle of momen-
tum conservation for a generic continuous medium (this is a generalization
of Newton’s second law):

ρ
∂u

∂t
+ ρ(u · ∇)u−∇ · σ = ρf in Ω(t) t > 0. (2.4)

The (2.4) equation can also be expressed in the so-called conservation form:

∂(ρu)

∂t
+∇ · (ρu⊗ u− σ) = ρf in Ω(t) t > 0. (2.5)

To get to the Navier-Stokes equations we must first replace the tensor σ
to the equation (2.4) (or to the (2.5)), so substituting the (2.1) in the (2.5),
remembering that ρ is a constant, we obtain:

ρ
∂u

∂t
+∇·(ρu⊗ u) +∇P − 2∇·(µD(u)) = ρf . (2.6)

By taking advantage of the fact that ρ is constant we can divide the
equation (2.6) by ρ, by introducing a new type of viscosity: ν = µ

ρ , called

kinematic viscosity, a scaled pressure P = P
ρ , we obtain:

∂u

∂t
+∇·(u⊗ u) +∇P −∇·[ν(∇u +∇uT)] = f . (2.7)

At this point we have all the elements to be able to express Navier-Stokes
equations, in the case of incompressible Newtonian fluid:

∂u

∂t
+∇·(u⊗ u) +∇P −∇·[ν(∇u +∇uT)] = f ,

∇ · u = 0.
(2.8)

As previously described, the first equation is a manipulation of the momen-
tum balance equation and is essentially a reformulation of Newton’s 2nd law

of dynamics, in which the addends represent:
∂u

∂t
is the Eulerian acceleration

of the fluid, the term ∇·(u ⊗ u) models the convection part, the term ∇P
is the pressure gradient and finally ∇·[ν(∇u +∇uT)] models the diffusion
part. The second equation, instead, as explained above, is the mass balance
equation (also called continuity equation) for an incompressible fluid.

Physycal quantities of interest

For the sake of convenience, we also define the viscous stress tensor τ as
follows:

τ(u) = µ(∇u +∇uT ). (2.9)

In order to investigate the blood flow patterns, we introduce the Wall
Shear Stress (WSS) defined in the following way:

WSS = τω · n, (2.10)

where n is the unit normal vector. When the flow is pulsatile, it is useful
to make reference to the Time Averaged WSS (TAWSS),

TAWSS =
1

T

∫ T

0
WSSdt. (2.11)
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Finally, in order to characterize the flow regime under consideration, we
define the Reynolds number as:

Re =
UL

ν
, (2.12)

where ν is the kinematic viscosity previously defined, and U and L are
characteristic macroscopic velocity and length, respectively.

2.3 Boundary conditions

Boundary conditions are essential in order to obtain correct cardiovascu-
lar simulation results. It is crucial that boundary conditions capture as much
as possible the physiology of vascular networks outside of the 3D domain of
the model.

Regardless of the complexity of the domain in a vascular model, bound-
aries can be classified into three macro-categories:

• an inflow boundary, which includes all the faces of the bounary in
which we will prescribe a flow wave profile obtained through clinical
measurement by medicals [22];

• vessel wall boundary that represents the interface between the fluid do-
main and the vessel wall. From a physical point of view, this boundary
is flanked by a layer of endothelial cells, and the treatment of this layer
of cells could be, in general, complex; the most of blood flow simula-
tions, including that considered in this discussion, have traditionally
used a rigid wall assumption, in which a zero velocity condition is
applied on these surfaces, the so-called no slip condition [22];

• an outflow boundary: on this boundary, we will typically prescribe a
pressure value that is uniform over the face (spatially costant).

For a generic cardiovascular flow could be considered several options for
boundary condition assignment [3], in this work we will consider an inlet
boundary in which we will prescribe a precise speed profile (so we will set a
Dirichlet condition for speed), we will consider the vessel wall boundary as a
rigid wall and then we will impose the no slip condition for the speed, while
for all the other boundaries (which we will list later) we will impose the
so-called aortic outflow boundary condition, i.e. we will make an analogy to
electrical circuits in which pressure drop is modeled with resistors and vessel
distensibility is modeled with capacitors, this electrical analogy is usually
called Windkessel RCR boundary conditions (see [10]).

2.3.1 Windkessel RCR boundary conditions

A Windkessel model is composed by three elements: a proximal resis-
tance that modeling the viscous resistance of the arterial vasculature just
downstream of the model, a capacitor which models the vessel compliance
of all the downstream vasculature, and the distal resistance which models
the resistance of the other capillaries and venous circulation. The goal of
this parameters-setting is to obtain pressure results that match as much
as possible with the patient-specific physiologic conditions, clearly if the
patient-specific data are available it is easier set these parameters, otherwise
it is sometimes necessary to search for values obtained in the literature. A
procedure for obtaining these parameters can be the following:
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• calculate the total resistance for the system, this can be done by di-
viding the patient’s average pressure P by the patient’s cardiac output
Q, in formulas:

Rtot =
Pmean
Q

;

• at this point we split the resistance value; as we can see from the fig-
ure 2.1, Rp models the proximal resistance while Rd (distale resistance)
models the resistance of capillaries and veins; the figure 2.1 also shows
that the resistance Rd is more distant from the outflow than the resis-
tance Rp. A good rule of thumb for dividing Rtot is the ratio Rd

Rp
∼ 10.

This is due to the fact that most vascular resistance is packed into the
downstream vasculature [22], where the small capillaries are. In the
case in which there are multiple outlet faces of the domain, such as
the case under consideration in this work, we can split the resistances
following the rules of a parallel electric circuit (we will analyze more
deeply this concept in the next subsection); we will assume that out-
lets with larger cross sectional area will have less resistance than the
smaller outlets, in formulas:

Ri =

∑
j Aj

Ai
Rtot,

where
∑

j Aj is the sum of the areas of the boundaries that we are
taking into account to compute the resistance;

• capacitors model vessel compliance, i.e. the ability for blood vessels to
expand and contract in response to blood flow. Determining a value for
this parameter is often very complicated, in fact we often take refuge
in values obtained in the literature, a very interesting study may be an
inference analysis on this parameter. Also in the case in which there
are multiple outlet, we can split the capacities similarly to the case
of resistences (we will analyze this concept more deeply in the next
section), with the difference that in parallel circuits the multiplication
coefficient is inverse, that is Ai∑

j Aj
.

Figure 2.1: RCR Windkessel model

Experimental measurements obtained by the RHC and ECHO tests are
reported in Tables 2.1 and 2.2 for pre-surgery and post-surgery configuration
respectively. They are used in order to enforce realistic boundary conditions.
For clinical reasons, four different tests are available for the post-surgery
configurations whilst only one for the pre-surgery configuration. Note that
RCH and ECHO tests provided measurements related to the polmonary
circulation as well. However, these data are not reported because they do not
affect the model used in this work, that deals with the systemic compartment
only. In Table 2.3 we report the values of boundaries cross-sectional areas.

In the pre-surgery configuration, a realistic flow rate Q waveform was
enforced on the ascending aorta section (Figure 1.1). The amplitude of the
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flow waveform has been set according to the average flow over the cardiac
cycle, CO,

CO =
1

T

∫ T

0
Qdt, (2.13)

measured by the RHC test. The value of the cardiac period, T, is ob-
tained as:

T =
SV

CO
, (2.14)

where SV is the stroke volume measured by the ECHO test.
On the other hand, in the post-surgery configuration, the LVAD flow

rate, PF, has been used as inlet boundary condition applied to the outflow
cannula section. Note that the aortic valve is closed during all the cardiac
cycle, i.e. the cardiac flow rate is supplied by the LVAD device only and
the ascending aorta section is treated as a wall. In Figure 2.2, the pressure
head (∆P ) - volume flow rate (PF ) curves for the Heartmate 3TM Left
Ventricular Assist System [50] at several pump speed values ω are shown.
The basic pump dynamics can, in line of principle, be described in the
following way [51]:

∆P = KAω
2 +KBω · PF +KCPF

2, (2.15)

where KA, KB, and KC are constants which depend on pump design.
After some numerical experiments, we found that te coefficients given in
Table 2.4 provide an acceptable fit as showed in Figure 2.2. Based on the
analytical fitting 11, we can compute the values of ∆P for the all the tests
under consideration (see Table 2.5).

PAS [mmHg] PAD [mmHg] PAM [mmHg] CO [l/min] SV [ml]

108 66 78 5.63 55

Table 2.1: Pre surgery configuration: experimental data obtained by the
RHC and ECHO tests. PAS : systolic arterial pressure, PAD:
diastolic arterial pressure, PAM : average arterial pressure, CO :
average cardiac flow rate, SV : stroke volume.

PF [l/min] ω [rpm] PAM [mmHg]

Test 1 4.1 5400 78

Test 2 4.2 5600 90

Test 3 4.5 6000 100

Test 4 5 5600 83

Table 2.2: Post-surgery configuration: experimental data obtained by the
RHC and ECHO tests. PF = LVAD flow rate, ω = pump
speed, PAM = average arterial pressure.
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A [cm2]

Outflow cannula 1.3

Ascending Aorta 6.42

Right subclavian artery 0.156

Right common carotid artery 0.246

Left common carotid artery 0.168

Left subclavian artery 0.446

Descending aorta 3.68

Table 2.3: Values of boundaries cross-sectional areas.

KA [mmHg/rpm2] KB [mmHg· l/min/rpm] KC [mmHg· l2/rpm2]

3.45e-6 -5.9e-5 -1.45

Table 2.4: Parameter settings for the pump dynamics (equation (2.15)).

∆P [mmHg]

Test 1 75

Test 2 81.3

Test 3 93.3

Test 4 70.4

Table 2.5: ∆P values based on equation (2.15) for all the tests under con-
sideration.

Figure 2.2: Pressure head (∆P ) - volume flow rate (PF ) curves (continu-
ous line with circles) and analytical fitting (dashed line) based
on equation (2.15) for Heartmate 3TM [50] pump at several
pump speed values: ω 3000 rpm (black), ω 4000 rpm (red), ω
5000 rpm (blue), ω 6000 rpm (green), ω 7000 rpm (cyan), ω
8000 rpm (magenta).

Outflow boundary conditions were applied at each outlet of the model,
right subclavian artery, right common carotid artery, left common carotid
artery, left subclavian artery and descending aorta, by using a three-element
Windkessel RCR model [52]. The Windkessel model consists of a proximal
resistance Rp,k, a compliance Ck, and a distal resistance Rd,k, for each outlet
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k (Figure 2.3). The downstream pressure, pk, is expressed through the
following DAE system: Ck

dpp,k
dt

+
pp,k − pd,k
Rd,k

= Qk,

pk − pp,k = Rp,kQk,
(2.16)

where Qk is the flow rate, and pp,k and pd,k are the proximal and the
distal pressure, respectively. The total resistance, Rk = Rp,k + Rd,k, was
evaluated according to the rules for a parallel circuit (as mentioned in the
previous section):

Rk = RV S

∑
k Ak
Ak

, (2.17)

where Ak is the cross-sectional area and RVS is the systemic vascular
resistance estimated as follows:

RSV =


PAM

CO
, in the pre-surgery case

PAM

PF
, in the post-surgety case

(2.18)

where PAM is the average arterial pressure measured by the RHC test
(see Tables 2.1 and 2.2). For each outlet k, we assumed [53]:

Rp,k
Rk

= 0.056. (2.19)

On the other hand, the aortic compliance, C, can be estimated as follows
[54]:

C =
PAS − PAD

SV
, (2.20)

where PAS and PAD are the systolic and the diastolic pressure mea-
sured by the RHC test in the pre-surgery configuration, respectively (see
Table 2.1). It should be noted that such value is also used in the post-
surgery configuration. Finally, the compliance Ck related to the outlet k
was evaluated according to the rules for a parallel circuit (as mentioned in
the previous section):

Ck = C
Ak∑
k Ak

. (2.21)

Table 2.6 shows the values of T, RVS and C computed by using equa-
tions: (2.14), (2.18), and (2.20), respectively, for the pre-surgery configu-
ration. Table 2.7 shows the values of RVS computed by using equation
(2.18) for the post-surgery configuration. Finally, tables 2.8 and 2.9 report
the values of Windkessel parameters for the pre-surgery and post-surgery
configurations, respectively.

Figure 2.3: Three-element Windkessel model for the generic outlet k.
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T [s] RVS [dyne · s/cm5] C [cm5/dyne]

0.586 1105 9.85e-4

Table 2.6: Pre-surgery configuration: quantities computed by the experi-
mental data reported in Table 2.1. T = cardiac cycle (equation
(2.14)), RVS = system vascular resistance (equation (2.18)), C
= aortic compliance (equation (2.20)).

RSV [dyne · s/cm5]

Test 1 1522

Test 2 1714

Test 3 1778

Test 4 1328

Table 2.7: Post-surgery configuration: system vascular resistance (equa-
tion (2.18)) computed by the experimental data reported in
Table 2.2 .

k Rp,k [dyne · s/cm5] Rd,k [dyne · s/cm5] Ck [cm5/dyne]

Right sublcavian artery 1.84e3 3.11e4 3.26e-5

Right common carotid artery 1.23e3 2.07e4 5.16e-5

Left common carotid artery 1.78e3 3.01e4 3.52e-5

Left sublcavian artery 7.09e2 1.19e4 9.35e-5

Descending aorta 7.8e1 1.31e3 7.72e-4

Table 2.8: Pre-surgery configuration Windkessel parameters: proximal re-
sistance Rp,k, distal resistance Rd,k and compliance Ck, for each
outlet k.

k Rp,k [dyne · s/cm5] Rd,k [dyne · s/cm5]

Test 1 Right sublcavian artery 2.56e3 4.32e4
Right common carotid artery 1.63e3 2.74e4
Left common carotid artery 2.38e3 4e4

Left sublcavian artery 8.96e2 1.51e4
Descending aorta 1.08e2 1.83e3

Test 2 Right sublcavian artery 2.88e3 4.86e4
Right common carotid artery 1.83e3 3.08e4
Left common carotid artery 2.68e3 4.51e4

Left sublcavian artery 1.01e3 1.7e4
Descending aorta 1.22e2 2.06e3

Test 3 Right sublcavian artery 2.99e3 5.05e4
Right common carotid artery 1.9e3 3.2e4
Left common carotid artery 2.78e3 4.68e4

Left sublcavian artery 1.04e3 1.76e4
Descending aorta 1.27e2 2.14e3

Test 4 Right sublcavian artery 2.19e3 3.68e4
Right common carotid artery 1.39e3 2.33e4
Left common carotid artery 2.03e3 3.42e4

Left sublcavian artery 7.64e2 1.29e4
Descending aorta 9.25e1 1.56e3

Table 2.9: Post-surgery configuration Windkessel parameters: proximal
resistance Rp,k and distal resistance Rd,k, for each outlet k.
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Chapter 3

Full Order Model
Formulations

We now discuss the Full Order Model (FOM), which generates what
we call the high fidelity solution. Navier-Stokes equations are the most
precise continuous model to describe the motion of a fluid but, due to their
complexity, it is very difficult, and in most cases impossible, to solve them
analytically except in few very simplified cases. For this reason, usually, the
only way to solve fluid dynamic problems governed by this set of equations
is to discretize them by means of a suitable discretization method, in this
work, in particular, we will present the Finite Element Method (FEM) with
SUPG-stabilization ([49]) and the Finite Volume Method (FV) ([55]).

Let us consider a generic domain Ω ⊆ Rd, limited, connected with bound-
ary sufficiently regular so that the Gauss divergence theorem can be applied;
suppose that this domain Ω is the observation region of the fluid (in our case
the blood); as we have already said, the fluid is described by a vector field
u (velocity) and by a scalar field p (kinematic pressure). Considering the
system of equations (2.8), in our problem under consideration we will as-
sume that the viscosity ν is constant, so the momentum balance equation
changes in its diffusive term ∇·[ν(∇u +∇uT)] since, considering ν con-
stant, it can be taken out of the sign of divergence, and therefore we obtain
that ∇ · (∇u) = ∆u and ∇ · (∇uT) = ∇(∇ · u) = 0, whereby the new set
of equations: incompressible Navier-Stokes with boundary conditions and
initial condition, become:



∂u

∂t
+ (u · ∇)u +∇P −∆u = f , in Ω× (0, T ] T > 0,

∇ · u = 0, in Ω× (0, T ] T > 0,

u = g, in ∂Ω× (0, T ] T > 0,

u(0) = u0, in Ω.

(3.1)

If one only looked at the part of the equation
∂u

∂t
-∆u = f we would

have a parabolic equation (like heat equation) vectorial, however there is the
term (u · ∇)u, which is the convection term that provides the nonlinearity
of the equation and then there is the term ∇P which is a term linked to the
constraint of incompressibility ∇ · u = 0.

The mathemathical steps that lead the convective term to the form in
(3.1) are presented below:

∇ · (uuT) = (u · ∇)u + u(∇ · u) = (u · ∇)u, (3.2)

in the last equality we have exploited the solenoidity constraint of the ve-
locity field u.
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3.1 Finite Element Method

The finite element method (FEM) is a numerical technique for solv-
ing problems described by partial differential equations. The goal of this
method is to determine approximating functions that are determined in
terms of nodal values of the physical field of interest. A continuous math-
ematical problem is transformed into a discretized finite element problem
with unknown nodal values.

3.1.1 Weak formulation of Navier-Stokes Equations

A preparatory passage for finite element discretization of the system of
equations presented in (3.1) is to obtain the weak formulation of the system,
before proceeding we recall some concepts of functional analysis that will be
useful in the following:

Definition 1. We define the following function spaces:

L2(Ω) = {v : Ω→ C : ||v||L2(Ω) =

(∫
Ω
|v|2dx

) 1
2

<∞},

H1(Ω) = {v : Ω→ C : v ∈ L2(Ω) , ∇v ∈ (L2(Ω))d},

H1
0 (Ω) = {v : Ω→ C : v ∈ H1(Ω) : v = 0 ∈ ∂Ω},

H
1
2 (∂Ω) = {g : ∂Ω→ C : g = v|{∂Ω : v ∈ H1(Ω)}.

Taking advantage of Poincarè inequality ([11]) applied to the domain Ω,
we can consider the following equality between norms that could be useful
to us in the following:

||v||H1
0 (Ω) = ||∇v||L2(Ω)d .

Another definition that will be very useful to us is the one of dual space:

Definition 2. Let V be a Banach space ([12]), we define dual space V ′, the
set of all linear and continuos functionals F : V → C.

In particular for our work, we will need the dual space (H1
0 (Ω))′ :=

H−1(Ω).

3.1.2 Functional framework

At this point we have all the elements to be able to characterize the
functional treatment of each of the terms of the Navier-Stokes equations:

• suppose that the vector field u(x, t) consists of a series of functions all
defined in the domain Ω, which vary with the variation of time t, for
which we rewrite (u(t))(x) and assume that:

u ∈ L2(0, T ; (H1(Ω))d);
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• we consider Laplacian as a continuous operator:

∆ : H1(Ω)→ H−1(Ω),

which acts as follows, let v ∈ H1(Ω) and let φ ∈ H1
0 (Ω), then:

∆v(φ) = −
∫

Ω
∇v · ∇φ,

so we can assume that:

∇u ∈ L2(0, T ; (H−1(Ω))d),

• as regards the convective term, with the previous hypotheses, it can
be demonstrated that we obtain:

(u · ∇)u ∈ L2(0, T ; (H−1(Ω))d),

• as for the pressure p, we suppose that:

p ∈ L2(0, T ;L2(Ω)),

which implies:
∇p ∈ L2(0, T ; (H−1(Ω))d),

• finally for right-hand-side term f we suppose that:

f ∈ L2(0, T ; (H−1(Ω))d.

In light of the hypotheses presented above, we can rewrite the system
equation (3.1):

∂u

∂t
= −(u · ∇)u−∇P + ν∆u + f︸ ︷︷ ︸

∈L2(0;T ;(H1(Ω))d)

, (3.3)

• from the equation (3.3) it emerges that the time derivative term of the
velocity field u belongs to the same space to which all the right-hand-
side of the (3.3), in formulas:

∂u

∂t
∈ L2(0, T ; (H−1(Ω))d).

In light of the hypotheses made on u and
∂u

∂t
, using the Lions’ Theorem

(see [11]) we obtain that:

u ∈ C0([0, T ]; (L2(Ω))d). (3.4)

Thanks to the result obtained in the equation (3.4), considering that
the function u is continuous with respect to the variable time, we can
make sense of the evaluation of the function u in a precise instant of
time, thus being able to affirm, regarding the initial condition in the
system (3.1), that:

u0 ∈ (L2(Ω))d,
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• as regards the boundary conditions (which as can be seen from the
system of equations (3.1), we have assumed to be Dirichlet boundary
conditions along the whole boundary), we have to analyze the data at
the boundary g, for compliance with the previous cases, we assume
that:

g ∈ L2(0, T ; (H
1
2 (∂Ω))d), (3.5)

however, the condition expressed by (3.5) is not enough because if we
consider the Gauss divergence theorem we obtain that:∫

Ω
∇ · u =

∫
∂Ω

u · n, (3.6)

however for the solenoidal condition that we impose on the velocity
field u due to the hypothesis of incompressible fluid, the first integral
of (3.6) is zero, and the second integral is instead calculated along ∂Ω,
where u = g, so from the (3.6) we get an additional constraint for the
boundary data g: ∫

∂Ω
g · n = 0, (3.7)

so this condition of compatibility of the data g with the solenoidal con-
straint of the velocity field u, translates into requiring that the normal
component of the data g must have zero average on the boundary.

At this point, taking into account (3.5) and the condition (3.7), we can
make a dependent variable change for the (3.1) system, introducing a
function ug ∈ (H1(Ω))d such that g = ug, ∇ · ug = 0. At this point it
is possible to change variables, taking advantage of the ug just defined,
which is called edge data detection; we rewrite u as:

u = ug + u(0),

so we built a new velocity field u(0)(t) ∈ H0
1 (Ω))d ∀t ∈ [0, T ], which

becomes the new unknown of the (3.1) system, precisely:

u(0) ∈ L2(0, T ; (H1
0 (Ω))d).

At this point, we presented the whole functional framework in order to
obtain the weak formulation of the incompressible Navier-Stokes equations.

The usual procedure for obtaining the weak formulation is to multiply
the equation ([14]) in question by a generic test function, so multiplying the
first equation of the system (3.1) we obtain the following weak formulation:

∫
Ω

(
∂u

∂t
+ (u · ∇)u +∇p−∆u = f

)
· v = 0 ∀ v ∈ (H1

0 (Ω))d, (3.8)

where (H1
0 (Ω))d represents the space of the test functions.

At this point we analyze again the weak formulation of the Navier-Stokes
equations:

•

∫
Ω

∂u

∂t
· v =

d

dt

∫
Ω

u · v;

• the integral

∫
Ω

(u · ∇)u · v is left in this form;
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• −

∫
Ω

∆u · v = +

∫
Ω
∇u · ∇v, in this equality we used the integra-

tion by parts formula considering the fact that the function v is null
at the boundary;

•

∫
Ω
∇p · v = −

∫
Ω
p∇v +

∫
∂Ω
pv · n = −

∫
Ω
p∇v,

the last equality is due to the fact that the function v is null at the
boundary;

•

∫
Ω

f · v, also in this case, assuming f ∈ (L2(Ω))d, the integral is not

further manipulated.

.
By putting all the pieces of this formulation together we obtain that the

weak formulation of the Navier-Stokes Equations provides that ∀t ∈ (0, T ]
we must obtain u ∈ L2(0, T ; (H1

0 (Ω))d) and p ∈ L2(0, T ;L2(Ω)) such that:
d

dt
(u,v) +

(
(u · ∇)u),v

)
+ µ(∇u,∇v)− (p,∇v) = (f ,v) ∀ v ∈ (H1

0 (Ω))d

(∇ · u, q) ∀q ∈ L2(Ω)
.

(3.9)
In (3.9), the symbol (·) represents the scalar product in L2(Ω).

3.1.3 Finite Element discretization

For simplicity of notation we will call V = (H1
0 (Ω))d e D = L2(Ω).

Let us consider a Finite Element partition Th of the domain Ω from
which we construct finite element spaces Vh ⊂ V and Dh ⊂ D ([23]). For
the discrete version of equations (3.9) to be well-posed, velocity and pressure
spaces Vh and Dh need to obey an inf-sup condition (see [11]):

inf
qh∈Dh

sup
vh∈Vh

(qh,∇ · vh)

||vh||V ||qh||D
≥ β̃ > 0, (3.10)

at this point, we can present the semi-discrete formulation of the Navier
Stokes equation, starting from (3.9) we have that ∀t ∈ (0, T ] we have to
obtain uh ∈ Vh e ph ∈ Dh such that:


d

dt
(uh,vh) +

(
(uh · ∇)uh),vh

)
+ µ(∇uh,∇vh)− (ph,∇vh) = (f ,vh) ∀vh ∈ Vh,

(∇ · uh, qh) ∀qh ∈ Dh.
.

(3.11)

3.1.4 SUPG-stabilization

Since the Galerkin method could lacks stability if convection dominates
diffusion, we decided to enrich it by a stabilization, yielding the SUPG
(Streamline Upwind Petrov–Galerkin) method. A possible important draw-
back of many stabilized methods like SUPG is that they contain stabilization
parameters for which a general ’optimal’ choice could be not known ([22]).

A choice of low-order approximation spaces (such as P1-P1 spaces) seems
to represent a very good choice for the apprimation of Navier-Stokes equa-
tions, since they apparently decrease the required computational effort([22]);
however, they do not satisfy the inf-sup condition (3.10).
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As a remedy, one can appeal to suitable pressure stabilizations; how-
ever, pressure stabilizations turn out to be inappropriate when dealing with
advection dominated flows.

For these reasons, we bring it up the streamline upwind Petrov-Galerkin
(SUPG) stabilization – formulated as in the Variational Multiscale frame-
work – which satisfies all the requirements mentioned above.

We introduce the following space:

Y r
h = {wh ∈ C0(Ω̄) : wh|K ∈ P r ∀K ∈ Th}.

Let us define now: Vh = V ∩Y r
h e Dh = D∩Y r

h and introduce the residual
respectively of the momentum equation: rM(vh, ph) and of the continuity
equation: rC(vh) in the following manner:

rM(vh, ph) =
∂vh

∂t
+ vh · ∇vh +∇p− µ∆vh,

rC(vh) = ∇ · vh.

Putting all the pieces of this formulation back together, the semi-discrete
SUPG formulation of the Navier-Stokes equations reads that ∀t ∈ (0, T ] we
must obtain uh ∈ Vh e ph ∈ Dh such that:

d

dt
(uh,vh) +

(
(uh · ∇)uh),vh

)
+ µ(∇uh,∇vh)− (ph,∇vh)+

+
∑

K∈T (τMrM(vh, ph),vh · ∇wh +∇qh)K+

+
∑

K∈T (τCrC(vh),∇ · vh)K = (f ,v) ∀vh ∈ Vh
(∇ · uh, qh) ∀qh ∈ Dh.

(3.12)
The stabilization parameter τM e τC are defined as:

τM =

(
σ2

(∆t)2
+ vh ·Gkvh + CIµ

2GK : GK

)− 1
2

,

τC = (τMgK · gK)−1,

where CI = 60 · 2r−2, σ is a constant equal to the order of the time
discretization and ∆t is the time step that will be chosen for the time dis-
cretization. Moreover, GK and gK are metric tensors of the computational
domain [18,19].

3.2 Finite Volume Method

An other possible approach, alternative to the FEM one, to discretize
the equations (3.1) is the Finite Volume Method (FVM), for a complete
discussion of FVM we refer to texts such as [55] or [56]. Examples of FV
application in haemodynamics can be found, e.g., in [85]. FVM approxima-
tion is derived directly from the integral form of the governing equations.
We have used the finite volume C++ library OpenFOAM R© [57]. We par-
tition the computational domain Ω into cells or control volumes Ωi, with
i = 1, dots,Nc, where Nc is the total number of cells in the mesh. For
simplicity of treatment we rewrite the first equation of the system (3.1) as
follows:

ρ
∂u

∂t
+ ρ∇ · (u⊗ u) +∇p− 2µ∆u = f in Ω× (t0, t

∗). (3.13)

Let Aj be the surface vector of each face of the control volume.
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The integral form of equation (3.13) for each volume Ωi is given by:

ρ

∫
Ωi

∂u

∂t
dΩ + ρ

∫
Ωi

∇ · (u⊗ u)dΩ− 2µ

∫
Ωi

∆udΩ +

∫
Ωi

∇pdΩ = 0. (3.14)

By applying the Gauss-divergence theorem, equation (3.14) becomes:

ρ

∫
Ωi

∂u

∂t
dΩ +ρ

∫
∂Ωi

(u⊗ u) · dA−2µ

∫
∂Ωi

∇u · dA+

∫
∂Ωi

pdA = 0. (3.15)

Each term in equation (3.15) is approximated as follows:

• Gradient term: ∫
∂Ωi

pdA '
∑
j

pjAj , (3.16)

where pj is the value of the pressure relative to centroid of the jth face.
The face center pressure values pj are obtained from the cell center
values by means of a linear interpolation scheme.

• Convective term:

∫
∂Ωi

(u⊗ u) · dA '
∑
j

(uj ⊗ uj) ·Aj =
∑
j

φjuj , φj = uj ·Aj ,

(3.17)

where uj is the fluid velocity relative to the centroid of each control
volume face. In (3.17), φj is the convective flux associated to u through
face j of the control volume. The convective flux at the cell faces is
obtained by a linear interpolation of the values from the adjacent cells.
Also u needs to be approximated at cell face j in order to get the face
value uj . Different interpolation methods can be applied: central,
upwind, second order upwind and blended differencing schemes [58].
In this work, we make use of a second order upwind scheme.

• Diffusion term: ∫
∂Ωi

∇u · dA '
∑
j

(∇u)j ·Aj , (3.18)

where (∇u)j is the gradient of u at face j. We are going to briefly
explain how (∇u)j is approximated with second order accuracy on
structured, orthogonal meshes, that are used in this work. Let P and
Q be two neighboring control volumes. The term (∇u)j is evaluated
by subtracting the value of velocity at the cell centroid on the P -side
of the face, denoted with uP , from the value of velocity at the centroid
on the Q-side, denoted with uQ, and dividing by the magnitude of the
distance vector dj connecting the two cell centroids:

(∇u)j ·Aj =
uQ − uP
|dj |

|Aj |. (3.19)
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For non-structured, non-orthogonal meshes (see Fig. 5), an explicit non-
orthogonal correction has to be added to the orthogonal component in order
to preserve second order accuracy. See [58] for details.

A partitioned approach has been used to deal with the pressure-velocity
coupling. In particular a Poisson equation for pressure has been used. This
is obtained by taking the divergence of the momentum equation (3.13) and
exploiting the divergence free constraint ∇ · u = 0:

∆p = −∇(u⊗ u). (3.20)

The segregated algorithms available in OpenFOAM R© are SIMPLE [59]
for steady-state problems, and PISO [60] and PIMPLE [61] for transient
problems. For this work, we choose the PISO algorithm.

3.3 Time discretization

To discretize in time the equation (3.15), let ∆t ∈ R, tn = t0 + n∆t,
with n = 0, . . . , NT and t∗ = t0 + NT∆t. Moreover, we denote by un the
approximation of the flow velocity at the time tn. We adopt Backward
Differentiation Formula of order 1 (BDF1), for example see [62]. Given un,
for n ≥ 0, we have, respectively,:

∂u

∂t
' un+1 − un

∆t
. (3.21)

Finally, a first-order scheme is also used for the discretization of the RCR
Windkessel model (2.16): Ck

pn+1
p,k − p

n
p,k

∆t
+
pn+1
p,k

Rd,k
= Qnk ,

pn+1
k − pn+1

p,k = Rp,kQ
n
k ,

(3.22)

where we assumed pd,k = 0.

3.3.1 Multi-scale coupling

The coupling process between the three-dimensional flow model and
lumped Windkessel model can be summarized as follows:

• At tn, we know un and thus Qnk . Then we calculate pn+1
k by equation

(3.22);

• We solve the problem descrived by equations (3.15) to obtain un+1

and Qn+1
k .

3.4 FEM and FVM comparison: healthy case

After presenting the two discretization techniques in the previous sec-
tions: FEM and FVM, in this section we will consider computational simu-
lations obtained with both methods. The domain taken under consideration
is an Aorta artery reconstructed from CT images of a healthy patient by
using the open source medical image analysis software 3D Slicer

R©(http://www.slicer.org). We will compare these two methods by
confronting the values along the domain of quantities like time-average pres-
sure, wall shear stress, magnitude of velocity and with the help of plots and
tables. As we can see from the figure 1.1 an entire cardiac cycle lasts about
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1 second; in these simulations we will simulate 10 seconds, so 10 cardiac cy-
cles. For the time discretization we will adopt the discretizazion tecnicque
explained in section 3.3.

Clearly the simulations that we are going to compare will be done on
the same mesh.

3.4.1 Numerical Results

Mesh

The simulation are computed with a mesh with 600k elements. The
mesh is shown in the figure 3.1:

Figure 3.1: View of the mesh 600k.

Boundary conditions

As explained in the previous sections outflow boundary conditions were
applied at each outlet of the model, right subclavian artery, right com-
mon carotid artery, left common carotid artery, left subclavian artery and
descending aorta, by using a three-element Windkessel RCR model. The
values are reported in the table 3.1

k Rp,k [dyne · s/cm5] Rd,k [dyne · s/cm5] Ck [cm5/dyne]

Right sublcavian artery 1.04e3 1.63e4 8.74e-5

Right common carotid artery 1.18e3 1.84e4 7.70e-5

Left common carotid artery 1.18e3 1.84e4 3.52e-5

Left sublcavian artery 9.7e2 1.52e4 9.34e-5

Descending aorta 1.88e2 2.95e3 4.82e-4

Table 3.1: Healthy case configuration, Windkessel parameters: proximal
resistance Rp,k, distal resistance Rd,k and compliance Ck, for
each outlet k.

The unique inlet of the model is the aortic wall in which we set the aortic
inflow waveform described in Figure 1.1.
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FEM vs FVM numerical results

In this section we compare the numerical results obtained with the FEM
and FVM:

• first of all we compare the plot pressure - time for both the methods
and in the figure 3.2 we can appreciate that the plots are pratically
identical:

Figure 3.2: Pressure-time plot for the FVM simulation (up figure), and
FEM simulation (down figure).

At this point for the following comparation we will compare the time
average pressure distribution along the whole surface of our domain.
After this we will choice a specific time step of the time discretization
at which we will compare the wall shear stress distribution along the
whole surface of our domain obtained with the two methods. Finally
we will choice three slices along the domain in which we will compare
the magnituide of velocity obtained with the two methods.

• In the figure (3.3) we can appreciate the pratically identical distribu-
tion of the time-average pressure along the whole domain surface.

Figure 3.3: Time-average pressure distribution for the FVM simulation
(left), FEM simulation (right).

In the table 3.2, are reported the numerical values of the time-average
pressure averaged respect to the whole volume of the domain:
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Volume = 139.942 cm3 Time-averaged pressure [dyne · cm/s]
FEM 139779.33

FVM 140540.37

Relative error 0.54%

Table 3.2: Time-averaged pressure, FEM and FVM.

• In the figure (3.4) we can appreciate the pratically indentical distribu-
tion of the wall shear stress along the whole domain surface:

Figure 3.4: Magnitude velocity distribution for the FVM simulation (left),
FEM simulation (right).

• For the comparison with the magnitude of velocity, since this quan-
tity is clearly zero along the whole surface, we will choice a slice of
the domain in which analyze the comparison between the two meth-
ods, the slice (shown in figure 3.5) is taken in the upper part of the
descending aorta near the aortic arch.

Figure 3.5: Slice of the domain chosen for the magnitude of velocity com-
parison.

In the figure (3.6) we can appreciate the very similar distribution of
the magnitude of velocity along the slice shown in 3.5:

Figure 3.6: Magnitude velocity distribution for the FVM simulation (left),
FVM simulation(right).
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In the table 3.3, the numerical values of the magnitude of velocity
averaged respect to the whole area of the slice are reported:

Area = 4.892 cm2 Magnitude of velocity [1/cm · s]
FEM 22.3152

FVM 22.1614

Relative error 0.69%

Table 3.3: Magnitude of velocity, FEM vs FVM.

Having ascertained the fact that both methods lead to very similar re-
sults, for the continuation of the work we choose to work with the FVM,
in that, having to do with flows characterized by relatively high Reynolds
numbers, FVM do not lead to stabilization problems unlike FEM.

3.5 Unhealthy patient analysis case

From now on, in this work a patient, a 66 years old man, is consid-
ered. CT, RHC and ECHO tests have been carried out both in pre-surgery
and post-surgery (i.e., after receiving the LVAD device) configuration. The
LVAD implanted is the Heartmate 3TM Left Ventricular Assist System [50].

Real patient-specific aorta models were reconstructed from CT images by
using 3D Slicer R©. The models include the ascending aorta, brachiocephalic
artery, right subclavian artery, right common carotid artery, left common
carotid artery, left subclavian artery and descending aorta, and, in the post-
surgery configuration, the outflow cannula of the LVAD device as well, as
shown in Figure 3.7.

Figure 3.7: Patient specific aorta models obtained from CT images: (left)
Pre-surgery configuration, (right) Post-surgery configuration.

3.5.1 Full Order Model validation

The number of PISO loops and non-orthogonal correctors has been fixed
to 2 for all the simulations. The following solvers have provided a good
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compromise between stability, accuracy, and numerical cost. The linear
algebraic system associated with equation (3.15) is solved using an itera-
tive solver with symmetric Gauss-Seidel smoother. Moreover, for Poisson
problem (3.20), we use Geometric Agglomerated Algebraic Multigrid Solver
GAMG with the Gauss-Seidel smoother. The required accuracy is 1e-6 at
each time step.

Mesh convergence

In order to obtain grid independent solutions, we consider three meshes
with tetrahedral elements. Table 3.4 reports name, minimum and maxi-
mum diameter, and number of cells for each mesh. Figure 3.8 shows the
mesh 230k. All the meshes under consideration have very low values of
average non-orthogonality (around 30 degrees) and skewness (around 1).
The estimation of the Reynolds number is based on the diameter computed
by considering the inlet areas, i.e. the ascending aorta (ao) section in the
pre-surgery configuration and the outflow cannula section (oc) in the post-
surgery configuration, as circular areas. We have:

Re =

Q

Aao

√
4Aao
π

ν
(3.23)

Re =

PF

Aoc

√
4Aoc
π

ν
(3.24)

for the pre-surgery and post-surgery configuration, respectively. We
carry out the mesh convergence study for the pre-surgery configuration be-
cause it is more critical with respect to the the post-surgery configuration
being characterized by a greater Reynolds number Re as showed in Table
(3.5). Moreover, note that in the pre-surgery configuration the Reynolds
number is time dependent, with 0 ≤ Re ≤ 4200.

Figure 3.9 compares the solution obtained with all the meshes reported
in Table (3.4) both in terms of a global variable, the volume averaged arterial
pressure, pavg, defined as

pavg =
1

Ω

∫
Ω
pdΩ, (3.25)

and in terms of a local variable, the descending aorta cross-section pres-
sure, pda. We let the simulations run till transient effects are passed, t∗ '
8 ·T . For a more quantitative comparison, we computed the Weighted Abso-
lute Percentage Error (WAPE) ε [63] with respect to the solution obtained
with the finer mesh 2000k:

ε =
100

n

n∑
i=1

∣∣∣∣Xi −X2000k
i

X2000k

∣∣∣∣%, (3.26)

where n is the number of sampling points, Xi is the solution related either
meshes 230k and 415k at the i-th time step, X2000k

i is the solution related

to the mesh 2000k at the i-th time step and X2000k is the time-averaged
solution related to the mesh 2000k. For pavg, we obtained ε = 0.34% for the
mesh 230k and ε = 0.16% for the mesh 415k. On the other hand, for pda,
we obtained ε = 0.28% for the mesh 230k and ε = 0.13% for the mesh 415k.
Thus, hereinafter, in order to reduce the computational cost, we will refer to
the solutions computed by using the mesh 230k. Regarding the post-surgery
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configuration, we choose a mesh with a similar refinement, having 200k cells,
hmin = 6.3e− 4 and hmax = 3.4e− 3.

mesh name hmin hmax No. of cells

230k 5.8e-4 3e-3 228296

415k 5.6e-4 2.5e-3 414192

2000k 4.4e-4 1.5e-3 1993514

Table 3.4: Name, minimum diameter hmin , maximum diameter hmax, and
number of cells for all the meshes used for the convergence
study.

Re

Pre-surgery [0, 4200]

Post-surgery: test 1 1818

Post-surgery: test 2 1862

Post-surgery: test 3 1995

Post-surgery: test 4 2217

Table 3.5: Reynolds number Re for all the flow regimes under considera-
tion.

Figure 3.8: View of the mesh 230k: (left) aortic wall, (right) a section next
to the aortic inlet.
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Figure 3.9: Pre-surgery configuration: time evolution on two cardiac cy-
cles of the volume averaged arterial pressure pavg as defined in
(3.25) (left) and the pressure related to the descending aorta
cross-section pda (right) for the different meshes under consid-
eration.

Pre-surgery configuration

The comparison between computational and experimental data is carried
out in terms of systolic arterial pressure PAS, diastolic arterial pressure
PAD and average arterial pressure PAM . Computational estimates of such
quantities are evaluated by simulations in the following way:

PAS = max
t∈[0,T ]

pavg, (3.27)

PAD = min
t∈[0,T ]

pavg, (3.28)

PAM =
1

T

∫ T

0
pavgdt. (3.29)

Figure 3.9 (left) shows the temporal evolution of pavg (equation (3.25)).
Table 3.6 reports both numerical and experimental data marked by the
abbreviations num and exp, respectively. We observe that the agreement
is very good, within 11.7% for PAS, 4% for PAD and, 2.4% for PAM .
Figure 3.10 displays the TAWSS magnitude distribution. Since in this case
experimental data are not available, we just provide rough indications in
order to justify the patterns obtained. Basically, we observe that peak values
of TAWSS are localized in regions where narrowing of cross section happens.
On the other hand, regions characterized by lower TAWSS correspond to
section enlargements. These results are expected by considering the classic
findings for a straight cylindric vessel with steady Poiseuille flow. In this

simplified case, WSS ∝ 1

d3
, where d is the pipe diameter. For biomedical

experimental works that confirm such trend, the reader could see, e.g., [64,
65].
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Figure 3.10: Pre-surgery configuration: TAWSS magnitude distribution
on the entire wall of the model.
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Figure 3.11 (left) depicts time averaged velocity streamlines. As ex-
pected, we note the generation of helical flow patterns in the aortic arch
region (see, e.g. [66]).

Figure 3.11: Velocity streamlines related to the pre-surgery configuration
(left) and the post-surgery configuration for PF = 4.1 l/min
and ω = 5400 rpm (right).

PAS (exp/num) [mmHg] PAD (exp/num) [mmHg] PAM (exp/num) [mmHg]

108/95.4 66/63.4 78/79.9

Table 3.6: Pre-surgery configuration: comparison between computational
and experimental data.

Post-surgery configuration

Unlike the pre-surgery case, in the post-surgery configuration, since the
LVAD flow rate is continuous and not pulsatile, and the aortic valve is closed,
the solution is steady in time. Therefore, the comparison between compu-
tational and experimental data is based on a value only, PAM = PAD =
PAS. Table 3.7 reports both numerical (num) and experimental (exp) data
for all the PF values considered. We observe that the agreement is excel-
lent, within 1% in all the cases. Figures 4.6-4.9 show the WSS distribution
for the three configurations investigated. As for the pre-surgery configura-
tion, even in this case experimental data related to WSS are not available
but it is possible to provide some interesting observations to be compared
with previous works. In all the cases, we observe that there are high WSS,
significantly greater than that obtained in the pre-surgery configuration, on
the posterior region of the aortic arch, in front of the anastomosis. This high
WSS zone is associated with the impingement of the jet from the cannula.
This result is in agreement with those observed by [67, 68, 69]. Moreover
we observe that elevated WSS also occur near the location of the outflow
cannula, as found by [70, 71, 72, 73, 74, 75, 76]. On the contrary, on the
most part of the aortic arch and descending aorta, very low WSS occurs.
These patterns are critical from clinical points of view because highly het-
erogeneous WSS distribution coupled with the presence of a small region of
the aortic arch exposed to high WSS could be associated to the development
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of atherosclerosis [77, 78]. Finally, we note that at increasing of PF from
4.1 to 5 l/min, the peak value of WSS moves from 12 to 15 Pa by following
an almost linear trend. Figure 9 (right) displays the velocity streamlines
for the Test 1. With respect to the pre-surgery configuration, we observe
that in the ascending aorta, below the anastomosis location, retrograde flow
and recirculation zone generate [79, 80, 70, 73, 81]. Moreover, the swirling
flow in the aortic arch seems more intensive. In addition, we observe that
velocity values in the outflow cannula are higher than those in aorta because
of its small diameter.

PF [l/min] PAM (exp/num) [mmHg]

4.1 78/78.6

4.2 90/90.6

4.5 100/100.7

5 83/82

Table 3.7: Post-surgery configuration: comparison between computational
and experimental data.

Figure 3.12: Post-surgery configuration: distribution of the WSS magni-
tude for PF = 4.1 l/min and ω = 5400 rpm.
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Figure 3.13: Post-surgery configuration: distribution of the WSS magni-
tude for PF = 4.2 l/min and ω = 5600 rpm.

Figure 3.14: Post-surgery configuration: distribution of the WSS magni-
tude for PF = 4.5 l/min and ω = 6000 rpm.
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Figure 3.15: Post-surgery configuration: distribution of the WSS magni-
tude for PF = 5 l/min and ω = 5600 rpm.
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Chapter 4

Reduced Order Methods

Reduced Order Methods (ROMs) are a huge category techniques used
to reduce the complexity of a mathematical model and consequently the
computational cost required to obtain the numerical solution. The contexts
in which this reduction is convenient are numerous in engineering.

The main idea behind ROM is that a generic problem, even very com-
plex, has an intrinsic dimension much lower than the number of degrees of
freedom of the discretized system[82, 83, 84]. To achieve this dimensionality
reduction, a database of several solutions is firstly collected by solving the
original high-order model for different physical and/or geometrical parame-
ters (offline phase).

In this chapter, we discuss in more detail Reduced Basis ROMs and the
technique that will be used extensively during this work, i.e. Proper Or-
thogonal Decomposition (POD), with the PODI (POD with interpolation)
variant. For this purpose, we will briefly recall the theory of Singular Value
Decomposition (SVD).

We introduce the notion of the solution manifold, that is the set of
all possible solutions of our parametric problem under the variation of the
parameter; then, all the solutions are combined to build the space onto which
we can accurately project the solution manifold and efficiently compute the
solutions for the new parameters (online phase).

The final goal of RB methods is to approximate any element of this
manifold using a low number of basis functions, or modes, that form what
we call the reduced basis.

4.1 Reduced Basis ROMs (RB-ROMs)

We begin with a formal definition of a system of parametric PDEs:

find u(µ) ∈ Y s.t.: a(u(µ), w;µ) = F (w;µ) ∀w ∈ Y, (4.1)

where µ ∈ P is the parameter and u(µ) ∈ Y is the exact solution of
the problem (4.1).

At this point we give the definition of the solution manifold, that is the
set that contains all the possible solutions of the parametric problem under
the variation of the parameter:

M = {u(µ), µ ∈ P}. (4.2)

In most situations the exact solution is not reachable analytically so it
is approximated numerically. The so-called truth solution can be obtained
using, for example, the different Full Order Model techniques described in
the previous sections. We call the truth solution of our problem with uN,
where N is the number of degrees of freedom associated with it; if N has
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a big value, it implies a high dimension of the linear system resulting from
the application of the FOM and consequently a high computational cost.
Starting from the (4.1), the problem related to the trurh solution is:

find uN(µ) ∈ YN s.t.: a(uN(µ), w;µ) = F (w;µ) ∀w ∈ YN, (4.3)

where YN is a finite dimensional subspace of Y of dimension N.
The manifold is then defined by:

MN = {uN(µ), µ ∈ P}. (4.4)

The main task of Reduce Basis methods is to approximate any element of
MN using a low number of basis functions, (also colled modes), {χi(x)}Ni=1,
that form what we call the reduced basis. These functions are defined over
the computational domain and are obtained using some pre-computed truth
solutions for particular parameter values as we will see subsequently. The
reduced solution uNN ' uN is composed by a suitable linear combination of
these modes:

uNN (µ) =

N∑
i=1

ξi(µ)χi(x). (4.5)

At this point we are ready to write the reduced version of the (4.3):

find uNN (µ) ∈ YN
N s.t.: a(uNN (µ), w;µ) = F (w;µ) ∀w ∈ YN

N , (4.6)

where YN
N = span

(
{χi(x)}Ni=1

)
. Clearly for the RB approximation to be

useful, the degrees of freedom associated with the RB approximation (N)
should be much less than the degrees of freedom associated with the truth
solution (N), so N � N. This approach in which the original equations
(4.3) are projected onto the reduced basis space, giving the (4.6) is called
intrusive approach (see [31], [30]), however in this thesis we will work with
a non-intrusive approach as we will describe in the next sections.

4.2 Proper Orthogonal Decomposition (POD)

Proper orthogonal decomposition (POD) is a technique widely used
within the reduced order modeling (ROM) framework for the study of para-
metric problems. We will call a possible outcome of our system z a snapshot
and denote with m its dimensionality (z ∈ Rm). We will then denote with
n the number of snapshots collected in the offline phase. POD allows to
extract, from a set of high-dimensional snapshots, the basis minimizing the
error between the original snapshots and their orthogonal projection. The
original snapshots are projected onto the POD space in order to reduce their
dimensionality. POD consists of a Singular Value Decomposition applied to
a set of high fidelity solutions. Let us define a snapshots’ matrix Z ∈ Rm×n:

Z =

 z1 z2 . . . zn

 . (4.7)

The matrix Z will have, in general, a rank d ≤ min(m,n) but, we could
restrict our analysis to the case d = n < m, in fact the n < m condition is
guaranteed by the fact that we are treating really high dimensional snap-
shots, in which n � m; for example, we may have values of m with an
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order of magnitude near to the hundreds of thousands, while the number of
snapshots n will be of the order of hundreds.

The condition d = n is, instead, guaranteed by the fact that we are
dealing with output of a very complex system and it is pretty impossible
that the snapshots matrix is composed by snapshots linearly dependent. In
other words it’s very unlikey that the snapshots matrix will not be of full
rank.

We call l the number of POD modes that will be used to construct the
law-rank approximation, with l < n < m.

At this point we have to recall the following theorem that explain us the
Singular Value Decomposition:

Theorem 1. (SVD) Given Z ∈ Rm×n of rank d = n < m:

• ∃ σ1 ≥ σ2 ≥ ... ≥ σn > 0 (singular values);

• ∃ Ψ ∈ Rm×m orthogonal with columns {ψi}mi=1 (left singular vectors);

• ∃ Φ ∈ Rn×n orthogonal with columns {φi}ni=1 (right singular vectors);

with Z = ΨΣΦT and Σ =



σ1

. . .

σn


∈ Rm×n.

The following properties hold:

1. Zφi = σiψi, i = 1, ..., n;

2. ZTψi = σiφi, i = 1, ...,m;

3. ψi is an eigenvector of ZZT with eigenvalue σ2
i (for i = 1, ...,m);

4. φi is an eigenvector of ZTZ with eigenvalue σ2
i (for i = 1, ..., n).

The third property reported in the theorem states that to obtain the ma-
trix Ψ one could solve an eigenvalue problem on ZZT , that we can interpret
as a covariance matrix on the snapshots. This observation suggests that in
some sense the left eigenvectors are directions that maximize the variance
of the space spanned by these vectors.

To make the last assertion more precise, let us proceed with the formal
definition of the POD basis:

Theorem 2. (POD basis) Given Z ∈ Rm×n of rank d = n < m, {χi}li=1,
for l ∈ {1, .., n} is the POD basis of Z if and only if it is a solution of:

max
ψ̃1,ψ̃2,..ψ̃l

l∑
i=1

n∑
j=1

| < zj , ψ̃i >Rm |2 s.t. < ψ̃i, ψ̃i >Rm= δi,j , for 1 ≤ i, j ≤ n.

(4.8)

The theorem 2 states that the POD basis is the one that maximizes the
similarity between the snapshots matrix and its elements, considering the
constraint of orthonormality. So once we obtain the l-rank POD basis, we
have the set of dimension l capable of optimally express the variance in the
snapshots. At this point we need a link between POD and SVD, and this
link is stated by the following theorem, that can be proven using Lagrangian
penalization techniques (see [29]):
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Theorem 3. Given Z ∈ Rm×n of rank d = n < m, its l-rank POD basis
is given by the set of the first l left singular vectors {ψi}li=1 Moreover, we
have:

max
ψ̃1,ψ̃2,..ψ̃l

l∑
i=1

n∑
j=1

| < zj , ψ̃i >Rm |2 =
l∑

i=1

σ2
i . (4.9)

4.3 Proper Orthogonal Decomposition with Inter-
polation (PODI)

The data-driven approach here used is based only on data and does not
require knowledge about the governing equations that describe the system.
It is also non-intrusive, i.e. no modification of the simulation software is
carried out. On the other hand, there are works that use non-intrusive
methods that are not data-driven (see, e.g., [28]). The original snapshots
are projected onto the POD space in order to reduce their dimensionality.
A considerable difference, however, is that while in intrusive POD we need
to rely upon an open-source software to compute the truth solutions, since
in the online phase we will need to have access to the source code in order
to project the equations. In the PODI approach instead we don’t need to
do this, and we can use commercial software or even experimental data to
train our model.

At this point the solution manifold is approximated using an interpo-
lation technique. Several examples of applications based on this so-called
POD with interpolation (PODI) [27] techique can be found in literature,
in a wide range of contexts: naval engineering problem [26, 25, 21], auto-
motive [20, 17], aeronautics [16]. We also cite [15] where a coupling with
isogeometric analysis is performed.

We recall here that the assumption of RB-ROMs is that the truth so-
lution of our problem uN can be approximated by the reduced solution uNN
composed by linear combination of spatial modes χi(x) multiplied by coef-
ficients ξi(µ), that is:

uN(µ) ≈ uNN (µ) =
N∑
i=1

ξi(µ)χi(x). (4.10)

In PODI then we define an interpolator considering with a function that
associates the value of the parameter µ to the modal coefficients of the re-
lated solution {ξi(µ)}Ni=1. This multi-dimensional interpolator is (using a
machine learning language) trained using the data coming from the snap-
shots matrix, in which we know both the parameter values and the modes
coefficients are, and is then used to infer the value of the coefficients associ-
ated with new parameters. The values of the coefficients are finally used to
reconstruct the approximated truth solution using (4.10).

As we said before this approach is totally data-driven and is independent
both on the equations and on the physics of the problem.

Regarding the technical implementation of the PODI method, we use
the Python package called EZyRB [13].

4.4 Simulation Results

In this section we will show the results obtained by simulations by apply-
ing the ROMs theory described in the previous chapter. Clearly from now
on we will work with Post-surgery configuration which is the configuration
of interest in this thesis.
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To train the ROM, the values of the LVAD flow rate, PF, are chosen
using an equispaced distribution inside the range PF ∈ [3, 5] that covers
typical clinical values. Two sampling cases were considered. In the first
case, we have 21 snapshots, and in the second one, 11 snapshots. Thus, the
snapshots are collected every 0.1 in the first case and 0.2 in the latter one.
For all the simulations, we use resistances and capacitances of Test 1 (see
Tables 2.6, 2.7, 2.9). By assuming that we vary PF, and consequently ω, at
a given ∆P = 75 (see Table 2.5) and using the analytical fit 11, we obtain
that the range PF ∈ [3, 5] corresponds to ω ∈ [5076, 5720]. Two new values
of the PF (ω) in which the ROM has not been trained but which belongs to
the range of the training space, PF = 3.45 (ω = 5200) and PF = 4.35 (ω =
5484), are used to evaluate the performance of the parametrized ROM. POD
modes and coefficients are computed as explained in Section 5.2. Figure 4.1
shows the cumulative energy of the eigenvalues for pressure p, wall shear
stress WSS, and velocity components, ux, uy and uz. In order to retain the
99.9% of the system’s energy, when we consider 21 snapshots, 1 mode for p,
14 for WSS, 16 for ux, uy and uz are selected. On the other hand, when 11
snapshots are taken into account, 1 mode for p, 9 for WSS, 8 for ux, uy and
uz are selected. Moreover, to provide some quantitative results, the relative
error in the L2-norm, calculated as:

EX = 100
||XFOM −XROM ||L2(Ω)

||XFOM ||L2(Ω)
%. (4.11)

Figure 4.1: Cumulative energy of the eigenvalues for pressure p, wall shear
stress WSS, and velocity components, ux, uy and uz. The sam-
pling frequency of the eigenvalues is 0.2 (left) and 0.1 (right),
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where XFOM is the value of a particular field in the FOM model, and
XROM the one that is calculated using the ROM, is considered. In Tables
4.1 and 4.2, one could observe that the differences between the two spaces
are minimal, for both the values of PF considered. Therefore, hereinafter
results will be based on the database of 11 snapshots.

p WSS ux uy uz
EX (21 snapshots) 0.1% 4.1% 5.6% 7.9% 6.2%

EX (11 snapshots) 0.2% 4.1% 5% 7.8% 5.8%

Table 4.1: L2 norm relative errors for pressure p, wall shear stress WSS,
and velocity components, ux, uy and uz, to varying of the num-
ber of snapshots collected for PF = 3.45 l/min.

p WSS ux uy uz
EX (21 snapshots) 0.2% 9.6% 10.7% 14.5% 10.5%

EX (11 snapshots) 0.5% 7.2% 9.7% 13.5% 9.3%

Table 4.2: L2 norm relative errors for pressure p, wall shear stress WSS,
and velocity components, ux, uy and uz, to varying of the num-
ber of snapshots collected for PF = 4.35 l/min.

Figure 4.2 and 4.3 display a comparison between FOM and ROM for p
and WSS fields, for both PF (ω) values under consideration. The comparison
indicates that the ROM is able to provide a good reconstruction for both
variables. Figure 4.4 displays the velocity streamlines obtained both with
FOM and ROM, and for both PF (ω) values under consideration. In order
to further investigate the flow field, in Figure 4.5 a comparison between
FOM and ROM for the velocity field related to a section of the ascending
aorta next to the anastomosis location is showed. As observed for p and
WSS fields, the ROM also performs well for the velocity.

The CPU time of the FOM model is 9600s and the one of the ROM is
40s. This corresponds to a speed-up of ' 240, that demonstrates the fact
that it is possible to use the ROM in the place of the FOM in order to obtain
accurate simulations with a significant reduction of the computational cost.
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Figure 4.2: Comparison of the FOM/ROM pressure (1st row) and WSS
(2nd row) at PF = 3.45 (ω = 5200).
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Figure 4.3: Comparison of the FOM/ROM pressure (1st row) and WSS
(2nd row) at PF = 4.35 (ω = 5484).
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Figure 4.4: Comparison of the FOM/ROM velocity streamlines at PF =
3.45 (ω = 5200) (1st row) and PF = 4.35 (ω = 5484) (2nd
row).
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Figure 4.5: Comparison of the FOM/ROM velocity field related to a sec-
tion of the ascending aorta next to the anastomosis location at
PF = 3.45 (ω = 5200) (1st row) and PF = 4.35 (ω = 5484)
(2nd row).
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Chapter 5

Conclusion and Perspectives

In this work, a parametrized non-intrusive ROM using PODI method is
used for the investigation of patient specific aortic blood flow in presence of
a LVAD device. The goal of this Master Thesis is to investigate the phenom-
ena that characterize the aortic blood flow after the surgical introduction of
a left ventricular assist device (LVAD) by using a data-driven analysis. The
FOM is represented by the incompressible Navier-Stokes equations. About
the space discretization, both FEM and FV have been investigated. We have
showed that they provide comparable results. Outlet boundary conditions
have been enforced by using three-element Windkessel models. CT images
of a patient are considered for the reconstruction of the geometry as well
as RCH and ECHO data are exploit for the individualisation of the three-
element Windkessel models coefficients used to enforce boundary conditions.
Therefore, a complete patient-specific framework is presented. In order to
showcase the features of our approach, we have successfully validated the
FOM both for pre-surgery and post-surgery configuration by comparing nu-
merical and experimental data. Then, the ROM developed is used to carry
out a parametric study with respect to the LVAD flow rate. We show that
the ROM provides accurate solutions with a significant reduction of the
computational cost, up to at least two orders of magnitudes. We want to
emphasize the flexibility given by the data-driven approach that allows us to
consider various different possibilities for the generation of the FOM snap-
shots, for example considering commercial CFD software or experimental
data.

Finally, we want to highlight some of the future perspectives of this
work. We are going to investigate the influence of the LVAD device on
the left and right ventricle flow patterns as well as their interaction. We
are also interested in efficiently handling geometrical parametrization (e.g.
in order to consider different anastomosis angles, or different designs of the
outflow cannula) in the context of patient-specific geometries, extending e.g.
the work carried out in [10] to different applications and different model
reduction techniques.

The final objective of the scientific research project in which this thesis
is inserted is to provide to people working in biomedical environment digital
tools, capable of developing a final package of operations that makes the
calculation usable and efficient. For example, enabling a surgeon in the
operating room to obtain very useful indicators related to a determined
operation by having access from a tablet to the billions of calculations made
by a supercomputer.

In general, the idea is to have a code available that allows you to consult,
in real time, a database of calculations and solutions. More specifically, the
idea consists in preparing increasingly complex simulations on supercomput-
ers, but making them parametric and projecting them, thanks to the exis-
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tence of simulation databases, towards digital instruments; at this point we
continue by breaking down the calculation operations into various steps so
that the supercomputer can assemble the various pieces which are then pro-
cessed by immediate numerical methods, which are based on some studied
and certified algorithms that have allowed, as mentioned above, to bring the
so-called real-time calculation on devices accessible to everyone. Returning
to the medical field of application, the clinical data and patient informa-
tion, anonymously, provided by hospitals, such as the CT images and other
data that we used in this work, are inserted in the memory that the su-
percomputer then elaborates creating in this way computational simulation
databases: this phase is called offline phase, subsequently this database
can be used by doctors by means of very simple devices (the aforemen-
tioned tablets) thanks to apps and therefore in no time (online phase); so
an extraordinary result would be obtained: the work of weeks-months would
become accessible in seconds.

In the future, doctors and surgeons could be able to reproduce a surgical
engineering design in which, using simulations to create virtual surgery sce-
narios or other options, they can thus instruct their team before operating.

The clinical data, which at this point becomes a simulation, is the start-
ing point for creating a model capable of describing all the cardiovascular
functioning of a patient, in fact, as mentioned above, there is a direct corre-
lation between the geometry of the cardiovascular system and the possible
occurrence of certain diseases. In this way it will therefore be very simple to
act and work in a patient specific way, i. e., customizing the precise anatomy,
physiology, or health care needs of one single person.

Another very important point to consider is given by the predictive pos-
sibilities that can be had by having a rich database of computational sim-
ulations available, in fact with a rich database through machine learning
techniques can be an option to maintain the equation-free nature of our ap-
proach and at same time increase the accuracy of the approximated output
of interest. Moreover, with the big computational reduction, we can adopt
this methods in order to build a digital twin of complex system, allowing
the generation of virtual model that replicate in real-time the behaviour of
the original system.

For example, we could study the probabilities of evolution of a certain
condition of the patient towards pathologies such as stroke or heart attacks,
so the usefulness of this work would be huge even outside the operating
room in fact, unfortunately, nowadays, cardiovascular diseases are the main
cause of death in developed countries, in particulare we are having that
heart failure is a globally increasing health problem.

By now it can be said that supercomputing represents a measure of the
industrial development of a country; in Italy there are some valuable projects
in this field such as the supercomputer Leonardo of the Cineca, Bologna. In
recent years the development of industry 4.0, augmented reality, the man-
agement of big data that improve mathematical models are increasing the
importance of supercomputers.
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