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English abstract
Whistler waves are electromagnetic waves that propagate in plasma; they can
be observed in the Earth’s magnetosphere, where they are responsible for the
acceleration and precipitation of electrons.

Whistler waves are generated by the whistler instability, which is a plasma
instability driven by the temperature anisotropy of warm electrons (energy ∼keV).
Cold electrons (energy ∼eV) are usually present too and are thought to passively
affect the developing whistler waves.

The present master thesis addresses the problem of studying with PIC methods
the whistler instability in a plasma composed by both warm and cold electrons.
The aim is to determine how the latter affects the maximum growth rate and the
saturated amplitude of the waves generated by the instability.

Italian abstract
Le onde di whistler sono onde elettromagnetiche che si propagano nel plasma; le si
può osservare nella magnetosfera terrestre, dove sono responsabili dell’accelerazione
e della precipitazione degli elettroni.

Le onde di whistler sono generate dall’instabilità di whistler, un’instabilità del
plasma alimentata dall’anisotropia nella temperatura degli elettroni caldi (con en-
ergia dell’ordine del keV). Solitamente è presente anche una popolazione di elet-
troni freddi (con energia dell’ordine dell’eV); gli elettroni freddi influenzano passi-
vamente le caratteristiche delle onde di whistler così generate.

La presente tesi magistrale affronta il problema dello studio, con metodi PIC,
dell’instabilità di whistler in un plasma composto sia da elettroni caldi che da
elettroni freddi. L’obbiettivo è quello di determinare come questi ultimi influenzino
il massimo tasso di crescita e il valore di saturazione dell’ampiezza delle onde di
generate dall’instabilità.
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Symbols

e absolute value of the electric charge of the electron
kB Boltzmann constant
ε0 vacuum permittivity
µ0 vacuum permeability
c speed of light in a vacuum
me electron mass
mi ion mass
p pressure
T temperature
E electric field
B magnetic field
ρ volumetric electric charge density
ne volumetric electron number density
ni volumetric ion number density
j current density
i imaginary unit
λ wavelength
k angular wavenumber
ω angular frequency
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Plasma parameters (in mks units)

General parameters

ωce = eB

me

electron gyrofrequency

ωci = eB

mi

ion gyrofrequency

ωpe =
√︄

nee2

ε0me

electron plasma frequency

ωpi =
√︄

nie2

ε0mi

ion plasma frequency

λD =
√︄

ε0kBTe

ne2 Debye Length

de = c

ωpe

Plasma inertial length

Velocities

θT e =
√︄

kBTe

me

electron thermal velocity

θT i =
√︄

kBTi

mi

ion thermal velocity

Dimensionless parameters

αe = ωpe

ωce

electron frequencies ratio

βe = 2µ0
nekBTe

B2
0

electron pressure to magnetic pressure ratio

A = T⊥

T∥
temperature anisotropy
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Chapter 1

Introduction

The Earth’s magnetosphere is formed by the interaction between the solar wind
and the magnetic field of the Earth. It contains a plasma, i.e. an ionized gas
made of electrons and ions. Several plasma particle populations exist in the mag-
netosphere. They can be broadly classified in terms of their energy: the cold and
dense particles of the plasmasphere (energy ∼eV), the warm particles of the ring
current and of the plasma sheet (energy ∼keV), and the rarefied, relativistic par-
ticles forming the Van Allen radiation belts (energy ∼MeV), to cite a few that are
important for the work developed in this thesis.

Figure 1.1: Diagram of Earth’s magnetosphere. Image credit: NASA/Wikipedia
(link).
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Introduction

The magnetospheric particle populations coexist with a variety of plasma waves.
Waves are the "glue" of the magnetosphere: they couple the various particle pop-
ulations by transferring energy between them. In this way, waves rule transport,
energization and losses via the so-called wave-particle-interaction physics. Figure
1.2, taken from [1] (2010), shows a schematic representation of waves present in
the inner magnetosphere which are particularly important from the point of view
of phenomena controlling particle populations in the radiation belts.

These waves are whistler waves (called hiss and chorus), electromagnetic ion
cyclotron (EMIC) waves and magnetosonic waves. Note that the inner magne-
tosphere is defined as the region of space from the Earth to near geostationary
orbit (corresponding to an equatorial distance r ∼ 7 RE, with RE being the Earth
radius equal to 6400 km).

Figure 1.2: Representation of some of the waves that are important for inner
magnetospheric physics and for the radiation belts in particular. From [1], (2010).
Copyright AGU, reproduced with the permission from the publisher.

The focus of this thesis is on whistler waves, which are electromagnetic emis-
sions with frequency below the electron cyclotron frequency. The name “whistler”
originates from their first identification as radio waves from the ionosphere. These
waves can can be generated by lightning and propagate along the field lines of the
Earth’s magnetic field. Due to their characteristic dispersion relation, the lower
frequencies whistler waves propagate slower than the higher ones. Consequently,
these waves were detected by ground-based radio receivers as descending tones
(“whistlers”) which can last for a few seconds. In the Earth’s magnetosphere,
whistler waves have frequency in the kHz range. Whistler-mode chorus waves are
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Introduction

discrete emissions often occurring in two distinct bands [2, 3, 4, 5], excited pre-
dominantly outside the plasmasphere (a near-Earth region of dense, cold plasma
whose outer edge is called the plasmapause) [6]. Whistler waves They can interact
resonantly with energetic electrons and are responsible for local acceleration [7, 8,
9] and scattering of such particles. The latter may as well as lead to losses of elec-
trons via electron precipitation into the Earth’s atmosphere in the form of diffuse
[10] and pulsating aurora [11, 12] or microbursts [13, 14]. Whistler-mode hiss are
incoherent, broadband emissions mostly found inside the plasmasphere [15, 16, 17,
18] and in plasmaspheric plumes [19]. They are mainly associated with losses of
relativistic electrons [20].

It is well-known that whistler waves can be generated by an instability, called
the whistler instability, driven by temperature anisotropy [21] in the electron en-
ergy distribution. This is believed to be the main generation mechanism for chorus
waves. On the night side of the Earth’s magnetosphere (i.e. the bottom part of
figure 1.2), they are associated with the injection of warm (∼keV) electrons from
the plasma sheet during geomagnetic substorms. (Geomagnetic substorms are the
periods of enhanced activity in the magnetosphere, characterized in particlur by
perturbations in the magnetic field, release of energy from the "tail" of the mag-
netosphere, and enhanced activity (movement and brightening) of auroral arcs.

Figure 1.3: Left: Aurora australis (11 September 2005) as captured by NASA’s
IMAGE satellite, digitally overlaid onto The Blue Marble composite image. Image
courtesy: NASA (link). Right: auorars appear as optical emissions (“Northern
lights”) in the atmosphere. Image credit: Jerry MagnuM Porsbjer/Wikipedia
(link)

The whistler instability evolves to reduce the temperature anisotropy, driving
the electron distribution towards marginally stable conditions where its growth
rate is zero [22]. Recent works have used numerical simulations to parametrize
the amplitude of the chorus waves created by the whistler instability in terms of
initial plasma parameters and the strengths of the magnetic field [23, 24].
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Introduction

In this Master’s thesis, we perform linear theory studies and non-linear simula-
tions to investigate the impact of an additional population of cold electrons (with
energy eV) on the whistler instability and on the generation of whistler waves. We
note that this additional population is very often present in typical situations of
interest in the Earth’s magnetosphere. Additionally, it is well known that the cold
electrons alter important properties of the whistler waves. For instance, the cold
electrons lower the energy of the magnetospheric particles that interact resonantly
with the waves and, since lower-energy particles typically have higher densities,
this can lead to much stronger electron losses. Moreover, the cold electrons can
alter the saturation amplitude of the whistler waves. This has very important
implications for the Earth’s magnetosphere, since the scattering and energization
rates for resonant interaction between the magnetospheric particles and the waves
depend on the wave amplitude. For instance, in the context of the so-called quasi-
linear theory, the scattering/energization rates scale with the square of the wave
amplitude. Hence changing the wave amplitudes strongly affects the dynamics of
systems like the ring current, the plasma sheet and the radiation belts.

Despite the impact of cold electrons on the whistler instability in the Earth’s
magnetosphere has been known for a long time, to the best of our knowledge this
is the first study that quantifies the saturation amplitude of the waves including
cold electrons. In addition, we also include relativistic effects, showing that they
can reduce the growth rate by 30 − 40% relative to the standard treatment that
does not include those effects. All together this work therefore delivers a very
important physics-based result that can now be used in models of the near-Earth
environment (such as ring-current models) where the waves are typically only
treated empirically. For this reason, a manuscript based on the results of this
Master’s thesis is in preparation for submission to one of the leading space-physics
journals.

Structure of the thesis
Chapters 2 and 3 will serve as a theoretical introduction to plasma, waves in plasma
and one of the most notable approaches to mathematically model their propaga-
tion: the fluid dynamic modeling in cold plasmas. The cold plasma approximation
will prove to be very useful in simplifying the theory of propagation; nonetheless,
as will be exposed in chapter 4, the very nature of the whistler anisotropy instabil-
ity requires the plasma to be treated as warm, with a more complicated description
called kinetic theory.

Chapter 5 will sum up the results of the study on the whistler anisotropy in-
stability. Those data were produced using two different approaches: firstly, by
numerically solving the linearized, nonrelativistic equations describing waves in
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Introduction

warm plasmas; secondly, by running computational simulations with a Particle-in-
cell code that fully accounts for relativistic and nonlinear effects.
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Chapter 2

Two-fluid modeling of cold
and collisionless plasma

This chapter will serve as an introduction to plasmas and, more specifically, to one
of its modeling techniques which is based on an analogy to fluid dynamics. The
cold plasma approximation will be explained and then, in the following chapter,
exploited along linear theory to deduce the dispersion relation of electromagnetic
waves travelling through a plasma.

2.1 Preliminary notions

2.1.1 Plasma temperatures

Considering a classical Maxwellian distribution for the velocities in an ensemble
of particles, the average kinetic energy is Eav = 1

2kBT per degree of freedom. Due
to this relationship between energy and temperature, it is common to describe a
plasma using its kinetic temperature kBT and measuring it in electronvolts.

Collisionless plasma has the peculiarity to possess more than one temperature:
each particle species usually has its own velocity distribution, and so its own
temperature.

Furthermore, plasmas in space often have anisotropic temperature distributions
for a single species, characterized by different temperature T∥ and T⊥ along and
across the magnetic field.

13



Two-fluid modeling of cold and collisionless plasma

2.1.2 Properties of the plasma: quasineutrality and collec-
tive behaviour

In the simplest case, a plasma originates from the ionization of a gas and is com-
posed by two particle species: the negatively charged electrons and the positively
charged ions,

But not every ionized gas shall be considered a plasma; a useful definition is
the one given in [25, Section 1.2]: "a plasma is a quasineutral gas of charged and
neutral particles which exhibits collective behaviour".

Quasineutrality requires that, in a state of rest, the electrons and ions are
present in similar quantities. Formally, one must have:

ni ≃ ne ≡ n (2.1)

Where ni and ne are respectively the ions and electrons number densities.
Since particles in a plasma are subject - at least to some degree - to thermal

motion, there might be occasional bunching of electrons or ions in a region of
space. This creates an electrostatic potential, thus attracting particles of the
opposite charge. This local potential affects the plasma only inside a sphere with
the radius equal to the Debye length λD.

Recalling the definition of λD for the shielding of electric fields inside a plasma:

λD =
√︄

ε0kBT

ne2 (2.2)

Recalling then that outside of the Debye sphere quasineutrality is preserved, one
could write the following, necessary but not sufficient, condition for the existence
of a plasma (as we defined it):

λD

L
≪ 1 (2.3)

Where L is the characteristic length of the system. The plasma must remain, in
its vast majority, quasineutral.

Turning our attention to the second property: collective behaviour means that
particles are influenced not only by local conditions, but also by remote regions
of the plasma. This is a consequence of the fact that plasmas respond to the
electromagnetic force and the Coulomb interaction is long range.

This requires the motion of single particles not to be dominated by local forces
and collisions. To avoid the first case, we must impose that the plasma is weakly
coupled; which means the motion of a charged particle should not be dominated
solely by the electrostatic field of another one in its proximity. Computations
carried out in [26, Section 1.7] lead to the following formal condition:

ND ≫ 1 (2.4)

14



2.1 – Preliminary notions

Where ND is the number of particles in a Debye sphere.
Lastly, we must require the time evolution of the plasma to not be dominated

by collisions: the period τp of typical plasma oscillations shall be greater than the
mean time τ between one random collision and another.

τ

τp

> 1 (2.5)

If the previous inequality is very strong, the plasma is said to be collisionless.
Many astrophysical plasmas can be said to be collisionless, at least to a very good
approximation.

2.1.3 The motion of charged particles
In plasma physics one generally works with the Maxwell equations in vacuum. We
can recall these equations in their differential form:

∇ · E = ρ

ε0
(2.6)

∇ · B = 0 (2.7)

∇ × E = −∂B

∂t
(2.8)

∇ × B = µ0j + µ0ε0
∂E

∂t
(2.9)

Where ρ and j stands for the total charge and current density in the system.
A single charged particle moves under the influence of the Lorentz force, and

in the absence of other forces its equation of motion is:

m
dv

dt
= q (E + v × B) (2.10)

Where m is its mass, v is its instantaneous velocity and q is its electric charge.
The time derivative on the left side is to be taken at the position of the particle.

2.1.4 Why choosing a fluid dynamical approach
In a plasma we have a self-consistent problem to solve: we need to find particle
trajectories that are determined by the equations of motion and that, following
Maxwell equations, generate such electric and magnetic fields which eventually
leads to the same equations of motion.

Fluid theory comes in handy since a typical plasma density might be 1018

ion-electron pairs per m3,thus following the motion of single particles is computa-
tionally unfeasible.

15



Two-fluid modeling of cold and collisionless plasma

Surprisingly, despite the many differences between plasma and fluids (mainly
the fact that a fluid is driven into choerence by mechanical forces, while plasma
is usually collisionless), plasma can be successfully modeled as two interpenetrat-
ing fluids: one for each species. This means that we no longer follow individual
particles, but fluid elements of each species.

16



2.2 – From Vlasov equation to the equations of motion

2.2 From Vlasov equation to the equations of
motion

Following [26, Chapter 3] we will now introduce some basic concepts about the
kinetic theory of plasmas. With the aid of appropriate approximations we will
then derive a set of equations, analogous to the Navier-Stokes equations in fluid
dynamics, to model the motion of a cold, collisionless plasma.

2.2.1 The Vlasov equation
We can define a phase-space density distribution function Fs(r, v, t) for each par-
ticle species s. The distribution function can be used to obtain the number of
particles which at time t are in a phase-space volume element d3r d3v around
(r, v).

If the plasma is collisionless, phase-space conservation requires that:

dFs(r, v, t)
dt

= 0. (2.11)

Writing out the total time derivative on the left side, one obtains the Vlasov
equation:

∂Fs

∂t
+ v · ∇Fs + as · ∇vFs = 0 (2.12)

where as is the acceleration given by the Lorentz force on species s and ∇v is the
gradient operator in the velocity space.

Substituting the appropriate expression for the acceleration, equation 2.12 be-
comes:

∂Fs

∂t
+ v · ∇Fs + qs(E + v × B)

ms

· ∇vFs = 0 (2.13)

where qs is the electric charge of species s and ms is its mass.
The distribution function allows one to formulate the following two constitutive

relations:

ρ =
∑︂

s

qs

∫︂
Fs(r, v, t)d3v (2.14)

j =
∑︂

s

qs

∫︂
v Fs(r, v, t)d3v (2.15)

for the charge density and the current density of the plasma. These equations,
together with 2.6-2.9, are the Vlasov-Maxwell equation and represent a closed
system that describes the time evolution of plasma.

Although the kinetic theory constitutes a reduction in complexity relative to
treating the individual particle trajectories, the distribution function often provides

17



Two-fluid modeling of cold and collisionless plasma

way more information than what is necessary in practical applications. Also,
being of high dimensionality (the distribution function is represented in a sixth-
dimensional space composed of three spatial and three velocity coordinates plus
time) and strongly non-linear, the Vlasov-Maxwell equations are very expensive
to solve from a computational point of view.

A more efficient approach consists in building a set of fluid dynamics equations
by deriving the statistical moments of 2.13, after recalling that the moment of
order n of a function f(r, v, t) is:

Mn =
∫︂

vn f d3v (2.16)

2.2.2 The continuity equation
The zeroth order moment of 2.13 leads to the continuity equation for the conser-
vation of a species mass (assuming no sources or losses):

∂ns

∂t
+ ∇ · (nsus) = 0 (2.17)

where instead of particle velocity v, we have the average velocity us of a fluid
element of species s.

2.2.3 The momentum equation
After taking the first order moment of 2.13, neglecting viscosity and assuming
isotropic pressure p - then carrying out several computations - one comes to the
expression for the conservation of momentum:

nsms
Dus

Dt
= −∇p + nsqs (E + us × B) . (2.18)

The derivative on the left hand is a material derivative, which serves as a link
between the lagrangian and eulerian approaches. Indeed, for a generic vector
property of the fluid element A(x, t) one has:

DA

Dt
= ∂A

∂t
+ (u · ∇)A (2.19)

where (u · ∇)A is the so-called convective term.
If the plasma is collisionless, as in this case, then all the particles inside a fluid

element move together exactly with the average velocity.
Furthermore, if the plasma is cold, the pressure term on the right side can be

neglected the since thermal velocity is much smaller than the flow velocity: the
overall evolution of the system is not dominated by thermal motion.

18



2.2 – From Vlasov equation to the equations of motion

The equation for the n-th moment requires the (n + 1)-th moment and so one
needs to make an assumption on the (n + 1)-th moment in order to stop at some
point - and this is called the closure of the equations. If the plasma is not cold,
another equation is introduced to obtain closure: the energy equation, that is the
second order moment of 2.13.

19



Two-fluid modeling of cold and collisionless plasma

2.3 The closed set of equations
As previously mentioned, we will consider the simplest case of a plasma made of
just two species: electrons (mass me and charge −e) and ions (mass mi and charge
e). This means we will have a two-fluid system, where each fluid will have its own
continuity and momentum equation. Furthermore, the plasma is cold and so there
is no need for an energy equation.

The plasma current density can be expressed as a function of number densities
and fluid element velocities:

j = e(niui − neue). (2.20)

The number of scalar unknowns is therefore 14: two densities, six components
of velocities, three component of the electric field and three components of the
magnetic field.

In order to reach closure, the momentum and continuity equations have to be
put together with the time-dependent pair of Maxwell’s equations 2.8 and 2.9.

Ultimately, the complete set of equations for a cold and collisionless plasma is
therefore:

me
Due

Dt
= −e (E + ue × B) (2.21)

mi
Dui

Dt
= e (E + ui × B) (2.22)

∂ne

∂t
+ ∇ · (neue) = 0 (2.23)

∂ni

∂t
+ ∇ · (niui) = 0 (2.24)

∇ × E = −∂B

∂t
(2.25)

∇ × B = µ0j + µ0ε0
∂E

∂t
(2.26)
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Chapter 3

Cold electromagnetic waves
in magnetized plasmas

Waves in plasmas can be differentiated in two groups: electrostatic and electro-
magnetic, depending on the existence of an oscillating magnetic field associated
with the wave (electrostatic waves are those where the wave magnetic field is zero).
This means that electrostatic waves are always longitudinal (the electric field os-
cillates along the direction of propagation k as can be easily seen from Faraday’s
law 2.9).

When a wave propagates with a velocity much higher than the species thermal
velocity (which usually is the case for electromagnetic waves) then the cold plasma
equations 2.21-2.26 can be used to describe the wave propagation. Indeed, "cold
plasma wave" does not mean that the kinetic temperature of the plasma is low,
but rather that the wave has a dispersion relation which does not depend on
temperature [27, Chapter 6].

3.1 Waves in a magnetized plasma
We will consider a collisionless plasma permeated by a constant magnetic field
directed along z-axis: B0 = B0ẑ.

Electromagnetic waves propagating in a magnetized plasma are usually classi-
fied according to the angle between their direction of propagation k and B0.

It should be recalled that Maxwell’s equations allow only transverse waves in
vacuum, which means that the electric and magnetic fields are always perpendic-
ular not only to one another but also to the direction of propagation. However,
electromagnetic waves in plasma are coupled to charge density waves coming from
the motion of charged particles; this means that the resulting fields may have
oscillating components along k.
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Cold electromagnetic waves in magnetized plasmas

The presence of a background magnetic field introduces some additional param-
eters, which are the cyclotron frequencies of both electrons and ions. Assuming
that electrons and ions have the same electric charge but with opposite sign, their
cyclotron frequencies are expressed as following:

ωce = eB0

me

(3.1)

ωci = eB0

mi

(3.2)

where e is the magnitude of the elementary charge, e = 1.6 10−19 C. This is the
angular frequency associated with a circular motion, caused by Lorentz force, in the
plane perpendicular to the magnetic field. This motion is called the gyromotion.

Other relevant parameters for the plasma system are the plasma frequencies,
which are the angular frequencies associated with the electrons/ions oscillations
due to a local displacement of charge, in a background situation of quasi-neutrality.
They can be expressed as:

ωpe =
√︄

nee2

ε0me

(3.3)

ωpi =
√︄

nie2

ε0mi

(3.4)

And their derivation comes from the study of plasma oscillations, as carried out
in [25, Section 4.3].
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3.2 – From the equations of motion to the dispersion relation

3.2 From the equations of motion to the disper-
sion relation

The treating of the cold equations of motion 2.21-2.26 will roughly proceed through
the following steps: the equations will be handled to obtain the so-called wave
equation - a vector equation - which will be linearized; this will lead to a linear
and homogeneous system of three scalar equations. In order to ensure a single,
non-trivial solution, the determinant of the system will be computed and set equal
to zero: this will finally produce the dispersion relation for the propagation of the
electromagnetic waves in a plasma.

3.2.1 The wave equation
Let us consider the pair of time-dependent Maxwell equations 2.25 and 2.26. Ap-
plying the curl operator to both sides of 2.25 one has:

∇2E − ∇(∇ · E) = ∇ × Ḃ (3.5)

while applying the time derivative to both sides of 2.26 leads to:

∇ × Ḃ = µ0
∂j

∂t
+ µ0ε0Ë (3.6)

(The dots denotes the first and second time derivative of a quantity. For further
clarification on the notation used, refer to appendix A).

Finally, equating the left side of equation 3.5 and the right side of equation 3.6
leads to:

µ0
∂j

∂t
+ µ0ε0Ë = −∇(∇ · E) + ∇2E (3.7)

From now on, we will refer to 3.7 as the wave equation.

3.2.2 Linearizing the equations
When working with time-varying quantities, such as in the case of electromagnetic
waves in a plasma, it is useful to assume that oscillations have a small amplitude
compared to the equilibrium values. Therefore the equations of motion can be
linearized with the following procedure.

It is important to distinguish between equilibrium quantities, indicated with a
0 subscript, and perturbation quantities, indicated with a 1 subscript. Once equa-
tions 2.21-2.24 and 3.7 have been expanded in powers of perturbation quantities,
only terms of order ≤ 1 will be retained, thus achieving linearization.
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Cold electromagnetic waves in magnetized plasmas

We will start with the following equilibrium conditions:

E0 = 0
B0 = B0ẑ

ne = ni = n0

ve0 = vi0 = 0

(3.8)

And we will assume that the wave frequency is sufficiently high, so that ions can be
considered as a static and neutralizing background and only the electron motion
contributes to the perturbed current density in the linearization of 2.20:

j = j0 − n0eve1 (3.9)

where, following the initial conditions stated above, j0 = 0. Then the linearized
wave equation takes the form:

−µ0n0e
∂ve1

∂t
+ µ0ε0Ë1 = −∇(∇ · E1) + ∇2E1 (3.10)

The linearized momentum equations are:

me
∂ve1

∂t
= −e(E1 + ve1 × B0) (3.11)

Lastly, the linearized continuity equations are:

∂n1e

∂t
+ ∇ · (n0v1e) = 0 (3.12)

∂n1i

∂t
+ ∇ · (n0v1i) = 0 (3.13)

3.2.3 Solving the equations
The linearized equations 3.10-3.11 form a system of linear differential equations.
The general solution for this kind of system can be expressed as a superposition
of plane waves. For this reason we will use the following ansatz for perturbed
quantities:

E1 = E1e
i(k·r−ωt)

ve1 = ve1e
i(k·r−ωt)

ne1 = ne1e
i(k·r−ωt)

(3.14)

Once this ansatz is made, the continuity and momentum equations will be used
to find ne1 and ve1 whose expressions will be inserted in the wave equation.
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3.2 – From the equations of motion to the dispersion relation

The wave equation will finally become a linear system of equations in the un-
knowns Ex, Ey and Ez. In order to ensure the existence of at least one non-trivial
solution, the determinant of the associated matrix A must be equal to zero.

det (A) = f(k, ω) = 0 (3.15)

Equation 3.15 gives the dispersion relation of the wave.

3.2.4 Complex solutions of the dispersion relation and the
growth rate

Assuming k to be real, the solution of equation 3.15 ω(k) is always real in the case
of cold plasma; however, in other situations it may be complex. This means that
it can be expressed as:

ω = ωR + iγ (3.16)

Where γ, the complex part, is called the growth rate of the wave.
It is straightforward to see that, if the growth rate is positive, the amplitude of

the electric and magnetic field associated to the wave grows. For example, recalling
expressions 3.14, one has:

E1 = E1 eik·r e−iωRt eγt (3.17)

The last term increases exponentially over time, leading - theoretically, at least -
to the divergence of the electric field. In reality, the divergence of the amplitude is
due to the linear theory assumption. In reality non-linear effects will lead to the
saturation of the wave amplitude.
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Cold electromagnetic waves in magnetized plasmas

3.3 Whistler waves
Whistler waves is the name given to a specific plasma mode: these waves mainly
propagate in a direction parallel to the imposed magnetic field, are right-hand
polarized and with frequencies lower than ωce but higher enough to neglect ion
motion.

This means that, if B0 lies along ẑ, one shall make the following assumptions:

k = kzẑ E = Exx̂ + Eyŷ (3.18)
Applying the linear theory described before (while assuming the cold plasma

approximation to still be valid) the resulting general dispersion relation is:

ω2
pe

1 ∓ ωce/ω
− ω2 + c2k2 = 0 (3.19)

Which leads to two specific dispersion relations: one has left-hand polarization,
while the other has right-hand polarization.

Considering the right-hand polarization:

ω2
pe

1 − ωce/ω
− ω2 + c2k2 = 0 (3.20)

One shall come to a dispersion relation plot qualitatively similar to the one in
figure 3.1; we call whistler waves the waves which are found in red highlighted
area. More details about the generation of whistler waves in warm plasmas will
be added in the next chapter.

k

whistler mode

right-hand polarized Alfvén mode

ce

pe

ci
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3.3 – Whistler waves

Figure 3.1: Whistler dispersion relation.
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Chapter 4

The whistler anisotropy
instability

Whistler waves have been studied for over 100 years [28]. The first evidence of their
presence in the ionosphere came more than a century ago, when very low frequency
radio waves were detected and translated into whistle-like sounds (hence the name
whistler wave). Such whistles sound are descending tones lasting for a few seconds
and were later found to be generated by lightnings.

Years later, many other phenomena in the Earth’s ionosphere and magneto-
sphere were linked to chorus waves propagating in the whistler branch [29]: their
name comes, again, from the sound obtained when translating the electromag-
netic signals, which resembles the chirping of birds. Whistler chorus waves are
electromagnetic emissions that usually occur in two distinct bands. They have
been demonstrated to play a key role in electron scattering and precipitation [22]
as well as in the dynamics of the plasma sheet and the radiation belt.

Whistler chorus waves are found to be mainly generated in space by the whistler
anisotropy instability. In plasmas a wide range of instabilities can be triggered by
different equilibrium conditions; this particular instability is caused by an initial
electron temperature anisotropy and gives rise to unstable waves in the whistler
mode.

4.1 Physical conditions triggering the instability

4.1.1 Anisotropic velocity distribution
We already hinted at the possibility to have different temperatures in a plasma
and even in a single particle species.

We will assume the ion population is described by an isotropic maxwellian
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The whistler anisotropy instability

distribution; this makes the ions nonresonant with this instability [21], as ions do
not respond to the fast electron scales and to zero-th order they can be assumed as
a stationary background. The electron population, on the other hand, will display
two different temperatures - depending on which velocity component, parallel or
perpendicular, is considered: T∥ and T⊥.

Below is the reference expression for a bimaxwellian distribution function:

F (v⊥, v∥) = 1
(2π)3/2

1
θ2

⊥θ∥
exp

⎡⎣−1
2

⎛⎝v2
⊥

θ2
⊥

+
v2

∥

θ2
∥

⎞⎠⎤⎦ (4.1)

θ⊥ =
√︄

kBT⊥

me

θ∥ =
√︄

kBT∥

me

(4.2)

θ⊥ and θ∥ are the thermal velocities along directions parallel and perpendicular
to B0.

Obviously, the presence of the temperature anisotropy violates the cold plasma
assumption that we introduced in chapter 3. In this thesis, however, we are in-
terested in studying the effect of a cold electron population on the temperature
anisotropy instability that is driven by warm electrons. As we discussed in the
introduction, this is a common situation for the Earth’s magnetosphere where
anisotropic plasmasheet electrons with keV energies are injected in the inner mag-
netosphere during geomagnetic substorms. They are energetically unstable and
generate whistler chorus waves, but they often coexist with a population of colder
electrons (energies ∼eV) which is important in determining the properties of the
chorus waves.

4.1.2 Temperature anisotropy threshold
The degree of temperature anisotropy will be stated by the adimensional quantity
A = T⊥/T∥. In order to excite the instability, the perpendicular temperature must
be greater than the parallel one: A > 1.
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4.2 – Effect of cold electrons on whistler waves generated by the instability

4.2 Effect of cold electrons on whistler waves
generated by the instability

The cold electrons have an isotropic distribution and are generally believed to have
a passive effect on the whistler instability (which is driven by the anisotropy of
the warm population) by modifying the total density and related parameters of
the background plasma.

The presence of a cold electron population may be from now on quantified by
the ratio nc/ne, where nc is the cold electron number density and ne is the total
electron number density.

For instance, one can see by recalling the definition of electron plasma frequency:

ωpe =
√︄

4π ne e2

me

(4.3)

and the definition of electron inertial length:

de = c

ωpe

(4.4)

that, if the warm electrons density stays fixed, an injection of cold electrons
causes the total electron density to increase: this leads to a larger electron plasma
frequency and a smaller electron inertial length. Generally speaking the presence of
cold electrons affects the characteristics of whistler waves generated by the whistler
instability, even if the warm electrons have the main role in generating them.

In [30], via a numerical solver with no approximations nor relativistic correc-
tions, linear theory was used to study the effect given by adding cold electrons to
the warm, anisotropic population. The results showed that the maximum growth
rate increases with increasing nc/ne but only up to some value (nc/ne ∼ 0.8),
where γmax has a peak; it then starts to decrease very rapidly.
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The whistler anisotropy instability

4.3 Parallel and oblique wave propagation
Let’s firstly recall the definition of β, the ratio between plasma pressure and mag-
netic pressure:

β = 2µ0
n kB T

B2
0

(4.5)

A very relevant parameter in the following study will be β∥:

β∥ = 2µ0
nh kB T∥

B2
0

(4.6)

Which is β computed with the parallel temperature of the warm anisotropic
electrons.

It has been verified (see [31] and [23]) by theory and PIC simulations that, for
low enough values of β∥ (∼ 0.025), the waves excited by the whistler instability
switch their propagation direction from parallel - with respect to the external
magnetic field - to oblique.

Since the following work is meant to focus only on the study of parallel prop-
agation, it will be crucial to ensure that the value of β∥ always stays above this
critical value (which will be denoted as β∗

∥).
In [30] it was found that the presence of cold electrons affect the critical value

with the following scaling law:

β∗
∥ = 0.0245 [1 − 1.05(nc/ne)] (4.7)
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Chapter 5

Computational study of the
whistler instability

As discussed in the previous chapter, the whistler instability is triggered in warm
plasmas by an anisotropic temperature distribution: this means that temperature
effects cannot be disregarded. Cold plasma theory and the fluid dynamics approach
cannot be used to study the instability, whose correct description requires the
solution of the full Vlasov equation simultaneously with Maxwell’s equations. In
this work Particle-in-cell (PIC) 1D simulations have been used to study the onset
and the evolution of the whistler instability in various conditions that should be
relevant to the environment of the Earth’s magnetosphere.

VPIC[32] [33] [34] was the code of choice: it is a three-dimensional Particle-in-
cell code for modeling kinetic plasma with a second-order, explicit algorithm to
update positions and velocities of charged particles in order to solve the relativis-
tic kinetic equation for each species in the plasma. Electric and magnetic fields
are made to evolve accordingly via a second-order finite-difference-time-domain
method.

First the details of the physical setup of the simulations will be explained, along
with an overview of parameters and constants. Then the results from different
series of simulations, where these parameters vary, will be presented.

The quantities of interest for the study are the instability maximum growth
rate γ and the saturation value of the magnetic perturbation δB/|B0| (see eq.
5.1): those quantities have been extrapolated from the data produced by VPIC
as shown in figure 5.1. Indeed, figure 5.1 represents an example of data obtained
from a typical run: there is a linear phase clearly identifiable, from which one can
estimate the growth rate; after that a saturation phase occurs. The saturation
value is critical because it is the amplitude of the waves that controls processes
such as scattering and energization, which rule the dynamics of the ring current
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Computational study of the whistler instability

and radiation belts.
VPIC results will be compared with those from a linear solver of the Vlasov

and Maxwell’s non-relativistic equations (based on chapter 11 of [35]). Data from
already existing studies will be also used for comparison, so that the reliability of
the software is corroborated.

Post-processing analysis was carried out with the aid of MATLAB and Python
scripts.

The expression used to compute the magnetic perturbation was the following:

δB

|B0|
= 1

|B0|

⌜⃓⃓⎷ 1
nz

nz∑︂
j=1

(︂
B2

x + B2
y

)︂
(5.1)

where nz is the number of cells in the ẑ direction. Note that in equation 5.1 we
have used only the components of the wave field perpendicular to the background
magnetic field. This is because for the field-aligned waves considered here the
component of the wave field along z is zero.

Figure 5.1: Example, with log-y scale, of how the magnetic perturbation exponen-
tial growth was fitted with a Python script. This specifical example was obtained
with the parameters: A = 5, β∥ = 0.15 and nc/ne = 0.
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5.1 – Linear nonrelativistic theory applied to warm plasmas

5.1 Linear nonrelativistic theory applied to warm
plasmas

The following section outlines, through linear kinetic theory, the propagation of
electromagnetic waves in a warm plasma subjected to an external magnetic field
B0 (for a more detailed analysis see [26], Chapter 6). The final result will be a set
of linearized, nonrelativistic equations that can be solved numerically.

Let us consider a plasma composed just of electrons, with charge −e and mass
me, and ions with charge e and mass mi. The linearization procedure exposed in
3.2.2 could be applied to the Vlasov equation: assuming an equilibrium distribution
function Fs0 and a small-amplitude perturbation Fs1, equation 2.13 becomes:

∂Fs1

∂t
+ v · ∇Fs1 + qs

ms

(v × B0) · ∇vFs1 = − qs

ms

(E + v × B) · ∇vFs0 (5.2)

Where E and B are the perturbed electric and magnetic fields. Notice that
the quantities in the equation refer to species s.

Under reasonable assumptions, the perturbation of the distribution function in
5.2 can be shown to take the form:

Fs1(r, v, t) = − qs

ms

∫︂ t

−∞
[E(r′, v′) + v′ × B(r′, t′)] · ∇vFs0(v′)dt′ (5.3)

Where (r′, v′) is the unperturbed trajectory which passes through the point
(r, v) when t′ = t.

Recalling now the Maxwell’s equations in a medium, one can obtain the follow-
ing relations:

k × E = ωB (5.4)

k × B = −iµ0j − ω

c2 E = − ω

c2 K · E (5.5)

Where K is the dielectric permittivity tensor. Carrying out some algebraic
manipulations and writing the perturbed current j as in equation 2.15 yields the
following important vector equation:

K · E = E + i

ωε0

∑︂
s

qs

∫︂
v F1s d3v (5.6)
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Which, after linearization, translates in a linear system of equations whose un-
knowns are the amplitudes of the electric field components. In order to guarantee
the existence of non-trivial solutions, the determinant must be equal to zero.

Assuming the equilibrium distribution function to be Maxwellian, imposing that
the determinant is equal to zero leads - after many calculations - to the following
expression for the dielectric permittivity tensor:

Kij = δij +
∑︂

s

ω2
ps

ω

√︄
ms

2Ts

exp (−λs)
kz

∞∑︂
n=−∞

Tij (5.7)

Where δij is Kronecker delta function, ωps is the plasma gyrofrequency of species
s and Tij is:

⎛⎜⎝ n2 In Z/λs i n(I ′
n − In)Z −n In Z ′/

√
2λs

−i n(I ′
n − In)Z (n2 In/λs + 2λsIn − 2λsI

′
n)Z i

√
λs(I ′

n − In)Z ′/
√

2
−n In Z ′/

√
2λs −i

√
λs(I ′

n − In)Z ′/
√

2 −InZ ′ξn

⎞⎟⎠ (5.8)

The above matrix makes use of some modified Bessel functions In with argument
λs:

λs = Tsk
2
⊥

msω2
cs

(5.9)

And of the plasma dispersion function Z along with its derivative Z ′, both with
argument:

ξn = ω − nωcs

kz

√︄
ms

2Ts

(5.10)

Where ωcs is the cyclotron frequency of species s.
Given that, equation 5.7 can be solved numerically to obtain the dispersion rela-

tion, in a linear nonrelativistic regime, for waves propagating in warm, magnetized
plasmas.

A numerical solver of this kind will be used throughout the following study and
will be often compared to PIC simulation results which, as will be exposed in the
next section, on the other hand account for both relativistic and nonlinear effects.
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5.2 – Particle-in-cell methods

5.2 Particle-in-cell methods
A comprehensive review on plasma simulations can be find in [36], where the
Particle-in-cell concept and model is presented.

Generally speaking, Particle-in-cell (or PIC) methods are a family of compu-
tational methods whose aim is to simulate the plasma evolution in time while
retaining nonlinear effects in the system (that is, from first principles).

Recalling section 2.1.3, which presented the Newton law of motion of a single
particle when it is subject to the electromagnetic force, one could try to simulate a
many-particle sistem such as a plasma by simply implementing a time-advancing
method for the position x and velocity v of each particle and then updating the EM
fields. This approach is usually referred to as the particle-particle (PP) method,
which at each timestep solves the following set of equations for each particle:

xi+1
p = xi

p + ∆t vi
p (5.11)

vi+1
p = vi

p + ∆t F i
p (5.12)

where the index i refers to the timestep, while p refers to the particles. If the
system contains N particles, then the total force F i

p acting on the p-th particle at
the i-th timestep is the summation of all the contributions from the other p − 1
particles:

F i
p =

N∑︂
q=1 q /=p

F i
p q (5.13)

That is, the summation over all the forces that derives from the interaction
between the p-th particle and every other particle. This summation is compu-
tationally tractable for simulating a relatively small number of particles (as may
be appropriate for strongly coupled systems), but is unfeasible for weakly coupled
systems (where a large number of particles are present) such as the magnetospheric
plasma.

Let us consider as an example the computation of the Coulomb force alone,
which for a generic pair of particles with the same charge q has the following
expression:

Fp q = q2

4πε0

xq − xp

|xq − xp|3
(5.14)

In the above equation particles are assumed to be points in space. The plot
of such a force intensity, as a function of the distance r = |xq − xp| between the
particles, is shown in figure 5.2 (dashed line).
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Figure 5.2: Qualitative depiction of two types of a Coulomb-like forces between a
pair of particles, depending on the particle’s nature. The dashed line represents the
force between two point particles, while the solid line represents the force between
two finite size particles.

Figure 5.3: Qualitative example of finite size circular superparticles overlapping
in a discrete computational grid, each one representing many physical particles.
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5.2 – Particle-in-cell methods

Particle-in-cell methods rely on the so-called superparticles to reduce the com-
putational weight and also to reduce the importance of collisional effects, which are
represented by the rapid growth of the force intensity as r → 0 and are significant
in the case of point particles.

Superparticles represent a group of many physical particles. They move in a
computational spatial grid. Their main feature is to be finite size particles: they
can overlap (see figure 5.3) and, when they do, if their charges are equal and oppo-
site it is assumed that inside the overlapping region they neutralize one another,
thus transforming the Coulomb force depicted by the dashed line in figure 5.2 into
the one depicted by the solid line in the same figure. When two superparticles
completely overlap, the Coulomb force is of course equal to zero.

Finite size particles suit the simulation of plasmas because they correctly re-
produce the collective behaviour of weakly coupled systems even if there are not
as many computational particles as physical ones. This is because, as can be seen
in figure 5.2, in the long range regime the behaviour of the Coulomb force stays
the same as in the case of point particles.

PIC methods can account for relativistic effect or not, depending on how they
compute the Lorentz force while advancing the position and velocity of particles.
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5.3 Anisotropic Maxwell–Jüttner velocity distri-
bution

In section 4.1.1 it was explained that an anisotropic velocity distribution could
trigger the whistler instability. In that case the example of a bimaxwellian distri-
bution, derived from a maxwellian one, was made.

However, as we shall see later, some of the simulations in this study show
particle velocities close to relativistic regimes. This means that they will be
more accurately modeled through an anisotropic velocity distribution based on
the Maxwell–Jüttner distribution. For this reason, the simulations presented in
this chapter were all carried out using an anisotropic Maxwell–Jüttner distribution.

The Maxwell–Jüttner distribution is, indeed, the relativistic analogue of the
Maxwell distribution; it proves suitable in describing the velocities of particles
moving with relativistic speed, in a ideal gas. In the limit of low temperatures
(T ≪ m0c/kB where m0 is the rest mass of the particle) this distribution reduces
to a maxwellian one.

A working example of an anisotropic Maxwell-Jüttner distribution is presented
by Gladd in [37]:

F (U⊥, U∥) = C exp
⎛⎝−

√︂
1 + U2

⊥ + AU2
∥

ϵ⊥

⎞⎠ (5.15)

U⊥ = v⊥

c

1√︂
1 − v2

⊥/c2
U∥ = v∥

c

1√︂
1 − v2

∥/c2
(5.16)

C =
√

A

4πϵ⊥c3K2(1/ϵ⊥) (5.17)

ϵ⊥ = T⊥

me0 c2 (5.18)

Where U∥ and U⊥ are the relativistic momenta, and K2 is a second-order Bessel
function of the second kind. The distribution becomes bimaxwellian when ϵ⊥ ≪ 1
[37].

Figure 5.4 shows the initial (tωce = 0) anisotropic Maxwell–Jüttner as generated
by VPIC, in a case with A = 5, β∥ = 0.15 and ωpe/ωce = 2.1384.
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5.3 – Anisotropic Maxwell–Jüttner velocity distribution

F(U⊥,Uǁ)

Figure 5.4: Initial (tωce = 0) Maxwell–Jüttner distribution for the relativistic
momenta of particles, in cylindrical coordinates, when A = 5, β∥ = 0.15 and
ωpe/ωce = 2.1384.
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5.4 The linear theory of Kennel and Petschek
In [22] Kennel and Petschek developed a method to compute an analytical expres-
sion for the whistler growth rate, given some approximations, starting from the
Vlasov-Maxwell non-relativistic kinetic equations.

In order to explore the possibility of an analytical comparison, the Kennel-
Petschek approximation was tested against VPIC and a linear solver of the lin-
earized Vlasov-Maxwell equations: the results are exposed in this section.

They made the key assumption that γ/ωR ≪ 1.
The resulting analytical expression for γ is the following:

γ = πωce

(︃
1 − ω

ωce

)︃2
η

(︄
A − 1

ωce/ω − 1

)︄
(5.19)

Where:

η = 2π
ωce − ω

k

∫︂ ∞

0
v⊥dv⊥F (v⊥, v∥ = VR) (5.20)

A =
[︄

1
2
∫︁∞

0 v⊥dv⊥F

∫︂ ∞

0
v⊥dv⊥

(︄
v∥

∂F

∂v⊥
− v⊥

∂F

∂v∥

)︄
v⊥

v∥

]︄ ⃓⃓⃓⃓
⃓
v∥=VR

(5.21)

F (v⊥, v∥) is the velocity distribution function, which in the present case will be
bimaxwellian (see equation 4.1).

Lastly, one has the resonant velocity for electrons defined as (for non-relativistic
velocities):

VR = ω − ωce

k
(5.22)

It is assumed that, in order to keep the growth rate low, the wave has a frequency
such that only a small fraction of electrons is resonant with it.

Carrying out the calculations with the bimaxwellian distribution, equations 5.20
and 5.21 reduce to:

η = 1√
2π

ωce − ω

kθ∥
exp

⎡⎣−1
2

(︄
ωce − ω

kθ∥

)︄2
⎤⎦ (5.23)

A =
θ2

⊥ − θ2
∥

θ2
∥

(5.24)

Now, these results will be plugged into equation 5.19 and physical quantities
will be made adimensional sticking to the following normalization rule:

x = ck

ωpe

y = ω

ωce

(5.25)
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The resulting normalized expression for γ is:

γ(x, y)
ωce

= c

√︃
π

2
(1 − y)3

α x θ∥

(︄
A − y

1 − y

)︄
exp

⎡⎣−c2

2
(1 − y)2

α2 x2 θ2
∥

⎤⎦ (5.26)

γ will become a function of solely the wavenumber once the whistler dispersion
relation is be used to relate y to x.

The accuracy of the approximation is shown in figure 5.5. Indeed, the figure
shows the growth rate obtained by the Kennel and Petschek theory and compares
it against the linear solver and non-linear VPIC simulations. Overall the range of
unstable modes is the same but the Kennel and Petschek theory overestimates the
maximum growth rate by a factor of ∼ 2 due to its approximations.

The chosen test case was:

A = 5 ωpe/ωce = 2.1384 β∥ = 0.04
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Figure 5.5: Comparison of the growth rates of the whistler instability obtained
from Kennel and Petschek theory, a numerical linear solver and nonlinear VPIC
simulations.
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5.5 Physical and numerical setup

5.5.1 Plasma composition
The subject of the study will be the whistler instability as it develops in a plasma
subject to an external magnetic field B0 and composed of the following species:

• Warm electrons with an anisotropic Maxwell–Jüttner velocity distribution
and an initial temperature anisotropy A = T⊥/T∥.

• Cold electrons which represent a varying fraction of the total electron pop-
ulation (from 0 to 0.9), with a maxwellian velocity distribution and a tem-
perature Tc = T∥/100.

• Ions with a maxwellian velocity distribution and a temperature Ti = Tc and
density equal to the total electron density.

For the parameters considered, the maximum growth rate always occurs at parallel
propagation (see section 4.3).

5.5.2 Relevant parameters
As can be inferred from chapter 4 the parameters that affect the instability, and
therefore need to be varied parametrically, are:

• Parallel, warm ratio of plasma pressure to magnetic pressure β∥
which, in order to ensure parallel propagation, must be above a critical value
β∗

∥ that depends on the density of cold electrons.
The presence of cold electrons makes the value of β∗

∥ decrease, so the study
will use values of β∥ that are above the reference β∗

∥0 = 0.0245 which is the
critical value corresponding to zero cold electron density.

• Density of the cold population relative to the total electron density
nc/ne which will vary between 0.0 and 0.9.

• The initial temperature anisotropy A = T⊥/T∥ of the warm population,
which initially triggers the instability and affects how quickly it grows. Its
value must be higher than 1 [22]. Furthermore, in order to obtain accurate
results from PIC simulations, high enough values of this parameter must be
used. This is because PIC codes suffer from statistical noise coming from
the finite number of superparticles and small growth rates are hard to obtain
accurately with the PIC technique.
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5.5.3 Environmental conditions
Some fixed quantities were chosen in order to reproduce the environmental condi-
tions found by the Van Allen Probes observations [38] in the magnetosphere. The
external, constant magnetic field was:

|B0| = 150 nT (5.27)

The warm electron density was kept constant too:

nh = 106 m−3 (5.28)

This means that the total electron density, computed as:

ne = nh + nc (5.29)

may vary between simulations as a consequence of the variation of the cold
electron density nc. In physical units, the cold electron density is varied between
0 and 100 cm−3, as representative of the region of near-Earth space near the
plasmapause.

Combining the above values for |B0| and ne, the following reference value of
ωpe/ωce was computed in the absence of cold electrons (when nh = ne):

ωpe

ωce

≈ 2.1384 (5.30)

5.5.4 Numerical setup
The simulations presented in this chapter were carried out over a domain shaped
like the one in figure 5.6. Since three species (and hence three electron tempera-
tures) are usually present, the reference Debye length λD for each simulation was
computed using the smallest one.

Lz

�D

�D

Figure 5.6: VPIC is a three-dimensional code, but the computational domain was
shaped as to reproduce a one-dimensional layout by imposing Lx = Ly = λD. Lz

is always equal to 20 c/ωpe.
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Computational study of the whistler instability

The length of the domain in the dimension of interest was Lz = 20 c/ωpe.
This value was chosen after several attempts with shorter domains, which showed
that the excitation of different modes depending on the domain length influenced
the growth rate and regime behaviour of the magnetic field, thus making those
simulations unrealiable.

Figure 5.7: When no cold electrons are present in the system, Lz = 10 c/ωpe is
sufficient to capture the saturation amplitude of the whistler waves.
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5.5 – Physical and numerical setup

Figure 5.8: When no cold electrons are present in the system, Lz = 10 c/ωpe is
sufficient to capture the saturation amplitude of the whistler waves.

Figure 5.9: With cold electrons, Lz = 20 c/ωpe is sufficient to capture the saturation
amplitude of the whistler waves accurately.
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Computational study of the whistler instability

Figure 5.10: With cold electrons, Lz = 20 c/ωpe is sufficient to capture the satura-
tion amplitude of the whistler waves accurately.

The number of cells nz for each simulation was chosen so that:

Lz/nz ≈ λD (5.31)

In order to maintain good spatial resolution.
The timestep for each simulation was chosen as to satisfy the Courant-Friedrichs-

Lewy condition. Periodic boundary conditions for both particles and fields were
applied. The number of particles per cell nppc was equal to 4000 for every run.
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5.6 Preliminary study with nonrelativistic linear
theory

5.6.1 Agreement between the linear solver and VPIC

In order to assess the agreement between the linear solver of the linearized Vlasov-
Maxwell equations (chapter 11 of [35]) and VPIC, some preliminary tests were
carried out.

Results are presented for the following physical setup:

A = 5 ωpe/ωce = 2.1384 β∥ = 0.04 nc/ne = 0.0

0.5 1 1.5 2

ck/
pe
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0
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0.02

0.03

0.04

0.05

0.06

0.07

0.08
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/

c
e

Numerical solver

VPIC

Figure 5.11: Comparison between the linear solver and VPIC in a test case.

5.6.2 Overview of the parameter space

Here a preliminary study of the chosen parameter space is presented. It was carried
out with the linear solver of the linearized Vlasov-Maxwell equations. It must be
noted, for further considerations, that the solver does not consider relativistic
effects associated with the velocity of the particles and so it is used here just to
get some guidance on the parameters that should be most interesting to explore.
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Computational study of the whistler instability

Figure 5.12: Maximum growth rate for A = 2, varying β∥ and nc/ne.

Figure 5.13: Results of 5.12 presented for different values of β∥. The growth rate
appears to steadily increase as a function of nc/ne up to nc/ne ∼ 0.8 as observed
in [30].
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Figure 5.14: Maximum growth rate for A = 3.5, varying β∥ and nc/ne.

Figure 5.15: Results of 5.14 presented for different values of β∥. The critical value
of nc/ne appears to have shifted to the left.
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Figure 5.16: Maximum growth rate for A = 5, varying β∥ and nc/ne.

Figure 5.17: Results of 5.16 presented for different values of β∥. For most values of
β∥ the growth rate has its peaks at nc/ne = 0 and then decreases monotonically.
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5.6 – Preliminary study with nonrelativistic linear theory

From figures 5.12-5.17 it appears that the maximum growth rate has a peak,
while increasing the cold electron density, whose position tends to nc/ne = 0.0 as
the anisotropy of the warm electrons increases.

Despite even lower values of anisotropy may be of interest, in the next sections
it will be shown that VPIC was used to study only the case in which A = 5. This is
because, as already explained, PIC simulations struggle in reproducing low values
of anisotropy.
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5.7 Relativistic effects
Despite the good agreement between the linear solver and VPIC that was shown
in figure 5.11, it is apparent that results from VPIC do not match exactly the ones
from the solver. This discrepancy is more and more evident with increasing β∥,
which means - in a setup that keeps ωpe/ωce fixed - increasing the warm electron
velocity, as seen in figure 5.18.

Figure 5.18: Discrepancy between the linear solver and VPIC for increasing ther-
mal velocities, in logarithmic scale.

These observations likely lead to the conclusion that, when velocities are above
∼ 0.15c, relativistic effects kick in and influence the growth rate. The same con-
clusion was reached by Gladd [37]. It must be reminded that VPIC is a relativistic
code, while the linear solver does not take into account relativistic effects.

Some testing was made against the results presented by Gladd in [37]. Defining
ε⊥ as:

ε⊥ = T⊥ h

mec2 (5.32)

The following three testing setups were considered, which show increasing per-
pendicular warm temperature and velocity:

Setup 1: A = 5 ωpe/ωce = 2.7385 ε⊥ = 0.02
Setup 2: A = 5 ωpe/ωce = 1.3283 ε⊥ = 0.10
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5.7 – Relativistic effects

Setup 3: A = 5 ωpe/ωce = 0.8660 ε⊥ = 0.20

Table 5.1 sums up the results obtained for the maximum growth rate. Table 5.1
confirms that when the thermal velocities are lower VPIC, the linear solver and
Gladd’s theory agree pretty well. As the thermal velocities are increased, there is
a progressive departure of VPIC and Gladd’s theory relative to the linear solver.
On the other hand, Gladd’s theory and VPIC remain in good agreement. This is
the confirmation that, as the thermal velocities of the plasma increase, relativistic
effects come into play.

Gladd (1983) linear solver VPIC (anisotropic Jüttner)
Setup 1 ≈0.093 0.10061 0.09118
Setup 2 ≈0.063 0.10511 0.05842
Setup 3 ≈0.031 0.10873 0.02977

Table 5.1: Values of γmax/ωce

Also, table 5.2 shows the results from a test case with nonrelativistic velocities:

ωpe/ωce = 4.0 β∥ = 0.01283 A = 5.0

Results highlight the fact that, in a nonrelativistic regime, the anisotropic
Maxwell–Jüttner distribution does not behave much differently from a bimaxwellian
one - and both simulations agree with the linear solver.

linear solver VPIC (bimaxwellian) VPIC (anisotropic Jüttner)
0.01997 0.02079 0.02034

Table 5.2: Values of γmax/ωce
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5.8 Simulation of the effects of the cold electrons
density

The following section will present plots that show results from both the linear
solver and VPIC simulations. The aim is to study the effects of increasing cold
electrons density on two quantities: the maximum growth rate of the instability
γmax/ωce and the saturation value of the magnetic perturbation δB/B0.

5.8.1 Effect on the maximum growth rate
It was found in [30] through nonrelativistic linear theory analysis that, at least
in some conditions (for example, β∥ = 0.1 and A = 1.822 as well as A = 2.244),
the addition of cold electrons while keeping the warm density fixed leads to an
increase of the growth rate, which reaches a peak around nc/ne ∼ 0.8 and then
starts decreasing. This agrees with figure 5.12, whose results could however not
be reproduced in VPIC since the anisotropy was too low.

However, both the linear solver and VPIC simulations (see figures 5.19, 5.20
and 5.21) agree on the fact that, at least for A = 5 and for the higher values of β∥,
increasing cold electrons density - while keeping the warm electrons density con-
stant, as explained in section 5.5.3 - causes the maximum growth rate to decrease.

Figure 5.19: β∥ = 0.05 - The maximum growth rate slightly increases with increas-
ing nc/ne up to nc/ne ∼ 0.5 and then starts decreasing.
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5.8 – Simulation of the effects of the cold electrons density

Figure 5.20: β∥ = 0.15 - The maximum growth rate decreases with increasing cold
electrons.

Figure 5.21: β∥ = 0.25 - Again, the maximum growth rate decreases with increasing
cold electrons.
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Results in figures 5.19, 5.20 and 5.21 differ only for the fact that they where
obtained for increasing values of β∥ - which are 0.05, 0.15 and 0.25. It can be
noticed that, as expected from figure 5.18, the initial discrepancy at nc/ne = 0.0
between the linear solver and VPIC increases with β∥ due to relativistic effects that
the linear solver does not account for and that, on the other hand, are present in
the PIC code.

In this section, there are two main conclusions: firstly, the relativistic effects
decrease the growth rate, by values up to 30 − 40% for the parameters considered;
secondly, the cold electron density has a relatively small effect on the growth rate
up to nc/ne ∼ 0.5 but it has a strongly stabilizing effect for larger values of nc/ne.

5.8.2 Effect on the saturation amplitude of the whistler
waves

Two approaches were tested in the extrapolation of the magnetic perturbation
δB/B0 saturation value (both are shown in figure 5.22):

• The first approach tried to reproduce the one used in [23] and consisted in
taking the "knee value", right after the end of the linear growth phase, which
was chosen as the value of δB/B0 reached when the linear growth rate has
become 20% of its former value during the initial growth.

• The second approach consisted in taking the asymptotic value of δB/B0,
which was usually reached after a longer time and was greater than the knee
value.
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Figure 5.22: Different approaches tested in taking the final amplitude of δB/B0.
The knee value corresponds to a point where the growth rate has become 20% of
its former value during the initial growth.

Figure 5.23: δB/B0 as a function of nc/ne using approach number one: the plots
are difficult to read and not suitable for fitting.
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Figure 5.24: δB/B0 as a function of nc/ne using approach number two: the plots
were fitted with rational polynomials.

Figures 5.23 and 5.24 show results obtained with the two approaches described
above. Approach number two appears to produce smoother results that nicely
follow a fit with equation 5.33, with coefficients that are reported in table 5.3.

y = a x + b
x2 + c x + d (5.33)

a b c d
β∥ = 0.05 -0.229 0.651 -2.798 5.890
β∥ = 0.15 -0.511 0.599 -3.656 3.346
β∥ = 0.25 -0.910 0.954 -4.655 4.133

Table 5.3: Coefficients of the fit based on equation 5.33 for all the three values
of β∥ that were used during simulations. The fit curves are shown, along with
experimental data, in figure 5.24.

The important conclusion is that the effect of increasing cold population on
the saturation value of δB/B0, while keeping the warm electrons density constant,
appears to be marginal if not for high values of β∥. As expected [38] the evolution
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of δB/B0 over increasing nc/ne follows that of the growth rate in figures 5.19, 5.20
and 5.21, where data were also fitted with rational polynomials.
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5.9 Scaling law for the magnetic perturbation

This last section will present an analysis similar to those in [23] regarding the be-
haviour, in the absence of cold electrons, of the saturated whistler wave amplitude
δB/B0 over increasing β∥ for the warm electrons. Indeed, it was suggested in [23]
that the scaling law between δB/B0 and β∥ might be linear.

The aim is to evaluate two different scaling laws for the saturated δB/B0 (ex-
trapolated using approach number two of the previous section - that is, taking the
asymptotic value of the saturated curve), namely a linear function and a quadratic
function.

The coefficient of determination R2 was computed with Matlab functions and,
for both the linear and quadratic fit, it was found very close to 1 (slightly better
for the quadratic fit than for the linear one). Although the quadratic fit appears a
bit better, over the range of parameters considered the linear fit (consistent with
the results of [23]) is also a good approximation to the saturation amplitude.

Figure 5.25: Saturated values of δB/B0 taken as shown by the red line in figure
5.22. All the simulations were carried out with no cold electrons. Linear scaling
law used to fit the data.
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Figure 5.26: Saturated values of δB/B0 taken as shown by the red line in figure
5.22. All the simulations were carried out with no cold electrons. Quadratic scaling
law used to fit the data.
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Conclusions

Whistler waves play a major role in the dynamics of the Earth’s magnetosphere.
They can interact effectively with the energetic particles present in the magne-
tosphere, inducing transport, acceleration and losses of those particles. Thus,
whistler waves (and other waves (such as electromagnetic ion-cyclotron waves)
play an important role in regulating the dynamics of the ring current, plasma-sheet
and radiation belts, all of which are critical players in the inner magnetosphere
dynamics.

In the Earth’s magnetosphere, whistler waves can be generated by a kinetic (mi-
croscopic) instability, called the whistler instability, associated with the anisotropy
of the energy distribution of warm electrons, with energies of the order of several
kiloelectronvolts (keV). This is the main generation mechanism for the so-called
whistler-mode chorus waves, which reside in the outer inner magnetosphere out-
side the plasmapause. The same instability can also contribute to generation of
so-called whistler-mode hiss, which are broadband whistler mode waves residing
primarily inside the plasmasphere and in plasmaspheric plumes.

In this Master’s thesis we have studied the effect of an additional, cold (energy
of the order of several eV) electron population on the whistler instability. Such
cold electron population is very often present in the inner magnetosphere and has
its origins in the Earth’s ionosphere. It is known to affect the properties of the
whistler waves, including frequency and growth rate, but its effect on the saturation
amplitude of the waves has not been studied.

The present analysis has been conducted with two different tools. The first is a
linear stability solver based on the kinetic, Vlasov-Maxwell equations in the non-
relativistic regime. The second is a first-principle Particle-In-Cell code which solves
the relativistic Vlasov-Maxwell equations and includes full non-linear effects. The
comparison of the results obtained by these two methods allows one to understand
the importance of relativistic and non-linear effects on the instability. Our primary
contributions are three:

1. We have performed a detailed linear theory study, varying parametrically the
parallell and perpendicular temperatures of the warm electrons that drive the
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whistler instability (parameterized by the value β∥ and the ratio between per-
pendicular and parallel temperatures A), and the density of the cold electrons.
We found that the impact of the cold electrons on the maximum growth rate
of the instability is small when the cold electrons carry up to 50 − 60% of the
total density. The impact of the cold electrons on the maximum growth rate
is large when they carry most of the density, leading to strong stabilization.
The linear theory results have been successfully benchmarked against the non-
linear PIC simulations when bi-Maxwellian distribution functions were used
and the thermal velocity of the warm electrons was less than approximately
10% of the speed of light;

2. A comparison between the nonrelativistic linear solver and relativistic non-
linear PIC simulations revealed that relativistic effects can be very important
for the development of the whistler instability and that in general they lead to
a lower maximum growth rate. For the parameters considered, the reduction
of the growth rate was about 30 − 40%;

3. We have performed non-linear PIC simulations of the instability. We have
studied both the linear phase and the non-linear saturation. We have identi-
fied scaling laws of the saturated wave amplitudes versus background param-
eters. Specifically, in the case without cold electrons, we have reproduced the
scaling law obtained by An et al. in [23] where the amplitude of the wave
magnetic field scales proportionally to β∥. Importantly, we have determined
for the first time the scaling law of the magnetic perturbation versus the cold
electron density:

y = a x + b
x2 + c x + d

where y represents the magnetic perturbation δB/B0, x represents the cold-
to-total density ratio nc/ne and a, b, c, and d are coefficients that depends on
the background plasma conditions.

These results are very important as they provide the first parametrization of
the saturated magnetic field wave amplitude of the whistler waves generated by
the whistler instability, including both relativistic effects and the effects of a cold
electron population. This parametrization can be used in models of the inner mag-
netosphere (such as ring current models or radiation belt models) which typically
only treat the waves empirically. It will yield for the first-time a physics-based
treatment of the waves and a step forward towards the first-principle modeling
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and forecasting of the inner magnetosphere. A manuscript summarizing the re-
sults of this thesis is in preparation for one of the major space-physics international
journals.
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Calculus notation and
vector identities

Newton’s notation for differentiation
If y is a function of t:

ẏ = d y

d t

ÿ = d2 y

d t2

Calculus operators

Divergence ∇ · F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z

Gradiend ∇F =
(︄

∂F

∂x
,

∂F

∂y
,

∂F

∂z

)︄

Curl ∇ × F =
(︄

∂Fz

∂y
− ∂Fy

∂z
,

∂Fx

∂z
− ∂Fz

∂x
,

∂Fy

∂x
− ∂Fx

∂y

)︄

Laplacian ∇2F = ∂2F

∂x2 + ∂2F

∂y2 + ∂2F

∂z2

Vector calculus identities

∇ × (∇ × F ) = ∇(∇ · F ) − ∇2F
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