
POLITECNICO DI TORINO

Dipartimento di Scienze Matematiche G.L. Lagrange

Master’s Degree in Mathematical Engineering

Master’s Thesis

ADAPTIVE DESIGNS AND BIAS

IN TREATMENT EFFECTS ESTIMATION

Supervisor: Candidate:

Prof. MAURO GASPARINI FULVIO DI STEFANO

Dr. GAËLLE SAINT-HILARY

Academic year 2019/2020



Contents

1 Introduction 3

2 Adaptive Designs 5

2.1 Clinical Trials and Adaptive Designs . . . . . . . . . . . . . . . . . . 5

2.2 Identification of Bias in Adaptive Designs . . . . . . . . . . . . . . . 7

2.3 Handling of Bias in Adaptive Designs . . . . . . . . . . . . . . . . . 8

3 Methodology 10

3.1 Treatment Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Naive Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Uniformly Minimum Variance Conditionally Unbiased Es-

timator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.3 Shrinkage Estimators . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.4 Bias-Adjusted Estimator . . . . . . . . . . . . . . . . . . . . . 15

3.2 Sub-Population Selection . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Naive Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 UMVCUE following the Work of Roberston et al. and Ki-

mani et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Shrinkage Estimators . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.4 Bias-Adjusted Estimator . . . . . . . . . . . . . . . . . . . . . 20

3.3 Sub-Population Selection with Time to Event Data . . . . . . . . . 21

3.3.1 Naive Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 UMVCUE following the Work of Kimani et al. . . . . . . . . 24

3.3.3 Shrinkage Estimators . . . . . . . . . . . . . . . . . . . . . . . 24

1



Contents

3.3.4 Bias-Adjusted Estimator . . . . . . . . . . . . . . . . . . . . . 25

4 Simulations 26

4.1 Treatment selection with normally distributed endpoint . . . . . . 26

4.2 Sub-population selection with normally distributed endpoint . . 29

4.3 Sub-population selection with time to event endpoint . . . . . . . 32

5 Case Studies 35

5.1 Alzheimer Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Heart Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusions 39

Bibliography 41

Appendices 43

A Confidence Intervals 43

B Sample Size Reassessment 46

2



Chapter 1

Introduction

Every year, many pharmaceutical companies and research labs spend lots of re-

sources researching new drugs to fight with old and new diseases and illnesses,

allowing humanity to progress. Therefore, a large number of new drugs are cre-

ated and tested to evaluate their efficacy and safety.

The evaluation process of a new drug in humans is well defined. In a first

step called phase I, the safety of the drug is mainly assessed, to be sure that this

cannot have serious undesirable side effects on people. This study is conducted

on a limited number of individuals and only after the drug has passed this first

phase it can proceed to the following ones. In phase II, clinical studies aim at

identifying the dose of drug that maximizes the effectiveness and the patient

population that benefits the most from it, comparing different alternatives and

testing the drug on a bigger number of subjects. Once this phase is completed

the process moves on to confirmatory phase III, where the drug is tested on a

large number of subjects.

In classical Randomized Controlled Trials (RCTs), the evaluation of the ef-

fectiveness of a drug is typically performed by giving different doses and a ref-

erence treatment or a placebo to a certain population. At the end of the trial,

when all individuals have completed the process, the drug effects obtained are

analysed. In recent years, Adaptive Designs (ADs) trials have been developed

to enhance clinical development. One of the main advantage of this proce-
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dure consists in the possibility, at interim analyses during the trial, to stop the

evaluation of certain treatments for lack of efficacy and to focus only on the

best ones. This results in improvements both in terms of resources and ethics,

because it reduces the number of patients receiving non effective treatments.

Another main advantage of this procedure is the possibility to select a specific

sub-population which benefits the most from the treatment, optimising the re-

sources on the most promising group of people.

This thesis focuses on the problems that arise from the selection process

in Adaptive Designs. Because of this selection, the naive Maximum-Likelihood

Estimation, main reference in classical Randomized Controlled Trials, is biased.

In particular, two types of biases can be identified: the always-reporting bias,

a negative bias which affects the estimation of the dropped treatments, and

the selection bias, a positive bias which affects the estimation of the selected

treatments. In the literature, several methods have been proposed to obtain a

better estimation of the treatments’ effects in such contexts

In the following, we identify and handle the bias due to the use of these

Adaptive Designs. In the next Chapter in particular, Adaptive Designs and re-

lated Bias will be described from a statistical point of view. In Chapter 3, the

methodology used to address this issue in three different settings is described.

In Chapter 4, we conduct an extensive simulation study to assess the properties

of the proposed estimators. In Chapter 5, we present two practical applications

inspired by real-case studies on Alzheimer’s Disease and Heart Failure. Some

discussion and concluding remarks are provided in the last Chapter.
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Chapter 2

Adaptive Designs

At first, we try to focus on the statistical aspects of Adaptive Designs. Although

they are very useful from a practical point of view, allowing more flexibility with

respect to classical Clinical Trials, they produce some peculiarities from a sta-

tistical point of view. In particular, a naive estimate that does not take into ac-

count the selection process, is biased.

2.1 Clinical Trials and Adaptive Designs

Let’s suppose we have have discovered a new drug and we want to identify

which dose is the most effective in order to carry out new future clinical trials.

If we make use of classical Randomized Controlled Trials (RCT), a certain

number of patients is recruited and randomly allocated into a number of arms

equal to the doses we want to test. Then, the patients are given the selected

dose of drug for a certain period of time and data regarding the efficacy and

the safety of the drug are collected. At the end of the trial the data analysis is

performed. A naive estimator like the Maximum-Likelihood Estimator (MLE) is

a good choice, since in this case it will be unbiased. As a matter of fact, it can be

proven that the MLE of a normal distribution, which corresponds to the sample

mean, is expected to return the distribution’s mean.
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2.1. Clinical Trials and Adaptive Designs

This process seems quite simple and straightforward, however it is limiting.

First, if some of the treatments (or even all of them) are ineffective we have to

wait until the end of the trial to discover it, losing resources that could be di-

rected towards the research of new solutions. Secondly, if the drug is developed

against some very serious or debilitating disease, it would be better for the pa-

tients to receive the best therapy as soon as possible.

For these reasons Adaptive Designs have been developed. They permit to

make use of pre-planned modifications that include [12] refining sample size;

stopping the whole trial or single doses for lack of efficacy; stopping the whole

trial for success; reshuffling patients among treatment arms, selecting popula-

tion that would be more likely to benefit from the treatment. Therefore, using

Adaptive Designs seems a very promising option to follow, but all this flexibility

has a cost. It is well known [1, 2, 12] that the selection rule applied in Adaptive

Designs causes a biased estimation.

Back to our example, suppose that after half of the patients have completed

their trial we decide to check the data and to continue the analysis only with

the best two treatments. The MLE at the end of the trial is the weighted average

of stage 1 and stage 2 MLE, but because of the selection rule this estimation is

biased [2]. The key to understand why the estimation is biased is the fact that

from a statistical point of view, the selection rule consists in choosing the max-

imum of a group of random variables, which is not distributed like the random

variables. In Figure 2.1, retrieved from Pallmann et al. [12], we see that if the

low treatment effects are excluded and the higher are not, the final estimation is

biased optimistically. Therefore, an estimation that uses stage 1 data and does

not take the selection process into account produces biased results.

In the previous example, what we do is a treatment selection. However, an-

other kind of AD involves sub-population selection. The aim of this type of Trial

is to identify the sub-population that will benefit the most from the treatment.

Usually, patients are divided in sub-groups according to some biomarker or co-

variate values. Examples of biomarkers or covariate are: graded scores, size of
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2.2. Identification of Bias in Adaptive Designs

Figure 2.1: Illustration of bias introduced by early stopping for futility. Retrieved

from Pallmann et al. [12]. The red random samples are excluded because of the

futility threshold, resulting in optimistic estimation of the treatment effect.

tumor, baseline heart rate. Using some specific biomarker or covariate, a selec-

tion is made in the population, which causes the treatment efficacy’s estimate

to be biased.

2.2 Identification of Bias in Adaptive Designs

Many works have tried to classify the type of bias that can affect the estima-

tions in Adaptive Designs. Here, we present the classification in the case of

treatment selection, but the same principles apply for the sub-population se-

lection. Following the work of Carreras and Brannath [5] and Bauer et al. [2] we

may identify two main types of bias:

• The selection bias: the bias that affects the estimation of the selected

treatments. The chosen treatment response is the maximum of some

random variables, which has a higher expected value with respect to the

single random variables. Therefore, the estimation is higher than the true
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2.3. Handling of Bias in Adaptive Designs

value and this bias is positive. However, because the treatment proceeds

to the second stage, the final MLE will have lower bias with respect to

the stage 1 estimate. As a matter of fact, the stage 2 estimate will be un-

biased, being not affected by any selection, and this will help to reduce

the selection bias. Bauer et al. [2] proved that a good way to reduce

the selection bias is to reshuffle the sample size, i.e. redistribute among

the selected treatments the sample size planned for the second stage of

dropped treatments. This way, because the number of patients in second

stage is higher than in first stage, the average of the two estimations will

be closer to an unbiased estimation, helping to reduce the selection bias.

• The always reporting bias: the bias that affects the estimation of dropped

treatments. Because the stage 1 realization of the dropped treatments

is lower than the one of the selected treatments, their effect is underes-

timated. Opposite to the previous case, the always reporting bias has no

chance of being reduced because the dropped treatments do not proceed

to stage 2.

Bauer et al. [2] proved that fixing the number of treatments to be selected,

the selection bias increases while adding treatments to the comparison. More-

over, they show that performing the interim analysis earlier reduce the maxi-

mum bias, at the expense of increasing the variability of the selection. On the

other hand, Carreras and Brannath [5] prove that the selection bias is maximal

when all treatments effects are equal and Cohen and Sackrowitz [6] prove that

also in this case the Mean Squared Error is maximal.

2.3 Handling of Bias in Adaptive Designs

After having identified the main sources of bias, we now study some ways to

reduce it. Many studies have been conducted trying to handle the bias in treat-

ment effects estimation. In this work, some well-known [12] estimators that at-

tempt to reduce or eradicate the bias have been compared. To make a compar-

ison of these estimators, two main measures are taken into account: Bias and

8



2.3. Handling of Bias in Adaptive Designs

Mean Squared Error (MSE). Of course, the Bias is the most interesting point,

because to reduce or to eliminate it is the primary scope of these estimators.

However, it is not the only measure to have to be taken into account. As a mat-

ter of fact, the MSE, which is the sum of the variance and the Bias squared, can

give important informations on the variability of the estimate. A very precise

but highly variable estimator may not be preferred with respect to a less precise

but more stable alternative.

In the following several approaches are compared:

• Unbiased Estimators are developed to find estimations which have no

bias. Their main drawback is that they are highly variable. A first un-

biased estimator is proposed by Cohen and Sackrowitz [6]. Later, their

work has been extended by Bowden and Glimm [3]. A modified version

adapted for Adaptive Threshold Enrichment Clinical Trials has been pro-

posed by Kimani et al. [9] and Roberston at al. [14].

• Shrinkage Estimators attempt to reduce, but not to eradicate, the bias

with low impact on the MSE. Their idea is to shrink the stage 1 estimate

towards the overall stage 1 mean, in order to reduce the selection bias.

Then, since the stage 2 estimate is unbiased, the overall estimate has

lower bias with respect to a naive estimation. We compare two approaches

proposed by Carreras and Brannath [5] and Brückner et al. [4].

• Bias-Adjusted Estimators are mainly proposed by Whitehead [16] and Stal-

lard and Todd [15]. The main idea of these procedures is to find an es-

timation of the bias that can be iteratively subtracted from the original

naive estimation. The comparison is made by considering both Single-

Iteration and Multi-Iteration approaches.
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Chapter 3

Methodology

At the end of the previous chapter, several methods that aim to reduce the

bias in Adaptive Designs have been introduced. In this chapter, we are going

to describe them in greater detail. In particular, treatment selection and sub-

population selection are analysed. Some of the proposed methods have minor

differences depending on the analysis. If this were the case, these differences

are pointed out.

3.1 Treatment Selection

One of the main reasons why adaptive designs have been developed is to anal-

yse and identify the most effective treatments (or doses) out of a group. In the

following, we consider comparisons between different treatments on which a

selection of the best one is performed after an interim analysis. We consider N

the total number of patients which take part to the trial and N1 and N2 those

who participate at stage 1 and stage 2 respectively. We are going to compare K

different treatments among the N patients. Among these treatments we iden-

tify as S the one that is the most effective, according to the stage 1 data.

We can define n1i and n2i for i = (1, ...,K ) as the number of patients assigned

to each of the treatment arm in stage 1 and stage 2. In the following, we consider

that the number of patients assigned to each treatment arm is the same. If we
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3.1. Treatment Selection

select only one treatment, n11 = n12 = ... = n1K = N1
K , n2S = N2 and n2i ′ = 0

i ′ = (1, ...,K ), i ′ 6= S.

The response of the treatment is supposed to have a normal distribution

with true treatment effect corresponding to δi for i = (1, ...,K ) and a common

variance to all patients equal toσ2. If X̄1i for i = (1, ...,K ) and X̄2S are the stage 1

and stage 2 sample mean, these are distributed according to a normal distribu-

tion X̄1i ∼ N (δi , τ2
1i ), where τ2

1i =
σ2

n1i
, and X̄2S ∼ N (δS , τ2

2S), where τ2
2S = σ2

n2S
.

3.1.1 Naive Estimation

The first estimator we analyse in this work is the Maximum-Likelihood Estima-

tor. In adaptive designs’ literature it is well known that this estimator is biased

[1, 2, 12], while in classical RCTs this is the main reference.

The Maximum-Likelihood Estimator for the case of normal distribution is

the sample mean. For the selected treatments we obtain two estimators, the

stage 1 and stage 2 sample means, while for the dropped treatments we obtain

only the stage 1 sample mean. As mentioned before, the stage 2 sample mean

is an unbiased estimation, while stage 1 sample mean are biased because of

selection and suffer from either the selection bias and the always reporting bias.

To calculate this estimator we define tS = n1S
n1S+n2S

as the information fraction

at the interim analysis. Therefore, for the selected treatments the estimation is:

δ̂S,N = tS X̄1S + (1− ts)X̄2S

while for the dropped ones it is simply δ̂i ,N = X̄1i .

In the following, we are going to compare the performance of this estima-

tion with the others’. We will see estimators that eradicate the bias but have a

high variance, estimators that reduce the bias with a small effect on variance

and estimators that estimate the bias of the MLE to subtract it from the MLE.
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3.1. Treatment Selection

3.1.2 Uniformly Minimum Variance Conditionally Unbiased Es-

timator

We explore the first kind of estimator that handles the bias in treatment effects

estimation: Uniformly Minimum Variance Conditionally Unbiased Estimator,

or UMVCUE. This type of estimator, as the name suggests, is unbiased. It is

based on a process of Rao-Blackwellization that actually eradicated the bias.

However, it has the drawback of being highly variable, which results in high

value of MSE.

Following the work of Cohen and Sackrowitz [6] and Bowden and Glimm [3]

for the case of treatment selection, we use the following notations: we index

by (1) the treatment for which the stage 1 sample mean X̄1(1) is the maximum

of X̄1 = (X̄11, ..., X̄1K ), δ(1) its true mean and X̄2(1) its stage 2 sample mean; we

index by (2) the treatment for which the stage 1 mean X̄1(2) is the second-largest

element of X̄1, δ(2) and X̄2(2) its true mean and stage 2 sample mean; and so on

until X̄1(K ), δ(K ) and X̄2(K ) correspond to the minimum of X̄1. We define the

Uniformly Minimum Variance Conditionally Unbiased Estimator to be:

δ̂( j ),U MV CU E = δ̂( j ),N −
τ2

2( j )√
τ2

1( j ) +τ2
2( j )

φ(W j , j+1)−φ(W j , j−1)

Φ(W j , j+1)−Φ(W j , j−1)

Whereφ andΦ are the probability density function and the cumulative den-

sity function of the normal distribution and W j ,p =
√
τ2

1( j )+τ2
2( j )

τ2
1( j )

(
δ̂( j ),N − X̄1(p)

)
.

We set conventionally that X̄1(0) := +∞ and X̄1(K+1) := −∞. Note that by our

notation τ2
1( j ) is the variance of the j-th largest element of X̄1 and τ2

2( j ) the stage

2 one for the corresponding element.

3.1.3 Shrinkage Estimators

The second type of estimators studied in this work are Shrinkage Estimators.

The aim of this type of estimators is to have a reduction in the bias, with re-
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3.1. Treatment Selection

spect to a naive estimation, not increasing the variance. The most important

aspect of these estimator is that they shrink the stage 1 estimations towards

their overall mean.

We recall from the previous chapter that while the stage 2 means provide

an unbiased estimation of the effectiveness of the treatments, stage 1 estima-

tions are biased because of selection. Since the selection bias which affects the

selected treatment is positive and the always-reporting bias which affects the

dropped treatments is negative, the idea behind these estimators is that shrink-

ing the estimations towards the overall mean will reduce both.

Shrinkage Estimator following the work of Carreras and Brannath

The first shrinkage estimator we consider is the one by Carreras and Brannath

[5]. We add the following notations: we define X̄1· = 1
K

∑K
i=1 X̄1i as the overall

stage 1 mean. The shrinkage estimator is calculated as:

δ̂i ,S1 = ts[Ĉ+X̄1i + (1− Ĉ+)X̄1·]+ (1− ts)X̄2i

if i is selected, or δ̂i ,S1 = [Ĉ+X̄1i + (1−Ĉ+)X̄1·] otherwise, with Ĉ+ defined as

follows.

If K ≥ 4:

Ĉ+ = max(0,Ĉ ), Ĉ = 1− (K −3)σ2

n
∑K

j=1

(
X̄1 j − X̄1·

)2

While if K = 2,3:

Ĉ+ = max(0,Ĉ ), Ĉ = 1− (K −1)σ2

n
∑K

j=1

(
X̄1 j − X̄1·

)2
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3.1. Treatment Selection

Shrinkage Estimator following the work of Brünckner et al.

The second shrinkage estimator we analyse, which is derived in a Bayesian

framework, is the one by Brückner et al. [4]. We suppose to have a prior dis-

tribution of the vector δ, which is a Multivariate Normal MV N (µ, ν2IK ), that is

updated with the data X̄ 1 ∼ MV N (δ,ΣX ), to get a posterior estimation for δ.

This estimation is CX̄ 1 + (IK −C)µ, where C = IK −ΣX (ν2IK +ΣX )−1.

The ΣX is a diagonal matrix containing the τ2
1i on the diagonal. We de-

fine the prior mean µ as a vector of length K containing X̄1·, the overall stage

1 mean. The core of the method is to derive a sensible value for ν2 using an

iterative approach. Defining D to be the diagonal matrix with the eigenvalues

of ΣX (in this case D = ΣX , but it is not the case in sub-population selection)

and ν̂2 as an initial guess, we iteratively proceed:

• Step 1: Define weights wi = (ν̂2 +D2
i i )−1 for i = (1, ...,K ).

• Step 2: Update the estimate calculating ν̂2 =
∑K

i=1 wi [(X̄1i−X̄1·)−D2
i i ]∑K

i=1 wi
.

• Go back to step 1 using the updated ν̂2.

When the iterative approach converges, we get a solution ν̃2. Since this so-

lution might be negative, ν̃2+ = max(0, ν̃2) is used to calculate C̃+ = IK −ΣX (ν̃2+I+
ΣX )−1. Then the stage 1 estimator is:

δ̂
St ag e1
S2 = C̃+X̄ 1 + (IK −C̃+)X̄1·

This is the estimator of δ̂i ,S2 if i is not selected. For the selected treatments

instead:

δ̂i ,S2 = ts δ̂
St ag e1
i ,S2 + (1− ts)X̄2i
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3.1. Treatment Selection

3.1.4 Bias-Adjusted Estimator

The last type of estimator we compare in this work is Bias-Adjusted Estimator.

This estimator follows the work of Whitehead [16] and Stallard and Todd [15]

and the main idea behind this procedure is to estimate the bias of the current

estimator and subtract it from the estimation. In this work, we compare two

approaches: the single-iteration estimator and the multi-iteration estimator.

The single-iteration estimator is calculated as follows:

δ̂i ,SI = δ̂i ,N − b̂i (δ̂N )

Where b̂i (δ̂N ) is an estimation of the bias of the Naive Estimator.

In the multi-iteration approach, we would continue estimating the bias of

the new estimation and subtracting it, iteratively, until convergence.

Since the single-iteration approach is just a special case of the multi-iteration,

in the following we consider a generic iteration with estimation δ̃. In the case

of treatment selection, it can be shown that the bias of the selected treatments

is:

bS(δ̃) = ts(E [X̄1S |S]− δ̃S)

Where the expectation is conditioned on the fact that S is selected. For the

other treatments:

bi (δ̃) = (E [X̄1i |S]− δ̃i )

To estimate the value of b(δ̃), the vector of bi (δ̃) for i = (1, ...,K ), we need

to estimate the single E [X̄1i |S]. This is computationally expensive, because
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3.1. Treatment Selection

it involves multiple-integration. However, given the treatment arms are as-

sumed independent, using the probability density function or cumulative den-

sity function of the Normal distribution permits to simplify the calculations, al-

lowing to compute only a single integral. In the following, an example is made

to better understand how this calculation can be performed.

Example

We consider a case of adaptive design with treatment selection where K = 3 and

S = 1, meaning that we have three treatments and the first is the selected. δ̃ is

our current estimate, while τ1 is assumed to be known. We can calculate the

probability of selecting the first treatment as follows:

P (S = x11) =
+∞∫

−∞

x11∫
−∞

x11∫
−∞

f (x11, x12, x13)d x13 d x12 d x11 =

+∞∫
−∞

φ

(
x11 − δ̃1

τ11

)
Φ

(
x11 − δ̃2

τ12

)
Φ

(
x11 − δ̃3

τ13

)
d x11

Where f is a multivariate normal density with mean δ̃ and variance-covariance

matrix ΣX = τ1IK , φ the probability density function of a standard normal dis-

tribution andΦ its cumulative density function.

The main concept of this integration is that while the integral over x11 is

from −∞ to +∞ because it can take any value, the other two treatments must

have their effect lower than x11’s, for this to be selected. Moreover, since the

three random variables are independent, the integral over x12 and x13 can be

transformed using the cumulative density function of the normal to simplify

the calculations.

Now it is straightforward to calculate the expected value of x11:

16



3.2. Sub-Population Selection

E(x11|S = x11) = 1

P (S = x11)

+∞∫
−∞

x11∫
−∞

x11∫
−∞

x11 f (x11, x12, x13)d x13 d x12 d x11 =

1

P (S = x11)

+∞∫
−∞

x11φ

(
x11 − δ̃1

τ11

)
Φ

(
x11 − δ̃2

τ12

)
Φ

(
x11 − δ̃3

τ13

)
d x11

It is also possible to calculate the expected value of one of the other treat-

ments, for example x12:

E(x12|S = x11) = 1

P (S = x11)

+∞∫
−∞

x11∫
−∞

x11∫
−∞

x12 f (x11, x12, x13)d x13 d x12 d x11 =

1

P (S = x11)

+∞∫
−∞

φ

(
x11 − δ̃1

τ11

) x11∫
−∞

x12φ

(
x12 − δ̃2

τ12

)
d x12

Φ(
x11 − δ̃3

τ13

)
d x11

After these calculations are completed, the expected values estimated in

this procedure can be used in the estimation of the bias to calculate the esti-

mator.

3.2 Sub-Population Selection

Some small changes arise when dealing with sub-population selection. The

main difference is that the sub-populations are not independent anymore.

Following the work of Kimani et al. [10], we divide the population into

K partitions according to some biomarker value. In particular, we define K

threshold values such that the patients inside a partition have a biomarker value

between the upper and lower thresholds. Instead, the sub-population consists

in the patients below the corresponding threshold. This way, sub-population K
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3.2. Sub-Population Selection

will correspond to the total population; sub-population K −1 will be a portion

of population K ; and so on. Using the notation Si for i = (1, ...,K ) to indicate

the sub-population, we notice that S1 ⊆ S2 ⊆ ... ⊆ SK−1 ⊆ SK .

We suppose that the N1 patients are split between the K partitions, with

n1i for i = (1, ...,K ) the number of patients in each partition in stage 1, which

are considered equal n11 = n12 = ... = n1K = N1
K . In each of these partitions,

half of the patients are given a control and the other half are given the treat-

ment. As in the previous case, the patients’ outcome is considered normal

with mean difference equal to δ1 ≥ δ2 ≥ ... ≥ δK with a common variance σ2.

This means that the partition with smaller biomarker value is more affected

by the treatment. The stage 1 sample mean will therefore be normally dis-

tributed X̄1i ∼ N (δi , τ2
1i ), where τ2

1i = 4σ2

n1i
. When sub-population S is selected

it means that only the first S partitions pass to the second stage. In this case

n21 = n22 = ... = n2S = N2
S and n2i ′ = 0 for i ′ = (S +1, ...,K ). Also stage 2 sample

means will be distributed like X̄2i ∼ N (δi , τ2
2i ), where τ2

2i = 4σ2

n2i
.

However, in the case of sub-population selection we are not interested in

the effect that the drug has on the partition, but on the sub-population. There-

fore, it is needed to have estimations about the effect on sub-population. That

can be done in two different ways: estimating directly the effect on the sub-

populations, or calculating it from the effect on partitions. Defining pi = n1i
N1

and p̃i = ∑i
i ′=1 pi ′ for i = (1, ...,K ), we can create a matrix that links the effects

on the partition δi to the effect on the sub-population θi . This matrix B is a

K xK matrix where Bi j = 0 if i < j and Bi j = p j

p̃i
if i ≥ j . The vector of effects on

sub-population θ is equal to θ = Bδ. Analogously, we can define the number

of patients in each sub-population as m1i = ∑i
i ′=1 n1i ′ for i = (1, ...,K ), m2i =∑i

i ′=1 n2i ′ for i = (1, ...,S). Now, we see that Ȳ 1 = BX̄ 1 and Ȳ 2 = B|SxS X̄ 2 (where

B|SxS indicates the first SxS elements of the B matrix) are the stage 1 and stage 2

sub-populations’ means, which are also normally distributed: Ȳ1i ∼ N (θi , σ2
1i ),

where σ2
1i = 4σ2

m1i
; Ȳ2i ∼ N (θi , σ2

2i ), where σ2
2i = 4σ2

m2i
.

The adaptation at the interim analysis is as follows: if all the sub-populations

at the interim analysis have a mean difference lower than a futility threshold b
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3.2. Sub-Population Selection

(Ȳ1i ≤ b ∀i ∈ (1, ...,K )), the trial is stopped; instead, if the trial is not stopped,

the biggest sub-population with a mean difference greater than b is selected.

3.2.1 Naive Estimation

In this case, the naive estimation is very similar to the previous case: it is suf-

ficient to calculate the δ̂i ,N i = (1, ...,S) as in the treatment selection case and

then use the matrix B to calculate θ̂N = Bδ̂N .

3.2.2 UMVCUE following the Work of Roberston et al. and Ki-

mani et al.

In this setting, the estimator has to account for the stop for futility. We can

proceed in two ways: estimating directly θS or estimating the δi for i = (1, ...,S)

and then use the matrix B to find an estimation for θS .

The estimator for θS has been given by Robertson et al. [14]

θ̂S,U MV CU E = θ̂S,N − σ2
2S√

σ2
1S +σ2

2S

φ(g (b))−φ(g (U ))

Φ(g (b))−Φ(g (U ))

Where g (b) =
√
σ2

1S+σ2
2S

σ2
1S

(
θ̂S,N −b

)
, g (U ) =

√
σ2

1S+σ2
2S

σ2
1S

(
θ̂S,N −U

)
and

U = mi n

{
p̃S+1b−pS+1 X̄1,S+1

p̃S
,

p̃S+2b−∑S+2
i=S+1 pi X̄1i

p̃S
, ...,

p̃K b−∑K
i=S+1 pi X̄1i

p̃S

}
or +∞ when

S = K .

The estimator for δi for i = (1, ...,S) is given by Kimani et al. [9]:

δ̂i ,K I M AN I = δ̂i ,N − τ2
2i√

τ2
1i +τ2

2i

φ(g ′(Vi ))−φ(g ′(Qi ))

Φ(g ′(Vi ))−Φ(g ′(Qi ))
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3.2. Sub-Population Selection

Where we set g ′(Vi ) =
√
τ2

1i+τ2
2i

τ2
1i

(
δ̂i ,N −Vi

)
, g ′(Qi ) =

√
τ2

1i+τ2
2i

τ2
1i

(
δ̂i ,N −Qi

)
,

Vi = 1
pi

(
p̃Sb −∑S

j=1, j 6=i p j X̄1 j

)
. Qi is equal to +∞ if S = K or in any other case

Qi = mi n

{
p̃S+1b−∑S+1

j=1, j 6=i p j X̄1 j

pi
,

p̃S+2b−∑S+2
j=1, j 6=i p j X̄1 j

pi
, ...,

p̃K b−∑K
j=1, j 6=i p j X̄1 j

pi

}
.

Eventually, θ̂S,K I M AN I is the S-th element of the vector B|SxS δ̂K I M AN I .

3.2.3 Shrinkage Estimators

In this case, the Shrinkage Estimator of Carreras and Brannath can be calcu-

lated as in the treatment selection case and then θ̂S1 can be estimated via the

matrix B.

Also the procedure of Brünckner et al. is analogous. The only differences

are that δ is substituted by θ, which we need to estimate, and X̄ 1 and X̄ 2 are

substituted by Ȳ 1 and Ȳ 2.

3.2.4 Bias-Adjusted Estimator

In the case of sub-population selection, since we are selecting a sub-population

and not a partition, the bias at a general iteration is shown to be equal to:

bi (θ̃) = tS(E [Ȳ1i |S]− θ̃i ) i = (1, ...,S)

bi (θ̃) = (E [Ȳ1i |S]− θ̃i ) i = (S +1, ...,K ),

Now we have to calculate the E [Ȳ1i |S] for i ∈ (1, ...,K ) to estimate this bias.

To better understand the procedure we make an example.
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3.3. Sub-Population Selection with Time to Event Data

Example

Consider the case where K = 3 sub-populations are compared and where sub-

population S = 2 is selected. We can calculate the probability of selecting that

sub-population as follows:

P (S = y12) =
+∞∫

−∞

+∞∫
b

b∫
−∞

f (y11, y12, y13)d y13 d y12 d y11

Where f is the density of a multivariate normal distribution with mean θ̃

and variance-covariance matrixΣY = BΣX B T , whereΣX =τ1IK and B are known.

In this case since S = 2, y11 can take any value and its integral is from −∞ to

+∞. On the other hand, y12 is greater than b since it is selected, while y13 is

lower than b since it is not selected. Analogous arguments can be made while

calculating the expected values:

E(y12|S = y12) = 1

P (S = y12)

+∞∫
−∞

+∞∫
b

b∫
−∞

y12 f (y11, y12, y13)d y13 d y12 d y11

E(y13|S = y12) = 1

P (S = y12)

+∞∫
−∞

+∞∫
b

b∫
−∞

y13 f (y11, y12, y13)d y13 d y12 d y11

More details about the calculations can be found in the supplementary ma-

terial of Kimani et al. [10].

3.3 Sub-Population Selection with Time to Event Data

Now we investigate the setting of sub-population selection with time to event

data. This setting is very common in oncological or cardiovascular illnesses
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3.3. Sub-Population Selection with Time to Event Data

treatment. In this case, we follow the work of Kimani et al. [11] on time to event

data.

The idea is, like in the previous case, to split the data according to some

biomarker value and analyse the different sub-populations separately. For sim-

plicity, we consider the different partitions coincident with the sub-populations:

we call Pi for i = (1, ...,K ) the sub-population/partition and we notice that Pi ∩
P j = ; ∀(i 6= j ). We again define K threshold values such that the patients in-

side a partition have a biomarker value between the upper and lower thresholds

and n1i and n2i for i = (1, ...,K ) the number of patients in each partition at stage

1 and stage 2 respectively. Note that these findings could be easily extended to

the case presented in the previous section, where the largest population is se-

lected.

In each partition, there are some patients who have been given the placebo

and some patients who have been given the treatment. The measure we want to

estimate is the log hazard ratio (LHR), defined as δi = ln
(

ht i (t )
hci (t )

)
for i = (1, ...,K ),

with ht i (t ) and hci (t ) are the hazard functions of the treatment and the control

in group i , respectively. This estimation is done via a Cox proportional hazard

model. We consider here that a negative value of the LHR corresponds to a re-

duction of risk of event with the treatment, i.e. that the treatment is effective

with respect to the placebo; if the LHR in one group is lower than in the other,

it means the treatment is more effective in that sub-population. The LHR is

usually assumed to be normally distributed, with stage 1 and stage 2 estima-

tors δ̂1i ∼ N (δi , τ2
1i ) and δ̂2i ∼ N (δi , τ2

2i ) for i = (1, ...,K ); also τ̂2
1i and τ̂2

2i are

estimated from the Cox model.

In this setting, there is one main aspect that needs to be pointed out: at the

interim analysis, some stage 1 patients may not have had the event of interest

yet. If we continue the analysis carrying these patients to stage 2, stage 1 and

stage 2 data will be correlated, inducing some bias in the estimation. In many

analyses, this correlation is considered as negligible, the stages are considered

independent and patients are followed until the end of the trial. To avoid any

correlation, patients from stage 1 would have to stop the study at the interim
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3.3. Sub-Population Selection with Time to Event Data

Figure 3.1: The follow-up of the patients. Retrived from Kimani et al. [11]. The

black dots represent patients who had the event, the white dots those who have

not. At the interim analysis, some stage 1 patients have had the event, while

others have not. Those last ones are followed up to t̃1. Stage 2 patients, re-

cruited after the interim analysis, are followed until the end of the trial.

analysis. However, this is obviously not ethical and not applicable in practice.

Instead, we use an intermediate rule. Consider t1 the time of the interim anal-

ysis and t2 the end time of the trial, usually defined when a certain number of

patients had the event. We define t̃1 (such that t1 ≤ t̃1 ≤ t2) the time until which

the stage 1 patients are followed. This way, we avoid much of the correlation

and we can obtain more accurate estimations. In Figure 3.1 we have a graphi-

cal representation of this rule, retrieved from Kimani et al. [11].

Also in this case we specify a selection rule: given a threshold value b, each

sub-population Pi i ∈ (1, ...,K ) does not continue to stage 2 if its stage 1 estima-

tion is greater than b (δ̂1i ≥ b); if all sub-populations satisfy this condition the

trial is stopped for futility. We identify as S the set of selected sub-populations.

23



3.3. Sub-Population Selection with Time to Event Data

3.3.1 Naive Estimation

The naive estimation, which do not take into account the selection process, can

be retrieved from the estimators of Cox proportional hazard model:

δ̂S,N = τ̂2
1S δ̂1S + τ̂2

2S δ̂2S

τ̂2
1S + τ̂2

2S

∀S ∈S

while it is simply δ̂i ,N = δ̂1i ∀i ∉S .

This estimation, like in the previous cases, is biased because of selection

process. However, there is also a component of the bias which comes from the

use of stage 1 patients also in stage 2, which induces a correlation between the

stages. In the following, we focus only on handling the selection bias while the

correlation bias is left.

3.3.2 UMVCUE following the Work of Kimani et al.

Following the work of Kimani et al. [11] we calculate an estimator which han-

dles the selection bias. However, because of the correlation bias, this estimator

would not be perfectly unbiased.

δ̂S,U MV CU E = δ̂S,N − τ̂2
2S√

τ̂2
1S + τ̂2

2S

φ(g (L))−φ(g (b))

Φ(g (L))−Φ(g (b))

Where g (x) =
√
τ̂2

1S+τ̂2
2S

τ̂2
1S

(
δ̂S,N −x

)
and L =−∞.

3.3.3 Shrinkage Estimators

In this case, the Shrinkage Estimators of Carreras and Brannath and Brünckner

et al. can be calculated as in the treatment selection case, using the estimations
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3.3. Sub-Population Selection with Time to Event Data

from Cox proportional hazard model. The LHRs will be shrinked towards the

overall mean LHR.

3.3.4 Bias-Adjusted Estimator

The procedure for the bias-adjusted estimator is similar to the previous cases:

we iteratively subtract an estimation of the bias from the estimation. Also in

this case, we compare both single-iteration and multiple-iteration approaches.

The bias at a general iteration is equal to:

bi (δ̃) = ti (E [δ̂1i |S]− δ̃i ) i ∈S

bi (δ̃) = (E [δ̂1i |S]− δ̃i ) i ∉S

Now we have to calculate the E [δ̂1i |S] i ∈ (1, ...,K ) to estimate this bias. Since

in this setting we consider independent sub-populations, the calculation is as

follows:

E [δ̂1i |S] =
b∫

−∞
x φ

(
x − δ̃i

τ̂1i

)
d x i ∈S

E [δ̂1i |S] =
∞∫

b

x φ

(
x − δ̃i

τ̂1i

)
d x i ∉S

where φ is the probability density function of a normal distribution. As a

reminder, in this formula, a sub-population is selected if the treatment has a

LHR lower than b, while it is dropped if not.
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Chapter 4

Simulations

In this Chapter, we are comparing via simulations the performances of the es-

timators presented in the previous chapter. The results are compared in three

different settings: treatment selection with normally distributed endpoint, sub-

population selection with normally distributed endpoint, sub-population se-

lection with time to event endpoint.

We compare the various estimators in terms of Bias, Variance and Mean

Squared Error (MSE). The bias is our main interest: the objective of this re-

port is to identify and handle bias. However, another crucial point is the vari-

ance: an Estimator which has low Bias but high Variance may not be informa-

tive enough on the treatment effect to make a decision, and may not be pre-

ferred to one with higher Bias but low Variance. The sum of the Variance and

the Bias Squared is the MSE, which summarises up the information previously

obtained.

4.1 Treatment selection with normally distributed endpoint

In the Treatment Selection case, to evaluate the performance of the estimators,

we consider a base-case adaptive design setting in which we make vary some

characteristics to assess their impact on the results.

Following the methodology in section 3.1, we consider a clinical trial in
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4.1. Treatment selection with normally distributed endpoint

which we compare K = 4 treatments (e.g. doses) to a control, with a primary

endpoint normally distributed and a common standard deviation of σ = 5.4.

One interim analysis is conducted during the trial at which all treatments are

compared to the control, and only the best treatment and the control arms

continue in stage 2. In the control and the selected arm, N = 100 patients per

arm will be included. We analyse the performances of the estimators when the

interim analysis is made, with three different scenarios: information fraction

of 1
3 , 1

2 and 2
3 , i.e. when N1 = 33, N1 = 50 and N1 = 66 are included in each

treatment arm in stage 1, respectively. We also consider three scenarios regard-

ing the treatment effect: all treatments are ineffective δ = (0,0,0,0); only one

treatment is effective δ = (0,0,0,3); treatments are linearly increasing in effec-

tiveness δ = (1,2,3,4). In all scenarios, the control group has no effect δc = 0.

In each scenario we run 50000 simulations and the results (bias, variance and

MSE) are given in units of approximate standard errors SE =
√

σ2

N .

In Figure 4.1 the results of the simulations are shown:

• The Naive Estimation (N) has the highest Bias but low Variance, resulting

in overall average MSE.

• The Unbiased Estimator (UMVCUE) has zero Bias but has high Variance,

resulting in high MSE.

• The Single-Iteration Bias-Adjusted Estimator (SI) has low positive Bias

and slightly more Variance with respect to the MLE, resulting in an overall

lower MSE with respect to MLE.

• The Multiple-Iteration Bias-Adjusted Estimator (MI) has high negative

bias (almost the same magnitude as the MLE) and high Variance, result-

ing in high MSE.

• The Shrinkage Estimator of Carreras and Brannath [5] (S1) has a positive

Bias in the case of no effective treatments and linear effectiveness, but

this is lower in magnitude with respect to MLE. In the case of only one

effective treatment it has negative Bias. This may be due to the fact that
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4.1. Treatment selection with normally distributed endpoint

Figure 4.1: Estimators’ Performance in Treatment Selection with Normally Dis-

tributed Endpoints. Top Row: No Effective Treatment; Middle Row: One Effec-

tive Treatment; Bottom Row: Linear Effects of Treatments. Left Column: Bias;

Centre Column: Variance; Right Column: Mean Squared Error.
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it tends to Shrink towards the overall mean, which would be small in this

case (driven by the non-effective treatments). It is one of the best per-

forming in terms of Variance, resulting in low MSE too.

• The Shrinkage Estimator of Brunckner et al. [4] (S2) has low positive

Bias in the no effective treatment scenario, but negative bias in the lin-

ear effectiveness scenario and higher negative bias in the one effective

scenario. It performs well in terms of Variance, but the MSE is greatly

affected by the Bias.

In this case, we suggest that the best performing Estimators are the Single-

Iteration Bias-Adjusted Estimator and the Unbiased Estimator. The SI performs

well in terms of Bias and has relatively low Variance, resulting in good MSE.

Instead, the UMVCUE has high Variance and MSE, but completely eradicates

the Bias, which is our primary scope and is of interest to understand the extent

of the bias induced by the selection.

4.2 Sub-population selection with normally distributed end-

point

The second context in which we are going to assess the estimators’ perfor-

mances via simulations is the Sub-Population Selection (for the methodology

used we refer to section 3.2). Our setting is very similar to the one of Kimani

et al. [10], where we have 4 sub-populations and two treatment arms: effective

dose and placebo. One interim analysis is done with sub-population selection,

based on a normally distributed endpoint. We consider three different scenar-

ios: linear effects in the partitions δ= (−0.2,−0.1, 0 ,0.1), effectiveness in only

one partition δ = (0 ,0 ,0 ,0.1) and no effects in all partitions δ = (0 ,0 ,0 ,0).

The overall variance is σ2 = 1, the threshold is set to b = 0 and we have a total

of N = 720 patients. Also in this case, we consider the interim analysis at three

different moments, when the information fraction is equal to 1
3 (N1 = 240), 1

2

(N1 = 360) and 2
3 (N1 = 480) and performed 50000 simulations for each case.
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4.2. Sub-population selection with normally distributed endpoint

Note that the N1 patients are evenly assigned to each arm and partition and,

after the interim analysis, the N2 = N −N1 patients are evenly assigned to each

arm and selected partition.

In Figure 4.2 we see the performances of the sub-population effect estima-

tion compared in terms of Bias, Variance and MSE in units of approximate Stan-

dard Error:

• The Naive Estimation (N) has the highest bias in almost all the scenarios,

but also one of the lowest Variances, good performing in terms of MSE.

• The Unbiased Estimator by Robertson et al. [14] (UMVCUE) has zero Bias

but High Variance, resulting in high MSE.

• The Unbiased Estimator by Kimani et al. [9] (UMV) has also zero Bias

but Higher Variance with respect to the previous one, resulting in higher

MSE.

• The Single-Iteration (SI) and Multiple-Iteration (MI) Bias-Adjusted Esti-

mators have small Bias, but slightly more Variance with respect to Naive

Estimation, resulting in little more MSE than the latter. Among the two,

the Single-Iteration is preferred because it is faster to compute and per-

forms better in terms of Bias.

• The two Shrinkage Estimators (S1, S2) performs very similar to the Naive

Estimation: among the two, the one from Carreras and Brannath [5] is

preferable (lower MSE when effects are linear).

In this case, we also recommend the Single-Iteration Bias-Adjusted Estima-

tor and the Unbiased Estimator by Robertson et al. [14]. The former performs

well in terms of Bias, Variance and MSE; the latter eradicates the Bias at the

expense of higher Variance and MSE.
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Figure 4.2: Estimators’ Performance in Sub-Population Selection with Normally

Distributed Endpoints. Top Row: No Effective Treatment; Middle Row: One

Effective Treatment; Bottom Row: Linear Effects of Treatments. Left Column:

Bias; Centre Column: Variance; Right Column: Mean Squared Error.
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4.3 Sub-population selection with time to event endpoint

The last context we consider is a Sub-Population Selection with Time to Event

endpoint, following the methodology of section 3.3. In this case, let consider 3

sub-populations and two treatment arms: effective dose and placebo. Patients

are recruited evenly from the 3 sub-populations during a period of maximum 3

years and equally assigned to the arms. We suppose that the hazard function is

constant for all the treatments and equal to hc = 0.0005 for the control. Three

cases of LHR are analysed: treatment ineffective in all partitions δ = (0,0,0);

treatment effective only in one partition δ = (0 ,0 ,−0.3); linear effect on the

partitionsδ= (−0.1,−0.2,−0.3). For all the cases, the threshold is set to b =−0.1

and 5000 simulations are performed.

The total number of events is calculated to detect a hazard ratio of 0.8 reach-

ing a power of 80% with a two-sided type 1 error of 5%. Thus, we set that: the

time of the interim analysis t1 is after 316 events; the time until stage 1 patients

are followed in stage 2 t̃1 is set 6 months after the first interim analysis; the end-

ing time of the trial t2 is set when all 632 events occur.

In Figure 4.3 the results are shown:

• The Naive Estimation (N) has the highest Bias but very low Variance, re-

sulting in overall average MSE.

• The Unbiased Estimator (UMVCUE) has approximately zero Bias but the

highest Variance, resulting in the highest MSE.

• The Single-Iteration (SI) and Multiple-Iteration (MI) Bias-Adjusted Esti-

mator have similar performances: they have very small Bias, but more

Variance with respect to Naive Estimation, resulting in MSE comparable

to Naive Estimation. Among the two, the Single-Iteration performs better

in terms of Bias.

• The two Shrinkage Estimators (S1, S2) perform similarly: they have some

Bias (lower than Naive Estimation) but the lowest Variance, resulting in

the lowest MSE.
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Figure 4.3: Estimators’ Performance in Sub-Population Selection with Time to

Event Endpoint. Top Row: No Effective Treatment; Middle Row: One Effective

Treatment; Bottom Row: Linear Effects of Treatments. Left Column: Bias; Cen-

tre Column: Variance; Right Column: Mean Squared Error.
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In this third case, the suggestion is again to use the Single-Iteration Bias-

Adjusted Estimator and the UMVCUE. The first has low Bias and reasonable

Variance, resulting in MSE similar to Naive Estimation; the latter eradicates the

Bias, but has very high Variance and MSE.
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Chapter 5

Case Studies

In this Chapter, we describe two main applications of the estimators analysed

previously on Alzheimer Disease and Heart Failure. Both of these case stud-

ies have been used to construct the previous simulations, where similar effects

have been used. The methodology of the case-study Alzheimer’s Disease fol-

lows Section 3.1, while the methodology for the case-study Heart Failure follows

Section 3.3.

5.1 Alzheimer Disease

The first case study is about a trial for Alzheimer’s disease treatment. In this

trial, K = 4 doses of an experimental treatment are compared against a control.

The primary endpoint is the ADAS-Cog change from baseline at week 24, as-

sumed normally distributed. The interim analysis is planned after N1 = 270 pa-

tients, equally split in the 5 arms. The stage 1 maximum-likelihood estimations

of the treatment-placebo differences are reported in Table 5.1. In this case, from

MLE, the dose 4 is selected to proceed with the placebo to stage 2. The number

of patients recruited in stage 2 is N2 = 109, split in the two arms. The result of

the stage 2 estimation is also reported in Table 5.1.

Using these data, the different estimators for the dose 4 effect versus placebo

at the end of the study are reported in Figure 5.1.
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Dose 1 Dose 2 Dose 3 Dose 4

Stage 1

Mean (SE)

1.178

(1.062)

1.159

(1.062)

2.041

(1.062)

3.157

(1.062)

Stage 2

Mean (SE)

- - - 3.334

(1.270)

Table 5.1: Stage 1 and Stage 2 Treatment-Placebo Difference Estimations for

Alzheimer Disease

Figure 5.1: Estimations for Alzheimer Disease

As can be seen in Figure 5.1, both the UMVCUE and single-iteration bias-

adjusted estimator reduce the optimism of the naive estimation. The first shrink-

age estimator and the multi-iteration bias-adjusted estimator are even more

conservative. The second shrinkage estimator seems outside the box giving a

very conservative estimation: this seems in accordance with the simulations

made in the case of only one effective treatment, which is similar to our case.

5.2 Heart Failure

The second case study regards a treatment on heart failure. In this case, an

experimental treatment is compared to placebo, and the initial patient popu-
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lation is partitioned in K = 3 sub-populations according to the baseline heart

rate: low heart rate (below 75 bpm); medium heart rate (between 75 and 81

bpm); high heart rate (above 81 bpm). The primary endpoint is the time from

randomisation to cardiovascular death or hospital admission for worsening of

heart failure. The main analysis is a Cox proportional hazard model adjusted for

previous beta-blocker intake at randomisation, and the treatment effect is esti-

mated using the hazard ratio between the two treatment arm. The interim anal-

ysis is done after 630 events occurred and the stage 1 patients are followed for

13 months after the analysis; the trials stops when 1260 events have occurred.

The futility threshold on the log-hazard ratio scale is set to b =−0.1.

In Table 5.2 we can see that only the low heart rate sub-population is dropped

at the interim analysis, while the others continue to stage 2. With the data from

Table 5.2 we can proceed with the estimation of the treatment effect in the se-

lected sub-populations at the end of the study, the results of which are shown

in Figure 5.2:

• For the sub-population with medium heart rate, we see that the UMVCUE

and single-iteration bias-adjusted estimator provide more conservative

estimations with respect to the naive one. Also, the multi-iteration bias-

adjusted estimator is less optimistic but does not vary very much from the

previous two. On the other hand, the two shrinkage estimators provide

much more conservative estimations.

• For the high heart rate sub-population, we see that the naive estima-

tion is indeed the most optimistic, but the UMVCUE, single-iteration and

multiple-iteration bias-adjusted estimators do not provide a hugely dif-

ferent estimation, remaining close to each others. The shrinkage estima-

tors provide a more conservative estimation, instead.
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5.2. Heart Failure

Log HR Low Heart

Rate

Medium

Heart Rate

High Heart

Rate

Stage 1

(SE)

-0.075

(0.155)

-0.397

(0.150)

-0.358

(0.121)

Stage 2

(SE)

- -0.086

(0.122)

-0.363

(0.107)

Table 5.2: Stage 1 and Stage 2 Estimations for Heart Failure

Figure 5.2: Estimations for Heart Failure
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Chapter 6

Conclusions

In this work, we investigated how to identify and handle the bias in treatment

effect estimation in adaptive designs. We identified the source of bias in the

selection process that occurs at interim analyses. Two main type of bias are de-

scribed: the selection bias, a positive bias that affects the selected treatments

and the always reporting bias, a negative bias that affects the dropped treat-

ments. We were mainly interested in handling the selection bias, using several

estimators found in literature [3, 4, 5, 15]. We studied the properties of these

estimators and their performances in different ways: several scenarios were

analysed, like treatment selection, sub-population selection with normally dis-

tributed endpoint and sub-population selection with time-to-event endpoint;

also, we described selection rules based on the most effective treatment, or de-

termined by a futility threshold.

We conducted an extensive simulation study in order to compare the per-

formances of the estimators in terms of bias, variance and mean squared error.

Of course, the bias is of primary interest, but also the variability is of great in-

terest: a low biased but highly variable estimation may not be preferred over

a slightly more biased but much less variable one. We recommend in all the

cases to present the unbiased estimator and the single-iteration bias-adjusted

estimator: the former completely eradicates the bias, but is highly variable with

respect to a naive estimation; the latter is less biased than a naive estimation,
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but only slightly more variable. Thus, this two estimators are the suggested for

a general application.

For completeness, two appendices are added to this work: the first focuses

on the construction of simultaneous confidence intervals for the MLE to avoid

overoptimism in treatment effect estimation; the second one focuses on bias in

adaptive designs with sample size reassessment. These set up the ground for

further exploration.
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Appendix A

Confidence Intervals

While the previous discussion focused on the methods to obtain a Point Esti-

mation that handles the Selection Bias in Adaptive Designs, we now move our

attention towards the construction of accurate Confidence Intervals with joint

(1−α) coverage for the naive estimator (α being the type 1 error), addressing

the multiplicity issue (multiplicity of treatment arms or of populations). Us-

ing Confidence Intervals with good coverage is of fundamental importance to

obtain a good appreciation of the uncertainty in the treatment effect estima-

tion. Glimm [8] suggests to use simultaneous confidence intervals for the MLE

to avoid overoptimism towards one or more treatments.

We may consider two options: simultaneous confidence intervals with Sidak

correction or Bonferroni correction. The idea of Sidak is that considering K

tests, independent from each other, the overall coverage of the corresponding

will be the product of the single coverages: (1−αi )K , where αi is the signifi-

cance level of the single test. Since we want to get Simultaneous Confidence

Intervals with joint (1−α) coverage, we find that:

(1−α) = (1−αi )K =⇒ αi = 1− (1−α)
1
K

Therefore, using the significance level of αi = 1−(1−α)
1
K for the confidence

interval of the single comparison, we obtain an overall coverage of (1−α).
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A more stringent correction is the Bonferroni’s one. The idea of Bonferroni

is to have the single Confidence Intervals with a coverage of (1−α
K ). Then, the Si-

multaneous Confidence Intervals, considering independence between the test

statistics, would have (1− α
K )K coverage. If we suppose to have K = 4 tests and

anα= 0.05 level of significance, we see that with Sidak Correction the single In-

terval has significance of αi ,S = 1−(1−α)
1
K = 1−(1−0.05)

1
4 ≈ 0.0127, while with

Bonferroni correction it is of αi ,B = α
K = 0.05

4 = 0.0125. The overall significance

would be αS = 1−(1−αi ,S)K = 0.05 for Sidak and αB = 1−(1−αi ,B )K ≈ 0.049 for

Bonferroni, which is indeed more conservative.

In Figure A.1 and Figure A.2 are reported the Sidak and Bonferroni simul-

taneous confidence intervals for the two case studies analysed in Chapter 5 on

Alzheimer Disease and Heart Failure.
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Figure A.1: Simultaneous Confidence Intervals for Alzheimer Disease

Figure A.2: Simultaneous Confidence Intervals for Heart Failure
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Appendix B

Sample Size Reassessment

Suppose we have a two group comparison with common variance σ2 unknown

and mean µa and µb , respectively. We define δ= µa −µb as the true effect size

and we want to test the one-sided null hypothesis H0 : δ ≤ 0 against the alter-

native HA : δ > 0 at level α. Let δ0 denote the alternative for which the trial is

powered and σ2
0 as an initial guess of the true variance. A first stage per group

sample size equal to n1 ≥ 2 is chosen, based on σ2
0. At the end of the first stage,

a blinded one-sample variance estimation is calculated:

S2
1,OS = 1

2n1 −1

[ ∑
i=a,b

n1∑
k=1

(Xi 1k − X̄ ·1·)2

]

where Xi 1k is observation k = 1, ...,n1 in group i = a,b in stage 1 and X̄ ·1· is

the overall stage 1 mean. This estimation is an unbiased estimation of the true

varianceσ2 when the true effect sizeδ= 0; otherwise, it has a positive bias equal

to δ2n1/(4n1 −2). Using this estimator, a second stage sample size n2(S2
1,OS) is

calculated and used at stage 2: the higher the variance estimate, the higher the

second stage sample size.

Friede and Keiser [7] analysed the performance of the estimator S2
1,OS against

a blinded unbiased estimator that exploited block randomization to eradicate

the bias. They found that this unbiased estimator has higher variability with
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respect to one-sample variance estimator, thus resulting in higher stage 2 sam-

ple size and lower power; also, type I error rate would be inflated. On the other

hand, using S2
1,OS the type I error rate is controlled (superiority trials) or can

be controlled (non-inferiority trials) with available methods. Another option

would be to adjust S2
1,OS using an expected treatment effect, but also in this

case we would have a reduction in power. Therefore, they suggest to use S2
1,OS

for sample size reassessment.

Posch et al. [13] analysed the performance of two sample size reassess-

ment rules: the first uses S2
1,OS as an estimation of variance; the second uses

an adjusted variance estimation which is unbiased under the effect size δ0, i.e.

S2
1,OS −δ2

0n1/(4n1 −2). They are:

nu
2 (S2

1,OS) = mi n

{
n2max ,max

{
n2mi n ,2(z1−α+ z1−β)2

S2
1,OS

δ2
0

−n1 +1

}}

na
2 (S2

1,OS) = mi n

{
n2max ,max

{
n2mi n ,2(z1−α+ z1−β)2

(
S2

1,OS

δ2
0

− n1

4n1 −2

)
−n1 +1

}}

where 1−β is the desired power and n2mi n and n2max are pre-specified sec-

ond stage minimum and maximum sample size.

What they find is that with both rules the bias of confidence intervals may

be large for small first stage sample sizes, but is small otherwise. Under the null

hypothesis, confidence intervals do not exhibit an inflation of non-coverage

probabilities, even for small first stage sample size, while very small inflations

are observed otherwise. Moreover, for positive δ the lower bound of the con-

fidence interval is conservative while the upper one is anti-conservative; for

negative δ the upper bound of the confidence interval is conservative while the

lower one is anti-conservative.

As regards the bias, they find that for the adjusted rule the bias of mean

and variance estimate is bigger than with the unadjusted rule. In both cases,

47



the bias is of opposite sign of the true effect δ and decreasing with first stage

sample size, but always noticeable in the worst cases. Moreover, with increas-

ing effect size the maximum bias of the blinded sample size reassessment rule

approaches the one of the unblinded one. Therefore, also in this case the rec-

ommendation would be to use the unadjusted rule with S2
1,OS as estimation.
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