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nonostante sia stato piú che mai lontano da casa

a Daniele, che mi ha ricordato che casa é sempre li ad accogliermi
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Chapter 1

Abstract

In recent years, the prediction about the shortage of fossil oil, the increase of its extraction price
and the environmental damage caused by its based product has been the reason of a novel wave of
research in the renewable energy-s field. Among the many renewable sources hydrogen has became
quite popular. Indeed, hydrogen combustion give as results heat and water, that can be again
dissociated into oxygen and hydrogen.

2H2 +O2 ⇐⇒ 2H2O + energy

Hydrogen can become an efficient fuel in everyday future life but there are some issues related to
this particular use. It should be accumulated in his liquid form which is extremely flammable and
the currently used hydrogen production methods, namely the dissociation of a water molecule into
hydrogen and oxygen, are energetically expensive. The most common hydrogen production method
is steam reforming from hydrocarbons. This method releases CO2 during the process and does not
self-sustain itself so an external power supply is needed. Generally this power supply is obtained
by combustion of other fuels[4]. An alternative method to produce hydrogen is the photon-induced
hydrolysis, that is an hydrolysis process induced by solar energy.
Hydrolysis has gained a lot of attention in recent years because it would allow to directly convert
solar energy, which is an almost infinite source of energy, into the chemical energy needed to break
down water molecules[8]. The basic idea is to use the photogenerated hot electrons inside metal
nanostructures to drive the hydrolysis in surface molecules on top of the nanostructure itself. When
an electromagnetic wave impinges a metallic surface the electrons inside the metal jump to excited
states creating surface plasmons, which are collective oscillations of the electron cloud. Due to the
crystal momentum conservation, these electrons don’t have enough energy to drive an hydrolysis
reaction. However, if metallic nanocrystals are used then hot carriers make their appearance. In
this case the crystal momentum is no longer conserved and the electrons can assume energy in the
range EF < ε < EF + h̄ω where EF is the Fermi level of the considered metal and ω is the pulsation
of the incident light. In the same way energetic holes in the range EF − h̄ω < ε EF are created.
These are the so called hot carriers which can drive the hydrolysis of water surface molecules[14] .
It is known that the density of photogenerated hot carriers is strongly dependent on material and
shape of the nanostructure. The aim of this work is to further investigate the shape dependence of
the photolysis and understand how this process can be optimized by mean of numerical simulations.
It has been shown experimentally that the presence of the so called hot spots further enhances the
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hot electron generation rates [12]. Therefore, firstly the properties of the elementary geometries,
in term of broadness of the photonic surface density of states as well as hot electron generation
rate, both as function of the wavelength of the impinging wave, are examined by mean of a first
set of finite difference time domain simulations. The next natural step is the study of 2d arrays of
nanoparticles, which are of practical interest when it comes to hydrogen generation. It is indeed well
known that the introduction of disorder in optical media gives rise to a strong localization of light
[7] just like the disorder in solid’s lattice potentials gives rise to the so called Anderson localization.
Inspired by that, among all possible kind of 2d array, 2D disordered arrays, in which either the
size of the nanoparticles or their position is chosen according to some probability distribution, have
been studied. To further understand the role of disorder in the enhancement of the electromagnetic
field needed for hydrogen generation, the localization length, which gives a measure of how the
intensity of the electric field due to the introduction of randomness is localized at the nanoscale,
has been computed in several 2d arrays. The analysis of this quantity indeed leads to find the
parameters that better enhances the electromagnetic field. Finally, the hot electron generation rate
has been computed for the array’s geometry characterized by the found parameters, showing how
the disorder plays a determinant role increasing the broadness of the hot electron generation rate
of the whole system.
This thesis is organized as follows. Firstly, the theoretical framework of the hot electron generation
rate is briefly recalled as well as the finite difference time domain method, which allows to numeri-
cally solve the Maxwell equations. Then, the results are presented. Firstly, the enhancement driven
by single particles shapes is shown and various geometries compared. Then the effect of disorder
on the surface photonic DOS and hot electron generation rate on 2d array of nanoparticles is then
studied. Finally the surface photonic DOS and the hot electron generation rate for four different
system are compared.
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Chapter 2

Quantum theory of
photogeneration of hot electrons in
metallic nanostructures

2.1 Density matrix equation of motion

The simplest theoretical framework to study the hot carriers generation in plasmonic nanostructures
is based on two approximation: the use of a free electron model for nanostructure’s conduction elec-
trons as well as a perturbative solution of the density matrix equation of motion. A nanostructure,
from now on NS, in contact with a semiconductor of surface molecules, is considered. This theory
is based on the equation of motion of the density matrix of the whole system, that is a classical
electromagnetic perturbative field, the NS and the surrounding environment whose density matrix
elements are:

ρnm(t) = 〈Ψ(t)|a†nam|Ψ(t)〉 (2.1.0.1)

with a†n,an the raising and lowering field operator and Ψ(t) the many-body time depended wave-
function of the whole system.The equation of motion of the system reads[14]:

h̄
∂ρ̂

∂t
= i[ρ̂, Ĥ0 + ŵtun + V̂opt]− Γ̂(ρ̂) (2.1.0.2)

This is simply the equation of motion of the density matrix operator in the Heisemberg picture with
the additional term Γ̂(ρ̂) which ensures the relaxation of the system towards the equilibrium density
matrix, whose diagonal elements are given by the Fermi-Dirac distribution for the n-th state. The
relaxation operator form must be chosen carefully, not to make the equation impossible to solve.
In this case, a proper form is[11]:

〈m|Γ̂(ρ̂)|n〉 = Γmn(ρmn − ρ0mn) (2.1.0.3)

ρ0mn = f(εn)δm,n (2.1.0.4)

where f(εn)δm,n is the Fermi-Dirac distribution and δn,m is the Kroneker delta
The electrons will mainly feel the confining potential of the NS, so these electrons will be treated
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as free electrons described by the Hamiltonian Ĥ0. ŵtun describes the tunnelling of electrons
from the NS to the semiconductor or to surface molecules. The external field is assumed to be a
monochromatic perturbation whose Hamiltonian is[11]

V̂opt = −eφ̂e−iωt − eφ̂∗eiωt (2.1.0.5)

In components,the equation of motion reads:

h̄
∂ρnm
∂t

= i〈n|[ρ̂, Ĥ0 + ŵtun + V̂opt]|m〉 − Γmn(ρmn − ρ0mn) (2.1.0.6)

A perturbative approach is involved to solve the set of equation of motion. It’s solution for the
diagonal elements is[11]

(h̄ω − εm + εn + iΓmn)ρamn +
∑
α

(ρmαwαn − wnαραm) = −eφanm(f(εm)− f(εn)) (2.1.0.7)

(h̄ω − εm + εn + iΓmn)ρbmn +
∑
α

(ρmαwαn − wnαραm) = −eφbnm(f(εm)− f(εn)) (2.1.0.8)

with α a state of the semiconductor or surface molecule and

φann′ = 〈n|φ̂|n′〉 φbnn′ = 〈n|φ̂∗|n′〉 (2.1.0.9)

For clarity’s sake it is useful to neglect the tunnelling terms so that equations 2.1.0.7 and 2.1.0.8
give:

ρann′ = eφnn′
f(εn′)− f(εn)

h̄ω − εn + ε′n + iΓnn′

ρbnn′ = eφbnn′
f(εn′)− f(εn)

−h̄ω − εn + ε′n + iΓnn′

(2.1.0.10)

At the lowest order in the perturbation the diagonal elements are given by[11]

δρ0nn = ρnn − f(εn) =
2e

Γnn
Im(

∑
n′

ρann′φbn′n + ρbnn′φan′n +
∑
α

ρnαwαn) (2.1.0.11)

Using the expression for the non diagonal term of equation 2.1.0.10 equation 2.1.0.11 reads:

δρnn =
2e2

Γnn

∑
n′

(f(εn′)− f(εn))Kn,n′

Kn,n′ = |φann′ |2
Γnn′

(h̄ω − εn + εn′)2 + Γ2
nn′

+ |φbnn′ |2
Γnn′

(h̄ω + εn − εn′)2 + Γ2
nn′

(2.1.0.12)

It’s worth to notice that in this perturbative approach the energy distribution of electrons is the
equilibrium one, namely the Fermi distribution, plus a correction due to the perturbation. Being
the system in a stationary state

i

h̄
〈n|[ρ̂, Ĥ0 + ŵtun + V̂opt]|m〉 = 〈n|Γ̂(ρ̂|n〉
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so one can define the n-th state generation rates Gn and its associated relaxation rate Rn as

dNe
dt

= Gn =
i

h̄
〈n|[ρ̂, Ĥ0 + ŵtun + V̂opt]|m〉

Rn = 〈n|Γ̂(ρ̂|n〉
(2.1.0.13)

Then, under the previous assumption, Gn and Rn can be rewritten as

Gn =
2e2

h̄

∑
l

(f(εl)− f(εn))Kn,l

Rn =
Γnn
h̄
δρnn

δρnn =
h̄Gn
Γnn

Finally ,the generation rate’s distribution per unit of energy can be computed as

d2N

dtdε
=
∑
n

Gnδ(ε− εn) (2.1.0.14)

while the hot electrons distribution per unit of energy can be computed as

δρ(ε) =
dNe
dε

=
∑
n

δρnnδ(ε− εn) =

=
∑
n

h̄Gn
Γnn

δ(ε− εn) =
∑
n

2e2

Γnn

∑
l

(f(εl − f(εn))Kn,l

(2.1.0.15)

2.2 Hot electron distribution dependence on the nanostruc-
ture shape

In general, the result of equation 2.1.0.15 must be computed numerically for arbitrary nanostruc-
tures unless the geometry of the system is extremely simple as in case of a metal slab or a sphere.
Already in case of a cubic geometry the hot electron distribution cannot be computed analytically.
Generally it presents two main features: a symmetric peak around the Fermi energy and a sym-
metric couple of plateaux below and above the Fermi level[14]. The peaks corresponds to carriers
not far from the Fermi energy while the plateaux corresponds to a constant hot carriers distribu-
tion. The hot carrier distribution in the plateaux region can be derived for an arbitrary shape and
geometry directly from equation 2.1.0.15.
The hot carriers are mainly generated at the surface of the nanostructure, where the confining
potential is predominant so the first thing to do is to computed the hot carrier distribution over a
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Figure 2.2.0.1: Hot electron generation rate computed for a gold nanoplatelet of width equal to 10
nm. If the holes were taken into account, the plot would be completely symmetric with respect to
the Fermi energy. The main feature for the hot electron generation rate is the plateaux far from
the Fermi energy, which is present only for metal nanocrystals, and the peak related to the less
energetic electrons just around the Fermi energy.

surface ds. To do so, an extended metal slab is considered and its free electron are described by

ψn = (
8

L2
xLz

)1/2sin(knxx)sin(knyy)sin(knzz)

n = (nx, ny, nz), nα = 1, 2, 3...

kn = (knx
, kny

, knz
) = (

πnx
Lx

,
πny
Lx

πnz
Lz

)

εn =
h̄2π2(n2x + n2y)

2mL2
x

+
h̄2π2n2z
2mL2

z

(2.2.0.1)

Still, the optical matrix element has to be computed. In this case Lz is assumed much smaller than
Lx and Ly hence the interior field inside the platelet can be approximated by[11]

Eω = Eincγ(ω), γ(ω) =
εext

εmet(ω)
(2.2.0.2)

which is the field inside an infinite metal slab. For a metal slab in air, εext = 1. In the most simple
case the incident radiation is a monochromatic wave so the optical matrix element reads:

φnm =
h̄2

2m(εn − εm)

∫
ψn(Eω · ∇ψm) =

= LzEω,n
2

π2
(

1

(nz −mz)2
− 1

(nz +mz)2
)δnz,mx

δnymy

(2.2.0.3)
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where Eω,n is the normal to the surface electric field modulus. Anyway, as we could notice, the
in plane momentum is conserved and only the normal momentum undergoes a process of change.
Equation 2.2.0.3 can be further simplified considering that only the electrons whose energy is around
the Fermi energy could change their state. Hence, without losing generality, nz,mz >> 1 and

LzEω,n
2

π2
(

1

(nz −mz)2
− 1

(nz +mz)2
)δnz,mx

δnymy
≈

≈ LzEω,n
2

π2

1

(nz −mz)2
δnx,mx

δny,my

(2.2.0.4)

Considering that the hot carriers have an energy quite distant from the Fermi level, the factor Kn,l

can be further simplified:

Kn,l = |φanl|2
Γ

(h̄ω − εn + εl)2 + Γ2
+ |φbnl|2

Γ

(h̄ω − εl + εn)2 + Γ2
'

' |φanl|2πδ(h̄ω − εn + εl) + |φbnl|2πδ(h̄ω − εl + εn)

Under the previous assumption,
|φanl|2 = |φbnl|2

As consequence, the double sum in equation 2.1.0.15 can be treated as an integral∑
n,l

=
∑

n||,nz,lz

' 2

∫ ∞
0

dnz

∫ ∞
0

dlz

∫ ∞
0

dk||
ds

π2

k|| = (knx
, kny

)

where ds is the surface of the slab. The hot electron generation rate for the extended slab is then
given by[11]:

dNe
dtdε

=
4e2E2

F

π2h̄

|Eω,n|2

(h̄ω)4
ds (2.2.0.5)

Actually, equation 2.2.0.5 takes into account both the normal surfaces. In order to get the hot
electron rate it must be divided by a factor two to consider only one surface. Then one should
integrate over the surface of the whole nanostructure. Hence, the hot electron distribution per unit
of energy and time reads[12]:

δρ(ε) =
2e2E2

F

π2h̄

∫
SNS

|Eω,n|2

(h̄ω)4
EF + δEb < ε < EF + h̄ω (2.2.0.6)

while the hot holes distribution reads[12]

δρ(ε) = −2e2E2
F

π2h̄

∫
SNS

|Eω,n|2

(h̄ω)4
EF − h̄ω < ε < EF − δEb (2.2.0.7)

This is not surprising since the excited carrier distribution must be a globally symmetric function.
So, from equation 2.2.0.6 it is clear how the hot electrons distribution depends heavily on the
particular choice of geometry, material and use of the device. Indeed, δEb is related to the minimum
energy an hot electron must have to overcome a barrier, just like in a Schottky barrier or to take
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part to a chemical process with surface molecules, the material dependence is due the relaxation
rate and Fermi energy and, eventually, the shape dependence comes from the surface integral of
the electric field. The derivation of the hot carrier generation rate has been done, up to now, using
the quasistatic approximation[5] within a perturbative approach which takes into account terms up
to the first order expansion hence the electric field on the surface of the nanosphere would share
the same frequency of the exciting field. As consequence a relevant quantity is the average value
over an optical cycle of the hot carrier generation rate which could be obtained just by considering
< |Eω,n|2 > instead of |Eω,n|2 where

< A(t) >=

∫
optical cycle

dtA(t)

for any generic time dependent quantity.

Nanosphere

One of the few geometries analytically treatable is the spherical one. The internal electric field for

Figure 2.2.0.2: Nanosphere in the quasi static approximation. The azimuthal symmetry of the
problem makes the potential, both internal and external, described only by θ and r

a nanosphere of radius a0 in the quasi static approximation, taking ẑ parallel to the incident field
Einc, is given by the Laplace equation in absence of free electric charge:

∇2φ = 0

Eω = −∇ · φ

whose general solution solution, in spherical coordinates, is[5]

φout(r, θ) =

∞∑
l=0

[βlr
l + γ

−(l+1)
l ]Ll(cos(θ))

φin(r, θ) =

∞∑
l=0

ηlr
lLl(cos(θ))

with Ll(cos(θ)) the Legendre polynomials. The coefficient βl,ηl and γl are determined by the
boundary condition at z → ∞ and by r = a0. If r → ∞ then φ = −Eincrcos(θ) so βl = 0 ∀l 6= 1
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and β1 = −Einc. If r = a0 then the normal component of the displacement field must be continuous
as well as the tangential component of the electric field. Being so the internal and external potential
are just given by

φin(r, θ) = − 3εm
ε+ 2εm

Eincrcos(θ) = − 3εm
ε+ 2εm

Eincz

φout(r, θ) = −Eincrcosθ +
ε− εm
ε+ 2εm

Einca
3
0

cos(θ)

r2

(2.2.0.8)

where Einc is the modulus of the incident field. As consequence, the electric field inside the
nanosphere is

Eω =
3εm

ε+ 2εm
Eincẑ⇒

∫
SNS

|Eω|2 = 4πa20|
3εm

ε+ 2εm
Einc|2 (2.2.0.9)

Equation 2.2.0.6 can now be used to compute the hot electron distribution per unit of energy:

δρ(ε) =
2e2E2

F

Γπ2h̄

1

(h̄ω)4
4πa20|

3εm
ε+ 2εm

Einc|2 if EF + δEb < ε < EF + h̄ω (2.2.0.10)

where δEb is determined case by case.
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Chapter 3

Methods

3.1 Finite-Difference Time-Domain

Finite Difference Time Domain, from now on FDTD, is a numerical tool based on finite differences
to propagate in time and space Maxwell’s equations. This method has been designed by Allan
Taflove, on the ground of 1966 Kane Yee’s paper, to study the effect of electromagnetic devices on
the human visual system. Clearly, Maxwell’s equations cannot be solved analytically for a complex
medium such as the human visual systems therefore a numerical method was imperative to solve
the problem. At the beginning, this method has not been much used in the electrical engineering
community due to the high cost in terms of computational power and overall memory but in recent
days, thanks to the advent of supercomputers and the increase of computational power of common
laptop, the DFTD has gained more and more popularity. Indeed, DFTD allows for a precision
much higher than other computational method[2].

3.1.1 Finite difference method

The basic idea of 1966 Yee’s work is to substitute partial derivatives in Maxwell’s equation with finite
difference approximation. The finite difference approximation works as follow: let’s for instance
consider the following two equation

f(x+ dx) = f(x) +
∂f

∂x
|xdx+

∂2f

∂x2
|xdx2 +

∂3f

∂x3
|xdx3 +

∂4f

∂x4
|xdx4 + o(x4) (3.1.1.1)

f(x− dx) = f(x)− ∂f

∂x
|xdx+

∂2f

∂x2
|xdx2 −

∂3f

∂x3
|xdx3 +

∂4f

∂x4
|xdx4 + o(x4) (3.1.1.2)

if we subtract 3.1.1.2 from 3.1.1.1 we obtain

f(x+ dx)− f(x− dx) = 2
∂f

∂x
|xdx+O(x4) (3.1.1.3)

Let’s imagine to take the real line and to divide it equal interval of length dx such that x = ndx so
that we can write again the 3.1.1.3 as

f(dx(n+ 1))− f(dx(n− 1))

2dx
' ∂f

∂x
|ndx (3.1.1.4)
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This particular approximation of the partial derivative is called central difference and will be the
central tool in DFTD. Even in higher dimension the idea is the same. For instance one can consider
a function F of two variable x and y and, following the exact above discussed argument, get

F ((n+ 1)dx,mdy)− F ((n− 1)dx,mdy)

2dx
' ∂F

∂x
|ndx,mdy

F (ndx, (m+ 1)dy)− F (ndx, (m− 1)dy)

2dx
' ∂F

∂y
|ndx,mdy

To ease the formulas one can use the following ink-saving formalism:
for any given function f, f(idx, jdy, kdz)

.
= f |i,j,k. The central difference approximation may as

well be applied to derivatives in time. For instance:

∂Ex
∂t
|ni,j,k '

Ex|n+1
i,j,k − Ex|

n−1
i,j,k

2dt
+O(dt2) (3.1.1.5)

It is clear that the use of central differences let us having equation accurate up to second order
both in time and space.

3.2 Yee algorithm

It is now time to discuss the DFTD method. Firstly, it’ s useful to recall Maxwell’s equations in an
arbitrary media,with no charge density and arbitrary magnetic and electric current source:

∇ ·D = 0

∇ ·B = 0

−∇×E− σ∗H−Ms =
∂B

∂t

∇×H− Js − σE =
∂D

∂dt

(3.2.0.1)

and the constitutive equations:

D = εE B = µH

M = Ms + σ∗H J = Js + σE
(3.2.0.2)

where ε is the electric permittivity µ is the magnetic permeability, σ∗ is the equivalent magnetic loss
and σ is the electric loss. In this treatment only a spatial dependence of ε, µ, σ and σ∗ is allowed
so one can consider only the case when those quantity are scalar. As anticipated,the main idea is
to approximate the partial derivatives with central differences. The stroke of genius of Yee consists
in the use of a spatial and temporal grid, indeed called Yee grid, that automatically satisfies 3.2.0.1
leaving only the curls equations to be dealt with. This also imply that there is no need to enforce
boundary condition in presence of different media since the Yee grid automatically takes care of it
[2](3.2.0.1) Applying the finite difference method to Maxwell’s equations and using some elementary
algebra, one can write down the following six updates equation for the fields components shown in
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Figure 3.2.0.1: Yee cell. Each electric field component is surrounded by magnetics field components.
Intuitively, this grid already satisfies the divergence Maxwell’s equations.

figure 3.2.0.1.
Update equations for the electric field components:

Ex|n+1/2
i,j+1/2,k+1/2 = C1|i,j+1/2,k+1/2Ex|

n−1/2
i,j+1/2,k+1/2+

+C2|i,j+1/2,k+1/2(
Hz|ni,j+1,k+1/2 −Hz|ni,j,k+1/2

dy

−
Hy|ni,j+1/2,k+1 −Hy|ni,j+1/2,k

dz
+−Js,x|ni,j+1/2,k+1/2)

(3.2.0.3)

Ey|n+1/2
i−1/2,j+1,k+1/2 = C1|i−1/2,j+1,k+1/2Ey|

n−1/2
i−1/2,j+1,k+1/2+

+C2|i+1/2,j+1,k+1/2(
Hx|ni−1/2,j+1,k+1 −Hx|ni−1/2,j+1,k

dz
−

Hz|ni,j+1,k+1/2 −Hz|ni−1,j+1,k+1/2

dx
− Js,y|ni−1/2,j+1,k+1/2)

(3.2.0.4)

Ez|n+1/2
i−1/2,j+1,k+1 = C1|i−1/2,j+1,k+1Ez|

n−1/2
i−1/2,j+1,k+1+

+C2|i+1/2,j+1,k+1(
Hy|ni,j+1/2,k+1 −Hy|ni−1/2,j+1/2,k+1

dx
−

Hx|ni−1/2,j+1,k+1 −Hx|ni−1/2,j,k+1

dy
+−Js,z|ni−1/2,j+1/2,k+1)

(3.2.0.5)

with the update coefficient defined as:

C1|i,j,k =
2ε|i,j,k − σ|i,j,k
2ε|i,j,k + σ|i,j,k

, C2|i,j,k =
2dt

2ε|i,j,k + σ|i,j,kdt
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Update equation for the magnetic field components:

Hx|n+1
i−1/2,j+1,k+1 = D1|i−1/2,j+1,k+1Hx|ni−1/2,j+1,k+1+

D2|i−1/2,j+1,k+1(
Ey|n+1/2

i−1/2,j+1,k+3/2 − Ey|
n+1/2
i−1/2,j+1,k+1/2

dz
−

Ez|n+1/2
i−1/2,j+3/2,k+1 − Ez|

n+1/2
i−1/2,j+1/2,k+1

dy
−Ms,x|n+1/2

i−1/2,j+1,k+1)

(3.2.0.6)

Hy|n+1
i,j+1/2,k+1 = D1|i,j+1/2,k+1Hy|ni,j+1/2,k+1+

D2|i,j+1/2,k+1(
Ez|n+1/2

i+1/2,j+1/2,k+1 − Ez|
n+1/2
i−1/2,j+1/2,k+1

dx
−

Ex|n+1/2
i,j+1/2,k+3/2 − Ex|

n+1/2
i,j+1/2,k+1/2

dz
−Ms,y|n+1/2

i,j+1/2,k+1)

(3.2.0.7)

Hz|n+1
i,j+1,k+1/2 = D1|i,j+1,k+1/2Hz|ni,j+1,k+1/2+

D2|i,j+1,k+1/2(
Ex|n+1/2

i+,j+3/2,k+1/2 − Ex|
n+1/2
i,j+1/2,k+1/2

dy
−

Ey|n+1/2
i+1/2,j+1,k+1/2 − Ey|

n+1/2
i−1/2,j+1,k+1/2

dx
−Ms,z|n+1/2

i,j+1,k+1/2)

(3.2.0.8)

with the update coefficient defined as:

D1|i,j,k =
2µ|i,j,k − σ|∗i,j,k
2µ|i,j,k + σ|∗i,j,k

D2|i,j,k =
2dt

2µ|i,j,k + σ|∗i,j,kdt

First of all, we must notice that the electric and magnetic field do not exist at the same time step.
As we can observe in figure 3.2.0.2, at each time step only one field is updated and the new values
are used to updated the other field in the next step. Indeed, the electric and magnetic fields are
staggered in time as well as in space to allow the use of central finite difference approximation.
Therefore the updates equations allow us to compute the future values of the electric field and of
the magnetic field just by knowing the present fields values. Hence it is possible to appreciate the
power and simplicity of the FDTD method.

3.3 Numerical stability of FDTD algorithm

The basic procedure for the analysis of the stability of the algorithm involves the injection of a plane
wave E = E0e

(iωndt−ik′·x) with k′ = (kx, ky, kz) a numerical wavevector into the FDTD equations.
After some algebraic manipulation finally one get the numerical dispersion relation[2]:

[
1

cdt
sin(

ωdt

2
)]2 = [

1

dx
sin(

kxdx

2
)]2 + [

1

dy
sin(

kydy

2
)]2 + [

1

dz
sin(

kzdz

2
)]2. (3.3.0.1)

Comparing 3.3.0.1 with the ideal dispersion relation for a plane wave (ωc )2 = k2x + k2y + k2z , it’s
possible to notice that a numerical plane wave feels the Yee grid as an anisotropic medium. This
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Figure 3.2.0.2: FDTD flowchart

explains the so called numerical dispersion: a plane wave will have a different numerical phase
velocity depending on the direction. In general, as dt, dx, dy and dz tends to zero,the numerical
dispersion relation tends to the ideal dispersion relation. This may suggest that using a finer grid
could reduce the numerical dispersion. Equation 3.3.0.1 shows also another possible problem: the
possibility of having a complex ω. Indeed, if a bad choice of dt or a bad design of the Yee cell lead to
a complex ω and its imaginary part happen to be negative, then the solution would diverge in time
giving rise to a numerical instability of the solution. A good prescription is S = cdt/dxmin/ < 1,
where S is known as the Courant factor and Nλ = λmin/dx >> 2with λmin the smallest wavelenght
the user wants to correctly simulate. A realistic value of Nλ is around 20 while a rule of thumb for
S is 0.5.

3.4 Boundary condition: UPML

As in every numerical algorithm, numerical boundaries conditions needs to be carefully taken care
of. The most simple choice of numerical boundary condition would be to use some fixed boundary
condition, for example requiring a zero value for all the field on the boundary of the grid. However,
these boundary condition, known as Dirichlet boundary conditions, would behave just like mirrors
for the electromagnetic field. As result, the system would be full of spurious electromagnetic waves
generated by the boundary condition and the results completely unreliable. What is ideally required
should be to have the electromagnetic field freely propagate through the boundary of the numerical
grid, without having to worry about reflected waves. This result can actually be obtained by mean
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of the uniaxially perfectly matched layer, from now on called UPML. The basic idea, in this case, is
to cover the volume where the simulation takes place with an ideal material that does not reflect any
waves and, instead, adsorb them. This ideal material is therefore called uniaxially perfectly matched
layer. It’s numerical formulation can be obtained firstly considering the case of a wave propagating
through an infinite interface set in z=0. The dielectric permittivity and magnetic permeability are
assumed to be an arbitrarily scalar constant in the x < 0 and must be determined in x > 0 to have
a fully transmitted wave, without any reflection effect. For convenience the medium in x > 0 is
assumed to be uniaxial, namely

ε̄2 = ε2

a 0 0
0 b 0
0 0 b

 , µ̄2 = µ2

c 0 0
0 d 0
0 0 d


Let’s assume the electromagnetic field in x < 0 is a plane wave of the form H1(r) = H1e

−jk1xx−jk1yy.
Imposing the Maxwell’s curl equation in x=0, one can derive the dispersion equation for the elec-
tromagnetic field in x > 0:

k2 ×E2 = ωµ̄2H2 k2 ×H2 = −ωε̄2E⇒
⇒ k2 × (ε−12 k2)×H2 + ω2µ̄2H2

Equation 3.4.0.1 can be solved giving as result four eigenmodes divided into forward and backward
TM and TE modes. As result[2]

k2x = (k22bd
−1 − k1ya−1b)1/2, k1y = k2y

Then, the reflection coefficient Γ =
Ereflected

Eincident
and the transmission coefficient τ = Etransmitted

Eincindent
reads:

Γ =
k1x − k2xb−1

β1x + β2xb
−1 , τ = 1 + Γ =

2k1x
k1x+k2x b

−1

Hence, in order to set Γ to zero it is sufficient to put ε1 = ε2, µ1 = µ2, d = b = a−1. Combining
all those choices into one single result leads to the actual dielectric permittivity and magnetic
permeability tensor

ε̄2 = ε1ν̄x µ̄2 = µ1ν̄x

ν̄x =

ν−1x 0 0
0 νx 0
0 0 νx

 (3.4.0.1)

Equation 3.4.0.1 is valid for any arbitrary ν and is totally independent from the angle of incidence
of the incident wave. The whole reasoning can be repeated for a wave propagating in any direction.
The higher dimensionality generalization of UPML boundary condition is therefore straightforward:
for a 3D case[2]

ν̄ = ν̄xν̄y ν̄z

να = κα −
jσα
ε1ω

Lately, the choice of σα and κα is done case by case, in order to obtain the desired attenuation of
the intensity of the field and no dispersion.
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3.5 FDTD software: NANOCPP

Maxwell’s equation can be solved analitically only for few ideal nanoparticle’s geometry hence, to
study how their shape and geometry affect their hot electrons generation rates, is necessary to use a
numerical approach. The exploited numerical approach is the finite-difference time-domain method
which allows to propagate Maxwell’s equation in time on a given space domain with high accuracy.
To do so, NANOCPP, an FDTD software optimized for massive parallel computing and developed
by professor Fratalocchi’s team, is used. NANOCPP takes the following input: a volume where the
simulation is done, the number of unitary Yee cell per side of it that automatically determines the
resolution of the algorithm, the geometry of the system under investigation, the electromagnetic
source and the boundary condition. NANOCPP produces a variety of binary files as output. For
the cases of interest, the output produced are the electric field and the electromagnetic energy
computed over the whole Yee grid filling the simulation volume and occasionally an electric or
magnetic field in time at a specific point in the simulation space.
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Chapter 4

Results

4.1 Simulations procedure and data analysis for single par-
ticles

The computation for a gold nanoparticle of radius 34.54 nm in air is now discussed in detail in order
to show the simulation and data analysis procedure for the single particles hot electron generation
rates.
In any simulation both air and gold are treated as dispersive material, even if at optical frequencies
both show minimal dispersive properties. The nanospheres is studied under an incident plane
wave whose wavelength ranges from 300 nm to 800 nm in steps of 5 nm covering the whole visible
spectrum. The resolution of the grid is 1 nm and the number of unitary cell per box side is
200 allowing more than 20 points per diameter of the smallest sphere. Regarding the boundary
condition, an UPLM layer of 25 nm width is used. A graphical example of this system is shown
in figure 4.1.0.1. The time step is automatically computed by NANOCPP enforcing the Courant
stability criterion and in this case is 9.62917 × 10−19s. The system should be in steady state so
the number of time steps must be large enough to allow to any transient dynamic to extinguish.
Actually, it is enough to wait for few optical cycle of the incident plane wave so the number of
time step of every simulation is set to be equivalent to six optical cycles. The first five are used to
let any transient extinguish and then, during the sixth, the electric field is recorded every hundred
time step. These sample will be used to compute the average of the modulus square of the electric
field over an optical cycle as〈

|Eω,n(r)|2
〉

=
1

Nω∆t

∑
i

|E(i)
ω,n(r)|2∆t, 1 < i < Nω (4.1.0.1)

with Nω the number of sample of the electric field taken during an optical cycle. The main object
to be numerically computed is the normal to the surface electric field Eω,n. At the end of the
computation, NANOCPP produces a binary file for each component of the electric field. Once
those files are properly reshaped, the electric field components are written as three dimensional
array Ex, Ey, Ez such that Eα[i, j, k], α ∈ x, y, z , is the α component of the electric field evaluated
at the [i,j,k] cell. The first issue to be resolved is finding all the point belonging to the surface of
the sphere. To do so, first a change of coordinates that moves the origin of the system, located in
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Figure 4.1.0.1:
simulation of a gold nanosphere of radius=34.54 nm excited by a monochromatic plane wave of
wavelength=300nm. It is clear the dipole-like beahaviour which characterizes the energy and field
distribution;
a) electromagnetic energy distribution in the (x,y=100nm, z) plane, arbitrary units;
b) Ex(x = 100nm, y = 100nm, z), arbitrary units;
c) Ey(x, y = 100nm, z = 100nm), arbitrary units;
d)Ez(x, y = 100nm, z), arbitrary units;

lower left corner of the air box, to the center of the sphere has been exploited. Clearly, the point
laying on the surface of the sphere are such that their distance from the center of the sphere, now in
(0,0,0), is equal to the radius. Due to the discrete character of the Yee grid, just searching for the
those points would produce no output. Therefore a nearest neighbour strategy has been involved
to find all the points laying on the surface of the nanoparticle. This is possible because NANOCPP
creates a geometry file such that the points belonging to the nanostructure have a value different
from the zero value assigned to points belonging to the surrounding air. Therefore, it is enough to
look for the set of points [i,j,k] such that:

f [i, j, k] 6= 1 and ∃f [l,m, n] = 1, [l,m, n] ⊂ NN [i, j, k]
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where NN stands for nearest neighbours. It is worth to notice that this approach to find the surface
points is effective regardless of the shapes, so it is completely general. Once this is done, the next
step consist in computing normal to the sphere surface component of the electric field. First the
normal to the surface versor is computed considering the vector joining the desired surface point
with the origin and dividing its components by its modulus. The normal electric field is finally
computed projecting the total electric field on the normal versor at each point of the surface.
After computing its time-average as shown in equation 4.1.0.1, one can compute the power spectral
density S(ω) defined as

S(ω) =

∫
SNS

〈
|Eω,n|2

〉
(h̄ω)4

(4.1.0.2)

which can be numerically computed , at each frequency, as∫
SNS

〈
|Eω,n|2

〉
(h̄ω)4

≈
∑

[i,j,k]∈SNS

∆s

〈
|Eω,n[i, j, k]|2

〉
(h̄ω)4

where ∆s is a single face unitary Yee cell surface, in this case equal to 10−18nm2, and the total
mean normal field under a broadband optical source Etn(r) defined as

I(r) =

∫ λ=800nm

λ=300nm

〈
|Eω(λ),n(r)|2

〉
dω (4.1.0.3)

which can be numerically computed as∫ λ=800nm

λ=300nm

〈
|Eω(λ),n(r)|2

〉
dω ≈

∑
λi∈[300nm,800nm]

〈
|Eω(λi),n[i, j, k]|2

〉
∆ω (4.1.0.4)

where [i,j,k] are such that r ≈ [i∆x, j∆y, k∆z]. I(r is useful to visualize how the rate of generation
of hot electron varies on the nanostructure’s surface. The whole procedure used for the computation
of I(ω), which is a photonic surface density of states, S(ω) and I(r), except for the computation of
the normal versor to the surface which is anyway trivial for standard geometries, is totally general
and is used to compute the relevant quantity for all the single particle shapes considered.

4.2 Hot electron generation rate for single particle shapes

As shown in the previous sections, the hot electron generation rates strongly depends on the
nanoparticles shape. The set of shapes considered includes the sphere, the ellipsoid, the nanocube
and the cylinder. All the shapes have been designed such that all have a surface area equal to the
one of a 25nm side cube. These geometries have been chosen because these are the most simple
to experimentally realize with a good control of shapes and position of the nanoparticles. The
first shape here considered is the spherical one. The simulations shows that the sphere practically
behave like a dipole, in good agreement with the quasi static model[5]. Indeed, as it is shown in
figure 4.2.0.1, the electromagnetic field reaches its greater intensity at the poles of the sphere in the
z direction, which is actually the wavelength direction of the exciting field. Of greater interest are
the power spectral density S(ω) and the total mean normal field Etn. As shown in the top left of
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Figure 4.2.0.1:
a) 3D photonic surface density of states for a sphere of diameter equal to 34.54 nm excited by a
monochromatic field of 300 nm wavelength, arbitrary units;
b) hot electron generation rate in space, arbitrary units.
In both images the dipole behaviour is clearly evident, as well as the enhancement of the electric
field at the two poles of the sphere. However, some interference’s patterns are visible on the rest of
the surface of the sphere.

figure 4.2.0.2 , I(ω) =
∫
SNS

< |Eω,n|2 > shows a peak which is fairly close to the one exhibited by
the power spectrum of the electric field on top of the sphere, shown in the right side of figure 4.2.0.2.
The power spectrum peak’s frequency coincides with the resonant modes of the sphere so I(ω)’s
frequency peak is due to the nanosphere’s resonant modes. Nevertheless S(ω), shown in the left
bottom of figure 4.2.0.2, exhibits a quite broadband behaviour particularly in the near infrared and
low optical frequency region. The nanosphere’s hot carrier generation rate will therefore increase
as the frequency of the incident light decreases. Nonetheless, it shows a broadband behaviour in
the visible light spectrum. Finally, the bottom part of figure 4.2.0.1 shows the space distribution
of the total time-averaged modulus square of the normal electric field. It is clear that the only a
small portion of the surface, located in the poles of the sphere, contributes incisively to the hot
electron generation rate and this portion coincides with the high intensity field due to the dipole-like
behaviour of the sphere.

The second geometry considered is the elliptical one. The main feature of the ellipsoid is that
the resonant peak of the nanoparticle is red shifted with respect to the sphere’s one. This actually
means that the ellipsoid exhibits a less broadband hot electron generation rate since the enhancing
effect of (h̄ω)−4 is not able to increase the peak amplitude of the integrated normal field intensity,
as shown in the bottom left image of figure 4.2.0.3. As well as in the sphere case, the peak of both
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Figure 4.2.0.2:
a) I(ω) of a 34.54 radius gold nanosphere, arbitrary units;
b) S(ω) for the same gold nanosphere, arbitrary units;
c) |F{E}|2 in the north pole of the sphere, namely where the field reaches its maximum intensity,
arbitrary units

I(ω) and S(ω) coincide with the resonant mode frequency ellipsoid, as shown in the top left of
figure 4.2.0.3. Also in this case the electric field reaches its maximum intensity at the poles of the
nanoparticles, hence exhibiting an even more clear dipole-like behaviour with respect to the sphere
showed in figure 4.2.0.3. This behaviour is well explained by the tip effect of the electromagnetic
field: the greater the radius of curvature of the object, the greater the intensity of the electric field of
the tip. Here the ellipsoid doesn’t have a real tip but the radius of curvature increases considerably
at the two poles, where the field reaches its maximum intensity.
The third geometry analyzed is the the cubic one and, as in the previous case, the material chosen

is gold. As can be seen from the top left image of figure 4.2.0.4, the cuboid resonant frequency,
which is around 500 nm, is in the ideal position to give rise to a broad hot electron generation rate.
Indeed, as shown in the bottom left plot of figure 4.2.0.4 the hot electron generation rate of the
cuboid is really wide and has a great contribution also from the infrared frequency. The enhance-
ment of the electric field is greater on the cuboid than on the other geometries due to the corners.
Indeed, as shown in the right image of figure 4.2.0.4, the electromagnetic field reaches an intensity
on the corner of the cube of one or even two order of magnitude greater than the normal field on
the rest of the surface. As in the previous case, this enhancement of the electromagnetic field on
the surface of the nanocube is due to the tip effect, which is greatly increased by the presence of
proper tips[12].
The last geometry investigated is the cylindrical one. The cylindrical geometry has significant
relevance because, as the sphere, is one of the most simple structure that can be nanofabricated.
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Figure 4.2.0.3:
a) I(ω) and S(ω) for the ellipsoid normalized respectively to their maximum value;
b) the density of photonic states of the ellipsoid for each component of the electric field, arbitrary
units. The total density of photonic states is given by the sum of the three contributes;
c) local photonic density of states integrated over the surface of the ellipsoid integrated over the
wavelength range of the visible light, arbitrary units.

Indeed, the electron beam litography allows to fabricate this shapes with high control on the geo-
metrical features. As can be observed in the top left of figure 4.2.0.5 , the cylinder has his peak at
500nm, quite close to the one of the sphere, but it has a much broader behaviour than it. This is
reflected also in his hot electron generation rate behaviour in frequency that follows quite closely
the one of the sphere. However the cylinder presents a discontinuity in the geometries that enhances
the electromagnetic field on the borders of the two faces, as can be observed in the right image in
figure 4.2.0.5.
In conclusion, it is possible to observe that, among the various elementary gold nanoparticles, the
most promising one in terms of broad behaviour in the visible electromagnetic spectrum is the
cubic one. Indeed its peak position is ideal to obtain a broad hot electron generation rate which
is certainly also due to the presence of the hot spots. Since, anyway, this kind of shapes is quite
hard to obtain, another good option is the cylindrical one. Even if it does not presents an intensity
spectrum as broad as the cubic one, it is as broad as the spherical one but also of much simpler
realization than it . As already pointed out, the use of the electron beam litography would allow
the precise control of the size as well as position of the nanopillar, which will be shown later to be
of extreme importance when dealing with arrays of nanoparticles.
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Figure 4.2.0.4:
a) I(ω) and S(ω) normalized to their respective values for the cuboid fo side length equal to 25 nm;
b) the three components of the integrated in space photonic DOS, arbitrary units. The total DOS
is simply obtained by their sum. The peak of the DOS and of the electric field intensity is fairly
equal, hence also in the cuboid case the electric behaviour is dominated by the plasmonic resonances.
However, the hot electron generation rate is quite broad in frequency due to the excellent position
of the peak frequency and to the term (h̄ω)−4;
c) I(r) =

∫
visible spectrum

dω
〈
|En,ω(r)|2

〉
, arbitrary units. It is clear how the presence of the corners

increases the enhancement of the field. This is in agreement with what found by Govorov and
collaborator, which they refers to as hot spot[12].
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Figure 4.2.0.5:
a) I(ω) and S(ω) normalized respectively to their maximum value;
b) the three components of the photonic DOS integrated in space in arbitrary units. The total
DOS is simply obtained by their sum. The peak of the DOS and of the electric field intensity is
fairly equal, hence also in the cylinder case the electric behaviour is dominated by the plasmonic
resonances. The hot electron generation rate is as broad in frequency as the sphere thank to the
good position of the peak frequency. Anyway it is still less broad than the cuboid case;
c) I(r) =

∫
visible spectrum

dω
〈
|En,ω(r)|2

〉
, arbitrary units. The presence of the discontinuities in the

geometry leads to a greater enhancement and localization of the electric field on the surface of the
structure. Also in this case, the intensity of the electric field is expressed in arbitrary units.
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4.3 Hot electron generation rate for disordered arrays of
nanoparticles

It is clear that the properties of a single particle, as promising as they may be, are of limited
interest when it come to a massive generation of hydrogen. Indeed, in order to reach an hydrogen
production per unity of surface as a great as possible, it is mandatory the use of highly packed arrays
of nanoparticles. Anyway, in the contest of the Coupled Mode Theory, from now on CMT[3], it is
well known that ordered arrays of nanoparticles behaves just like coupled arrays of open cavities.
In the CMT, each particles is reduced to a hertzian dipole pi,m, where i stands for the polarization
and m stands for the position of the dipole in the array, which has is own resonance frequency and
which interacts , at least as a first approximation, with its nearest neighbours. Hence, each particle
is well described by

−ω2pi,m = −ω0pi,m − iΓrωpi,m − i
Γff
ω0

ω3pi,m − γiω2
c (pi,m−1 + pi,m+1) (4.3.0.1)

where Γr is the relaxation constant due to electron-electron, electron-phonon and electron-defects
interaction and is given by the Matthiessen rule, ω0 is the single particle resonance frequency, Γff
is the relaxation constant due to the far field emission, γi an O(1) polarization dependent term
and ωc a coupling constant among nearest neighbours dipoles. Clearly this set of coupled equation
is actually similar to the one describing the ion motion in a lattice[6] therefore, as well as ions
in a solid lattice, they will behave collectively and will oscillate at highly localized frequency in
the visible spectrum. This implies that, regardless to the single particle’s spectrum, much of the
incident wavelength would be wasted. In order to extract as much energy as possible from the solar
energy, the array must have a broad hot electron generation rate spectrum hence should be able to
generate plasmonic resonances over a large set of frequency. Therefore the following questions rise
spontaneously: is it possible to break down this collective behaviour and obtain a spectrum which
is somehow the sum of many different single cavities spectrum? If the answer is positive, which
strategy would allow to do that?
To answer to these question one should understand the root of this collective behaviour, which
lies in the symmetries and constants of the systems. As just said, the array of nanoparticles is,
physically speaking, nothing more than an set of coupled oscillators subjected to a forcing field,
which is the monochromatic external field, and to a dissipation process. As long as the constants
of the system, namely the center to center distance and the shape of the single constituent, and its
symmetries are conserved the array will only oscillates at few deterministic frequencies. It is only
natural to think that, to break down the collective behaviour, one should break the symmetries and
constants of the system.
As already noticed, the CMT involves directly the resonance frequency of the single particle, which
is a function of the shape and size of it, the relaxation constant, which are function of size and
shape of the constituents as well as of their relative distance, and the coupling coefficient which
goes as 1

d3 and which explain why only nearest neighbours are taken into account. The break of any
of the constants or symmetries would affect deeply the system so the ensemble of possible scenarios
is too large to be fully explored. In this framework the paper of of Gongora and Fratalocchi[10] is
a good starting point.
In their paper, they have shown how the introduction of disorder in a 1D array of metal nanoparticles
can lead to an extremely localized field on the surface of the nanoparticles, which in turn leads, in
the frequency space, to an high enhancement of the fields and to a broad spectrum. To show that,
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the theory of the product of random matrix, from now on PRM[1], has been used to describe the
nanoparticles array. Each cavity can indeed be described by a matrix Mn and the whole system is
the product of the matrices describing each cavity PN =

∏N
i=1Mn. If no disorder is allowed in the

system, the study of the eigenvalues of PN leads to the resonance frequency of travelling plasmonic
waves as well as to their characteristic decaying time[3]. However, when a random degree of freedom
is introduced into the system the way to deal with it changes radically. Let’s consider for instance
one of the simplest case of disordered arrays, the binary one. In a binary disordered array each
particle, which will be assimilated to a sphere, can be of type A or B, the type A being characterized
by a radius equal to 25nm and the type B being characterized by a radius of 20nm while the center
to center distance is kept fixed. The total number of particle N is fixed, as well as the number
of particle of type A, NA = pN , and of type B, NB = N − NA, with p ∈ [0, 1]. The ensemble
of all possible realization of this array, called microcanonical in analogy with the microcanonical
ensemble in statistical mechanics, is obtained through a random shuffle of the particles in the array
such that all the realization at fixed p are equally probables. Again, the system is described by the
product of all the matrices which are themselves random quantities. The properties of the system
are then given by the characteristic Lyapunov exponent[1], from now on CLE, γl defined as:

γl = log(
〈
Tr[

N∏
i=1

Tn]
〉
m

) (4.3.0.2)

where
〈
...
〉
m

mean the average over the microcanonical realizations ensemble. The inverse of the
real part of the CLE is the localization length of the array and is proportional to the inverse of the
electromagnetic normalized participation ratio

<{γ−1l } ≈
〈
lc
〉
m

=
〈 (
∫
V
E)2

V
∫
V
E2
〉
m

(4.3.0.3)

In the 1D case, using this approach, they have shown how <{γl} has a well defined minimum
as function of p corresponding to the minimum of the participation ratio itself computed using
the FDTD. One can therefore expect that the hot electron generation rate may actually benefit
from this kind of disorder if, in the 2D case, the same kind of disorder would lead to a broadband
spectrum and to an increased enhancement of the electromagnetic field at the nanoscale. These
have been the reasons for the choice of the binary and ternary, in which each particle can have
three different radii, 2D arrays of nanopillars. The choice of the nanopillars as single particle shape
is due to their performance, their simplicity of fabrication, which makes them good candidates for
a real experiment, and to the smaller amount of time need to simulate them with respect to the
other shapes. Indeed, if their height is large enough, a 2D FDTD set of simulation can be used
instead of a 3D one.
Nevertheless, the fabrication of such a system would be pretty challenging since it would need an
insane control of position and shapes of the nanoparticle. As any real process, it is subject to some
errors which will always prevent the realization of any structure with absolute precision, so one
may think of using these fabrication limits to its own advantage. This is basically the reason to
study arrays in which the radius of the nanopillars is fixed and their position, along one or both
the direction, is a random variable with a gaussian distribution.

27



4.3.1 2d arrays geometrical features and simualtions details

The study of a 2d array of nanopillars presents a great theoretical challenge already at the beginning.
Indeed, despite in the 1d case the product of random matrices could be done only from the source
to the last of the cavities, in the 2d case there is a new degree of freedom that makes everything
more complicated and it is the order of the product. In general, the product of matrices is not
commutative, therefore not all the product order are equivalent. Unluckily, there is no clue about
which order one should use, therefore only the study by mean of numerical simulation is reliable.
Hence, the only resource at disposal is the numerical computation of the localization length for the
various systems.
To compute the localization length, a set of massively parallel 2D FDTD simulations on Shaheen,
KAUST’s supercomputer, has been used. The fundamental features of the FDTD simulation are
identical for the four system considered. The simulation domain is a 1.825 nm times 1.825 nm
square with a resolution of 1 nm, enough to have more than 100 elementary cells in the the length
of the shortest wavelength, which is 300 nm. A 60 cells layer of UPML has been used for the
boundary condition, and the TFSF box has been set such that it goes from 60 nm to 1.765 µm
along the x and y directions. The number of pillar is set to 400, 20 along the x directions and 20
along the y direction. The nanopillars material is gold while the background material is air and
both are treated as dispersive material, to obtain results as close to the reality as possible. The
integration domain of the localization length instead starts at 100 nm and ends at 1.75 µm on each
side. Each system is different since it exhibits a different kind of disorder and randomness therefore

Figure 4.3.1.1: a) Figure 4.3.1.2: b)

Figure 4.3.1.3:
a) 2d binary array realization with p=0.68;
b) 2d ternary array realization with p1 = 0.68, p2 = 0.1.

for any of them a different algorithm has been used to generate their realization. In the binary case,
the center to center distance is kept fixed, as shown in figure 4.3.1.1 while the radius of the particle
changes in such a way that, given the total number of particles N, the number of particle of radius
equal to 20 nm is int(pN) and the number of particle of radius equal to 25 nm is int((1− p)N). To
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obtain such a realization of the 2d binary array is then enough to take a 1d array of length N in
which the first int(pN) elements are set equal to 20 nm and the rest are set equal to 25 nm. The
last step is to randomly shuffle and reshape it in the form of a 20 times 20 array. This algorithm
ensures that all the realization at fixed p and N are, indeed, equally probables. The case of the 2d
ternary array, a realization of which is in figure 4.3.1.2, is pretty much the same as the 2d binary
array, but it is characterized by two parameters: p1 and p2. In this system, each particle’s radius
can be equal to 20 nm, 25 nm or 30 nm and, just like for the 2d binary array, the center to center
distance in kept fixed to 75 nm so, at fixed p1 and p2, the number of particles of radius equal to 20
nm is p1N , the number of particle of radius equal to 25 nm is p2N and the number of particles of
radius equal to 30 nm is (1− p1 − p2)N .

Figure 4.3.1.4: a) Figure 4.3.1.5: b)

Figure 4.3.1.6:
a) 2d gaussian x array realization with σ = 24nm;
b) 2d gaussian xy array realization with σ = 22nm.

4.3.2 Localization length

The localization length, which is indeed given by the participation ratio, is a first measure of the
enhancement of the electromagnetic field induced by the different geometries. The localization
length is defined as[10] 〈

lc
〉
m

=
〈 (
∫
V
E)2

V
∫
V
E2
〉
m

(4.3.2.1)

The algorithm to generate equally probables realization at fixed p1 and p2 is almost identical to
the binary array’s one, the only difference being in the initialization of the 1d initial array in which
int(p1N) elements are set to 20 nm, int(p2N) are set to 25 nm and the rest is set to 30 nm. For
the gaussian x and gaussian xy array, the procedure is slightly different. Indeed, here it is the
radius of the particles to be kept fixed and their position to be generated according to a probability
distribution. The starting point is a 2d array of perfectly equally spaced particles of 25 nm radius
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such that their center to center distance is equal to 75 nm. Then, each particle position is perturbed
according to a normal distribution as shown in equation 4.3.2.2

ri,j = r̄i,j + δr

δrx ∼ N (0, σ), δry = 0 for the gaussianx case

δrx ∼ N (0, σ), δry ∼ N (0, σ) for the gaussian xy case.

(4.3.2.2)

An example of a gaussian x and gaussian xy 2d array is in figure, respectively, 4.3.1.4 and 4.3.1.5.
and is the photonic counterpart of the electronic localization length which characterize the electron
localization in random potentials. As has been observed firstly by Anderson[7], when the electrons
are subjected to a defect’s potential, their wavefunction is not free to propagate in the real space and
is instead localized around the defect’s position. In the same way, for any wave phenomenon that
involves wave’s scattering by a disordered medium, as may be for instance a photonic crystal subject
to fabrication errors, the waves tends to localize around the defect. The wave’s localization can
then be used to enhance the electric intensity at the nanoscale. The localization length, as defined
in equation 4.3.2.1 can be then used to measure the disordered induced enhancement effectiveness.
Anyway, equation 4.3.2.1 is not clear about the condition under which this quantity has to be
computed. To compute the localization length the system has firstly to be excited and then let go
to a steady state, so the source must be switched of at a certain point. Indeed, the system can be
effectively considered as made of coupled resonant cavities so, if the source was still on, it would
force the cavities to oscillates to a frequency different from their natural one. An interesting feature
of the participation ratio is that, no matter the kind of disorder present in the system and no
matter what kind of source used, it always shows an initial series of peaks related to the transient
induced by the source and then, once the source is off, it oscillates around an average value with an
harmonic-like behaviour, as evident in figure 4.3.2.1. This is evident once figure 4.3.2.1 is compared

Figure 4.3.2.1:
Participation ratio lc(t) as a function of time of a single 2d binary array of nanopillars illuminated
by a single pulse source whose central wavelength is at 500 nm. The participation ratio is computed
every 1000 time steps.

with figure 4.3.2.2 where the participation ratio in time is shown for each disordered system. Being
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so, what is of actual interest is its average, steady state value which must then be averaged over
many realization of the same disorder. Therefore, fist the participation ratio is computed over
many realization of the same disordered system numerically integrating the electromagnetic energy,
computed by mean of the FDTD software

lc(t) =
(
∫
V
E(t))2

V
∫
E2(t)

≈
(
∑

[i,j]∈ green box E [i, j, t])2

V
∑

[i,j]∈ green box E2[i, j, t]

Then, for each realization of any geometry the participation ratio has been averaged in time as

lc =
1

N∆t

N∑
i=1

lc(t)

where N is the number of sample. Generally, a sample’s frequency of 1/1000 time step is enough
to achieve a good precision. The last step is to compute the microcanonical average over the
realizations of a given disordered system to get the microcanonical participation ratio, which is a
measure of how disorder and randomness affect the system. In the case of the binary array, the
averaged participation ratio has been computed over 20 realizations per each values of p ranging
from 0.05 to 0.95 in steps of 0.05. In the ternary case, 20 realization for each values of p1 and p2
such that p1+p2 ≤ 1 has been simulated. For the gaussian x and gaussian xy disorder 20 realization
for each value of σ ranging from 5 nm to 25 nm have been used to compute the participation ratio.
In the last two kind of system, the choice of the range of sigma is not random. Indeed, 5 nm is the
minimum standard deviation due to nanofabrication’s techniques that can be achieved while at 25
nm there is a concrete chance that the two pillars overlap, as shown in figure 4.3.1.4.
It is now time to discuss the actual localization length for each system. First, the binary array. The

localization length reaches its minimum around p=0.68 and this minimum doesn’t actually depends
on the wavelength of the source. Indeed, in the top left of figure 4.3.2.3 it is possible to observe how
the the minimum is absolutely constant as the wavelength changes. The behaviour is confirmed
by the computation of the microcanonical participation ratio for the same system illuminated by a
single pulse source, which is a broadband source in the wavelength domain. As can be seen from the
top right of figure 4.3.2.3, the participation ratio reaches its minimum in 0.68 also in this case. Since
a single pulse source can be decomposed as a superposition of properly weighted plane waves, p
equal 0.68 must be a minimum at all frequencies being the minimum for the sum of the frequencies.
This seems to point out that the capability of the system of confining the electromagnetic field at
the nanoscale does not depends on the frequency of the exciting field but only on the degree of
disorder of the system. Lately, it is worth to say that the binary localization length has a nice bell
shape, quite similar to the 1d binary chain[10] Then the localization length has been computed for
a 2d ternary array. The ternary array is perhaps the most promising because shows the smallest
localization length. Since the geometrical and computational feature has been kept fixed for all
the simulations, the localization length of the four systems can be compared. As can be seen from
image4.3.2.4, the localization length reaches its minimum of about 0.018, against the roughly 0.021
reached by the binary array, which is a clue that this kind of disorder may perhaps be the most
suited for the enhancement of the electric field at the nanoscale as well as for the enlargement of
its spectrum’s broadness. Unluckily, due to some resource’s limitations, the computation of the
localization length with plane wave source has not been possible. Nevertheless, some hypothesis,
based on the behaviour of the other systems analyzed, can be made. For instance, the expectation
is to have some small fluctuation in the argmin of the localization length at each frequency, but
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Figure 4.3.2.2:
Participation ratio computed for a 2d gaussian x, gaussian xy and ternary array. Comparing the
participation ratio of the four types of disorder, it it possible to observe the generality of this
behaviour once the system enter in the stationary state.

this should be related to the small number of samples used for the microcanonical average rather
than to any strong system’s dependence on the impinging plane wave’s wavelength.
The next system to be analyzed is the 2d gaussian x array. In this case the parameter that control
the amount of disorder is the standard deviation of the probability distribution determining the
coordinate along the y axis of each nanopillar which ranges from 5 to 25 nm in step of 1 nm. As can
be seen in the top right image of figure 4.3.2.5, the smaller localization length reached is about 0.021,
larger than the localization length of the ternary case. It is worth to be noticed that the localization
length reaches, for some wavelength, a value smaller than the minimum found in the ternary case,
as shown in left bottom image of figure 4.3.2.5 but the localization length given by a broadband
source is the one that actually matter. Nevertheless, the minimum gaussian x localization length
is already smaller or equal than the binary case and as consequence, from the point of view of the
enhancement of the electromagnetic field at the nanoscale, the results obtained by a 2d binary case
may be equivalent to those of a 2d gaussian x array, which may be easier to fabricate. Anyway,
it seems that the localization length decreases as σ increases, so it is likely to expect a value of
σ such that the gaussian x array’s localization length is smaller or equal than the ternary one.
Once again, the localization length seems to be quite unaffected by the wavelength of the impinging
source. As can be seen in the bottom right of figure 4.3.2.5, the σmin = argminσ{

〈
lc(σ, λ)

〉
m
} does

not change considerably in frequency, and the small change of 1 nm is well explained considering
the variance of this quantity and the fact that here the disorder has a continuous and not discrete
nature. Perhaps, if the number of sample used to perform the microcanonical average was larger,
this small variation of σmin would have disappeared. In any case, a 1 nm variation is small enough
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Figure 4.3.2.3:
2d binary array
a) argminp{

〈
lc(p, λ)

〉
m
}. Even if, for logistic reasons, the number of sample to perform the mi-

crocanonical average has been reduced from 20 to 10 for the computation of
〈
lc(p)

〉
m

at single

frequencies the minimum remains constant and coincides with the one found computing
〈
lc(p)

〉
m

for the same system excited by a single pulse source;
b)
〈
lc(p)

〉
m

computed exciting the system using a monochromatic plane wave a with a wavelength
ranging from 300 to 800 nm with a step of 50 nm switched off after 5 optical cycles. It is clear
that the behaviour of the localization length does not depends on the impinging wavelength but
only on the degree of disorder of the system. Moreover it is clear how almost ordered systems,
for p=0.05 and p=0.95, are much less effective in confining and condensing the electromagnetic
field than highly disordered systems. It may be observed, indeed, how the lowest values for the
localization length are obtained for values of p ranging from about 0.05 to about 0.07. Remarkably,
this behaviour is so robust that even an averaging over a modest number of realization for each
wavelength and p is enough to show it;
c) localization length computed using as source a single pulse with a central wavelength of 500 nm
and a waist of 300 nm.

to be neglected, when it come to nanofabrication where the minimum standard deviation for the
center of such nanopillar would be at least of 5 nm.
Finally, the last system to be discussed is the 2d gaussian xy array. As in the previous case, the
parameter that control the disorder is σ ranging from 5 to 25 nm in steps of 1 nm, whose effect
of the nanopillars center coordinate’s is explained in equation 4.3.2.2. As can be seen from the
top right image of figure 4.3.2.6, the localization length of the gaussian xy case computed under a
broadband source doesn’t change significantly but is even more fluctuating than the gaussian x case.
This is not surprising, since the number of samples used to compute the microcanonical average
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Figure 4.3.2.4:
Participation ratio computed for a 2d ternary array. The allowed couples p1, p2 are those such that
p1 + p2 6= 1. All the remaining pixels, namely the upper half of the square, are set to a meaningless
standard value. It is clear how the increase of disorder decreases the localization length. Indeed, the
pixels corresponding to the couple such that there is a small disorder, as can be when p1 +p2 = 1 or
when there is absolute predominance of a single type of nanoparticle, are much lighter than those
in which there is a good mix of nanoparticles.

is kept constant to 10 for logistical reasons but the disorder of the system is further increased.
Just as in the gaussian x case, it is true that the gaussian xy localization length reaches, for some
wavelength of the impinging wave, a much smaller localization length than the ternary case one
but, as before, it is the result shown in the top right image of figure 4.3.2.6 that matters. Anyway,
the general trend of σmim = argminσ{< lc(σ, λ >m} which is mostly unaffected by the wavelength
is shown in the bottom right image of figure 4.3.2.6. The fluctuations shown by σmin may once
again be explained by the small number of samples used to compute the microcanonical average.
The only case in which the system does not follow the general trend is for an impinging plane wave
of wavelength equal to 700nm. In this case, σmin is found to be at about 14 nm but, as can been
seen from figure 4.3.2.7, the difference between < lc(σ = 14) >= σmin|λ=700nm and < lc(σ = 24) >
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Figure 4.3.2.5:
2d gaussian x array.
a) localization length computed for a plane wave source whose wavelength ranges from 300 to 800 nm
in step of 50 nm and switched off after 5 optical cycles. It is clear the general trend which depends
only on the quantity of disorder introduced in the system and not on the incident wavelength;
b) localization length computed for single pulse source whose central wavelength is in 500 nm and
whose waist is of 300 nm. In this case the minimum of the localization length is for σmin =
23nm, which is in the range found computing the localization length at each wavelength. Perhaps,
this value of σmin should be the one to be used for a fabrication since takes into account of the
superposition of all the wavelength;
c) detail of the localization length computed at each wavelength;
d) argminσ{

〈
lc(σ, λ)

〉
m
}. The small fluctuation observed in this case is related to the small number

of sample used for the computation of the localization length.

is the 0.54 % of σmin hence this small deviation is likely explained by the small number of samples
used for the microcanonical average.
In any case, the overall minimum localization length of the gaussian xy array is pretty much the
same as the gaussian x and binary array’s localization length, hence suggesting that the instrumental
errors due to the nanofabrication of such system, which is practically a metasurface[13] in the visible
and near infrared spectrum, can be effectively used to tune the electromagnetic properties of the
these 2D array. Perhaps, a good strategy may be firstly to find the optimal sigmamin and then to
fabricate the array with a σext such that

σmin = σnano + σext

where σnano is the standard deviation due to the nanofabrication process.
In conclusion, the ternary array seems to be the one with the smallest overall localization length
but it is also quite difficult to realize. Instead, a good substitute is the 2d gaussian x or gaussian
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Figure 4.3.2.6:
2d gaussian xy array
a) localization length computed for impinging plane waves whose wavelength ranges from 300 to
800 nanometers in step of 50 nanometers switched off after 5 optical cycles. The general trend
follows quite closely the behaviour of the localization length obtained using a single pulse source
but it is much more subject to fluctuation. These fluctuations may, indeed, be related to the small
number of samples using to compute the microcanonical average;
b) localization length computed for a single pulse source with σ ranging from 5 to 25 nanometers.
Its minimum is reached for σ smaller than maximum allowed standard deviation, suggesting that
when the overlap between two nanopillars is too likely, the effective number of optical cavities
decreases as well as the effective average center to center distance. In this case the characteristic
length of the array is too large with respect to the smallest of the wavelength which may propagate
more freely in this case, reducing the amount of energy transferred to the system;
c) detail of the localization length computed with the a plane wave source;
d) σmin(λ) = argminσ{

〈
lc(σ, λ)

〉
m
}. σmin is quite constant unless the case of λ = 700nm. As

explained in the main text, this is much likely due to the small number of sample used to perform the
microcanonical average rather than due of any dependence of the σmin on the impinging wavelength

.

xy array which shows an overall localization length smaller or equal than the one of the binary case
but are of simple realization.

4.3.3 Hot electron generation rate for 2d disordered arrays

Once the parameters that minimize the localization length, hence theoretically enhancing the elec-
tromagnetic field, for each kind of disorder have been found, the last and natural step is to compute
the hot electron generation rates for these conditions summarized in table 4.1 In order to save
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Figure 4.3.2.7:
a) localization length computed for a plane wave source of wavelength=700 nm switched off after 5
optical cycles;
b) detail of the above top left image. It is clear how small is the differences between

〈
lc(σ = 14nm)

〉
m

and
〈
lc(σ = 24nm)

〉
m

2d array parameter’s value
binary p=0.68
ternary p1 = 0.1, p2 = 0.68

gaussian x σ = 23nm
gaussian xy σ = 20nm

Table 4.1: localization length argmin for each 2d array’s type

computational time and resources, the normal to the surface electric field and the hot electron
generation rate has been computed using a method different than equation 4.1.0.1, for which it is
needed a simulation for every wavelength ranging from 300 nm to 800 nm. In this case, a single
pulse source whose central frequency is at 500 nm and whose waist is of 300 nm has been used to
excite the system. The electromagnetic field has been recorded in time on 10 equispaced points on
each particle belonging to the array, as shown in figure 4.3.3.1. Once the simulation is done, each of
the recorded field has been projected on the normal to the surface versor in that point and Fourier
transformed. Then the intensity of the normal electric field has been computed as

I(r, ω) = F [En(r, t)](ω)F∗[En(r, t)](ω)

The last step is the integration over the particles surface, which numerically is obtained just by
summing up all the transformed field. In this way, for each disorder realization has been needed
only one simulation, reducing the amount of simulation needed to 80, 20 for each different kind
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Figure 4.3.3.1:
probe disposition in space to record the electromagnetic field on the surface of the nnanopillars

of disorder, against the 2000 that would have been needed using the former procedure. From the
point of view of the intensity spectrum, the results are quite remarkable, as can be seen in figure.
Indeed, the four systems show a broad intensity spectrum, in particular in the red and near infrared
range. This broadness is completely due to the introduction of disorder in the system and is quite
similar in the four cases, as shown in figure 4.3.3.2. It confirms that the properties of a binary
or ternary array may be approximately replicated using a gaussian x or gaussian xy array and
viceversa. Indeed, this feature is not trivial since it allows a good flexibility when it comes to the
fabrication of such a structure, even if, in general the ternary array is the one that shows the better
performances.
The hot electron generation rates are also quite similar to each other and all show a greater rate
in the red a near infrared part of the visible spectrum rather than in blue and violet part. This
behaviour is completely due to quantum effects and can be modified by the choice of material and by
the choice of the single particle geometry, but it is not affected by the type of disorder. It is indeed
known that cavities made of nanoparticles present a red shift of the resonance peak compared to
the single particle case which is a function of its geometrical features[9]. If the averaged intensity
spectrum of 2d binary arrays is interpreted as a weighted superposition of peaks due to single
cavities, then it is reasonable that the 2d array’s intensity spectrum become broader in the red and
infrared frequency range as all the peaks are shifted in that direction. Therefore the only way to
increase the broadness of the hot electron generation rate in the visible spectrum is to choose a
material and a single particle geometry such that the single particle resonance peak’s wavelength
is in the low wavelength range. For instance, Govorov and collaborators[14] have reported that
silver is much more effective than gold for the hot electron generation rate and the cubic geometry
has shown the best performances among all the studied single particle geometry. However, it is
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Figure 4.3.3.2:
a) field intensity’s microcanonical average of the 2d binary array;
b) field intensity’s microcanonical average of the 2d ternary array;
c) field intensity’s microcanonical average of the 2d gaussian x array;
d) field’s intensity of the microcanonical average of the gaussian xy array.
The red lines represent the standard deviation computed over the different realization of the same
disordered system at each wavelength. Once again, the effect of the small number of samples used
for the microcanonical average can be observed: the binary case is the only case that does not
present a large standard deviation due to the small its intrinsically small fluctuation compared to
the other cases. It is moreover clear how the standard deviation increases as the disorder increases,
as it is much larger for the gaussians array whose disorder is continuous than for the binary of
ternary array whose disorder is discrete. The four surface DOS spectrum can be compared since
all of them are normalized to the same value

clear that the role of disorder is to break down the cavities coupling allowing the spectrum to be a
weighted superposition of many different contributions but it has no way to blue-shift the cavities
peak’s frequency.
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Figure 4.3.3.3:
a) averaged hot electron generation rate for the 2d binary array;
b) averaged hot electron generation rate for the 2d ternary;
c) averaged hot electron generation rate for the 2d gaussian x array;
d) averaged hot electron generation rate for the 2d gaussian xy array;
The four generation rates are quite similar to each other and show a broad generation rate in the
close infrared and red part of the solar spectrum. The y-axis is in arbitrary units in all the plots.

40



Chapter 5

Conclusion

The theoretical background for the study of the nanoparticle’s hot carriers generation rate has been
recalled as well as the numerical tools needed to simulate a generic electromagnetic system. In this
framework four geometries, the sphere, the ellipsoid, the cube and the cylinder, has been analyzed
by mean of FDTD simulation and their power density spectrum computed. Among the others,
the cubic geometries has appeared as the one presenting the most broad intensity and hot electron
generation rate but the cylindrical one has been chosen since it is the simplest to nanofabricate
with a good control of its the geometrical features.
The next natural step has been the study of 2d arrays of nanoparticles, which are of real interest
when it comes to a massive hydrogen generation. Among all possibilities, 2d arrays characterized by
different kind of disorder has been studied in order to understand weather the randomness can be
exploited to increase the hot electrons generation rate. The effect of disorder has been characterized
by the localization length whose study has allowed to find the amount of disorder that maximize
the performances of the different disordered arrays. It is worth noticing that the localization length
has show a robust behaviour with respect to the wavelength of the impinging wave, hence showing
to be affected only by the particular kind of disorder present in the system. The analysis of the
computed surface photonic DOS and hot electron generation rate for such nanostructures has shown
that both these two quantities both greatly benefit from a controlled introduction of disorder in the
system.
In conclusion, the control of disorder is a new promising way to achieve performances that ordered
structure could never achieve through a controlled break of collective behaviour and geometrical
constants of the system.
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