
POLITECNICO DI TORINO

Collegio di Ingegneria Elettronica, delle Telecomunicazioni e Fisica

Master of Communications and Computer Networks

Engineering

Master Degree Thesis

Innovative microwave rain gauge operating at 77
GHz: software development and operational test

Supervisor:
Ing. Marco Allegretti

Co-Supervisors:
Ing. Silvano Bertoldo
Prof. Giovanni Perona

Candidate:
Luca Bongarzone

I

Contents

List of tables ... IV

List of figures .. V

1. Introduction ... 1

1.1 Objectives .. 1

1.2 Car as sensor .. 1

2. Radar Systems .. 3

2.1 FMCW Operating principles .. 4

2.2 FMCW Characteristics ... 6

2.3 FMCW Radar equation ... 7

2.3 FMCW Problematics .. 8

3. Metereological Radar ... 9

3.1 Rain drops scattering .. 9

3.2 Rayleigh’s model ... 11

3.3 Mie’s model .. 13

3.4 Radar Constant ... 14

3.5 Rain rate evaluation .. 16

4. Hardware equipment ... 17

4.1 Radar sensor ... 17

4.2 Antenna .. 18

4.3 PC .. 18

5. Preliminary studies .. 21

5.1 Radar constant evaluation ... 21

5.2 Z-R Derivation ... 22

5.3 Acquisition and processing parameters ... 25

5.4 Preliminary test .. 27
5.4.1 Interface configuration ..27

5.4.2 Outdoor obstacle detection test ..28

5.4.3 Radar calibration and rain estimation test ..31

6. Software development .. 36

6.1 PC Configuration ... 36

6.2 Software structure .. 37

6.3 Software analysis ... 39

II

6.3.1 core.c ..39

6.3.2 myglobal.h ..40

6.3.3 myinclude.h ..40

6.3.4 debug.h ...41

6.3.5 logManager.c ..42

6.3.6 xmlManager.c ...42

6.3.7 serial.c ..45

6.3.8 acquisition.c ..46

6.3.9 processing.c ..48

6.3.10 myerror.h ...50

7. Data presentation: web page ... 53

7.1 Introduction and useful tools .. 53

7.2 Web Server configuration ... 55

7.3 Web Site development .. 60
7.3.1 index.php ...61

7.3.2 configuration.php ...62

7.3.3 live.php...65

8. Software test and measurements ... 70

8.1 Indoor Test ... 70

8.2 Outdoor Test .. 75

8.3 Rain Test .. 79

8.4 Rain estimation preliminary test: results check ... 84

9. Conclusions and future work ... 85

Bibliography ... 87

Ringraziamenti ... 88

III

IV

List of tables
Table 1. Specifics of the radar sensor RS3400W/04 ... 18
Table 2. Antenna Parameters .. 18
Table 3. Parameters for the evaluation of the radar constant ... 21
Table 4. Rainfall rate and dBZ ... 24
Table 5. Acquisition and Processing parameters ... 26
Table 6. Software Errors .. 51

V

List of figures
Figure 1. “Car as Sensor” ... 2
Figure 2. Radar diagram block ... 3
Figure 3. FMCW Signal ... 5
Figure 4 Scattering regions... 9
Figure 5. Common radar bands in meteorology .. 10
Figure 6. Drop size distribution .. 11
Figure 7. Backscattering efficiency .. 13
Figure 8 Atmospheric absorption curve. ... 15
Figure 9. Speceific attenuation for different frequencies and rain rates 15
Figure 10. Radar sensor and antenna .. 17
Figure 11. PC ... 19
Figure 12. Mie Vs Rayleigh (standard DSD) .. 23
Figure 13. Mie Vs Rayleigh (Joss DSD for thunderstorm) .. 24
Figure 14. Outdoor test: setup .. 28
Figure 15. Outdoor test: environment ... 29
Figure 16. Outdoor test: output signal .. 29
Figure 17. Outdoor test: output signal spectrum ... 30
Figure 18. Rain gauge test: setup .. 32
Figure 19. Rain gauge test: environment .. 32
Figure 20. Rain gauge test: output signal .. 33
Figure 21. Rain gauge test: output Z values .. 33
Figure 22. Rain gauge test: rain rate ... 34
Figure 23. Apache2 Default Page ... 56
Figure 24. MySite Configuration File ... 57
Figure 25. PHP.ini ... 59
Figure 26. PHP Info ... 59
Figure 27. Web Site folder ... 60
Figure 28. Software sub-folder ... 60
Figure 29. ‘index.php’ Page ... 61
Figure 30. ‘configuration.php’ Page (Upper half) ... 63
Figure 31. ‘configuration.php’ Page (Lower half) ... 64
Figure 32. ‘live.php’ Page (No Data) .. 65
Figure 33. ‘index.php’ (Running) ... 66
Figure 34. ‘live.php’ (Data) .. 67
Figure 35. ‘live.php’ (November Data)... 68
Figure 36. ‘live.php’ (Real-Time Data) .. 69
Figure 37. Software Indoor test: setup .. 71
Figure 38. Software Indoor test: environment ... 72
Figure 39. Software Indoor test: signal ... 73
Figure 40. Software Indoor test: spectrum .. 73
Figure 41. Software Outdoor test: setup ... 75
Figure 42. Software Outdoor test: environment .. 76
Figure 43. Software Outdoor test: signal .. 77
Figure 44. Software Outdoor test:spectrum .. 78
Figure 45. Software Rain test: setup ... 79
Figure 46. Software Rain test: signal .. 80
Figure 47. Software Rain test: Z values .. 81
Figure 48. Software Rain test: rain rate values .. 81
Figure 49. Software Rain test: ‘live.php’ web page .. 82
Figure 50. Software rain test: rain rate stepped ... 83

VI

Figure 51. Software Rain test: cumulated rain stepped ... 83

1

Chapter 1

Introduction

1.1 Objectives

The thesis aims to show that, with specific assumptions and theoretical background, it is

possible to use a 77 GHz (W-band) radar as a mini weather radar and/or as a microwave rain

gauge, with high-resolution, to be used for various purposes including Quantitative

Precipitation Estimation (QPE), and usage on a car, considering the concept of car-as-sensor.

Objectives of the thesis are the following:

1) Derive the relationship between rainfall rate (R) and radar reflectivity factor (Z)

considering the scattering theory at 77 GHz.

2) Realization of a fully functional 77 GHz radar prototype for rain monitoring, taking as

basis one of the standard W-band radar present on the market.

3) Development of a software to control and manage the prototype.

4) Test of the prototype.

1.2 Car as sensor

According to European Telecommunication Standards Institute (ETSI), the W-Band is not

designated for metereological purposes, but it has actually been standardized for automotive

applications and, in particular for automatic Cruise Control radar, operating at around 77 GHz.

The idea is indeed, to exploit, as a future development, a common 77 GHz radar, mounted on

cars, for rain monitoring, in order to use a car as a moving integrated weather sensor.

In such a way, there is a clear “car as sensor” concept extension, in a wider view of Internet Of

Things (IOT): nowdays, cars are infact equipped with a large set of sensors, systems and

technologies, commonly used to improve car and passengers’safety and comfort. These sensors

have two main advantages, in data acquisition: since cars have not any constraints with their

power source, they can be easily equipped with powerful processing capabilites; also, since cars

have not any constraints on space and capability, they can be equipped with sufficient storage

units.

2

Some examples of sensors already installed on cars, to inquire information about the

environment, and that can so be potentially used for metereological purposes include:

accelerometers, external temperature sensors, pressure sensors, cameras and so on.

A set of cars equipped with weather radar can constitute a capillary network for rain estimation,

providing information in real-time about the amount of precipitation in a given area.

Infact, exploiting the new interfaces and standars (802.11p) for Veichle-to-Veichle (V2V) and

Veichle-to-Infrastructure (V2I) communication, it would also be possible to exchange and

process a large amount of data in relatively short period of time.

Figure 1. “Car as Sensor”

Alternatively to the car’s application, the 77 GHz radar could be used for rain monitoring in

particularly difficult areas, where there eventually are just long range and small resolution radar

whose coverage is not too much precise. For example in mountanious environments there are

always areas without radar coverage due to natural obstacles and this could be solved thanks to

these 77 GHz radar and their high resolution.

3

Chapter 2

Radar Systems

Radar is the definition for a generic electronic system able to simultaneously transmit

electromagnetic waves (EM) in radio frequency (RF: 3 Hz – 300 GHz more or less) through an

interest region, and to detect the ones reflected from surfaces within the region itself. Surfaces

that can typically be differentiated in: targets, if related to something that needs to be

individuated by the radar (like airplanes, boats, atmospheric phenomena, etc.), and clutters, if

related, instead, to obstacles or something undesired causing interference.

Even if the characteristics of a radar system vary according to the use application, its main

components include:

 Transmitter, to generate high power EM waves able to induce electric currents, on the

surfaces situated along the waves’ propagation path, that produce the scattering

radiation, individuated by the radar.

 Antenna, to physically introduce the generated waves in the propagation medium,

separating transmitted and received signals.

 Receiver, to process EM waves individuated by the antenna: usually the signal is

amplified, converted to an IF suitable for the A/D conversion, and demodulated.

 Signal elaborator, to distinguish interference (electronic and thermal noise, internal and

external interference, like clutters and jamming) from the signal of interest.

The following Figure 2 shows a typcal (and generic) example of radar diagram block:

Figure 2. Radar diagram block

4

There are two possible basic configurations for the radar systems antennas: monostatic, in

which a single antenna is adopted for both transmitter and receiver (more common nowdays),

and bistatic, in which two different antennas are attached to the two devices.

Another classification for the radar systems concerns the employed waveform transmitted, that

can be impulsive or continuous (CW). In the first case, either the transmitter emits a finite pulse

sequence and the receiver is isolated from the antenna, or the transmitter is turned off and the

receiver is ready to detect the reflected signals. In the second case, transmitter and receiver are

continuously operative.

2.1 FMCW Operating principles

Since the 77 GHz radar I used belongs to the CW radar category, and in particular to the FMCW

(Frequency Modulated Continuous Wave) one, I’m going to focus on them. This choice

depends on the fact that these types of radar are already mounted on the car and consume much

less power than the pulsed radars.

The main FMCW radar principle is that the frequency of the transmitted EM signal changes

over time, generally with a sweep across a set bandwidth “𝐵𝑊”. A sawtooth function is the

simplest, and most often used, change in frequency pattern for the emitted signal. Synthesized

modules (like RS3400W I used for this thesis), actually, don’t sweep the frequency

continuously, but rather step it with a set of discrete points, thus they are also called SFCW

(Stepped Frequency Continuous Wave) radar. The signal sources, ensure very precise

frequency control, fundamental for the accuracy and the repeatability of the measurements; the

transmitted power can be very low with respect to other types of radar.

Given a frequency sweep time “𝑇”, during which the sweep must be completed, it’s possible to

define the sweep rate “𝑘𝑓”:

𝑘𝑓 =
𝐵𝑊

𝑇

 (1)

Since a delay caused by the time of flight of the reflected signal is introduced, depending on

the position “𝑑” of the scatterer and on the speed of light “𝑐”, the total time difference is ∆𝑡 :

5

∆𝑡 =
2𝑑

𝑐

(2)

The difference in frequency between the transmitted and the received signal, at a given time

instant, is determined by mixing the two signals and producing a new one, whose frequency,

called “beat frequency” putting together (1) and (2) is:

∆𝑓 = 𝑘𝑓∆𝑡 =
𝐵𝑊

𝑇

2𝑑

𝑐

(3)

According to Werner formula, indeed, the product between two sinusoids (the RF signal

transmitted and the received one) is equal to ½ cosine of the sum of their frequencies

(eliminated by low pass filter), times the cosine of their frequencies difference. This remaining

cosine is the IF signal that the radar outputs, constant and with the frequency ∆𝑓 depending on

the target echo distance. This procedure is repeated for every individuated echo, thus the final

IF signal outputted from the radar will contain superpositions of the individual IF signals and

so different frequency components (one per each echo) that can be used to measure distance or

velocity of the target.

Figure 3. FMCW Signal

6

2.2 FMCW Characteristics

Since the signal coming from the radar is a sinusoid with multiple frequencies, after computing

its Fourier Transform, it’s possible to individuate a target distance “𝑅𝑓” by simply looking at

the power peaks and their corresponding frequencies “𝑓”:

𝑅𝑓 =
𝑐𝑇𝑓

2𝐵𝑊

(4)

According to the mentioned parameters, it is possible to calculate the radar range resolution:

𝑅𝑒𝑠 =
𝑐

2𝐵𝑊

(5)

This shows how it only depends on the sweep bandwidth of the RF signal and not on its

operating frequencies. Thus by increasing it, it’s possible to reach very high resolutions (as it

happens for the RS3400W, since it works at 77 GHz and a high bandwidth can be exploited).

Targets at lower distances than the resolution can’t be considerated as valid, since at least one

complete frequency sweep must be performed.

The theoretical maximum distance that can be reached by the radar, without ambiguity (since

otherwise two targets over that range can contribute to the spectrum at the same frequency and

there can be no unique determination of range) is:

𝑅𝑢𝑛𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 =
𝑐𝑇

2

(6)

Obviously, the resulting value should be much lower since different attenuation factors come

up.

7

2.3 FMCW Radar equation

Target detection for a FMCW radar (and more in general, all the radar systems) is based on its

echoes’ intensity measurement, which is directly proportional to the radar cross section (RCS),

also known as Backscattering Cross Section, of the target itself.

Generally, the RCS is the ratio between the power reflected from a scatterer and the power

incident on it, and measures how much it is detectable by a radar: the larger the RCS of a target,

the higher are the probabilities to detect it.

For a monostatic radar and a puntiform scatterer, the received power 𝑃𝑟 is calculated as function

of the transmitted power 𝑃𝑡 , the transmitter and receiver antenna gains 𝐺𝑡 and 𝐺𝑟 , the

transmitter wavelength used 𝜆, the target distance 𝑅 and the scatterer cross section 𝜎𝑜:

𝑃𝑟 =
𝑃𝑡𝐺𝑟𝐺𝑡𝜆2𝜎𝑜

(4𝜋)3𝑅4

(7)

Considering a volumentric target instead, it turns out that the total received power from the

radar depends on the total Backscattering section 𝜎𝑤, associated with scatterers (since usually

in a radar volumetric cell, more scatterers are present), contained in the volume 𝑉, monitored

from the radar, that is equal to the product between 𝑉 itself and the radar reflectivity 𝜂:

𝜎𝑤 = 𝜂𝑉

(8)

𝜂 [𝑚2

𝑚3] represents the RCS per volume unit (1 𝑚3) 𝑑𝑉, and it is given by the sum of each RCS

𝜎𝑖 detected, within 𝑑𝑉:

𝜂 =
∑ 𝜎𝑖𝑖

𝑑𝑉

(9)

The total volume 𝑉, illuminated by a CW radar, can be instead expressed as follows:

𝑉 =
𝜋 ∗ 𝜃3𝑑𝐵 ∗ 𝜑3𝑑𝐵 ∗ 𝑅2

8 ∗ 𝑙𝑛2
∗

𝑐

2𝐵𝑊

(10)

being 𝜃3𝑑𝐵 and 𝜑3𝑑𝐵 the Half Power Beam Width (HPBW) angles of the radar antenna, in the

two reference orthogonal radiation planes.

Substituting, in the equation (7), 𝜎𝑜 with 𝜎𝑤 and its expression (8), combining (9) and (10), the

expression for the total received power is:

8

𝑃𝑟 =
𝑃𝑡 𝑐 𝐺𝑟𝐺𝑡𝜆

2
∗ 𝜃3𝑑𝐵 ∗ 𝜑3𝑑𝐵 ∗ 𝜂

1024 ∗ 𝐵𝑊 ∗ 𝜋2 ∗ 𝑙𝑛2 ∗ 𝑅2

(11)

2.3 FMCW Problematics

As for any other radar system, the FMCW ones are subjected to different problematics, linked

to the EM waves propagation phenomena: reflection, refraction, diffraction and attenuation.

The reflection is the basic of the radar theory and without it, it wouldn’t be possible to

individuate targets. However, there could be undesired reflections due to obstacles, and so

clutters, that should be discovered and then filtered out in the signal post processing.

The refraction comes up at the interface between two materials, as for example, two different

strates of the atmosphere, and consists in the path deviation of the EM waves.

The diffraction is still a path deviation of the EM wave, but it’s caused by the presence of an

obstacle that can be penetrated by the EM wave itself. This phenomenon is more evident when

the obstacle has dimensions comparable or rather smaller than the incident wavelength.

The attenuation is the most important one and it’s strictly linked to the absorption. The

atmosphere is indeed made up of different gas and particles that could cause energy losses in

the EM waves. Absorption is dependent on the signal frequency and on the target distance.

Since the purpose of this thesis is to show the possibility to adopt a 77 GHz radar as a

meteorological sensor able to measure the amount of rain fallen in a short range, some of this

propagation phenomena can be neglected, such as absorption and refraction. Ranges lower than

100 meters, indeed, exclude the possibility to cross different atmospheric strates, and the

absorption, thus the attenuation, usually has impact whenever the signal reaches at least 1 km

of distance.

Undesired reflections and diffraction phenomena should be instead kept in account, as well, as

possible interferences. However, by post processing the signal, it can be easily individuated if

some anomalies have come up during the measurements.

9

Chapter 3

Metereological Radar

3.1 Rain drops scattering

Rain estimation, through radar equipment, is based on the power received (11), considering as

scatterers for the total RCS 𝜎𝑤 evaluation, the rain drops present in the volumetric cell,

monitored by the radar itself, during its scan interval.

The rain drop RCS “𝜎𝑖”, and the attenuation it introduces, is a function of its diameter 𝐷[mm]

and of the wavelength (thus of the frequency) used by the radar. Defining the size parameter

as:

𝜒 =
𝐷𝜋

𝜆

(12)

It is possible to distinguish three different scattering regions:

 𝜒 ≪ 1 : Rayleigh’s scattering, where the particles are smaller than the incident

wavelength.

 𝜒 ≪ 1: Mie’s scattering, where the particles have dimensions comparable with the ones

of the incident wavelength.

 𝜒 ≫ 1 : Geometric’s scattering, where the particles are greater than the incident

wavelength.

Figure 4 Scattering regions

10

Defining also the Backscattering efficiency “𝜉𝑏” as the ratio between the RCS “𝜎” of a perfect

sphere (solid that can approximate a rain drop) of radius 𝑟 (𝜎 = 𝜋𝑟2), and its surface (𝜋𝑟2), it

can be seen on the above Figure 4 how it varies with the size parameter (in logarithmic scale).

In radar metereology, the common approach is to assume the Rayleigh’s model, which is valid

just until the rain drops’ physical dimensions are lower than the wavelength used. If they are

comparable with it, instead, the Mie’s model should be considered, since it gives a complete

and mathematically rigorous solution of the scattering problem when an electromagnetic wave

hits a sphere.

However, the standard bands used for meteorological purposes are the following:

 S-band (f=2.7-2-9 GHz, 𝜆 = 10-11 cm) used even for big hail particles (d > 2cm).

 C-band (f=5.6-5.65 GHz, 𝜆 = 5 cm) used even for large snow particles (d > 1cm).

 X-band (f=9.3-9.5 MHz, 𝜆 = 3 cm) used even for common hail and snow particles.

 Ka-band (f=35 GHz, 𝜆 < 1 cm) used for rain drops having diameter d > 0.1 mm.

Figure 5. Common radar bands in meteorology

The above mentioned bands can correctly use the Rayleigh’s model except for the Ka-Band

where the wavelength (decreasing with the increasing of the frequency) begins to be

comparable with the rain drops’ diameter.

11

3.2 Rayleigh’s model

Considering a certain rain rate 𝑅[mm/h], the drop size distribution (DSD) can be generally

expressed as:

𝑁(𝐷) = 𝑁0𝐷𝜇 𝑒−𝛾𝐷

(13)

𝑁(𝐷) being the rain drop amount per unit of volume and dimensional interval [𝑚𝑚−1𝑚−3], 𝐷

the drop diameter [mm], 𝑁0 [𝑚𝑚−1𝑚−3] a parameter of the distirbution and 𝛾 = 𝛼𝑅𝛽 a

parameter varying with the precipitation type.

Marshall and Palmer proposed one of the actual most common DSD used in metereology:

𝑁(𝐷) = 8000 𝑒−𝐷 (4,1∗𝑅−0,21)

Joss proposed instead a different one for thunderstorms:

𝑁(𝐷) = 1.4 ∗ 106 ∗ 𝑒−𝐷 (3000∗𝑅−0,21)

The following Figure 6 shows how, independently from the DSD, most of the drops have a

diameter included between 0.5 mm and 4 mm.

Figure 6. Drop size distribution

According to the Rayleigh’s model, the Backscattering cross section associated with the i-th

rain drop can be expressed as:

𝜎𝑖 =
𝜋5|𝐾2|𝐷𝑖

6

𝜆4 (14)

12

Where 𝐾 =
𝑚2−1

𝑚2+1
 being 𝑚 the complex refraction index of the scatterer (water in this case).

Since in a rain cell there are multiple rain drops, the equation (9) must be evaluated substituting

𝜎𝑖 with its expression (14), such that:

𝜂 =
𝜋5|𝐾2|

𝜆4

∑ 𝐷𝑖

6
𝑖

𝑑𝑉

(15)

Now it’s possible to define the radar reflectivity factor 𝑍[𝑚𝑚6𝑚−3], representing here the

drops concentration in the volume unit, as a function of drops diameter and distribution. 𝑍 is an

intrinsic property of the rain drops, thus it depends on the precipitation type and dosen’t depend

on the wavelength used, as instead 𝜂 does. So, given a certain DSD 𝑁(𝐷), according to the

Rayleigh’s model it is equal to:

𝑍𝑅𝑎𝑙 = ∫ 𝐷6𝑁(𝐷)𝑑𝐷
𝐷𝑀𝑎𝑥

0

(16)

This expression substitute ∑ 𝐷𝑖
6

𝑖

𝑑𝑉
 in the equation (15). So the final RCS per unit volume is:

𝜂 =
𝜋5|𝐾2|

𝜆4
 𝑍

(17)

Therefore the radar equation (11) for metereological purposes, according to Rayleigh’s model,

substituing 𝜂 with the expression of equation (17) and keeping also in account all the adjunctive

attenuation factors 𝐿, turns to be:

𝑃𝑟 =
𝑃𝑡 𝑐 𝐺𝑟𝐺𝑡𝜆

2
∗ 𝜃3𝑑𝐵 ∗ 𝜑3𝑑𝐵 ∗ 𝐿2

1024 ∗ 𝐵𝑊 ∗ 𝜋2 ∗ 𝑙𝑛2 ∗ 𝑅2

𝜋5|𝐾2|

𝜆4
 𝑍 =

𝐾𝑜𝑛𝑠𝑡 ∗ 𝑍

𝑅2

(18)

where 𝑅2 is the squared target distance (in Km) and 𝐾𝑜𝑛𝑠𝑡 is the radar constant. In the

following paragraph (3.4) I’ll focus on 𝐾𝑜𝑛𝑠𝑡 characteristics.

Usually, the received power is expressed in dBm therefore a logarithmic scale conversion is

needed, as shown below:

𝑃𝑟 |𝑑𝐵𝑚 = 10𝑙𝑜𝑔10(𝑃𝑡) + 10𝑙𝑜𝑔10(𝐾𝑜𝑛𝑠𝑡) + 10𝑙𝑜𝑔10(𝑍) − 180 − 20𝑙𝑜𝑔10(𝑅) (19)

The factor 180 has to be subtracted, since the radar reflectivity factor is multiplied by 1018 to

correctly express the measuring units (Power in [dBm], R in [km], Z in [mm6/m3]).

13

3.3 Mie’s model

Since the radar I am using is working at 77 GHz (W-band) and the corresponding wavelength

has a dimension of about 4 mm, comparable with the rain drops dimension, the Rayleigh region

cannot be considered valid anymore. It is necessary to use the Mie’s model, otherwise the

backscattering efficiency, thus the total RCS, could be overestimated by up to 20 dB, as shown

in the following Figure 7:

Figure 7. Backscattering efficiency

Using Mie’s model implies to consider raindrops as perfect spheres and, although it is a rough

approximation of the observations, it provides a first good estimate of rain drops shape that

does not affect the results too much. However, even if it is more complicated to evaluate the

backscattering RCS, whose value depends on Mie’s coefficients, the radar reflectivity factor

according to the Mie’s model can be expressed as:

𝑍𝑀𝑖𝑒 =
𝜆4

𝜋5|𝐾2|
∫ 𝜎𝑀𝑖𝑒𝑁(𝐷)𝑑𝐷

𝐷𝑀𝑎𝑥

0

(20)

It is worth noting that, according to this formulation, the radar reflectivity factor is a function

of the wavelength, unlike the Rayleigh approximation, in which it is frequency independent.

14

3.4 Radar Constant

In this paragraph I am focusing on 𝐾𝑜𝑛𝑠𝑡 characteristics, the last factor of the equation (18).

The radar constant is evaluated by the following expression:

𝐾𝑜𝑛𝑠𝑡 =
𝑐 𝐺𝑟𝐺𝑡 𝜋3 𝜃3𝑑𝐵 𝜑3𝑑𝐵

1024 𝐵𝑊 𝜆2 𝑙𝑛2
𝐿2𝐾2

 (21)

where:

 𝑐

2𝐵𝑊
= 𝑅𝑒𝑠 as shown in the second chapter with (5).

 𝐺𝑟 and 𝐺𝑡 are the receiver and transmitter gains, as shown with equation (7).

 𝜆 is the radar transmitted wavelength.

 𝜃3𝑑𝐵 and 𝜑3𝑑𝐵 have already been illustrated with equation (10). They can be derived

inverting the following relationship, valid for an elliptical horn (as the one I used, as

explained in the following chapter), approximating the two angles as equal:

 𝐺𝑡 |𝑙𝑖𝑛𝑒𝑎𝑟 =
16

𝑠𝑖 𝑛(𝜃3𝑑𝐵) 𝑠𝑖𝑛 (𝜑3𝑑𝐵)
=

16

𝑠𝑖𝑛2(𝜃3𝑑𝐵)

 (22)

 𝐾 has been mentioned above with equation (14) and depends on dielectric properties

of rain (e.g. relative permittivity that takes into account the wavelength). For a 77 GHz

it can be estimated equal to 0.75, while with classical Rayleigh’s approach it has the

value of 0.93.

 𝐿 includes the attenuations due to atmospheric absorption (they are like 1dB/km, since

the W-Band is located in correspondence of a relative minimum of the atmospheric

absorption curve, as can be noticed from the following Figure 8) and atmospheric

attenuation due to rain (they are equal to 0.07 dB/km due to dry air and 0.36 dB/km due

to water vapor component, considering the International Standard Atmosphere

conditions at the latitude of 45°). An adjunctive attenuation due to rain for both

horizontal and vertical polarization can be evaluated, but because of the raindrops shape

(flattened on the bottom and with a curved dome on top) the one in the horizontal

15

polarization (shown in Figure 9 in function of the frequency) is the most significant.

Increasing the range, the rain attenuation is increasing too.

Figure 8 Atmospheric absorption curve.

Figure 9. Speceific attenuation for different frequencies and rain rates

16

3.5 Rain rate evaluation

Generally, 𝑍 is also related to the rainfall intensity 𝑅 [mm/h] according to a relation in the

following form:

𝑍 |𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑎 𝑅𝑏 [𝑚𝑚6𝑚−3]

(23)

where 𝑎 and 𝑏 can vary according to the precipitation type and 𝑅 according to the rainfall rate.

Therefore, the final procedure to evaluate the rain rate 𝑅, in function of the distance from the

transmitter, starting from the scatterer received power measured from the radar is the following:

1) Compute 𝐾𝑜𝑛𝑠𝑡 on the basis of your operative conditions.

2) Choose a DSD and evaluate the coefficients 𝑎 and 𝑏 of Z-R relationship (23) according

to the radar frequency you’re using (Mie or Rayleigh theory).

3) Invert the equation (19) to extract 𝑍 from the received power:

𝑍(𝑑𝑖𝑠𝑡) |𝑑𝐵𝑍 = Pr(𝑑𝑖𝑠𝑡) |𝑑𝐵𝑚 − 𝑃𝑡 |𝑑𝐵𝑚 − 𝐾𝑜𝑛𝑠𝑡 |𝑑𝐵 + 180 + 20𝑙𝑜𝑔10(𝑑𝑖𝑠𝑡 |𝐾𝑚)

4) Invert the equation (23) to extract 𝑅 from 𝑍:

𝑍(𝑑𝑖𝑠𝑡) |𝑙𝑖𝑛𝑒𝑎𝑟 = 10
𝑍(𝑑𝑖𝑠𝑡)|𝑑𝐵𝑍

10

(24)

𝑅(𝑑𝑖𝑠𝑡) = √
𝑍(𝑑𝑖𝑠𝑡) |𝑙𝑖𝑛𝑒𝑎𝑟

𝑎

𝑏

(25)

Obviously, the radar maximum range has been set before, to limit the reliable measurements

according to the own choices. In this case, since the free space attenuation at 1 km is 130 dB,

the 77 GHz radar is limited to, at most 100 m, thus it’s a short range one.

There exists Z-R relationships with 𝑎 and 𝑏 already computed and considered standardized for

each precipitation type, but they are valid within the Rayleigh’s region.

Therefore, for my weather radar operating at 77 GHz, a proper Z-R relationship must be

evaluated (see Pargraph 5.2).

17

Chapter 4

Hardware equipment

4.1 Radar sensor

The 77 GHz radar sensor I used for this thesis is: RS3400W/04, that can be controlled and

powered with the CO1000A/00 board, both produced by SilverSima. Sensor and board are

connected through a cable and a standard circular horn antenna, belonging to Elva’s SLHA

series propagates the signal in the air. The following Figure 10 shows the mentioned

components:

Figure 10. Radar sensor and antenna

I chose this particular radar sensor for different reasons:

1. It’s easy to find on the market.

2. It has a relatively low cost.

3. It has small dimensions, so it is compact and maneuvrable.

4. It needs a low voltage power supply.

5. It can easily be controlled by PC, through a simple download of control interfaces.

18

The following Table 1 shows some technical specifications of the radar sensor:

Table 1. Specifics of the radar sensor RS3400W/04
Typical Transmitted Power 4 dBm

Operational Frequencies 76 - 77 GHz
Chirp Bandiwidth (BW) 1 GHz
Transmitted Waveform Sawtooth

 Number Of Output Samples 1001

Max Output Signal Level 500 mVpp

Power Supply 5.5 V

4.2 Antenna

The circular horn antenna I chose, belonging to Elva’s SLHA, is powered with the rectangular

waveguide installed on the radar sensor boward and grants more than 25 dB of gain as shown

by the following Table 2, together with other characteristics of the antenna:

Table 2. Antenna Parameters
Transmitter Gain (𝑮𝒕) 28 dB

Receiver Gain (𝑮𝒓) 28 dB

Length (L) 40 mm

Diameter (D) 28 mm

Return Loss 20 dB

4.3 PC

In order to control the radar sensor and develope my software, I also chose a very compact and

silent (fan less) mini PC to be connected to the sensor itself through a USB-serial adapter. It

was a good compromise between quality and price and its technical specifications are the

following:

19

 Chassis: Black solid aluminum.

 Quad Core: Intel Celeron Processor J1900 (up to 2.42GHz).

 Ram: 2Gb.

 HardDisk: HDD – 500Gb.

 I/O Ports: 1xHDMI, 1xVGA, 2xLAN Ports (supporting Gigabit speeds), 4xRS232

(Serial port), 3xUSB 2.0 and 1xUSB 3.0.

 2x Wi-Fi antennae.

 Default OS: Windows (32bit).

Figure 11. PC

In order to send manual commands to the radar sensor, an interface platform such as “Termite”

can be used. Before starting the measurements, some parameters must be set:

 Hardware type (since this board can controll other radar sensors).

 Start frequency.

 Stop frequency.

 Sweep time.

 Sweep number.

20

Then the measurement mode must be turned on and the signal must be triggered (with other

two commands). At this point, the acquisitions can start and the interface I chose automatically

downloads the data acquired within a LOG file.

Sending again the trigger and the start commands will output the new measurements and this

operation can be manually repeated whenever it’s preferred.

Now it’s more clear the aim the sofwtare I developed for this thesis: automate the measurement

procedure in order to always have real time data, once the radar sensor has been fixed in a given

position.

21

Chapter 5

Preliminary studies

5.1 Radar constant evaluation

In order to realize a fully operative 77 GHz radar prototype for rain estimation, I first had to

check the project feasibility, performing some preliminary evaluations based on the

mathematical derivations described in Chapter 3 and on other preliminary studies realized in

the past years.

As illustrated in the pargraph 3.4, I am going to evaluate the radar constant on the basis of my

operative conditions, considering the radar sensor and antenna technical specifications and

supposing an additive attenuation of just 1 dB (since the max range is limited to up to 100m)

The following Table 3 shows the values of the factors within the radar constant for the

considered 77 GHz radar:

Table 3. Parameters for the evaluation of the radar constant

𝝀 3.9 mm

𝜽𝟑𝒅𝑩 0.16 rad

𝝋𝟑𝒅𝑩 0.16 rad

𝑮𝒓 28 dB

𝑮𝒕 28 dB

𝑳𝟐 1 dB

𝑲𝟐 0.75

𝑩𝑾 1 GHz

Now it is possible to calculate the radar constant in dB:

𝐾𝑜𝑛𝑠𝑡 |𝑑𝐵 = 10 𝑙𝑜𝑔10(𝑐) + 30𝑙𝑜𝑔10(𝜋) + 𝐺𝑟 + 𝐺𝑡 + 10𝑙𝑜𝑔10(𝜃3𝑑𝐵) + 10𝑙𝑜𝑔10(𝜑3𝑑𝐵) +

20𝑙𝑜𝑔10(𝐾) + 𝐿 − 10𝑙𝑜𝑔10(𝐵𝑊) − 20𝑙𝑜𝑔10(𝜆) − 10𝑙𝑜𝑔10(1024(𝑙𝑛2))

Substituing the numbers from the Table 3:

𝐾𝑜𝑛𝑠t |𝑑𝐵 = 69.15

22

5.2 Z-R Derivation

Now, a proper Z-R relation at 77 GHz must be found out. The procedure is strictly empirical,

even if based on the theoretical considerations I largely discussed within chapter 3 and consists

of the following steps:

1) Consider the Marshall and Palmer DSD:

2) Consider the Z expression of Mie.

3) Consider a large set of rainfall rates 𝑅 and assume that the Z-R relationship has the form

of equation (23).

4) Evaluate the values of Z through equation (20) considering all the rates in the set, that

influence the DSD and so the integral computation.

5) Linearize the (23) as follows:

𝐿𝑜𝑔(𝑍) = 𝐿𝑜𝑔(𝑎) + 𝑏 𝐿𝑜𝑔(𝑅)

6) Compute the values of the coefficients 𝑎 and 𝑏 using the least squares method.

Using a Matlab code to execute these steps, the following Z-R relationship has been found out

for the 77 GHz radar and the standard conditiond included in the Marshall and Palmer DSD:

𝑍 = 119 𝑅 0.67

The following Figure 12 shows a comparison between Mie and Rayleigh (using Marshall and

Palmer standard coefficients) models in standard DSD conditions, pointing out the 𝑅

(represented in logarithmic scale) underestimation by Rayleigh, at this frequency, having fixed

a value of Z (overestimated):

23

Figure 12. Mie Vs Rayleigh (standard DSD)

Changing the DSD with the one presented by Joss for thunderstorm and running again Matlab

code mentioned above, the following Z-R relationship for the 77 GHz radar comes out:

𝑍 = 67 𝑅 0.59

The following Figure 13 shows a new comparison between Mie and Rayleigh models: the R

underestimation of Rayleigh is still evident:

24

Figure 13. Mie Vs Rayleigh (Joss DSD for thunderstorm)

The following Table 4 shows some correspondances between 𝑍 |𝑑𝐵𝑍 and 𝑅 values in standard

DSD conditions (𝑍 = 119 𝑅 0.67):

Table 4. Rainfall rate and dBZ
Rain Type dBZ Rainfall rate [mm/h]

light to moderate 14-24.5 0.1-5

moderate to heavy 24.5-29.5 5-20

heavy to very heavy 29.5-33 20-70

very heavy to intense 33-35 70-130

extreme > 35 More than 130

25

5.3 Acquisition and processing parameters

Once the project feasibility has been checked, the radar sensor must be configured. Knowing

that the starting and the stopping frequency are respectively 76 GHz and 77 GHz (as reported

in Table 1), just two parameters need to be set:

 Sweep Time 75 ms (this is also the default value).

 Sweep Number 10.

This means that the frequency sweep is performed 10 times (each one lasting 75 ms) within a

measurement session and outcome IF signal values (Data) are averaged over 10.

These signal values returned from the radar are reported in digital units. So, during the

processing operations, in order to obtain the real power measured by the radar, the following

procedure (reported below here as pseudocode) must be followed:

1. 𝐷𝑎𝑡𝑎𝑓𝑖𝑙𝑡 = 𝐷𝑎𝑡𝑎 − 𝑚𝑒𝑎𝑛 (𝐷𝑎𝑡𝑎).

2. 𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑡 =
𝐷𝑎𝑡𝑎𝑓𝑖𝑙𝑡

2000
.

3. 𝐷𝑎𝑡𝑎𝑃𝑜𝑤𝑒𝑟 =
(𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑡

2)

10000
.

The data filtering, with the mean value, is needed to remove the continuous component of the

signal. Then, to convert the digital units in the maximum output signal level, again specified in

Table 1, of 500 mV, they have to be divided by a factor 2: infact, two digital units are equal to

1 mV. The conversion in Volt is done with the division for a factor 1000 (complexively 2000).

To finally obtain the power, the classical formula 𝑉2

𝑅
 is applied, considering 𝑅 = 10 𝑘𝑂ℎ𝑚, as

specified in the application notes of the radar sensor.

In order to discover the correspondence between frequency and power peaks, corresponding to

targets individuated by the radar sensor, the Fourier Transform has to be applied to the power

signal just computed.

Knowing that the sensor returns 1001 samples, it’s possible to compute its A/D converter

sampling frequency:

𝐹𝑠 =
𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇
= 13.347 𝑘𝐻𝑧

(26)

Being the number of FFT samples 𝑛𝐹𝐹𝑇 = 1024, since it’s the next power of 2 closest to the

number of samples, the FFT resolution can be computed:

26

𝑅𝑒𝑠𝐹𝐹𝑇 =
𝐹𝑠

𝑛𝐹𝐹𝑇
= 13 𝐻𝑧

(27)

Converting this frequency in distance, substituting in the equation (4) of the target distance, the

frequency with the FFT resolution, it turns out that the Fourier transform, in this case, doesn’t

degrade the radar performances. Its resolution in meters is:

𝑅𝑒𝑠𝐹𝐹𝑇 |𝑚 =
𝑐 𝑇 𝑅𝑒𝑠𝐹𝐹𝑇

2 𝐵𝑊
= 0.146 𝑚

(28)

And this value is infact a bit lower than the radar resolution computed with (5).

The maximum achievable distance with this parameter setup, considering that the Fourier

Transform is symmetric with the respect to the origin, and so that just half of the samples must

be kept in account, is:

𝑅𝑚𝑎𝑥 =
𝑐 𝑇

𝐹𝑠

2
2 𝐵𝑊

= 75 𝑚

(29)

In such a way, I am going to widely respect the 100 m limit supposed in paragraph 3.5.

The following Table 5 summarizes the above mentioned parameters:

Table 5. Acquisition and Processing parameters

𝑻 75 ms

Sweep Number 10

𝑭𝒔 13.347 kHz

𝑹𝒆𝒔𝑭𝑭𝑻 13 Hz

𝑹𝒆𝒔𝑭𝑭𝑻 |𝒎 0.146 m

𝑹𝒎𝒂𝒙 75 m

27

5.4 Preliminary test

5.4.1 Interface configuration

At this point, the radar configuration seen in the previous paragraph has to be applied.

I chose, for simplicity, “Termite” interface, as already mentioned before, to first set up the serial

communication (between my computer and the electronic board of the radar sensor) in such a

way:

 Baud Rate (number of symbols transmitted per second): 115200.

 Data Bits: 8.

 Stop Bits (to signal the end of every character): 1.

 Parity Bits (to detect errors): none.

 Control Bits (to control the data stream): none.

 CR-LF (Carriage Return – Line Feed): yes.

Once the interface detects the presence of the electronic board, I can send it the commands, by

simply writing them and pressing “ENTER”, to configure the sensor and start the measurements.

The board will reply with “ OK ” if the command has been correctly received, otherwise with

“ ? ”.

The necessary commands to begin the measurements are the following (the order should be

respected, to avoid errors, exspecially for the last two commands that actually start the signal

transmission), as already briefly mentioned in paragraph 4.3:

1. INIT

2. HARD:SYST RS3400W

3. FREQ:START 76e09

4. FREQ:STOP 77e09

5. SWEEP:NUMBERS 10

6. SWEEP:TIME 75e-3

7. SWEEP:MEAS ON

8. TRIG:ARM

9. TRACE:DATA ?

Commands 8 and 9 have to be sent, after the ending of the measurement cycle, to repeat it again.

The command 9, in particular, let to download the data buffered in the board.

28

5.4.2 Outdoor obstacle detection test

Before testing the 77 GHz radar sensor as rain estimator, I preferred to check if it was working

correctly as an obstacle detector.

So, I went over the Politecnico’s rooftop and I mounted the equipment (I used my laptop rather

than the mini pc I chose, since it needs a monitor and it was complicated to take on the rooftop):

Figure 14. Outdoor test: setup

In Figure 14, I show some of the equipment, to give an idea of the setup.

For the concerns of the surrounding environment, the following Figure 15 shows the location

where I wanted to test the radar as obstacle detector:

29

Figure 15. Outdoor test: environment

The circled objects in the image are the objects I’d like to detect.

For the data processing procedure, I illustrated in the previous paragraph 5.3, I wrote a Matlab

code outputting different plots, including the two following ones:

Figure 16. Outdoor test: output signal

30

Figure 17. Outdoor test: output signal spectrum

The Figure 16 shows, on the top subplot, the IF output signal, of the radar sensor, evolving

within the sweep time, after its values have been averaged for the 10 sweeps (essentially it’s

the 𝐷𝑎𝑡𝑎 I mentioned in paragraph 5.3). On the bottom subplot, instead the same signal,

converted in Volt is represented (essentially 𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑡 in paragraph 5.3) and it can be noticed

how effectively its a 500 mVpp signal, as the specifics report (Table 1).

The Figure 17 simply gives the spectrum (just the positive frequencies, obviously, since it’s

symmetric) of the 𝐷𝑎𝑡𝑎𝑃𝑜𝑤𝑒𝑟 signal (obtained from 𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑡 after the transformations

discussed in paragraph 5.3). The red-circled peaks within the plot are reported below, with the

corresponding distances computed with equation (4):

 312.81 Hz 3.52 m

 364.95 Hz 4.10 m

 716.86 Hz 8.06 m

 3297.6 Hz 37.09 m

 3519.1 Hz 39.88 m

The distances within the 10 m range refer to the two metal bars in the foreground, while the

other refer to the air conditioner in background of the Figure 15.

31

Since I also checked the obstacles distance from the radar sensor also with a yardstick,

comparing the measurements with the ones obtained from the power spetrcum, I can validate

this preliminary test: the radar sensor is correctly able to detect target distances.

The black-circled frequency peaks (at 4431.5 Hz and 4483.6 Hz), instead, will be a constant

presence of all the measurements, so I checked and verified that is due to the electronics

(antenna, radar sensor or power supplier).

5.4.3 Radar calibration and rain estimation test

After some experiments with the 77 GHz radar as rain gauge, I found that it needed calibration,

due to an internal controller responsible for an excessive distance compensation (increasing too

much the 𝑍 values), since this type of radar was designed to cover long-range distances. The

calibration simply consists in an additive modification of the 𝑍 values obtained after the

equation (19) inversion:

𝑍(𝑑𝑖𝑠𝑡) |𝑑𝐵𝑍 = 𝑍(𝑑𝑖𝑠𝑡) |𝑑𝐵𝑍 − 10𝑙𝑜𝑔10(𝑑𝑖𝑠𝑡 |𝐾𝑚) − 20 (30)

This calibration is valid only for this specific radar sensor and after that, the passage to linear

values can be done by simply applying the equation (24).

Since the Matlab code I wrote is unique and includes also the 𝑍 calculation and the 𝑅 one, the

correction exposed with equation (30) was applied also to obtain the results of the previous

paragraph. However, the 𝑍 values were not important for target detection, so I mentioned it just

now.

The results I am going to show are relative to one of the experiments made to prove that this 77

GHz radar can be used also as rain gauge.

It was November 6th, a rainy day and I was in an office, in Politecnico. I mounted the equipment

as shown in the following Figure 18, picking up the mini PC I chose, instead of the my laptop,

to check the complete prototype functionality:

32

Figure 18. Rain gauge test: setup

The radar was pointed outside the window office, whose environment is displayed in the

following Figure 19:

Figure 19. Rain gauge test: environment

33

I started the acquisition procedure at different times and I chose one of the 𝐷𝑎𝑡𝑎 outputted from

the radar sensor, as input for the above mentioned Matlab code I wrote. The results are reported

below:

Figure 20. Rain gauge test: output signal

Figure 21. Rain gauge test: output Z values

34

From Figure 20, it can be noticed that the signal, expressed in Volt, in the bottom subplot, is

again respecting the 500mVpp limitations and that it is less noisy than the one outputted by

the outdoor test (Figure 16). This is reasonable, since the environment was completely

different, richer of obastacles and reflecting surfaces close to the radar sensor. In this case, as

the Figure 18 shows, the radar sensor view is characterized by a more open environment and

the main reflections come from the rain drops.

Infact, Figure 21 reports oscillating Z values around 20 dBZ, comparable with the light rain

rate of that moment (see Figure 12 and Table 4). The range has been limited to 45 meters due

to clutters and interferences, that would have disturbed the rain rate computation, appearing

higher. The initial peak is probably due to reflections caused by the window, since the sensor

hasn’t been completely placed outside it.

Having chosen as Z-R relationship the one exposed in paragraph 5.2 for standard DSD (𝑍 =

119 𝑅 0.67), the rain rate results plotted in the following Figure 22 confirm the validity of the

measurements:

Figure 22. Rain gauge test: rain rate

35

The initial peak derives from the same peak of Z values reported above. The rain rate seems to

be quite constant and on average equal to 1.5 mm/h in the operativity range, thus coherent with

the light rain registered at the instants of measurement.

36

Chapter 6

Software development

6.1 PC Configuration

Since the prototype is fully operative, I can start developing the software on the mini PC. First

of all, I needed to configure it and I chose to partition the hard disk, mounting a Unix Operating

System: Ubuntu 16.04. In such a way, due to Linux flexibility, being it as an open source, it has

been much easier to configure it according to my needs and also to manage the internal settings.

Then I decided to write the software in C-language and I installed Eclipse as development

environment. Through the terminal, just a few lines have been enough to properly set

everything, including the Java internal updates.

Before illustrating the software structure I designed, I am going to explain how I also had to

configure the kernel for the serial communication (the connection between radar sensor and

mini PC is realized with the serial-USB adapter).

First, I checked the supports present in my mini PC using this command:

dmesg | grep tty

Then, I chose one of the USB ports physically available (ttyUSB0), which Linux interpret as

a text file. Knowing that, I will design my software in such a way that the port will be opened,

closed, read and written, as a simple file. But the permissions are needed, thus I used the two

following commands:

sudo chmod 777 ttyUSB0

sudo adduser luca dialout

Finally, the user I created on Linux belongs to the group dialout owner of the serial port,

thus Eclipse is enabled to access it.

Having done these preliminary configurations, I started the software development, that I am

going to illustrate in the following paragraphs, pointing out the software structure and then

analyzing the single functions and libraries.

37

6.2 Software structure

My software is structurated in 15 files, both source (.c) and header (.h) ones, including different

functions and libraries I created to execute various operations. They are listed below and their

details arepresentated in the following paragraph:

 core.c

 myglobal.h

 myinclude.h

 debug.h

 logManager.c

 logManager.h

 xmlManager.c

 xmlManager.h

 serial.c

 serial.h

 acquisition.c

 acquisition.h

 processing.c

 processing.h

 myerror.h

The header files, having a name equal to a source file, are just used to point out the functions

prototytpe used in the corresponding source file. The remaining header files, instead, contain

global variables, libraries called within the whole software, debug functionalities and error

issues. Everything works through the set of all these files and the cooperations of all the

functions and variables I defined.

The software, generally speaking, takes two XML files as input (“acqPar.xml” and

“procPar.xml”), containing, respectively, parameters related to the radar sensor and to the Z-R

relationship computation, and produces five files types as output:

1. A log file, reporting everything the software does while it is running.

2. A Z-File containing the Z values averaged for all the acquisitions performed in the last

minute.

3. An R-File, similar to the Z-File, containing the rain rate values of the last minute.

38

4. A real time file containing real time rain rate values.

5. A file containing the range values considered for the Z-R computation.

The following block diagram shows the software IN/OUT scheme:

INPUT FILE (1):
Radar Parameters

(BW, FREQ, TSWEEP,

FFT POINTS…)

INPUT FILE (2)
Rain Parameters

(Radar Constant, Z-R

coefficients…)

SOFTWARE

OUTPUT FILE

(1)
Log File

OUTPUT FILE (2)
Z-Values File

OUTPUT FILE (3)
R-Values File

OUTPUT FILE (4)
R-Values File (Real

Time)

OUTPUT FILE (5)
Range Values File

39

Except for the Log File, updated each time an action within the software has to be registered,

and for the Range values files, created just once (its utility will be clarified in Chapter 7, where

the web site development, for data presentation is illustrated), the other files are outputted

every minute. In particular, a Z-File and an R-File are created by new, while the Real Time file

is updated with the values of the last R-File created (actually the utility of this last file will be

clarified in Chapter 7).

6.3 Software analysis

At this point, I am going to focus singularly on each file mentioned above.

6.3.1 core.c

This file is the actual core of the software, since it contains the “main”, the code immediately

executed when the program starts. It is a very minimal file, including only calls to functions

that I have implemented in the various libraries I created.

In particular, these functions are needed to perform the following steps within the software:

1. Opening of the Log file with registration of its starting time.

2. Opening of the communication with the serial port.

3. Setting of the radar measurement parameters, read from the corresponding XML file.

4. Testing of the acquisition to check if everything works and to save the number of

samples received by the radar.

5. Loading of the parameters for the processing from the corresponding XML file.

6. Starting of the acquisitions (their number per minute can be chosen from the acquisition

parameters XML file) loop.

7. Eventual closing of the communication with the serial port and of the Log file (I used

these functions at the end just to test the software; actually it has to work indefinitely,

thus they will never be called).

Before running the program, thus this main file, the serial communication must have been

properly set as illustrated in the previous paragraph, and also the XML library must be

configured too (see paragraph 6.3.6).

40

6.3.2 myglobal.h

This file contains both the #define directives for the compiler and the declaration of all the

global variables I used within the software.

The compiler directives can be essentialy grouped in three subsets:

1. Absolute constant values: the squared pi-greco (PI2) and the max unambiguous range

chosen for the radar.

2. Pathname for the Input and Output files and for the serial port.

3. Commands to be sent consecutively to the serial port, to configure the acquisition

process (they are specified in paragraph 5.4.1).

For what concerns the global variables, I used them since different functions I implemented

may have needs for them. For example, they include all the file pointers, the buffer to save each

string returned from the radar sensor, and a data structure to save all the processing parameters

read by the corresponding XML file (Z-R relationship coefficients, the radar constant, the

transmitted power, ecc…).

6.3.3 myinclude.h

This file contains both the header files of the libraries I created and the ones of the standard

public libraries such as:

 stdio.h (containing standard input/output definitions).

 stdlib.h (containing general utility definitions).

 string.h (containing utilities for string manipulation definitions).

 errno.h (containing error definitions).

 termios.h (containing terminal I/O definitions).

 signal.h (containing signalling constant definitions).

 time.h (containing utilities for time manipulation definitions).

 math.h (containing mathematical operation definitions).

 libxml/tree.h (containing utilities for XML manipulation definitions).

 libxml/xmlreader.h (containing utilities for XML manipulation definitions).

 libxml/parser.h (containing utilities for XML manipulation definitions).

 sys/types.h (containing general utilities definitions).

41

 sys/ioctl.h (containing utilities for I/O interaction definitions).

All the source files contain the #include for this header file, in such a way the code are cleaner,

with respect to the repletion of all the libraries includes.

6.3.4 debug.h

This file implements the eventual activation of all the debug sections I put within the whole

software. They essentially consist in pieces of code that helped me a lot during the debug phase

of the software, to check for errors and if in general everything worked fine. I considered five

types of possible debug sections, each more or less included in its corresponding source file:

1. DEBUG_LOG to check if what has been written in the Log file is correct.

2. DEBUG_SERIAL to check if what has been written in the serial port or what has been

read from it, is correct and consistent with the commands sent.

3. DEBUG_XML to check if the root of the XML document and the content of the current

text node are correct.

4. DEBUG_ACQ to check if the time step between consecutive acquisitions correspond

to the one chosen before and if the number of samples returned from the radar is

consistent with the theoretical value of 1001.

5. DEBUG_PROC to check if the following quantities are consistent with what has been

chosen or expected: the number of FFT points (read from the “procPar.xml” file), the

content of the frequency and range vectors, used for processing, and the power spectrum

values in dB and dBm respectively.

In order to check all these elements, they are simply printed out by the software if the

corresponding debug section has been activated. This happens if its value in “debug.h” has

been set to 1. Otherwise, the content of the debug sections within the different source files, is

ignored during the execution.

42

6.3.5 logManager.c

This file contains the implementation of the following functions, used to manage not only the

Log file, as in origin was thought for, but all the software output files:

1. FILE * open_log (char * filename)

2. int write_log (FILE * fp, char * buf)

3. int close_log (FILE * fp)

4. void timing_log (char * buf)

The first function is essentially used for the file opening: it takes, as parameters, the filename,

including the pathname, and opens the file through a file pointer that is then returned. There is

a simple distinction between the Range and the Real time value files, and all the others: the first

ones are opened in writing mode, since each time they are opened with eventually different and

consecutive runs of the software, they need to be refreshed; all the other files are opened in

append-mode because, for instance, the Log file needs to be just updated, and not completely

refreshed, each time something occurs within the software.

The second function is instead used for the file writing: it takes, as parameters, the file pointer

and a string containing the characters to be written in the file, and the number of charcaters

actually written in then returned by the function. In order to empty the buffer of the fprintf

function that is called for the writing, and let the file updating in real-time, the fflush function

is also adopted.

The third function is used to close the file referenciated by the file pointer taken as parameter.

The fourth function, finally, reports the time reference for a given action for which it is called:

it builds a string, concatenating the one takes as parameter, with the actual local time, and writes

it on the file.

6.3.6 xmlManager.c

This file contains the implementation of the functions I needed to manage the XML files, taken

as input from the software. Since I made use of the libxml2 library, I’ll briefly show how I

installed it on Ubuntu of the mini pc and then how I added it to Eclipse.

First, I downloaded the last version of the library from the xmlsoft.org archive by using the

following command from terminal:

wget ftp://xmlsoft.org/libxml2/libxml2-sources-version.tar.gz

43

Then, I extracted files from the downloaded package and I entered the directory where it was

extracted:

tar -xvzf libxml2-sources-version.tar.gz

cd libxml2-version

At this point, I configured and compiled the library, choosing the directory path where I wanted

to copy files and folders:

./configure --prefix=/usr/local/libxml2

make

Finally, I installed the library as super user, due to the destination directory privileges:

sudo make install

To check if everything had properly worked, I explored the library content, and within the

directory /usr/local/libxml2/libxml I found all the header files, referring to the functions already

implemented in the library, and I took some of them, according to the developing needs.

In particular, as I already mentioned in myinclude.h (paragraph 6.3.3), I just needed of:

libxml/tree.h, libxml/xmlreader.h and libxml/parser.h.

In order to let Eclipse to access libxml2 library, in my software environment, I had to modify

the project properties and in particular:

 In C/C++ Build Setting I had to include the library path for the GCC compiler and

the library name for the GCC linker.

 In C/C++ General Paths and Symbols I had to again include the library path.

Now, I am going to show how the two input XML files are organized. They both contain a first

line indicating the XML version I used and the encoding (here UTF-8), and a second line

indicating the document root.

For what concerns “acqPar.xml”, the root is <AcquisitionParameters> and all the children

nodes are text ones, having as values respectively the number of acquisitions per minute to be

performed (according to the proper needs) and the values used within the commands to be sent

to the serial port (specified in paragraph 5.4.1). In particular, the children nodes I used in this

file are:

 <HardwareType> value</HardwareType>

 <FrequencyStart> value</FrequencyStart>

44

 <FrequencyStop> value</FrequencyStop>

 <SweepNumber> value</SweepNumber>

 <SweepTime> value</SweepTime>

 <AcqPerMinute> value</AcqPerMinute>

For what, instead, concerns “ProcPar.xml”, the root is <ProcessingParameters> and all the

children nodes are text ones, having the values of some parameters to be used for Z-R

computation, and general processing. In particular, the children nodes I used in this file are:

 <RadarConstant> value</RadarConstant>

 <txPower> value</txPower>

 <BW> value</BW>

 <SweepTime> value</SweepTime>

 <LightSpeed> value</LightSpeed>
 <a> value

 value

 <MinDistance> value</MinDistance>

At this point, I am going to illustrate how I implemented the two functions within the source

file presented in this paragraph (xmlManager.c):

1. xmlNodePtr xml_open (char * filename)

2. char * xml_readTextNode (xmlNodePtr cur)

The first function is essentially used for the XML file opening: it takes, as parameter, the

filename, including the pathname, and parse it, creating a tree data structure containg all the

document nodes. Then, the root of the document is returned as xmlNodePtr type, as specified

by the libxml2 I adopted.

The second function is instead used for the single text node reading: it takes, as parameter, the

xmlNodePtr referred to the text node to (of the XML document previously parsed) to be

currently read. The content of the text node, is then returned as a string.

45

6.3.7 serial.c

This file contains the implementation of the following functions, used to set correctly the serial

communication with the radar control board and to properly manage it:

1. void open_port (char * filename)

2. void close_port (FILE * fp)

3. void write_port (FILE * fp, char * wrBuf)

4. char * read_port (FILE * fp)

5. void serial_setup (FILE * fp)

The first function is essentially used for the serial port opening: it takes, as parameter, the

filename, including the pathname, that Ubuntu has assigned to the serial port (for example

/dev/ttyUSB0 identifying the USB-serial adapter I chose, as already explained in paragraph 6.1).

Then, the port is opened as a file (in the corresponding “append” mode of a file, to grant its

buffer updating (both for reading and writing), and since the file pointer is a global variable

(declared in myglobal.h), this function doesn’t return anything. In order to correctly setup the

serial communication, I used the termios global data structure that contains the port options

control. In particular, for the communication with the radar control board, I set the following

parameters values, as explained within the radar application notes:

 Input BitRate: 115200.

 Output Bitrate: 115200.

 CS8 Configuration: 8 Data Bit, No Parity, 1 Stop Bit.

 Flow Control: Disabled.

 Modem Controls: Disabled.

 I/O Carriage Return New Line: Enabled (the carriage return character is interpretated as

the beginning of a new line).

After having checked for errors, before returning, the function flushes the Input buffer of the

serial port, to avoid the data overwriting.

The second function is instead used for the serial port closing: it takes, as parameter, the file

pointer referred to the port and closes it, checking for errors and writing the action on the Log

file, as for the greatest part of operation performed within the software.

The third function is used to send characters to the serial port, thus to write on it: it takes, as

parameters, the file pointer referred to the port and the string containing the data to be sent.

46

Then, they are written, as for a simple file and the output buffer of the serial port is flushed, to

ensure the data reception in real-time.

The fourth function, in a similar way, is used to read characters from the serial port: it takes, as

parameters, the file pointer referred to the port and returns the string containing the data read,

that will be processed. This string has a statically pre-allocated dimension, since this is the

simplest way to return string from functions in C, but this doesn’t create any problems: the

controller board, indeed, just returns “OK”, “?” or a number (sample from a measurement), as

already explained in paragraph 5.4.1.

The fifth and last function is an essential one, since it initializes the radar acquisition

parameters: it takes as parameter just the file pointer referred to the port, exploits the predefined

functions of the libxml2 library and the ones I implemented in xmlManager.c, and doesn’t return

anything.

First of all, the “acqPar.xml ” file is opened and all the parameter values it contains (specified

in the previous paragraph) are saved in a strings array. Then, through a string concatenation

(with the #define specified in myglobal.h), the nine different commands to be consecutively

sent to the serial port are built up. After that, there is a rapid check on the radar model: if it

coincides with RS3400W, the flag77 variable is set to the value 1, otherwise remains equal to

0. This distinction is an example of how this software is versatile and can be used with different

radar model sharing the same electronic control board. However, after sending each command,

thus writing it on the serial port, the functions checks if it has been received correctly, so if the

following string read from the port corresponds to “OK”. If everything works fine, the next

command is sent, otherwise an error message is generated and registered on the Log file, and

the software stops running.

Before returning, the function signals that the acquisition parameters setup has been

successfully completed and saves the number of acquisitions per minute chosen (last parameter

of the file, as shown in the previous paragraph) in a global variable that will be used in the

function acquisition.c (following paragraph).

6.3.8 acquisition.c

This file contains the implementation of two key functions for the acquisition process:

1. void test_acquisition (FILE * fp)

2. void start_acquisition (FILE * fp)

47

The first function concerns the acquisition test to check if everything works fine with the radar,

as already mentioned in paragraph 6.3.1: it takes as parameter the file pointer referred to the

serial port and doesn’t return anything. Essentially, the starting command is sent to the port that

answers with “OK” followed by the measurement samples, if there aren’t any problems,

otherwise the software stops running and the error is reported within the Log file. During this

phase the number of samples is actually saved in a global variable (for the 77 GHz radar it

corresponds to 1001).

The second function contains the infinite-acquisition loop, taking again as input parameter the

file pointer referred to the serial port and not returning anything. First of all a double type matrix

of acqPerMinute (value saved during the serial communication setup, as explained in the

previous paragraph) rows and nSamples columns is declared and it will contain the values

returned from all the acquisitions performed within a minute. The time step between

consecutive acquisition, within a minute, is then computed in this way:

step = round (60/acqPerMinute);

Where the round function simply returns the nearest integer of the argument inside the brackets.

The real time R-values file is opened at this point and then the acquisition loop, repeated every

minute, starts.

It is structured in such a way that every step seconds the following operations are performed:

 Trigger and start commands are sent to the port.

 If no errors came up, the samples of the current acquisition are saved in the

corresponding row of the above mentioned matrix.

 The function waits until step seconds from the starting of the current acquisition have

been passed and, if it is not a divisor of 60, when the last acquisition is performed, the

function will wait until 60 seconds from the beginning of the minute have passed.

Then, after one minute:

 Z and R-values files are opened.

 The average between the acqPerMinute acquisition values is then computed per each of

the samples previously memorized.

 The Z and R values are computed through a function I implemented within the

processing.c source file and that I am going to present in the followinf paragraph.

 Z and R files for the current minute are closed.

These actions are then repeated from scratch.

48

6.3.9 processing.c

This file contains the implementation of three key functions for the processing, whose

procedure has been explained in detail:

1. void load_parameters ()

2. double * dft_computation (double[], int)

3. void ZR_computation (double[])

Since some mathematical operations are executed within this C source file, I had to include the

Math library, developed for C language, in my Eclipse project. In particular:

 In C/C++ Build Setting I had to include the library name (m) for the GCC linker.

Let’s focus on the functions: the first one is essentially used to save the processing parameters

read from the corresponding “ procPar.xml ” file, it doesn’t take any parameters as input (thanks

to the global variables usage) and it doesn’t return anything. All the parameters mentioned in

paragraph 6.3.6 are saved in an array, through the libxml2 and xmlManager.c functions, and

their values are then included in the global data struct I mentioned in paragraph 6.3.2. At this

point, the number of FFT points to be used within the DFT, for the power spectrum

computation, is calculated as the power of 2 closest to the number of samples, thus the radar

performances are not degradated (as already explained in paragraph 5.3).

The next step concerns the sampling frequency computation, through the formula (27)

illustrated in paragraph 5.3 and the frequency and range values vectors initialization.

Each element of the frequency vector can be computed using the following:

𝑓𝑟𝑒𝑞𝑉𝑒𝑐𝑡𝑜𝑟[𝑘] =
𝑘 𝐹𝑠

𝑛𝐹𝐹𝑇

(31)

Then, each element of the range vector is computed in such a way (until the RANGE_MAX

chosen and specified in myglobal.h is reached):

𝑟𝑎𝑛𝑔𝑒𝑉𝑒𝑐𝑡𝑜𝑟[𝑘] =
𝑓𝑟𝑒𝑞𝑉𝑒𝑐𝑡𝑜𝑟[𝑘] 𝑐 𝑇

2 𝐵𝑊

(32)

The Range-values file is filled up at this point, with all the values outputted from equation (32).

The RANGE_MAX has been set to 75 m, as shown with equation (29) in paragraph 5.3.

49

This first function of the processing.c library, is called within the core.c one, as already shown

in paragraph 6.3.1.

The second function I implemented here, computes the DFT of an array of double values “x”,

given as input parameter, using nFFT points, specified as second input parameter, and returns

its power spectrum, in dBm, as an other array of double values. First the array is filled up with

0-elements as padding, due to the fact that its size is lower than nFFT. Then, real and imaginary

parts (Xre and Xim respectively) of each spectrum element are computed starting from the array

elements with the followings:

𝑋𝑟𝑒[𝑘] = ∑ 𝑥[𝑛] 𝑐𝑜𝑠
𝑛 𝑘 𝑃𝐼2

𝑛𝐹𝐹𝑇

𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑛=𝑜

(33)

𝑋𝑖𝑚[𝑘] = − ∑ 𝑥[𝑛] 𝑠𝑖𝑛
𝑛 𝑘 𝑃𝐼2

𝑛𝐹𝐹𝑇

𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑛=𝑜

(34)

The procedure is obviously repeated for all the k = nFFT elements of the DFT, that are also

normalized through their division for the nSamples used. In such a way, it’s possible to compute

the power spectrum “X ” of the array “x”:

𝑋 = √(𝑋𝑟𝑒2 + 𝑋𝑖𝑚2)

(35)

The actual power spectrum returned from this function is in dBm, therefore:

𝑋 |𝑑𝐵𝑚 = 10𝑙𝑜𝑔10(𝑋) + 30

 (36)

The third function of the library is instead used to compute Z and R values, and write them on

the corresponding files: it takes as input parameter the double values array containing the

averaged samples returned the different 1 minute acquisitions (infact this function is called

within the last function of the acquisition.c library, presented in the previous paragraph) and

report the Z and R values computes on their files.

The input array is first converted from digital units to power, as already shown in paragraph

5.3, to obtain: 𝐷𝑎𝑡𝑎𝑃𝑜𝑤𝑒𝑟 =
(𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑡

2)

10000
. Then, the dft_computation function, described above,

50

is called using as parameter the power values array 𝐷𝑎𝑡𝑎𝑃𝑜𝑤𝑒𝑟 and its power spectrum is finally

returned. However, since it is symmetric with respect to the origin (as property of the real

signals spectrum), I took only half of the spectrum, corresponding to the positive frequencies.

At this point, Z, R and Realtime files are opened and all their values preceeding the minimum

reliable distance are set to 0. Then, for what concerns the other Z values, the radar equation for

metereological purposes is inverted to obtain them expressed in dBZ, while the R-values are

extracted from equations (24) and (25), presented in the paragraph 3.5, with the addition of the

radar calibration factor (if flag77=1), shown with equation (30). The R-values all also copied

within the Realtime-values file, and before finishing, the function frees the memory allocated

to the power spectrum returned in dBm, in order to have the actual last-minute values.

Otherwise the same ones will always be reported, after every one minute loop.

6.3.10 myerror.h

This file contains the definition of all the possible errors that, I had thought, could occur during

the software execution. I grouped them in various categories, corresponding each one to a

library I implemented and I presented above. This file has been very useful, especially during

the developing phase of the software, but it could be, in general, during its execution, since,

each time something wrong occur, the corresponding error can be read on the Log File and the

problem can be easily individuated and recovered, even thanks to the functionalities I

implemented in mydebug.h.

Now I am reporting the five different errors categories:

1. ERROR_SERIAL.

2. ERROR_LOG.

3. ERROR_XML.

4. ERROR_ACQ.

5. ERROR_PROC.

In the following Table 6, I am instead going to focus on each possible error, within the different

categories, describing it:

51

Table 6. Software Errors

Error ID Error Description

ERROR_SERIAL 1 Unable to open the serial port.

ERROR_SERIAL 2 Unable to get attributes of the serial port.

ERROR_SERIAL 3 Unable to set INPUT BitRate of the serial

port.

ERROR_SERIAL 4 Unable to set OUTPUT BitRate of the

serial port.

ERROR_SERIAL 5 Unable to set attributes of the serial port.

ERROR_SERIAL 6 Unable to close the serial port.

ERROR_SERIAL 7 Unable to write on the serial port.

ERROR_SERIAL 8 Unable to read from the serial port.

ERROR_SERIAL 9 Unable to correctly SETUP the serial port.

ERROR_LOG 1 Unable to open the LOG file.

ERROR_LOG 2 Unable to write on the LOG file.

ERROR_LOG 3 Unable to close the LOG file.

ERROR_XML 1 Unable to correctly parse the XML

Document.

ERROR_XML 2 Unable to correctly acquire the Root of

the XML Document.

ERROR_XML 3 Unable to correctly read the content of

the text node.

ERROR_ACQ 1 Unable to complete the Acquisition Test.

ERROR_ACQ 2 Unable to correctly set the TRIGGER

ERROR_ACQ 3 Unable to acquire the current value.

ERROR_PROC 1 Unable to initialize Range or Frequency

vectors.

ERROR_PROC 2 Unable to initialize Power Spectra vector.

ERROR_PROC 3 Unable to initialize Z or R vectors.

52

This table concludes the overview of the software I implemented for the control system of the

77 GHz. All the functions have been presented and described in detail, and the different

execution phases have been explained too.

The main advantage of this software resides in the fact that it is very versatile, as already

mentioned in paragraph 6.3.7: it’s enough to change the acquisition and processing parameters

in the corresponding XML files and the software will output the correct power spectra values.

For what concerns the rain rate, instead, to obtain reliable measurements, the calibration of the

radar currently used should be checked before, and then this should be inserted within the

processing.c functions, as I did for the 77 GHz radar one. A little modification to the software

will let it distinguish between different radar types, choosing the correct calibration for each of

them.

53

Chapter 7

Data presentation: web page

7.1 Introduction and useful tools

Once I developed and tested (other test will be reported on the next Chapter 8) the software, I

thought to present the data acquired from the radar in a simple, but smart way: I wanted to

design a small web site, hosted by a local server installed on the mini pc, in which it could be

possible to choose acquisition and processing parameters (modifying through a form

“acqPar.xml” and “procPar.xml” files), and visualize data in real-time. The idea is that the

radar should work in a fixed position for 24/24 hours, thanks to the software I developed on the

mini-pc, and send back measurements which will be then processed and visible on the web-

site, granting a real-time monitoring.

In order to realize this architecture, I need tools and programing languages, that I am going to

briefly introduce:

1. Apache HTTP Server: one of the most famous and used open sourcer cross-platform

server web. It essentially grants the installation of a web server on your pc able to host

your personal web site and, on the following paragraph, I am going to explain in details

how I configured it.

2. HTML (HyperText Markup Language): standard markup language for creating web

pages and applications. Any browser, acting as a client, receives HTML documents

from a web server from a local storage and renders them into multimedia web pages. It

is used as basis for the web pages and in particular, if it is the only language present

within the document, it is able to provide just static content, thus the user can only see

the web page received from the server, exactly how it is stored.

3. CSS (Cascading Style Sheets): style sheet language used for describing the presentation

of a document written in a markup language as HTML. It is designed to enable the

separation of presentation and content, including layout, colours and fonts, in order to

improve accessibility and flexibility. It also enables multiple web pages to share the

same formatting.

4. PHP (Hypertext Preprocessor): server-side scripting language designed for web

development in order to realize dynamic contents. It can be embedded into HTML code,

and it is executed by the web server itself that then sends the modified page to the

browser and let the user see different content with resepct to the one originally stored in

54

the server. Since a browser can just process HTML code, the server essentially modifies

it, through PHP, to create customized web pages that are then sent to the user. In the

following paragraph, I am going also to explain how I configured and I integrated it

with the Apache Server.

5. JavaScript: mainly a client-side scripting language designed for web development in

order to realize, as PHP, dynamic contents. With respect to PHP, it works directly on

the web page that has already been loaded by the browser, to eventually change some

interfaces behaviour, for example in response to mouse or keyboard actions or at

specified timing. It can be incorporated within HTML code too and it grants more

interaction with the user, since it works at the client side. I’ll show how I had used it on

my web pages, in the third paragraph of this chapter.

6. AJAX (Asynchronous JavaScript and XML): client-side web development language

used to create asynchronous applications, in such a way that server and browser

exchange data in background (so asynchronously) without interfering with the display

and the behaviour of the existing page. Therefore, the web page doesn’t need to be

refreshed to see changes on it. In order to use this language more efficiently, a popular

JavaScript library, called JQuery, has been implemented and can be freely used. I’ll

show how I has used it on my web pages, on third paragraph of this chapter.

7. Chart.js: JavaScript library that can be used to create animated and interactive graphs

to be included on web pages. It used HTML5 canvas element, essentially a container

for graphics working with JavaScript. I needed for it, in order to create a graph to present

the data acquired each minute. I’ll show how I have used it on my web pages, again in

third paragraph of this chapter.

The following block diagram summarizes the physical architecture I have realized:

MINI PC
running

MY

SOFTWARE

CO1000A/00
CONTROL

BOARD

RS3400W/04
RADAR SENSOR

+
ELVA’S SLHA

ANTENNA

RS232

RESULTS
(SENSOR SAMPLES +

SOFTWARE PROCESSING)

55

The following block diagram summarizes the logical architecture for data presentation:

7.2 Web Server configuration

After giving an overview of all the tools I am going to use, in this paragraph, I am explaining

how I configured the local web server on the mini-pc. In order to work not only at university,

but even at home, I also repeated the same procedure on the Ubuntu OS hosted on my Windows

PC by a virtual machine.

First of all, I installed Apache, through the following terminal command:

sudo apt-get install apache2

Apache2 refers to the second version of this software, published in 2000.

The main advantage on using Ubuntu is the fact that resources are easily accessible: infact in

/etc/apache2/sites-available folder, are located the configuration files for all the web sites

hosted in the local web server. The default one is named 000-default.conf.

LOCAL
WEB

SERVER
(Apache)

LOCAL
WEB

CLIENT
(BROWSER)

HTML + CSS +
PHP FILES

+
SOFWTARE RESULTS

(represented with Chart.js)

REQUIRED WEB
PAGE

(4) The
browser
renders
resources and
eventually
modifies them
(Javascript).

(5) AJAX modifies the
web page in background

(2) Resources
needed for the
web page are
accessible on
Apache, that
will execute
eventual PHP
scripts.

(1) The browser asks for local web page.

(3) The server returns the resources,
needed for the web page required.

56

To check if it is working, and if Apache2 has been correctly installed, it’s enough to launch the

server through the following terminal command:

sudo service apache2 start

Then, on the search bar of the browser installed on Ubuntu (typically Mozilla Firefox),

localhost must be digited (since it refers to the local web server) and the Apache2 default

configuration page, showin in the following Figure 23 should appear.

Figure 23. Apache2 Default Page

At this point, I can create my own customized web site, starting from the configuration file that

should be copied from the default one and then changed according to needs. The terminal

command to be used is the following:

sudo cp /etc/apache2/sites-available/000-default.conf

/etc/apache2/sites-available/mysite.conf

57

Now it’s time to create the folder that will contain all the building files of my customized web

site. Since the Apache2 default ones are located in /var/www/html, it’s enough to create a new

directory folder like this:

sudo mkdir /var/www/mysite

Then, the DocumentRoot defined in mysite.conf configuration file must be changed, since it

must be linked to the new directory. The file can be opened with:

sudo gedit /etc/apache2/sites-available/mysite.conf

And after having applied the modification required, it should appear as shown in the following

Figure 24:

Figure 24. MySite Configuration File

Since I am working in particular directories owned by the system it self (such as /etc and /var),

the super-user command sudo is always required. In addition, Apache2 is owned by another

user named www-data, so there is need to enable all users to the control of the configuration

file and of the directory I created for my web site:

sudo chmod 777 /var/www/mysite /etc/apache2/sites-

available/mysite.conf

In such a way there will not be any compatibility problems.

58

At this point, the default Apache2 web site should be disabled and mine should be enabled. So,

the following commands must be used:

sudo a2dissite 000-default.conf

sudo a2ensite mysite.conf

Each time modifications such these or modifications to the web site building files must be

validated, this command must be digited:

sudo service apache2 reload

Before filling my web site folder with its building files, I need to correctly configure PHP for

the Apache2 web server. Therefore, I used this command:

sudo apt-get install php libapache2-mod-php php-mcrypt

Since the software input files are XML ones, I also need to install XML packages for PHP:

sudo apt-get install php7.0-xml

In addition, Apache2 needs to be enabled to use the libxml2 library and because of the different

user owning it, permission must be changed:

sudo chmod 777 /usr/local/lib/libxml2

Finally, to avoid compatibility problems with Apache2 web server, PHP safe mode should be

disabled within the php.ini configuration file:

sudo chmod 777 /etc/php/7.0/apache2/php.ini

After opening it, I had to look for the disable_functions command and I disabled it, by

commenting with an “ # ”, as shown in the following Figure 25:

59

Figure 25. PHP.ini

Before starting with the web site development, I wanted to verify if it could be operative. So,

in its folder (/var/www/mysite), I created the info.php file and I just put in the command

phpinfo(); returning information about the current PHP version installed. Then, I reloaded the

server, as shown in the previous pages, and by digiting localhost on the browser I could see:

Figure 26. PHP Info

Everything works, so I’ll show the web site development in the following paragraph.

60

7.3 Web Site development

First, I want to present the web site folder’s organization. Then, I will explain in detail all the

files I created.

I chose to place the files mainly containing PHP and HTML code, directly within the folder of

the web site, thus /var/www/mysite. The CSS file is located in the styles sub-folder. Finally, the

software sub-folder contains:

 The executable file of the software I developed, since it can be started directly from

the web site.

 The “acqPar.xml ” and the “procPar.xml ” files

 The sub-folder results, containing Z and R values files

 The sub-folder log, including the Log, Range and Real-time values files.

The following Figure 27 and Figure 28 summarize what I have just said:

Figure 27. Web Site folder

Figure 28. Software sub-folder

61

7.3.1 index.php

Going into detail with the three different web pages I designed, I am beginning with the

index.php one. Since I had previously downloaded a free template, whose CSS file is located in

styles subfolder, as mentioned above, I started working by modifying its layout and fonts.

The file is named .php even if it contains only HTML code: I simply wanted to use the same

extension (the other pages all contain PHP code and need for .php to correctly work).

The code structure is quite basic:

 <head> section containing: the title tag too, the characters econding and the link to

the CSS style sheet.

 <body> section including: the header with the link to the other two pages of the web

site and the <div> sections, where it’s possible to read the instructions on how to

configure and use the software, together with the web site.

 <footer> section including just copyright information.

The following Figure 29 shows how it appears on the browser:

Figure 29. ‘index.php’ Page

62

7.3.2 configuration.php

Having read the instructions on the index.php page, a final user should go on the

configuration.php page to compile the form proposed inside it, before running the software.

This page contains a code structure very similar to the index.php one but the main difference is

represented by the <body> where the form is located. It let it modify almost all the parameters

contained in the “acqPar.xml ” and “procPar.xml ” files, granting a totally personal

configuration for the radar measurements.

The form uses the “ post ” method since it doesn’t display the submitted data in the page address

field (as instead the “ get ” method does), which is better for security reasons, and it has no size

limitations. These data are then sent to the third web page I designed, the form-handler, named

live.php and presented in the following paragraph, on my local web server.

The form fields can be filled up by writing directly values or by choosing between different

options, according to what the field is referred to. However, if no options are present, an

example of field compilation is provided through to the placeholder attribute, put within the

<input> tag used to define a single form field.

In particular, for what concerns the acquisition parameters, the fields to be all mandatorily filled

(thanks to the required attribute put within the <input> tag) are the following:

 Radar Type: its model must be specified with a string (Example: RS3400W).

 Frequency Start: I supposed two possible alternatives here, 9.5 GHz and 76 GHz since

the controller board of the 10 GHz radar produced by SilverSima is the same (this shows

how the software is versatile); it can be easily extended to other radars having the same

board.

 Frequency Stop: coherently with what I just said above, I supposed two possible

alternatives here, 10.5 GHz and 77 GHz; the final user should choose the stopping

frequency, according to the starting one selected before.

 Sweep Number: I suggested 10 as the value, as already presented in paragraph 5.4.1; its

range has been limited between 1 and 99.

 Sweep Time: I suggested 75 ms as the value, as also reported in the application notes of

the radar sensor.

 Acquisitions per Minute: I suggested 6 as thevalue; its range has been limited between

1 and 60, to let the software at least have the time to process the data taken from an

acquisition.

63

For what instead concerns the processing parameters, the fields to be all mandatorily filled are

the following:

 Radar Constant: I suggested 69.15 as the value, whose computation has been discussed

in paragraph 5.1.

 Tx Power [dBm]: I suggested 4 dBm as the value, since it is the typical one reported on

the radar sensor technical specifications.

 a: coherently with that I derived on paragraph 5.2, I suggested 119 as the value.

 b: for the same considerations of the previous parameter, I suggested 0.67 as the value.

 Minimum Reliable Distance: I suggested 0.15 as the value, since it is the minimum

possible, coinciding with the radar resolution.

Notice how, with respect to all the parameters defined in “ procPar.xml ” file, there are some

of them that can’t be modified by the form, and in particular they include: bandiwdth (<BW>),

sweep time (<SweepTime>) and light speed (<LightSpeed>). The reason is that: the bandwidth

is recovered as difference between FrequencyStop and FrequencyStart specidifed in the

acquisition parameters above; the sweep time is taken from the same field specified in the

acquisition parameters; the light speed is a fixed value.

All these data put on the form are sent to the live.php web page through the final Submit botton.

The following Figure 30 and Figure 31 show how the configuration.php page appears on the

web browser:

Figure 30. ‘configuration.php’ Page (Upper half)

64

Figure 31. ‘configuration.php’ Page (Lower half)

In order to correctly process the data sent by the form, and substitute them in the right tags of

the XML files, there is need for another PHP script named form.php and included in both

configuration.php and live.php pages, respectively the form-container and the form-handler.

This script first verifies if acquisition and processing parameter XML files exist in the

directories specified. Then, for each form field, checks if it has been submitted: every value

sent corresponds to an element of the $_POST array (automatically generated by PHP once

there is a request to the server web) thus it copied within the corresponding files.

In particular, for each text node of the XML file, the script executes the following operations:

1. Points to the next node path in the XML file.

2. Replaces its value with the one submitted in the respective form field, after the

conversion to HTML special characters, through htmlspecialchars function.

3. Appends the value at the end of the file and closes the tag of the text node.

For what concerns the three values not modifiable from the form, I inserted it manually, through

this script, in the right position, respecting the tag sequence defined in the XML files.

In addition, the script rewrites, at the beginning of each XML file, their first two lines specifying

XML version, characters encoding and the root node (that is closed at the end of the file).

65

7.3.3 live.php

After having submitted the form, the web site directly takes the user to this third web page.

Its code structure is similar to the other two pages, since the template is the same obviously, but

there are some important differences:

 In the <head> there is the link to two external JavaScript, referring respectively to

Chart.js and JQuery libraries, presented in paragraph 7.1.

 In the <body> is located the JavaScript, needed to create the table used to visualize the

data outputted from the software, together with the AJAX code necessary to activate the

functionalities of the three buttons of the page: Start Acquisition, Stop Acquisition and

Update Data (actually invisible when live.php is downloaded for the first time by the

browser). The table is inserted within the <canvas> HTML tag.

The following Figure 32 shows how this page appears on the web browser whenever is visited

for the first time and the software is not running, next I am going into details for what concerns

the user interaction with the buttons:

Figure 32. ‘live.php’ Page (No Data)

Whenever the page is loaded, thanks to the window.onload directive of JavaScript, the function

located in the <body> script, executes its actions to create the table shown above.

66

First, the AJAX cache is disabled to avoid the browser showing always the same data previously

downloaded and the Update Data button is hidden (infact in the Figure 32 it is not visible).

Then, through the get function, the browser asks the server for two important resources:

rangeVect.txt and realTime.txt files outputted by the software and presented in paragraph 6.2.

Their values are indeed used respectively for the X-axis and the Y-axis of the table that is

created once the document has been loaded.

If they are not available since the software hasn’t been run yet, the table won’t be shown. In the

Figure 32 the table has been created but it is empy and this means that just the rangeVect,txt

file is present in the server. Layout and font options of the table can be modified through the

script.

The time indication, located over the table, represents the instant in which the page has been

refreshed or the table has been updated, and it can be used to point out the last minute data

shown in the table referred to.

The following parts of the script describe the user interaction with the buttons. Once the Start

Acquisition button is pressed, the script located in /mysite/start.php file is executed. It simply

runs the executable file of the software I developed, located within the sub-folder software,

through the exec command. So, the software starts running in the background, as evidenced by

the “RUNNING” word appeared close to “Software Status”, located below the table, and

perform the first acquisitions. At the same time, the Update Data button is made visible:

Figure 33. ‘index.php’ (Running)

67

Once, instead, the Stop Acquisition button is pressed, the script located in /mysite/stop.php file

is executed and the software stops running thanks to the killall Software 77 GHz command

executed throught the shell_exec function of PHP. “Software Status”, changes in “ STOPPED”

and the button Update Data turns to be invisible.

Finally, once the Update Data button is pressed, the “Software Status” changes in “RUNNING

(Wait 1 minute before updating again)” to remind the user that new data from the acquisitions

performed by the software will be available after one minute. The AJAX cache is again disabled

and the table is updated with the eventual new data taken from the two files located in the server

(if available). Everything works without a real update of the web page, thanks to the AJAX

asynchronous functionalities. The following Figure 34 shows an example of filled table:

Figure 34. ‘live.php’ (Data)

These data refer to a not-rainy day as it can be seen by the practically null values of rain rates,

along the Y-axis. The fact that the curve is quite ascending depends on the distance

compensation (20𝑙𝑜𝑔10(𝑑𝑖𝑠𝑡 |𝐾𝑚)) of the formula presented in paragraph 3.5, that is probably

higher than the power received, in this case, since it wasn’t raining and a few echos have been

captured by thre radar sensor.

68

Now I am going to show the same live.php page after having substituted the data contained in

realTime.txt with the rain rate values I computed through the Matlab code I wrote in November

(after having obviously acquired data with the radar sensor), when I hadn’t started the software

and the web site development yet. Even if it was the same day of acquisitions, these values are

not the same represented with Matlab in Figure 22, for the rain estimation test described in

paragraph 5.4.3.

Figure 35. ‘live.php’ (November Data)

With respect to the previous image, the table here points out that, in the range included between

0 and 45 meters (this limitation has been already justified in paragraph 5.4.3 as also the initial

peak clearly visibile), it was raining. The rain rate varies from about 0.1 and 1.5 mm/h. These

values are clearly reasonable, considering a light rain as the one of that November day.

Figure 35 is another example of how the 77 GHz radar sensor could be used as rain gauge from

the beginning of this thesis work.

Once I instead had developed the software and I had completed the web site, I could start

acquiring data in real time. In the following Chapter 8, I will discuss in detail the main test I

conducted after the preliminary ones.

I want to conclude this Chapter 7 with a last screenshot taken in real-time, during another day

of acquisitions, of the live.php page, to show how the table has been correctly updated:

69

Figure 36. ‘live.php’ (Real-Time Data)

These data have been taken during a bit less rainy day than the one of November, presented in

the previous Figure 35. However, the rain-rate values are still reasonable according to the

precipitation type registered.

70

Chapter 8

Software test and measurements

8.1 Indoor Test

Once I had finished the software development, explained in detail within che Chapter 6, I started

testing it as reported in the objectives of paragraph 1.1.

Test have been necessary to mainly understand:

 If the software could run without blocking.

 If the software was able to output everything I expected.

 If the data outputted were reasonable, thus if the computations I designed within the

software were executed correctly.

At the beginning, as it usually happens in software development, there was always something

not working. There have been problems especially in serial port communication, in the

electronic board configuration and in the output file updating.

Luckily, I had designed the debug.h and the myerror.h files, that have let me easily find errors

and problems, but it hasn’been always simple to solve them.

However, after some weeks of hard work I completed it and the first positive test I have led

was inside the Politecnico’s office where I developed the software.

First, I mounted the mini-pc over a support and I linked it to the radar sensor through the USB-

Serial adapter. Then, I pointed the sensor toward the direction of interest and I started running

the software through Eclipse platform, since I hadn’t devolped the web page yet.

For this reason, the only way to visualize the outputted data resided on the Matlab code I had

written for the preliminary test. So I chose to add two temporary output files from the software

including the values of the samples returned during one acquisition of the radar sensor and the

values of their corresponding power spectrum; in such a way I have been able to check, if they

were reasonable in terms of correct obastcle detection, within the office, and if the power

spectrum values returned by the software coincided with the ones derived from the Matlab code

processing. For this test I decided to ignore on purpose the rain rate values.

The following Figure 37 shows the measurement equipment setup, very similar to the one

performed for the rain gauge test describe in paragraph 5.4.3:

71

Figure 37. Software Indoor test: setup

The electronic control board and the radar sensor are located within the white box, from which

it can be visible the antenna.

The following Figure 38 shows instead the indoor environment toward which the antenna was

pointed:

72

Figure 38. Software Indoor test: environment

I took the samples outputted from one of the acquisition files and I loaded it on the Matlab

script I wrote. The first two plots it outputted are shown below:

73

Figure 39. Software Indoor test: signal

Figure 40. Software Indoor test: spectrum

74

The Figure 39 shows, on the top subplot, the IF output signal, of the radar sensor, evolving

within the sweep time, after its values have been averaged for the 10 sweeps (essentially it’s

the 𝐷𝑎𝑡𝑎 I mentioned in paragraph 5.3). On the bottom subplot, instead the same signal,

converted in Volt is represented (essentially 𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑡 in paragraph 5.3) and it can be noticed

how, as it happened in the preliminary test, its a 500 mVpp signal, as the specifics report (Table

1). These two signals are a bit noisy due to the large number of obstacles within the coverage

zone of the radar.

The Figure 40 simply gives the spectrum (just the positive frequencies, obviously, since it’s

symmetric) of the 𝐷𝑎𝑡𝑎𝑃𝑜𝑤𝑒𝑟 signal (obtained from 𝐷𝑎𝑡𝑎𝑉𝑜𝑙𝑡 after the transformations

discussed in paragraph 5.3). The red-circled peaks within the plot are reported below, with the

corresponding distances computed with equation (4):

 117.3 Hz 1.32 m

 769 Hz 8.65 m

 990 Hz 11.14 m

 1056 Hz 11.86 m

 1121 Hz 12.61 m

 3376 Hz 37.98 m

The peaks corresponding to the first two range values are the most reasonable ones, since the

room was about 9 meters large, and probably respectively refer to the desks and the wall. The

others probably derive by reflections of the other multiple obastacles located within the office.

The black-circled frequency peaks (at 4431.5 Hz and 4483.6 Hz), are instead, a constant

presence of all the measurements, as already precised in paragraph 5.4.2.

For what concern the power spectrum values, they are quite reasonable too, since they oscillate

between -45 dBm and -40 dBm. In addition, they practically coincide with the ones outputted

by the software I developed.

So, if the preliminary test took me to confirm the validity of the measurements outputted by the

radar sensor, both for obstacle detection and rain estimation, this test evidenced how the

software is able to work autonomously and output the correct results.

Obviously, this concerns just the obstacle detection, as the outdoor test described in the

following paragraph. For what regards the rain estimation, I preferred to show the test results

together with the web site in paragraph 8.3: in such a way I will prove the validity of both

software and web site, that I developed.

75

8.2 Outdoor Test

Since the indoor test couldn’t have a reliability percentage too high, due to the large number of

obstacles causing reflections, I decided to lead a software test also outdoor.

So, I went over the Politecnico’s rooftop and I mounted the equipment (same considerations

done in paragraph 5.4.2 hold):

Figure 41. Software Outdoor test: setup

In the Figure 41 above, it can be also seen on the right the radar sensor power supplier, able to

provide the 12V needed.

I chose to point the radar sensor toward the ground, to check if it could be detected correctly.

No other obstacles were present between them, so I expect the signal outputted to be very clean.

I essentially repeated its test using my software and in the following Figure 42 I represented

the working environment and in particular the radar sensor direction of interest:

76

Figure 42. Software Outdoor test: environment

The red-circled area is essentially the one that should be individuated by the radar and, in order

to check if the power values outputted and processed can be reasonable, I decided to previously

compute a theoretical calculation about the RCS “𝜎𝑠 ” of the evidenced surface using the

following formula (valid for a sphere in case of frequencies much higher than its radius “𝑟”, as

in this case):

𝜎𝑠 = 𝜋𝑟2

(37)

In addition, the radr target in this case is a surface and not a volume, thus the formula (7) must

be modified as follows:

𝑃𝑟 =
𝑃𝑡𝐺𝑟𝐺𝑡𝜆2𝜎𝑠

(4𝜋)3𝑅3

(38)

77

The circular surface radius can be derived from geometrical considerations. Called “ℎ” the

perpendicular starting from the radar and considering half of the 𝜃3𝑑𝐵 , the radius “𝑟” can be

also considered as the minor cathetus of the triangle whose hypotenuse is represented by one

of the two yellow lines of Figure 42. Therefore:

𝑟 = ℎ 𝑡𝑎𝑛
𝜃3𝑑𝐵

2

(39)

Since “ℎ” corresponds to the range “𝑅” (distance between the signal source and the obstacle)

and it can be seen by Google Earth how it is about 27m, substituing all the values with the ones

reported in Table 3, it results that:

 𝑟 = 2.16 𝑚.

 𝜎𝑠 = 14.65 𝑚2.

 𝑃𝑟 = −51.36 𝑑𝐵𝑚.

Now, I am going to show respectively the signal showing the samples values’ evolution in time

(as reported in the file outputted by my software) with its conversion mV and its power

spectrum:

Figure 43. Software Outdoor test: signal

78

Figure 44. Software Outdoor test:spectrum

As can be seen by Figure 44, there are just two main peaks in the spectrum: the black one is

the usual interference due to electronics, while the red one should represent the ground

surface individuated by the radar. Converting the peak frequency of 2398 Hz, indeed, the

distance returned is exactly equal to 27 m.

There is an important difference, however, on the power peak value: according to the dBm

conversion of the signal returned by the radar sensor, is equal to about - 42 dBm. Therefore,

the theoretical computations appear to be much more negative than the actual obtained results.

Probably the reason for this discrepancy resides in a wrong consideration of the surface RCS,

that it’s probably higher. The theoretical gains considered, also, could be higher too,

increasing so the theoretical received power. These are the only factors that could be changed,

since the wavelength and the range are fixed.

However, since the target distance has been correctly individuated by all the test, I am sure

the radar sensor is working as well as my software. The returned power values could be

higher with respect to the theoretical ones, also for environment factors, difficult to compute.

79

8.3 Rain Test

At this point, I started testing the software for rain estimation’s purpouse, as objective of the

thesis. It was a rainy day of April, and I mounted the equipment, with my software and web site

working too, in order to have the antenna pointing from the office window toward outside:

Figure 45. Software Rain test: setup

The image above is just to show how the radar sensor has been located. Actually, it represents

the 10 GHz radar sensor and an attempt to calibrate it. The data represented on my web page

are infact very noisy and not clear, meaning that it was an experimental test and nothing more.

80

In the test I am going to describe, obviously, the 10 GHz one has been substituted with the 77

GHz one.

The enviroment covered by the radar sensor is the same shown in Figure 19, in paragraph 5.4.3,

since the rain test has been led from the same window. For this test, I again chose to output a

file containing the samples returned from the radar, to be processed by my Matlab code, but I

also chose to leave the software working completely, outputting also the files specified in

paragraph 6.2. In such a way, I could compare the results, referring to a given acquisition,

outputted by the software and represent on the web page, with the ones processed my Matlab.

Having already developed the web site, I started the software from the live.php page, as

explained in paragraph 7.3.3, thus there was not need of Eclipse anymore. Then, I left the

software working for more than one hour, thus it outputted different Z and R values files. By

clicking on the button UpdateData I could experiment with changes on the table, as expected,

since it represented the real-time data, referring to the last minute.

For the Matlab code, I chose one specific samples file to be processed:

Figure 46. Software Rain test: signal

In the above Figure 46, I showed the signal derived from this file’ samples. It can be seen how

it is quite clean, with low noise and this can be explained by the fact that the main echo just

came from rain drops, that are very small and so don’t reflect too much power.

81

As I repeated in paragraph 7.3.3, the measurements range has been limited to 45 meters, thus

the following plots referring to Z and R values will be limited to that value:

Figure 47. Software Rain test: Z values

Figure 48. Software Rain test: rain rate values

82

Again, Z and R values are reasonable for the light rain that was falling. To check if the results

processed by Matlab are the same visible on my web page, I am going to show a screenshot of

it, taken during this considered acquisition:

Figure 49. Software Rain test: ‘live.php’ web page

The image above represents a rain rate behaviour identical to the one of Figure 48. There are

the same osciallations and the little peaks are located in the same points and have the same

values (for example, close to 10 meters there is a little peak of about 1.3 mm/h and close to 25

meters there is another little peak of about 1.6 mm/h).

At this point, I can definitively conclude that my software outputs the correct results, since they

are the same obtained with Matlab, concerning the rain estimation; in addition, these results are

reasonable with the weather conditions registered during the acquisition phase and my web

page works correctly in showing them in real-time while the software is running in background.

These test have been a success and their results have been also presented to the EGU Conference

2018 which has been held in Vienna.

Actually, in order to show a cleaner graph than the one of Figure 48, I chose to average the

rain rate values every 5 meters of range, supposing a constant value in each interval. In such a

way, I obtained a stepped curve that can be seen in the following Figure 50:

83

Figure 50. Software rain test: rain rate stepped

This type of curve, indeed, is much more immediate to understand and the rain rate is more

visible within each range interval.

Figure 51. Software Rain test: cumulated rain stepped

84

The above Figure 51 finally represents the sum of the measurements performed within 1

hour with a rate of about 6 acquisitions launched every minute (1 each 10 seconds; so all the

measurements have been weighted for this time interval).

The rain accumulation during one hour results to be included between 0.5 and 1 mm and this

is again reasonable, according to the weather conditions of that day.

8.4 Rain estimation preliminary test: results check

Since I couldn’t use the radar sensor anymore, after the test presented in the previous paragraph,

I would like to report here just a valid proof of the results obtained during the preliminary test.

In particular, I am referring to the paragraph 5.4.3, where I described the radar sensor calibration

and the first attempt to use it as rain gauge.

Even if the results shown in Figure 22 seemed to be coherent with the weather conditions at

the acquisition time instant, I verified on the Arpa Piemonte web site the rain amount for that

day, in Turin, which was about 10 mm:

Figure 52. 6th November rain amount

Since the rain rate, which I found out through the measurements, was in average equal to 1.5

mm/h and since it has changed throughout the day (there were times when the rain rate was

higher and times in which it was lower), also the preliminary test I led has been successful.

85

Chapter 9

Conclusions and future work

At this point, I can say that my thesis work has been successfully concluded.

Through these previous eight chapters I have shown how it has been possible to employ a 77

GHz radar sensor as a fully operative rain gauge (starting from the metereological theoretical

models, the radar constant evaluation and the Z-R derivation, to finally lead the test). Also, I

developed the control software, to let the rain gauge to work autonomously all the day, without

blocking, and I developed a simple web page to show the results in real-time.

The three objectives presented in the first paragraph of this thesis have been achieved. The final

prototype could easily be put in one of the white boxes, shown in the images representing the

test setup, together with the mini pc containing my software and the local web site.

However, there is some future work that could be done:

 Checking of antenna gain and actual average transmitted power under different weather

and environment conditions and after different consecutively working hours (these

values, indeed, could change the randar constant, thus Z and R values outputted by the

software couldn’t be reliable anymore).

 Testing of the prototype within a car environment, to understand if it will eventually

interfere with the other car sensors.

 Implementation of a web portal and/or a mobile application where it could be possible,

for the final user, to visualize the real-time rain map, for a given area, realized with the

data sent by different cars.

86

87

Bibliography
[1] A.Balanis C. “Antenna Theory: Analysis and Design”

[2] Allegretti M. “Radar Metereology”

[3] Belinda J.Lipa, Barrick Donald E. “ FMCW Signal Processing”

[4] Berger Tor, Hamran Svein-Erik “ Gated FMCW SAR System”

[5] Bertoldo S. “Analisi preliminari radar meteo aeromobile”

[6] Bertoldo S., Allegretti M., Lucianaz C. “77 GHz automotive anti-collision radar used for

meteorological purposes”

[7] Bertoldo S., Allegretti M., Lucianaz C. “Car as a moving meteorological integrated sensor”

[8] Bertoldo S., Allegretti M., Lucianaz C., Perona G. “Preliminary analysis to design a 77

GHz Wheather Radar”

[9] Bertoldo S., Allegretti M., Lucianaz C., Perona G. “ Derivation of Z-R equation using Mie

approach for a 77 GHz radar”

[10] Bertoldo S., Allegretti M., Lucianaz C. “Software defined radar”ù[5] Brooker Graham “

Understanding millimetre wave FMCW radars”

[11] Elva-1“Standard Gain Lens Horns up to 220GHz”

[12] ITU-R (Gas Attenuation) “ Recommendation P.676-11”

[13] ITU-R (Rain Attenuation) “ Recommendation P.838-3”

[14] Kemp Mattew James. “A FM-CW microwave radar for rainfall applications”

[15] Lockart. G.B. “ Digital Signal Processing for target detection in FMCW radar”

[16] Matzler Christian“MATLAB Functions for Mie Scattering and Absorption”

[17] SilverSima“FMCW Radar Sensors Application Notes”

[18] SilverSima“77 GHz Radar Sensor Data Sheet”

[19] SilverSima“Power and Controller Board Data Sheet”

88

Ringraziamenti

Prima di tutto, vorrei ringraziare il mio relatore, Silvano, per il pieno

supporto tecnico, e non, che mi ha dato nel corso di questi mesi di

preparazione e svolgimento della tesi.

Inoltre, vorrei ringraziare i miei genitori, Elvira e Luciano, per avermi

permesso di studiare lontano da casa, in questa prestigiosa Università,

il Politecnico di Torino, e la mia fidanzata Elisabetta, per tutto il

supporto garantitomi in questi due anni di studi magistrali.

Per finire, i miei amici più stretti e cari che da sempre fanno parte della

mia crescita personale: grazie anche a loro sono riuscito a portare a

termine questo percorso.

	List of tables
	List of figures
	Introduction
	1.1 Objectives
	1.2 Car as sensor

	Radar Systems
	2.1 FMCW Operating principles
	2.2 FMCW Characteristics
	2.3 FMCW Radar equation
	2.3 FMCW Problematics

	Metereological Radar
	3.1 Rain drops scattering
	3.2 Rayleigh’s model
	3.3 Mie’s model
	3.4 Radar Constant
	3.5 Rain rate evaluation

	Hardware equipment
	4.1 Radar sensor
	4.2 Antenna
	4.3 PC

	Preliminary studies
	5.1 Radar constant evaluation
	5.2 Z-R Derivation
	5.3 Acquisition and processing parameters
	5.4 Preliminary test
	5.4.1 Interface configuration
	5.4.2 Outdoor obstacle detection test
	5.4.3 Radar calibration and rain estimation test

	Software development
	6.1 PC Configuration
	6.2 Software structure
	6.3 Software analysis
	6.3.1 core.c
	6.3.2 myglobal.h
	6.3.3 myinclude.h
	6.3.4 debug.h
	6.3.5 logManager.c
	6.3.6 xmlManager.c
	6.3.7 serial.c
	6.3.8 acquisition.c
	6.3.9 processing.c
	6.3.10 myerror.h

	Data presentation: web page
	7.1 Introduction and useful tools
	7.2 Web Server configuration
	7.3 Web Site development
	7.3.1 index.php
	7.3.2 configuration.php
	7.3.3 live.php

	Software test and measurements
	8.1 Indoor Test
	8.2 Outdoor Test
	8.3 Rain Test
	8.4 Rain estimation preliminary test: results check

	Conclusions and future work
	Bibliography
	Ringraziamenti

