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Summary

This thesis focuses on the problem of the phasing maneuver for a solar electric
platform.

By giving as input to the program the orbital elements, in order to define the
initial and final orbit, the position we want the satellite to reach, the phasing al-
titude, and the propulsive system, system mass and dimensions that characterize
the platform, the program performs the phasing maneuver.

The phasing maneuver controls the position of the solar electric platform in
terms of longitude (for geostationary orbit), true longitude (equatorial orbit) or
argument of latitude (inclined orbit).
For the analysis of the maneuver to be performed, we start from chemical propul-
sion’s maneuver logic. The satellite performs the phasing maneuver with a first
EOR (electric orbit raising) raising its semi-major axis by an input values (phas-
ing altitude). Then, the platform waits on a waiting orbit and, at the end of the
maneuver, it returns to the starting orbit with a second EOR.
The main goal of this first part of the thesis is to perform a change of reference
system from ECI (Earth - Centered Inertial) to ECEF (Earth - Centered, Earth -
Fixed) so that the program can perform the maneuver controlling the longitude.

In the second part of the thesis, in order to optimize the maneuver, the waiting
phase has been avoided. In this way, the solar electric platform is able to reach the
desired position by performing two consecutive EOR maneuvers. In this case the
phasing altitude is no longer an input, but an output. To determine the phasing
altitude needed to reach the desired position, the program interpolates data. Fur-
thermore, the program saves the various interpolation data (position reached and
phasing altitude) in an EXCEL file, in order to be able to reduce the computa-
tional cost when the orbital parameters of a subsequent simulation are equal to a
simulation already carried out.
To validate the results obtained, STK (Satellite Tool Kit) was used to perform
various simulations.
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Chapter 1

MAGNETO

Nowadays the trend is to develop large constellations of satellite in low orbit instead
of placing large GEO satellites [1]. In fact, the telecommunication satellite market
in geostationary orbit brings some uncertainties for what concern the payload size,
the satellite operational lifetime and performance.

It’s necessary to bring new technologies in order to make competitive again GEO
satellites, and one of the solutions could be the high-power electric propulsion (HP
- EP). Coupling HP-EP with reusable platforms can bring us two mission concepts:

• Reusable space tug;

• Integrated reusable platform with high-power electric propulsion.

1.1 Introduction
As reported in [1], during last years, the trend was to launch constellations of small
satellites in low-orbit instead of launching satellites in geostationary orbit.

SpaceX’s "Starlink" is one of the most recent example of small satellite constel-
lation in LEO (Low Earth Orbit). This led the GEO market to suffer a collapse in
terms of orders (about ten heavy-class satellites in 2019 and five in 2018, against
the average rate of 20-25 GEO satellites per years recorded during the previous
decade). But the GEO market’s future is still not defined. To revitalize it, new
design solutions and mission scenarios must be analyzed such the possibilities of in-
orbit assembling and new technologies. The possibilities of reducing the satellites’
size and so the launchers led to new on-orbit servicing (OOS). The chance to de-
velop an innovative propulsion strategy with a brand new propellant management
could satisfies easily the stakeholders requirements.

One of the factors that may bring new life to the GEO market is the develop-
ment of electric in-space propulsion technologies, in particularly of high-power Hall
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MAGNETO

thrusters.

1.2 On-orbit servicing mission scenarios
The OOS (On-Orbit Servicing) functionalities [1] are:

• Relocate: to place a satellite in its target position;

• Restore: the operations that bring the satellite to its initial condition;

• Upgrade: the operations that allow the satellite to increase its capabilities;

• Inspect: all the activities relevant for a long permanence satellite;

• Assemble: all the activities that regards two large structure that cannot be
assembled before the launch, but only in orbit.

All these functionalities must be implemented, but, unfortunately, that’s not so
easy. The introduction of new technologies is not so immediate and the benefits
are not easy to evaluate in short time. In fact, on the one hand, there are features
that can be implemented directly in an old mission scenario, but on the other hand,
there may be changes that cause serious problems for what concern the design.

1.2.1 Space Tug
The Space Tug is an electric platform that has been created in order to rendezvous
with satellites and perform a manuever in a way to bring it to the desired orbit.

The Space Tug’s On-orbit scenario are:

• Transportation and deployment of satellite;

• Relocation services;

• Disposal servicing;

• In orbit assembly.

The Space Tug must be able to perform guidance, navigation and control dur-
ing the transfer in order to make simpler the AOCS (Attitude and Orbit Control
System) on board the payload and so reduce its complexity and size.

It must be flexible, reusable and be able to perform many operations and transfer
during all their operational lifetime thanks to a refueling system.

The Design Reference Mission (Fig. 1.1) may be divided in:

• A: The Space Tug is launched in the parking orbit;

• B: It performs the rendezvous with the payload;
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• C: It performs the transfer to the desired orbit;

• D: It releases the payload;

• E: It performs a phasing maneuver in order to outdistance the payload;

• F: It moves to a parking orbit and waits for the next operation.

Figure 1.1: Design Reference Mission Space Tug, [1].

1.2.2 All electric platform
These platforms use an electric propulsion subsystem in order to make transfer
to GEO orbit and station-keeping maneuver during all their operational life. By
eliminating the chemical propulsion subsystem, we have a great mass saving which
allow to augment the payload mass and so its capabilities and reduce the launch
vehicle cost.

The Design Reference Mission of the all-electric platform (Fig. 1.2) is much
simpler than the Space Tug one.

The mission phases the all-electric platform is going through to reach its desired
orbit are:

• A: the launcher delivers the platform;

• B: the electric platform performs an EOR (electric orbit raising) from its initial
orbit to the desired orbit;

• C: It performs a phasing maneuver in order to reach its desired position.
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Figure 1.2: Design reference mission all-electric platform, [1].

1.3 MAGNETO
"The MultidisciplinAry desiGN Electric Tug tOol (MAGNETO) is a multi-input
and multi-output tool designed to enable mission analysis and design of electrically-
propelled space platform" [1].

This tool has been developed by Politecnico di Torino, in collaboration with
ESTEC, and it’s able to perform a preliminary design of a Space Tug [2].

MAGNETO represents an improvement of MISS (Mission and Space System,
[3]), a design tool developed in order to perform a preliminary size of a spacecraft
with high-power electric propulsion.

The tool is composed of three macro-modules (Fig. 1.3):

• Scenario definition: the scenario and architecture must be selected and so the
thruster data;

• Scenario analysis: in this module there is a preliminary trajectory analysis, a
preliminary subsystem sizing and a system budget propellant mass estimation;

• Scenario optimization: where there is a propagation of the trajectory, a new
subsystem sizing, new spacecraft budget and in the end the result post-processing.

In the first module the mission is analyzed from the user which define his needs
and some mission features. The second module define the preliminary sizing of the
electrical platform and also analyze the trajectory. In the third macro-module the
scenario is optimized, and new values are provided for what concern the mass and
trajectory.
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1.3 – MAGNETO

Figure 1.3: MAGNETO software structure, [1].

We are going to work on the trajectory generation module which is a low thrust
propagator able to search for the optimal maneuver in order to reach the desired
orbit in terms of orbital parameters such as semi-major axis, eccentricity and incli-
nation.

In particular, the subject of this thesis is the phasing maneuver. While the
orbital parameters to be checked in EOR are semi-major axis, eccentricity and
inclination, for what concern the phasing maneuver, the parameter to be checked
is the position of the satellite in terms of longitude, true longitude or argument of
periapsis, depending on the orbit we are dealing with.
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Chapter 2

Fundamental of
Astrodynamics

In this chapter will be analyzed some generalities of Astrodynamics [4].
The equations of motion that are obtained starting from the Newton’s laws and

so the orbit features from the Kepler’s laws will be analyzed in order to define the
classic orbital elements and the characteristic velocities.

2.1 Kepler’s Laws of planetary motion
Johannes Kepler (27 December 1571, Weil der Stadt, Württemberg - 15 November
1630, Regensburg) published between 1609 and 1619 the Kepler’s laws of planetary
motion [18]. These laws, as the name implies, describe the motion of planets around
the Sun.

• FIRST LAW: "The orbit of each planet is an ellipse with the Sun at one focus"
[17].

• SECOND LAW: "The line joining the planet to the Sun sweeps out equal areas
in equal times" [17].

• THIRD LAW: "The square of the period of a planet is proportional to the
cube of its mean distance to the Sun" [17].

2.2 Newton’s Laws of motion
Sir Isaac Newton (25 December 1642, Woolsthorpe, Lincolnshire, England - 20
March 1726/27, London) is recognized as one of the most important all-time sci-
entists [19]. In 1687 he published Philosophiæ Naturalis Principia Mathematica,
where he introduced the Laws of motion:
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Fundamental of Astrodynamics

• FIRST LAW: "Every body continues in its state of rest, or of uniform motion
in a right [straight] line, unless it is compelled to change that state by forces
impressed upon it" [17];

• SECOND LAW: "The change of motion is proportional to the motive force
impressed and is made in the direction of the right line in which that force is
impressed" [17];

• THIRD LAW: "To every action there is always opposed an equal reaction: or,
the mutual action of two bodies upon each other are always equal and directed
to contrary parts" [17].

2.2.1 Two - body problem
The second law leads to the Newton’s Law of Universal Gravitation (Fig. 2.1):

Figure 2.1: Two-body problem.

Fg = −Gm1m2

r2
þr

r

Where:

• Fg is the force on mass m2 due to m1;

• þr is the vector from m1 to m2;

• G is the universal gravitational constant.
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2.2 – Newton’s Laws of motion

2.2.2 Equation of motion

Considering the two-body problem, the equation of motion results:

þ̈r = −G
M

r2
þr

r
= µ

r2
þr

r

Where:

• M = principal body mass;

• µ = gravitational parameter of the principal body.

Let’s consider a Cartesian reference system centered on the principal body (see
Fig. 2.2) where ν (nu) is the true anomaly.

Figure 2.2: Two-body problem in Cartesian reference frame.

In Fig. 2.3 there are the components of the velocity:

• vr = radial component of velocity;

• vt = tangent component of velocity.

And φ (phi), known as fligth-path angle.
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Figure 2.3: Velocity components.

The velocity can be divided in:
vr = ṙ

vt = rν̇
(2.1)

In the same way the acceleration is:

ar = r̈ − rν̇2

at = 2ṙν̇ + rν̈
(2.2)

2.2.3 Conservation of Mechanical Energy

The mechanical energy of a satellite is defined as:

E = v2

2 − µ

r
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2.3 – Geometrical properties common to all conic section

2.2.4 Conservation of angular momentum
A satellite must keep moving on its orbital plane as described by the specific angular
momentum.

h = r × v

It cans also be expressed in terms of flight-path angle:

h = rv cos φ

2.2.5 Trajectory Equation
The trajectory equation is obtained by the integration of the equation of motion:

r = h2/µ

1 + (B/µ) cos ν

Where:

• B is the vector constant of integration;

• ν is the angle between the constant vector B and the vector r.

In polar coordinates:

r = p

1 + e cos ν

2.3 Geometrical properties common to all conic
section

Here some geometrical properties in common to all the kind of orbit:

• e = c/a = eccentricity;

• p = a(i − e2) = periapsis;

• rmin = rperiapsis = p/(1 + e) = a(1 − e) = radius of periapsis;

• rmax = rapoapsis = p/(1 − e) = a(1 + e) = radius of apoasis;

• E = − µ
2a

= specific mechanical energy;
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2.3.1 Elliptical orbit

Figure 2.4: Elliptical orbit.

In Fig. 2.4 we can see an elliptical orbit, which is characterized by:

• r + rÍ = 2a;

• rp + ra = 2a;

• e = ra−rp

ra+rp
(0 < e < 1);

• Period of an elliptical orbit = TP = 2π√
µ
a3/2

2.3.2 Circular orbit

The circular orbit is just a particular case of the elliptical orbit, where:

• e = 0;

• rp = ra.

2.4 Orbital parameters

The orbital elements are those parameters necessary to identify the typology of an
orbit.
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2.4 – Orbital parameters

Figure 2.5: Orbital Parameters [Wikipedia].

As we can see from 2.5, there are several orbital parameters:

• Eccentricity (e);

• Semi-major axis (a);

• Inclination (i);

• Longitude of the ascending node (Ω or RAAN);

• Argument of periapsis (ω);

• True anomaly (ν) at epoch (t0).

The first two orbital elements are useful to describe the shape of the ellipse, i
and Ω define the orbital plane, ω defines the orientation of the orbit on its plane
and ν defines the position of the orbiting object we are considering.
We may also consider as orbital parameter the mean anomaly (M) which is not a
real geometric angle.
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2.5 Satellite Speed

2.5.1 Circular satellite speed

In order to reach a circular orbit, we must have vr = 0 and vt = rν̇ = constant:

vc =
ò

µ

r

2.5.2 Escape speed

The gravitational effect of a celestial body decreases rapidly with the distance, even
though it still affects the satellite with a small amount of kinetic energy. The escape
speed allows the satellite to escape the effects of gravity:

E = v2
esc

2 − µ

r
= 0

vesc =
ó

2µ

r
= 2vc

2.6 In - plane Orbit Changes

The orbit we want the satellite to reach, may not be reached because of small error
that may occur in burnout altitude, speed or flight-path angle [4]. In order to reach
a precise orbit, we have to make small correction in the orbit. This can be done by
making some small speed changes (∆V ).

The In-Plane orbit maneuver is a coplanar maneuver. As the name implies, the
initial and the final orbit plane lies in the same plane. Using these maneuvers, it’s
possible to change the semi-major axis, eccentricity (orbit’s size and shape) and the
argument of perigee (line of apsides). For what concerns the chemical propulsion,
this maneuver can be tangential or non-tangential.

2.6.1 Adjustment of Perigee and Apogee

As shown in Fig. 2.6, this is an uno-tangent burn maneuver: it consists of one
tangential burn in order to change semi-major axis or the location of the line of
apsides [4]. The requirement for tangential burns is that the flight-path angle must
be φ = 0◦.
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Figure 2.6: Adjustment of Perigee and Apogee.

Considering:
E = v2

2 − µ

r
= − µ

2a
Solving for v2, we obtain:

v2 = µ(2
r

− 1
a

)

If we change v, leaving r unchanged:

2vdv = µ

a2 da or da = 2a2

µ
vdv

If we change infinitesimally the speed (dv), we obtain a change in semi-major
axis (da).

If we apply ∆V at the apogee we get a change in perigee height, while if the ∆V
is applied at the perigee, the change will be in apogee height.∆hp ≈ 4a2

µ
va∆va

∆ha ≈ 4a2

µ
vp∆vp

(2.3)

It is convenient to maneuver at the perigee where the speed is higher, although
in terms of energy it is the same thing.

2.6.2 The Hohmann Transfer
The Hohmann transfer (Fig. 2.7) is a maneuver between two circular and coplanar
orbit [4]. It is a two tangential burns maneuver and it’s achieved by using a doubly-
tangent transfer ellipse.
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Figure 2.7: The Hohmann Transfer.

If we want to travel from the initial circular orbit (r1) to the final circular orbit
(r2), we must consider:

2atransfer = r1 + r2

Etransfer = − µ

2atransfer

Solving the energy equation at point a (Fig. 2.7), we get:

v1 =
ó

2[ µ

r1
+ Etransfer]

Since the satellite was in a circular orbit, its speed was vc1 =
ñ

µ
r1
. So, in order to

increase the satellite speed, we must apply:

∆v1 = v1 − vc1

In the same way, we may calculate the ∆v2 necessary to circularize the orbit once
the satellite reach the point b. This maneuver can be also done in the opposite
direction.

The time-of-flight is half the period of the transfer ellipse orbit:

T = π

öõõôa3
transfer

µ

This is the most economical maneuver, but also it is the slower.
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2.6.3 General coplanar Transfer between Circular Orbit

Figure 2.8: General coplanar transfer between circular orbit.

The condition to make a General Coplanar transfer between circular orbit (Fig.
2.8) are, according to [4]: rp = p

1+e
≤ r1

ra = p
1−e

≥ r2
(2.4)

In this way the initial and final orbits will intersect or at least be tangent to
both circular orbits.

For what concern the transfer:Etransfer = µ(1 − e2)/2p

htransfer = √
µp

(2.5)

Solving the energy equation as the same way as the Hohmann transfer, we obtain:

v1 =
ó

2( µ

r1
+ Etransfer)

The angle between v1 and vc1 is the flight-path angle (φ1). Since h = rv cos φ:

cos φ1 = htransfer

r1v1

17
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In this way we get the fisrt ∆V :

∆v2
1 = v2

1 + v2
c1 − 2v1vc1 cos φ1

The ∆v2 may be computed in a similar way.
The Hohmann transfer is a special case of a General coplanar transfer between

circular orbit, where φ1 = 0◦, rp = r1 and ra = r2.

2.6.4 Phasing maneuver
The phasing maneuver is a two-impulse maneuver (Fig. 2.9). It’s an important
maneuver for what concern the station-keeping.

Figure 2.9: Phasing maneuver.

If the satellite is in "A", but we wanted it to be in "B", we must change its
longitude:

|∆Longitude| = |LongitudeB − LongitudeA|
In order to make this change, the satellite should stop and wait for the Earth

rotation for about:
∆T = ∆Longitude

ωEarth

That’s not possible, so we have to bring the satellite in a waiting orbit with:

TW aitingOrbit = TOriginalOrbit + ∆T

18
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Where:

• ∆T = n(TW aitingOrbit − TOriginalOrbit);

• TW aitingOrbit = 2π

ò
a3

W aitingOrbit

µ
;

Where n is the number of complete orbit that the satellite performs in waiting
orbit.

We get: EgW aitingOrbit
= µ

2aW aitingOrbit
and considering the initial orbit as a circular

one, we obtain:
∆V1 = v1 − vc = v1 −

ò
µ

r

The more n is high, the less is ∆V value.
This is because if we go to a nearby orbit, we spend less than a more distant

orbit, but it will be necessary to wait more.
To return to the original orbit, the satellite will have to make an equal impulse

in module but opposite to the first:

∆v = 2∆v1
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Chapter 3

Reference Systems

One of the goals of this thesis is to carry out a change of reference system passing
from the ECI reference system to ECEF. This change of reference system is neces-
sary to perform the phasing maneuver. In fact, if the satellite is in a geostationary
orbit, to bring the satellite to the desired position, we must know ECEF satellite
coordinates in order to obtain the longitude.

To define a right-handed orthogonal reference system (see [6]), we need 3 ele-
ments:

• Origin of the reference system (center of gravity of the main body);

• Fundamental plane (where the x and y axes lie);

• Positive direction of the z axis.

3.1 Central Body Coordinate Systems
As we already saw, the origin of a reference system is in the center of gravity of the
main body.
The differences between a reference system and another one are the axes we are
using [6].

We can divide the typology of reference system in:

• Fixed coordinate system: the axes rotate with the central body, Fig. 3.1;

• Inertial coordinate system: the axes do not rotate with the central body, Fig.
3.2.

Both these reference frames are supported by all central bodies.
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Figure 3.1: Fixed reference system (credit: Analytical Graphics, Inc (AGI), [6]).

Figure 3.2: Inertial reference system (credit: AGI, [6]).

3.1.1 Earth Centered Inertial

The Earth-centered inertial (ECI) coordinate frames have its origin at the center of
mass of the central body (Earth) and, as said before, it doesn’t rotate with respect
to the stars (Fig. 3.3).

This reference frame is used because the equations of motion are simpler in
a non-rotating frame. In fact, this frame is used to specify the direction toward
celestial objects.
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Figure 3.3: ECI frame.

The Earth’s orbit plane, also known as ecliptic, doesn’t coincide with the Earth’s
equatorial plane. In fact, the angle between these two planes, Ô (or obliquity of the
ecliptic) measures ≈ 23.4◦.

The x - axis is defined as the intersection of the ecliptic plane and the equator.
This axis is also directed to Aries constellation, which is the direction where the Sun
lies during Spring (or Vernal) Equinox. The z - axis coincides with the rotational
axis of the Earth, as the same way as ECEF frame.

3.1.2 Earth-Centered, Earth-Fixed

ECEF (Earth-Centered, Earth-Fixed) is a Cartesian coordinate system (Fig. 3.4).

The origin of this reference system is the Earth’s center of mass.

23



Reference Systems

Figure 3.4: ECEF frame, [13].

In order to define the reference axes, we must define:

• International reference Prime Meridian (or prime meridian in Greenwich):
where longitude = 0◦ and it identifies the x - axis;

• Equator : latitude = 0◦;

The ECEF reference frame rotates with the Earth and so the coordinates of a
fixed point on the surface doesn’t change in function of time. That’s the reason
why it’s easier to represents positions and velocities in ECEF frame in order to
obtain latitude, longitude and altitude in respect of the ECI frame.

Longitude in ECEF coordinates is considered positive in the EAST direction
in respect of the prime meridian (Greenwich, UK) and vice versa (longitude <
0 → WEST ), while latitude is considered positive in the Boreal hemisphere and
negative in the Austral hemisphere.

3.2 ECI to ECEF

As seen previously, both ECI and ECEF frames have same origin (the center of
mass of the Earth) and they share the same z axis, but the ECI frame doesn’t
rotate around the z axis differently from ECEF frame. So, the two frames differ in
a linear function of time [5].
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Figure 3.5: ECI - ECEF frames, [5].

3.2.1 Rotation angle

In order to transform the ECI frame in ECEF reference system (Fig. 3.5), we must
know the Earth’s current rotation (θ) [21]. This rotation is determined by:

θ = θ0 + ωEarth(t − t0)

Where:

• θ0 is rotation of the Earth at the reference time t0;

• t is the current time;

• ωEarth = 7,2921151467 · 10−5rad/s is the rotation speed of the Earth.

The rotation matrix [22] necessary for this transformation is the following:
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
xECI

yECI

zECI

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




xECEF

yECEF

zECEF

 ⇔


xECEF

yECEF

zECEF

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1




xECI

yECI

zECI


The knowledge of the angle of rotation is not enough to change the reference

system.
Two effects need to be considered: precession and nutation [23](Fig. 3.6).

3.2.2 Nutation
Discovered in 1728, by James Bradley, an English astronomer, nutation is a phe-
nomenon due to the gravitational effects of secondary bodies that causes a spinning
motion of the rotation axis of main body.
It’s called as free nutation if it’s not caused by external forces or Euler nutation (it
acts on the second Euler angle).

For what concern the Earth, the main bodies which cause Nutation are the Sun
and the Moon. In fact, the regression of the Moon’s nodal line cause about ±17"
in longitude and ±9.2 in obliquity every 18.61 years.

3.2.3 Precession
Precession, instead, is a change for what concern the orientation of the rotation
axis of the celestial body we are considering. Differently from the Nutation, the
Precession regards the first Euler angle.

This phenomenon refers to a slow change in astronomical body’s rotational axis
which slowly traces out a cone.

For what concern the Earth, the Precession is also known as Precession of the
equinoxes, Lunisolar precession or precession of the equator. The Earth complete
a precessional cycle in approximately 25786 years and it completes about 1◦ every
72 years.

In fact:

• Lunisolar precession: cause 0◦0Í50.37” per year;

• Planetary precession: cause −0◦0Í0.11” per year;

• TOTAL: 0◦0Í50.37” per year.

And so, after about 13000 years, the z axis won’t be directed to Polaris, but it
will be directed to Vega.
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Figure 3.6: Precession and Nutation

In order to obtain the "ECItoECEF.m", the function we use in order to con-
vert the ECI coordinates in ECEF coordinates, we use the "dcmeci2ecef" function
implemented in MATLAB [14]. This function calculates the rotation matrix be-
tween the ECI and the ECEF frame using as input the date (UTC) and the ECI
coordinates. In order to calculate the precession and nutation’s effect, this function
follows the procedure analyzed in [20], which is not presented in this thesis.

3.3 Latitude and Longitude
Latitude is an angle which define a range from 0◦ (Equator) to ±90◦ at the poles.
It’s possible to define more than one typology of latitude [5]:

• Geocentric Latitude (the angle between the equatorial plane and the line which
unites the center of the Earth with the orbiting object);

• Geodetic Latitude (the angle above between the equatorial plane and the nor-
mal component of the velocity of the orbiting object);

• Parametric Latitude (has no physical meanings, but it’s necessary to calculate
geodetic latitude).

In order to define the longitude, we must consider that the meridians (the lines
that round the globe passing through the poles) have distance between them that
measures exactly an arcdegree. In this way, the distance around the Earth measures
360◦.
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3.3.1 Cartesian and Polar coordinates

Figure 3.7: Cartesian and polar coordinates, [5].

The Cartesian (or Euclidean coordinates) and the Polar coordinates (Fig. 3.7) are
related by these equations, as reported in [5]:

x = r cos θ cos φ

y = r sin θ cos φ

z = r sin φ

r =
√

x2 + y2 + z2

φ = arcsin( z
r
) (−π

2 ≤ φ ≤ π
2 )

θ = arctan(y
z
) (−π ≤ θ ≤ π)

(3.1)

3.3.2 Parametric Latitude
Let’s consider z the Cartesian coordinate in polar direction and xmeridional, as in
Fig. 3.8, the equatorial coordinate lying on the meridional plane [5].
The parametric solution for the ellipse is:

x2
meridional

a2 + z2

b2 = [a cos(φparametric)]2
a2 + [b sin(φparametric)]2

b2
xmeridional = a cos φparametric

z = b sin φparametric

(3.2)
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Figure 3.8: Geocentric, parametric and geodetic latitudes in meridional plane, [5].

3.3.3 Geodetic Latitude, Longitude and Altitude
In order to get Geodetic Latitude [5], we must calculate the tangent and normal
direction of velocity:

vtangential ∝ ∂

∂φparametric

a cos(φparametric)

b sin φparametric

 =

−a sin(φparametric)

b cos φparametric



vnormal ∝

b cos(φparametric)

a sin φparametric


In this way we get:

tan(φgeodetic) = a sin φparametric

b cos φparametric

= a

b
tan φparametric

And using trigonometric identities:

sin φgeodetic = tan φgeodeticñ
1 + tan2(φgeodetic)

= a sin φparametricñ
a2 sin2(φparametric) + b2 cos2(φparametric)

cos φgeodetic = 1ñ
1 + tan2(φgeodetic)

= b cos φparametricñ
a2 sin2(φparametric) + b2 cos2(φparametric)
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At this point, we obtain the cartesian coordinates x-z in terms of geodetic lati-
tude:

xmeridional = a cos φparametric = a2cosφgeodeticñ
a2 cos2(φgeodetic) + b2 sin2(φgeodetic)

z = b sin φparametric = b2 sin φgeodeticñ
a2 cos2(φgeodetic) + b2 sin2(φgeodetic)

And using the orthometric height h:

xmeridional = cos φgeodetic(h + a2ñ
a2 cos2(φgeodetic) + b2 sin2(φgeodetic)

)

z = sin φgeodetic(h + b2ñ
a2 cos2(φgeodetic) + b2 sin2(φgeodetic)

)

In ECEF coordinates, considering that the x axis passes through the equator at
longitude (θ) = 0, we get:



xECEF = cos θxmeridional = cos θ cos φgeodetic(h + a2√
a2 cos2(φgeodetic)+b2 sin2(φgeodetic)

)

yECEF = sin θxmeridional = sin θ cos φgeodetic(h + a2√
a2 cos2(φgeodetic)+b2 sin2(φgeodetic)

)

zECEF = sin φgeodetic(h + b2√
a2 cos2(φgeodetic)+b2 sin2(φgeodetic)

)
(3.3)

In terms of geodetic latitude (φgeodetic), longitude (θ) and altitude h.
The inverse transformation can be express as:



θ = atan2(yECEF , xECEF )

φgeodetic = atan2(zECEF + e2a2sin3ζ
b

, ξ − e2a cos3 ζ)

h = ξ
cos φ

− rt

(3.4)

Where atan2 is the four-quadrant arctangent function in MATLAB and:
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

ζ = atan2(azECEF , bξ)

ξ =
ñ

x2
ECEF + y2

ECEF

rt = a√
1−e2 sin φ

(3.5)

Where:

• rt is the transverse radius of curvature on the ellipsoid;

• a the equatorial radius;

• b is the polar radius;

• e is the elliptical eccentricity.

To calculate geodetic longitude, latitude and altitude is possible to use several
MATLAB functions as: "ecef2geodetic.m" [15] or "ecef2lla.m" [16]. Both these
functions require the ECEF position and the actual date as input.
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Chapter 4

Electric Orbit - Raising

For what concern MAGNETO, the propulsion we use is the electric one. First, the
electric propulsion is safer in respect of the chemical one. Furthermore, the engines
are more efficient, and they require much less propellant to produce the same effect
(even 20 times less).
The problem is that the electric propulsion can’t be used as primary propulsion. In
fact, even though the specific impulse can be much higher than the chemical one,
the electric thruster flows are very small than the chemical ones, and they take
much more times to achieve a particular speed.

On the other hand, the force produced by electric thruster can be applied con-
tinuously in order to reach a more accurate position.

There are some useful generalities in order to understand the Electric propulsion
[7].

4.1 Generalities of Electric propulsion
The types of engine can be classified according to the source from which the energy
or the type of acceleration is obtained.

• Chemical propulsion;

• Electric propulsion: is used exclusively in space and is characterized by a very
low thrust-to-weight ratio and high (effective) exhaust output velocity.

Thrust

According to the law of action-reaction (similar to the Newton’s law) we get:

m
dV

dt
= ṁpc
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which allows us to obtain:
T = ṁpc

Where:

• T = Thrust [N];

• c = exhaust velocity;

• ṁp = propellant mass flow rate.

Thrust is what we used in order to change spacecraft velocity.

Thrust power

The thrust power is the energy per unit time we need to expel the propellant with
c:

PT = 1
2ṁpc2 = Tc

2

Total impulse

It =
Ú tf

t0
Tdt

If T = constant:

It = T∆t

Total propellant mass

mp =
Ú tf

t0
ṁpdt

If ṁp = constant:
mp = ṁp∆t

Specific Impulse

The specific impulse measures how efficiently the satellite consumes propellant
mass.

Isp = It

mpg0
[s]

Where:

• mpg0: propellant weight we would have consumed on Earth (at sea level).
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If T and ṁp = constant (and so is c):

Isp = T∆t

ṁp∆tg0
= c

g0

4.1.1 Rocket Equation
The characteristic velocity is defined as the velocity increment that a spacecraft
with a variable mass m gets in the ideal case (no other forces considered and thrust
parallel to the velocity) [7].

∆V =
Ú tf

ti

(T/m)dt

Where the mass variation is ṁ = ṁp.
If c = constant, the Rocket (Tsiolkovsky’s) equation is:

∆V = c ln(m0

mf

)

or
mf

m0
= e− ∆V

c

4.1.2 Velocity Losses
The ideal ∆V is not the same as the velocity change because of thrust misalignment,
gravity and aerodynamic force [7], as show in Fig. 4.1.

Figure 4.1: Internal and external forces acting on a spacecraft, [7].
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dþV

dt
=

þT

m
+

þL + þD

m
+ þg

Vf − Vi =
Ú tf

ti

T

m
dt −

Ú tf

ti

T

m
(1 − cos α)dt −

Ú tf

ti

D

m
−

Ú tf

ti

g sin φdt

• Misalignment losses:
s tf

ti

T
m

(1−cos α)dt (thrust not parallel to velocity, α /= 0);

• Aerodynamic losses:
s tf

ti

D
m

(absent outside atmosphere);

• Gravity losses:
s tf

ti
g sin φdt (absent if φ = 0).

4.1.3 Electric propulsion maneuver

When we are considering electric propulsion maneuver, the hypotheses of impulsive
maneuver fall as the electric propulsion is characterized by low acceleration and low
thrust. Considering the Edelbaum problem hypotheses:

• almost circular orbit: r ≈ a ≈ p, e ≈ 0, V 2 = µ
r2 ;

• E ≈ ν ≈ M ;

• almost equatorial orbit i ≈ 0, cos i ≈ 1, sin i ≈ 0 (the final reference plane
orbit is the same as the initial one);

• T
m

<< µ
r2 ;

• AV ≈ AT << µ
r2 , AR << µ

r2 , AW << µ
r2 .

There is a gradual variation in speed which leads the spacecraft to perform a
spiral trajectory.
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4.1 – Generalities of Electric propulsion

Figure 4.2: Thrust.

As we can see in Fig. 4.2, the thrust presents 3 components:

• TV ë V causes the variation of the energy (a, e, ω);

• TN ⊥ V which doesn’t change the energy;

• TW who causes changes in terms of i and Ω.

In every point of the trajectory there is an optimal direction for what concern the
thrust in order to modify the desired parameters. The Gauss planetary equations
describe the temporal variation of the orbital parameters:

da

dt
,
de

dt
,
di

dt
,
dω

dt
,
dΩ
dt

,
dν

dt
,

Using the Edelbaum model we can write the Gauss planetary equations as:

ȧ = 2TV

m
a
V

ė = [2 cos ν TV

m
− sin ν TN

m
] 1
V

ω̇ = −Ω̇ + [2 sin ν TV

m
+ cos ν TN

m
] 1
V e

i̇ = cos(ω + ν)TW

m
1
V

Ω̇ = sin(ω + ν)TW

m
1

iV

Ṁ = ν̇ =
ñ

µ
a

(4.1)

In case e ≈ 0, i ≈ 0, ω̇ and Ω̇ → ∞ because the ascending node and the periaspis
are not defined. Using the Edelbaum hypotheses we can ignore the equations which
present ω̇ and Ω̇ and so we get:
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
ȧ = 2TV

m
a
V

ė = [2 cos ν TV

m
− sin ν TN

m
] 1
V

i̇ = cos(ω + ν)TW

m
1
V

(4.2)

In order to optimize the thrust direction, we introduce α (in-plane angle, Fig.
4.3) and β (out-of-plane angle).

Figure 4.3: In-plane accelerations.


TV = T cos α cos β

−TN = T sin α cos β = TR

TW = T sin β

(4.3)

Edalbaum considers three problems, but for our case the only one that really
matters is the one in which the change regards the semi-major axis a.

4.1.4 Variation of a
In order to obtain the maximum increment of a, we must direct the thrust tangen-
tially:

α = β = 0 → T ë V → TV = T, TR = TW = 0

As the thrust is applied, e change, but if the thrust is applied continuously, once
the satellite complete a round around the Earth, e returns to cancel itself. In this
way, we obtain again a circular orbit:

∆e = ∆i = 0
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4.2 – Electromagnetic Theory

4.2 Electromagnetic Theory

4.2.1 Electric Field
The Electric field is generated by charges, as shown in Fig. 4.4.

Figure 4.4: Electric Field, [7].

E = Qr

4πÔr3 [N/C]

Where:
• Q is the charge [C];

• Ô is dielectric constant [F/m].
It creates the electrostatic force F = qE which is attractive for opposite charges

and vice versa.

4.2.2 Currents
The current is a flux of moving charges:

j = nqv

Where:
• n number of charges per unit volume;

• q charge of a single particle;

• v particle mean velocity.
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4.2.3 Magnetic Field

Figure 4.5: Magnetic Field, [7].

Currents generate the Magnetic Field B (Fig. 4.5).

B = µQ

4π

v × r

r3 [T ]

Where µ is magnetic permeability [Hr/m].
þB creates a magnetic force F = qv × B which acts on moving charges.

4.2.4 Maxwell Equations
General form:



∇ · D = qvol

∇ × E = −Ḃ

∇ · B = 0

∇ × H = j + Ḋ

(4.4)

Propulsion plasma:
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4.3 – Particle Motion



∇ · E = qvol/Ô0

∇ × E = −Ḃ

∇ · B = 0

∇ × B = µ0j + Ô0µ0Ė

(4.5)

Where:

• D = electric displacement;

• H = magnetic field intensity;

• qvol charge density.

4.3 Particle Motion

4.3.1 B = 0

The Lorentz’s force is: þF = q( þE + þv × þB). If we are not considering the collision,
the particles would accelerate their motion to infinity, in order to reach v = ∞ at
t = ∞. Instead, if we are taking count of the collisions, we must consider damping.
In this way the mean particle equation becomes:

þF − νcmþv = m
dþv

dt

Where νc is momentum collision frequency. If þE = constant:


þv = q
(mνc)

þE

þj = nq2

(mνc)
þE

(4.6)

and the particles motions and the current are parallel to E.
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4.3.2 E = 0

Figure 4.6: Particle motion - E = 0, [7].

If νc = 0 and B = constant, the motion is uniform along þB and vë = constant, Fig.
4.6. The circular motion in the plane is normal to B and the trajectory we get is
a helix. The Larmoor (or cyclotron or gyro radius) is : rb = mv⊥/(qB), while the
frequency is ωb = qB/m.

4.3.3 E, B = constant
If νc = 0 we have an accelerated motion along B (v̇ë = qEë/m) and a drift motion
in direction E × B (vd = E × B/B2).

If νc /= 0:


v = ν2
c (q/m) þE+νc(q/m)2( þE× þB)+(q/m)3( þE· þB) þB

νc(ν2
c +(qB/m)2)

j = σ0
1+Ω2 [ þE ± Ω( þE ×þb) + Ω2( þE ·þb)þb]

j = σ0 þEë + σ0
1+Ω2 [ þE⊥ ± Ω( þE ×þb)]

(4.7)

Where:

• Ω = ωb/νc = qB/(mνc) = Hall parameter;

• þb = þB/b = magnetic field unit vector;
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• σ0 = nq2/(mνc) = scalar conductivity.

Figure 4.7: Particle motion - E, B = constant, [7].

• Ω << 1: there are many collisions, v is small and the effect of B is negligible;

• Ω >> 1: there are few collisions, v is large and so the effect of B.

4.4 HT Thruster
It is a hybrid between an electrostatic and electromagnetic propulsion. It has the
great advantage of not being subject to the thrust density limitation imposed by
Child’s law (ion thruster limit) thanks to the quasi neutral plasma present in the
chamber.
The operating principle is based on the acceleration of an ionized working fluid
(propellant) by the mutual action of the overlap of a magnetic field ( þB = 0.1T ) and
an electric field ( þE) orthogonal to each other and directed respectively radially and
along the axis of the thruster. Usually they are made with cylindrical symmetry.
Generally, the gas used is Xenon as it has high atomic mass and low ionization
potential.
The magnetic field is generated by a magnetic circuit consisting of coils traversed
by electric current and ferromagnetic elements in order to direct the magnetic field
lines in the area of introduction of the propellant. The electric field is generated
by an electrostatic potential (Vd ≈ 300V ) held by a cathode (negatively polarized
electrode) external to the motor and by an internal anode. In this way there is a
low propellant density and a high Hall parameter (Ω ≈ 100).

An electron current (−Jd) is emitted from the cathode and flows axially towards
the anode. When electrons enter the motor, they are affected by the magnetic field,
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and they are trapped. In this way, their movement towards the anode is canceled,
and they obtain an azimuth speed (orthogonal to the electric and magnetic field)
creating a circumferential electronic current (Jθ) inside the thruster for the Hall
effect. This discharge having a high density of high energy electrons allows the
ionization of the propellant. The propellant is injected into the engine by the
anode and it is ionized by the impact between the electrons and the neutral atoms
of the working gas. At each collision the electron advances generating a current
along the anode.

The mean free path of atoms is much smaller than the channel size and there-
fore each atom is ionized. The distribution of electrons generates a virtual cathode
which generates an electrostatic potential with the anode allowing the acceleration
of the ions produced. The ions accelerated by the electrostatic difference are not
affected by the action of the magnetic field. In fact, due to their high atomic mass,
they have a very large cyclotron radius and travel almost straight rectilinear paths
along the motor axis. The ions are therefore accelerated by the electric field and
generate thrust.

In tab. 4.1 we can see the performance of an HT Thruster.

Propellant Xe
Isp 1500 − 2500 s
PE 300 − 6000 W
η 0.5
Voltage 200 − 600 V
Thruster mass 2 − 3 kg/kW
PPU mass 6 − 10 kg/kW
Feed System regulated
lifetime > 7000 kg
mission Transfer (med ∆V )

Table 4.1: HT thruster performance, [7].

4.4.1 SITAEL HT20k Thruster

HT20k (Fig. 4.8) is a high-power Hall Effect Thruster (HET), [8]. This thruster
has been designed to operate with nominal discharge power of 20kW. In tab. 4.2
there are the operative ranges of thrust, specific impulse and discharge voltage.
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MIN MAX
Thrust [N] 0.86 1.08
Isp [s] 1908 2777
Discharge Voltage [V] 300 600

Table 4.2: Working Point characteristics (credit: SITAEL, [8]).

Figure 4.8: SITAEL HT20k Thruster (credit: SITAEL, [8]).
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Chapter 5

EOR - MAGNETO

Orbit Raising is defined a type of orbital maneuver which causes a progressive
increase the radius of the spacecraft’s orbit. We can distinguish two types of ma-
neuver:

• Low Thrust (high specific impulse and low thrust → Electric propulsion);

• High Thrust (chemical propulsion, as described in chapter 2.6).

For what concern the Electric Orbit Raising (low thrust), the orbital maneu-
ver is one of the simplest and most advantageous systems to use. In fact, it al-
lows us to save propellant to be brought on board. The electric propulsion sys-
tem used presents extremely reduced thrust (about 1N), low acceleration (about
10−4/10−6g0) but also long transfer times.

The geometry of the trajectories is spiral.
For what concern the propellant consumption, Low Thrust maneuver represent

the best possible choice thanks to the high Specific Impulse value.
To perform the EOR maneuver, MAGNETO needs JPL Spice.

5.0.1 JPL Spice

NASA’s NAIF (The Navigation and Ancillary Information Facility) is a facility
which offers "SPICE" observation geometry information in order to assist space
agencies, scientist and engineers in solve space problems [9].
The SPICE system includes a software suite: the SPICE Toolkit. This toolkit is a
collection of freely available user-level application program interfaces in which we
may find some ready-to-use library and application offered in some languages such
as C, FORTRAN, IDL, MATLAB and Java.
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Figure 5.1: EOR_main.m.

5.1 EOR main

To perform an EOR maneuver MAGNETO uses a function called "EOR_main.m"
function. As we can see in Fig. 5.1, the function needs as inputs: the date, the
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orbital parameters, the number of thruster, the thrust for thruster, the specific
impulse, the initial mass, the drag coefficient, the surfaces and some flag that are
useful to control the orbital parameters change.

The function needs also the astrodynamics and utility constants.

First, using the JPL Spice function ("cspice_str2et.m"), the function calculates
the ephemeris time starting from the date given as an input. Then, the orbital
element vector is initialized and then the function "orb2mee.m" converts it in a
modified equinoctial orbital elements vector [26].

p = a(1 − e2)
f = e cos(ω + Ω)
g = e sin(ω + Ω)
h = tan(i/2) cos Ω
k = tan(i/2) sin Ω
L = Ω + ω + ν

(5.1)

Where:

• a = semi-major axis;

• e = orbital eccentricity;

• i = orbital inclination;

• ω = argument of perigee;

• Ω = right ascension of the ascending node;

• ν = true anomaly;

• L = true longitude.

Using "mee2eci.m" it’s possible to obtain the position and velocity of the space
tug in ECI coordinates.

The relationships between ECI state vector and modified equinoctial ([10]) ele-
ments are:

rECI =



r
s2 (cos L + α2 cos L + 2hk sin L)

r
s2 (sin L − α2 sin L + 2hk cos L)

2r
s2 (h sin L − k cos L)


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vECI =



− 1
s2

ñ
µ
p
(sin L + α2 sin L − 2hk cos L + g − 2fhk + α2g)

− 1
s2

ñ
µ
p
(− cos L + α2 cos L + 2hk sin L − f + 2ghk + α2f)

2
s2

ñ
µ
p
(h cos L + k sin L + fh + gk)


Where:

• α2 = h2 − k2;

• s2 = 1 + h2 + k2;

• r = p
w
;

• w = 1 + f cos L + g sin L.

It’s now possible to calculate the ECEF positions and velocities using "ECItoECEF.m"
function and the latitude, longitude and altitude using "ecef2lla.m"[16]. Both these
functions follow the procedure described in chapter 3.

Imposing a ∆t and the number of differential equation, the function plots all
the variables that it needs. Then, it computes the directions of the perturbations
checking all the orbital parameters from initial and final orbits.

We enter later in the while loop imposing the initial time to zero. The flow of
the propellant and its mass is initially calculated in order to obtain the thrust and
its acceleration in this way:



ṁp = − T
ISpg

m = mi + ṁp(tf − ti)

aT = T
m

(5.2)

5.1.1 Eclipse calculator
Another function necessary to define the eclipse is performed. Using the function
"eclipse_calculator.m" is possible to establish if the satellite is in umbra, penumbra
or in sunlight.

The size and shape of umbra (Fig. 5.2) and penumbra regions (Fig. 5.3) are
calculated using the planet and the Sun’s size and their distance [27].
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5.1 – EOR main

Umbra region is where the blockage of the solar light is total, while for what concern
penumbra region it is partial. In order to control if the satellite we are considering
is in umbra, penumbra or light, we must define the shadow cone surfaces. We
consider the celestial bodies as spherical and their shadows are conical.

Figure 5.2: Umbral cone geometry [12].

This allows us to obtain: 
χu = Dpδp−s

(Ds−Dp)

αu = sin−1( Dp

2χu
)

(5.3)

Where:

• Dp is the planet diameter;

• Ds is the Sun diameter;

• δp−s is the distance between Sun and planet;

• χu umbra cone altitude;

• αu half umbra cone angle.

Figure 5.3: Penumbral cone geometry [12].
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As the same way, we get:


χp = Dpδp−s

(Ds+Dp)

αp = sin−1( Dp

2χp
)

(5.4)

Where:

• χu penumbra cone altitude;

• αu half penumbra cone angle.

Then we must define the projection vector as:

þrs = (þr · ŝ)ŝ

þrs and þδ = þr − þrs are shown in 5.4.

Figure 5.4: þrs and δ [12].

Then, we define the distance:


ξ = (χu − |þrs|) tan αu

κ = (χp + |þrs|) tan αp

(5.5)

Where ξ is the distance between the center of the umbra cone and his end, and
κ is the same as ξ but for the penumbra cone.
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5.2 – Integration

Figure 5.5: Umbra [12].

Figure 5.6: Penumbra [12].

• if (|þδ| > κ) the spacecraft is in sunlight;

• if (ξ < |þδ| < κ) the spacecraft is in penumbra (Fig. 5.6);

• if (þδ < ξ) the spacecraft is in umbra (Fig. 5.5).

In MAGNETO, if the satellite is in umbra or in penumbra no thrust is provided.

5.2 Integration
Now the equations must be integrated.

We use the "meeqm.m" function which allows us to obtain the equations of
motion as a function of the modified equinoctial elements. The current modified
equinoctial orbital elements must be loaded and so even the ECI state vectors and
the classical orbital elements. Then, the perturbations are calculated taking into
account:
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• Thrust perturbation;

• Non-spherical gravity Earth J2;

• Aerodynamic Drag;

• Secondary body perturbation;

• Solar pressure.

5.2.1 Propulsive thrust
The general formulas for thrust perturbation are:


∆rt = aT · sin(α) · cos(β)
∆tt = aT · cos(α) · cos(β)
∆rt = aT · sin(β)

(5.6)

Where:

• α is the in-plane-angles or pitch angle;

• β is the out-of-plane angle or yaw angle;

• aT = T
m

u is the thrust acceleration;

• T is the thrust;

• m is the spacecraft mass;

• u = [ur ut un];

5.2.2 Non-spherical gravity Earth
The potential gradient [10] is:



∆rj2 = −3µJ2r2
Earth

2r4 [1 − 12(h sin L−k cos L)2

(1+h2+k2)2 ];

∆tj2 = −12µJ2r2
Earth

r4 [ (h sin L−k cos L)(h cos L+k sin L)2

(1+h2+k2)2 ];

∆nj2 = −6µJ2r2
Earth

r4 [ (1−h2−k2)(h sin L−k cos L)2

(1+h2+k2)2 ];

(5.7)
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5.2.3 Aerodynamic Drag
The perturbations due to the aerodynamic drag are:

∆Dr = 1
2ρSCDvvr;

∆Dt = 1
2ρSCDvvt;

∆Dn = 0;

(5.8)

Where:

• ρ = atmospheric drag;

• S = aerodynamic reference area;

• CD = drag coefficient;

• v = velocity magnitude;

• vr =
ñ

µ
p
(f sin L − g cos L);

• vt =
ñ

µ
p
(1 + f cos L + g sin L).

In the case analyzed, the aerodynamic drag is neglected because of the high altitude
(> 15000km) we consider [24].

5.2.4 Secondary Body perturbation
The equation that describes the second body perturbations [10] is:

þt = −
nØ

j=1
µj[

þdj

d3
j

+ þsj

s3
j

]

Where:

• þsj = vector from the primary to secondary body j;

• µj = gravitational constant;

• þdj = þr − þsj;

• r = position vector of the spacecraft relative to the primary body.
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We use Battin’s function in order to avoid numerical problems:

F (qk) = qk[ 3 + 3qk + q2
k

1 + (
√

1 + qk)3 ]

Where qk =
þrT (þr−2 þsk)

þst
k

þsk

In this way we get:

þt =
nØ

k=1

µk

d3
k

[þr + F (qk)þsk]

The Secondary body perturbation, in modified equinoctial coordinate is:

þaT B = QTþt

Where Q = [îr ît în]

5.2.5 Solar - Radiation Pressure
The solar radiation pressure [25] is:

pSR = 4.51 · 10−6

and the solar radiation force is:

FSR = pSRcRAsun

where:

• cR = reflectivity;

• Asun = exposed area to the Sun.

And the Solar Radiation acceleration is aSR = FSR/m. Normalizing: þaSR =
aSR

þds

ds
(ds = distance satellite-sun).

In this way we get:
þaSolarRadiation = QT þaSR

5.3 Modified equinoctial form of the orbital equa-
tions of motion

We get:

56



5.3 – Modified equinoctial form of the orbital equations of motion



∆r = ∆rt + ∆rj2 + ∆Dr + ∆rSBP + ∆rSR;

∆t = ∆tt + ∆tj2 + ∆Dt + ∆tSBP + ∆tSR;

∆n = ∆nt + ∆nj2 + ∆Dn + ∆nSBP + ∆nSR;

(5.9)

As reported in [10], the Modified equinoctial form of the orbital equations of
motion are as follow:



ṗ = dp
dt

= 2p
w

ñ
p
µ
∆t

ḟ = df
dt

=
ñ

p
µ
[∆r sin L + [(w + 1) cos L + f ]∆t

w
− (h sin L − k cos L)g∆n

w
]

ġ = dg
dt

=
ñ

p
µ
[−∆r cos L + [(w + 1) sin L + g]∆t

w
+ (h sin L − k cos L)g∆n

w
]

ḣ = dh
dt

=
ñ

p
µ

s2∆n
2w

cos L

k̇ = dk
dt

=
ñ

p
µ

s2∆n
2w

sin L

L̇ = dL
dt

= √
µp(w

p
)2 + 1

w

ñ
p
µ
(h sin L − k cos L)∆n

(5.10)
Then the program uses the Runge-Kutta-Fehlberg 7(8) method to solve them.
The "mee2eci.m" function is used again for calculating the position and velocity

in ECI coordinates and the "mee2orb.m" function for calculating the orbital pa-
rameters. Afterwards, the function calculates various weights in order to obtain
the desired thrust angles.

The function "ThrustWeights.m" evaluates the weights for the initial guess
thrust angles.

In this way, it’s possible to evaluate the velocity vector and the thrust angle
(in-plane angle α and out-of plane angle δ).

The acceleration components [28] are expressed as:

aR = |þa| cos β sin α

aT = |þa| cos β cos α

aN = |þa| sin β

(5.11)
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Once this is done, the program plots again all the variables of interest and per-
forms a final check on the semi-major axis.

This procedure is followed until the program "break" the "while" and that occurs
when the semi-major axis reach the desired values imposed as input.

Once the program exits the while loop, it calculates the ∆v, the final propellant
mass and the mean thrust acceleration.
In the end it plots the position in ECI and ECEF coordinates and all the parameters
we want.
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Chapter 6

EOR simulation

In this chapter will be presented some simulation for what concern the EOR ma-
neuver.

The EOR maneuver it’s necessary for both the OOSs presented in chapter 1.
In fact, as we can see in Fig. 1.1 and 1.2, this maneuver it’s the one necessary to
bring our orbit object to its desired orbit.

Moreover, the maneuvers presented in this chapter are realistic maneuvers capa-
ble of simulating the launch of a telecommunication satellite with electric propul-
sion.

In order to understand the results, let’s consider the first simulation (LEO to
GEO).

6.1 LEO to GEO

In tab. 6.1 we can see the input used for this simulation.
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EOR simulation

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 24421 · 103 [m]
ii 0.1 [deg]
ei 0.72
Ωi 1 [deg]
ωi 0 [deg]
νi 0 [deg]
af 42168 · 103 [m]
if 0 [deg]
ef 0.00045
Ωf 0 [deg]
ωf 0 [deg]
νf 0 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]

Table 6.1: Input (EOR - LEO to GEO).

In Fig. 6.1, 6.2 and 6.3 we see the maneuver plot in 3-D, where in red we have
the coordinates in ECI frame and in green the ECEF coordinates.

Figure 6.1: EOR maneuver in ECI (EOR - LEO to GEO).
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6.1 – LEO to GEO

Figure 6.2: EOR maneuver in ECEF (EOR - LEO to GEO).

Figure 6.3: EOR maneuver (EOR - LEO to GEO).

In Fig. 6.4, 6.5, 6.6 it’s presented, respectively, how the semi-major axis, the
orbital eccentricity and the orbital inclination change in function of time.

As we can see from the inputs and from the figures, in order to reach our goals,
the semi-major axis must increase its values, while the orbital eccentricity and the
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orbital inclination must be 0 at the end of the simulation.

Figure 6.4: Time - semi-major axis (EOR - LEO to GEO).

Figure 6.5: Time - Orbital eccentricity (EOR - LEO to GEO).

Figure 6.6: Time - Orbital inclination (EOR - LEO to GEO).

As the same way, in Fig. 6.7, 6.8, 6.9 we can see the ∆V , the total mass of the
satellite and the eclipse time.
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6.1 – LEO to GEO

Figure 6.7: Time - Delta V (EOR - LEO to GEO).

Figure 6.8: Time - mtot (EOR - LEO to GEO).

Figure 6.9: Time - Eclipse time (EOR - LEO to GEO).

In Fig. 6.10 it’s possible to see the thrust angles in function of time. In green,
we have α (in-plane angle) and in red β (out-of-plane angle).
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Figure 6.10: Time - Thrust angles (EOR - LEO to GEO).

In Fig. 6.11 and 6.12 there are presented the thrust weights and velocity change.
The thrust weghts are:

• ka (influences the semi-major axis) in blue;

• ke (influences the orbital eccentricity) in green;

• ki (influences the orbital inclination) in red;

• kω (influences the argument of periapsis) in cyan;

• kΩ (influences the right ascension of ascending node) in purple.

The components of the velocity are:

• uradial (radial component) in blue;

• utangential (tangential component) in green;

• unormal (normal component) in red.

For what concern the thrust weights, we can see that the ki (thrust weights respon-
sible for the inclination), is the first to become zero. That’s highlighted even from
the velocity, in fact, as the same way as ki, even the unormal reach the value "zero"
before the other components.
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6.1 – LEO to GEO

Figure 6.11: Time - Thrust weights (EOR - LEO to GEO).

Figure 6.12: Time - Velocity (EOR - LEO to GEO).

In tab. 6.2 there are the values of:

• tfmaneuver = final time of the maneuver;

• mprop = propellant mass used;

• ∆V ;

• teclipse = total eclipse time.

tfmaneuver 40.887499999999996 days
mprop 691.2190051583002 kg
∆V 2556.425985342690 m/s
teclipse 4.274305555555555 days

Table 6.2: Results (EOR - LEO to GEO).
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6.2 EOR - ∆ altitude

In this section will be presented the results of simple EOR maneuvers when we
raise the orbit respectively of 20, 50 and 100 km. The inputs are the same for both
the simulations, and they are presented in 6.3. The only parameter that changes is
the ∆altitude.

In this case the maneuvers presented are useful only to change the semi-major
axis value in order to make the first step of the phasing maneuver.

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 42165 · 103 [m]
ii 0 [deg]
ei 0
Ωi 0 [deg]
ωi 0 [deg]
νi 0 [deg]
af ai + ∆altitude [m]
if 0 [deg]
ef 0
Ωf 0 [deg]
ωf 0 [deg]
νf 0 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]

Table 6.3: Input (EOR).

In Fig. 6.13 we can see the trajectory of our satellite, where in red there are the
ECI coordinates and in green the ECEF coordinates. As we can see, the ECEF
position is basically constant. That’s because we are considering a geostationary
orbit and the satellite presents almost the same velocity as the rotation speed of
the Earth.
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6.2 – EOR - ∆ altitude

(a) EOR maneuver (EOR 20 km). (b) EOR maneuver (EOR 50 km).

(c) EOR maneuver (EOR 100 km).

Figure 6.13: EOR maneuver

The differences for what concern the ∆altitude are highlighted in Fig. 6.14. In
fact, we can see that the first simulation ends when the semi-major axis increase
its value of 20 km, while the other simulations continue. The trends of these curves
are linear. That’s because the satellite is never eclipsed during these maneuvers
(Fig. 6.17). If it were, the parameters considered would have been constant during
eclipse time.

Because of the finite maneuver and the constant thrust applied to the space-
craft, we can see, from tab. 6.4 that the maneuver time increase linearly with the
∆altitude we want the satellite to reach and so the ∆V and the mprop used. In
fact, if we consider Fig. 6.15 the cost of the maneuvers increases and focusing on
the last two simulations, the ∆V almost doubles its values as the same as the mprop

(see Fig. 6.16) and the tfmaneuver.
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(a) Time - semi-major axis
(EOR 20 km).

(b) Time - semi-major axis
(EOR 50 km).

(c) Time - semi-major axis
(EOR 100 km).

Figure 6.14: Time - semi-major axis.

(a) Time - Delta V (EOR 20
km).

(b) Time - Delta V (EOR 50
km).

(c) Time - Delta V (EOR
100 km).

Figure 6.15: Time - Delta V.
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6.2 – EOR - ∆ altitude

(a) Time - mtot (EOR 20
km).

(b) Time - mtot (EOR 50
km).

(c) Time - mtot (EOR 100
km).

Figure 6.16: Time - mtot.

(a) Time - Eclipse time
(EOR 20 km).

(b) Time - Eclipse time
(EOR 50 km).

(c) Time - Eclipse time
(EOR 100 km).

Figure 6.17: Time - Eclipse time.
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(a) Time - Thrust angles (EOR 20
km).

(b) Time - Thrust angles (EOR 50
km).

(c) Time - Thrust angles (EOR
100 km).

Figure 6.18: Time - Thrust angles.

Focusing on Fig. 6.18, in order to increase the semi-major axis, the in-plane angle
(α) and out-of-plane angle (β) are both equal to zero, according to the results of the
Edelbaum problem. α = 0 means that the satellite is increasing just its tangential
velocity. In fact, if α = ±π the semi-major axis would decrease its value. For what
concern β, it always has a zero value because we never go out of the orbital plane.

For what concern the Thrust weights (Fig. 6.19) and the Velocity (Fig. 6.20)
the trends of the curves are basically the same.

As we can see, in order to increase a, its weights must present a positive value
and so utangential. The more we are far from the orbit we want the satellite to
reach, the more the thrust weights and the velocity have a higher value, while the
more the satellite get closer to its objective, the more they decrease. The changes
between these simulations are about how long we are going to apply the thrust.
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6.2 – EOR - ∆ altitude

(a) Time - Thrust weights
(EOR 20 km).

(b) Time - Thrust weights
(EOR 50 km).

(c) Time - Thrust weights
(EOR 100 km).

Figure 6.19: Time - Thrust weights.

(a) Time - Velocity (EOR 20
km).

(b) Time - Velocity (EOR 50
km).

(c) Time - Velocity (EOR
100 km).

Figure 6.20: Time - Velocity.
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In tab. 6.4 are reported the numerical values we obtain at the end of the simu-
lations.

RESULTS 20 km 50 km 100 km
tfmaneuver 1.366666666666667 3.566666666666667 7.283333333333333 hours
mprop 0.176993599855450 0.465427614434702 0.952706290579954 kg
∆V 0.702866248217103 1.834347270136513 3.745970375825520 m/s
teclipse 0.00 0.00 0.00 sec

Table 6.4: Results (EOR).
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Chapter 7

Phasing maneuver with
waiting phase

As the same way as the EOR maneuver, the phasing maneuver is important for
what concern the Space Tug OOS (1.1) and the All-Electric platform (1.2), even
though it refers to different mission phase in respect of the maneuver analyzed
previously.

The phasing maneuver is that maneuver necessary to adjust the satellite’s posi-
tion within the same orbit. It’s defined as an evasive maneuver in order to distance
or nearer the spacecraft to the target.

Once the user defines the position he wants the satellite to reach, we must define
the mission. In this way we get the phase angle to make, and so we must analyze
the budget in terms of the ∆V , propellant mass and maneuver time.

For what concern the chemical propulsion, the phasing maneuver can be divided
into three phases, as described in 2.6. In this chapter we are going to follow that
logic, even though we are considering electric propulsion.

So, the first phase consists of an EOR maneuver, the second is just a waiting
phase and the third phase is a second EOR in order to get back to the initial orbit.

7.1 Maneuver logic

Before entering the function "PHASING_MANEUV ER.m", the program per-
forms "DELTA_POSITION_EOR2.m". This function is composed of two con-
secutive EOR, performed in order to calculate the delta position performed by the
satellite during the second EOR. The result of this function is the ∆ longitude(EOR2).
The EOR maneuvers are exactly the same we reported in chapter 5.
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Figure 7.1: Phasing maneuver Logic.
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7.2 – Simulation - Geostationary orbit

Then we enter in "PHASING_MANEUV ER.m" (Fig. 7.1). Unlike the
previous case (EOR), we have to initialize the position we want the satellite to
reach (True longitude = input). In this chapter, the position we are referring is
the longitude. Once the first maneuver (EOR) is done, the program saves the
∆ longitude(EOR1) = initial longitude − initial maneuver final longitude made
by the spacecraft.

For what concern the waiting phase, the assumption is that the satellite will
behave as if it’s always eclipsed. In this way no thrust is produced. In order to exit
this loop, we must wait that the longitude reached by the satellite is:

Longitude = desired Longitude − ∆ longitude(EOR2)

In the end we enter the final loop (second EOR) and once the satellite reaches
the desired semi-major axis value, we control if it has reached the desired position.
If not, we go back to the start of the simulation saving the ∆ longitude(EOR2)
calculated at the end of the previous simulation. Otherwise, we exit the function
saving all the data and plotting them.

7.2 Simulation - Geostationary orbit
In tab. 7.1 there are the input used for the following simulations.

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 42165 · 103 [m]
ii 0 [deg]
ei 0
Ωi 0 [deg]
ωi 0 [deg]
νi 21.5486 [deg]
phasingaltitude −100 · 103 [m];
af ai + phasingaltitude [m]
if 0 [deg]
ef 0
Ωf 0 [deg]
ωf 0 [deg]
νf 21.5486 [deg]
Initial Longitude 3.253111063935371e − 05 [deg].
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]

Table 7.1: Input Phasing maneuver.
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For what concern the waiting phase, every type of perturbation is considered:
zonal harmonics, aerodynamic drag, solar radiation pressure, third body perturba-
tion and eclipse.

As the same way as the previous chapter, in this one we will see the results
MAGNETO gives us. We are going to use the same input but changing the position
we want the satellite to reach, in terms of latitude.

7.2.1 Results - Geostationary orbit
In Fig. 7.2 we can see the phasing maneuver, respectively, for Longitude = 15◦,
30◦, 90◦ and 180◦. As the same way as the previous simulations, the red trajectory
is the one in ECI coordinates, while in green we have the ECEF trajectory.

It has been decided to use phasingaltitude = −100 · 103 m in order to increase
the longitude. In fact, in this way, the satellite increases its velocity in respect of
the Earth rotational speed. If we wanted the satellite to decrease its longitude, we
would have increase its phasingaltitude in a way that the satellite would have been
slower than the Earth.

(a) Phasing maneuver (Longitude = 15 deg). (b) Phasing maneuver (Longitude = 30
deg).

(c) Phasing maneuver (Longitude = 90 deg). (d) Phasing maneuver (Longitude = 180
deg).

Figure 7.2: Phasing maneuver

For what concern the semi-major axis, see Fig. 7.3, during the waiting phase is
about constant, even if, because of the perturbation we are considering, it oscillates
around its desired value.

76



7.2 – Simulation - Geostationary orbit

(a) Time - semi-major axis (Longitude
= 15 deg).

(b) Time - semi-major axis (Longitude
= 30 deg).

(c) Time - semi-major axis (Longitude
= 90 deg)).

(d) Time - semi-major axis (Longitude
= 180 deg).

Figure 7.3: Time - semi-major axis.

In Fig. 7.5 there is the longitude in function of time, while in Fig. 7.4 there
is the true longitude in function of time. The longitude is the parameter we are
controlling and, in fact, the simulations end when it reaches the desired value.
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Phasing maneuver with waiting phase

(a) Time - True longitude
(Longitude = 15 deg).

(b) Time - True longitude
(Longitude = 30 deg).

(c) Time - True longitude
(Longitude = 90 deg)).

(d) Time - True longitude
(Longitude = 180 deg).

Figure 7.4: Time - True longitude.

(a) Time - Longitude (Lon-
gitude = 15 deg).

(b) Time - Longitude (Lon-
gitude = 30 deg).

(c) Time - Longitude (Longi-
tude = 90 deg)).

(d) Time - Longitude (Lon-
gitude = 180 deg).

Figure 7.5: Time - Longitude.
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7.2 – Simulation - Geostationary orbit

As we can see in Fig. 7.6 and 7.7, when the satellite is in the waiting phase,
the ∆V and the mtot are constant. Moreover, if we look at the results table 7.2,
both the ∆V and the mass of the propellant are practically equal. This is because
during the waiting phase, the satellite behaves as if it were eclipsed and therefore
no thrust is produced. In this way, the phases that have costs are the two EOR
and both these maneuvers are performed to reach the same semi-major axis value.

In the end, using this maneuver logic, the only parameter that changes is the
time the satellite spends in waiting phase. Consequently, the eclipse time (7.8)
increase its value.

(a) Time - Delta V (Longitude =
15 deg).

(b) Time - Delta V (Longitude =
30 deg).

(c) Time - Delta V (Longitude =
90 deg)).

(d) Time - Delta V (Longitude =
180 deg).

Figure 7.6: Time - Delta V.
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Phasing maneuver with waiting phase

(a) Time - mtot (Longitude
= 15 deg).

(b) Time - mtot (Longitude
= 30 deg).

(c) Time - mtot (Longitude
= 90 deg)).

(d) Time - mtot (Longitude
= 180 deg).

Figure 7.7: Time - mtot.

(a) Time - Eclipse time
(Longitude = 15 deg).

(b) Time - Eclipse time
(Longitude = 30 deg).

(c) Time - Eclipse time
(Longitude = 90 deg)).

(d) Time - Eclipse time
(Longitude = 180 deg).

Figure 7.8: Time - Eclipse time.
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7.2 – Simulation - Geostationary orbit

Fig. 7.9, 7.10 and 7.11 highlight the fact that the only parameter that change is
the waiting time. In fact, if we zoom the figure when the satellite is performing the
EOR, we can see that both the thrust angles, weights and velocity have identical
trends. Even if it’s not clear from these figures, the trends of ka and utangential for
what concern the ascending phase, are the same as the simulation EOR when we
raise the orbit radius of ∆altitude = 100 km. Instead, the descending phase (the
first EOR of the phasing maneuvers considered) is practically opposite.

(a) Time - Thrust angles (Longi-
tude = 15 deg).

(b) Time - Thrust angles (Longi-
tude = 30 deg).

(c) Time - Thrust angles (Longi-
tude = 90 deg)).

(d) Time - Thrust angles (Longi-
tude = 180 deg).

Figure 7.9: Time - Thrust angles.
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Phasing maneuver with waiting phase

(a) Time - Thrust weights
(Longitude = 15 deg).

(b) Time - Thrust weights
(Longitude = 30 deg).

(c) Time - Thrust weights
(Longitude = 90 deg)).

(d) Time -Thrust weights
(Longitude = 180 deg).

Figure 7.10: Time - Thrust weights.

(a) Time - Velocity (Longi-
tude = 15 deg).

(b) Time - Velocity (Longi-
tude = 30 deg).

(c) Time - Velocity (Longi-
tude = 90 deg)).

(d) Time - Velocity (Longi-
tude = 180 deg).

Figure 7.11: Time - Velocity.
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7.3 – Generalization

RESULTS 15◦ 30◦ 90◦ 180◦

true longitudephasing 14.11871 29.48327 89.69305 179.56187 deg
tfcycle 11.03194 22.81458 69.44514 139.17431 days
∆vphasing cycle 7.12378 7.16665 7.14950 7.11521 m/s
mprop cycle 1.81364 1.82456 1.82019 1.81145 kg
twaiting cycle 10.45486 22.23403 68.86597 138.54861 days
teclipse 0.54792 1.14514 3.48125 6.96181 days

Table 7.2: Results.

As already said, the cost of the maneuvers presented is about the same for every
simulation. That’s normal because during the waiting phase no thrust is applied,
and the satellite continues its motion with no thrust perturbation. So only the
EOR phase presents costs in terms of ∆V and mprop and those phases are identical
for all the simulations we made.

7.3 Generalization
Once MAGNETO was modified in such a way as to be able to perform the phasing
maneuver for geostationary orbits, the goal was to generalize the maneuver for any
type of orbit.

Since, if the satellite is in a different orbit than the geostationary one, the longi-
tude changes continuously, the controls to be made during the maneuver have been
changed.

7.3.1 Controls
As written before, in the event that the orbiting body is not on a geostationary
orbit, longitude cannot be used as a control meter. In fact, we must have a control
on parameters which have dependence on time.

For this reason, control methods have been studied which act on the various
orbital parameters. A subdivision was made between the various types of orbits:

• Geostationary orbit;

• Circular and equatorial orbit (e = 0 and incl = 0);

• Circular orbit (e = 0, but incl /= 0);

• Equatorial orbit (incl = 0, but e /= 0);

• Generic orbit (incl /= 0 and e /= 0).

83



Phasing maneuver with waiting phase

For what concern the geostationary orbit, the control method is the same seen
in the previous chapter.

Circular and equatorial orbit

For a circular and equatorial orbit, the true longitude must be checked.
In celestial mechanics, the true longitude is the position at which a satellite is
when its inclination is i = 0. Using the inclination and the ascending node, the
true longitude indicates the precise position from the central body at which the
spacecraft would be located at a particular time. The true longitude is defined as:

l = Ω + ω + ν

Circular and inclined orbit

For a circular and inclined orbit, it’s not possible to rely on true longitude. The
choice of the parameter to be controlled falls on the argument of latitude (u). The
argument of latitude is an angular parameter useful to define the position of an
orbiting object which is moving along a Keplerian orbit. In this case we are not
going to consider the RAAN .

u = ν + ω

It defines the angle between the ascending node and the body.

Equatorial and eccentric orbit

In this case the RAAN loses meaning. In fact, there is no a nodal line.
Otherwise, it’s still possible to rely on True longitude in order to obtain the position
of the satellite. So, the controls in this case are the same used for Circular and
equatorial orbit.

Generic orbit

For what concern a generic orbit, there are no parameters that have no physical
meaning. To identify the position of the satellite, we use the argument of latitude.
In fact, because of the satellite’s orbit which is inclined, the RAAN does not change.
So, we can use the same control as Circular and inclined orbit.

7.4 Simulations - Generalization
In this chapter will be presented the results of some simulations. All simulations
have been made in order to have different kind of orbit. In this way has been
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7.4 – Simulations - Generalization

possible to evidence that the program will work using any type of control. In tab.
7.3 there are the common inputs for the orbit we are going to consider.

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 32165 · 103 [m]
Ωi 0 [deg]
ωi 0 [deg]
νi 0 [deg]
af ai + phasingaltitude [m]
Ωf 0 [deg]
ωf 0 [deg]
νf 0 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]
phasingaltitude 100 · 103 [m]
true longitudephasing 180 [deg]

Table 7.3: Input Phasing maneuver (Generalization).

The simulations presented refers to the following type of orbit:

• Circular and equatorial orbit: ii = if = 0 and ei = ef = 0;

• Circular and inclined orbit: ii = if = 28.5 and ei = ef = 0;

• Equatorial and eccentric orbit: ii = if = 0 and ei = ef = 0.4;

• Generic orbit (inclined and eccentric): ii = if = 28.5 and ei = ef = 0.4;

7.4.1 Results - Generalization

In Fig. 7.12 we can see the phasing maneuver, respectively, for circular and equa-
torial orbit, circular and inclined orbit, equatorial and eccentric orbit ad generic
orbit. As the same way as the previous simulations, the red trajectory is the one
in ECI coordinates, while in green we have the ECEF trajectory.
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Phasing maneuver with waiting phase

(a) Phasing maneuver (Circular and equa-
torial orbit).

(b) Phasing maneuver (Circular and in-
clined orbit).

(c) Phasing maneuver (Equatorial and ec-
centric orbit).

(d) Phasing maneuver (Generic orbit).

Figure 7.12: Phasing maneuver (Generalization).

As we can see in Fig. 7.13, in case of circular orbit, the semi-major axis in
function of time behaves like the geostationary case. Obviously, if we are considering
eccentric orbit, the semi-major axis is affected by the eccentricity. That’s because
of the non-linear trends.
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7.4 – Simulations - Generalization

(a) Time - semi-major axis (Circular
and equatorial orbit).

(b) Time - semi-major axis (Circular
and inclined orbit).

(c) Time - semi-major axis (Equatorial
and eccentric orbit).

(d) Time - semi-major axis (Generic
orbit).

Figure 7.13: Time - semi-major axis (Generalization).

Fig. 7.14 and 7.15, puts in evidence the parameter we are controlling. In case
of non-eccentric orbit, the positions change linearly with time. That’s because in a
circular orbit, the satellite has the same velocity in every point of the orbit. That’s
different for what concern an eccentric orbit, where the velocity of the satellite
depends on its position along the orbit. In fact, the satellite has a higher speed if
it’s near to the perigee, and so, the trend of the position we are considering will
have a greater inclination. That is highlighted even if we consider the longitude in
function of time (see Fig. 7.16).
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Phasing maneuver with waiting phase

(a) Time - True longitude (Circular and
equatorial orbit).

(b) Time - True longitude (Equatorial and
eccentric orbit).

Figure 7.14: Time - True Longitude (Generalization).

(a) Time - Argument of Latitude (Circular
and inclined orbit).

(b) Time - Argument of Latitude (Generic
orbit).

Figure 7.15: Time - Argument of Latitude (Generalization).
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7.4 – Simulations - Generalization

(a) Time - Longitude (Circular and equato-
rial orbit).

(b) Time - Longitude (Circular and inclined
orbit).

(c) Time - Longitude (Equatorial and eccen-
tric orbit).

(d) Time - Longitude (Generic orbit).

Figure 7.16: Time - Longitude (Generalization).

In the previous chapter it was highlighted that during the waiting phase and
during the eclipse phase the ∆v and the propellant mass does not vary (respectively
Fig. 7.17 and 7.18). So, it is also in this case. However, as can be seen in Fig.
7.19, in the case of a generic orbit, the satellite never goes into eclipse, thanks to
the inclination and eccentricity the orbit presents.
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Phasing maneuver with waiting phase

(a) Time - Delta V (Circular
and equatorial orbit).

(b) Time - Delta V (Circular
and inclined orbit).

(c) Time - Delta V (Equato-
rial and eccentric orbit).

(d) Time - Delta V (Generic
orbit).

Figure 7.17: Time - Delta V (Generalization).

(a) Time - mtot (Circular
and equatorial orbit).

(b) Time - mtot (Circular
and inclined orbit).

(c) Time - mtot (Equatorial
and eccentric orbit).

(d) Time - mtot (Generic or-
bit).

Figure 7.18: Time - mtot (Generalization).
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7.4 – Simulations - Generalization

(a) Time - Eclipse time (Circular and
equatorial orbit).

(b) Time - Eclipse time (Circular and
inclined orbit).

(c) Time - Eclipse time (Equatorial and
eccentric orbit).

(d) Time - Eclipse time (Generic or-
bit).

Figure 7.19: Time - Eclipse time (Generalization).

Although the orbits that we are considering are different, if we consider only the
circular orbits or only the eccentric ones, we can see how the trends of the thrust
angles (7.20) and velocity (Fig. 7.22) are similar, while the thrust weights (Fig.
7.21) are similar to every case. For what concern the circular orbit, the trends
are similar also to the geostationary case. Furthermore, even if we are considering
inclined orbit, due to the fact that we are not changing the inclination, β and so
the normal component of the velocity and ki are 0. For what concern the eccentric
orbit, α /= 0 in order to increase semi-major axis and α /= ±π to decrease it. That’s
because of the presence of e. It also affects the radial component of the velocity
which is higher before the satellite gets to the apogee and become negative once
it has been passed. When the satellite approaches to the apogee or the perigee,
uradial → 0.
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Phasing maneuver with waiting phase

(a) Time - Thrust angles
(Circular and equatorial
orbit).

(b) Time - Thrust an-
gles (Circular and in-
clined orbit).

(c) Time - Thrust an-
gles (Equatorial and ec-
centric orbit).

(d) Time - Thrust an-
gles (Generic orbit).

Figure 7.20: Time - Thrust angles (Generalization).

(a) Time - Thrust
weights (Circular and
equatorial orbit).

(b) Time - Thrust
weights (Circular and
inclined orbit).

(c) Time - Thrust
weights (Equatorial and
eccentric orbit).

(d) Time - Thrust
weights (Generic orbit).

Figure 7.21: Time - Thrust weights (Generalization).

92



7.4 – Simulations - Generalization

(a) Time - Velocity (Circular and equa-
torial orbit).

(b) Time - Velocity (Circular and in-
clined orbit).

(c) Time - Velocity (Equatorial and ec-
centric orbit).

(d) Time - Velocity (Generic orbit).

Figure 7.22: Time - Velocity (Generalization).

As reported in tab. 7.4, the costs of the maneuvers are about the same, even if
we are considering different typology of orbit. The parameter that change are the
final time and the twaiting cycle.

RESULTS Circular and equatorial Circular Equatorial Generic
true longitudephasing 180.62494 179.79000 180.54545 179.25731 deg
mprop cycle 2.80568 2.81878 2.87341 3.00671 kg
tfcycle 1 0.99861 1.66806 0.99583 days
∆vphasing cycle 11.01649 11.06795 11.28232 11.80539 m/s
twaiting cycle 0.48333 1.71666 15.11667 0.95000 hours
∆longitudewaiting cycle 0.18932 0.672118 0.35799 0.36736 rad
teclipse 2.10000 0.733333 4.48333 0.00 hours

Table 7.4: Results (Generalization).

93



94



Chapter 8

No waiting

Using the same controls seen in the previous chapter, we tried to eliminate the
waiting phase within the phasing maneuver. In this way, the phasing maneuver
becomes the union of two consecutive EOR maneuvers. In order to do this, there
were many possibilities such as modify the thrust of the satellite or the thrust
weight, but in this chapter will be analyzed another way. In fact, it has been
possible to reach our goals, modifying the phasing altitude in order to obtain it as
output of the function. In this way, the phasing altitude we get is the one necessary
to reach the desired position of the satellite, as we can see in Fig. 8.1.

In function of the orbit typology we are considering, the controls and the value of
∆phasingaltitude are different (in Fig. 8.1 are presented the values for what concern
a circular and equatorial orbit).
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No waiting

Figure 8.1: No Waiting - Logic.

8.1 Simulation - Geostationary orbit
In tab. 8.1 there are the input for phasing maneuver in case of geostationary orbit
and the control regards the longitude.

It has been set an initial phasingaltitude = −1 km and MAGNETO, performing
two EOR, calculates the position reached by the satellite. If the angle the satellite
reaches is lower than the desired position, the phasing altitude is increased by a cer-
tain value, otherwise it decreases. This procedure is also followed in reverse in case
the initial phasing altitude is positive. That’s decided by flag_phasing_altitude,
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8.1 – Simulation - Geostationary orbit

a flag imposed by the user in "MAIN.m":

• flag_phasing_altitude = 0 → phasingaltitude > 0;

• flag_phasing_altitude = 1 → phasingaltitude < 0;

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 42157 · 103 [m]
ii 0 [deg]
ei 0
Ωi 0 [deg]
ωi 0 [deg]
νi 0 [deg]
af ai + phasingaltitude [m]
if 0 [deg]
ef 0
Ωf 0 [deg]
ωf 0 [deg]
νf 0 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]
initial phasingaltitude −1 · 103 [m]
Initial longitudephasing 338 [deg]
Longitudephasing 350 [deg]

Table 8.1: Input Phasing maneuver (Geostationary orbit - No Waiting).

In Fig. 8.2, it’s reported the phasing maneuver with both ECI (red trajectory)
and ECEF (in green) coordinates, where the ∗ indicates the initial position, while
o indicates the final position.

97



No waiting

Figure 8.2: Phasing maneuver.

According to flag_phasing_altitude = 0, in Fig. 8.3, we can see the trend
of the semi-major axis in function of time. It firstly decreases in order to reach
af . In this way, the longitude increase its value (Fig. 8.4). In fact, assuming
that the satellite speed is equal to the Earth rotational speed, if we decrease the
semi-major axis value, the satellite increase its velocity. Then the satellite increases
immediately its semi-major axis with no waiting phase.

Figure 8.3: Time - semi-major axis.
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8.1 – Simulation - Geostationary orbit

Figure 8.4: Time -Longitude.

As we said before, in this case there is no more the waiting phase. In this way,
the maneuver is faster in respect of the maneuver analyzed in previous chapter,
but it’s also more expensive in terms of ∆V and mprop (Fig. 8.5 and 8.6), at least
for what concern the geostationary orbit. Now these values are constant only if
the satellite is in eclipse (Fig. 8.7). The linear trends are due to the fact that the
engine we are considering presents constant value of Thrust and Isp.

Figure 8.5: Time - ∆V .

Figure 8.6: Time - mtot.
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No waiting

Figure 8.7: Time - teclipse.

In the analyzed case, we can use the hypotheses of the Edelbaum problem. In
fact, in order to decrease the semi-major axis we get α = π, while β = 0, while to
get back to the initial orbit we have α = 0 and β = 0.

Figure 8.8: Time - α and β.

ka is the only thrust weights that really matters in order to obtain a change for
what concern the semi-major axis, and so for the uradial. The fact that the waiting
phase is no more presents in the maneuver logic it’s highlighted also from Fig. 8.9
(Time - Thrust weights) and from Fig. 8.10 (Time - Velocity). In fact, considering
ka and utangential, the trends of these values are no more constant except when the
satellite is in eclipse.
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8.1 – Simulation - Geostationary orbit

Figure 8.9: Time - Thrust weights.

Figure 8.10: Time - V elocity vector.

In tab. 8.2 there are the results of this simulation. The phasingaltitude presents
a very high value in respect of the other simulation. That’s because in order to
make a change of ∆Longitude ≈ 1◦, it’s necessary to increase the semi-major axis
of about 150 km. Obviously, the more we go far from the initial orbit, the less we
have to increase the semi-major axis value in order to obtain ∆Longitude.

phasingaltitude - 508 km
true longitudephasing 349.4428566389121 deg
mprop cycle 9.428733128102067 kg
tfcycle 3.094493637105124 days
∆vphasing cycle 37.403180387831430 m/s
teclipse 0.148611111111111 days

Table 8.2: Results (Geostationary orbit - No Waiting)

This maneuver logic has been able to solve a problem presents in [1]. In fact, as
we can see in Fig. 8.11, in case we want the satellite to perform a phasing maneuver
of 15◦, this maneuvers take longer respect a phasing maneuver of 60◦. That’s
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No waiting

because when the satellite performs the first EOR with ∆phasingaltitude = 20 km,
it may already pass through the desired position, and so it has to complete a full
orbit before performing the second EOR.

Figure 8.11: Results for the phasing maneuver at 20km, [1].

8.2 Simulations
In this chapter will be presented the results of some simulations. Every simulation
has been made in order to have different kind of orbit. In this way has been possible
to evidence that the program will work using any type of control. In tab. 8.3 there
are the common inputs for the orbit we are going to consider.

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 32165 · 103 [m]
Ωi 0 [deg]
ωi 0 [deg]
νi 0 [deg]
af ai + phasingaltitude [m]
Ωf 0 [deg]
ωf 0 [deg]
νf 0 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]
initial phasingaltitude −1 · 103 [m]
True longitudephasing 90 [deg]

Table 8.3: Input Phasing maneuver (No waiting).

The simulations presented refers to the following type of orbit:
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8.2 – Simulations

• Circular and equatorial orbit: ii = if = 0 and ei = ef = 0;

• Circular and inclined orbit: ii = if = 28.5 and ei = ef = 0 → True longitudephasing =
Argument of Latitude;

• Equatorial and eccentric orbit: ii = if = 0 and ei = ef = 0.4;

• Generic orbit (inclined and eccentric): ii = if = 28.5 and ei = ef = 0.4
→ True longitudephasing = Argument of Latitude;

In Fig. 9.17 there are the interpolations we get. As we can see, these interpola-
tions are obtained using flag_phasing_altitude = 1 (initial phasingaltitude < 0).
Fig. 8.12 there is the trajectory followed by the spacecraft. As the same way as all
the previous simulations, in red there are ECI coordinates and in green the ECEF
ones. In order to understand better the trajectory, we must consider Fig. 8.13,
which highlighted the trends of the semi-major axis in function of time. We chose
flag_phasing_altitude = 1 (initial phasingaltitude < 0) and so during the first
EOR, a decreases its value.
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No waiting

(a) Phasing maneuver (Circular and equa-
torial orbit).

(b) Phasing maneuver (Circular and in-
clined orbit).

(c) Phasing maneuver (Equatorial and ec-
centric orbit).

(d) Phasing maneuver (Generic orbit).

Figure 8.12: Phasing maneuver (No waiting).
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8.2 – Simulations

(a) Time - semi-major axis (Circular
and equatorial orbit).

(b) Time - semi-major axis (Circular
and inclined orbit).

(c) Time - semi-major axis (Equatorial
and eccentric orbit).

(d) Time - semi-major axis (Generic
orbit).

Figure 8.13: Time - semi-major axis (No waiting).

As reported in chapter 7.3, in case of equatorial orbit, the maneuver ends when
the satellite reaches the desired true longitude, while we consider the Argument of
Latitude in case of inclined orbit (Fig. 8.14 and 8.15).
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No waiting

(a) Time - True longitude (Circular and
equatorial orbit).

(b) Time - True longitude (Equatorial and
eccentric orbit).

Figure 8.14: Time - True Longitude (No waiting).

(a) Time - Argument of Latitude (Circular
and inclined orbit).

(b) Time - Argument of Latitude (Generic
orbit).

Figure 8.15: Time - Argument of Latitude (No waiting).

As always the costs are represented by the ∆v (Fig. 8.16) and by the consump-
tion of propellant (Fig. 8.17). Both these parameters, they don’t have constant
value in function of time because we have no waiting phase and the satellite is never
eclipsed (Fig. 8.18). The cost is practically the same for what concern "Circular and
equatorial orbit" and "Circular and inclined orbit" and the same is for "Equatorial
and eccentric orbit" and "Generic orbit".
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8.2 – Simulations

(a) Time - Delta V (Circular
and equatorial orbit).

(b) Time - Delta V (Circular
and inclined orbit).

(c) Time - Delta V (Equato-
rial and eccentric orbit).

(d) Time - Delta V (Generic
orbit).

Figure 8.16: Time - Delta V (No waiting).

(a) Time - mtot (Circular
and equatorial orbit).

(b) Time - mtot (Circular
and inclined orbit).

(c) Time - mtot (Equatorial
and eccentric orbit).

(d) Time - mtot (Generic or-
bit).

Figure 8.17: Time - mtot (No waiting).
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No waiting

(a) Time - Eclipse time (Circular and
equatorial orbit).

(b) Time - Eclipse time (Circular and
inclined orbit).

(c) Time - Eclipse time (Equatorial and
eccentric orbit).

(d) Time - Eclipse time (Generic or-
bit).

Figure 8.18: Time - Eclipse time (No waiting).

The α and β trends are reported in Fig. 8.19, while the thrust weights in Fig.
8.20 and the velocity in Fig. 8.21. As we can see there is no waiting phase and the
curves look the same if the orbits are circular or if they are eccentric.

α ≈ ±π if we are going to decrease semi-major axis and α ≈ 0 if the semi-major
axis is about to increase its value, while the out-of plane angle is always 0.
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8.2 – Simulations

(a) Time - Thrust angles (Circular and
equatorial orbit).

(b) Time - Thrust angles (Circular and
inclined orbit).

(c) Time - Thrust angles (Equatorial
and eccentric orbit).

(d) Time - Thrust angles (Generic or-
bit).

Figure 8.19: Time - Thrust angles (No waiting).

ka (the one connected to the semi-major axis) is the only thrust weight that
changes. If we want the semi-major axis to decrease, ka must be negative with
linear trend with a positive slope, vice versa for what concern the increase of a.
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No waiting

(a) Time - Thrust weights (Circular
and equatorial orbit).

(b) Time - Thrust weights (Circular
and inclined orbit).

(c) Time - Thrust weights (Equatorial
and eccentric orbit).

(d) Time - Thrust weights (Generic or-
bit).

Figure 8.20: Time - Thrust weights (No waiting).

The curves of the velocity components is similar to the thrust weights one. In
order to decrease the semi-major axis, for what concern circular orbit, utangential

presents negative values. The tangential component increases its value linearly
until the EOR maneuver is complete (when utangential = 0). Vice versa when the
semi-major axis decreases. For what concern the eccentric orbits, the discussion on
the tangential component of speed is the same, while uradial changes because of e.
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8.2 – Simulations

(a) Time - Velocity (Circular and equa-
torial orbit).

(b) Time - Velocity (Circular and in-
clined orbit).

(c) Time - Velocity (Equatorial and ec-
centric orbit).

(d) Time - Velocity (Generic orbit).

Figure 8.21: Time - Velocity (No waiting).

In tab. 8.4 are reported the numerical results we get at the end of the maneuvers.

RESULTS Circular and equatorial Circular Equatorial Generic
phasingaltitude −18 −18 −11.750 −12.5 km
true longitudephasing 90.30897 90.31306 90.15217 90.64505 deg
mprop cycle 0.52443 0.52224 0.26439 0.26439 kg
tfcycle 0.16735 0.16666 0.08472 0.08472 days
∆vphasing cycle 2.06623 2.05766 1.04579 1.04637 m/s
teclipse 0.00 0.00 0.00 0.00 hours

Table 8.4: Results (No waiting).
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Chapter 9

Interpolation

The results obtained in the previous chapter turned out to be quite good. The ma-
neuver logic in which only two EOR maneuvers are performed without a waiting
phase has proved to be an excellent choice. We therefore chose to continue on this
line.

Obviously, changes were made to the program in order to make the whole ma-
neuver as accurate as possible.

9.1 Maneuver logic
We give the same input as before:

• ai Initial altitude [m] (semi-major axis altitude);

• af Final altitude [m] (semi-major axis altitude);

• ei Initial eccentricity [adim];

• ef Final eccentricity [adim];

• ii Initial inclination [rad];

• if Final inclination [rad];

• ωi Initial Argument of the Perigee [rad];

• ωf Final Argument of the Perigee [rad];

• Ωi Initial RAAN [rad];

• Ωf Final RAAN [rad];
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• νi Initial true anomaly [rad];

• νf Final true anomaly [rad];

• number of thruster;

• thrust per thruster;

• Isp Specific inpulse [s];

• True Longitude phasing [rad], position we want the satellite to reach.

For what concern the True longitude phasing, according to the type of orbit, it
takes on a different meaning:

• Geostationary orbit: True Longitudephasing = Longitude or True Longitudephasing =
True Longitude (decided by flag_long, a flag imposed by the user in the
"MAIN.m");

• Equatorial orbit: True Longitudephasing = True Longitude;

• Inclined orbit: True Longitudephasing = Argument of Latitude.

In tab. 9.1 there are the input used for a simulation in case of geostationary
orbit. The positions we are going to control is the longitude.

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 42157 · 103 [m]
ii 0 [deg]
ei 0
Ωi 0 [deg]
ωi 0 [deg]
νi 21.55 [deg]
af ai + phasingaltitude [m]
if 0 [deg]
ef 0
Ωf 0 [deg]
ωf 0 [deg]
νf 21.55 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]
Longitudephasing 35 [deg]

Table 9.1: Input Phasing maneuver (Geostationary orbit - Interpolation).
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9.1 – Maneuver logic

9.1.1 Initial case

Figure 9.1: Initial maneuver logic.

As can be seen from Fig. 9.1, inputs are given to the program. We set an ini-
tial phasingaltitude(1) = ±1 km and a ∆phasingaltitude = ±1 km according to a flag
(flag_phasing_altitude) set in the MAIN of the program. If flag_phasing_altitude =
0, the initial phasing altitude will be positive as well as the delta, vice versa if
flagphasing_altitude = 1. Then we enter the function "NO_WAITING_INTERPOLATION.m"
(Fig. 9.2).
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Figure 9.2: NO WAITING INTERPOLATION logic.

First we go to establish the type of orbit treated in order to carry out different
checks.

The program then performs the EOR maneuvers with phasingaltitude = ±1km
and once this is done, it calculates the position reached by the satellite in terms of
angle.
The difference between the position reached and the initial position is therefore
made. If this difference is < 360◦ the program iterates the procedure with phasingaltitude =
phasingaltitude + ∆phasingaltitude, otherwise the program exits the loop.
For what concern the Geostationary orbit, if we are controlling the longitude, we
set the initial phasingaltitude = ±150km and the ∆phasingaltitude = ±20km. It has
been decided to use this values in order to reduce the computational cost of the
simulation and because under 150km the longitude remain about the same as the
initial one (∆Longitude ≈ 1◦), as reported in chapter 10.
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Once the program exits the loop, it saves all the phasing altitudes used and
all the delta positions made. Then, it interpolates the data obtained and saves
them in an EXCEL file. The EXCEL file’s folder is named as date_thrust_Isp,
while the EXCEL file is named using the orbital elements which describe the initial
orbit given as input. The EXCEL file looks like Fig. 9.3, where in the first col-
umn there are the phasingaltitude[m], while in the second one all the ∆position[rad].

Figure 9.3: EXCEL file examples.

Once the file EXCEL is created, the program reads and plot the interpolation.

In Fig. 9.4, we have the interpolation for what concern the Geostationary orbit
with flag_phasing_altitude = 1 (phasing altitude decrease step by step).
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Figure 9.4: Interpolation phasingaltitude/∆position.

Then the program looks for the phasing altitude necessary to reach the delta
angle we want to make. It creates a vector with all the phasing altitude useful to
reach our purpose and it enters in "AFTER_INTERPOLATION.m" function.

As shown in Fig. 9.5 the programs performs the two EOR using the first phasing
altitude useful. If the satellite reaches the desired position, the program gives us
the results, otherwise it tries another phasing altitude.
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9.1 – Maneuver logic

Figure 9.5: AFTER INTERPOLATION logic.

9.1.2 Results - Geostationary case
As the same way as previous simulations, in Fig. 6.13 we can see the trajectory of
our satellite, where in red there are the ECI coordinates and in green the ECEF
coordinates, where the ∗ indicates the initial position, while o indicates the final
position. As we can see, the spacecraft decreases the semi-major axis, as reported in
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Fig. 9.7. Its value (and so for any other parameters we are considering) is constant
only when the satellite is in eclipse (Fig. 9.11).

Figure 9.6: Phasing maneuver.

Figure 9.7: Time - semi-major axis.

In Fig. 9.8 there is longitude in function of time. We can see that the more
the satellite is far from its initial orbit, the more the Longitude in function of time
increases its inclination. In fact, as already said, the satellite velocity increases its
value if the orbit’s radius decrease and vice versa. That’s why we firstly decrease
semi-major axis in order to obtain an increase in terms of longitude.

120



9.1 – Maneuver logic

Figure 9.8: Time - Longitude.

As reported in Fig. 9.21, 9.22 and in chapter 8.1, the costs of this maneuver
is higher in respect of the other simulations performed with different typology of
orbit and also in respect of the first phasing maneuver logic (chapter 7) using the
same inputs. That’s because the satellite has to perform an EOR with a higher
value of semi-major axis in respect of all the other case. Anyway the cost trends
its almost linear because we are considering Thrust = 1 N and Isp = 2800 s.

Figure 9.9: Time - ∆V .

Figure 9.10: Time - mtot.
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Figure 9.11: Time - teclipse.

In the same way, in Fig. 9.12, 9.13 and 9.14 we can see respectively the thrust
angles, the thrust weights and the velocity in function of time. The trends of those
value are about the same every simulation we made for what concern non-eccentric
orbit. In fact, α = π in order to decrease a, α = 0 if a must increase its value and
β = 0 because we are not maneuvering out of the orbital plane. However, those
figures highlight that there is no more a waiting phase and if we are increasing or
decreasing the semi-major axis during the first or the second EOR.

Figure 9.12: Time - α and β.

ka is negative according to the decrease in the orbital parameter to which it
refers, and it increases linearly its values until the end of the first EOR. For what
concern the second EOR, the trends are reversed.
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9.1 – Maneuver logic

Figure 9.13: Time - Thrust weights.

The same for utangential, the only velocity component which changes during the
phasing maneuver. Its trend is approximately the same of ka.

Figure 9.14: Time - V elocity vector.

In tab. 9.2 there are the results of this simulation.

phasingaltitude - 908.55 km
initial longitude 3.253111069638516e-05 deg
longitudephasing 34.504905887605766 deg
mprop cycle 17.168379185978665 kg
tfcycle 5.754861111111111 days
∆vphasing cycle 67.437039525049613 m/s
teclipse 0.297916666666667 days

Table 9.2: Results (Geostationary orbit - Interpolation).

The great advantages we have using this maneuver logic is the maneuver time.
In fact, if we consider that in this case we are performing a phasing maneuver with
∆Longitude ≈ 35◦ in about 6 days, in the simulation performed in chapter 7, the
satellite performs a lower ∆Longitude(≈ 30◦) in about 23 days (see 7.2). So, using
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this logic allow us to perform the maneuver in less time and make our satellite
operational earlier, which brings great advantages.

One of the problems is the great computational cost that a simulation of this kind
brings. In fact, for what concern a geostationary orbit, if the check is on longitude
(not True Longitude), the simulation takes several hours in order to converge.

9.1.3 Following case

Figure 9.15: Maneuver logic.

As we can see in Fig. 9.15, if we are analyzing an identical orbit with respect to
one already analyzed in a previous case, the program reads the EXCEL file di-
rectly without passing through the "NO_WAITING_INTERPOLATION.m"
function.
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In this way, if we have already analyzed the case in question, the computational
cost of the operation decrease. That’s a great advantage, at least for what concern
the geostationary orbit. In fact, if the orbit considered is another one, the simulation
usually doesn’t take too much time.

9.2 Simulation
In tab. 9.3 there are the common inputs to the following simulations. For what
concern inclined orbit, we are not going to consider the true longitude, but the
argument of latitude, as seen in previous chapter "Generalization".

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 37164 · 103 [m]
Ωi 0 [deg]
ωi 0 [deg]
νi 0 [deg]
af ai + phasingaltitude [m]
Ωf 0 [deg]
ωf 0 [deg]
νf 0 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]
phasingaltitude 100 · 103 [m]
inital true longitude 0 [deg]
true longitudephasing 35 [deg]

Table 9.3: Input Phasing maneuver (Interpolation).

The simulations presented refers to the following type of orbit:

• Circular and equatorial orbit: ii = if = 0 and ei = ef = 0;

• Circular and inclined orbit: ii = if = 28.5 and ei = ef = 0;

• Equatorial and eccentric orbit: ii = if = 0 and ei = ef = 0.4;

• Generic orbit (inclined and eccentric): ii = if = 28.5 and ei = ef = 0.4;

In Fig. 9.17 there are the interpolations we get. As we can see, these interpola-
tions are obtained using flag_phasing_altitude = 1 (we decrease the semi-major
axis step by step). As reported, for what concern some interpolations, there is a
range of positions that the satellite is not able to reach. The reasons why will be
explained in 9.3.
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(a) Interpolation (Circular and equatorial
orbit).

(b) Interpolation (Circular and inclined or-
bit).

(c) Interpolation (Equatorial and eccentric
orbit).

(d) Interpolation (Generic orbit).

Figure 9.16: Interpolation phasingaltitude/∆position.

Fig. 9.17 there is the trajectory followed by the spacecraft. As the same way
as all the previous simulations, in green we have the ECEF positions, while in red
the ECI ones. In order to understand better the trajectory, we must consider Fig.
9.18, which highlighted the trends of the semi-major axis in function of time.
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9.2 – Simulation

(a) Phasing maneuver (Circular and equa-
torialorbit).

(b) Phasing maneuver (Circular and in-
clined orbit).

(c) Phasing maneuver (Equatorial and ec-
centric orbit).

(d) Phasing maneuver (Generic orbit).

Figure 9.17: Phasing maneuver (Interpolation).
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(a) Time - semi-major axis (Circular and
equatorial orbit).

(b) Time - semi-major axis (Circular and
inclined orbit).

(c) Time - semi-major axis (Equatorial and
eccentric orbit).

(d) Time - semi-major axis (Generic orbit).

Figure 9.18: Time - semi-major axis (Interpolation).

Considering the control presented in chapter 7.3 ("Generalization"), we check
the True Longitude for what concern the Equatorial orbits, while the Argument of
Latitude in case of inclined orbit (Fig. 9.19 and 9.20).
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9.2 – Simulation

(a) Time - True Longitude (Circular and
equatorial orbit).

(b) Time - Time - True Longitude (Equato-
rial and eccentric orbit).

Figure 9.19: Time - True Longitude (Interpolation).

(a) Time - Argument of Latitude (Circular
and inclined orbit).

(b) Time - Argument of Latitude (Generic
orbit).

Figure 9.20: Time - Argument of Latitude (Interpolation).

As always the costs are represented by the ∆v (Fig. 9.21) and the decrease
in mtot and therefore by the consumption of propellant (Fig. 9.22). Both these
parameters, in every case considered, don’t show plateaus in their trends. That’s
because we have no waiting phase and the satellite is never eclipsed during the
maneuvers presented (Fig. 9.23). Moreover, as we can see, the cost is practically
the same for what concern "Circular and equatorial orbit" and "Circular and inclined
orbit" and the same is for "Equatorial and eccentric orbit" and "Generic orbit".
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(a) Time - Delta V (Circular
and equatorial orbit).

(b) Time - Delta V (Circular
and inclined orbit).

(c) Time - Delta V (Equato-
rial and eccentric orbit).

(d) Time - Delta V (Generic
orbit).

Figure 9.21: Time - Delta V (Interpolation).

(a) Time - mtot (Circular
and equatorial orbit).

(b) Time - mtot (Circular
and inclined orbit).

(c) Time - mtot (Equatorial
and eccentric orbit).

(d) Time - mtot (Generic or-
bit).

Figure 9.22: Time - mtot (Interpolation).
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9.2 – Simulation

(a) Time - Eclipse time (Circular
and equatorial orbit).

(b) Time - Eclipse time (Circular
and inclined orbit).

(c) Time - Eclipse time (Equatorial
and eccentric orbit).

(d) Time - Eclipse time (Generic or-
bit).

Figure 9.23: Time - Eclipse time (Interpolation).

The α and β trends are reported in Fig. 9.24, while the thrust weights in Fig.
9.25 and the velocity in Fig. 9.26. The trends are about the same as the previous
chapter. As we can see there is no waiting phase and the trends are similar if the
orbits are circular or if they are eccentric.

α ≈ ±π if we are going to decrease semi-major axis and α ≈ 0 if the semi-major
axis is about to increase its value, while β = 0 in every case. That’s because we
are not maneuvering outside the orbital plane.
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(a) Time - Thrust angles (Circular
and equatorial orbit).

(b) Time - Thrust angles (Circular
and inclined orbit).

(c) Time - Thrust angles (Equatorial
and eccentric orbit).

(d) Time - Thrust angles (Generic
orbit).

Figure 9.24: Time - Thrust angles (Interpolation).

As we can see, the only thrust weights that change is ka (the one connected to
the semi-major axis). In fact, we are not changing any other orbital parameter. In
order to decrease the semi-major axis, its value is negative with linear trend with
a positive slope, vice versa as regards the increase of a.
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9.2 – Simulation

(a) Time - Thrust weights (Circular
and equatorial orbit).

(b) Time - Thrust weights (Circular
and inclined orbit).

(c) Time - Thrust weights (Equato-
rial and eccentric orbit).

(d) Time - Thrust weights (Generic
orbit).

Figure 9.25: Time - Thrust weights (Interpolation).

The trend of the velocity is about the same as the thrust weights. In order to de-
crease the semi-major axis, for what concern circular orbit, utangential presents neg-
ative values. The tangential component increases its value linearly until it reaches
the 0 (when the EOR maneuver is complete). Vice versa when the semi-major
axis has to decrease. As for the eccentric orbits, the discussion on the tangential
component of speed does not change. What changes is uradial that changes because
of the presence of e.
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(a) Time - Velocity (Circular and
equatorial orbit).

(b) Time - Velocity (Circular and in-
clined orbit).

(c) Time - Velocity (Equatorial and
eccentric orbit).

(d) Time - Velocity (Generic orbit).

Figure 9.26: Time - Velocity (Interpolation).

In tab. 9.4 are reported the results of the simulations described earlier.

RESULTS Circular & Equatorial Circular Equatorial Generic
phasingaltitude −10.59 −10.59 −6.2 −5.83 km
true longitudephasing 34.53359 34.53359 34.27574 34.97157 deg
mprop cycle 0.24692 0.24692 0.09823 0.10051 kg
tfcycle 1.9 1.9 0.76667 0.78333 hours
∆vphasing cycle 0.97716 0.97716 0.39429 0.40289 m/s
teclipse 0.00 0.00 0.00 0.00 hours

Table 9.4: Results (Interpolation).

9.3 Eclipsed positions
Considering Fig. 9.16 there is a range of position the satellite is not able to reach
in case of "Circular and Equatorial orbit" and "Equatorial and eccentric orbit". For
what concern the circular and equatorial orbit, this range goes from 143◦ to 163◦ and
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9.3 – Eclipsed positions

that’s because the satellite is in eclipse when it passes through these positions. In
fact, by doing a simulation with the same inputs as this case, if we want the satellite
to reach a true longitudephasing > 163◦ (for example: true longitudephasing = 180◦),
we obtain the trajectory presented in Fig. 9.27, where in yellow there are the
eclipsed positions.

Figure 9.27: Phasing maneuver (Circular and equatorial orbit → true longitude =
180◦).

In order to highlight the true longitude eclipsed, see Fig. 9.28.

Figure 9.28: Eclipse time - Eclipsed true longitude.

9.3.1 Eclipsed true longitude
The problem of eclipsed positions concerns only the checks that are performed on
true longitude and argument of latitude. This is because when we calculate these
two parameters, the reference system is ECI and therefore the rotation of the Earth
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is not considered.
We went for a simulation in which the orbit was only propagated for 365 days in
order to save all the positions eclipsed according to the various days. Using the
same input of the previous simulation for what concern the initial orbit, we get the
results in Fig. 9.29, where day1 = 2019 Feb 19 15 : 30 : 00 UTC.

Figure 9.29: Eclipsed position - day.

The Penumbra cone moves about 0.958◦ per day (mean value). These results
have been obtained performing a simulation where we propagate the orbit for about
220 days and saving the ∆angle between the first eclipsed position of two consec-
utive days, as shown in Fig. 9.30.
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9.3 – Eclipsed positions

Figure 9.30: Penumbra cone angle - day.

So, if we want the satellite to reach TrueLongitudephasing = 155◦ using the same
input of the "Circular and equatorial orbit" case, we must wait approximately 13
days.

9.3.2 Circular and equatorial orbit - 13 days after

As said before, in order to perform this simulation, we are going to use the same
input as the previous one (see tab. 9.3, Circular and equatorial orbit case) changing
the date and the position (true longitude) we want the satellite to reach:

• date = 2019 Mar 4 15 : 30 : 00 UTC;

• True Longitudephasing = 155◦.

Unlike previous simulations, now we use flag_phasing_altitude = 0 in order to
increase the phasingaltitude. In Fig. 9.31 are reported the interpolation and the
eclipsed position we get when we are considering the same inputs, but 13 days
after. As we can see, the eclipse effectively moves and it’s now possible to reach
positions that weren’t available before.
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(a) Interpolation phasingaltitude/∆position
(Circular and equatorial orbit - 13 days af-
ter).

(b) Eclipse time - Eclipsed true longitude
(Circular and equatorial orbit - 13 days af-
ter).

Figure 9.31: Interpolation + Eclipsed true longitude (Circular and equatorial orbit
- 13 days after).

In Fig. 9.32 we can see the phasing maneuver and the true longitude in function
of time, while in tab. 9.5 the results of this simulation.

(a) Phasing maneuver (Circular and equa-
torial orbit - 13 days after).

(b) Time - True Longitude (Circular and
equatorial orbit - 13 days after).

Figure 9.32: Phasing maneuver / Time - True Longitude (Circular and equatorial
orbit - 13 days after).

138



9.3 – Eclipsed positions

phasingaltitude 49 km
initial true longitude 0 deg
true longitudephasing 154.6933643678069 deg
mprop cycle 1.114404147238020 kg
tfcycle 8.516666666666667 hr
∆vphasing cycle 4.380350053811925 m/s
teclipse 0.0 days

Table 9.5: Results (Circular and equatorial orbit - 13 days after - Interpolation).
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Chapter 10

Validation

In order to validate the results MAGNETO gives, STK has been used to simulate
two phasing maneuvers.

These maneuvers were simulated using the same inputs both for MAGNETO
and STK.

In order to simulate the maneuver as accurate as possible, we set the same engine
(constant Thrust and Isp) and using the results MATLAB gives to use, we impose
the STK simulation time to be equal to the one MAGNETO gives us.

The propagator used is "Earth J2" which simulate the perturbing forces given
by non-spherical gravity of the Earth.
The simulation has been done also using "Earth Point Mass" propagator to control
the percentage difference between the results of the two simulations with results
given by MATLAB.

10.0.1 STK

Systems Tool Kit (or Satellite Tool Kit) [11], known as STK, is a software from
Analytical Graphics, Inc. It’s able to perform complex analyses of space platforms
and share results in one integrated environment. This program has been developed
since 1989 as a commercial tool in order to find solutions for what concern the
involving Earth-orbiting satellites problems.

In AGI’s lists of clients there are organizations such as NASA, ESA, CNES,
DLR, Boeing, JAXA, ISRO, Lockheed Martin, Northrop Grumman, Airbus, DOD,
and Civil Air Patrol.
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10.1 Simulation 1

The inputs used for the first simulation are shown in tab. 10.1 (MATLAB) and in
Fig. 10.1 (STK). In this simulation, instead of considering the phasing maneuver
with interpolation logic, we imposed the phasingaltitude = 100 km, and we saved
the results that are going to be shown.

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 32164.1363 · 103 [m]
ii 0 [deg]
ei 0
Ωi 0 [deg]
ωi 0 [deg]
νi 0 [deg]
phasingaltitude 100 [km]
af ai + phasingaltitude [m]
if 0 [deg]
ef 0
Ωf 0 [deg]
ωf 0 [deg]
νf 0 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]
True longitude 169 deg

Table 10.1: Input first simulation for Validation.
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10.1 – Simulation 1

Figure 10.1: Input - STK.

In Fig. 10.2 there is the trajectory followed by the satellite. The coordinates
presented are in ECI frame with an overview on initial and final position. For what
concern MAGNETO (a), the initial position is highlighted with the "*", while the
final position with the "o", while, for what concern STK we can see the trajectory
followed by the satellite and in (b) there is the initial position and in (c) the final
position.
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(a) Phasing maneuver in ECI (MATLAB
1).

(b) Phasing maneuver in ECI (initial posi-
tion - STK 1).

(c) Phasing maneuver in ECI (final position
- STK 1).

Figure 10.2: Phasing maneuver (Simulation 1).

In Fig. 10.3 and in 10.4 there are the trends, respectively of the ECI and of the
ECEF coordinates. As we can see the trends are the same.

(a) Time - ECI Position
(MATLAB 1).

(b) Time - ECI Position (STK 1).

Figure 10.3: Time - ECI Position (Simulation 1).
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10.1 – Simulation 1

(a) Time - ECEF Position (MAT-
LAB 1).

(b) Time - ECEF Position (STK 1).

Figure 10.4: Time - ECEF Position (Simulation 1).

For what concern the coordinates, we have:

• MAGNETO (red) → x-coordinate (both ECI and ECEF);

• MAGNETO (green) → y-coordinate;

• MAGNETO (blue) → z-coordinate;

• STK (black) → x-coordinate;

• STK (green) → y-coordinate;

• STK (cyan) → z-coordinate;

In Fig. 10.5 there is the semi-major axis trend in function of the time. For what
concern the figures relative to STK simulation, in black we have the parameters
change due to the first EOR, while in green the ones of the second EOR.
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(a) Time - semi-major axis (MATLAB
1).

(b) Time - semi-major axis (STK 1).

Figure 10.5: Time - semi-major axis (Simulation 1).

As for the semi-major axis, also for the Longitude (Fig. 10.6) and the True
longitude (10.7) the trends are the same. Both these parameters increase their
values until the True Longitude reaches its desired values (the controls are the
same reported in earlier chapter "Generalization").
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10.1 – Simulation 1

(a) Time - Longitude (MAT-
LAB 1).

(b) Time - Longitude (STK 1).

Figure 10.6: Time - Longitude (Simulation 1).

(a) Time - True Longitude
(MATLAB 1).

(b) Time - True Longitude (STK 1).

Figure 10.7: Time - True Longitude (Simulation 1).

For what concern the ∆V (Fig. 10.8), the STK simulation has been made as the
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union of two consecutive EOR, such as MAGNETO, but the program recognized
the phasing maneuver as two different maneuvers. So the ∆V , once the first EOR
is over, restarts from 0. For what concern the sum of the two value at the end of
the simulation, it’s identical to the ∆V calculated in MATLAB (see tab. 10.2).
Instead, the propellant mass (Fig. 10.9) doesn’t present this problem.

(a) Time - ∆V (MATLAB 1).

(b) Time - ∆V (STK 1).

Figure 10.8: Time - ∆V (Simulation 1).
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10.1 – Simulation 1

(a) Time - mtot (MATLAB 1).

(b) Time - mtot (STK 1).

Figure 10.9: Time - mtot (Simulation 1).

Tab. 10.2 report the results obtained by the simulations performed by MAG-
NETO and STK ("Earth J2" & "Earth Point Mass").

As we can see, the results are very similar for what concern every parameter
considered and that’s highlighted by the tab. 10.3.

RESULTS MATLAB STK (Earth J2) STK (Earth Point Mass)
ECIPositionx −3.1517 · 107 −3.1444 · 107 −3.1388 · 107 m
ECIPositiony 6.1299 · 106 6.5143 · 106 6.7997 · 106 m
ECIPositionz 636 325.237 −361.236 m
ECEFPositionx −2.8914 · 107 −2.8860 · 107 −2.8810 · 107 m
ECEFPositiony 1.3959 · 106 1.4081 · 106 1.4193 · 106 m
ECEFPositionz −5.7216 · 104 −5.8053 · 104 −5.7991 · 104 m
Truelongitudephasing 168.9934 168.296 167.77 deg
longitude 154.2304 153.992 153.774 deg
mtot cycle 6997.1965 6996.93 6996.93 kg
tfcycle 84540 84540 84540 sec
∆vphasing cycle 11.0079 11.2296 11.1910 m/s

Table 10.2: Results - simulation 1.
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The percentage differences between MATLAB simulation and STK (both using
"Earth J2" and "Earth Point Mass") are very little, except for what concern the z-
position in ECI frame. Even if in this case the percentage difference is huge (≈ 49%
in "Earth J2" case and ≈ 157% in "Earth Point Mass" case), the result is not so
problematic. The high percentage is due to the fact that the x-coordinate value is
very small (6 or 7 order of magnitude) in respect of all the other coordinates values.

Percentage difference MATLAB - STK (Earth J2) MATLAB - STK (Earth Point Mass)
ECIPositionx −0.2307% −0.4096%
ECIPositiony 6.2702% 10.9266%
ECIPositionz −48.8624% −156.798%
ECEFPositionx −0.1868% −0.3600%
ECEFPositiony 0.8739% 1.6728%
ECEFPositionz 1.4622% 1.3550%
Truelongitudephasing −0.4127% −0.7239%
longitude −0.1546% −0.2959%
mtot cycle −0.0038% −0.00381%
tfcycle 0% 0%
∆vphasing cycle 2.0137% 1.6631%

Table 10.3: Percentage difference - Simulation 1.

10.2 Simulation 2

As the same way as the previous case, in tab. 10.4 are shown the inputs used
for MATLAB simulation, while in Fig. 10.10 the STK ones. Differently from the
previous simulations, in this case the phasingaltitude is an output for MATLAB,
in fact we followed the "interpolation" logic, while, for what concern the STK’s
simulation, it’s an input.
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10.2 – Simulation 2

date 2019 Feb 19 15 : 30 : 00 UTC;
ai 32164.1363 · 103 [m]
ii 1 [deg]
ei 0.01
Ωi 0 [deg]
ωi 0 [deg]
νi 0 [deg]
af ai + phasingaltitude [m]
if 1 [deg]
ef 0.01
Ωf 0 [deg]
ωf 0 [deg]
νf 0 [deg]
thruster 1
thrust per thruster 1000 · 10−3 [N ]
ISP 2800 [sec]
True longitude 350 deg

Table 10.4: Input simulation for Validation- 2.
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Figure 10.10: Input - STK.

In Fig. 10.11 there is the trajectory followed by the satellite. The coordinates
presented are in ECI frame with an overview on initial and final position. For what
concern MAGNETO, the initial position is highlighted with the "*", while the final
position with the "o".
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10.2 – Simulation 2

(a) Phasing maneuver in ECI (MATLAB
2).

(b) Phasing maneuver in ECI (initial posi-
tion - STK 2).

(c) Phasing maneuver in ECI (final position
- STK 2).

Figure 10.11: Phasing maneuver (Simulation 2).

In Fig. 10.12 and in 10.13 there are the trends, respectively of the ECI and of
the ECEF coordinates. As we can see, the trends are the same.
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(a) Time - ECI Position (MATLAB 2).

(b) Time - ECI Position (STK 2).

Figure 10.12: Time - ECI Position (Simulation 2).

(a) Time - ECEF Position (MATLAB
2).

(b) Time - ECEF Position (STK 2).

Figure 10.13: Time - ECEF Position (Simulation 2).

In Fig. 10.14 there is the semi-major axis trend in function of the time. The
phasingaltitude necessary in order to reach True longitude = 350◦ is 67.98 km.
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10.2 – Simulation 2

(a) Time - semi-major axis (MATLAB
2).

(b) Time - semi-major axis (STK 2).

Figure 10.14: Time - semi-major axis (Simulation 2).

As reported in Fig. 10.15 and in 10.16, imposing that value of phasingaltitude

allow us to obtain practically the same results for what concern both the simula-
tions.

(a) Time - Longitude (MATLAB 2).

(b) Time - Longitude (STK 2).

Figure 10.15: Time - Longitude (Simulation 2).
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(a) Time - True Longitude (MATLAB
2).

(b) Time - True Longitude (STK 2).

Figure 10.16: Time - True Longitude (Simulation 2).

As for the costs (∆V in Fig. 10.17 and mtot in Fig. 10.18), the discussion
made for the previous simulation is still valid. The ∆V is seen by stk as two
different maneuvers, but the sum is equal to the result given by MATLAB, while
the propellant mass doesn’t present this problem.
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10.2 – Simulation 2

(a) Time - ∆V (MATLAB 2).

(b) Time - ∆V (STK 2).

Figure 10.17: Time - ∆V (Simulation 2).

(a) Time - mtot (MATLAB 2).

(b) Time - mtot (STK 2).

Figure 10.18: Time - mtot (Simulation 2).

Tab. 10.5 reports the results obtained.
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RESULTS MATLAB STK (Earth J2) STK (Earth Point Mass)
ECIPositionx 3.1334 · 107 3.12795 · 107 3.13319 · 107 m
ECIPositiony −5.7441 · 106 −6.03671 · 106 −5.75122 · 106 m
ECIPositionz −1.0047 · 105 −1.032 · 105 −9.84361 · 104 m
ECEFPositionx −2.4579 · 106 −2.36761 · 106 −2.45068 · 106 m
ECEFPositiony 3.1761 · 107 3.17802 · 107 3.17611 · 107 m
ECEFPositionz −4.2964 · 104 −4.57842 · 104 −4.09302 · 104 m
Truelongitudephasing 349.6102 349.075 349.597 deg
longitude 94.4252 94.2622 94.4122 deg
mtot cycle 6998.1033 6997.97 6997.96 kg
tfcycle 55920 55920 55920 sec
∆vphasing cycle 7.44513 7.43063 7.511126 m/s

Table 10.5: Results - simulation 2.

Unlike previous simulation, in this case the results are more similar in the case
we don’t take count of the J2 perturbations. In fact, in tab. 10.6 there are the
percentage differences of STK solutions using "Earth J2" and "Earth Point Mass"
as propagator. However, the results obtained are good. In fact, as the same way as
the previous simulation, we can see that the percentage differences are acceptable
for both the propagator used.

Percentage difference MATLAB - STK (Earth J2) MATLAB - STK (Earth Point Mass)
ECIPositionx −0.17262% −0.00538%
ECIPositiony 5.093263% 0.12316%
ECIPositionz 2.713867% −2.02759%
ECEFPositionx −3.67537% −0.29572%
ECEFPositiony 0.060723% 0.00587%
ECEFPositionz 6.563176% −4.73456%
Truelongitudephasing −0.15308% −0.00378%
longitude −0.17267% −0.01382%
mtot cycle −0.00191% −0.00205%
tfcycle 0% 0%
∆vphasing cycle −0.05978% 0.826126%

Table 10.6: Percentage difference - Simulation 2.
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Chapter 11

Conclusions

MAGNETO is a software able to perform a preliminary analysis and design of
an electric platform. The main goal of this thesis is to add new simulation ca-
pabilities to MAGNETO, allowing the possibility to perform a phasing maneuver.
The first activities concerned the introduction of a time-dependent reference sys-
tem through a conversion method, from ECI (Earth-Centered Inertial) to ECEF
(Earth-Centered, Earth-Fixed).

The input given to MAGNETO are the orbital parameters, the date, the thruster
performance, the satellite dimensions, the phasingaltitude and the longitude we want
the satellite to reach.
The output are the trajectory (in ECI and ECEF coorrdinates), the orbital param-
eters changes, the ∆V , mprop, latitude, longitude, the Thrust weights and angles
and the velocity components during all the maneuver.
Initially, the phasing maneuver was set according to the chemical propulsion method-
ology: first, the satellite performs an EOR-like maneuver (Electric Orbit Raising),
second, it waits on the phasing orbit and, in the end, it performs another EOR-like
maneuver to get back to the initial orbit.
Subsequently, the maneuver was modified in such a way to make it available for
every typology of orbits. In this way, MAGNETO controls the longitude in case of
geostationary orbit, the true longitude (l = ν + ω + Ω) in case of equatorial orbit
and the argument of latitude (u = ν + ω) if the orbit considered is inclined.

Then, the maneuver has been modified in order to complete the phasing maneu-
ver without the waiting phase. In this way, it was composed by two consecutive
EORs, one ascending and one descending, or vice versa. In order to do so, the
phasing altitude became a variable to be determined. To obtain the desired alti-
tude value, MAGNETO performs the EORs increasing or decreasing the altitude
(in function of a flag imposed by the user) step by step. Once all the positions on
the orbit are covered, the program interpolates the data obtained and saves them.
In the end, MAGNETO finds all the phasing altitudes available to reach the desired
position and performs the maneuver.
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Conclusions

Using this logic, a minimum result is obtained in terms of time, but the maneuver
results more expensive in terms of ∆V and mprop, at least for what concern the
geostationary orbit. Performing a phasing maneuver with ∆longitude = 35◦, it
takes 5 days, while the same maneuver with the waiting phase takes 26 days. For
what concerns the cost, obviously it is higher than the one we get with the first
maneuve logic because the thrust is applied continuously.
For what concern any other types of orbit, the maneuver is faster and often less
expensive. In fact, using fixed values of phasingaltitude, it is possible that the satellite
would have passed the position we wanted it to reach. If the ∆truelongitude = 15◦,
once the satellite performs the first EOR, it has to wait in the waiting phase for
almost a complete orbit.
This problem disappears using the interpolation logic.

In the end, the results obtained have been validated using STK (Systems or
Satellite Tool Kit). The percentage differences result very low (< 1%) for what
concern longitude, true longitude, ∆V and mprop with a maximum of 5 − 6% for
the coordinates (both in ECI and ECEF frame). The only exception is the z-
coordinates in ECI frame of the first simulation in chapter 10. In that case the
percentage differences result ≈ 49% in case of "Earth J2" propagator and ≈ 157%
if the propagator is "Earth point mass". This is due to the fact that the order of
magnitude of this value is about 6 − 7 lower than all the other coordinates. In fact,
the value of the difference is about 300 meters, which is almost negligible compared
to the value of all the other coordinates.

The results we obtained are acceptable but they can be improved in the future.
So, even if they are derived with an error of few percentage points, a further im-
proved could reduce the error in particular on maneuver time and consequently the
mprop used and the ∆V .

The trajectory represents a sub-optimal propagation due to the direct integration
of the equations of motion with a pre-determined weigthed method. The derived
Thrust Weights, calculted each integration step during the maneuver, are the results
of a normalization between the orbital parameter we have and the one we want.

In order to optimize them, we could implement MGNETO with a genetic code in
order to calculate the thrust weights. The implementation of this approach would
allow to optimize the maneuver in terms of either mprop or ∆V or maneuver time.
We could also implement a variable thrust for what concern the engine. In this
way, we could improve the reliability of MAGNETO, even though the operative
points are limited.
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