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Abstract
The large scale dynamics of warm atmospheric clouds are strongly coupled to
small scale turbulence and droplet microphysics. The entrainment-mixing pro-
cess is crucial in determining cloud evolution and is believed to foster spectral
broadening and to enhance droplet collision and coalescence. Temporal scales
such as evaporation, phase relaxation and reaction times have been widely used to
parameterize the impact of turbulent mixing on cloud evolution. In this thesis their
role is investigated through a particle-resolved three-dimensional pseudospectral
direct numerical simulation model. The evolution of the cloud-clear air interface at
cloud top is modeled as an initial value problem of decaying turbulence. Several
numerical experiments were carried out over the same computational domain with
different initial conditions. The model also considers solution and curvature effects,
droplet collisions, temperature stratification and vertical stability. Droplet and
time scale statistics are computed by averaging over the planes parallel to the
interface. The attempt to parameterize the spectral broadening as a function of
both phase relaxation and eddy turnover times has not been successful. Polydis-
perse distributions exhibit a departure from the homogeneous mixing limit above
the cloud top after a few elapsed eddy turnover times. Relatively high values for
the evaporation time are found in regions close to the cloud core, whereas the
saturation and phase relaxation times show higher values above the interface in
the clear air slab. Estimates for the reaction time are in good agreement with such
results. Evaporation, phase relaxation and saturation times appear to be positively,
negatively and poorly correlated, respectively, with the homogeneous mixing degree
across the interface.
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Chapter 1

Introduction

Cloud systems give a unique texture to the Earth surface. They can shade large
portions of continents and oceans and can be easily spotted by observing our
planet from the outer space. It is evident that these large hydrometeors have a
considerable impact upon geophysical dynamics, weather and climate. Clouds
are important actors on the stage of atmospheric circulation, planetary radiative
balance and water redistribution. Their existence is determined by atmosphere
dynamics, which are - in turn - strongly influenced by the clouds themselves. This
coupling accounts for the complexity of such systems, which also results in their
unpredictability, an aspect that has fascinated humans - and artists - for ages.
Impalpable and isolated, clouds are represented in a number of paintings and
artworks that ultimately unveil how their features haven’t changed much during
the late centuries (Raymond A. Shaw, 2003). Yet, clouds have turned out to be
strongly influenced by anthropogenic effects (Raymond A. Shaw, 2003). Cloud
modeling is a long-standing problem in weather and climate sciences because of
the complexity of the processes involved (Devenish et al., 2012). This complexity
has been held responsible of uncertainties in climate models at least since 19961

and even the relatively "boring" low-level marine type of clouds has been accused
to be a "big bad player on global warming" due to the positive feedback they exert
with warming oceans (Kerr, 2009).

Results from cloud models, simulations and laboratory and in situ-experiments
may be difficult to interpret. An ubiquitous problem in cloud physics is to un-
derstand to what extent a scientific result can be generalised in order to reach
the behavior of much more complex systems that are found in reality. Real cloud

1See the contribution of the WGI to the Second Assessment of the IPCC (Intergovernmental
Panel on Climate Change) in 1996, p. 31 [https://www.ipcc.ch/site/assets/uploads/2018/02/
ipcc_sar_wg_I_full_report.pdf].
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1 – Introduction

systems are characterised by a number of complex phenomena that occur over a
vast range of spatial and temporal scales (Devenish et al., 2012).

A cloud is a colloidal dispersion of sub-micron sized particles, liquid droplets and
frozen ice crystals that forms in the atmosphere of a planet. All these constituents
interact with the surrounding atmosphere gases (mainly air and water vapor),
these interactions spanning over a number of scales, from less than a micrometer
up to a few kilometers. The influence of buoyancy forces and atmospheric winds
(wind shear) accounts for the production of kinetic energy in such flows, which
naturally become turbulent. Turbulence is known to play a pivotal role in cloud
physics and many cloud-related phenomena, such as droplet growth and shrinking
by condensation, droplet clustering, collision and coalescence, atmosphere stability,
interfacial mixing and aerosol activation (Devenish et al., 2012). These topics
have known increasing popularity within the turbulence and multi-phase scientific
communities in recent years. Turbulent flows feature a significant interaction
between large and small scale processes, thus allowing the microphysics to have
an impact on the droplet spectrum and the cloud radiative properties, ultimately
determining cloud evolution (Devenish et al., 2012; Raymond A. Shaw, 2003).

Clouds can form, evolve and disappear readily. In fact, the evolution of a cloud
depends how the condensed liquid water is redistributed among its droplets with
time. The likelihood of a cloud to appear or to disappear strongly depends on its
balance with the surrounding water vapor and temperature fields. The lifetime of
a cloud depends on the cloud type, spanning somewhere between a few minutes
and a couple of days.

Cloud formation is due to the condensation of saturated water vapor. At-
mospheric aerosols act as cloud condensation nuclei (CCN) thus allowing small
drops (∼ 1µm) to start growing via heterogeneous nucleation in a supersaturated
environment (Rogers & Yau, 1996). The rate of condensational growth for small
spherical drops

dr2

dt
∼ 2s (1.1)

is linear with the local level of supersaturation experienced by the droplet itself, r
being the droplet radius and s the supersaturation. Condensation is important for
small water drops, but turns to be slower and less effective for increasing droplets
diameters. Increasing droplet mass results in increasing inertia, which modulates
its response to droplet clustering and collision-coalescence (Raymond A. Shaw,
2003). For relatively large droplets (∼ 30µm) collision-coalescence becomes integral
to allow droplet growth up to drizzling radii (∼102 µm) (Devenish et al., 2012;
Pruppacher & Klett, 2010). To start the precipitation, a number of water drops
must grow big enough to settle and reach the ground before evaporating completely.
One would expect the time required to reach drizzle (∼ 100µm) or rain drops (∼
1mm) sizes to be longer than observed in reality (Lehmann, Siebert, & Shaw, 2009).
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1 – Introduction

Conversely, warm clouds (i.e. clouds residing under non-freezing conditions) such
as small shallow cumuli and trade wind cumuli are observed to precipitate readily -
within 15-20 minutes - (Göke, Ochs, & Rauber, 2007; Laird, Ochs, Rauber, & Miller,
2000; Szumowski, Rauber, Ochs, & Miller, 1997). The reasons behind the rapid
onset of precipitation in such clouds have yet to be explained (Lehmann et al., 2009;
Tölle & Krueger, 2014; Yang, Shaw, & Xue, 2016). Several hypotheses have been
proposed, pointing out to the role played by giant and ultragiant CCN, the presence
of "lucky" droplets with enhanced collisional growth rates (Yang et al., 2016) and
local turbulent bursts of supersaturation that speed up the condensational growth
(Raymond A. Shaw, 2000; Raymond A. Shaw, Reade, Collins, & Verlinde, 1998).
Intermittent structures are the hallmark of turbulent flows at the scales close to the
dissipative range (H. Siebert, Gerashchenko, et al., 2010): in-situ measurements
conducted in stratocumulus clouds near the cloud top revealed an intermittent
behavior consistent with the Kolmogorov-Obukhov refined similarity hypothesis
with scalings that are somewhat similar to those typical of homogeneous isotropic
turbulence, also featuring a dissipation rate that reaches the maximum value near
the cloud top (H. Siebert, Shaw, & Warhaft, 2010).

Entrainment and detrainment at cloud boundaries are important phenomena
that significantly impact the evolution of the droplet population inside the cloud
(Burnet & Brenguier, 2007). These processes are the consequence of the so-called
interfacial instabilities, with buoyancy effects being prevalent at the cloud top
(Devenish et al., 2012). The aim of this thesis is to study the commonly used time-
scale parameterization of the entrainment-mixing process for a shearless mixing
scenario at a cloud top-clear air interface. A number of studies (e.g. Lehmann et al.,
2009 and Lu et al., 2018) has focused on time scale analysis and how it describes
the behavior of the mixing process or the impact of turbulence on nucleation and
spectral broadening (Chandrakar et al., 2016). Andrejczuk, Grabowski, Malinowski,
and Smolarkiewicz, 2009; Gao, Liu, Li, and Lu, 2018; Kumar, Götzfried, Suresh,
Schumacher, and Shaw, 2018; Kumar, Schumacher, and Shaw, 2014 adressed these
issues via direct numerical simulations (DNS).

DNS are numerical experiments that permit scientists to investigate the evolution
of initial value problems in computational fluid dynamics (CFD). Their main
advantage relies on the ability to theoretically describe all the spatial scales that
are encompassed by a turbulent flow, including the smallest ones that are usually
filtered in large eddy simulations (LES) (Pope, 2000, p. 344). If the scientific
objective is to study the small scale interaction of micron-sized water drops and
the turbulent structures, then DNS are the most valuable tool. In spite of a highly
idealized setup, DNS are able to reproduce precisely the evolution of the Navier-
Stokes equations and the coupling between small and large scales. By contrast, the
main drawback is the computational cost, which can be enormous. The number of
floating point operations rises steeply with the number of cells of the meshing grid
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1 – Introduction

and the number of time steps (∼ Re3
ü) (Pope, 2000, p. 348). The use of DNS is

therefore often limited to research applications, at moderate Reynolds numbers
and for simple geometries.

The numerical model used in these experiments is based on a incompressible
pseudo-spectral homogeneous isotropic solver, it accounts for droplet growth by
condensation and collision-coalescence and includes the buoyancy feedback of
water vapor and temperature but neglects the break-up of drizzle size drops and
radiative cooling. The droplet response on the carrier flow is considered only
though condensation and evaporative cooling. Simulations are not forced (as were
for instance in Kumar, Schumacher, and Shaw, 2013) and follow a transient decay
during runtime. For the purposes of this research campaign eighteen simulation
runs have been executed. The computational domain is a parallelepiped composed
by two cubes, each one hosting a zero-mean velocity turbulent region. The lower
cube simulates the cloud slab, the higher cube the clear air segment. Periodic
boundary conditions were adopted. The initial Taylor Reynolds number in the
cloud cube is Reλ = 50.

The outline of this thesis is the following: cloud dynamics and microphysics are
discussed in chapter 2; in chapter 3 the most important concepts related to cloud
turbulence and the mixing dynamics are presented; the role of temporal scales
is introduced in chapter 4. Eventually, the numerical model is fully explained in
chapter 5 and results are presented in chapter 6. Conclusions are drawn in chapter
7.

4



Chapter 2

Cloud dynamics and
microphysics

The aim of this chapter it to provide a brief introduction to the fundamental
concepts of cloud dynamics and microphysics. The ideas presented in the next
pages are the key to setting up a numerical model for our analysis. Of course, this
thesis does not expect to be exhaustive and shall focus on a very specific aspect of
the roles that the temporal scales of microphysical and turbulent processes may
have on cloud evolution. More complete discussions of the ideas that are expressed
and accepted here can be found in literature (Khvorostyanov & Curry, 2014; Lamb
& Verlinde, 2011; Pruppacher & Klett, 2010; Rogers & Yau, 1996).

2.1 Air, water vapor and aerosols
A cloud is a colloidal dispersion of air, water vapor, sub micron-sized aerosols,
water drops and ice crystals. It forms through the condensation (or deposition)
of water vapor into drops and crystals and disappears through evaporation (or
sublimation) and precipitation. Water vapor can be found in large quantities in the
Earth’s troposphere. In fact, both dry air (which is a gas mixture itself) and water
vapor behave, to a good approximation, as perfect gases. Then, the variations of
their thermodynamic properties are well described by the law:

p = ρ
R

M
T (2.1)

p being the pressure, ρ the density, R = 8314 J kg−1 K−1 the universal gas constant
and T the static temperature. M is the molar mass of the gas mixture, which is
roughly 29 kg kmol−1 for dry air. In the vapor phase, also water behaves as an ideal
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2 – Cloud dynamics and microphysics

gas to a good approximation. The water vapor partial pressure e can be defined
via the perfect gas law:

e = ρv
R

Mv

T (2.2)

with ρv being the vapor density and Mv
∼= 18 kg kmol−1. Let’s focus on the

condensation and evaporation processes. Depending on the local thermodynamic
conditions there is a critical amount of vapor that can be absorbed by the atmo-
sphere. When at equilibrium, the atmosphere is partly filled with liquid water and
partly with vapor. The molecules are in agitation, some liquid molecules happen
to break away from the liquid phase while the same amount of vapor molecules
simultaneously collides with the liquid surface, hence changing phase. Under this
conditions the vapor field is said to be saturated. That is, the water vapor partial
pressure e equals the saturation vapor pressure es. If we assume that the phase
transition occurs under isobaric and isothermal conditions (which can be considered
correct to a good approximation) the variation of the saturation vapor pressure can
be related to the variation of the static temperature via the Clausius-Clapeyron
equation

des

es

= Lw

Rv

dT

T 2 (2.3)

Lw being the latent heat of evaporation and Rv = R/Mv. es increases as tempera-
ture increases (Rogers & Yau, 1996). At 273.15 K the saturation vapor pressure is
611 Pa1. By integrating equation 2.3 with respect to these reference conditions we
get

es(T )
es(Tref ) = exp

A
Lw

RvTref

3
1 − Tref

T

4B
and, by recalling equation 2.2

ρsv(T )
ρsv(Tref ) = Tref

T
exp

A
Lw

RvTref

3
1 − Tref

T

4B
(2.4)

In order to condense, the partial pressure must exceed the saturation pressure.
That is, the relative humidity

RH = e

es

= ρv

ρsv

must exceed unity. Another quantity which will be widely used in this work is the
supersaturation

s = e

es

− 1 = ρv

ρsv

− 1

1See the table Vapor pressure from 0 to 370◦C in (Lide, 2004).
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2 – Cloud dynamics and microphysics

whose positive values allow the condensation (deposition) process to occur. The
relative humidity and the supersaturation in the atmosphere are functions of
both the local vapor density and the static temperature. In fact, positive values
for the supersaturation in the atmosphere do not exceed 2%, being too low to
trigger homogeneous condensation. Homogeneous nucleation requires enormous
levels of supersaturation to take place as a stable process. Conversely, water can
condense over dispersed solid and hygroscopic aerosols that are likely to float in
the atmosphere via a process known as heterogeneous condensation (Pruppacher
& Klett, 2010). This is due to the fact that the presence of solute molecules in
a substance can significantly lower the local saturation vapor pressure, allowing
condensation to occur (Rogers & Yau, 1996). Activation and growth through
variation of the saturation pressure near the surface of inorganic solutes are well
described by the Köhler theory, which accounts for two opposite phenomena - the
Raoult and the Kelvin effect - which determine the critical supersaturation level
beyond which nucleation and hygroscopic growth are able to start (Wex, Stratmann,
Topping, & McFiggans, 2008). A recent study by (Ovadnevaite et al., 2017) shows
that the presence of organic surfactants can result in a reduction of the Kelvin
effect without affecting the Raoult term, thereby leading to substantial increases
in cloud droplet populations. This is very important for Earth regions, like the
Amazon, where the local biosphere releases organic aerosols that are likely to serve
as condensation nuclei (Pöschl et al., 2010).

Both organic and inorganic aerosols acting as condensation nuclei (CN) usually
have a volume equivalent diameter Dρ ranging between 0.01 and 1 µm. In some
cases, giant and ultragiant aerosols (2 to 10 µm) can also act as a basis for the
nucleation process leading to bigger CN and CCN. In figure 2.1 different kind of
atmospheric aerosols (including rain, drizzle, haze and hail particles) are shown
along with their absorbed/scattered radiation wavelengths.

Aerosol concentration can vary significantly in space and time depending on the
presence of sources (volcanoes, forests, urban and industrial environments) and
meteorological factors (Rogers & Yau, 1996). Large and hygroscopic aerosols serve
as centers of nucleation and condensational growth.

2.2 Cloud thermodynamics and convection

As stated earlier, air and water vapor are part of a gas mixture. The masses of dry
air and water vapor in a given volume are related through the mixing ratio

w = Mv

Ma

= ρv

ρa

∼=
Mv

Ma

e

p

7



2 – Cloud dynamics and microphysics

Figure 2.1: Top: aerosols found in the atmosphere. Distinction must be drawn
between fine particles (Dρ < 2µm) and coarse particles, such as sea salt, dust
and sand grains falling into the class of giant aerosols. The emission wavelengths
of each class are shown in the top line. Bottom: some possible aerosol sources
(and sinks) in the atmosphere of planet Earth are shown in the aerosol cycle, from
production to scavenging and deposition on the ground. Both images were taken
from (Lamb & Verlinde, 2011), pp. 67-68.
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2 – Cloud dynamics and microphysics

and the specific humidity

q = Mv

Ma + Mv

= ρv

ρa + ρv

∼=
Mv

Ma

e

p

2.2.1 Adiabatic processes
A parcel of moist (i.e. which contains water vapor) or dry air in the atmosphere
can be subject to a number of thermodynamic processes. Adiabatic processes are
of particular interests in cloud physics, since in many cases cloud parcels may be
modeled as gas mixtures that undergo adiabatic expansions or compressions. Clear
air or cloud parcels can be advected upwards by buoyancy forces. The adiabatic
hypothesis assumes that during the process the parcel does not cease nor gain heat:

δq = 0

An adiabatic process, if reversible, is also isentropic

ds = δq

T

an by applying the first law of thermodynamics

ds = δq

T
= dh

T
− 1

ρ

dp

T
= cp

A
dT

T
− R

Mcp

dp

p

B
= cp

dθ

θ

cp being the specific heat per mass unit. The variation of entropy depends on the
variation of the quantity closed in the round brackets. θ is called the potential
temperature and should not be confused with the static temperature T .

dθ

θ
= dT

T
− R

Mcp

dp

p
(2.5)

Potential temperature is a conservative variable for adiabatic processes:

dT

T
= R

cpM
dp

p

and can also be defined as the temperature that a parcel would reach if it were
brought adiabatically from the initial conditions (p0, T0) to the lowest pressure (the
ambient pressure pamb).

The potential temperature also provides a criterion for the dynamic stability of
a parcel of air. By differentiating equation 2.5 with respect to the altitude z, one
gets

1
θ

∂θ

∂z
= 1

T

∂T

∂z
− R

cpMp

∂p

∂z

9



2 – Cloud dynamics and microphysics

which can be expressed through Stevin’s law

1
θ

∂θ

∂z
= 1

T

∂T

∂z
+ Rρg

cpMp
= 1

T

A
∂T

∂z
+ g

cp

B

denoting the atmospheric lapse rate γ = −∂T/∂z, one gets the stability criterion

1
θ

∂θ

∂z
= 1

T
(Γ − γ) (2.6)

the term on the right hand side of equation 2.6 represents the temperature difference
between a parcel that was subjected to an adiabatic updraft (or downdraft) and the
surrounding air. If its greater than zero, it means that the parcel will be subjected
to a restoring buoyancy force (Rogers & Yau, 1996).

The relative humidity RH and the supersaturation s are both related to the
local vapor density and temperature inside the cloud. A parcel of cloudy air that is
advected upwards with vertical velocity w will experience an adiabatic expansion.
Since it is assumed that the potential temperature remains approximately constant,
the supersaturation of the cloud parcel is expected to increase with height. Once
appropriate saturation conditions are reached (i.e. RH ∼= 1 and s ∼= 0) condensation
may occur. In this case, the release of latent heat and the decrease of the vapor
mass lead to a decrease of the supersaturation. It is evident that the evolution of
s in a cloud parcel may be easily represented using a production - condensation
model of the type

ds

dt
= Q1

dz

dtü ûú ý
P

− Q2
dLWC

dtü ûú ý
C

(2.7)

the LWC being the liquid water content of the cloud parcel, often measured in
g/m3. A detailed derivation of equation 2.7 and of the coefficient Q2 can be
retrieved in Rogers and Yau, 1996, pp. 105-112. This expression however does not
take into account the transport of advection and diffusion of water vapor at the
droplet surface (ventilation effects) but considers the supersaturation as a bulk
property of the cloud parcel.

2.2.2 Isobaric processes
Processes occurring under constant pressure conditions p imply that relative varia-
tions of static and potential temperature remain the same. Assuming dp = 0 in
equation 2.5 one gets

dθ

θ
= dT

T

If a parcel of moist air is brought to a lower temperature, its saturated vapor
pressure es decreases because of the Clausius-Clapeyron law 2.3. Saturation is

10



2 – Cloud dynamics and microphysics

reached once the partial pressure of the vapor equals the saturated pressure e = es.
The temperature that satisfies this condition is known as dew-point temperature Td.
For isobaric processes the stability criterion (equation 2.6) reduces to dT/dz > 0.

The production term in equation 2.7 is obviously null for this specific case. No
steady updraft is considered and the evolution of supersaturation is dictated by
the variation of the liquid water content alone (Lu et al., 2018), that is

ds

dt
= −Q2

dLWC

dt

coefficient Q2 must be in the form of an inverse density m3/kg. It can be derived
analitically by considering that

ds = de

es

− e

e2
s

des

using equations 2.2 and 2.3 one gets

ds

dt
= 1

ρsvT

A
ρv

dT

dt
+ T

dρv

dt

B
− ρv

ρvs

Lw

RvT 2
dT

dt

the temperature terms dT/dt account for the variation of T due to the release
(absorption) of the latent heat of condensation Lw and can be expressed

dT

dt
= − Lw

cpρ0

dρv

dt

as a function of the variation of the local vapor density, with ρ0 ∼= ρa being the
bulk density of the mixture. By denoting Cv = dρv/dt, the equation becomes

ds

dt
= − Cv

ρsv

C
1 − ρv

ρa

Lw

cpT
+ Mv

Ma

L2
w

pcpT
ρv

D
∼= − Cv

ρsv

C
1 + Mv

Ma

L2
w

pcpT
ρv

D

which is consistent with the expression for Q2 reported in Rogers and Yau, 1996,
p. 106 and with the analogous formulation adopted by Lu et al., 2018. The
second term in the RHS of this equation is of order one and should not be omitted.
However, one may neglect it to simplify the problem. The phase transition occurs
between the vapor field and the droplets that are contained inside a reference
volume Ωx,δ

ds

dt
∼= − Cv

ρsv

= − 1
ρsv

1
Ωx,δ

Ø
xk∈Ωx,δ

dmk

dt
(2.8)

mk being the mass of the k-th droplet.

11



2 – Cloud dynamics and microphysics

Figure 2.2: The effect of internal waves is depicted in this satellite image taken
over the South Indian ocean in 2005. Parcels of moist air are advected ENE in the
atmospheric stratified environment and forced to move upwards as they encounter
the Amsterdam Island (bottom left). Since the system is stable, the parcel will
undergo a wavy motion, reaching saturation at each updraft. A fraction of the water
vapor will condense periodically with frequency N . The nubes that form are known
as lenticular clouds (picture by NASA Earth Observatory https://earthobservatory.
nasa.gov/images/6151/wave-clouds-near-amsterdam-island).

2.3 Vertical stability in stratified flows
Clouds, as much as many other geophysical systems, are often subject to vertical
variation of the density ρ. In the case of stable stratification, density decreases
with height and arising vertical updraughts will be thus inhibited. The quantitative
behavior of a stratified flow can be estimated through the internal Froude number

Fr2
i = U2A

g

ρ0

dρ

dz

B
L

(2.9)
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2 – Cloud dynamics and microphysics

with U and L being characteristic velocity and spatial scale of the phenomenon,
ρ0 its initial reference density. High Fri indicate that density gradients are weak
comparing to the inertial forces, thus allowing vertical displacements. On the other
hand, steep density gradients induce low values of Fri that do not permit intense
vertical updraughts or downdraughts to arise (Tritton, 1988). In literature it is
often used the inverse of the internal Froude number, the Richardson number Ri

Ri2 = 1
Fr2

i

In general, density gradients can be often expressed as functions of potential (static)
temperature gradients in the atmosphere. Non-dimensional parameters like Fri

and Ri describe the response of a parcel of moist or dry air towards small external
disturbances in a cloudy stratified environment. If one considers the forces acting
on a parcel with density ρp that is displaced vertically in the z-direction (for small
perturbations and constant ∇ρ)

ρpz̈ + g
dρ

dz
z = 0

will get a differential equation for the vertical displacements z of the type
z̈ + N 2z = 0

with N
N 2 = − g

ρ0

dρ

dz
(2.10)

Real values of N (i.e. N 2 > 0) account for a stable stratification, whilst imaginary
values of N (i.e. N 2 < 0) imply that the motion of the parcel will be amplified by
the surrounding environment (Holton, 2004; Tritton, 1988). If one further assumes
that, for small perturbations, the variation of density can be linearly related to the
vertical temperature gradient

dρ

dz
= d

dz
[ρ0 − ρ0α (θ − θ0)]

and that α = 1/T0, then will get the same stability criterion given by equation
2.6. The quantity N 2.10 is measured in Hz and is known as the Brunt-Väisälä
frequency (Vallis, 2006). For positive values of N , the advected parcel will be
subjected to an oscillatory motion with this frequency and the disturbance will
propagate as an internal wave. The internal Froude number can be expressed as a
function of the Brunt-Väisälä frequency

Fr2
i = U2

L2N 2

Again, positive values Fr2
i (or Ri2) are associated to a stable stratification, while

negative values of Fr2
i (or Ri2) account for an unstable stratification.

13



2 – Cloud dynamics and microphysics

2.4 Droplet growth by condensation
Growth of spherical water droplets in a humid environment is influenced by both
Kelvin and Raoult effects. The droplet growth rate takes account of both these
effects along with the local value of the supersaturation s. Following (Ghan et al.,
2011; Howell, 1949; Köhler, 1922), a good estimate of the droplet growth rate is
provided by the relation

dr

dt
= Cr

r

A
s − A

r
+

r3
dry

r3

B
(2.11)

with r being the droplet radius, s the supersaturation. The Kelvin coefficient A

A = 2σs/a

RvTρw

(2.12)

is a function of the local thermodynamic properties of water vapor and liquid
water, as long as of the surface tension at the solution-air interface σs/a (Petters
& Kreidenweis, 2007). A good estimate for the surface tension is provided by the
empiric relation 2

σs/a = 235.6 (1 − Tmean0647.096)1.256
3

1 − 0.6251 − 281
647.096

4
10−3 (2.13)

rdry is the dry radius, i.e. the mean volume radius of the dispersed aerosols (e.g.
Seinfeld and Pandis, 2016, p. 982). The relative humidity over an acqueous solution
droplet with radius r is given by (Petters & Kreidenweis, 2007):

RH =
1 −

3
rdry

rvd

43

1 −
3

rdry

rvd

43
(1 − κ)

exp

A
2σs/a

RvTρwr

B
(2.14)

The droplet growth coefficient Cr, given by (e.g. Rogers and Yau, 1996, p. 102)

Cr =
C3

Lw

RvT
− 1

4
Lwρw

K ÍT
+ ρwRvT

DÍes(T )

D−1

(2.15)

is related to the modified thermal conductivity K Í and water vapor mass diffusivity
DÍ are computed through the scheme reported by (Ghan et al., 2011; Pruppacher
& Klett, 2010)

D
Í

ν = Dν

r

r + ∆ν

+ Dν

αcr

ó
2πMw

RT

(2.16)

2A typical value for the surface tension σs/a is ∼= 70 · 10−3 N/per/meter (see this IAPSW
report http://www.iapws.org/relguide/Surf-H2O-2014.pdf).
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2 – Cloud dynamics and microphysics

The modified vapour thermal conductivity is:

K
Í

ν = Ka

r

r + ∆T

+ Ka

αT rρacp

ó
2πMw

RT

(2.17)
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Chapter 3

Cloud turbulence

The fact that warm clouds in the lower atmosphere are turbulent should not
astound. Devenish et al., 2012 pointed out that any considerable estimate of the
Reynolds number in such flows is much higher than the typical critical values for
transition. By assuming u ∼ 1 ms−1, L ∼ 100 m and ν ∼ 10−5 m2/s the large
scale Reynolds number

Re = UL

ν
(3.1)

is of the order ∼ 107 ÷108. The sharp boundaries of a cloud are the sign of turbulent
activity (Raymond A. Shaw, 2003), with turbulent kinetic energy being produced at
the large scales near the cloud boundaries by shear and buoyancy-driven instabilities
(e.g. Kelvin-Helmoltz and Reyleigh-Taylor instabilities) (Devenish et al., 2012).
Values for the longitudinal and transverse structure functions have been computed
through several measurement campaigns (e.g. H. Siebert, Gerashchenko, et al.,
2010; H. Siebert, Lehmann, and Wendisch, 2006; H. Siebert, Shaw, and Warhaft,
2010) their ratio showing being close to 4/3, as predicted by the Kolmogorov’s
classical theory for homogeneous and isotropic turbulence (HIT). The measured
structure functions also show that intermittency is observed at the small scales,
with values for the kurtosis that significantly depart from Gaussian and scaling
exponents being close to those predicted by Obukhov’s refined similarity hypothesis
(H. Siebert, Gerashchenko, et al., 2010). In general, intermittent behavior is
associated to very localized yet strong and highly-coherent events whose statistics
considerably deviate from the Gaussian turbulent field in the background (Jiménez,
Wray, Saffman, & Rogallo, 1993; She, Jackson, & Orszag, 1990). Experimental
evidence suggests that these tube-like coherent structures - which are characterized
by enormous vorticity - are present in real clouds and could have an impact on
cloud microphysics (e.g. Raymond A. Shaw, 2000; Raymond A. Shaw et al., 1998).

Cumulus clouds can extent up to a few kilometers both in the horizontal and
vertical directions (Rogers and Yau, 1996, p. 64). However, the typical turbulent
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3 – Cloud turbulence

structures are estimated to be somewhat smaller ∼ 102 m. In three-dimensional
flows and for sufficiently high Reynolds numbers, turbulent structures are expected
the break up and transfer kinetic energy and momentum from large to the small
scales through the direct cascade. Following the first similarity hypothesis for
stationary HIT, one can estimate the range of spatial scales involved in this process
(Monin and Yaglom, 2013, p. 349, Frisch and Kolmogorov, 1995, p. 105)

ü

η
= Re

3
4
ü (3.2)

which is defined by the large scales Reynolds ReL. The smallest scale that is reached
by the cascade, η, is called the Kolmogorov scale. For typical cloud conditions one
gets η ∼ 10−3 m (Devenish et al., 2012). The average turbulent kinetic energy
(TKE) dissipation rate is assumed to be the same for all scales

ε ∼ U3
ü

ü

and is expected to be of the order of 10−2 m2/s3 (or 100 cm2/s3). Both large scale
velocity and TKE dissipation rate estimates are in good agreement with values
provided through aircraft measurements (e.g. MacPherson and Isaac, 1977, Rogers
and Yau, 1996 chapter 5 and references therein). Kolmogorov’s similarity hypothesis
states that - for sufficiently high Reynolds numbers - small scale turbulent motions
are isotropic and that the dynamical properties of the universal equilibrium range
only depend on the flux of energy through the direct cascade. All directional biases
that could be inherited by the large anisotropic scales - where TKE is produced
- are lost during the transfer through the energy cascade (Pope, 2000, p. 184).
Provided that dissipation is roughly the same for all scales in the inertial subrange

ε ∼ U3
ü

ü
∼

u3
η

η
(3.3)

the small scales quantities (i.e. scale η, velocity uη and time τη) can be obtained
by equation 3.3, by assuming the viscous dissipation to act directly at the end of
the cascade, that is

Reη = uηη

ν
∼ 1

One gets

η ∼
A

ν3

ε

B 1
4

uη ∼ (εν)
1
4 τη ∼

3
ν

ε

4 1
2 (3.4)

In stationary HIT, TKE is distributed among the scales in the inertial subrange
following the energy spectrum

E (κ) = Cε
2
3 κ− 5

3 (3.5)
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depends only on the average value of ε and the wavenumber κ (Monin and Yaglom,
2013, p. 355.). This is known as Kolmogorov’s five thirds law.

Another spatial scale, the Taylor microscale λ, is often used in HIT-related
studies. The Taylor microscale lies somewhere at the bottom of the inertial subrange,
but is much larger than η. It is thus defined as (Tennekes and Lumley, 1972 pp.
67-68)

urms ∼ λSij

with Sij being the local strain rate tensor. λ has not a specific physical meaning,
but it is commonly related to several phenomena occurring at the small scales. For
instance, P. A. Vaillancourt and Yau, 2000 define λ as the "characteristic length
scale of the mean spatial extension of the velocity gradients" λ2 ∼ u2

rmsν/ε. The
Taylor-based Reynolds number

Reλ = urmsλ

ν
(3.6)

can be interpreted as the ratio between the eddy turnover time of the large scales
∼ ü/urms ∼ λ2/ν and the time scale of the strain rate fluctuations (Tennekes and
Lumley, 1972, p. 68). Typical values of Reλ are of the order ∼ 103 in stratocumulus
and 104 in cumulus clouds (Devenish et al., 2012).

Again, turbulent flows are highly intermittent and all estimates for the quantities
hitherto discussed - such as ε or those defined in 3.4 - must be interpreted as values
averaged over cloud scales. Deviations are expected to become significant at much
smaller spatial scales (P. A. Vaillancourt & Yau, 2000).

3.1 In situ measurements
In situ measurements are an important tool for cloud research. Investigating cloud
properties is crucial to studying many aspects of cloud turbulence, microphysical
properties and evolution. Estimates of many parameters, such as Reλ, N , the LWC,
θ and ε can be derived in such experiments but, unfortunately, the number of studies
reporting the results of airborne measurments is still relatively small (Devenish
et al., 2012). The set-up of numerical simulations must rely on the available
data in order to mimic real cloud conditions. In many cases, the observation
and analysis of cloud droplets has been performed using the Forward Scattering
Spectrometer Probe (FSSP), and ground-based holographic imagery (HODAR)
(P. A. Vaillancourt & Yau, 2000).

Some pioneering experiments were conducted by MacPherson and Isaac, 1977
and Schemenauer, MacPherson, Isaac, and Strapp, 1980 over Canada and Northwest
United States. Some of these results were also reviewed in Rogers and Yau, 1996.
Two equipped aircraft were flown through several stratocumulus and cumulus clouds.
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3 – Cloud turbulence

A large amount of data was provided. In both studies, cloud base lied above 2000
meters of altitude (above freezing level) and the recorded static temperature was
negative. The amount of detected liquid water (∼ 1 g/m3) content was observed
to increase with height, but was still lower than that predicted from the adiabatic
theory. Droplet concentration (∼ 200 ÷ 500 cm−3) was shown to vary significantly
with the mean radius, being higher for small radii and lower for relatively large
droplets. These studies suggest that also the TKE dissipation rate (∼ 10 ÷ 102

cm2/s3) and the rms velocity (∼ 0.1 ÷ 1 ms−1) may slightly increase with height
above the cloud base, hence reaching a peak at cloud top. As a result of processes
involving droplet growth during adiabatic ascent, the peaks of the spectral DSD
were observed to shift to higher values with increasing altitude (Schemenauer et al.,
1980, Rogers and Yau, 1996, pp. 65-69).

Rangno and Hobbs, 2005 sampled cumuliform clouds from a Convair-580 aircraft
in the Marshall Islands. In their study, they also investigated the properties of small
cumulus and cumulonimbus in which no subfreezing region was observed. In some
cases, the lowest recorder temperature was of 9 and 10 ◦C. The average droplet
concentration of these marine clouds barely exceeded 90 cm−3. H. Siebert et al.,
2006 estimated ε ∼ 10−3 m2/s3 and Reλ = 40000 for cumulus humilis and shallow
cumulus clouds. Burnet and Brenguier, 2007 investigated the thermodynamical
and microphysical properties of warm marine cumulus and stratocumulus clouds.
Droplet concentration was reported to be in the order of 200 ÷ 400 cm−3 and the
MVD was equal to 15 µm for the stratocumulus and 30 µm for the cumulus clouds.
The adiabatic liquid water mixing ratio qla = LWCa/ρa

1 was found to be 0.7 in
the stratocumulus case and much higher (∼ 4) for the cumulus clouds. In their
work on trade-wind cumuli, Gerber, Fricks, Jensen, and Hudson, 2008 reported
ε ∼ 10 cm2/s3, fluctuations of the vertical velocity σw ∼ 1 ms−1, N ∼= 102 cm−3

and MVD ∼ 10 µm. However, droplet spectra resulted to remain approximately
constant with height above the LCL (lifting condensation level). Lehmann et al.,
2009 obtained similar results using the ACTOS payload, an helicopter-tethered
probe, with ε . 10 cm2/s3. Also H. Siebert, Shaw, and Warhaft, 2010 estimated
relatively low values of Ô ∼ 1 cm2/s3.

3.2 Water drops and interphase coupling
Cloud flows fall under the category of multiphase turbulent flows. Air and water
vapor are the main constituents of the gaseous medium in which water drops and
CCN (aerosols) are immersed. The air-water vapor field is referred to as the carrier

1qla and LWCa denote adiabatic quantities, whereas ρa refers to the ambient air, carrier flow
density.

19



3 – Cloud turbulence

flow and liquid and solid particles are the the dispersed phase. The distributed
particles can collide, coalesce, undergo phase transition or break-up. It is important
to determine to what extent the carrier flow and the dispersed phase can interact
with each other through mass, momentum and energy coupling. Hence, a few
non-dimensional parameters are used to estimate the relative influence of the carrier
flow over the dispersed phase and vice-versa (Balachandar & Eaton, 2010; P. A.
Vaillancourt & Yau, 2000). The mass loading Φm is defined as the ratio of the
total mass of the dispersed phase and the total mass of the carrier phase. Similarly,
the volume fraction Φv accounts for the volume that is occupied my the dispersed
phase relatively to the total volume of the fluid flow. The ratio Dv/η is used as a
reference to determine whether the characteristic spatial magnitude of the carrier
flow and the dispersed particles are well separated. Finally, the Stokes number St
(i.e. the ratio between the droplet inertial response time and the Kolmogorov time)
is used to quantify the sensitivity of a dispersed particle to the perturbations of
the carrier flow.

In general, values of the LWC of the order . 1 g/m3 are observed in warm
clouds2, thus implying small values for both Φm and Φv. This allows to neglect
the effects produced by the droplet distribution on the turbulent flow to a good
approximation. In addition, the majority of cloud drops has a mean radius of a few
micrometers, well below η, thus ensuring a good separation of scales. Under these
conditions, the effects of structures of all turbulent scales on a single droplet can
be described analitically. The force exerted by the carrier flow on a small spherical
droplet moving in the Stokes regime Red . 1 is thus given by (e.g. Raymond A.
Shaw, 2003, Balachandar and Eaton, 2010 and references therein)

ρwΩd
Dv

Dt
= 6πµr (V − v)ü ûú ý

Stokes drag

+ 1
2ρaΩd

1
V̇ − v̇

2
ü ûú ý

added mass

+ 6r2√πρaµ

ˆ t

o

V̇ (tÍ) − v̇(tÍ)√
t − tÍ dtÍ

ü ûú ý
Basset’s history force

+

+ ρwΩdgü ûú ý
gravity

+ ρaΩd

1
V̇ − g

2
ü ûú ý

shear stress and buoyancy
(3.7)

with r begin the droplet radius, Ωd = 4/3πr3 the droplet volume, V the flow
velocity, v the droplet velocity, µ = νρa the dynamic viscosity of air. The Faxén
term may also be considered. In fact, under the conditions that are considered in
this work most of the terms in equation such as the added mass, Basset’s history
force, Faxén’s and the shear stress terms can be neglected (Götzfried, Kumar, Shaw,
& Schumacher, 2017). This leads for the widely used expression for the droplet

2See Rogers and Yau, 1996, p. 68 and references therein, Lehmann et al., 2009.
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acceleration
Dv

Dt
= 9

2
µ

ρwr2 (V − v) +
A

1 − ρa

ρw

B
g (3.8)

where τd = 2
9

ρwr2

µ
is the droplet inertial response time. According to equation 3.8

small droplets will respond more readily to the flow comparing to large ones. τp

determines the particle inertial response to the carrier flow that is exerted by the
Stokes drag. The non-dimensional parameter that is used to quantify the droplet
response to the smallest structures of the turbulent flow is the Stokes number St

St = τd

τη

(3.9)

For St → 0 the particle field acts as a passive scalar, while in the limit St → ∞
(but under the hypothesis of d ¹ η) the particle does not interact effectively with
the flow. τd only depends on the fluid properties (µ) and on the droplet radius,
whereas St is defined as a function of both τd and τη, which scales as 1/

√
ε.

A simple analytical solution of equation 3.4 can be found by neglecting relative
motion of the carrier flow and buoyancy

Dv

Dt
∼= − v

τd

+ g

that is
v(t) = gτdüûúý

VT

5
1 − exp

3
−t − t0

τd

46

with VT = τdg being the droplet terminal velocity of a particle with zero initial
velocity that settles through the fluid in a non-turbulent environment. It is often
normalized with respect to the local Kolmogorov velocity vη

Sv = VT

vη

which can be interpreted as the ratio between τη and the time taken by a droplet
to settle across a small scale eddy η/VT . The ratio of St to Sv is, not surprisingly,
the Kolmogorov-scale Froude number Frη

St

Sv
= Frη

(Devenish et al., 2012) which should not be confused with the internal Froude
number defined in 2.9. The small scale Froude number Frη

Frη =
u2

η

gη
∼ ε

3
4

gν
1
4

(3.10)
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expresses the magnitude of the turbulent motions relative to gravity. The Froude
number scales with the TKE dissipation rate ε, meaning that as turbulence intensity
increases droplets are less likely to settle. For typical levels of TKE dissipation rate
that found in clouds Frη ∼ 10−2 ÷ 10−1 and droplet sedimentation is expected to
be the predominant phenomenon.

3.2.1 Preferential concentration
Droplet acceleration in equations 3.7 and 3.8 is expressed with the lagrangian
derivative. The reason for doing this is that it may be convenient to treat the droplet
phase as a continuum with variable density N , N being the droplet concentration.
It was shown in the previous section that as the turbulence intensity increases,
so does the Froude number. Small scale vortices become more intense and can
interact effectively with the particle phase. Now, it is important to understand
the effect of such interaction. Following Raymond A. Shaw, 2003, if one solves
equation 3.8 under the assumption of small τd and takes the divergence then gets

∇ · v ∼= −τd∇ · DV

Dt
+ τd∇ · g

The gravity field g is assumed to be locally solenoidal and the carrier flow is
supposed to be incompressible. The latter equation becomes

∇ · v ∼= −τd∇ · (V · ∇V ) (3.11)

Increasing values of ∇ · v may thus account for increasing droplet concentration N

DN

Dt
= −N∇ · v

It can be shown (see Devenish et al., 2012; Raymond A. Shaw, 2003 and references
therein) that droplets preferentially segregate in regions of high dissipation and
tend to be ejected out of regions of high vorticity. Equation 3.11 can be expressed
as a function of the Stokes number St of the droplets (Devenish et al., 2012)

∇ · v ∼ −St (ε − E)

This phenomenon is known as preferential concentration or droplet clustering and is
expected to have an impact on droplet growth by collision-coalescence. However, its
role on droplet growth by condensation in real clouds is still a matter of discussion
(Grabowski & Vaillancourt, 1999; Raymond A. Shaw, 2000; Raymond A. Shaw
et al., 1998).
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3.3 Entrainment and interfacial mixing

Entrainment-mixing processes have been regarded as a key to understanding the
evolution of cloud-droplet spectra and the conundrum of warm rain initiation
(Khain, Pinsky, & Magaritz-Ronen, 2018; Lu, Liu, & Niu, 2011). Entrainment
occurs continuously as ambient air is advected into the cloud; the opposite process,
detrainment, is the transfer of cloudy air to the external environment. Turbulent
eddies that are present at the cloud interface engulf blobs of external air that
are subsequently dispersed across it. The blobs are stretched into filaments and
subsequently stirred. Entrainment-mixing is often described as three-stage processes
(e.g. Dimotakis, 2005; Lu et al., 2018; Tölle and Krueger, 2014), the first stage
being the engulfment of external air by the large eddies. In the second phase (known
as turbulent stirring) the direct cascade provides larger and larger interfacial areas
between the filaments. Eventually, the entrained substance can diffuse effectively
at the small scales. The whole process is regarded as a pretty complex type of
turbulent mixing, featuring momentum and energy transfers, phase changes and
positive feedbacks (coupling) between the dispersed particles (that is, the water
drops) and the carrier flow at the small scales. In their early studies Latham and
Reed, 1977 and Baker and Latham, 1979 (see also references therein) provided a
yet "simplistic" (sic) description, by distinguishing two conceptual types of mixing
between a parcel of cloudy air and the environment. By relying on experimental
data, they noticed that the entrained subsaturated air could affect the growth of all
droplets in the mixed parcel or just of a part of them. Mixing can be homogeneous
when all droplets are subject to the same degree of saturation deficit and shrink
at a comparable rate (equation 1.1). The opposite occurs when only a portion of
the droplet population is affected by the external air. In this case a few influenced
drops will completely evaporate, the mean radius will remain constant and the total
number of liquid particles will decrease. The mixing that results is inhomogeneous
(Devenish et al., 2012). Both homogeneous and inhomogeneous mixing are ideal
concepts, each one representing a path to reduce the local liquid water content
by keeping constant either the droplet concentration or the mean volume radius
(MVD).

Mixing of cloudy air with subsaturated air is often represented through a mixing
diagram (see figure 3.1). The axes show droplet concentration and mean volume
normalized with respect to their adiabatic values. Every mixing path starts at
point (1,1) that represents the adiabatic parcel at its initial state. The possible
paths depend on the relative humidity of the entrained air. The inhomogeneous
limit is represented by the horizontal line (constant mean volume), while the purely
inhomogeneous mixing can be represented by a vertical line (constant droplet
concentration, not shown). For increasing relative humidities of the entrained air
the process undergoes progressive transition from being purely homogeneous to
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Figure 3.1: Examples of schematic r − N mixing diagrams (left picture from
Lehmann, Siebert, and Shaw, 2009, right one from Yum et al., 2015). The example
to the right also shows a possible path representing droplet growth beyond the
inhomogeneous mixing limit (super-adiabatic growth) that is not considered here.

being extremely inhomogeneous.
By considering spherical droplets, we know that both droplet concentration N

and mean volume radius r3
v define the liquid water content

LWC = 4
3πρwr3N (3.12)

which is reduced during dilution (Gerber et al., 2008). The ratio of the final LWC
with respect to its initial (adiabatic) value

α = LWC

LWCa

= N

Na

r3
v

r3
va

is represented by a rectangular hyperbola on the mixing diagram (Burnet &
Brenguier, 2007; Pawlowska, Brenguier, & Burnet, 2000). Scattered samples of
local concentrations and mean volumes can be plotted over such diagrams in order
to estimate the static (i.e. istantaneous) behavior of an entrainment-mixing process
(Burnet & Brenguier, 2007), which is sometimes considered a limitation. (Baker
& Latham, 1979) also suggested that the mixing behavior is determined by the
local time scales for turbulence, droplet growth and diffusion. In the homogeneous
limit, the turbulent time scales are negligible with respect to the microphysics
time scales. All filaments are rapidly stirred and all droplets experience the same
saturation ratio, hence growing or shrinking at the same rate. On the other hand,
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3 – Cloud turbulence

Figure 3.2: The three phases of the entrainment-mixing process (Dimotakis, 2005)
in the r −N diagram. The mixing regime determines the position of the third-stage
point (picture taken from Tölle and Krueger, 2014).

turbulent eddies may be slow compared to the local microphysics, which could
evolve at a faster rate. Some droplets will completely evaporate, while others will
not be affected at all, making the mixing extremely inhomogeneous. (Burnet &
Brenguier, 2007) conducted airborne measurements of top mixing in warm marine
cumulus and stratocumulus clouds. The estimated turbulent time scales and
evaporation time scales showed good agreement with the resulting scattered plots,
thus supporting the time-scales hypothesis. (Andrejczuk, Grabowski, Malinowski,
& Smolarkiewicz, 2004, 2009) ran a series of direct numerical simulations and found
a robust correlation between the slope of the plots in the mixing diagrams in figure
3.1 and the ratio of the turbulent mixing and droplet evaporation temporal scales
when the latter ranged between 10−1 ÷ 101. The ratio between the turbulence and
the microphysical time-scales is often used as a simple parametrization to quantify
the mixing regime (Devenish et al., 2012; Lu et al., 2018 and references therein)
and, by analogy with reacting flows (Dimotakis, 2005) an appropriate Damköhler
number

Da = τturbulence

τmicrophysics

(3.13)

is defined. For Da ¹ 1 the mixing process is expected to lie in the homogeneous
regime, for Da º 1 in the inhomogeneous one (Devenish et al., 2012).

As mentioned earlier, the picture provided by the r −N plots being static results

25



3 – Cloud turbulence

in a considerable limitation, thus making their physical interpretation difficult.
Scattered plots obtained through in situ measurements do not give any information
related to the state of the evolution of such processes (Burnet & Brenguier, 2007).
(Khain et al., 2018) pointed out that interpretation of such diagrams may be
misleading in defining the mixing regime. Yet, they also argued that a series made
of several static diagrams can effectively describe the transient evolution of an
entrainment-mixing process.

The curves in the r − N diagram can be obtained by solving the equations for
mass and energy conservation for water vapor and liquid water in the mixing parcel.
The mixing process takes place at constant relative humidity for both the entrained
cloudy and clear air and under isobaric conditions. The mixing parcel is supposed
to be adiabatic, the cloudy air to be saturated (that is RHc = 1). One gets (Yang
et al., 2016) 

mvi + mai + mli = mvf,m + maf,m + mlf,m

Tvi − Lw

cp

qli = Tvf,m − Lw

cp

qlf,m

Subscripts refer to liquid, vapor and air phases in their initial i and final f conditions.
m stands for mixing. By further assuming that the mixing takes place in a fixed
volume and that the carrier flow is incompressible (i.e. ∇ · V = 0 and ρa is a
non-zero constant) we can divide by ρa and get (Gerber et al., 2008; Lehmann
et al., 2009)

qvi + qli = qvf + qlf

Under conditions, a fixed fraction χ of cloudy air entrains a fixed fraction 1 − χ of
environmental air:

(qvi + qli) χ + qve (1 − χ) = qvf,m + qlf,mA
Tvi − Lw

cp

qli

B
χ + (1 − χ) Te = Tvf,m − Lw

cp

qlf,m

qvi is supposed to be saturated at and ∼= qvs (Tc). Subscripts c and e denote the
cloud and the environment quantities respectively. The environmental air vapor
mass ratio is a function of the ambient temperature and saturation deficit

qve = qvs (Te) RHe

with Tc, Te and RHe being assumed constant to a good approximation throughout
the process. The final conditions are given by (Gerber et al., 2008; Yum et al.,
2015)

qlf,m = χ (qli − qvs (Te) RHe + qvs (Tc)) + qvs (Te) RHe − qvs (Tf,m)

Tf,m = χ

A
Tc − Te − qlc

Lw

cp

B
+ Te + qlf,m

Lw

cp

(3.14)
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3 – Cloud turbulence

The equations in the system 3.14 are non-linearly coupled since they introduce the
Clausius-Clapeyron equation 2.3 and can be solved using an iterative scheme for
values of χ ranging between 0 and 1 (Yum et al., 2015). The droplet concentration
of the final mixture is homogeneously reduced by a factor χ with respect to its
initial adiabatic value

N = χNa (3.15)

The liquid water content of the final mixture is homogeneously reduced by a factor
α with respect to its initial adiabatic value and is given by (Gerber et al., 2008)

LWCf,m = ρa qlf,m (3.16)

The final droplet mean volume is given by

r3 = LWCf

4
3πρwN

(3.17)

The r − N curves can be plotted by solving the system 3.14 for different values of
RHe. As RHe increases, the curves will tend to the inhomogeneous mixing line,
shifting to the homogeneous limit only for small χ (Devenish et al., 2012). In the
case of isobaric mixing, the initial values of N , LWC and r3 are represented by
the adiabatic values. The final mixing diagram is shown in figure 3.3.
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3 – Cloud turbulence
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Figure 3.3: Different solutions for the system 3.14. The highlighted orange curve
is drawn for the RHe = 0.7 case. Little super-adiabatic growth is predicted for
curves drawn for RH = 0.99, RH = 0.995. Super-adiabatic growth for RH = 1
results in good agreement with the diagrams represented by (Lehmann, Siebert, &
Shaw, 2009).
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Chapter 4

On the role of temporal
scales in cloud physics

A number of different temporal scales are used to characterize droplet growth in
turbulent clouds and to seek the most appropriate parameterization. Temporal
scales determine how fast physical processes are. When a number of interacting
processes take place in a physical system it is often important to determine which
one will occur more readily and whose effect will be the most impactful on cloud
evolution. The comparison of several time-scales allows to estimate which of the
many processes involved occurs within a shorter time or with a higher frequency.
For instance (Sedunov, 1974) solved a set of three convection-diffusion equations
and defined three time-scales in order to characterize the diffusion of water vapor
at the surface of an isolated droplet and temperature inside and outside the droplet.
All the three time scales were a function of the droplet surface (which is ∝ r2) and
the thermal and mass diffusivities of liquid water, water vapor and ambient air
(Devenish et al., 2012). P. A. Vaillancourt, Yau, and Grabowski, 2001 estimated
shorter relaxation times for the ambient phase (i.e. water vapor and outside
temperature) than for the temperature of the liquid water. Following Kinzer and
Gunn, 1951, P. A. Vaillancourt et al., 2001 also pointed out that another time-scale
should be taken into account whenever the droplet surface temperature (also known
as the psychrometric temperature) is not assumed to remain the same. Release
and absorption of latent heat during condensation and evaporation at the droplet
surface can change the local temperature. The psychrometric temperature will
subsequently relax to a quasi-steady state value in a time of the order of

τpsychro = cwρwr2

3Ka

A
1 + ρvsDvL2

w

KaRvT 2

B (4.1)
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4 – On the role of temporal scales in cloud physics

The psychrometric time-scale τpsycho increases with increasing radii and results to
be among the slowest diffusive time-scales even for the relatively small droplets.
Anyway P. A. Vaillancourt et al., 2001 argued that for droplet with radii . 20
µm and for relatively low TKE dissipation rates - such as those found in shallow
cumulus and stratocumulus clouds ε . 100 cm2/s3 - the psychrometric temperature
will relax to its steady-state value rapidly enough to not to interact with the small
scale turbulence. The Kolmogorov time scale is the faster temporal scale that
characterizes the motion of small turbulent structures in the dissipative range and
it is shown (equation 3.4) to inversely scale with the local TKE dissipation rate.
If τpsychro and the diffusive time scales are much faster even if compared to the
fastest time scale describing the local turbulent structures, τη, then one would be
tempted to treat those microphysical processes as instantaneous and to focus on
the evolution of turbulence alone. In general, it is usually assumed that processes
that are completed within a shorter time are less prone to interaction with slower
physical phenomena occurring in the same place.

Time scales are commonly used in entrainment-mixing studies to determine the
nature of the mixing regime and its impact on droplet growth by condensation
(Baker, Corbin, & Latham, 1980; Baker & Latham, 1979; Burnet & Brenguier,
2007; Lehmann et al., 2009). As reported in chapter 3, the time scale dependent
Stokes number determines the effectiveness of droplet clustering, a phenomenon
which is expected to enhance the collision rate between preferentially concentrated
droplets (e.g. Raymond A. Shaw, 2003; P. A. Vaillancourt and Yau, 2000; P. A.
Vaillancourt, Yau, Bartello, and Grabowski, 2002; P. A. Vaillancourt et al., 2001.
The impact of small scale turbulence and intermittency on condensational growth
has been the object of several studies (e.g. Grabowski and Vaillancourt, 1999;
Pinsky, Khain, and Levin, 1999; Raymond A. Shaw, 2000; Raymond A. Shaw
et al., 1998, 1999) which discussed the role of both the diffusion time scales and
the lifetime of coherent structures on droplet growth by condensation (Devenish
et al., 2012).

4.1 Temporal scales in entrainment-mixing pro-
cesses

(Baker et al., 1980; Baker & Latham, 1979) first suggested that temporal scales may
be a good way to parameterize the microphysical response to turbulent interfacial
mixing. Observational studies such as those lead by (Burnet & Brenguier, 2007)
and (Lehmann et al., 2009) investigated the parameterization of homogeneous and
inhomogeneous mixing conditions through the estimated local temporal scales. The
Damköhler number 3.13 - defined as the ratio of the turbulence and microphysical
time scales - is widely used to quantify the homogeneous mixing degree Ψ that has
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4 – On the role of temporal scales in cloud physics

been first introduced by (Lu, Liu, Niu, Krueger, & Wagner, 2013) (!!! also check
morrison and graboski 2008). (Andrejczuk et al., 2009) found a high correlation
between the slope of the mixing diagram and the local value of Da. The turbulent
time scale that is used to compute Da is usually identified with the eddy turnover
time τü (Lu et al., 2018) which is defined as the ratio between the characteristic
eddy length scale and the local eddy velocity. For the largest scales of the flow one
has

τü
∼=

ü

urms

∼ ü√
K

(4.2)

with ü being the integral scale and

urms = 2
3

√
K

K being the kinetic energy per mass unit of the flow. The denominator of Da
only depends on the local microphysics whereas different eddy turnover times are
defined for different spatial scales of the turbulent structures. As pointed out by
(Kumar et al., 2013), a set of Damköhler numbers can be defined for all the scales
lying in the inertial subrange

Daη ¹ Da ¹ Daü

For turbulence and microphysical times being of the same order (i.e. Da ∼ 1) a
transition or critical length scale L∗ can be defined

L∗ =
ñ

ετ 3
microphysics (4.3)

larger-than-L∗ vortices are expected to foster inhomogeneous mixing. If the tran-
sition length scale lies somewhere within the spectrum covered in the inertial
subrange, then both homogeneous and inhomogeneous mixing will likely take place
in the same turbulent system (Devenish et al., 2012). For warm cloud conditions,
the transition length scale is of the order of several meters. Kumar et al., 2018
have run direct numerical simulations of a cloud-clear air interface and found that
the width of the computational domain, for constant droplet concentration and
droplet mean radius has a considerable impact on the nature of the mixing and on
the relative dispersion of the droplet radius PDF that arises.

Several studies have identified the microphysical time scale with the evaporation
time, the phase relaxation time or the reaction time (e.g. Andrejczuk et al., 2009;
Baker and Latham, 1979; Chandrakar et al., 2016; Kumar et al., 2013; Lehmann
et al., 2009; Lu et al., 2011). The effects of these time scales, as long as their
correlation with the local homogeneous mixing degree Ψ, have been examined in a
comprehensive work by (Lu et al., 2018).
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4 – On the role of temporal scales in cloud physics

4.1.1 Evaporation time
The evaporation time scale is defined as the time that it takes for a droplet to
completely evaporate in a constant-RH environment. By considering the simplified
model for droplet growth without taking into account the Kelvin and Raoult effects
(equation 2.11) one gets

dr2

dt
∼= 2Crs

if the droplet is kept in a subsaturated environment at a constant RH (that is, a
constant supersaturation or saturation deficit s0 = RH0 − 1) the above equation
can be integrated ˆ τevap

0
dt =

ˆ 0

r0

dr2

2Crs0

giving
τevap = − r2

0
2Crs0

(4.4)

with r0 being the initial radius, s0 the saturation deficit, Cr the droplet growth
coefficient 2.15.

The evaporation time is defined for droplets loitering in subsaturated regions and
does not account for variable supersaturation, nor for the influence of Kelvin and
Raoult effect, which both become important for small spherical droplets. However,
it’s been widely used to (e.g. (Andrejczuk et al., 2009; Baker et al., 1980; Burnet
& Brenguier, 2007)) to define the Damköhler number Da.

4.1.2 Phase relaxation time
The supersaturation equation in absence of updraughts and for isobaric mixing
conditions reduces in the form 2.8

ds

dt
∼= − Cv

ρsv

= − 1
ρsv

1
Vx,δ

Ø
xk∈Ωx,δ

dmk

dt

the condensation rate Cv depends on the mass variation of all the droplets contained
in the volume Ωx,δ. Assuming all droplets are relatively small (. 50 µm) and
spherical, it is easy to find that

dmk

dt
= 4

3πρw3r2
k

drk

dt

and, by recalling equations 1.1 and 2.11

rk
drk

dt
∼= Crks
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4 – On the role of temporal scales in cloud physics

One can therefore express the temporal evolution of supersaturation as a function
of supersaturation itself. The supersaturation equation 2.7 can be thereby resolved
by separation of variables, and takes the form

ds

dt
∼= − 1

ρsv

1
Ωx,δ

4πρw

Ø
xk∈Ωx,δ

rkCrk

ü ûú ý
τ−1
phase

s (4.5)

that is (Devenish et al., 2012)

ds

dt
= − s

τphase

The phase relaxation time τphase modulates the intensity of the overall source or
sink of supersaturation due to the contribution of all the spherical droplets that
are enclosed in a finite volume of space. By solving the simplified form of the
supersaturation equation by separation of variables one gets

ˆ s

s0

ds

s
= −
ˆ t

0

dt

τphase

and
ln

s

s0
= − t

τphase

If both droplet concentration and mean radius are considered constant to a good
approximation, then after a time t = τphase the local supersaturation will have
dropped by a factor 1/e, reaching the 37% of its initial value. Supersaturation will
relax more readily in regions with higher droplet concentration and larger mean
droplet radius.

The phase relaxation time has been widely used in cloud physics (Lu et al., 2018).
For a parcel of a warm cloud in vertical motion in a steady updraft Korolev and
Mazin, 2003 found a solution of the supersaturation equation for constant droplet
sizes under the quasi-steady approximation. They found that the fluctuating
supersaturation field relaxes to its quasi-steady state value sqs in a time of the order
of τphase. They also discussed the behavior of supersaturation fluctuations to due
droplet concentration in the context of a turbulent environment in which turbulent
fluctuations also appear. To do so, they defined τphase as the microphysical time
scale. A similar approach was used in the observational study of the birth of shallow
cumulus clouds by Holger Siebert and Shaw, 2017. The authors argued that for low
Da (that is, for large τphase) supersaturation fluctuations due to turbulent mixing
were weakly buffered by the droplet growth over the typical eddy turnover time.
Since the growth of a droplet is defined by its supersaturation history (see equation
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4 – On the role of temporal scales in cloud physics

1.1 and the introduction in Burnet and Brenguier, 2007) the slow microphysics
(Da ¹ 1) regime was expected to foster spectral broadening. This is consistent
with the results of the laboratory experiments conducted by Chandrakar et al.,
2016. In this experiment, steady-state Rayleigh-Bénard convection was forced in a
moist environment confined in a cylindrical chamber. Dry aerosols were injected
at constant rates. In the limit of relatively low aerosol/droplet concentration, the
droplet spectra was observed to broaden significantly following the relation

dσ2
r2

dt
= 8C2

r σ2
s0τL

(1 + Da)2

Saturation time

Lu et al., 2018 pointed out that one of the limitations of the phase relaxation time
is that it only provides information for the relative behavior of the supersaturation,
regardless of the initial value of the relative humidity. The initial relative humidity
is a crucial parameter in entrainment-mixing studies (as seen in chapter 3). To
overcome this limitations, Lu et al., 2018 introduced a saturation time τsatu which is
defined as the time taken by the supersaturation to reach the final value of −0.005
parting from s0 < 0. τsatu is proportional to τphase:

τsatu = τphaseln
s0

−0.005 (4.6)

4.1.3 Reaction time
The evaporation time is computed assuming constant relative humidity, while the
phase relaxation time assumes constant Nr, that is the first moment of the droplet
distribution (Rogers and Yau, 1996, pp. 110-114, Khvorostyanov and Curry, 2014,
pp. 144-148). These limitations were pointed out in the observational study by
Lehmann et al., 2009. They found that measured values of τevap and τphase could
differ significantly. In order to understand which was the best time scale to define
the microphysics regime, they introduced a reaction time scale τreact which they
defined as the elapsed time for complete evaporation (τreact,ev) or for the saturation
deficit to reach −0.005 when both droplet growth and supersaturation evolution
are taken into account (Lehmann et al., 2009; Lu et al., 2018)

dr2

dt
∼= 2Crs

ds

dt
∼= − s

τphase

(4.7)

They found that the reaction time scale was close to the smaller of τphase and τevap.
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Chapter 5

Direct numerical
simulations of a cloud-clear
air interface

The aim of direct numerical simulations (DNS) codes is to reproduce the evolution
of a turbulent flow field by resolving the Navier Stokes equations for all the scales
that are encompassed by the energy cascade. To that end, the computational
domain must be built up so that both its global extent and grid resolution allow to
reconstruct the largest and the smallest structures of the flow together. Provided
that appropriate initial and boundary conditions are adopted along with a suitable
and fitting mathematical model, the DNS approach guarantees the highest level of
accuracy among modern simulation techniques (Pope, 2000, p. 344).

However, as a result of the enormous amount of computational resources involved,
their use is limited to relatively low-to-moderate Reynolds numbers. This aspect
represents a major drawback since clouds typically extend over hundreds of meters,
with Re of the order of 107. The major problem is that, by simulating a small
cloud parcel one is forced to neglect the effect of the large scale vortices, whose
dynamics are coupled with the small scale ones. Also, the initial conditions of these
numerical experiments are usually idealized and far from reality. In this regard,
Andrejczuk et al., 2004 pointed out that the spirit of DNS - whose results should
always be extrapolated carefully to laboratory or real cloud conditions - is to focus
more on the qualitative behavior of the transient, rather than to provide an exact
numerical description of complex single or multiphase fluid phenomena.

In spite of these issues, DNS have been widely used in the past twenty years to
investigate the role played by small scale turbulence on cloud physics (Gao et al.,
2018). P. A. Vaillancourt et al., 2002; P. A. Vaillancourt et al., 2001 conducted
numerical experiments to study a droplet-seeded turbulent environment, droplet
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5 – Direct numerical simulations of a cloud-clear air interface

clustering and gravitational settling. They adopted the Boussinesq approximation
along with a lagrangian tracking system for the dispersed droplets. Andrejczuk
et al., 2004, 2006, 2009 studied cloud-clear air mixing on cube-shaped domains
at moderate Reynolds numbers. Their simulations did not include a lagrangian
description of the droplets trajectories and the standard bulk approximation was
assumed instead. Lanotte, Seminara, and Toschi, 2009 ran two series of simulations
over cubic domains. Their setup included a lagrangian tracker for the droplet
phase and an equation for the evolution of supersaturation (the Twomey model)
which has also been used by Sardina, Picano, Brandt, and Caballero, 2015, 18.
Kumar et al., 2013 ran DNS to study the relaxation process of the droplet phase
following the entrainment of dry air in a cloudy environment, but did not take
into account the temperature field and the response of the system to evaporative
cooling. Their analysis followed the case of horizontal shearless mixing across a
cloud-clear air interface parallel to the direction of gravity. Kumar et al., 2018;
Kumar et al., 2014 included the evolution of internal energy and analysed the
droplet trajectories in the mixing diagrams and the effect of the domain size on
the Damköhler number. In these works, the initial turbulent state included a
central cloud slab surrounded by clear-air regions and the TKE dissipation rate
ε was kept constant by an external homogeneous and isotropic forcing term. To
further study cloud-clear air turbulence, Götzfried et al., 2017 adopted a different
configuration: two cubes are attached together in order to model two adjacent
regions, the cloud and the clear air, with a planar interface in between. Since no
mean flow is included, the mixing that develops is of the shearless type. Gravity
is parallel to the interfacial plane and the mixing region widens in the horizontal
direction. The same domain was chosen by Tordella and Iovieno, 2011, 19 and
M. Iovieno, Di Savino, Gallana, and Tordella, 2014 in their studies of turbulent
shearless mixing. Recently, Gao et al., 2018 solved a 0.5123 m3 turbulent field with
2563 grid points to study the influence of different microphysical parameters on the
nature of the mixing regime. A similar approach is shown in the work by Li et al.,
2020, in which both condensational and collisional growth are taken into account.

In this study, results from a set of eighteen direct numerical simulations of
a cloud-clear air interface are presented. The numerical model is similar to the
one adopted by Li et al., 2020, while the computational domain consists of two
cubes that represent the cloud and the clear-air region, respectively. The domain
is identical to the one in Götzfried et al., 2017, but vertically oriented. That is,
gravity is normal to the interface. The cloud slab (cube) is located at the bottom
to mimic a shearless mixing process at the cloud top. The code, which includes
condensational and collisional growth and neglects droplet break up, is a new
version of TurIsMis, which has been recently used by Bhowmick and Iovieno, 2019.
The new version of such code features the Howell model for the condensational
growth of small droplets (equation 2.11) and a non-periodic distribution of the
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5 – Direct numerical simulations of a cloud-clear air interface

temperature field. Three simulations (B012, B017 and B018) also introduced a
fluctuating vapor field to study the effect of supersaturation fluctuations on the
evolution of the droplet spectrum.

5.1 Mathematical model

5.1.1 Boussinesq Navier-Stokes equations
The Navier-Stokes equations for mass, momentum and energy describe the macro-
scopic motion of a fluid for low Knudsen numbers (i.e. Kn ¹ 1). The Navier-Stokes
equations consist in a set of partial differential equations for mass, momentum and
energy conservation whose 2D and 3D solutions often include turbulence. In this
section the complete form of such equations is derived. A simplified form, often
used for problems of stratification and thermal convection at low Mach numbers
and known as the Boussinesq approximation, is introduced (see Tritton, 1988, pp.
188-196).

Mass and momentum conservation equations

Let’s consider an arbitrary spatial volume Ω. The mass conservation law is

∂

∂t

˛
Ω

ρ dΩ +
˛

∂Ω
ρV · nd(∂Ω) =

˛
Ω

QmdΩ

Qm being the fluid mass injection rate into the volume Ω. It can be written in the
differential form

∂ρ

∂t
+ ∇ · (ρV ) = Qm (5.1)

The same can be done to derive the momentum conservation equation for the fluid
flow

∂

∂t

˛
Ω

ρV dΩ +
˛

∂Ω
ρV V · n d(∂Ω) =

˛
∂Ω

Π d(∂Ω) +
˛

Ω
(ρf + QmV ) dΩ

Here Π = −pI + τ is the stress tensor, p is the pressure (which coincides with the
thermodynamic pressure under Stokes’ hypothesis) and τ the viscous shear stress
tensor. Because of equation 5.1, the momentum conservation can be written in the
more compact differential form

ρ
DV

Dt
= ∇ · Π + ρf (5.2)
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Total energy

The total energy E per unit mass is the sum of the internal energy è per unit mass
and the kinetic energy 1/2V 2 per unit mass. Its conservation equation

∂

∂t

˛
Ω

ρE dΩ +
˛

∂Ω
ρEV · n d(∂Ω) =

˛
∂Ω

Π · V d(∂Ω) +
˛

Ω
(ρf · V + QmE) dΩ+

−
˛

∂Ω
q · n dΩ +

˛
Ω

QwdΩ

can be written in the differential form

ρ
DE

Dt
= −V · ∇p + V · (∇ · τ ) + ρf · Vü ûú ý

kinetic terms

−p∇ · V + (τ · ∇) · V − ∇ · q + Qwü ûú ý
thermodynamic terms

(5.3)
The total energy equation can be split in two contributions. The first one, the

kinetic energy equation, is derived by multiplying the momentum equation 5.2 by
the velocity V

ρ
D

Dt

V V

2 = −V · ∇p + V · (∇ · τ ) + ρf · V (5.4)

The second one accounts for the thermodynamic processes occurring in the fluid
flow and can be expressed as a function of the internal energy per mass unit e1

ρ
De

Dt
= −p∇ · V + (τ · ∇) · V − ∇ · q + Qw (5.5)

or of the static enthalpy h = e + p/ρ

ρ
Dh

Dt
= ∂p

∂t
+ V · ∇pü ûú ý
Dp/Dt

+ (τ · ∇) · V − ∇ · q + Qw (5.6)

Equations 5.4 and 5.6 are coupled by the term V · ∇p. Equations 5.5 and 5.6
are both functions of the static temperature T (recall that h = cpT , e = cvT and
cp − cv = R/M)

ρcv
DT

Dt
= −p∇ · V + (τ · ∇) · V − ∇ · q + Qw

ρcp
DT

Dt
= Dp

Dt
+ (τ · ∇) · V − ∇ · q + Qw

1Not to be confused with the vapor pressure e.
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Additional equations

Additional equations are required to close the Navier-Stokes system. The perfect
gas law 2.1

p

ρ
= R

M
T

the Fourier law (heat transfer)

q = −K∇T (5.7)

with K denoting the thermal conductivity and the stress tensor

τ = µ
1
∇V + [∇V ]T

2
− 2

3µ (∇ · V ) I (5.8)

The code solves the Navier-Stokes equations for mass, momentum and energy
for incompressible flows under the Boussinesq approximation. The Boussinesq
approximation assumes that variations of both the fluid density and viscosity are
ignored. Small perturbations of the density field, though, are taken into account in
the buoyancy terms.2

The mass conservation law reduces to the known incompressible form:

∇ · u = 0 (5.9)

Conservation of momentum becomes:

DV

Dt
= − 1

ρ0
∇P + ν∇2V + Bg (5.10)

with ρ0 being the nominal density, sometimes referred to as Boussinesq density
(e.g. Andrejczuk et al., 2004). B accounts for density variations with respect to ρ0
and can be splitted into two main contributions

B = Bθ + Bρ. (5.11)

that is the generation or depletion of water vapor Bρ and/or increasing or decreasing
potential temperature Bθ. P is the overall flow pressure and accounts for both the
dynamic pressure p and Stevin’s term ρ0gz, with z being the elevation in the local
domain (Tritton, 1988).

P = p + ρ0gz

2See also Holton, 2004 p. 117 and p. 197. On the applicability of the Boussinesq approximation
see Tritton, 1988 pg. 16 and Holton, 2004, p. 117.
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The energy equation reduces to the simpler Boussinesq form:3

∂T

∂t
+ V · ∇T = κ∇2T + J

ρ0cp

(5.12)

with J denoting the source term per unit mass [J kg−1].

Non-dimensional form of the equations

The terms in 5.1 5.10 5.12

åx = x

Lref

æV = V

Uref

åg = g
Lref

U2
ref

Θ = T − Tref

Tref

Equations (5.9) (5.10) and (5.12) become:

∇̃ · Ṽ = 0
DæV
Dt̃

= −æ∇ åP + 1
Reref

æ∇2æV + B åg
DΘ
Dåt = 1

Pr

1
Reref

æ∇2Θ +
Â

J

ρ0cp

B (5.13)

Buoyancy terms

The momentum equation 5.10 in the positive vertical-z direction takes the form

Dw

Dt
= − 1

ρ0
∇p − ∆ρ

ρ0
|g| + ν∇2w

The total density of the mixture ρ, averaged over the volume of the computational
domain, is the sum of the contributions of both air and saturated vapour

ρ = ρa + ρv (5.14)

3By considering the internal energy equation for inviscid flows (with viscous effects being
neglected in the thermal balance) one can write:

ρ0
Dh

Dt
= Dp

Dt
+Q

h being the enthalpy per unit mass and Q a volume source of internal energy. One gets

ρcp
DT

Dt
= Dp

Dt
+Q ≈ Q = J + k∇2T

The material derivative for the pressure can be neglected (see Tritton, 1988, chapter 14, appendix).
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By writing everything in the differential form one gets

ρ = ρ0 + ∂ρ

∂T
∆T + ∂ρ

∂ρv

∆ρv + ∂ρ

∂ρa

∆ρa

By considering only small perturbations of both temperature and density one has
∂ρ/∂T ∼ −ρ0α ∼ 1/T0 and

ρ = ρ0 − ρ0
∆T

T0
+ ∆ρa + ∆ρv (5.15)

so that
B = Bθ + Bv = − |g|

A
1 − ∆T

T0
+ ∆ρa

ρ0
+ ∆ρv

ρ0

B
(5.16)

Buoyancy due to temperature

The impact that small perturbations of temperature in equation 5.15 can be linearly
described a simple linear model

ρ = ρ0

5
1 − 1

θ0
(θ − θ0)

6
with α ∼ 1/θ0 being the expansion coefficient (Rogers & Yau, 1996). The DNS
code simulates an overall isobaric process and, from now on, the equations will
consider the static temperature instead of the potential temperature (see equation
2.5). If one introduces the non-dimensional temperature

Θ = T − Tref

Tref

with Tref being an arbitrary reference temperature which corresponds to satu-
rated vapor reference values (see equation 2.3), one can express the temperature
contribution in a non-dimensional form

Bθ = ρ − ρ0

ρ0

-----
Mv=const

= − Θ
Θ0 + 1 − 1

Θ0 + 1 + 1ü ûú ý
constant

(5.17)

The constant term in the above equation describes a global displacement of the
whole domain and is included in the a0 coefficient of the Fourier series as it is
transformed in the spectral domain

ãBθ(κ) = −
âΘ(κ)

Θ0 + 1
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Buoyancy due to production or depletion of water vapor

The density of the single i-th species ρ∗
i and the density of the species taken over

the computational volume ρi are defined as follows

ρ∗
i = Mi

Vi

ρi = Mi

Vtot

If one considers the single species on its own occupied volume, the perfect gas
relation accounts for the global pressure p and the constant temperature T0:

p = ρ∗
i

R

Mi

T0

conversely, if one considers the single species on its computational volume, only
the partial pressure will be taken into account

pi = ρi
R

Mi

T0

of course, Vi = Mi/ρ∗
i . Rearranging the two perfect-gas relations, we will get

Vi = RT0

p

Mi

Mi

The Boussinesq approximation is based on the incompressibility of the carrier flow.
This implies that the total volume occupied by the gas shall coincide with the
computational volume at any time, i.e.

Vtot = RT0

p

Ø
i

Mi

Mi

= const

That is, the following condition must be satisfied

1
Vtot

RT

p

Ø
i

Mi

Mi

= 1

and, of course,
∆ρa

Ma

+ ∆ρv

Mv

= 0

The latter condition results in the expression for mixture-related density variations
(at a constant temperature).

ρ − ρ0|T =const = ∆ρa + ∆ρv =
3

1 − Ma

Mv

4
∆ρv
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where ∆ρv = ρv(T ) − ρv(T0). This can be rewritten as

ρ − ρ0|T =const = ρv (T0)
3

1 − Ma

Mv

4A
ρv (T )
ρv (T0) − 1

B
(5.18)

One can non-dimensionalize equation 5.18 with respect to the saturated vapor
reference density ρvs(Tref ) that was given in chapter 2

(ρ − ρ0)
ρ0

-----
T =const

= ρv(T0)
ρvs(Tref )

ρvs(Tref )
ρ0

3
1 − Ma

Mv

4A
ρv (T )

ρvs (Tref )
ρvs (Tref )
ρv (T0) − 1

B
rearranging one gets

ρ − ρ0

ρ0

-----
T =const

= åρv(T0)ρvs(Tref )
ρ0

3
1 − Ma

Mv

4A åρv(T )åρv(T0) − 1
B

(5.19)

Constant terms of equation 5.19 are included in the a0 coefficient of the Fourier
series when as they are transformed in the spectral domain. This allows the
buoyancy term ãBv to be computed as follows

ãBv(κ) = −|g|
äρ − ρ0

ρ0

-----
T =const

= −|g|ρvs(Tref )
ρ0

3
1 − Ma

Mv

4
ρ̂v(κ, T ) (5.20)

5.1.2 Droplet dynamics and vapor field
Saturated vapor

The saturated vapor density inside the cloud is related to the local temperature
through the Clausius-Clapeyron law 2.4

ρsv (T ) = psv (Tref )
RvT

exp

C
L

R∗
v

A
1

Tref

− 1
T

BD
(5.21)

with R = 8314 J kg−1 kmol universal constant, Lw = 2272 kJ kg−1 the water
evaporation latent heat, Mv = 18 kg kmol−1 the vapour molar mass. Again,
reference values are set for Tref = 273.15 K and its vapour pressure psv (Tref ) =
611.3 Pa.

By introducing the non-dimensional temperature

Θ = T − Tref

Tref

one can get to the non-dimensional form of the 2.4:

ρ̃sv (Θ) = ρsv (Θ)
ρsv (Tref ) = 1

1 + Θ exp

C
L

RvTref

Θ
1 + Θ

D
(5.22)
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5 – Direct numerical simulations of a cloud-clear air interface

Droplet momentum equation

Water drops are assumed to be spherical and to be subject to the interaction of
the Stokes drag and buoyancy forces only (Raymond A. Shaw, 2003). Following
chapter 3, one can assume that the forces acting on a spherical droplet moving
through the air in the low-Reynolds Stokes regime are the Stokes drag D and the
buoyancy forces B:

md
Dv

Dt
= D +B

md being the droplet mass and v the droplet velocity. These assumptions lead to
the well known equation for the motion of a spherical droplet 3.8

Dv

Dt
= 1

τd

(V − v) +
A

1 − ρa

ρw

B
g

Such equation can be non-dimensionalized by taking, as usual,

åv = v

Uref

åt = tUref

Lref

år = r

Rref

åg = gLref

U2
ref

getting
Dåv
Dåt = 9

2
ρa

ρw

ν

UrefLref

L2
ref

R2
ref

æV − ævdår2 +
A

ρa

ρw

− 1
B åg

This formulation introduces the non-dimensional reference radius Rref/Lref and
the reference Reynolds number Reref :

Dåv
Dåt = 9

2
ρa

ρw

1
Reref

1åR2
ref

æV − åvår2 +
A

ρa

ρw

− 1
B åg (5.23)

The water vapor balance equation

The mass conservation law for the vapour in the cloud parcel can be written as
follows

Dρv

Dt
+ ρv∇ · V = κv∇2ρv − Cv

with Cv being the condensation term. As the vapor condenses (positive Cv) the
local amount of vapor decreases. Since we’re dealing with incompressible flows, the
mass balance equation acquires the form

Dρv

Dt
= κv∇2ρv − Cv (5.24)
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with ρv being the vapor density. The condensation term can be expressed as the
droplet mass rate averaged on a sphere with center in x and radius δ. In this
volume, the total liquid water mass accounts for the contribution of the k-th droplet

Cv = 1
Ωx,δ

Ø
xk∈Ωx,δ

dmk

dt
= 1

Ωx,δ

Ø
xk∈Ωx,δ

d

dt

3
ρw

4
3πr3

k

4
= 4π

3
ρw

Ωx,δ

Ø
xk∈Ωx,δ

3r2
k

drk

dt

in the DNS code the arbitrary volume Ωx,δ will coincide with the mesh grid cell,
a cube with volume ∆x3. Therefore, the condensation rate can be expressed as
follows

Cv = 4π

3
ρw

∆x3

Ø
xk∈∆x3

3r2
k

drk

dt
(5.25)

Equations 5.24 and 5.25 can be written in the non-dimensional forms

ρsv(Tref )Uref

Lref

Dåρv

Dåt = κv
æ∇2 åρv

ρsv(Tref )
L2

ref

− åCv
ρsv(Tref )Uref

Lref

ρsv(Tref )Uref

Lref

åCv = 4
3π

ρw

∆x3
1

ρsv(Tref )
L3

ref

L3
ref

Ø
∆x3

åR3
ref 3år2

k

dårk

dåt ρsv(Tref )Uref

Lref

that is
Dåρv

Dåt = 1
Scv

1
Reref

æ∇2 åρv − åCv (5.26)

åCv = 4π
ρw

ρsv(Tref )
åR3

refç∆x
3
Ø
∆x3

år2
k

dårk

dåt (5.27)

with Scv being the water vapor Schmidt number, usually ∼= 0.61. The imple-
mentation of the condensational droplet growth rate drk/dt is shown in the next
section.

No aerosol model is included in code and once a droplet is eliminated it will not
appear again. Secondary activation may be implemented in future versions of the
code.

Droplet killing reasons include complete evaporation (the droplet radius reduces
below the critical value rc = 0.04 µm), gravitational settling below the lower
boundary (droplet position for x2 ≤ 0) or droplet collision. The code assumes full
collision efficiency and as the droplet collide, one of them is deleted.

Droplet growth by condensation

Droplet radii are updated at each time step by computing the istantaneous growth
rate given by the Howell’s model (equation 2.11), which can be non-dimensionalized
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with respect to the reference length Lref , flow velocity Uref and droplet radius Rref .
Again, also the non-dimensional radius åRref = Rref/Lref can be used. One gets

R2
refUref

Lref

årdår
dåt = Cr

A
s − A

r
+ k

r3
dry

r3

B

årdår
dåt = CrLref

R2
refUref

A
s − A

r
+ k

r3
dry

r3

B

and eventually

dår
dåt =

æCrår
A

s − A

r
+ k

r3
dry

r3

B
(5.28)

with
æCr = Cr

UrefLref
åRref

The Kelvin coefficient A is computed from equation 2.12. The surface tension
is computed via 2.13 as a function of the mean initial temperature Tmean0. For
Tmean0 = 281 K one gets σs/a = 74.5 · 10−3 J/m2 and A = 2.45 · 10−4 m. Values
of the hygroscopicity parameter k = 0.7 and rdry = 0.01 µm are set for all the
simulations (for typical ranges of the hygroscopicity parameter see Petters and
Kreidenweis, 2007).

Droplet growth by collision-coalescence

The DNS code includes a droplet collision detection algorithm that scans a small
portion of the domain in search of possible impacts between droplets at each time
step. It only scans a small portion in order to reduce the number of operations
∼ n2 which would be requested to compute mutual distances between every pair
of drops. The code assumes full collision efficiency. If two droplets have come
across at a distance lower than the sum of the two radii then droplet coalescence
is supposed to have taken place. The droplet with the lower ID is subsequently
killed and the two original volumes sum in the remaining droplet, which will have
grown4.

4More details on the algorithm can be found at the official page of the Philofluid Research
Group (https://areeweb.polito.it/ricerca/philofluid/software/252-collision).

46

https://areeweb.polito.it/ricerca/philofluid/software/252-collision


5 – Direct numerical simulations of a cloud-clear air interface

5.1.3 Conservation of the internal energy
Under the assumptions of the Boussinesq approximation the evolution of the
temperature field is governed by the relation 5.12

∂T

∂t
+ V · ∇T = κ∇2T + J

ρ0cp

In this case, the source term J expresses the release (absorption) of latent heat
by the ambient phase as condensation (evaporation) occurs. The latent heat Lw

is ceased during transition between the phases, its amount being proportional to
the amount of mass involved. For liquid water and vapor, a good estimate can be
Lw

∼= 2.5 · 106 J kg−1 (Kumar et al., 2013). One gets

J = LwCv

and
DT

Dt
= κ∇2T + LwCv

ρ0cp

(5.29)

with Cv from 5.25. By introducing the non-dimensional temperature Θ = T/Tref −1
and recalling from 5.27

Cv = åCv
ρsv(Tref )Uref

Lref

one can write
UrefTref

Lref

DΘ
Dt

= κæ∇2Θ Tref

L2
ref

+ Lw

ρ0cp

åCv
Tref

Tref

ρsv(Tref )Uref

Lref

which results in
DΘ
Dt

= 1
Pr

1
Reref

æ∇2Θ + Lwρsv(Tref )
ρ0cpTref

åCv (5.30)

Supersaturation evolution

The relative humidity and the supersaturation are defined as (see 2)

RH = e

es

= ρv

ρsv(T )

s = RH − 1 = e

es

− 1 = ρv

ρvs(T ) − 1

and the supersaturation evolution can be estimated by solving equations 5.26 and
5.30 in combination with the non-dimensional Clausius-Clapeyron equation 2.4

qsv(Θ) = ρvs(Θ)
ρsv(Tref ) = 1

1 + Θexp

C
Lw

RvTref

Θ
1 + Θ

D
(5.31)
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The ratio ρv/ρsv can be expressed in the non-dimensional form

ρv

ρsv

= ρv(T )
ρsv(Tref )

ρsv(Tref )
ρsv(T ) = qv(Θ)

qsv(Θ)

5.2 Computational domain

Figure 5.1: Scheme of the computational domain (adapted from Tordella and
Iovieno, 2011, 19). The thick brown line shows the qualitative trend of both TKE
and TKE dissipation rate across the interface. The mixing width ∆ is expected to
increase with time. The integral scale is the same in both regions.

The computational domain (figure 5.1) consists in a parallelepiped made up
by two adjacent cubes. The mesh is uniform and each cell is a 1 mm-edge cube
(∆x = 1 mm). Each cube edge is divided into n = 512 cells. The parallelepided is
thus made up with 5122×1024 cells. Each cube edge has a dimensional length of
H = n∆x = 0.512 m.

The reference length is chosen to be equal to Lref = H

2π
= 0.0815 m. The

non-dimensional domain cube edge length is then H

Lref

= 2π and the computational

domain is (2π)2 × 4π wide.
The domain in the physical space is represented by a vector field

è
x1 x3 x2

éT
,

x3 being the non-homogeneous direction parallel to the largest (4π) parallelepiped
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length. The non-homogeneous direction is normal to the two cubes interface, which
models the cloud-clear air region interface.

The DNS code uses a slab parallelization, which is realized by dividing the
parallelepiped into nprocs slices of width nloc = n/nprocs and length 2n, that are
floored as tiles one over the other in the x2 homogeneous direction in the physical
space. In order to compute the 3D FFT of such domain, a parallel transposition must
be executed between the cores. The Fourier space domain is represented through a
vector field

è
κ1 κ2 κ3

éT
, κ3 being again the non-homogeneous direction parallel

to the largest (4π) parallelepiped length. In the Fourier space, the longest direction
is distributed among the cores (M. Iovieno, Cavazzoni, & Tordella, 2001; Tordella
& Iovieno, 2006; Tordella, Iovieno, & Bailey, 2008).

5.2.1 Initial conditions

Synthetic turbulent field

Figure 5.2: In this figure the turbulent spectrum used to generate the synthetic
velocity field is plotted (black solid line) and compared to other spectra obtained
via in-situ measurements (Biona, Druilhet, Benech, & Lyra, 2001; Katul, Geron,
Hsieh, Vidakovic, & Guenther, 1998; Lothon, Lenschow, & Mayor, 2009; Radkevich,
Lovejoy, Strawbridge, Schertzer, & Lilley, 2009). Image adapted from Gallana,
2016.
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5 – Direct numerical simulations of a cloud-clear air interface

Two synthetic homogeneous and isotropic turbulent cubes are generated and
attached together to build the initial flow field. Each turbulent cube is initialized
as a zero-mean fluctuating field with an arbitrary amount of TKE. In order to
generate such fields, a potential fieldW is obtained by allocating the kinetic energy
content over all the scales of motion following a model spectrum (see also Pope,
2000, pp. 232-234) defined byI

E(κ) ∼ κα κ < κpeak

E(κ) ∼ κ−5/3 κ ≥ κpeak

with the exponent α and the peak wavenumber κpeak being set as simulation
parameters. The incompressible (soleinoidal) velocity field is then obtained by
taking the rotor of the potential field

V = ∇ ∧W

by recalling that ∇ · (∇ ∧ (·)) = 0. The total energy allocated for each wavenumber
is subsequently renormalized to get the correct amount of total energy. The process
can be repeated for all the velocity components. By setting the average root mean
square velocity urms one gets the total kinetic energy

K = 3
2u2

rms

Finally, the turbulent parallelepiped is obtained by matching the two cubes to-
gether. The intensity of the final turbulent field is modulated spatially in the
non-homogeneous direction (x3) as done by Götzfried et al., 2017; M. Iovieno et al.,
2014; Tordella and Iovieno, 2011, 19; Tordella et al., 2008

åK = åK1 − åK2 p(ãx3)

with

p(æx3) = tanh

A
55
æx3

4π

B
tanh

A
55
Aæx3

4π
− 1

2

BB
tanh

A
55
Aæx3

4π
− 1

BB

a smooth distribution of this kind prevents the arising of the Gibbs phenomenon
(M. Iovieno et al., 2014). The choice of both the model spectrum shape (kpeak

and α) and the energy content determines the amplitude of the integral scale
and the velocity fluctuations, respectively. Using the description of homogeneous
and isotropic turbulence provided by Monin and Yaglom, 2013, we have that the
integral scale of an homogeneous isotropic solenoidal velocity field can be expressed
as a function of the energy spectrum âK

ü = 3π

4

´∞
0 κ−1E(κ) dκ´∞

0 E(κ) dκ
(5.32)
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The parameters can be tuned in order to get the desired average TKE dissipation
rate ε ∼ u3

rms/ü.
The parallelepiped-shaped domain that results is used to get the initial turbulent

fields that will be read by the code at each run. To do so, each synthetic field -
one for each velocity component - is integrated for a few time steps. The energy
content is practically the same, but the flow field is now more realistic, having been
generated by the Boussinesq Navier-Stokes equations.

Water vapor and temperature fields

The initial mean temperature of the domain is set to T0 = 281 K, with a temperature
difference between the cloud core and the clear air ∆T =-2 K.5 The non-dimensional
temperature is related to the dimensional temperature T = Tref (1 + Θ), (the non-
dimensional mean temperature being Θ0 = (T0 − Tref ) /Tref ). The non-dimensional
temperature in each slab is

Θcloud = 1
Tref

A
T0 − ∆T0

2 − Tref

B
Θair = 1

Tref

A
T0 + ∆T0

2 − Tref

B

The vapor density in each slab is computed from the relative humidity RH, which
is an arbitrary parameter, and the saturated vapor density, which depends on the
local temperature (computed via the non dimensional Clausius-Clapeyron equation
2.4)

ρ̃v = RHρ̃vs = RH

1 + Θ exp

A
L

RvTref

Θ
1 + Θ

B
The temperature gradient is fixed and equal to

∇̃Θ = Θair − Θcloud

n3∆x
Lref

The Brunt-Väisälä frequency 2.10

N =
ó

g

T0

∆T0

n3∆x

and the internal Froude number 2.9

Fr2
int = u2

rms

ü2N 2

5Steep spatial temperature gradients are common in cumulus clouds (see Andrejczuk et al.,
2004 and references therein). In situ measurements (e.g. MacPherson and Isaac, 1977) detected
lower temperatures near the cloud core, the region outside the cloud being warmer.
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The non-dimensional initial temperature and water vapor density distributions are
set as follows

Θ (z) = ∇̃Θ 2H

Lref

A
tanh

A
55
Aæx3

4π
− 1

2

BB
−
Aæx3

4π
− 1

2

BB
+ Θ0 (5.33)

åρv =
åρv,cloud + åρv,air

2 +

−
åρv,air − åρv,cloud

2 tanh

A
55
æx3

4π

B
tanh

A
55
Aæx3

4π
− 1

2

BB
tanh

A
55
Aæx3

4π
− 1

BB
and are displayed in figure 5.3 and 5.4.

Figure 5.3: Initial conditions of temperature for stable (left) and unstable (right)
stratification. The mixing is located approximately in the the highlighted area. The
spectral code sees periodic boundary conditions for the temperature field. The
buoyancy forcing term in the Navier-Stokes equations is subject to an additional
temperature gradient (red dashed line). The physical, non-periodic temperature
field is shown in yellow.

The temperature distributions in figure 5.3 need further discussion. The aim of
the code is to simulate non-periodic temperature conditions (yellow curve) in order
to consider a single stratified interface at the center. However, this configuration
can’t be used because of the onset of the Gibbs phenomenon. One possible solution
consists in setting a periodic temperature field (blue dashed line) whose evolution
can be computed through equation 5.30 with no dispersion-related issues. In
order to compute the supersaturation and the buoyancy terms (equation 5.17)
a constant virtual temperature gradient (orange dashed curve) is superposed to
such periodic field. Basically, different code segments read different temperature
fields in order to overcome this issue. The main drawback of this strategy is that,
for long simulations, the periodic temperature field may be smoothed completely
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Figure 5.4: Initial conditions for the water vapor density in the computational
domain. The relative humidity in the cloud and clear air slab is the same for both
the stable (neutral) and unstable cases. The relative humidity in the cloud and
clear air slab is chosen to be the same for the two cases.

(internal energy diffusion). If the simulation proceeds, the buoyancy terms and
the supersaturation would be affected by the virtual gradient alone, leading to
non-physical results. However this is not an issue in our cases, the total time of
most simulations being equal or lower to 10 initial eddy turnover times.

In a few cases (see table 5.2) the initial vapor fields were set as turbulent scalar.
The reason is that a fluctuating supersaturation field is more realistic and permits
to study the impact of supersaturation variance in the broadening of the PDF
in the cloud core region. The turbulent spectra that was used to generate such
fields is similar to that described in the previous section for the velocity fields.
Stationary supersaturation spectra were obtained from DNS by Lanotte et al., 2009
(Reλ ∼ 200) and showed a −5/3 power law in the inertial subrange.

Droplet distribution

These simulations use two type of initial conditions for the liquid phase. For both
cases the particles are randomly distributed in the cloud slab, that is in the lower
cube of the domain. Particle size distribution may be either monodisperse or
polydisperse. In the monodisperse case, the LWC is uniformely distributed among
all droplets, which will have the same radius. For instance, if one sets LWC0 = 0.8
g/m3, H = 0.512 m and n0 = 107 and chooses a monodisperse distribution, the
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algorithm will generate a set of randomly distributed drops with radius

rmono =

 LWC0
4
3πρw

n

H3


1
3

∼= 13.7µm

A polydisperse distribution can be generated by allocating the available LWC
among a set of volume classes. The same fraction of LWC will be assigned to the
same class and a larger amount of smaller droplets will be generated. To satisfy
this condition, non-dimensional radius follows

år = 1
Rref

3
4π

[(Ωd,max − Ωd,min) g(r) + Ωd,min]
1
3

with g(Ω) being a random function of the form

g(r) = exp (Apoly · rand [0,1]) − 1
exp (Apoly) − 1

rand [0,1] is a random number in the interval between 0 and 1 and Apoly an empiric
constant given by

Apoly = 2.22
A

log10
Ωd,max

Ωd,min

− 2
B

+ 4.55

all particles are then normalized in order to get the desired total LWC.

5.3 Simulation parameters
Kinetic energy, integral scale and dissipation rate

The integral scale is chosen to be the same both in the cloud and in the clear
air region, while the kinetic energy is higher in the former, resulting in different
initial TKE dissipation rates for the two cubes. Periodic boundary conditions are
adopted in all directions. The average TKE dissipation rate ε is chosen to be of
the order of ∼ 200 ÷ 400 cm2/s3 in the cloud cube (MacPherson & Isaac, 1977).
Reference quantities are set by choosing a reference Reynolds number equal to 800.
As stated below, the reference length is fixed as the ratio between the dimensional
and non-dimensional box widths, that is Lref = H/(2π) ∼= 0.082 m. Hence, having

Reref = UrefLref

ν
= 800
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implies Uref = 0.14 ms−1. ν is the kinematic viscosity of the air ∼= 1.5 · 10−5 m2/s.
The urms and the ratio between the kinetic energy levels in each cube are chosen for
each simulation. By assuming the Kolmogorov similarity hypothesis for HIT, one
can make an estimate of the Kolmogorov lengthscale for the more intense region by
setting an average value of ε in such region. The initial urms velocity in the cloud
region is set to 0.1 m s−1. By recalling equations 3.4 and assuming ε ∼= 400 cm2/s3

one gets

η ∼
A

ν3

Ô

B1/4
∼= 0.7 mm ∼ ∆x

A first estimate of the initial integral scale can be obtained estimated quantities
for the more energetic region ü (equation 3.3)

ü ∼ u3
rms

ε
∼= 0.025 m

Again, the integral scale is the same across the interface. As in M. Iovieno et al.,
2014, the kinetic energy ratio between the cloud and the clear air interface is set to
Kcloud/Kair

∼= 6.7. The initial eddy turnover time is estimated (following Bhowmick
and Iovieno, 2019) as the ratio between the integral scale ü and the root mean
square velocity urms of the more energetic slab (e.g. Kumar et al., 2018):

τü ∼ ü

urms

∼= 0.3 s (5.34)

Computational scheme

The code integrates the system of equations () in the Fourier space using the
pseudo-spectral algorithm first introduced in M. Iovieno et al., 2001. The lowest
wavenumber κ0 is defined with respect to the cube edge H (Pope, 2000 p. 345)

κ0 = 2π

H
= 1

Lref

∼= 12.27 m−1

while the highest resolved wavenumber κmax

κmax = n

2 κ0 = πn

H
= π

∆x

At least the low-order statistics of the flow at the small scales should not be sensitive
to the value of κmax associated to the mesh. This is verified (Ishihara, Gotoh, &
Kaneda, 2009) if κmaxη & 2. In order to satisfy this criterion, one can mesh each of
the two cubes with an uniform grid made by 5123 points. The mesh is the same for
both the physical and the Fourier space. The grid resolution is ∆x = H/n = 10−3

m, that is
κmaxη ∼= 2.2
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which is acceptable.
The integration time step is set by considering the CFL condition (Pope, 2000,

p. 348)
∆t = 1

20
∆x

urms,c

with respect to the most energetic region of the domain, that is the cloud. With
urms,c

∼= 0.1 ms−1 one gets ∆t ∼= 4.7 · 10−4 s and æ∆t = Uref

Lref

∆t ∼= 9 · 10−4.

The vertical temperature gradient æ∇Θ across the interface also expresses a
criterion for the local stratified stability. The initial mixing width can be estimated
as done by Tordella and Iovieno, 2011, 19; Tordella et al., 2008 and turns out to
be of the same order of the integral scale ∆ ∼ ü. By taking ∆ ∼= 0.02 m (see figure
5.3), the temperature gradient across the interface can be estimated

∇T |mix = ±1 K
∆

∼= ±48.83 K m−1

The Brunt-Väisälä frequency is then computed out of the interfacial gradient.
The squared internal Froude number that results

Fr2
int = u2

rms

N 2ü2
mix

∼= ±7

can be either positive or negative depending on the sign of N 2. A negative value of
Fr2

int is the hallmark of unstable stratification, which results in positive buoyancy
for the interfacial parcel (Burnet & Brenguier, 2007). The experiment simulates
decaying turbulence and hence Fr2

int is expected to tend to zero with time.
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5 – Direct numerical simulations of a cloud-clear air interface

Parameters common to all simulations
Quantity Symbol Value Unit
Computational cube edge H 0.512 m
Grid points (x1,x2) n 512 -
Grid points (x3) n3 1024 -
Reference length Lref 8.15 cm
Reference velocity Uref 14.73 cm s−1

Kinematic viscosity (air) ν 1.5 · 10−5 m2/s
Reference static temperature Tref 273.15 K
Reference droplet radius Rref 1 µm
Rerefence saturation pressure es(Tref ) 611 Pa
Reference saturated vapor density ρsv(Tref ) 4.8 g/m3

Kolmogorov length scale η 0.7 mm
Grid resolution ∆x 1 mm
Average rms velocity urms 0.078 m s−1

Average TKE dissipation rate ε 0.04 m2/s3

Taylor microscale Reynolds number Reλ 50 -
Physical parameters

Dry air density at 1000 m ρa 1.11 kg/m3

Boussinesq density at 1000 m ρ0 1.11 kg/m3

Liquid water density ρw 1000 kg/m3

Gravity acceleration g 9.81 m/s2

Initial mean temperature Tmean0 281 K
Interfacial internal Froude number Frint ±7 -
Air-water vapor mass diffusivity κv 2.53 · 10−5 m2/s
Thermal conductivity of air K 0.028 Wm−1 K−1

Schmidt number for water vapor Scv 0.625 -
Prandtl number for clear air Pr 0.72 -
Relative humidity (cloud cube) RHc 1.02 -
Relative humidity (clear air cube) RHa 0.7 -
Gas constant for water vapor Rv 461.9 J kg−1 K−1

Gas constant for dry air Ra 286.7 J kg−1 K−1

Water latent heat (liquid-vapor) Lw 2.48 MJkg−1

Specific heat at constant pressure cp 1146.8 J kg−1 K−1

Init. liquid water content (cloud) LWC0 0.8 g/m3

Init. droplet concentration (cloud) N0 74.5 cm−3

Kelvin coefficient A 2.45 · 10−4 m
Hygroscopicity k 0.7 -
Aerosol dry radius rdry 0.01 µm

Table 5.1: Parameters defined for all runs.
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5 – Direct numerical simulations of a cloud-clear air interface

Direct numerical simulations: details
Run Fr2

int ttot/τü0 DSD Seeding σs0
B001 ∞ (test) monodisperse lower cube 0
B002 ∞ 13.9 polydisperse lower cube 0
B003 -7 7.5 polydisperse lower cube 0
B004 -7 10.4 monodisperse lower cube 0
B005 -7 5.3 polydisperse full domain 0
B006 -7 6 monodisperse full domain 0
B007 7 7.3 polydisperse lower cube 0
B008 -7 - monodisperse lower cube 0
B009 -7 - monodisperse full domain 0
B010 ∞ - monodisperse full domain 0
B011 -7 - monodisperse lower cube 0
B012 -7 9.2 polydisperse lower cube 0.022
B013 -7 6 monodisperse lower cube 0
B014 -7 6 monodisperse lower cube 0
B015 -7 6 polydisperse lower cube 0
B016 -7 (test) polydisperse lower cube 0.022
B017 -7 7.3 polydisperse lower cube 0.045
B018 -7 7.3 polydisperse lower cube 0.045

Table 5.2: Specific parameters for the set of simulations.
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5 – Direct numerical simulations of a cloud-clear air interface

5.4 Algorithm
The DNS have been carried out via the pseudo-spectral incompressible Navier-
Stokes solver TurIsMis. Spectral methods are extremely accurate and widely
used for HIT applications (Pope, 2000, p. 344). Derivatives (and so gradients,
divergences and curls) are local operations in the Fourier space and do not require
the access to data stored in neighbor cells in the physical mesh. A new minor
release from version 14p (where p stands for particles) was written to include the
Howell model (equation 2.11), the non-periodic temperature distribution (figure
5.3) and the polydisperse droplet distribution based on volume classes. The original
software was developed by the Philofluid research group at Politecnico di Torino6

basing on the parallel dealiased pseudospectral algorithm presented in M. Iovieno
et al., 2001. Dealiasing is based on the 3/2-rule. Spectral discretization is achieved
with a Fourier-Galerkin weighted residuals method. Time integration is carried
out with a fourth-order Runge Kutta scheme (RK4). Boundary conditions in the
physical space are periodic in all directions, that is (M. Iovieno et al., 2001)

Vi (x+ Hej, t) = Vi (x, t) ∀i, j

for both velocity (generic component Vi) and scalars. A parallel transposition
is required to compute the convective term of the momentum equation. Three-
dimensional fast Fourier transform is included via the FFTW package (http:
//www.fftw.org/). The code is written in Fortran and parallelized with the Message
Passage Interface (MPI) standard. All runs were carried out on the Marconi
Tier-0 system at CINECA between September 2019 and January 2020. Part of the
post-processing activity was completed on the Hactar HPC cluster at Politecnico
di Torino (http://hpc.polito.it/sistemi_hpc.php).

6Visit the official web page for a resume of the software releases https://areeweb.polito.it/
ricerca/philofluid/software/95-turbulent-flows.html.
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Chapter 6

Post-processing and results

The present work focuses on the evolution of flow and droplet statistics along the non-
homogeneous direction across the interface (Bhowmick & Iovieno, 2019; M. Iovieno
et al., 2014; Tordella & Iovieno, 2006, 2011, 19; Tordella et al., 2008). Basically,
each statistical property is computed for a squared slice of the parallelepiped in
figure 5.1. Each one of the n3 slices is a set of samples that are used to compute
the statistical moments and correlation coefficients.

Flow properties are point-wise and defined for each one of the n2 × n3 points of
the computational domain. Hence, for most cases - such as the flow fields, droplet
concentration, inverse phase relaxation and saturation times - the set of samples is
made with all the n2 points of a plane. On the other hand some droplet properties
- droplet mean radii, surfaces and volumes and growth coefficients - are defined
only in non-void cells of the domain.

Each grid cell may contain a number of droplets. The cell-averaged values of the
droplet properties (e.g. mean radius, mean concentration, mean growth coefficient
etc...) are assigned to the cell itself. Therefore, a scalar field that defines the spatial
distribution of a property is generated, and local statistics can be computed.

The inverse phase relaxation time 4.5 is considered to be meaningful over a
statistically significant sample of droplets that are contained inside an arbitrary
large volume (Khvorostyanov & Curry, 2014). Hence, in some DNS studies (e.g.
Andrejczuk et al., 2009; Gao et al., 2018; Kumar et al., 2013; Kumar et al., 2014)
evaporation and phase relaxation time scales are treated as global properties of
each run. The same is done for the droplet concentration, mean volume and
homogeneous mixing degree Ψ. Kumar et al., 2014 computed the trajectories of
a set of droplet samples taken over 4 and 16 subvolumes (parallelepiped-shaped
subslabs) in the r − N mixing diagram. They verified that the mixing diagram
trajectories that were computed over a larger number of thus smaller subslabs
showed enhanced variability (which is somewhat expected) no substantial difference
in the final r − N coordinates was observed. Conversely, in the present work all
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6 – Post-processing and results

statistics will be computed over squared thin slices to show the variability across
the interface. This may be important since two different adjacent turbulent regions
are represented here in figure 5.1.

Statistics consider mean, standard deviation, skewness and kurtosis. The
correlation coefficient of two properties X and Y is computed following the definition

ρXY = cov [X, Y ]
σXσY

(6.1)

with cov [X, Y ] being the covariance, which is linked to the correlation function
RXY

cov [X, Y ] = RXY − X Y

· being the expected value operator.

6.1 Shearless mixing: flow field
Turbulence

Estimates of the kinetic energy, dissipation rate and enstrophy can be obtained
through the saved velocity fields. Each component of the Fourier-space velocity
field V̂ =

è
û v̂ ŵ

é
is stored in a n2 × n3 array and saved into a binary file. The

post-processing algorithm reads the binaries and computes the values for the local
TKE [m2/s2],

K = 1
2
1
u2 + v2 + w2

2
TKE dissipation rate

ε = 1
ρ0

(τ · ∇) · V

recalling equation 5.8, for ∇ · V = 0 one gets

ε

ν
= 2

31
∇V + [∇V ]T

2T
· ∇

4
· V =

=
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6 – Post-processing and results

(a) 0.27 s (t/τ0 ∼= 0.9) (b) 0.82 s (t/τ0 ∼= 2.7) (c) 1.34 s (t/τ0 ∼= 4.5)

(d) 1.9 s (t/τ0 ∼= 6.3) (e) 2.45 s (t/τ0 ∼= 8.2)

Figure 6.1: Non-dimensional enstrophy for simulation B012. Legend shows values
of åE ranging from 0 to 1000. Localized coherent bursts of vorticity can be observed
(e.g. (a) and (b)). The cloud region is located at bottom of each figure.
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Figure 6.2: Trend of the homogeneous plane averages for ε, E and K for simula-
tion B012. Bottom-right: evolution of the kinetic energy under stable-stratified
conditions (B017). The effect of the internal Froude number is visible for t/τ0 > 6.
Dash-dotted solid black lines represent the initial conditions (t = 0 s).
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Figure 6.3: Dissipation-supersaturation and enstrophy-supersaturation correlation
coefficient computed for each homogeneous plane across the interface for simulation
B012.
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Both quantities are defined as functions of the velocity derivatives therefore represent
small scale properties of the turbulent flow. The derivatives are computed point-
wise from the velocity fields saved in the Fourier space by multiplying the value of
the velocity by the associated wavenumber. A parallel transposition is required
during this process.

The trend of both the TKE dissipation rate, the enstrophy and the dissipation
rate computed for the run B012 are shown in figures 6.2. The average value for
each homogeneous plane defined by the vertical coordinate x3 = z is drawn as a
function of the ratio z/H, H being the cube edge. The dissipation rate is higher in
the cloud region and all quantities decrease rapidly during the first phase of the
transient. After approximately three eddy turnover times, ε reaches values of the
order of 10 cm2/s3 that are commonly found in cumulus and stratocumulus clouds
(H. Siebert et al., 2006). Beyond this point, the kinetic energy, the enstrophy and
the dissipation rate decrease slowly will reach a quasi-steady, globally homogeneous
state across the interface. Hence, gravitational settling of the seeded particles is
expected to occur being (Frη ∼ ε3/4). However, simulation B012 was run with
an unstable initial temperature gradient, the cloud region being warmer than the
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6 – Post-processing and results

outside. This results in a little hump of the kinetic energy, a slight increase of its
average value across the mixing region compared to both the cloud and the clear
air slabs. The warmer air at the interface convects upwards and gains velocity.
This injection of kinetic energy at the cloud interface may affect the mixing process
by advecting some particles upwards in the subsaturated region. Also, the carrier
advects the water vapor and the temperature (equations 5.26 and 5.29), which may
lead to the detrainment of high-RH regions in the clear-air slab. Figure 6.3 show
that both ε and E become positively correlated with the supersaturation above the
interface as the shearless mixing progresses. The correlation coefficient (equation
6.1) is computed for each homogeneous plane. Both correlation coefficients show
the same trends with close values, with some more intense peaks (both positive and
negative) for the ε − s case during the transient. Droplet clustering is unlikely to
be significant as the simulation progresses, and no correlation between preferential
concentration and supersaturation fluctuations is to be found. However, the fact
that supersaturated regions may be significantly detrained above the interface be
impact the growth of the droplet spectrum and mixing dynamics.

Snapshots of the enstrophy field in a x1 − x3 plane are shown in figure 6.1.
Colors have been rescaled in order to provide a clear visualization of the low-energy
structures that become more significant along the transient. The first picture is
taken after approximately one initial eddy turnover time (that is t/τ0 ∼ 1) and
features regions of large enstrophy with peaks of åE ∼= 60000. Values of the kurtosis
for the enstrophy distribution (not shown here) are around 30 ÷ 40 in the cloud
region. These values are a the hallmark of intermittency and coherent vortices are
likely to exist in the first phases of the transient.

Water vapor, temperature and supersaturation

Runs B012, B017 and B018 have been initialized with fluctuating supersaturation
fields. In order to obtain an appropriate initial variance for the supersaturation,
a fluctuating scalar field was superposed to the smooth distribution depicted in
figure 5.4. As stated in the previous chapter, temperature and supersaturation
fields are non-periodic in the x3 (vertical, inhomogeneous) direction.

Results from all runs except for the three mentioned below show that no
supersaturation fluctuation is generated by the condensation process in the cloud
core region. Conversely, the variance becomes non-null as the mixing widens down
into the cloud. Anyway, even for the fluctuating runs (e.g. B012) the vapor field
is smoothened readily by the diffusion (as seen in figures 6.5 and 6.7). Planar
snapshots of the evolving supersaturation field from simulation B012 (figure 6.4)
show this attenuation inside the cloud slab.

The variance of the supersaturation σs (figure 6.7) decays uniformly in the cloud
core. On the other hand, a huge peak appears at the mid-interface (z/H ∼= 1). This
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(a) 0.27 s (t/τ0 ∼= 0.9) (b) 0.82 s (t/τ0 ∼= 2.7) (c) 1.34 s (t/τ0 ∼= 4.5)

(d) 1.9 s (t/τ0 ∼= 6.3) (e) 2.45 s (t/τ0 ∼= 8.2)

Figure 6.4: Supersaturation field computed in simulation B012. The colorbar ranges
from s = −0.32 to s = 0.12. The cloud slab lies at the bottom.

is a result of the entrainment and detrainment plumes that are generated at the
interface. Warmer supersaturated air is advected upwards and cooler, subsaturated
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air is entrained downwards. There, floating droplets experience a wide variety of
growth conditions that are likely to lead to a broadening of the droplet spectrum,
something that is likely to be observed for initial monodisperse distributions.

By comparing the enstrophy and the supersaturation snapshots (figures 6.1 and
6.4) one can notice similar patterns, especially in the interfacial regions for t & 6τ0.
The plume originating at mid-right shows a high

Figure 6.5: Statistics of the water vapor field for simulation B012. In order to
generate a fluctuating initial condition for ρv, a zero-mean turbulent scalar field
was superposed to the smooth distribution of figure 5.4.

6.1.1 Integral length scale
The spectral method: algorithm issues

The integral scale can be computed by extracting the turbulent energy spectrum
E(κ) from the datasets. To get the spectrum of a specific region of the physical
domain (e.g. the full parallelepiped, one of the cubes or a smaller chunk made up
with a few homogeneous planes), one must transform the velocity field u of the
subdomain into the Fourier space via a 3D Fast Fourier Transform

V (x1, x3, x2) −→ V̂ (κ1, κ2, κ3)

the obtained transformed field must be normalized over the total number of cells
(e.g. if one is transforming the full domain, then normalizes the spectral velocity
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Figure 6.6: Statistics of the non-periodic temperature field for simulation B012
(see also figure 5.3).

Figure 6.7: Statistics of the non-periodic supersaturation field for the simulation
B012. Variance decays in the cores and increases in the mixing regions.

field over n2n3 = 5122 · 1024). Each point of the Fourier field is associated to a set
of wavenumbers whose modulus is |κ| =

ñ
κ2

1 + κ2
2 + κ2

3. One can take the squared
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modulus V̂ T V̂ of each point and add its contribution to the specific wavenumber
|κ| in the spectrum E(κ).1

The energy spectrum is related to the mean squared velocity and the kinetic
energy of the zero-mean flow velocity turbulent flow, one can follow the definition
given in Pope, 2000, chapter 6 and appendices. If the specific subdomain is
statistically homogeneous and isotropic the autocorrelation function of the velocity
field is

RV V (r) =
è
V (x)V (x+ r)T

é
(6.3)

The autocorrelation of the velocity field can be inverse-Fourier transformed into
the power spectral density E(κ)

RV V (r) =
˚ +∞

−∞
E (κ) ejκ·rdκ (6.4)

The integral in equation 6.4 is defined in spherical coordinates in the wavenumber
space. However, to make things more simple, the algorithm used here computes
an approximation of such integral in rectangular coordinates. Taking r = 0 and
considering only the wavenumbers’ moduli k = |k|, the integral 6.4 reduces to

RV V (0) = 8
ˆ +∞

0
E (κ) dκ

The energy spectrum is computed as described below. Each wavenumber κ is
approximated to its nearest integer. By integrating this formulation all over the
wavenumber spectrum, one gets an estimate of the kinetic energy.

Once the spectrum is obtained, the longitudinal integral length scale can be
estimated as a weighted average of the spectrum contribution over the wavenumbers
(Monin and Yaglom, 2013, p. 55)

ü = 3
4π

´∞
0 κ−1E(κ)dκ´∞

0 E(κ)dκ
= 0.0176 m (6.5)

The estimated eddy turnover time can be derived by equation 5.34.
This method provides a good approximation of the turbulent spectrum only

when computed over a wide 3D domain, that is when the spectrum domain’s aspect
ratio is greater or equal to 1. If one uses it to compute the 3D spectrum and
the integral scale of a thin slice, some spurious oscillations will appear (see figure
6.9). This may be due to the fact that, in the Fortran routine, the spectrum is

1The algorithm that was used has been implemented in a Fortran code by the Philofluid
Research Group of the Politecnico di Torino https://areeweb.polito.it/ricerca/philofluid/.
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Figure 6.8: Left: one-dimensional energy spectrum of the cloud cube obtained using
the Matlab fftn function (simulation B002, time 0 s). The orange dash-dotted
line is the theoretical trend E(κ) = Cκε2/3κ−5/3 3.5 for ε ∼= 550 cm2/s3 with
Cκ = 0.6. Right: compensated energy spectrum E(κ)ε−2/3k5/3. As expected, no
stable plateau is observed. The energy bump in κη ∼ 0.1 must not be confused
with the inertial subrange. See (Ishihara, Gotoh, & Kaneda, 2009) for a review of
the compensated spectra obtained via high-Reynolds DNS.

computed in rectangular coordinates by taking into account the contribution of the
wavenumber modulus κ (that is the radius of the spherical coordinate system) over
a coarse discretization in the wavenumber space. In any case, by implementing the
routine in Matlab (through the use of the library function fftn) one observes that
the Parseval theorem is satisfied if an appropriate normalization is chosen. This
does not occur - for some reasons that we still do not know - in the Fortran routine
that uses the FFTW library. This implementation requires further investigation
and debugging to find the appropriate normalization.

However, if ones computes the turbulent spectrum over a 512-points-edge cube
considering also the wavenumbers in the homogeneous directions, then will get a
slightly higher estimate of the integral scale (equation 6.5):

ü = 3
4π

´∞
0 κ−1E(κ)dκ´∞

0 E(κ)dκ
= 0.0249 m
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Figure 6.9: The spectrum algorithm can be computed over different chunks (that
is slices of the physical domain) each one being made up with several homogeneous
planes. In this figure, the three-dimensional spectrum of a 64-plane chunk by
neglecting (left) and taking into account (right) the contribution of the wavenumbers
in the non-homogeneous direction in the Fourier space. Spurious oscillations appear
once the κ3 wavenumbers contribution is taken into account. They are probably
due to the rectangular coordinates approximation and to a coarse wavenumber
discretization at the small scales.

Autocorrelation computation

Another way to get an estimate of the integral scale is through its definition based
on the autocorrelation (two-point correlation) function (Tordella & Iovieno, 2006)

ü = 1
3
Ø
ViVi

ˆ +∞

0
RViVi (r) dr

RViVi (0) (6.6)

calculated for all the components of the velocity vector field and averaged. In this
case we can denote u = Vi as a component of V . The autocorrelation function
must be computed along each homogeneous direction in the physical space in every
point and averaged. The periodic boundary conditions allow for the computation
across a finite distance r = n that assumes a cyclic permutation. An algorithm of
this kind:

Ruu(:)=0.0d0
do r=0,n-1
do j1=0,n-1
do jx=0,n-r-1

jstart=j1+jx
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Figure 6.10: Estimates of the two-dimensional longitudinal integral length scale
computed for each homogeneous x1 − x2 plane. Equations 6.7 and 6.3. Data
retrieved from run B003. The solid dash-dotted line indicates the initial condition.

jend=mod(j1+jx+r,n)
Ruu(r)=Ruu(r)+u(jstart,j3,j2)*u(jend,j3,j2)

end do
end do
Ruu(r)=Ruu(r)/float(n-r)/float(n)
end do

still results too much time-consuming to be adopted. Instead, if one considers
the homogeneity of the field then can remove the loop do j1=0,n-1 by setting
j1=0 and compute the correlations with respect to this point. The operation can
be repeated along every parallel row (that is, the rows that are normal to the x2
distributed direction). Results obtained by each processor can be subsequently
reduced using the MPI_REDUCE (MPI_SUM) function.

The autocorrelation function over a space interval r of an array-signal made up
with n elements is given by (recalling equation 6.3):

Ruu (r) = 1
n − r

n−rØ
j

u (x1, x3, x2) u (x1 + r, x3, x2) (6.7)
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The integral of the correlation function over different ranges r is given by
ˆ +∞

0
Ruu (r) dr =

nØ
r=0

Ruu (r) ∆x

Lref

Moreover, one must consider that the set of periodic boundary conditions also
imply the periodicity of the autocorrelation in every spatial direction (equation
6.7). Thus, in order to get a physical estimate of the integral scale ü one should
integrate the autocorrelation function over a smaller range of r, typically over half
the periodic distance.

To compute the correlation in the distributed direction a parallel transposition
between the homogeneous directions is required, and can be obtained using the
MPI_SEND_RECV_REPLACE function (see the algorithm description in (M. Iovieno
et al., 2001)). The process is repeated and the results are averaged with the one
obtained in the first direction. Results are shown below and seem to be in good
agreement with the estimates that were made in the pre-processing phase.

Results for the first time step show good agreement with the value of the
integral scale that was found using the spectral method and taking into account
the contribution of the wavenumbers in the homogeneous direction only.

6.2 Droplets and temporal scale
Droplet statistics include concentration, mean radius, mean surface, mean volume,
mean growth coefficient. Only relatively small (r . 50 µm) spherical drops are
simulated in the present work. Droplet position, velocity and radius are saved at
each time step and assigned to a specific cell of the mesh in the physical space. The
local droplet concentration is estimated by counting the number of drops in the cell
and averaging the total with respect to the cell volume ∆x3 = 1 mm3. Statistics
are then computed over the homogeneous plane, by taking into account all the n2

cells.
Mean radius, surface and volume are computed by averaging over the non-void

cells of each plane n2 − [number of void cells]. The second, third and fourth-order
moments are computed the same way.

The evolution of droplet concentration and mean radius distributions along the
vertical direction are shown in figure 6.12. Droplet concentration drops near the
mid and bottom interfaces while maintaining a peak close to the initial value for
z/H ∼= 0.4. Droplets that settle below z/H = 0 are killed and many small drops
that are found in the sub-saturated region at the bottom are likely to evaporate
and disappear. Conversely, some droplets are advected within the interfacial
updrafts to the clear-air region. The mean radius averaged signal in the interfacial
region is noisy, meaning that contiguous planes may have very different average
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(a) 0.27 s (t/τ0 ∼= 0.9) (b) 0.82 s (t/τ0 ∼= 2.7) (c) 1.34 s (t/τ0 ∼= 4.5)

(d) 1.9 s (t/τ0 ∼= 6.3) (e) 2.45 s (t/τ0 ∼= 8.2)

Figure 6.11: Droplet distribution throughout the transient (plane x1 − x3, x2 =
1 ÷ 3), run B012. Black dots indicate non-void cells.

values. This region is characterized by high level of small scale anisotropy and high
supersaturation variance. Hence, droplets are likely to experience a wide variety of
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Figure 6.12: Top: droplet concentration and droplet mean radius (right) under
unstable stratifications (B012). Bottom: same under stable conditions (B007).

condensational growth conditions. Droplet clustering and collisional growth may
be fostered by a local increase of the kinetic energy due to the unstable interfacial
temperature gradient (Frη ∼ ε3/4). Droplet clustering may be spotted by observing
a snapshot of the droplet field as in figure 6.11. While no large-scale preferential
concentration seems to take place, it may be found at smaller scales and (or) in the
mixing region. By smoothing the droplet velocity fields and taking the divergence,
one could make a valuable estimate of droplet clustering (equations 3.11). This is
something that may be done in future DNS studies. However, particles with larger
St (larger radii) tend to settle and are subject to slower shrinking rates (recall that
by equation 1.1 one has dr/dt ∼ 1/r), meaning that the mean radius increases
monotonically as z/H → 0.

Similar trends are observed for stable and neutral stratification in smooth,
non-fluctuating vapor fields, thus suggesting that these conditions do not influence
these variable considerably.

It can be shown (Khvorostyanov and Curry, 2014, pp. 144-148) that, if all
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psychrometric and kinetic corrections (αT ∼ 1) are neglected, under the limit of
K Í

v → ∞ the condensational growth coefficient Cr 2.15 reduces to

Crk
∼=

esD
Í
vM

ρwRT

and the phase relaxation time 4.5 can be expressed as a function of the local droplet
mean radius and spatial concentration

τ−1
p = 4πDÍ

vNr (6.8)

As for the droplet mean radius and concentration, the statistics of the phase
relaxation time (equations 4.5 6.8) also show a behavior which is independent of
both stratification and supersaturation fluctuations during the simulated transients.
The plane-averaged distributions for the inverse phase relaxation time τ−1

phase 6.8,

Figure 6.13: Droplet-phase time scales compared to the locally-averaged large scale
eddy turnover time τ 5.34.

inverse saturation time τ−1
satu 4.6 and evaporation time τevap 4.4 are shown in figure
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6.13. Statistics of τevap and τ−1
satu are obtained as ensemble average of simulations

B012, B017 and B018 and show some noise. These time scales concur in the
definition of the large scale Damköhler number Daü. Several studies have identified
the microphysical time scale (equation 3.13 with the phase relaxation, evaporation
and reaction time scale.

6.3 DSD spectral broadening
We wish to verify whether the results obtained by Chandrakar et al., 2016 are
comparable to the ones that we have listed here or not. In their paper from
2016, Chandrakar et al., 2016 describe a set of experiments they had run in a
laboratory chamber where moist Rayleigh-Bénard convection can be generated.
The bottom surface of the chamber was maintained at 7 ◦C and the top at 21
◦C. As steady state conditions were reached, aerosol injection began at a fixed
rate allowing droplets to nucleate, grow and eventually precipitate. By adopting
a stochastic condensation model also used by Sardina et al., 2015, 18 (see for
instance Pope, 2000 for the Langevin equation and Khvorostyanov and Curry, 2014
for the Chapman-Kolmogorov model) they found that, under strict statistically
steady-state conditions, the variance rate of the droplet surface can be expressed
as a function of Cr, σs and with the large-scale, phase relaxation time-defined
Damköhler number

dσ2
r2

dt
= 8C2

r σ2
s0τ

(1 + Da)2 (6.9)

with τ denoting the turbulent correlation time (that is, the eddy turnover time)
which was estimated to be around 2 s. The supersaturation was observed to be
Gaussian with standard deviation σs0 = 0.014 in absence of droplets. The droplet
growth rate is Cr = 109 · 10−12 m2/s. All factors of the time derivative in equation
6.9 are assumed to remain constant in time, thus allowing to get an estimate of
the final surface variance after a typical residence time τres, that they estimated to
be around 10 minutes (600 s). The variance strongly depends on the Damköhler
number, and thus on the droplet mean radius and concentration in the chamber.
Different Da are associated to different aerosols injection rates.

The object of our simulation is slightly different:

• a transient is investigated in this work. The Langevin equation doesn’t describe
decaying turbulent flows, therefore the model adopted by Chandrakar et al.,
2016 should not describe, in principle, that growth dynamics that characterize
these transients.

• the results presented here come from the simulation of the interaction between
two turbulent regions having the same integral scale but different kinetic
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energy levels. The mixing layer that arises is inhomogeneous, anisotropic and
intermittent (Tordella et al., 2008).

• during their experiment, Chandrakar et al., 2016 a constant aerosol injection
rate. This allows for statistically-steady droplet concentration and phase
relaxation times to be observed in the experimental chamber. Conversely,
aerosol activation is not considered here.

• a study by Siebert and Shaw Holger Siebert and Shaw, 2017 also shows that
fluctuations of the relative humidity (and the supersaturation) should be
normally distributed with a standard deviation close to 1%. This is consistent
with the results shown by Chandrakar et al., 2016. Moreover, Holger Siebert
and Shaw, 2017 show that - in the slow microphysics regime (Da ≤ 1) -
droplets do not act effectively as buffers for the supersaturation field, whose
fluctuations become important allowing for different growth conditions. By
choosing a 3D homogeneous supersaturation field as initial condition for a DNS,
one is not able to observe supersaturation fluctuations due to turbulence in
the cloud and clear air cores at low Damköhler numbers, (i.e. for homogeneous
mixing conditions). Since all the present simulations reside in the low Da
limit, this represents a considerable limit for the time scales analysis.

Figure 6.14: Left: spectral broadening rate computed following the steady-state
formulation 6.9 by Chandrakar et al., 2016 (left). Right: variance of the mean
droplet surface (expressed as mean squared radius) as computed from the simulation
results (run B012).

In order to overcome some of these limitations, fluctuating vapor fields have
been adopted as initial conditions for the runs B012, B017 and B018. Even in
these cases the temperature field had been kept smooth and non-fluctuating.
Basically, by modulating the initial amplitude for the vapor field, one can get desired
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supersaturation fluctuating conditions. Chandrakar et al., 2016 had found that
supersaturation fluctuations were nearly Gaussian with zero-mean and a standard
deviation of 0.014. The main issue is that the amplitude of these fluctuations
decays readily with the flow, and this is why no match between the condensational
growth rate (equation 6.9) and the broadening of the droplet spectrum is found
(figure 6.14). However, a small broadening of the DSD spectrum (droplet radii) is
found during the simulation, as some large (≥ 30 µm) droplets are found (figure
6.15).
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Figure 6.15: Evolution of the DSD distribution for a multidisperse, supersaturation
fluctuating run (B012).

The results in figure 6.14 suggest there’s probably no direct correlation between
the steady-state model and the observed results. The variance of the surface
spectrum is reduced in the mixing region as time elapses, probably due to gravita-
tional settling. By contrast, surface variance is found to be higher at the bottom.
This can be explained as a combined effect of both droplet sedimentation and the
entrainment of subsaturated plumes that shrink small drops.

6.4 Homogeneous mixing degree
One of the most widely used parameters to quantifying the grade of homogeneous
mixing on experimental (mostly in-situ or numerical) data is the homogeneous
mixing degree Ψ (Gao et al., 2018; Lu et al., 2013). It can be defined as follows
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(Lu et al., 2018)

β = atan

 1 − rc

ra
n0

na

− nc

na

 (6.10)

and
Ψ = 2β

π
nc < n0

Ψ = 2β

π
+ 2 nc ≥ n0

(6.11)

with reference to figure 3.2. Na and ra are the initial (adiabatic) values. N0 refers
to the concentration reached for a given final value of α as the moist mixing parcel
undergoes an extremely homogeneous transformation from point 2 to point 3.

Following Lu et al., 2018, the correlation between local values of the homogeneous
mixing degree and the microphysical time scales can be compared. The value of
their single-point correlation coefficient can be computed for each squared plane
across the interface. This may give some insight on the ability of each of the
time scales discussed below (see also figure 6.13) to well represent the mixing
dynamics at the interface. Lu et al., 2018 worked on a similar analysis from in-situ
made measurements and data provided by a one-dimensional simulation model.
Unfortunately, for computational reasons, the point-wise value of the reaction time
scale could not be computed. Lehmann et al., 2009 argued that the reaction time,
instead of the phase relaxation or the evaporation time, may represent a valuable
estimate of the microphysical time scale used to derive the Damköhler number.
Following Burnet and Brenguier, 2007, the mixing diagram 3.3 drawn as explained
in chapter 3 has been fulfilled with scattered points (experimental data) marking
the plane-averaged values of r3 and N . The result is shown in figure 6.16. Two
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Figure 6.16: Mixing diagrams. Planes z/H = 0.8 ÷ 1 (left) and z/H = 1 ÷ 1.2
(right).
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plots have been made, for both the lower and upper part of the mixing region. By
taking a look on the plots of the scalars, one can assume that the mixing region
extends over the blue-shaded area with z/H ∈ [0.8,1.2]. One can notice that the
distribution tends to be more inhomogeneous as time elapses and the value of
z/H is increased. The distribution initially follows the homogeneous mixing curve
for RHe = 0.7 (with e being the clear air environment value) and subsequently
drifts towards more inhomogeneous values. Estimates for the reaction time scale
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Figure 6.17: Estimated values for τreact, run B012.

4.7 can be computed from the average values of Cr, r, s and τ−1
phase. Results are

shown in figure 6.17. τreact decreases above the top interface, meaning that the
large scale Damköhler number Da may become of order one or even greater in
this region. Also one may assume, by observing the average trends in figure 6.13,
the phase relaxation time to be the prevalent temporal scale for z/H ∼= 0.9. By
contrast, the evaporation time may better describe the inhomogeneous nature of
the upper part of the mixing region. This is consistent with the fact that in highly
subsaturated regions droplet evaporation may occur without sensibly affecting the
local vapor density. On the other hand and as pointed out by Lu et al., 2018 the
phase relaxation time is the characteristic time of supersaturation variations due
to variations of the liquid water content, regardless of whether such variations are
due to a change in r or N .

Figures 6.16 and 6.17 prove that τreact is a good candidate to correctly represent
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the mixing regimes. The correlation between the other time scales and the homoge-
neous mixing degree may show to what extent higher values of one microphysical
time scale can be associated to homogeneous mixing. Results in figure 6.18 are

Figure 6.18: Homogeneous mixing degree and Ψ − τmicrophysics correlation coeffi-
cients as distributed across the interface.

plotted as ensemble averages of runs B012, B017 and B018. Statistics appear to
be less noisy for a small portion of the domain across the mixing region. The
evaporation time exhibits positive correlation with Ψ, whereas the phase relaxation
and saturation time are negatively and weakly correlated, respectively. A similar
result for the evaporation time was found also by Lu et al., 2018 with measured
data. The negative correlation of τ−1

phase ∝ (Nr) is somewhat unexpected and
would require further investigation. However, this analysis seems to show that the
evaporation time better represents the mixing dynamics rather than τphase and
τsatu.
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Chapter 7

Conclusion

Direct numerical simulations of a cloud-clear air interface were run under different
initial configurations. All runs show the evolution of two adjacent homogeneous
isotropic fields with initial Reλ = 50 in the cloud cube. The combined effect of
condensational growth and fully efficient collision-coalescence have been observed.
All runs were executed for a few initial eddy turnover times in order to compute
a comprehensive evolution of the slowest structures. Unstable configurations led
to the rise of a small hump of kinetic energy at the mid interface and acted as
additional local forcings. High interfacial temperature gradients are common in
cumulus clouds (Andrejczuk et al., 2004) and may play a key role in the mixing
dynamics (Malinowski et al., 2008). Anyway, both the TKE dissipation rate and the
enstrophy rapidly set to quasi-steady state values. As a consequence, large droplets
settle, thus reducing droplet surface variance in the mixing region. Supersaturation
variance also decays rapidly during the first phase of the simulation. Although
the peak in the droplet spectrum (figure 6.15) does not decrease sensibly, it shifts
towards larger modal radii, which is probably an effect of growth by condensation.

No clear dependence of the variance of the droplet surface spectrum σ2
r2 on the

eddy turnover time and the phase relaxation time was found. The steady state
model of Chandrakar et al., 2016 does not seem to fit well the results of these
experiments. However, small broadening of the initial polydisperse distribution was
observed, with a few drops reaching relatively large radii (& 30 µm). Condensational
growth (equation 1.1) becomes uneffective for relatively large drops and collisional
growth may be crucial (Devenish et al., 2012). Following Burnet and Brenguier,
2007; Lehmann et al., 2009 and the DNS works of Kumar et al., 2018; Kumar et al.,
2014, the r − N mixing diagrams (figure 3.1, 3.2 and 3.3) were plotted and the
plane averaged values for the local concentration and mean volume radius were
mapped over these plots. Small droplets floating high above the interface tend to
the inhomogeneous limit, which somewhat appears to be in good agreement with
the distribution of the reaction time computed by using plane-averaged values. The
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evaporation time may be the prevalent time for the region with z/H > 1. Small
droplets that are advected upwards may easily find themselves in a subsaturated
parcel and evaporate in a shorter time. The clear air slab is pushed to the
fast microphysics regime as τ ∼ ü/urms, a condition that is believed to foster
inhomogeneous mixing. Both droplet concentration and droplet mean radius tend
to zero in this region and the phase relaxation time acquires relatively high values
τ−1

phase ∝ rN .
Although the phase relaxation time may be significant for regions that are

characterised by more homogeneous regimes (see scattered plots for z/H < 1,
figure 6.16), the Ψ − τ−1

phase correlation plots suggest that this time scale does not
accurately represent the mixing dynamics. In fact, basing on the argument of
the Damköhler number (Andrejczuk et al., 2009) one should expect a positive
correlation. Positive correlation coefficients ∼ 0.35 were found for the evaporation
time in the mixing region, and no correlation was found between the homogeneous
mixing degree and the inverse saturation time τ−1

satu in the mixing region.
Future simulations may introduce a fluctuating temperature field and higher

values of urms and Reλ as initial conditions. Also, the initial value of the integral
scale may be increased to push the transient towards the fast microphysics regime
with no need to modify the domain size or the initial droplet concentration. A
model for dispersed aerosols and secondary activation should be developed too.
Further DNS studies on shearless mixing and time-scale parameterization (Lu et al.,
2018) are needed.
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