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Abbreviation

ARP Albedo Radiation Pressure
BBRP Black Body Radiation Pressure
JAXA Japanese Aerospace Exploration Agency
LEO Low Earth Orbit
PRP Planetary Radiation Pressure
RAAN Right Ascension of Ascending Node
SRP Solar Radiation pressure
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Abstract

Solar sailing is by far one of the most intriguing and promising concepts for the space
exploration, since it is free from the need of carrying a propellant on board of the spacecraft.
In literature, many studies have demonstrated the suitability of solar sailing for a wide
range of different applications; however, up until now almost all of them have taken into
account only the solar radiation pressure (SRP) to calculate the sail force. This assumption
is acceptable for most of the missions but, since the planet emits radiation or reflects part
of the one coming from the Sun, for planetary missions, a new contribution should be
factored in the calculation of the total radiation pressure. Therefore, this work analysed
the combined effect of both planetary radiation pressure (PRP) and SRP with a three-
dimensional approach, extending a previous work developed for the two-dimensional case.
The study has been focused, in particular, on the Earth and Venus; the first one for
the remarkable amount of possible applications, the second one for the promising results
obtained in the two-dimensional study. In the case of Venus, the PRP is the dominating
contribution within a distance of about two planetary radii, while for the Earth this region
is smaller and closer to the planet. Both for Venus and Earth, results show a potential
increase in net acceleration and a change in optimal attitude to maximise the acceleration
in a given direction; moreover, the PRP provides a force even in the eclipse area, where
the planet blocks solar photons. Last part of the work analysed some manoeuvres with
and without PRP, to compare the results on the change of semimajor axis, eccentricity
and inclination of the orbit; furthermore, the effect of PRP on the capturing manoeuvre of
Venus was studied. The results show that PRP has a positive influence on the performance
of the sail, in particular for the changing of the orbital elements. The effect of PRP on the
capturing manoeuvre becomes relevant especially when the manoeuvre is done near the
eclipse area and within a certain distance from the planet.
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Chapter 1

Introduction

Although the concept of the solar sail appears innovative and futuristic, the idea of using
light for propulsive purposes was born with the development itself of the space propulsion.
However, for a long time, the use of sails has remained theoretical and only in the last
decades some designs come to life thanks to the new manufacturing techniques, the many
progressions in material science and the miniaturisation of satellites. In the 90s’, moreover,
some experiments have been crucial to test in-flight and validate key technologies that now
are the basics for a lot of the modern concepts of solar sailing. In particular, reference
is made to the studies about deployment mechanics, inflatable structures and reflective
materials[1].
Since its beginning, the propulsion has been based on Newton’s law of action-reaction, in
other words, the thrust is generated by an exchange of momentum, typically between some
device on the aircraft/spacecraft and a fluid. In the aeronautical world, the fluid is the air
and the aircraft is immersed in it, unlike a spacecraft which operates in an ambient almost
empty. Since the spacecraft have to carry on board a reaction mass (the propellant), space
exploration has been deeply influenced due to the weight limitation and the corresponding
high costs.
However, even though the approximation of the space as a vacuum is understandable when
the comparison is with Earth’s atmosphere, it is not entirely right. The light propagates
in the space and its photons, even if they do not have a mass, carry a momentum that can
be gain by a structure to generate thrust; this idea is at the base of the solar sails concept
and allows a unique form of space propulsion, free from the need of bringing from Earth
a reaction mass. In addition to the benefits in terms of weight, using an ambient source
has no time limits so that a solar sail can generate continuous acceleration and the mission
can be fully operative as long as the sail film lasts in the space environment; therefore
the only limitation is the lifetime of the materials. The price for all these intriguing
advantages is that acceleration from a solar sail is very small since each photon carry a
minimal momentum; considering, for example, a sail located in an Earth orbit, at best it
will experience a force of 9 · 10−6N per square metre [1]. If not carefully studied, the banal
solution of a sail with a large surface that intersects more photons can drastically increase
the structural weight, reducing the payload mass and even not having a beneficial effect
on the acceleration.
As it will see in the next paragraphs, the resultant force depends on the reflective properties
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Introduction

of the coating film, but in first approximation, it can be said that it is directed as the normal
to the sail surface. For this reason, the acceleration can be reduced or increased changing
the orientation of the sail in relation to the photons source and even the attitude can be
controlled modifying the reflective properties or the orientation of some parts of the sail.
Thanks to this flexibility, a huge range of different missions is possible, and more of these
have been already studied and analysed in scientific literature [2]. In their works, Eguchi [3]
and Fekete [4] proposed fly-bys and rendezvous to the Moon, while inner [5] [6] and outer [7]
[8] solar system rendezvous missions have been analysed by Garner, Leipold, Mengali and
Quarta. Peloni and Ceriotti studied trajectories for near-Earth asteroids [9] and Leipold
[10] and Casalino and Colasurdo [11] considered solar sail for escaping from the Solar
System. The continuous acceleration that a sail can potentially provide makes it suitable
for station keeping, e.g. in Halo orbit [12]. Furthermore, many interesting concepts have
been done for planet-centred orbits such as the demonstration mission GeoSail [13] in Earth
magnetotail or MESSAGE (MErcury Solar Sail Advanced Geoscience Exploration) [6] in
a sun-synchronous orbit around Mercury. Other relevant application can be in escaping
manoeuvres from Earth: studies have been already conducted by Macdonald and McInnes
[14] using near-optimal trajectories and by Coverstone and Prussing [15] for escaping from
GTO. Moreover, free from the need of propellant, the use of the solar sail allows non-
Keplerian orbit [1] such as the pole sitter concept proposed by Ceriotti [16] for Earth and
extended by Heiligers and Ceriotti [17] for other planets, where solar sailing is used with a
SEP to maintain the spacecraft over the North or the South pole.
However, for now, most of these ideas are just theoretical, and only a few of them have
been already launched and tested in space. The actual demonstration of the feasibility of
solar sailing came thanks to the Japanese Aerospace Exploration Agency. In 2010 JAXA
launched and deployed in space IKAROS, the spacecraft that tested solar sailing in an
interplanetary mission to Venus. In the following years, other companies and association
have developed solar sailing missions, e.g. NanoSail-D by NASA in 2010 and recently
LightSail 2 by Planetary Society that has demonstrated the possibility of rising the apogee
of an orbit by using only solar sail propulsion.

All the studies mentioned above consider only the Solar Radiation Pressure, and so
the Sun as unique photons source. This consideration is acceptable mostly when the
spacecraft is in outer space; however, when the sail comes near a celestial body such as a
planet, another contribution should be considered. A planet, in fact, emits radiations and
reflects partially the ones coming from the Sun. The first contribution is called black body
radiation and is due to the thermodynamic equilibrium of the body with its environment.
Its value is strictly linked to the Stefan-Boltzmann law. The contribution due to the
reflection of solar radiation is called albedo and depends on the features of the reflecting
surface, in other words, different soils have different albedo [18]; moreover even the seasons
can influence it [19]. Unlike black-body radiation, the albedo contribution was already
studied by Grøtte and Holzinger in a three-body problem, showing how its contribution
allows new equilibrium points that can become stable using solar sail attitude control
[20]. Despite the high interest and the numerous amount of concepts in body-centred
trajectories, the studies on the planetary radiation pressure PRP are still few and only in
De Iuliis’s work [21] it has been fully considered in both its contributions. De Iuliis, in
particular, analysed the benefit of the PRP in the net acceleration and made a comparison
of the results with and without PRP in a real case scenario where the semimajor axis
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Introduction

Figure 1.1. LightSail 2 during sail deployment sequence, image from the Planetary Society

is increased. The study achieved its aim, but it was focused only in a 2D analysis, so
the purpose of this work is to extend that analysis in a 3D case and to demonstrate the
possibility of a capturing manoeuvre around Venus. Hence, the thesis is divided in two
different parts, in the first one the general physics of solar sailing will be introduced in
the chapter 2 and the three-dimensional model of solar and planetary radiation pressure
will be presented in the chapter 3. As it will see, the attitude of the sail will be written
as a function of two different angles that allow knowing the position of the sail-surface
normal vector in a three-dimensional space. Some results of the model will be shown in
chapter 4. In the second part of the thesis, the model will be used to perform orbital
manoeuvres in order to change semimajor axis, eccentricity and inclination in section 5.2
and to investigate the effect of planetary radiation pressure in a capturing manoeuvre in
section 5.3. The results of these simulations will be shown in chapter 6.
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Three dimensional analysis of
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Planetary Radiation Pressure

7





Chapter 2

Solar sailing physics

As previously mentioned, a solar sail gains the momentum of the photons and uses that
momentum to propel the spacecraft; the bigger its surface is, the more will be the photons
which will hit the sail and, theoretically, the higher will be the acceleration, so, for this
reason, a solar sail appears as a structure of rather big dimensions. Despite this fact,
its weight must be extremely small in order to maximise the benefit, hence typically the
surface is some microns thick and is made of lightweight materials such as Mylar; most of
the weight is concentrated in the structure which keeps the sail unfolded.
From a physical point of view, there are two different approaches to explain how the sail
works. The first one uses the quantum description of photons, while the second one uses the
electromagnetic description of radiation. Both the ways have been extensively analysed in
the literature, for this reason, they will be touched upon just for a better understanding of
the following chapters. For the writing of the next sections, reference is made to McInnes’
work [1].

2.1 Quantum description
As is known, photons are packets of quantized energy, whose value depends on their fre-
quency ν and can be obtained through Planck’s law.

E = hν (2.1)

where h is the Planck’s constant. The same energy E can also be obtained with the
mass-energy equivalence of special relativity for a moving body

E2 = m2
oc

4 + p2c2 (2.2)

where c is the speed of light, mo is the invariant mass of the body and p its momentum.
The two terms represent respectively the rest energy and the kinetic energy of the body
but, since a photon has zero mass, the equation can be simplified.

E = pc (2.3)

Comparing the equation 2.1 and 2.3, the momentum of a single photon can be found

p = E

c
= hν

c
(2.4)
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The analysis can be extended for more photons considering an energy flux W ; by its
definition, the flux of a physical dimension represents its value crossing a unit surface in
unit time; hence the energy may be written as

∆E = WA∆t (2.5)

and in the momentum relation

∆p = ∆E
c

= WA∆t
c

(2.6)

where A is the area normal to the incident radiation. The pressure is a force per unit area
so, from Newton’s law, it is the momentum transported per unit time, per unit area

P = 1
A

∆p
∆t = W

c
(2.7)

The relation links the pressure to the energy flux W , so the last step is to define its value.
In the classic study of Solar Radiation Pressure, it depends on the solar luminosity Ls and
on the distance r from the Sun; however, for practical purposes, it is commonly used the
flux measured at the Earth’s mean distance from the Sun, opportunely scaled.

W = Ls

4πr2 = Ls

4πR2
E

3
RE

r

42
= WE

3
RE

r

42
(2.8)

where WE is 1361 W/m2 [22].

2.2 Electromagnetic description
An equivalent result is obtained considering the momentum transported by the electro-
magnetic waves. These have two different components: the electric one þE that induces in
the sail a current þj, and the magnetic one þB that interacts with the current and generates
a Lorentz force. In fig 2.1 a representation of the vectors is shown.

Figure 2.1. Electromagnetic description of radiation pressure [1]
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2.3 – Radiative transfer methods

The equation of Lorentz force is

þFL = þj × þB (2.9)

and, considering for example that the waves propagate along x, it is possible to write the
magnitude of the force on an infinitesimal element as

df = jzBy dx dy dz (2.10)

with jz the current volumetric density. From the equation of the infinitesimal force can be
written the pressure

dP = jzBydx (2.11)

Substituting jz through Maxwell’s equations, the last relation can be rehashed and it can
be demonstrated that the pressure exerted on the surface is equal to the total energy
density of the electromagnetic wave.

éP ê = éUê (2.12)

where
U = 1

2εoE
2 + 1

2µo
B2 (2.13)

The definition of energy density, namely an energy per unit volume, is used to link the two
descriptions of the radiation pressure. For this analysis, in particular, the volume is given
by the incident area A of the surface and by the distance between two waves; since this is
the distance that the light travels in a period of time ∆t, the energy density become

U = ∆E
A c∆t (2.14)

and again the energy flux appears in the relation

W = 1
A

3∆E
∆t

4
(2.15)

Hence, it is obtained
P = U = W

c
(2.16)

Both the description arrives at the same conclusion but, since the reflection generated a
contribution too, this result must be doubled or at least multiplied for an appropriate
factor which considers the reflectivity properties of the materials.

2.3 Radiative transfer methods
The found relations offer a good approximation for solar radiation pressure; however, they
do not consider that the radiation depends on both position and time, and that may have
a distribution and a frequency. Furthermore, it has been assumed that its variation follows
an inverse square law with the photons source distance but, although this assumption can
be accepted when the source is far from the sail, it is not valid when the sail is close

11
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to it, and it is necessary to take into account the finite angular size of its disc. When
the sail orbits around a planet, considering its finite angular size is particularly relevant
for the study of the planetary contribution. The radiative transfer methods provide a
rigorous means of calculating the effect of radiation pressure and allow to overcome all the
limitation previously mentioned. All the properties of the radiation field may be described
by the specific intensity Iν(þr, þu; t) at position þr and time t propagating with frequency ν
in direction þu. The specific intensity is defined to be the energy dE transported across a
directed surface element d þA in time dt into a solid angle dΩ about direction þu.

dE = Iν(þr, þu; t)(þu · d þA) dΩ dt dν (2.17)

where þu · d þA is the projected surface area normal to the direction of propagation, as shown
in fig.2.2. A relation for the energy can be obtained also from a microscopic perspective, in

Figure 2.2. Radiation field specific intensity [1]

order to find an equation for the specific intensity. Through the photons number density
function ψν(þr, þu; t) is possible to calculate the number of photons per unit volume at
position þr at time t in a frequency range (ν, ν + dν) propagating with speed c into a solid
angle dΩ about direction dþu, and then the number of photons dN crossing a surface element
d þA in time dt

dN = ψν(þr, þu; t)(þu · d þA)(cdt) dΩdν (2.18)

where (þu ·d þA)(cdt) is the volume element containing photons emerging through d þA in time
dt in direction þu. According to Planck’s law, the energy of each photons is hν, so the
energy transported by a certain number of photons is

dE = chν ψν(þr, þu; t)(þu · d þA) dΩ dν dt (2.19)

and from the comparison of the equations 2.17 and 2.19 it is found a relation between the
specific intensity and the photon number density function.

Iν(þr, þu; t) = chν ψν(þr, þu; t) (2.20)

12



2.3 – Radiative transfer methods

In a general case the radiation pressure þP (þr; t) is a tensor defined such that the element
P ij is the net rate of transport of the ith component of momentum through area dA
oriented normal to jth co-ordinate axis. In other words, the radiation pressure tensor
due to photons in the frequency range (ν, ν + dν) may be expressed as the momentum
transported (hν/c)ui)by each photons in the ith direction and the number of photons
cψν(þr, þu; t)uj with frequency ν propagating in solid angle dΩ about the direction uj and
crossing surface area dA in time dt integrated over all solid angles.

P ij(þr; t) =
j

4π
cψν(þr, þu; t)

3
hν

c
ui

4
ujdΩ = 1

c

j
4π
Iν(þr, þu; t)uiuj dΩ (2.21)

The radiation pressure over the entire frequency range is obtained by integrating

þP (þr; t) = 1
c

Ú ∞
0

j
4π
Iν(þr, þu; t) þuu dΩ (2.22)

where þuu is the tensor quantity [uiuj ]. The last equation is a powerful means to obtain the
radiation pressure at any point and in any direction within the field of any source, moreover
the radiation pressure on a body placed within the radiation field may be obtained by
knowing its surface geometry and its optical properties.
For the purpose of this work, the equation 2.7 is accurate enough for the solar contribution,
while the equation 2.22 will be used for the planetary contribution. In particular, it will be
assumed that the planetary disc has uniform brightness, so any point of the disc will appears
equally bright from any view angle; moreover the specific intensity will be considered time
independent and isotropic across the disc. Hence, the PRP exerted on a radially oriented,
perfectly reflecting sail at a planet-centred distance r is

P (r) = 2
c

Ú ∞
0

Ú 2π

0

Ú θ0

0
Iν cos2 θ dΩ dν dΩ = sin θdθdφ (2.23)

where θ0 is the angular radius of the disc and is given by arcsin(Rp/r), as shown in fig.2.3.
The equation may be simplified noting the azimuthal symmetry and that the specific
intensity is independent of the distance.

P (r) = 4π
c
I0

Ú 1

ξ0

ξ2dξ ξ = cos θ ξ0 = cos θ0 (2.24)

where I0 is the specific intensity integrated over all the frequency. Solving the integration
and substituting for ξ0 it is found that

P (r) = 4π
3c I0

1 −
C
1 −

3
Rp

r

42
D3/2

 (2.25)

The equation can be simplify expanding in power of (Rp/r)2 for r º Rp. This assumption
is against the idea of using the model close to the planet, but it is useful to find a relation
for I0.

P (r) = 2π
c
I0

3
Rp

r

42
+ O

3
Rp

r

44
(2.26)
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Figure 2.3. Planetary radiation pressure with a finite angular sized disc

At large values of r this expansion must match asymptotically with the expression for the
radiation pressure from a distant point source.

P ∗(r) = 2
c

A
L

4πR2
p

B3
Rp

r

42
(2.27)

By comparing the two equation, the frequency integrated specific intensity is identified as

I=
Lp

4π2R2
p

(2.28)

and relation for planetary radiation pressure exerted on a radially oriented solar sail from
a uniformly bright, finite angular sized planetary disc is obtained as

P (r) = Lp

3πcR2
p

1 −
C
1 −

3
Rp

r

42
D3/2

 (2.29)

The reason why this last equation is not used to calculate the solar radiation pressure is
that after about 10 radii of the source, the deviation from the equation 2.7 tends to zero.
The luminosity Lp of the planet will be analysed in chapter 3.
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Chapter 3

Three-dimensional model

This chapter aims to create a three-dimensional model that allows calculating the acceler-
ation given by the sail, known its characteristic acceleration and its position and attitude
in the three-dimensional space. The characteristic acceleration ao is a common way in
the literature to compare different designs of the sails and it is defined as the acceleration
experienced by a solar sail facing the Sun at a distance of one astronomical unit due to
Solar Radiation Pressure. Knowing the characteristic acceleration, the ratio between the
mass of the spacecraft and the surface of the sail, called sail loading σ∗, is set; in other
words, the dimension of the sail is defined.
As it will be seen in the next sections, the attitude has been determined by two angles, the
cone angle α and the clock angle δ, and the model to calculate the acceleration has been
implemented in an algorithm to find the two angles that maximise the acceleration in a
chosen direction.
In this work, a non-ideal sail is considered; for this reason, the optical properties of the
materials have been taken into account.

3.1 Acceleration in a optical force model

3.1.1 Two-dimensional introduction
When the optical properties of the material are considered for the calculation of the force,
it is possible to develop a more exact model of the radiation pressure. The total force
exerted on the sail then may be written as the sum of three different contributions

þf = þfr + þfa + þfe (3.1)

where the first term is due to reflection, the second one due to absorption and the third
one due to emission of the sail by re-radiation. The contribution of each of them depends
on the main optical properties of the sail film and in particular on the reflection coefficient
r̃, the absorption coefficient ã and the transmission coefficient τ̃ . These are linked through
the relation

r̃ + ã+ τ̃ = 1 (3.2)
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Three-dimensional model

However, for a solar sail the transmission can be considered negligible so the previous
equation becomes

ã = 1 − r̃ (3.3)
It is convenient to define two different unit vectors in terms of normal and transverse
components.

r̂ = cosα n̂+ sinα t̂ (3.4)
ŝ = − cosα n̂+ sinα t̂ (3.5)

where r̂ is the direction of the incident photons and ŝ is the direction of the reflected ones.
The angle α is generally called pitch angle in the two-dimensional model or cone angle in
the three-dimensional one and is the angle between the incident photons and the normal
of the surface. If all incident photons are absorbed, the force exerted on the sail will be in
the direction r̂ and may be written as

þfa = PA (r̂ · n̂) r̂ = PA
1
cos2 α n̂+ cosα sinα t̂

2
(3.6)

However, a fraction r̃ of the photons is reflected and, assuming that the reflection is only
specular to the incident photons, it provides a force in the direction −ŝ

þfr = −r̃PA (r̂ · n̂) ŝ = r̃PA
1
cos2 α n̂− cosα sinα t̂

2
(3.7)

The last force component is that due to photons absorbed and then re-emitted as thermal
radiation, however this contribution is typically an order of magnitude lower than the other
two, so for this analysis it has been neglected. Substituting 3.3 in the previous relations,
it is found

f̂n = PA(1 + r̃) cos2 α n̂ (3.8)

f̂t = PA(1 − r̃) cosα sinα t̂ (3.9)
It is evident that if the sail is a perfect reflector, the coefficient r̃ will be 1 and the force
will have only a normal component. Dividing by the mass, the acceleration can be found

ân = P

σ∗
(1 + r̃) cos2 α n̂ (3.10)

ât = P

σ∗
(1 − r̃) cosα sinα t̂ (3.11)

where again σ∗ is the sail loading. The magnitude of the acceleration can be easily calcu-
lated through the norm of the two relations above. As regards its direction, as previously
mentioned, a transverse component exists due to the optical properties of a non-ideal sail.
In particular, there is an offset angle φ between the normal to the surface and the acceler-
ation vector m̂, as shown in fig. 3.1. According to [23] this offset angle can be calculated
using the optical coefficients and in particular

tanφ = h

g
tanα (3.12)

where in the simplified case in exam

g = 1 + r̃ (3.13)
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3.1 – Acceleration in a optical force model

Figure 3.1. Offset angle between n̂ and m̂ [23]

h = 1 − r̃ (3.14)

The angle φ is related to α, but it could be easier to use a new angle, θ, defined as the one
between m̂ and r̂.

θ = α− φ (3.15)

tan θ = (g − h) tanα
g + h tan2 α

(3.16)

3.1.2 Three-dimensional extension
According to the optical laws, the reflection takes place always in the plane of the incident
ray and the normal of the surface, for this reason the magnitude of acceleration in the two-
dimensional and three-dimensional cases has to be the same. The relation of the magnitude
has been developed from the normal and transverse components previously presented.

a =
ñ
a2

n + a2
t

a = P

σ∗

ñ
(1 + r̃)2 cos4 α + (1 − r̃)2 cos2 α sin2 α

a = P cosα
σ∗

ñ
(1 + r̃)2 cos2 α + (1 − r̃)2 sin2 α

a = P

σ∗

ð
cos2 α + 2r̃ cos2 α + r̃2 cos2 α + sin2 α + r̃2 sin2 α− 2r̃ sin2 α cosα

a = P cosα
σ∗

ñ
1 + r̃2 + 2r̃ (cos2 α− sin2 α)

a = P cosα
σ∗

ñ
1 + r̃2 + 2r̃ (2 cos2 α− 1) (3.17)
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Three-dimensional model

The obtained equation agrees with the tree dimensional model presented by Prof. McInnes
[1] for an ideal sail and can be used both for Solar and Planetary Radiation Pressure, paying
attention to the different pressure and cone angle α. Known the magnitude, the direction
is necessary to determine completely the acceleration vector.
Substituting 0° as cone angle, it is found the relation of the characteristic acceleration

ao = (1 + r̃) P
σ∗

(3.18)

It is now useful to define three different reference systems. The first one (from now on a

Figure 3.2. Reference system a or xyz

or xyz) has its origin in the centre of the planet, the x axis with the direction and verse of
the line from the centre of the planet to the centre of the Sun, the z axis parallel to the
angular velocity of the Earth about the Sun and the y axis orthogonal to the other two. A
representation is shown in fig.3.2. The second and the third reference systems are called b
and c, and are strictly related to the source whence the photons are emitted or reflected.
In the case of the reference system b, the origin is in the centre of the sail, and its first
axis coincides with the direction of the photons coming from the planet due to black body
or albedo radiation; in other words, the first axis is the normalised vector that goes from
the centre of the planet to the centre of the sail, the other two axes are calculated by the
cross product with þω, where þω is the angular velocity of the Earth about the Sun and so
corresponds to z direction. C

þrp

|þrp|
,
þω × þrp

|þω × þrp|
,
þrp × (þω × þrp)
|þrp × (þω × þrp)|

D
(3.19)
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3.1 – Acceleration in a optical force model

The vector þrp is known in reference system a and is þrp = [xp, yp, zp], so it is easy to translate
vectors from a reference system to the other.
The transformation from a to b can be done with the rotation matrix

Ca/b =
C
þrp

|þrp|
,
þω × þrp

|þω × þrp|
,
þrp × (þω × þrp)
|þrp × (þω × þrp)|

DT

(3.20)

The inverse matrix of Ca/b is required to do the opposite operation, but it can be demon-
strated that Ca/b is an orthogonal matrix, so its inverse is equal to its transpose.

Cb/a = [Ca/b]−1 = [Ca/b]T (3.21)

Following [1], the attitude of the sail can be defined by the normal of the surface thanks to
two angles, the cone angle αp, already introduced in the two-dimensional model and defined
as the angle between n̂ and r̂p, and the clock angle δp, defined as the angle between the
projection of the sail normal and a reference direction onto a plane normal to the incident
photons, in this case þrp×(þω×þrp)

|þrp×(þω×þrp)| . A representation is shown in fig.3.3.

Figure 3.3. Acceleration unit vector m in a generic reference system [23]

The normal vector may be written in the reference system b and can be transported in
a with the rotation matrix previously defined.

n̂b = [cosαp, sinαp sin δp, sinαp cos δp] (3.22)

n̂a = Cb/an̂
b = [Ca/b]T n̂b (3.23)

The defined normal vector takes as reference the front surface, for the back surface it is
exactly the opposite

n̂a
b = −n̂a

f (3.24)
Known the angle αp, it is possible to calculated θp according to 3.16; the acceleration unit
vector may be written as

m̂ = [cos θ, sin θ sin δ, sin θ cos δ] (3.25)
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The third reference system c is defined in the same way of b, but in this case, its first
axis coincides with the direction of the photons coming from the Sun. Again the other two
axes are calculated by the cross product with þω.5

þrs

|þrs|
,
þω × þrs

|þω × þrs|
,
þrs × (þω × þrs)
|þrs × (þω × þrs)|

6
(3.26)

with
þrs =

è
RP/Sx

− x,RP/Sy
− y,RP/Sz

− z
é

(3.27)

As for the b reference system, it is possible to define a normal vector to the surface.

n̂c = [cosαs, sinαs sin δs, sinαs cos δs] (3.28)

From a practical point of view, defining two other angles, it is not the best solution for the
analysis. The normal vector is already defined in the reference system b, so the attitude of
the sail is set in three-dimensional space. The only angle that must be known to calculate
the magnitude of the acceleration due to the Solar Radiation Pressure is αs, and from its
definition, it is the angle between the normal and solar rays unit vectors. Since both are
known in the xyz reference system, it can be found

αs = arccos(n̂a · r̂a
s ) (3.29)

Seeing as δs is not easy to be calculated as αs, another strategy has been taken into
account to compute the acceleration unit vector. Since it lies on the n̂s − r̂s plane, it
may be calculated rotating r̂s of the angle θ. Both for the front and the back surfaces the
angle θs is calculated thanks to the formula proposed by [23]. The rotation is about the
orthogonal axis of n̂− r̂s

pf = n̂× þrs

|n̂× þrs|
(3.30)

pb = (−n̂) × þrs

|(−n̂) × þrs|
(3.31)

The rotation matrix was taken from [24]

Mpt =

 p2
x + (p2

y + p2
z) cos θ pxpy(1 − cos θ) − pz sin θ pxpz(1 − cos θ) + py sin θ

pxpy(1 − cos θ) + pz sin θ p2
y + (p2

x + p2
z) cos θ pypz(1 − cos θ) − px sin θ

pxpz(1 − cos θ) − py sin θ pypz(1 − cos θ) + px sin θ p2
z + (p2

x + p2
y) cos θ


(3.32)

Using this matrix, the acceleration unit vector can be found and multiplied to the magni-
tude

m̂a
sf

= (Mp/tf
r̂T

s )T (3.33)

m̂a
sb

= (Mp/tb
r̂T

s )T (3.34)

3.2 Radiation Pressure contribution
The previous section focused on the acceleration unit vector and the generic formulation of
the magnitude of the sail in a non-ideal optical model force. In this section, the radiation
pressure of the single contributions has been examined in depth.
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3.3 – Evaluation of the PRP contribution

3.2.1 Evaluation of the SRP contribution
All the ingredients to calculate the acceleration due to Solar Radiation Pressure have been
already presented. As previously mentioned, since the distance from the Sun is further
than ten solar radii, it is possible to use the inverse square law 2.7 and 2.8

P (rs) = W

c
= Wp

c

3
Rsp

rs

42
(3.35)

where Wp is the solar energy flux at the planet distance, c is the speed of light, Rsp the
average distance of the planet from the Sun, and rs the distance of the sail from the Sun.
The relation of the SRP is then substituted in the general equation of the acceleration
magnitude 3.17.

þaSRP = Wp cosαs

cσ∗

3
Rsp

rs

42ñ
1 + r̃2 + 2r̃ (2 cos2 αs − 1)m̂s (3.36)

where the cone angle αs and the acceleration unit vector m̂ have been previously defined.
The acceleration due to SRP is zero in the umbra region since the sail is in eclipse. For this
study, the eclipse area has been modelled as a cylindrical shadow with a radius equal to
the one of the planet; in fact, seeing as the sail is far from the Sun, the divergence of solar
rays is small, and they can be assumed as parallel. This simple model does not consider
the penumbra but gives a good approximation.

Figure 3.4. Cylindrical eclipse model

3.3 Evaluation of the PRP contribution
According to [1] and [21], and as found with radiative transfer methods for a planet mod-
elled as a uniformly bright finite angular size disc, the planetary radiation pressure is

P (rp) = LP RP

3πcR2
p

1 −

1 −
A
Rp

rp

B2
 3

2
 (3.37)

that substituted in the generic acceleration relation

þaP RP = LP RP cosαp

3πcR2
pσ
∗

1 −

1 −
A
Rp

rp

B2
 3

2

ñ

1 + r̃2 + 2r̃ (2 cos2 αp − 1)m̂p (3.38)
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where LP RP is the planetary luminosity and has a component caused by Black Body
Radiation LBBRP and one caused by Albedo Radiation LARP .

LP RP = LARP + LBBRP (3.39)

3.3.1 Albedo Radiation Pressure
The albedo represents the fraction of the solar radiation that strikes the planet and is
reflected. It can be defined in different ways, in the NASA planetary fact sheet two are
presented:

• the geometric albedo, as «The ratio of the body’s brightness at a phase angle of zero
to the brightness of a perfectly diffusing disk with the same position and apparent
size, dimensionless. V-band (0.549µm). Earth is highly variable» (Dr. David R.
Williams, NASA)

• the bond albedo, as «The fraction of incident solar radiation reflected back into space
without absorption, dimensionless. Also called planetary albedo» (Dr. David R.
Williams, NASA)

Apparently, in this study, the bond albedo should be the most suitable. The calculation
of albedo contribution is based on [19].

Figure 3.5. Reflection angle

The albedo flux can be written as

qa = WpζF cos θ (3.40)

where Wp is the solar flux at the planet orbit, ζ is the bond albedo, F is a view factor (also
called shape factor or configuration factor) and represents the fraction of the total radiant
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3.3 – Evaluation of the PRP contribution

energy that leaves the planet and strikes the sail surface, θ, in this case, is the reflection
angle. As shown in fig. 3.5, the reflection angle is the angle between the vector þRsp that
represents the distance of the planet from the Sun and the position vector of the sail relative
to the planet þrp. The value of ζ should change both seasonally and geographically, but
in this study, a mean value (according to NASA fact sheet) is used. The eq. 3.40 results
in a value per square meter [W/m2], but in the equation of the force the luminosity L
represents the power that goes from the source to the sail. Considering the planet as disk
uniformly bright, the luminosity due to ARP becomes

LARP = qaπR
2
p (3.41)

In [25], it is shown that a surface orbiting a planet can be oriented such that either one
side or both sides are heated.

Figure 3.6. Surface heated by the photons flux

If only one side is heated,
λ+ φm ≤ π

2 (3.42)

and the view factor is given by
F = cosλ

H2 (3.43)

where λ is the angle between the surface normal and the heat flux, and H = rp

Rp
. Seeing

as it has been assumed that the heat flux arrives radially from the planet, in this work, λ
corresponds to αp. The radius of the planet is Rp, and the distance from the centre of the
planet to the heated surface is rp. The angle φm is defined in fig. 3.6 and it is equal to the
φm = arcsin

! 1
H

"
. If both sides of the surface are heated,

π

2 − φm < λ ≤ π

2 + φm (3.44)
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Three-dimensional model

and a separate view factor must be calculated for each side. The total view factor for the
surface is then the sum of the two. For each side the view factor is given by

F = 2
π

A
π

4 − 1
2 arcsin

A√
H2 − 1
H sin λ

B
+ 2
H2

î
cosλ arccos

è
−
ð
H2 − 1 cotλ

é
+

−
ð
H2 − 1

ð
1 −H2cos2

ï2
(3.45)

So, in the analysis of the albedo contribution there are three different possibilities:

• the back surface is the one hit by the photons;

• the front surface is the one hit by the photons;

• both the surfaces are hit by the photons.

For the first two cases λ+ φm ≤ π
2 , so it is calculated the relative view factor for the back

or the front surface with eq. 3.43 and then photons flux, luminosity and acceleration. For
the third case, all values are calculated for both the surfaces and then they are summed up
for the acceleration. Since the albedo is related to the reflection of light from the planet,
its contribution is equal to zero in the area where the surface of the planet is not hit by
the sun rays and so cannot reflect photons, in other words when x < 0.

Figure 3.7. Area where the Albedo Radiation Pressure exists

3.3.2 Black Body Radiation Pressure
If the planet is considered as a black body in equilibrium with its environment, it will emit
photons according to the Stefan-Boltzmann Law, with luminosity

LBBRP = 4πR2
pFσ̄T

4
p (3.46)

where Rp is the radius of the planet, Tp is its mean temperature, F is the same view
factor used for ARP and σ̄ = 5.670370.10−8W/(m2K4) is the Stefan-Boltzmann constant.
The contribution of Black Body Radiation is uniform around the planet and goes in the
radial direction. As for the ARP, there are three different possible cases; when the scalar
product r̂p · n̂ is positive, the normal is concordant with the direction of the planetary
photons, so these will strike the back surface of the sail; instead, when the scalar product
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3.3 – Evaluation of the PRP contribution

is negative, the normal is pointing towards the source so that the photons will strike the
front surface. In this case, since π

2 < αp <
3π
2 , a minus is required in front of the equation.

The components of the acceleration are calculated by the product of the magnitude with
the unit vectors m̂a

f or m̂a
b .

Figure 3.8. Sail surface struck by the photons
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Chapter 4

Evaluation of attainable values
of acceleration

The model presented in the previous chapters has been used to analyse the possible ac-
celeration around some planets and in particular the Earth and Venus. The first one has
been chosen for the many possible applications studied in the literature, while the second
one for the promising results obtained in the two-dimensional analysis by De Iuliis [21].
Known the position in three dimensional space and the features of the sail, the MATLAB
script scans all the combinations of cone angle αp and clock angle δp and calculates for
each set the corresponding acceleration. Then, the results have been compared with the
required acceleration vector, the one closer is picked, and its attitude has been chosen
as the optimal attitude for the sail in that point. This process has been conducted in a
grid of points (50 × 50) around the planet, for 60 angles between 0 and 2π. The reason
why a two-dimensional grid has been chosen is to simplify the visualisation of the results,
however, as it will be seen in the following chapters, every point of the three-dimensional
space can be analysed, allowing to study orbits with different inclination.
Since the aerodynamic forces have not been considered, in order to avoid the atmosphere
only points at least 400 km above the planet surface have been taken into account.
The sail surface has typically a reflective coating that changes its optical properties and
usually maximises the reflection coefficient r̃. The coating can be used for both the sides
of the surface or only the front one. In this part of the work, the two different cases have
been analysed and in particular:

• single side coating, where the front surface has r̃ = 0.9 and ã = 0.1, while the back
surface has r̃ = 0.1 and ã = 0.9;

• double sides coating, where both the front and the back surfaces have r̃ = 0.9 and
ã = 0.1;

The sail loading has been set equal to 0.1kg/m2, and consequently the characteristic accel-
eration is 8.5559 · 10−5m/s2 for the front surface. The data for the two planet are shown
in table 4.1
The analysis has been conducted searching for the best acceleration in the radial and
transverse direction that the sail can provide in the region around the planet. Moreover,
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Evaluation of attainable values of acceleration

Rp Rsp Tm ζ W

Venus 6070 km 57.91 · 106km 737 K 0.76 2601 W
Earth 6378 km 146.6 · 106km 288 K 0.306 1350 W

Table 4.1. Data of the planets [Nasa planetary data sheet]

some specific points have been examined in depth to make a comparison with the two
dimensional results [21] and to validate the model.

4.1 Radial Acceleration
The first analysis has been done for the radial case in the x − z plane. The results have
been normalised with the characteristic acceleration so that they do not depend on the sail
geometry and are valid for every flat sail regardless mass of the spacecraft or surface of the
sail. For each study-case, the different contributions of SRP, BBRP and ARP have been
studied first separately and then together. In particular, the following section shows the
cases with:

• SRP only;

• ARP only;

• BBRP only;

• SRP+PRP;

The region of study is −3Rp ≤ x ≤ 3Rp and −3Rp ≤ z ≤ 3Rp. The points chosen for the
comparison of the two coating cases are:

• A=(2Rp, 0, −2Rp);

• B=(3Rp, 0, 0);

• C=(Rp, 0, 3Rp);

• D=(−3Rp, 0, Rp);

• E=(−2Rp, 0, 0);

• F=(−Rp, 0, −3Rp);
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4.1 – Radial Acceleration

Figure 4.1. Points chosen for the validation of the model

4.1.1 Solar Radiation Pressure
This section focuses on the SRP contribution.

Earth

The first plots shown refers to the Earth.
The two cases, with single-side coating 4.3 and double-side coating 4.2, do not present

Figure 4.2. Maximisation of the radial acceleration for a double-coating sail
around Earth subject to SRP
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Evaluation of attainable values of acceleration

Figure 4.3. Maximisation of the radial acceleration for a single-coating sail
around Earth subject to SRP

many differences and in both of them it is evident the umbra area where the SRP is zero.
In 4.3 b) and 4.2 b), in the area between the Earth and the Sun, since the photons arrive
in the opposite direction of the required acceleration, they cannot provide a positive radial
contribution, so the sail gets in a perpendicular position to the solar rays to have a null
acceleration instead of a negative one. Seeing as the direction of the solar rays has a small
component radial to the planet, the non-dimensional magnitude is mostly less than one,
and it only increases when the two vectors tend to align.
In the case of double-side coating, and particularly in this work since the optical properties
of the two sides are the same, the advantage is that the analysis can be speeded up scanning
half of the angles range from 0 to π, but with the same accuracy. The abrupt discontinuity
in the attitude in 4.2 b) are due to this simplification, but seeing as the acceleration does
not change, in an actual scenario there are no sudden changes in the attitude of the solar
sail.
In table 4.2, the difference in the attitude of the two coating is minimal, and in the worst
case analysed (point D) it is less than one degree. For the attitude analysis of the six
points, the range of angles has been split in 360. The result is in line with what expected;
seeing as the Sun has been considered as a point, its photons can hit only one of the two
sides of sail, so there is no difference between the cases. In the three other cases, a more
relevant effect is expected.
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4.1 – Radial Acceleration

Point Single-side Double-side Ratio
A 1.8727 1.8779 99.72%
B 4.7255 4.7212 100.09%
C 4.2355 4.2473 99.72%
D 2.9228 2.9310 99.72%
E − − −
F 3.9379 3.9314 100.17%

Table 4.2. Comparison of the cone angle αp for single-side and double-side coating in
Earth area with only SRP [rad]

Venus

The analysis has been repeated for Venus, showing similar results. For this reason, the
comments are analogous. The different magnitude of the acceleration is clearly due to the
closer distance from the Sun; as shown in table 4.1 the solar flux at Venus orbit is about
double the one at Earth orbit.

Figure 4.4. Maximisation of the radial acceleration for a double-side coating sail
around Venus subject to SRP
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Figure 4.5. Maximisation of the radial acceleration for a single-side coating sail
around Venus subject to SRP

Point Single-side Double-side Ratio
A 1.8727 1.8779 99.72%
B 4.7255 4.7212 100.09%
C 4.2355 4.2473 99.72%
D 2.9228 2.9310 99.72%
E − − −
F 3.9379 3.9314 100.17%

Table 4.3. Comparison of the cone angle αp for single-side and double-side coating in
Venus area with only SRP [rad]

4.1.2 Albedo Radiation Pressure
This section focuses on the ARP contribution. As previously mentioned, its contribution
exists only for positive x, where the planet can reflect the solar photons.

Earth

Again, the first results shown are about Earth.
The albedo contribution provides a radial acceleration in a region where SRP cannot due
to its direction. However, for the Earth, the acceleration seems relevant only in the area
very close to the planet. The dominating contribution will be visualised in the analysis
with both SRP and PRP.
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4.1 – Radial Acceleration

Figure 4.6. Maximisation of the radial acceleration for a double-side coating sail
around Earth subject to ARP

Figure 4.7. Maximisation of the radial acceleration for a single-side coating sail
around Earth subject to ARP

Point Single-side Double-side Ratio
A 3.1503 3.1416 100.28%
B 3.1503 3.1416 100.28%
C 3.1503 3.1416 100.28%

Table 4.4. Comparison of the cone angle αp for single-side and double-side coating in
Earth area with only ARP [rad]
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Evaluation of attainable values of acceleration

Venus

The effect of the albedo becomes more relevant around Venus than around the Earth. In
addition to the closer distance from the Sun, Venus has a higher albedo coefficient, and for
this reason, the magnitude of the acceleration is more than double. The attitude of the
sail does not change for the two coating case, as seen in table 4.5.

Figure 4.8. Maximisation of the radial acceleration for a double-side coating sail
around Venus subject to ARP

Figure 4.9. Maximisation of the radial acceleration for a single-side coating sail
around Venus subject to ARP
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4.1 – Radial Acceleration

Point Single-side Double-side Ratio
A 3.1328 3.1416 99.72%
B 3.1503 3.1416 100.28%
C 3.1503 3.1416 100.28%

Table 4.5. Comparison of the cone angle αp for single-side and double-side coating in
Venus area with only ARP [rad]

4.1.3 Black Body Radiation Pressure

The BBRP contribution is particularly relevant because it is the only radiation pressure
that hits the sail in the eclipse region. Its magnitude can drastically change with the
characteristics of the study planet; as it will see, for Venus BBRP is by far the dominating
effect.

Earth

As anticipated, BBRP is uniform around the planet and mostly radial. The attitude
analysis of the six points has been avoided, seeing that the two cases do not present
differences; as previously mentioned, these are expected in the complete case.

Figure 4.10. Maximisation of the radial acceleration for a double-side coating sail
around Earth subject to BBRP
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Figure 4.11. Maximisation of the radial acceleration for a single-side coating sail
around Earth subject to BBRP

Venus

Among the results of the planetary contribution, those for the black body radiation pressure
of Venus are the most relevant. Due to its high mean temperature, Venus has by far a
greater luminosity than Earth so that its BBRP provides a significant acceleration increase
in a large area around the planet.

Figure 4.12. Maximisation of the radial acceleration for a double-side coating sail
around Venus subject to BBRP
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4.1 – Radial Acceleration

Figure 4.13. Maximisation of the radial acceleration for a single-side coating sail
around Venus subject to BBRP

4.1.4 Solar Radiation Pressure + Planetary Radiation Pressure
As said in the introduction, the planetary contribution has been almost always neglected
and only in one work [21] SRP and PRP have been studied together, even if with a two-
dimensional approach. Since one of the aims of this thesis is to extend the analysis to a
three-dimensional case, this section constitutes the core of the first part of the project.

Earth

Figure 4.14. Maximisation of the radial acceleration for a double-side coating sail around
Earth subject to SRP and PRP
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Figure 4.15. Maximisation of the radial acceleration for a single-side coating sail around
Earth subject to SRP and PRP

As a consequence of the PRP presence and, in particular, due to BBRP, the sail provides
acceleration in the eclipse region where the solar photons cannot hit its surface. Moreover,
another beneficial effect is for positive x, in the area close to the surface of the planet,
where solar contribution can be only negative or null. Where the PRP is the dominating
radiation, the normal of the sail surface points to about the radial direction. However, the
conclusion for Earth analysis is that, out of the umbra region and the strictly close region,
the planetary radiation is negligible compared to the solar one. Regarding the two coating
cases, the study of attitude in the chosen points does not show difference even for this case.

Point Single-side Double-side Ratio
A 1.8727 1.8779 99.72%
B 4.7255 4.7036 100.47%
C 4.2355 4.2473 99.72%
D 2.9228 2.9310 99.72%
E 3.1503 3.1416 100.28%
F 3.9204 3.9314 99.72%

Table 4.6. Comparison of the cone angle αp for single-side and double-side coating in
Earth area with only SRP+PRP [rad]
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4.1 – Radial Acceleration

Venus

The results for Venus represent the most promising effect of planetary radiation pressure.
As anticipated in BBRP section, thanks to Venus characteristics, the sail has great benefits
by the PRP and the acceleration raises up to ten times. When x ≤ 2Rp, the PRP appears
by far the dominating contribution, and this is clearly understandable looking at the di-
rection of the sail normal in fig. 4.16 b) and fig. 4.17 b). The comparison between the two

Figure 4.16. Maximisation of the radial acceleration for a double-side coating sail around
Venus subject to SRP and PRP

Figure 4.17. Maximisation of the radial acceleration for a single-side coating sail
around Venus subject to SRP+PRP

coating cases has not produced the expected difference; for this reason, in the following
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analyses, only the double-side coating study has been carried on, allowing to speed up the
simulations.

Point Single-side Double-side Ratio
A 5.5481 5.6338 98.48%
B 4.7255 4.7036 100.47%
C 4.2180 4.2122 100.14%
D 2.9578 2.9485 100.32%
E 3.1328 3.1416 99.72%
F 3.8679 3.8787 99.72%

Table 4.7. Comparison of the cone angle αp for single-side and double-side coating in
Venus area with only SRP+PRP [rad]

An interesting comparison has been done for the double-side coating with and with-
out PRP. In the area where PRP is the prevalent effect, the attitude of the sail change
completely, as it can be seen in table 4.8 for point A; another point, G with coordinates
(1.5Rp,0,0), has been added to the analysis to have a better understanding of the area
closer to the planet. Even for G the attitude of the sail changes due to PRP effect, more-
over in this point the magnitude of the acceleration has a extremely high increase up to
2800%. For Venus the PRP is clearly not negligible, and affect drastically the results.

Cone angle [rad] Radial acceleration [m/s2]
Point SRP SRP+PRP SRP SRP+PRP SRP+PRP / SRP
A 1.8779 5.6338 7.1830 · 10−6 1.0461 · 10−5 145.64%
B 4.7212 4.7036 −7.6266 · 10−8 −7.4383 · 10−8 102.53%
C 4.2473 4.2122 3.2999 · 10−5 3.4161 · 10−5 103.52%
D 2.9310 2.9485 1.5897 · 10−4 1.7807 · 10−4 112.01%
E − 3.1416 − 1.7807 · 10−4 −
F 3.9314 3.8787 9.0803 · 10−5 9.6762 · 10−5 106.56%
G 1.5796 5.8456 −7.6253 · 10−8 2.1414 · 10−4 2808.2%

Table 4.8. Comparison of the cone angle αp and of the radial acceleration for double-side
coating in Venus area with and without PRP [rad]

4.2 Transverse Acceleration
Seeing as the planetary radiation pressure is radial to the planet, it is particularly in-
teresting evaluating if its contribution is still relevant when the requested acceleration is
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4.2 – Transverse Acceleration

perpendicular to that direction. In order to maximise the transverse acceleration, the sail
should modify its attitude and find the optimal angles to benefit the effect of PRP.
Moreover, for circular orbit the transverse direction corresponds to the velocity unit vector,
and, as it will see, the acceleration along this direction is relevant for the orbital manoeu-
vres, and in particular for the change of the semimajor axis.
The study case are the same of the previous analysis, but the results will focus only in the
double-side coating.

4.2.1 Solar Radiation Pressure
Earth

In the region with −Rp ≤ x ≤ Rp and negative z the transverse direction is against the
solar rays. The sail is positioned perpendicularly to the SRP so that the acceleration is
null and not negative. The opposite situation happens for positive z, where the two vectors
have the same direction, and there is higher acceleration.

Figure 4.18. Maximisation of the transverse acceleration for a double-side coating
sail around Earth subject to SRP

Venus

The considerations for Venus are analogous to those for the Earth.
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Figure 4.19. Maximisation of the transverse acceleration for a double-side coating
sail around Venus subject to SRP

4.2.2 Albedo Radiation Pressure
Earth

The albedo radiation pressure is mostly in radial direction, so the attitude of the sail has to
balance the required acceleration with the direction of the photons that strike its surface.
In fig. 4.20 it is possible to observe that the sail is not in the radial direction, but an angle
exists between the two directions.

Figure 4.20. Maximisation of the transverse acceleration for a double-side coating sail
around Earth subject to ARP
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Venus

As explained in the radial study, the closer distance to the Sun and the higher albedo
coefficient make Venus more reflecting than the Earth so that its albedo contribution is
more than double.

Figure 4.21. Maximisation of the transverse acceleration for a double-coating sail
around Venus subject to ARP

4.2.3 Black Body Radiation Pressure
For both the planets, the contours apparently show anomalies in the magnitude of the
acceleration. These have been justified with three motivations, and in particular they are
due to the low density of the grid, the poor range of scanned angles that have a difference
of 6 deg from each other and the view factor F that considers the two surfaces of the sail.

Earth

Venus
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Figure 4.22. Maximisation of the transverse acceleration for a double-side coating sail
around Earth subject to BBRP

Figure 4.23. Maximisation of the transverse acceleration for a double-side coating sail
around Venus subject to BBRP

4.2.4 Solar Radiation Pressure + Planetary Radiation Pressure
Earth

In the complete study case, some areas in the vicinity of the planet have benefited the
presence of PRP. Comparing the fig. 4.24 and fig. 4.18 it can be noticed that in some
point where with only SRP the normal of the sail was perpendicular to the solar rays, the
attitude changed.
The deepened analysis of chosen points has been conducted again, even for the point G.
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Figure 4.24. Maximisation of the transverse acceleration for a double-side coating sail
around Earth subject to SRP and PRP

The results show that some points such as F benefit the presence of PRP, but in other
parts of the grid, the SRP and PRP give opposite contributions that reduce the acceleration
experienced by the sail. In point G this reduction is about 11

Cone angle [rad] Transverse acceleration [m/s2]
Point SRP SRP+PRP SRP SRP+PRP SRP+PRP / SRP
A 2.8432 2.8432 3.7277 · 10−6 3.5118 · 10−6 94.21%
B 2.5273 2.25736 3.1206 · 10−5 3.0983 · 10−5 99.28%
C 1.7902 1.7902 8.2546 · 10−5 8.2546 · 10−5 100%
D 2.3518 2.3518 4.7197 · 10−5 4.7220 · 10−5 100.24%
E − 2.6151 − 8.8863 · 10−7 −
F 2.8257 2.8257 −2.4580 · 10−8 9.7227 · 10−8 495.56%
G 2.5273 2.5098 3.1202 · 10−5 2.7986 · 10−5 89.69%

Table 4.9. Comparison of the cone angle αp and of the transverse acceleration for
double-side coating in Earth area with and without PRP [rad]

Venus

As for the radial analysis, even the transversal acceleration has a great change when PRP
is taken into account. Again, in the vicinity of the planet, the PRP is the dominating effect
and modify the optimal attitude of the sail, while it returns similar to the SRP case after
about 2 radii. The consideration previously done for the Earth are heightened for Venus.
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Figure 4.25. Maximisation of the transverse acceleration for a double-coating sail around
Venus subject to SRP and PRP

In this case, the reduction of the acceleration is particularly significant in point A, a point
close to the area where SRP becomes the dominating effect again, and so PRP is still
strong. On the opposite, point F cannot provide an acceleration in the positive transverse
direction with only SRP, but when PRP has been taken into account, the acceleration
increases and become comparable to other areas of the grid.

Cone angle [rad] Transverse Acceleration [m/s2]
Point SRP SRP+PRP SRP SRP+PRP SRP+PRP / SRP
A 2.8432 2.9485 7.1814 · 10−6 2.8644 · 10−7 3.99%
B 2.5273 2.5098 6.0129 · 10−5 5.2381 · 10−5 87.11%
C 1.7902 1.7902 1.5904 · 10−4 1.5905 · 10−4 100%
D 2.3518 2.3869 9.0751 · 10−5 9.5794 · 10−5 105.56%
E − 2.6151 − 3.8109 · 10−5 −
F 2.8257 2.8081 −4.7664 · 10−8 5.3048 · 10−6 11229.48%
G 2.5273 0.4739 6.0119 · 10−5 5.9001 · 10−5 98.14%

Table 4.10. Comparison of the cone angle αp and of the transverse acceleration for
double-side coating in Venus area with and without PRP [rad]

Seeing as the reduction of the acceleration is due to the opposite contributions given by
SRP and PRP, the use of a single-side coating can prevent this kind of situation, reducing
the effect of the non-dominating radiation pressure. For this reason, the table 4.11 and
the graphics of acceleration magnitude and direction of the normal (fig.4.26) have been
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elaborated. In this case, the drastic reduction of the acceleration magnitude exerted by
the sail in point A is significantly higher, and the same effect can be seen almost at all
point. An interesting difference can be noted in point G, where the acceleration decreases
with a double-side coating and increases with a single one. However, in both cases, G is
the point where the attitude with or without PRP changes more.

Figure 4.26. Maximisation of the transverse acceleration for a single-side coating sail
around Venus subject to SRP and PRP

Cone angle [rad] Transverse Acceleration [m/s2]
Point SRP SRP+PRP SRP SRP+PRP SRP+PRP / SRP
A 5.9857 6.0032 7.1813 · 10−6 6.2986 · 10−6 87.71%
B 5.6706 5.6706 6.0128 · 10−5 5.9260 · 10−5 98.56%
C 4.9355 4.9180 1.5903 · 10−4 1.5868 · 10−4 99.78%
D 2.3628 2.3803 9.0759 · 10−5 9.5798 · 10−5 105.55%
E − 2.6253 − 3.8102 · 10−5 −
F 5.9506 5.9594 −9.3119 · 10−8 5.1683 · 10−6 5651.25%
G 5.6706 6.7995 6.0118 · 10−5 1.1010 · 10−4 183.15%

Table 4.11. Comparison of the cone angle αp and of the transverse acceleration for
single-side coating in Venus area with and without PRP [rad]
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4.3 3D example for Venus
An example of study for an inclined plane is show in this section. The analysis has been
conducted on the plane z − y = 0 that corresponds to the perifocal plane of an orbit with
inclination i = 45 deg, and has maximised the acceleration normal to the plane with and
without PRP. A double-side coating has been chosen to speed-up the simulation and the
reference planet is Venus. The grid is the same of the previous simulation and the points
have been adapted for the inclined plane:

• A=(2Rp, −2Rp, −2Rp);

• B=(3Rp, 0, 0);

• C=(Rp, 3Rp, 3Rp);

• D=(−3Rp, Rp, Rp);

• E=(−2Rp, 0, 0);

• F=(−Rp, −3Rp, −3Rp);

• G=(1.5Rp, 0, 0);

Figure 4.27. Maximisation of the out-of-plane acceleration for a double-side coating sail
around Venus subject to SRP and PRP in an inclined plane

The results show that the sail can provide an out-of-plane acceleration, but, since the
planetary radiation is radial to the planet, its contribution is not particularly significant.
Moreover, in some area it opposes the solar contribution, reducing the resulting acceleration
such as in point B in table 4.13. In the vicinity of the planet, the presence of PRP also
changes the attitude of the sail as seen in table 4.12.
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Figure 4.28. Maximisation of the out-of-plane acceleration for a double-side coating sail
around Venus subject to SRP in an inclined plane

Cone angle [rad] Clock angle [rad]
Point SRP SRP+PRP SRP SRP+PRP
A 1.4392 1.4392 1.4743 1.4743
B 0.6143 0.6318 1.5620 1.5620
C 2.1938 2.1763 0.8249 0.8073
D 0.9653 0.9477 1.7902 1.7726
E − 0.5265 − 1.5620
F 2.1938 2.2114 2.3167 2.3167
G 0.6143 2.6677 1.5620 1.5620

Table 4.12. Comparison of cone angle αp and clock angle δp for a double-side coating in
Venus area with and without PRP [rad]
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Evaluation of attainable values of acceleration

Out-of-plane Acceleration [m/s2]
Point SRP SRP+PRP SRP+PRP / SRP
A 6.0117 · 10−5 6.0094 · 10−5 99.96%
B 6.0127 · 10−5 5.2379 · 10−5 87.11%
C 6.0105 · 10−5 5.9416 · 10−5 98.85%
D 6.0081 · 10−5 6.1720 · 10−5 102.73%
E − 3.8107 · 10−5 −
F 6.0102 · 10−5 6.0836 · 10−5 101.22%
G 6.0117 · 10−5 5.8999 · 10−5 98.14%

Table 4.13. Comparison of the out-of-plane acceleration for double-side coating in Venus
area with and without PRP [rad]
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Part II

Dynamic of the sail
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Chapter 5

Orbital Dynamic

In the study of the solar sail dynamic, the approximation of impulsive manoeuvres is
unacceptable because the solar sails provide a continuous and small acceleration. Since it
is smaller than the dominant gravitational effect, from the spacecraft point of view, the
thrust given by the sail can be seen as a perturbation in its trajectory according to the two
bodies problem.

þ̈r = µ

r3 r̂ + þap

The solution can be found numerically, thanks to Encke’s method [26]. The guiding prin-
ciple is to solve first the classic two-body problem, finding the mean trajectory in the form
of a Keplerian orbit, and then to compute numerically another differential equation to
find, after a chosen period of time, the deviation from the undisturbed case. The actual
position and velocity are compared with the ideal results of the two-body problem and,
if their difference is not within a certain tolerance, the osculating orbit (the Keplerian) is
reset, and its parameters are updated. In other words, the actual orbit is built linking
different Keplerian orbits, reset every time the deviation becomes too large. This process
of rectification can be taken to its limit for time intervals dt, so every point is calculated
at each instant of time. This method is called of variation of parameters and uses a set
of six equations to calculate the instantaneous orbital parameters. It has been specified
the term "instantaneous" because, due to the perturbative acceleration, these are no longer
constants, but vary over time. In this chapter, after an introduction of Gauss’ variational
equations, some manoeuvres have been simulated with Gao’s control laws to study the
effect of PRP on the change of semimajor axis, eccentricity and inclination. Then, the
capturing manoeuvre for Venus has been analysed.

5.1 Introduction to the Gauss’ variational equations
Different sets of equations can be found in the literature [26], among all Gauss’ variational
equations have been chosen because they are particularly convenient in the rotating refer-
ence R = {̂ir; îθ; îh}, where îr is along the orbit position vector, îh is along the orbit mo-
mentum vector, and îθ is perpendicular to the previous two satisfying the right-hand rule.
This frame is often referred to as a local-vertical-local-horizontal (LVLH) reference frame.
Another possibility is to write the equations in the rotating reference frame R = {̂iv; în; îh},
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where îv is along the velocity vector, îh is again along the orbit momentum vector, and în
is perpendicular to the previous two according to the right-hand rule.
In fig. 5.1 the two different reference frames are shown. The rotating frame based on

Figure 5.1. Illustration of orbit plane unit direction vectors [26]

position vector have been considered more convenient to move forward with the analysis.
The six variational equations are be taken from Schaub [26] and their parameters are the
semimajor axis a, the eccentricity e, the orbit inclination i, the longitude of the ascending
node Ω, the argument of the perigee ω and the true anomaly ν.

da
dt

= 2
a2

h
[e sin(ν)ar + (1 + e cos(ν))aθ] (5.1)

de
dt

=
1
h

î
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1
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2) +
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1 + e cos(ν)
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+ ea
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(5.6)

where h is the angular momentum, ar, aθ and ah are the acceleration components and
θ = ω + ν
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5.2 – Gao’s control laws

5.2 Gao’s control laws
A control law is an algorithm used by the controller to determine the output requested to
do a certain change in the status of the spacecraft. In order to modify its orbit, the sail
needs to know the optimal acceleration vector to perform the manoeuvres so that it can
change its attitude and maximise its acceleration in that direction. Moreover, in order to
modify one or orbital parameters and since they are dependent on each other, knowing the
right area where to thrust is necessary to obtain the expected results and to have minimum
side effects on the others orbital elements.
Various approaches are available in literature such as in Macdonald and McInnes [14] or in
Dachwald [27], among them, the model presented by Gao [28] appears to be particularly
interesting since it allows to increase or decrease three orbital elements at the same time.
Gao proposed a direct approach for the solving of minimum-time orbital transfers by the
using of three simple control laws, each of them used within the same revolution in different
arcs of the orbit. In those arcs the three control laws are near-optimal strategies to change
the semimajor axis a, the eccentricity e and the inclination i, so for after a complete
revolution, all these three parameters could be changed. An example of the arcs division
can be seen in fig.5.2. where s1, s2, y1, y2, e1, e2, y3, and y4 are the beginning and

Figure 5.2. Example of the division of the orbit in arches proposed by Gao

ending point of each arc. Seeing as the position of these points, and so the arcs length,
influences the performance of the manoeuvres, it is linked to few parameters that can be
optimized over time. Nevertheless, as it will see in the following sections, in this phase of
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the study, the parameters have been chosen arbitrarily and are constant; further analysis
could optimise them over time.
The three control laws used in the different arcs are:

• the tangential steering, which is the most efficient strategy to change the semimajor
axis and uses a thrust in the direction of the velocity;

• the inertial steering, which is a near-optimal strategy to change the eccentricity and
uses a thrust perpendicular to the semimajor axis;

• the piecewise constant yaw steering, which is a strategy to change the inclination and
uses a thrust in the out-plane direction of the orbit.

According to Gauss’s equation the most efficient way to change the semimajor axis is when
the velocity is higher, for this reason, as it can be seen in fig.5.2, the tangential steering is
used in a perigee-centred arc.

s1 = −|ws|π (5.7)

s2 = |ws|π (5.8)

where, as mentioned before, s1 and s2 are the beginning and ending point of the arc and
−1 ≤ ws ≤ 1 is the parameter of its length.
According to Gao [28] and reference therein, the inertial steering perpendicular to the
semimajor axis is a near optimal strategy to change eccentricity; since the variation of
eccentricity is inversely proportional to the velocity, the best location to use the inertial
steering is in a apogee-centred arc, where the velocity is smaller.

e1 = π − |we|π (5.9)

e2 = π + |we|π (5.10)

where again e1 and e2 are the beginning and ending point of the arc and −1 ≤ we ≤ 1 is
the parameter of its length.
The piecewise constant yaw steering is used in two different arches close to the nodal line.
The points are indicated as y1, y2, y3 and y4 and their location is calculated solving a non
linear equation.

θm
1 = arcsin(−e sinω) − ω (5.11)

θm
2 = π − arcsin(−e sinω) − ω (5.12)5di
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5.2 – Gao’s control laws
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The parameter wy represents the percentage threshold value, dividing the region where it
is worth to thrust from the one where the change of inclination is considered too small.
Using the parameters of fig. 5.2 is possible to elaborate a plot to better understand the
meaning of wy. In fig. 5.3 the green line is cos(ω+ν)

1+e cos ν , while the red lines are the solution of
eq. 5.14. The trend depends on the orbital parameters of the orbit, it is also possible that
only one of the two arcs exists.

Figure 5.3. Example of di
dt (ν) trend and threshold value

All the considerations written above give information about where to manoeuvre in
orbit; regarding the acceleration vector, Gao proposed a minimum-time guidance scheme,
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where

aout =

amaxwa sign[cosω + ν] if
--- cos ω+ν

1+e cos ν

--- ≥ wy

è
di
dt

é
max

0 otherwise
(5.23)

where −1 ≤ wa ≤ 1 is the last of the four optimization parameters and represents the
percentage of acceleration destined for the out-of-plane acceleration when the inclination
change manoeuvre is performed.

ain =
ñ
a2

max − a2
out (5.24)

ar = ain sinα aθ = ain cosα (5.25)

with α

α =



I
ν if we > 0
π + ν if we < 0

if cos ν(t) ≤ cos(π − |we|π)I
γ if ws > 0
π + γ if ws < 0

otherwise

(5.26)

Gao used this algorithm for an electric thruster that has a maximum acceleration and can
provide it constantly; for this reason amax appears in the equations. An example is shown
in fig. 5.4. However, since the sail acceleration depends on the surrounding environment
and on the orientation of the sail surface, it is not constant and has not a maximum. Hence,
the MATLAB script elaborated searches for the most similar acceleration vector that the
sail can provide.

Figure 5.4. Example of the direction of acceleration vector requested to increase orbital
elements with Gao’s guidance scheme

5.3 Capturing manoeuvre
The interplanetary trajectories can be modelled with the patched conic approximation
that divides them into different areas of influence, where the gravitational effect of one
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5.3 – Capturing manoeuvre

celestial body is dominating respect to that one of the others. In each sphere of influence,
it is possible to use the assumption of the two-body problem, maintaining good accuracy.
Imagining a trajectory from Earth to Venus, three spheres of influence can be found:

• the geocentric region, near to the Earth;

• the heliocentric region, where the Sun is the main body;

• the aphrodiocentric region, near to Venus.
Typically, the purpose of a spacecraft that approaches a celestial body is to increase or
decrease the velocity with a fly-by or to be captured and orbit around the body. This work
has been focused on a capturing manoeuvre for Venus, in order to analyse the effect of
PRP on the manoeuvre.
Seeing as the capture is achieved when the orbit becomes closed and so from hyperbolic
turns into elliptical, the Gauss’ variational equations are not suitable any more due to the
discontinuity in the equations when the eccentricity becomes equal to 1. A new strategy
has to be used to overpass the problem, and a possible way is to solve numerically the
equations of motion adding the contribution of the sail as a perturbative acceleration;
the system has six equations, respectively three for the position vector and three for the
velocity vector. 

ṙx

ṙy
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(5.27)

The integration has been done with ode113, but the initial conditions are not known. A
parametric study has been conducted to find the combination of initial conditions and
characteristic acceleration that allow the capture. In particular, three parameters have
been used:

• the characteristic acceleration ao

• the periapsis of the hyperbolic orbit rp

• the eccentricity of the hyperbolic orbit ih
The capture has been considered achieved when the eccentricity at the end of the ma-
noeuvre is less than 1. In order to reduce it, in all the braking phase the sail has to give
acceleration in the opposite direction of the velocity. The thrust is applied when

− 1
2 θ∞ ≤ ν ≤ 1

2 θ∞ (5.28)

where θ∞ is the angle of hyperbola asymptote of the initial orbit.

θ∞ = arccos
3

−1
e

4
(5.29)

An example of the hyperbolic orbit for Venus and of the capturing control law is shown in
fig. 5.5.
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Figure 5.5. Example of hyperbolic orbit and capturing control law
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Chapter 6

Results

Once the control laws have been established, some manoeuvres have been simulated to
analyse the effect of PRP on their performance. The first section of this chapter is dedicated
to the results with Gao’s control law to change inclination, semimajor axis and eccentricity;
the second section instead has been dedicated to the capturing manoeuvre.

6.1 Results of orbital manoeuvre with Gao’s control
law

As previously mentioned, the advantage of Gao’s guidance scheme is that three different
parameters can be changed within the same revolution. The analysis has been conducted
for Venus with different initial orbits, and in this phase of the study, the four Gao’s param-
eters have been chosen arbitrarily after some attempts and have been maintained constant
over the time.

ws = 0.3
we = 0.2
wy = 0.6
wa = 0.8

Only the sign of ws, we, wa change, and in particular they are positive when the manoeuvre
is to increase the relative orbital element and negative to decrease it.
The analyses have been conducted with and without PRP and monitor the trend of the
six orbital elements and the acceleration components during three revolutions around the
planet. The time-step is 20s, and the sail has a characteristic acceleration of 0.001m/s2

and a double-side coating.

6.1.1 Quasi-circular orbit - decrease of a, e, i
In this study case a quasi-circular orbit with low inclination has been analysed in order
to simulate the decrease of all the three orbital elements. The characteristic of the orbit
has been summarised in table 6.1. In fig. 6.2 the results shows relevant improvement due
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Periapsis rp Eccentricity e Inclination i RAAN Ω Argument of periapsis ω
1.5 RV 0.2 5 deg 5 deg 5 deg

Table 6.1. Orbital elements quasi-circular orbit

to the presence of PRP. The decreasing trend of all the three parameters is quicker than
the case with only the solar contribution, and moreover, since the manoeuvring arc for
the change of eccentricity is in the eclipse region, this element could not be modified with
Gao’s control laws without PRP.
In fig. 6.3 the magnitude of the acceleration and its three components are shown. The
increase of the acceleration thanks to PRP is evident, in particular when the sail is in
eclipse and SRP is zero. The SRP gives a null contribution even when the direction of
the solar photons is against the required acceleration vector; in this situation, the sail
is perpendicular to the photons not to provide a negative contribution. In fig. 6.4 the
trend of the orbital elements have been simulated for a longer time, ten orbits. The target
parameters have been set in 95% of the initial ones for the decreasing manoeuvres and
105% for the increasing ones, and some tolerances have been defined to establish when the
final orbit can be considered reached. These tolerances are:

• tolla = 50 m

• tolle = 0.00001

• tolli = 0.005 deg

Since the acceleration is higher with PRP, the results appear more oscillating, but they
can be accepted with good approximation; moreover, integrating the optimization of Gao’s
parameters, the thrusting arc can be reduced. In table 6.2 the orbital elements after three
revolutions have been listed with the percentage respect to the target values.

Semimajor axis a Eccentricity e Inclination i
Target 10811 km 0.19 4.75 deg

SRP 11290 km 0.1998 4.95 deg
104.4 % 105.2 % 104.2 %

SRP+PRP 11120 km 0.1899 4.73 deg
102.9 % 99.9 % 99.5 %

Table 6.2. Semimajor axis, eccentricity and inclination after three revolutions

62



6.1 – Results of orbital manoeuvre with Gao’s control law

Figure 6.1. Initial and final orbit with and without PRP, quasi-circular orbit with
low inclination around Venus

Figure 6.2. Trend of the orbital elements with and without PRP during three revolutions,
quasi-circular orbit with low inclination around Venus
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Figure 6.3. Trend of the acceleration with and without PRP during three revolutions,
quasi-circular orbit with low inclination around Venus

Figure 6.4. Trend of the orbital elements with and without PRP during ten revolutions,
quasi-circular orbit with low inclination around Venus
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6.1 – Results of orbital manoeuvre with Gao’s control law

6.1.2 Quasi-circular orbit - increase of a, e and decrease of i

The analysis has been repeated with the same parameters, but increasing semimajor axis
and eccentricity, and decreasing the inclination to test the possibility of changing indepen-
dently the orbital elements.

Figure 6.5. Initial and final orbit with and without PRP, quasi-circular orbit with
low inclination around Venus

Figure 6.6. Trend of the orbital elements with and without PRP during three revolutions,
quasi-circular orbit with low inclination around Venus
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Same considerations can be done for this study-case, where again the PRP is relevant
in the manoeuvre.

Figure 6.7. Trend of the acceleration with and without PRP during three revolutions,
quasi-circular orbit with low inclination around Venus

Semimajor axis a Eccentricity e Inclination i
Target 11949 km 0.21 4.75 deg

SRP 11470 km 0.2037 4.95 deg
96.0 % 97.0 % 104.2 %

SRP+PRP 11670 km 0.2092 4.70 deg
97.7 % 99.6 % 98.9 %

Table 6.3. Semimajor axis, eccentricity and inclination after three revolutions

6.1.3 Highly-elliptical orbit - decrease of a, e, i
In this study case, a highly-elliptical orbit with low inclination has been analysed in order
to simulate the decrease of all the three orbital elements. The characteristic of the orbit
have been summarised in table 6.4.

After three revolutions, the result with and without PRP are similar and the planet
contribution seems not to have a beneficial effect such as in the quasi-circular orbit case.
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6.1 – Results of orbital manoeuvre with Gao’s control law

Periapsis rp Eccentricity e Inclination i RAAN Ω Argument of periapsis ω
1.5 RV 0.7 5 deg 5 deg 5 deg

Table 6.4. Orbital elements highly-elliptical orbit

On average, the sail is farer from the planet than in the previous analysis, so the accel-
eration is mostly the same with or without PRP. As can be seen in fig. 6.10, the only
difference is that the acceleration with PRP has a peak in the radial component in the
arc of orbit closer to the planet. In fig. 6.11, it can be noticed the planet contribution
slightly benefits the change of eccentricity in a longer time. Better results probably could
be obtained optimising the four parameters of the control laws.

Figure 6.8. Initial and final orbit with and without PRP, highly-elliptical orbit
with low inclination around Venus

Semimajor axis a Eccentricity e Inclination i
Target 28832 km 0.665 4.75 deg

SRP 29390 km 0.6905 4.54 deg
101.9 % 103.8 % 95.6 %

SRP+PRP 28770 km 0.681 4.47 deg
94.8 % 102.4 % 94.1 %

Table 6.5. Semimajor axis, eccentricity and inclination after three revolutions
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Figure 6.9. Trend of the orbital elements with and without PRP during three revolutions,
highly-elliptical orbit with low inclination around Venus

Figure 6.10. Trend of the acceleration with and without PRP during three revolutions,
highly-elliptical orbit with low inclination around Venus
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6.1 – Results of orbital manoeuvre with Gao’s control law

Figure 6.11. Trend of the orbital elements with and without PRP during ten revolutions,
highly-elliptical orbit with low inclination around Venus

6.1.4 Inclined orbit - increase of a, e, i
The analyses previously done have been repeated for a quasi-circular orbit with a high
inclination; in this case, the purpose is to increase all the three orbital elements.

Periapsis rp Eccentricity e Inclination i RAAN Ω Argument of periapsis ω
1.5 RV 0.2 75 deg 5 deg 5 deg

Table 6.6. Orbital elements highly-elliptical orbit

Even for this example, the results with PRP are promising and show a quicker trend
when all the contributions are considered. This is particularly evident in fig. 6.14 where
the acceleration components with PRP and SRP are significantly higher than the ones
with only SRP.
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Figure 6.12. Initial and final orbit with and without PRP, quasi-circular orbit with
high inclination around Venus

Figure 6.13. Trend of the orbital elements with and without PRP during three revolu-
tions, quasi-circular orbit with high inclination around Venus
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6.1 – Results of orbital manoeuvre with Gao’s control law

Figure 6.14. Trend of the acceleration with and without PRP during three revolutions,
quasi-circular orbit with high inclination around Venus

Semimajor axis a Eccentricity e Inclination i
Target 11949 km 0.21 78.75 deg

SRP 11470 km 0.2029 75.05 deg
96.0 % 96.6 % 95.3 %

SRP+PRP 11670 km 0.2088 75.33 deg
97.7 % 99.4 % 95.7 %

Table 6.7. Semimajor axis, eccentricity and inclination after three revolutions

6.1.5 Inclined orbit with RAAN - increase of a, e and decrease
of i

A more generic orbit has been analysed in this section. In particular, the right ascension
of the ascending node has been rotated of 90 deg respect to the sun rays and the orbit is
inclined of 45 deg. The aim is to increase the semimajor axis a and the eccentricity e and
to decrease the inclination i.
The results are particularly interesting since the trend of inclination is the opposite in the
two cases. In particular, it cannot be decreased with only the solar radiation pressure due
to the direction of its photons, so the planetary contribution is fundamental to perform the
manoeuvre. This consideration is even clearer when the analysis is done for ten revolutions
such as in fig. 6.18. In fig. 6.17 it is possible to see that the out-of-plane acceleration of the
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Periapsis rp Eccentricity e Inclination i RAAN Ω Argument of periapsis ω
1.5 RV 0.4 45 deg 90 deg 5 deg

Table 6.8. Orbital elements elliptical orbit with medium inclination

sail without PRP is only negative, instead of the positive contribution that the planetary
photons give. The two other orbital elements benefits the planetary radiation pressure too,
improving the performance of the manoeuvre.

Figure 6.15. Initial and final orbit with and without PRP, elliptical orbit with medium
inclination and rotated RAAN around Venus
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6.1 – Results of orbital manoeuvre with Gao’s control law

Figure 6.16. Trend of the orbital elements with and without PRP during three revolu-
tions, elliptical orbit with medium inclination and rotated RAAN around Venus

Figure 6.17. Trend of the acceleration with and without PRP during three revolutions,
elliptical orbit with medium inclination and rotated RAAN around Venus
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Figure 6.18. Trend of the orbital elements with and without PRP during ten revolutions,
elliptical orbit with medium inclination and rotated RAAN around Venus

Semimajor axis a Eccentricity e Inclination i
Target 15939 km 0.42 42.75 deg

SRP 15320 km 0.4191 45.09 deg
96.1 % 99.8 % 105.5 %

SRP+PRP 15740 km 0.4221 44.83 deg
98.8 % 100.5 % 104.9 %

Table 6.9. Semimajor axis, eccentricity and inclination after three revolutions

6.1.6 Inclined orbit with RAAN - increase of a, e and i

Since the previous analysis shows that solar radiation pressure cannot provide acceleration
to decrease the inclination, the analysis has been repeated increasing all the three orbital
elements.
The PRP contribution for semimajor axis and eccentricity is still relevant; however, the

curves for inclination, that in the previous analysis were in the opposite direction, are now
the same so that the PRP has no relevance in the increasing of inclination in this orbit.
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6.1 – Results of orbital manoeuvre with Gao’s control law

Figure 6.19. Trend of the orbital elements with and without PRP during three revolu-
tions, elliptical orbit with a medium inclination and rotated RAAN around Venus

Semimajor axis a Eccentricity e Inclination i
Target 15939 km 0.42 47.25 deg

SRP 15300 km 0.421 45.7 deg
96.1 % 100.2 % 101.6 %

SRP+PRP 15690 km 0.4264 45.71 deg
98.4 % 101.5 % 101.6 %

Table 6.10. Semimajor axis, eccentricity and inclination after three revolutions

6.1.7 Quasi-circular orbit out of PRP dominating region - in-
crease of a, e and decrease of i

The last simulation with Gao’s control laws has been done for a quasi-circular orbit further
from Venus. In chapter 4 has been seen that after some radii from the planet, the PRP
becomes less relevant in the results. For this study-case, the aim is to decrease the incli-
nation and increase semimajor-axis and eccentricity. The orbit data has been summarised
in table 6.11.

As expected, the further distance from Venus decreases the planetary contribution, and
the acceleration with and without PRP tends to be more similar than in the other study-
case. The inclination decreases faster in the case with PRP and starts oscillating as it can
be noticed in fig. 6.22 and in fig. 6.23. In fig. 6.22, for the last revolution the SRP+PRP
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Periapsis rp Eccentricity e Inclination i RAAN Ω Argument of periapsis ω
3 RV 0.2 5 deg 5 deg 5 deg

Table 6.11. Orbital elements elliptical orbit with medium inclination

out-of-plane acceleration changes sign since target inclination have been exceeded. In the
longer time simulation, the oscillating of the inclination around the target inclination is
evident; in addition, the manoeuvres for semimajor-axis and eccentricity have slightly bet-
ter performance in the case with only SRP.

Figure 6.20. Initial and final orbit with and without PRP, quasi-circular orbit with
low inclination around Venus

Semimajor axis a Eccentricity e Inclination i
Target 23898 km 0.21 4.75 deg

SRP 23570 km 0.2154 4.69 deg
98.6 % 102.6 % 98.7 %

SRP+PRP 23620 km 0.2095 102.5 deg
98.8 % 99.8 % 104.9 %

Table 6.12. Semimajor axis, eccentricity and inclination after three revolutions
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6.1 – Results of orbital manoeuvre with Gao’s control law

Figure 6.21. Trend of the orbital elements with and without PRP during three revolu-
tions, quasi-circular orbit with low inclination around Venus

Figure 6.22. Trend of the acceleration with and without PRP during three revolutions,
quasi-circular orbit with low inclination around Venus
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Figure 6.23. Trend of the orbital elements with and without PRP during ten revolutions,
quasi-circular orbit with low inclination around Venus

6.2 Results of capturing manoeuvre
As previously mentioned, the study of the capturing manoeuvre has been conducted with
a parametric approach. In the first phase, three parameters have been used:

• the characteristic acceleration ao

• the periapsis of the hyperbolic orbit rp

• the eccentricity of the hyperbolic orbit ih

This preliminary step is needed to find a plausible characteristic acceleration that allows
the capturing manoeuvre. After choosing the characteristic acceleration, the analysis has
been deepened comparing the possible combinations of periapsides and eccentricity with
and without PRP.

6.2.1 Parametric study - ao, rp and ih

A grid of 50 × 50 × 50 has been used with a range of the periapsides that goes from
1.5 RV to 15 RV , that one of eccentricity from 1.0005 to 1.05 and that one of characteristic
acceleration from 0.1 mm/s2 to 3 mm/s2. The other parameters of the analysis are:

• i = 5 deg, ω = 0 deg, Ω = 5 deg

An example of a possible orbit and the resulting velocity vector is shown in fig. 6.24. The
analysis has been conducted only with SRP+PRP and the capturing has been considered
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6.2 – Results of capturing manoeuvre

achieved when the eccentricity at the end of the manoeuvre is less then one. All the
combination of parameters above the curve in the results allow the capturing manoeuvre.

Figure 6.24. Example of the four study-case orbits

Figure 6.25. Curve of the parameters that allow the capturing manoeuvre - i 5 deg, ω 0 deg

All the combinations of parameters above the surface in fig. 6.25 allows the captur-
ing manoeuvre, so in the chosen range of characteristic accelerations there are acceptable
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values. In the contour it is possible to evaluate the minimum required characteristic accel-
eration. As expected, this increases for high initial eccentricity and when the manoeuvre is
performed close to the planet, since the velocity to brake is higher. Moreover, the surface
is extensively influenced even by the other orbital elements, that indicate the region where
the manoeuvre is done.
According to McInnes [1], 1 mm/s2 is a reasonable characteristic acceleration, technologi-
cally possible. Hence, this has been used in the following analyses.

6.2.2 Parametric study - Comparison with and without PRP
In this section of results, the plausible characteristic acceleration of 1 mm/s2 has been
chosen to compare the different initial conditions that allow the capturing manoeuvre.
The grid used is 50 × 50, and the ranges of periapsides and eccentricity are the same
as the previous simulations. More study-cases than in the previous analysis have been
investigated, and in particular the combinations between the two inclinations, 5 deg and
85 deg, and four different arguments of periapsis:

• ω = 0 deg (a)

• ω = 90 deg (b)

• ω = 180 deg (c)

• ω = 270 deg (d)

In the fig. 6.26, results of an orbit with inclination equal to 5 deg are shown. The sets of
values that allow the manoeuvre are those under the curve and are particularly different
in every case. In fig. 6.26 (a), the periapsis is between the planet and the Sun; for lower
periapsis, the sail is closer to the planet but, since planetary radiation pressure is mostly
radial to the planet, the allowed initial eccentricity is very similar to when PRP is not taken
into account. After 2 radii, PRP becomes even less significant, and the two curves are the
same. However, results do appear quite rough, so a denser grid should be used in future
more accurate simulations. As regard fig. 6.26 (b) and (d), same consideration can be done.
It is interesting to notice that when the argument of periapsis is 90 deg, the allowed initial
eccentricity is strictly lower than any other case, and in particular of the opposite one. The
reason is linked to the direction of the incident photons and the requested acceleration;
in fact, when ω = 90 deg the velocity and the solar incident photons point mostly in the
same direction, so the sail can hardly provide an acceleration against the velocity vector.
The opposite situation happens when ω = 270 deg. In this case, again, the solar incident
photons are almost parallel to the velocity vector, but point in the opposite direction.
For the study of planetary contribution, the analysis with the argument of periapsis equal
to 180 deg is the most relevant; since part of the manoeuvre is in the eclipse area, the PRP
is more significant than in the other cases, and, as can be seen in the figure, it allows a
wider range of possible initial values. However, its contribution is limited to closest area
to Venus, within 2 radii of distance.

The same considerations can be repeated for the results of the orbit with an inclination
of 85 deg. The case with a part of the manoeuvre in the eclipse area benefits the planetary
effect again, but the effect is smaller than the low inclined orbit. Deepened analysis has
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6.2 – Results of capturing manoeuvre

Figure 6.26. Initial conditions that allow the capturing manoeuvre for an
orbit with inclination- i 5 deg

been conducted choosing a point and simulating the manoeuvre so that the trend of the
acceleration can be studied and a validation test can be done on the parametric study.
Due to its position in the plots, the set of initial conditions that has been chosen to perform
the test is:

• rp = 1.5RV , e = 1.0075

The analysis has been conducted for the two different inclinations and the arguments
of periapsis equal to 0 deg and 180 deg. Results in fig. 6.29 shows the trends of the
acceleration components and its magnitude. The acceleration along the velocity vector is
similar in both the cases, with a slightly worse performance for the SRP+PRP analysis.
As expected, the trend of eccentricity in fig. 6.28 (a) shows that the capture is achieved in
both the cases, but in fig. 6.28 (b) it should be noticed that the presence of PRP changes
the attitude of the sail, so not considering its contribution could influence the success of
the manoeuvre.
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Figure 6.27. Initial conditions that allow the capturing manoeuvre for an
orbit with inclination- i 85 deg

The opposite situation happens when part of the manoeuvre is performed in the eclipse
area. In fig. 6.31 the moment when the sail enters in the umbra can be noticed since
the acceleration with only SRP becomes null. In this case, the braking phase does not
decrease enough the velocity vector, not closing the orbit. When PRP is considered, the
sail continues to provide an acceleration to the spacecraft so that the capturing can be
achieved, as can be seen in fig. 6.30 (a). Moreover, more than in the previous case, the
planetary contribution influences the optimal attitude of the sail.

The analysis as been repeated for a more inclined orbit in order to verify the possibility
of a capturing manoeuvre near a polar orbit. When the argument of periapsis is 0 deg,
results do not change much from the ones for a less inclined orbit. In fig. 6.33 it can be
seen that the planetary contribution increases the normal acceleration, but this does not
facilitate the capturing manoeuvre. In fig. 6.32 a with and without PRP the capture is
achieved. According to fig. 6.27, PRP does not give great advantages for an highly orbit,
also when the manoeuvre is in the eclipse region. Results with the chosen initial condition
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6.2 – Results of capturing manoeuvre

Figure 6.28. Trend of semimajor axis and eccentricity (a), and direction of the accelera-
tion vectors - i 5 deg, ω 0 deg

Figure 6.29. Magnitude and components of the acceleration vector - i 5 deg, ω 0 deg

confirm this thesis and with or without planetary contribution the capture is achieved.
However, comparing the results in fig. 6.34 with the ones of the other study-case, it can
be noticed that the presence of PRP in the analysis allows to close the orbit about 500s
before the case with only SRP and leads to a smaller eccentricity at the end of the braking
phase.
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Figure 6.30. Trend of semimajor axis and eccentricity (a), and direction of the accelera-
tion vectors - i 5 deg, ω 180 deg

Figure 6.31. Magnitude and components of the acceleration vector - i 5 deg, ω 180 deg
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6.2 – Results of capturing manoeuvre

Figure 6.32. Trend of semimajor axis and eccentricity (a), and direction of the accelera-
tion vectors - i 85 deg, ω 0 deg

Figure 6.33. Magnitude and components of the acceleration vector - i 85 deg, ω 0 deg
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Figure 6.34. Trend of semimajor axis and eccentricity (a), and direction of the accelera-
tion vectors - i 85 deg, ω 180 deg

Figure 6.35. Magnitude and components of the acceleration vector - i 85 deg, ω 0 deg
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Chapter 7

Conclusion

Following and extending a previous work where the analysis was only two-dimensional, this
thesis has investigated, with a three-dimensional approach, the effect of planetary radia-
tion pressure on the acceleration of a solar sail orbiting around a planet. In the planetary
radiation, two contributions have been taken into account, the black body emission and
the albedo.
The acceleration due to both solar and planetary radiation has been calculated with oppor-
tune relations that also considered the optical properties of the materials and the direction
of incident photons. For this last reason, two angles have been used to describe the attitude
of the sail in three-dimensional space and to know its orientation respect to the photons.
All the possible orientations could be scanned, and the one that maximises the acceleration
along a chosen direction could be found. A grid of points around the Earth and Venus
has been analysed, maximising the radial and the transverse acceleration. Results show
that the effect of the planetary contribution is minimal if the sail is orbiting around Earth,
but becomes dominating in a considerable region when the planet is Venus. In this case,
both the attitude of the sail and the acceleration magnitude changed, especially due to the
contribution of black body radiation.
Thanks to the developed model, some manoeuvres have been simulated with Gauss’ varia-
tional equations and Gao’s control laws, in order to change the inclination, the semimajor
axis and the eccentricity of an orbit around Venus. The influence of planetary radiation
pressure on the performance of the manoeuvres depends on the initial orbital elements and
on the requested orbital changes; in particular, the planetary contribution has provided
relevant benefits in the vicinity of the planet, where its radiation is dominating, and in the
eclipse region, where only the black body radiation is present. Out of these areas, PRP
has been less relevant in the manoeuvres, even if it should not be neglected especially in
the region between the planet and the Sun since it can provide a contribution against the
solar one and decrease the net acceleration.
The effect of PRP on a capturing manoeuvre for Venus has been studied too. In this case,
the equations of motion have been integrated, while an acceleration in the opposite direc-
tion of the velocity vector has been requested from the sail. Unlike the sail acceleration,
this manoeuvre is cheaper when it is done far from the planet. However, results show that
the planetary contribution allowed a wider range of initial conditions, in terms of periapsis
and eccentricity of the initial hyperbola, when the orbit had an argument of periapsis equal
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to 180 deg, and so the manoeuvre has been performed in the umbra area, and within a
certain distance from the planet. With different arguments of periapsis, the advantage has
been less significant, and in some cases has become even negative.
In this study, the investigation of solar sailing that considered both solar and planetary
radiation pressure has been only in a preliminary phase. Future analyses could obtain more
accurate results, improving the models used for black body emission, albedo and eclipse
area. The planet could be modelled as a uniformly bright sphere rather than a disc so that
the results could be more realistic. Moreover, the divergence of the Sunlight rays could be
taken into account, creating an eclipse region model more consistent with reality, unlike
the cylindrical one. The assumption of fixed Sun could be relaxed, and a more elaborated
model could be used of the albedo. As regards the study of the manoeuvres with Gao’s
control law, future works could implement the optimisation of the parameters proposed
by Gao, studying how they change whether the PRP is considered or not; in addition, the
analysis conducted for manoeuvres around Venus could be repeated for the Earth, even
if its results are not so promising, for the wide range of possible applications. Interesting
further analyses could consider the effect of the aerodynamic forces in the calculation of
the net acceleration, focusing the study in the area close to the planet, where the planetary
contribution is higher. In the end, after the capturing manoeuvre, the whole interplane-
tary trajectory could be studied either with the patched conic approximation or solving a
three-body problem.
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