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Abstract 
 

Milling is one of the most versatile processes used in the manufacture of various components. 
With this, the milling tool usage has gained momentum, so as the research on its wear 
phenomenon. Flank wear has been considered as, one of the most commonly observed and an 
unavoidable phenomenon in metal cutting process, which is also a major source of economic 
loss resulting due to material loss and machine downtime.  

With the aim of implementing a predictive maintenance for the milling process, so as to avoid 
unnecessary cost and wastage of time due to sudden failure of cutting tool, and also to maintain 
the best product output quality, one of the applications of Machine Learning has been presented 
in this thesis by giving due importance to Tool Condition Monitoring.  

By highlighting the usage of model based maintenance method, the study presents the 
implementation of the framework of predictive maintenance which has been proposed 
extensively by many research papers. This thesis presents a method to apply Machine Learning 
in the prediction of the tool wear, thereby assessing the remaining useful life of the tool for 
best performance with respect to cost, quality and time. The work here presents the methods of 
Data cleansing, manipulation of data to extract and select features, utilization of the features in 
training various machine learning models and testing them to conclude in finding the possible 
tool wear severeness and to assess the Remaining Useful Life based on wear results.  

The study also presents the possible tools that can be used to carry out the regression analysis 
in order to train and test machine learning models like Linear Regression, Bayesian Ridge 
Regression, Kernel Ridge Regression, Neural Network and so on. Cross validation has been 
carried out in order to narrow down on the machine learning model, which has been further 
improved using Hyperparameter tuning. This has enabled to arrive at the best possible results 
for wear prediction and Remaining useful life of the tool. 
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Chapter 1 - Introduction 
 

Synopsis 

The introductory chapter gives an insight into the reasoning of the thesis topic and introduces 
many terms associated with the same. Upon basic introduction into many aspects of AI, Tool 
wear and maintenance, the chapter also gives objective of taking up this thesis work and the 
structure adopted here to present the same. 

1.1 Artificial Intelligence and its applications 

John McCarthy is known as the Father of Artificial Intelligence. According to him, AI 
is “The science and engineering of making intelligent machines, especially intelligent computer 
programs”. In the similar manner how a human Intelligence work, AI is the way of making the 
computer, computer controlled robots or a software to think intelligently. The basis for 
developing intelligent software and systems is the study of how a human brain works. Various 
studies have been performed to study how a human learns, decides and works while trying to 
solve a problem and these outcomes have paved the way for developing AI [1].  

In a broader sense, following can be considered as goals of AI, 

1. To create Expert systems: Expert systems are those which exhibit intelligent behavior, learn, 
demonstrate, explain and advise its users. 

2. To implement human intelligence in Machines: Creating systems that understand, think, 
learn and behave like humans. 

Artificial Intelligence is a big domain which is gaining momentum in the current 
market. It involves a variety of technologies and tools. The below mentioned are some of the 
recent technologies, 

1. Natural Language Generation: It is a tool that produces text from computer data. This 
technology is currently used in customer service, report generation and summarizing business 
intelligence insights.  

2. Speech Recognition: This is a technology which transcribes and transforms human speech 
into useful format for computer applications. This is presently used in interactive voice 
response systems and mobile applications.  

3. Virtual Agent: A Virtual Agent is a computer generated, animated, artificial intelligence 
virtual character (usually with anthropomorphic appearance) that serves as an online customer 
service representative. It leads an intelligent conversation with users, responds to their 
questions and performs adequate non-verbal behavior. An example of a typical Virtual Agent 
is Louise, the Virtual Agent of eBay which was created by a French/American developer 
VirtuOz. 

4. Machine Learning: Provides algorithms, APIs (Application Program interface) development 
and training toolkits, data, as well as computing power to design, train, and deploy models into 
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applications, processes, and other machines. Currently used in a wide range of enterprise 
applications, mostly involving prediction or classification. 

5. Deep Learning Platforms: A special type of machine learning consisting of artificial neural 
networks with multiple abstraction layers. Currently used in pattern recognition and 
classification applications supported by very large data sets. 

6. Biometrics: Biometrics uses methods for unique recognition of humans based upon one or 
more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is 
used as a form of identity access management and access control. It is also used to identify 
individuals in groups that are under surveillance. Currently used in market research. 

7. Robotic Process Automation: using scripts and other methods to automate human action to 
support efficient business processes. Currently used where it is inefficient for humans to 
execute a task. 

8. Text Analytics and NLP: Natural language processing (NLP) uses and supports text analytics 
by facilitating the understanding of sentence structure and meaning, sentiment, and intent 
through statistical and machine learning methods. Currently used in fraud detection and 
security, a wide range of automated assistants, and applications for mining unstructured data. 

 AI has been adopted in various fields and there are certain fields, where it is dominating 
[1] [2]. Some of those fields are, 

1. Gaming: AI plays crucial role in strategic games such as chess, poker, tic-tac-toe, etc., where 
machine can think of large number of possible positions based on heuristic knowledge. 

2. Natural Language Processing: It is possible to interact with the computer that understands 
natural language spoken by humans. 

3. Expert Systems: There are some applications which integrate machine, software, and special 
information to impart reasoning and advising. They provide explanation and advice to the 
users. 

4. Vision Systems: These systems understand, interpret, and comprehend visual input on the 
computer. For example,  

a. A spying aeroplane takes photographs, which are used to figure out spatial 
information or map of the areas.  
b. Doctors use clinical expert system to diagnose the patient. 
c. Police use computer software that can recognize the face of criminal with the stored 
portrait made by forensic artist. 

5. Speech Recognition: Some intelligent systems are capable of hearing and comprehending 
the language in terms of sentences and their meanings while a human talks to it. It can handle 
different accents, slang words, noise in the background, change in human’s noise due to cold, 

and so on. 

6. Handwriting Recognition: The handwriting recognition software reads the text written on 
paper by a pen or on screen by a stylus. It can recognize the shapes of the letters and convert it 
into editable text. 
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7. Intelligent Robots: These are the robots that are able to perform the tasks given by a human. 
They have sensors to detect physical data from the real world such as light, heat, temperature, 
movement, sound, bump, and pressure. They have efficient processors, multiple sensors and 
huge memory, to exhibit intelligence. In addition, they are capable of learning from their 
mistakes and they can adapt to the new environment. 

One of the applications of AI i.e. Machine Learning has been highlighted in this thesis 
work. Machine learning has been used to teach the system to predict the wear of the tool. Before 
going into the details of how it is being predicted, Tool wear and prediction is taken separately 
and presented for better understanding. 

1.2 Tool wear 

Metal cutting or traditional machining processes are also known as conventional 
machining processes. These processes are commonly carried out in machine shops or tool room 
for machining a cylindrical or flat job to a desired shape, size and finish on a rough block of 
job material with the help of a wedge shaped tool. The cutting tool is constrained to move 
relative to the job in such a way that a layer of metal is removed in the form of a chip. These 
machining processes are performed on metal cutting machines, more commonly termed as 
machine tools using various types of cutting tools (single or multi-point) [2]. From this we can 
conclude that as the cutting tool is progressively used, it is bound to lose some of its material 
as well. And this is termed as Tool wear.  

 Tool wear is the gradual failure of cutting tools due to regular operation. Tools affected 
include tipped tools, tool bits, and drill bits that are used with machine tools [3]. Tool wear 
brings about following undesirable effects, 

1. Increased cutting forces 

2. Increased cutting temperatures 

3. Poor surface finish 

4. Decreased accuracy of finished part 

5. May lead to tool breakage 

6. Causes change in tool geometry 

Reduction in tool wear can be accomplished by using lubricants and coolants while 
machining. These reduces friction and temperature, thus reducing the tool wear. However, 
since only reduction is possible and not the total abstention of the tool wear, there will come a 
time where we need to replace the tool as it directly affects the way the machining is taking 
place and thus the quality of the final product.  

With regard to changing the tool, what if we could predict the time as to when we have 
to replace the tool to get the maximum benefit out of it in terms of time, cost and quality. This 
is termed as Predictive maintenance which is one of the types of Maintenance which is further 
discussed in Chapter 2.   
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1.3 Thesis Objective and Structure 

This thesis will present the implementation of a milling cutting tool wear monitoring 
and Predictive maintenance solution, built using Python with the help of various of its libraries. 
The thesis will present the machine learning models to achieve this task of prediction by 
providing the way to choose the best among them by implementing various error calculation 
metrics and validation methods.  

The thesis report is structured to first give an insight into the Why of Predictive 
Maintenance, and later explores the framework of machine learning method for predictive 
maintenance by using one of the case studies of milling cutting tool wear prediction. Then 
ventures into the tools used to get the data, manipulate it for our advantage, and how this data 
is used to train and test the machine learning models. This is then followed up with the 
validation methods to choose the best model, and further improving its performance. The thesis 
ends with using this improved model to predict the remaining useful life of the tool. 
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Chapter 2 – Predictive Maintenance 
 

Synopsis 

In continuation with the Introductory chapter, the second chapter gives a brief overview of 
maintenance in an Industry and explains in detail one of the types of maintenance, i.e. 
Predictive maintenance with its Benefits. 

2.1 Maintenance 

Machinery maintenance is the means by which mechanical assets in a facility are kept 
in working order. Machinery maintenance involves regular servicing of equipment, routine 
checks, repair work, and replacement of worn or nonfunctional parts [4]. Maintenance costs 
are a major part of the total operating costs of all manufacturing or production plants.  
Depending on the specific industry, maintenance costs can represent between 15 and 60 percent 
of the cost of goods produced [5].  

The dominant reason for this ineffective management is the lack of factual data to 
quantify the actual need for repair or maintenance of plant machinery, equipment, and systems. 
Maintenance scheduling has been, and in many instances still is, predicated on statistical trend 
data or on the actual failure of plant equipment [5]. 

Until recently, middle- and corporate-level management have ignored the impact of the 
maintenance operation on product quality, production costs, and more important, on bottom-
line profit. The general opinion has been “Maintenance is a necessary evil” or “Nothing can be 

done to improve maintenance costs.” Perhaps these statements were true 10 or 20 years ago, 
but the development of microprocessor- or computer based instrumentation that can be used to 
monitor the operating condition of plant equipment, machinery, and systems has provided the 
means to manage the maintenance operation. This instrumentation has provided the means to 
reduce or eliminate unnecessary repairs, prevent catastrophic machine failures, and reduce the 
negative impact of the maintenance operation on the profitability of manufacturing and 
production plants [5]. 

  

2.1.1 Types of Maintenance 

Traditionally, 5 types of maintenance [6] have been distinguished, which are differentiated by 
the nature of the tasks that they include: 

1. Corrective maintenance: The set of tasks is destined to correct the defects to be found 
in the different equipment and that are communicated to the maintenance department 
by users of the same equipment. 

2. Preventive Maintenance: Its mission is to maintain a level of certain service on 
equipment, programming the interventions of their vulnerabilities in the most 
opportune time. It is used to be a systematic character, that is, the equipment is inspected 
even if it has not given any symptoms of having a problem. 
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3. Predictive Maintenance: It pursues constantly know and report the status and 
operational capacity of the installations by knowing the values of certain variables, 
which represent such state and operational ability. To apply this maintenance, it is 
necessary to identify physical variables (temperature, vibration, power consumption, 
etc.). Which variation is indicative of problems that may be appearing on the 
equipment? This maintenance it is the most technical, since it requires advanced 
technical resources, and at times of strong mathematical, physical and / or technical 
knowledge. 

4. Zero Hours Maintenance (Overhaul): The set of tasks whose goal is to review the 
equipment at scheduled intervals before appearing any failure, either when the 
reliability of the equipment has decreased considerably so it is risky to make forecasts 
of production capacity. This review is based on leaving the equipment to zero hours of 
operation, that is, as if the equipment were new. These reviews will replace or repair all 
items subject to wear. The aim is to ensure, with high probability, a good working time 
fixed in advance. 

5. Periodic maintenance (Time Based Maintenance TBM): the basic maintenance of 
equipment made by the users of it. It consists of a series of elementary tasks (data 
collections, visual inspections, cleaning, lubrication, retightening screws,) for which no 
extensive training is necessary, but perhaps only a brief training. This type of 
maintenance is the based on TPM (Total Productive Maintenance). 
 

2.2 Predictive Maintenance 

In manufacturing companies, different maintenance strategies are used: Reactive 
Maintenance, Preventive Maintenance and Predictive Maintenance [7] . The most traditional 
of these strategies is Reactive maintenance which begins with a correction of a failure after this 
failure has taken place. In contrast to this, Preventive maintenance aims to prepone the time of 
preventative measures before the time of a potential asset failure.  

An important shortcoming in Preventive maintenance strategies is that the current 
condition of an asset does not influence its maintenance schedule [8]. Condition Based 
Monitoring as one implementation of Predictive maintenance, in contrast, includes 
measurements of the condition of the assets into its maintenance planning. Frequently recorded 
characteristics are for example the temperature or vibration in a machine.  

Condition based monitoring related activities can be divided into three groups of steps: 
Data acquisition, data pre-processing and definition of maintenance decisions [9]. In the first 
step, data acquisition, data is recorded and collected, e.g. from sensors. In contrast, preventative 
maintenance decisions on schedules are based on experience and intuition of the involved 
people as well as alerting systems, spreadsheets, operator logs, and shift transfer discussions. 
Data pre-processing, the second step in the work of a Condition based monitoring, adjusts and 
interprets the data gathered in the first step, e.g. with noise reduction [9].  

With the returned information from data pre-processing, maintenance policies and 
decisions can be derived. Both diagnostics and prognostics are applied in this step. With 
diagnostics, prior failures can be singled out and measured. In the course of diagnostics, failures 
have to be recorded, distinguished and identified [9]. Prognostics are executed to predict 
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failures, which may be foreseen in the future. With prognostics, the Residual Useful Life, i.e. 
the remaining time before an asset runs into a failure [10], and the confidence interval can be 
estimated. The introduced asset condition is also referred to as the degradation signal of an 
asset and is the essential indicator and calculation element for predicting the Residual Useful 
life [11]. The invention of sensors and other means of information recording in a production 
environment led to more attention to Prognostic Health Management, a term comprising 
prognostic methods to measure and use the asset health statuses such as Predictive maintenance 
methods. 

2.2.1 Benefits of Predictive Maintenance 
 

One important Key Performance Indicator for many producing companies is the Overall 
Equipment Effectiveness (OEE) [12]. The OEE indicates the level of availability and 
performance of production assets and their output quality. By including downtime into the OEE 
measurement, unplanned outages of assets result in a negative impact on its value. In its aim to 
reduce unplanned outages, Predictive maintenance may have a positive effect on the OEE. 

Other metrics affected by the application of Predictive maintenance include the reduction of 
scrap and enhanced output quality [7]. 

Product quality does not only depend on the degradation status of production machines 
but among others also on the components of a production machine [13] [10]. The planning of 
the necessity on the amount of repair parts at a certain time is difficult for companies and a 
higher inventory with many spare parts leads to higher inventory costs. Therefore, it may be 
reasonable to employ Predictive methods for planning repair parts inventory levels and keep at 
least as much inventory as is predicted necessary. In practice, Predictive maintenance  often 
lack a joint optimization of inventory, however, models have been created, how stock 
management may be included in Predictive maintenance optimization, e.g. by Soltani [10]. 

Another benefit of Predictive maintenance may be achieved in the field of remote 

sensing. CBM as a part of Predictive maintenance may be of extended benefit under conditions, 

under which it is installed with remote sensing technologies allowing for Remote Condition 
Monitoring (RCM) and therewith enabling the review of conditions in an asset, where regular 
maintenance procedures would not be possible or safe [14], e.g. measurements of oil 
temperatures in a running engine. 

Another possibility, partly enabled by Predictive maintenance, is the servitization of 
manufacturing as a new business model [15]. In this business model, an Original Equipment 
Manufacturer (OEM) retains an enduring relationship with the users of their products 
performing maintenance as a service to them. With an application of Predictive maintenance 
methods, an OEM can continuously collect data about the use, failures, and degradation of their 
products to consider these aspects for product improvement [16].  
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Chapter 3 – Literature Review  
 

Synopsis 

This chapter deals with the literature reviews of some of the well-known papers in the field 
pertaining to topics such as Tool condition monitoring, Predictive maintenance, Outlier 
analysis, Feature extraction, Feature selection and Machine learning models with remaining 
useful life determinations. These papers have been utilized as framework in developing this 
thesis. 

 

3.1 Literature Review 

Dr. H.M Hashemian [17] presented views on the condition-based maintenance 
techniques for industrial equipment and presented processes describing with examples of their 
use and benefits. The paper was presented by introducing about the importance of the predictive 
maintenance sometimes called “on-line monitoring,” “condition-based maintenance,” or “risk-
based maintenance”.  

The paper began by presenting the importance of the conventional visual inspection by 
highlighting also the other conventional means such as using sharp ears and nose, and how the 
sensors have replaced these conventional means in order to optimize and make the process of 
inspection more accurate. The paper also conveys that despite advances in predictive 
maintenance technologies, time-based and hands-on equipment maintenance is still the norm 
in many industrial processes. Today, nearly 30% of industrial equipment does not benefit from 
predictive maintenance technologies.  

The paper gave the limitations of the time-based maintenance techniques as such. The case was 
evaluated by considering an exercise conducted by SKF group over the testing of 30 identical 
bearing elements. The failure of the bearings over the period were analysed and various plots 
were done. The time-based maintenance plots such as Bathtub, Wear-out and Fatigue 
accounted only for 11% of the total failures [18]. However, the Condition based maintenance 
plots such as Initial Break-In Period, Random and Infant mortality accounted for 89% of all 
the failures with 68% of them from only Infant mortality failures.  

The paper also presented an introductory view of one of the forms of predictive maintenance 
i.e. Online calibration monitoring. Online calibration monitoring involves observing for drift 
and identifying the transmitters that have drifted beyond acceptable limits. When the plant 
shuts down, technicians calibrate only those transmitters that have drifted. This approach 
reduces by 80 to 90% the effort currently expended on calibrating pressure transmitters. This 
is according to data published by the author in a report he wrote for the U.S. Nuclear Regulatory 
Commission [19]. 

Based on the data sources available, the author proposed that the Predictive or online 
maintenance can be divided into 3 basic techniques 
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1. The first category consists of maintenance methods that use data from existing 
process sensors 

2. The second category of predictive maintenance methods uses data from test sensors 
3. the third category of predictive maintenance technology depends on signals that are 

injected into the equipment to test them 

The first two categories of predictive maintenance techniques were mostly passive, do not 
involve perturbations of the equipment being tested, and can be performed in most cases while 
the plant is operating. The third category of predictive maintenance methods can be described 
as methods that depend on active measurements from test signals. 

 
Figure 1: Integrated system employing three techniques for predictive maintenance 

The paper also presented with the typical types of industrial equipment that can benefit from 
these three predictive maintenance technologies and the parameters that may be monitored as 
shown in Figure 2: Parameters related to equipment Condition,  

Further insight was provided on the 3 basic techniques by providing practical cases for each of 
them like as in the case of category 1,   

1. Using Existing sensor AC output to detect blockages in pressure sensing lines [20] 
2. Using existing sensor DC output to verify sensor calibration 
3. Using empirical or analytical modelling to verify calibration [21] 
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Figure 2: Parameters related to equipment Condition 

 

And as in the case of category 2, using test sensors, for example acoustic sensors installed 
downstream of valves can establish whether the valve is operating as expected: if a valve is 
completely open or completely closed, there is normally no detectable acoustic signal above 
the background noise. It is also proposed that When existing process sensors are not available 
to provide the necessary data, wireless sensors can be deployed to fill the gap. For example, 
wireless sensors can be implemented in such a way as to combine vibration, acoustic, and other 
data with environmental information such as humidity and ambient temperature to yield a 
comprehensive assessment of the condition of the process’s equipment and health. 

The example given for the usage of 3rd category technique is a method called the Loop Current 
Step Response (LCSR) test can remotely measure the response time of temperature sensors as 
installed in a plant while the plant is online [22]. This method sends an electrical signal to the 
sensor in the form of a step change. A Wheatstone bridge is used to send a step charge in current 
to the Resistance Temperature Detectors (RTD). The current causes heating in the RTD sensing 
element and produces an exponential transient at the bridge output. This transient can be 
analyzed to give the response time of the RTD. The LCSR test can be used for other purposes 
such as finding water levels in a pipe. It can also be used to verify that temperature sensors are 
properly installed in their thermowells in a process and that they respond to temperature 
changes in a timely manner. Similarly, the LCSR method can be used to determine if aging 
causes degradation in the dynamic performance of temperature sensors so sensor replacement 
schedules can thereby be established. 

The goal of one of the projects, “On-Line Monitoring of Accuracy and Reliability of 
Instrumentation” was to develop systems for online condition monitoring of equipment and 

processes in industrial plants. The OLM project aimed at developing new technology that uses 
signals from existing process sensors to verify the performance of the sensors and assess the 
health of the process. Under the OLM project AMS Corporation is developing statistical 
packages for data qualification. For example, we calculate the amplitude probability density of 
the data and look for nonlinearity and other problems in the data before we send the data 
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through for analysis. We also calculate signal skewness, kurtosis, and other measurements and 
trend them to identify problems in data. 

The conclusion was that the Industrial plants should no longer assume that equipment failures 
will only occur after some fixed amount of time in service; they should deploy predictive and 
online strategies that assume that any failure can occur at any time (randomly). the three major 
types of predictive or online maintenance technologies discussed in this paper promises to 
deliver technologies that may be applied remotely, passively, and online in industrial processes 
to improve equipment reliability; predict failures before they occur; and contribute to process 
safety and efficiency. Integrating the predictive maintenance techniques described in this paper 
with the latest sensor technologies will enable plants to avoid unnecessary equipment 
replacement, save costs, and improve process safety, availability, and efficiency. 

Nagdev Amruthnath and Tarun Gupta provided a study on unsupervised machine 
learning algorithms for early fault detection in predictive maintenance [23].  The paper 
presented that one of the prominent methods is watchdog agent, a design enclosed with various 
machine learning algorithms [24] [25]. Some of the other architectures are an OSA-CBM 
architecture [26], SIMAP Architecture [27], and predictive maintenance framework [28]. 

The paper presented introduction on machine learning and its classification.  

1. Supervised learning where the predictors and response variables are known for 
building the model  

2. Unsupervised learning, where only response variables are known  
3. Reinforced learning, where the agent learns actions and consequences by 

interacting with the environment 

The paper mainly focused on the unsupervised learning and presented that one of the most 
commonly used approaches is Clustering, where, response variables are grouped into clusters 
either user-defined or model based on the distance, model, density, class, or characteristic of 
that variable. For this research, vibration data has been used.  

A brief literature review was presented by the author, which focused on the Business analytics. 
According to the paper, the business analytics can be viewed in 3 different prospective [29], 

1. Descriptive analytics 
2. Predictive analytics 
3. Prescriptive analytics 

Coming back to the algorithms, the author presented that Principle component analysis (PCA) 
is one of the oldest and most prominent algorithms that are widely used today for fault 
detection. Since then, they have been many hybrid approaches to PCA for fault detection such 
as using Kernel PCA [30], adaptive threshold using Exponential weight moving average for 
T2 and Q statistic [31], multiscale neighborhood normalization-based multiple dynamic 
principal component analysis (MNNMDPCA) method [32], Independent Component Analysis. 
Another common method used for fault detection is clustering method. Similar to PCA, there 
are various algorithms such as neural net clustering algorithm neural networks and subtractive 
clustering [33], K-means [34], Gaussian mixture model [35], C-Means, Hierarchical Clustering 
[36], and Modified Rank Order clustering (MROC) [37]. 
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The paper later presented case on Fault detection and about its importance. Here different 
algorithms such as Principle Component Analysis (PCA) T2 statistic, Hierarchical clustering, 
K- Means clustering, C-Means, and Model-based clustering for fault detection and benchmark 
its results for vibration monitoring data were discussed.  

The paper later justified the reason for selecting vibration as the measuring parameter by stating 
that Vibration data is one of the most commonly used technique to detect any abnormalities in 
a submachine. Feature selection was done using PCA. Different features that were extracted 
were Peak acceleration, Peak velocity, turning speed, RMS Velocity and Damage 
accumulation. Principal component analysis (PCA) is a mathematical algorithm that reduces 
the dimensionality of the data while retaining most of the variation (information) in the data 
set [38]. In a simple context, it is an algorithm to identify patterns in data and expressing such 
a way to showcase those similarities and differences [39]. An algorithm was presented and the 
summary of the PCA indicated that the first two principal components show 95.65% of 
variance compared to the rest of the components. Hence from the summary data and screen 
plot, it was concluded that the first two principal components present maximum variation 
compared to rest of the principal components.  

T2 Statistic analysis was also presented. This statistic can be used to measure the values against 
the threshold and any values above the threshold; can be concluded as out of control data. In 
this case, it is going to be faulty data. The results showed that the faults can be detected as early 
as 41 observations. Hence, this early detection would help the maintenance teams to monitor 
these process changes and take corrective actions accordingly. 

The author later presented the evaluation of vibrations using cluster analysis. The procedure 
started with identifying the optimal number of clusters. To identify the number of clusters, 
there are many procedures available such as elbow method, Bayesian Inference Criterion 
method and nbClust package in R [40]. From both elbow method and nbClust package it was 
concluded that 3 clusters are the optimal number of clusters for fault detection. And it was 
theorized that each cluster represents a normal condition, warning condition and faulty 
condition. 

The procedure was repeated with Hierarchical clustering, K-means and Fuzzy C-Means 
clustering. Upon careful consideration it was found that the results provided by K-means and 
Fuzzy C-means clustering were very similar to results obtained from Hierarchical clustering.  

The final results were presented as follows, where the authors hypothesized that there are 2 
states in data. One the healthy data set and the other was unhealthy data set. Using PCA and T2  

statistic, they were able to fit the hypothesis states and were able to detect the faults 31 
observations ahead. Whereas without a tool and just based on data plots, they could observe 
the trends only 11 observations ahead. 

Hence the conclusion was drawn that, one of the benefits of using T2 statistic method as even 
when this is deployed to the manufacturing environment, with minimum or no domain 
knowledge, one can identify fault or critical condition when compared to clustering analysis. 
And that Clustering methodology is undoubtedly a better tool in detecting different levels of 
faults where T2 statistic would be challenging after certain levels. i.e. when the cost machine 
maintenance is expensive, clustering would be a flexible option where machine health can be 
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monitored continuously until a critical level is reached. But if fault detection needs to be 
performed under different levels then, clustering algorithms would be a better choice. 

Jinjiang Wang, Yuanyuan Liang, Yinghao Zheng, Robert X. Gao, and Fengli Zhang 
have presented a paper on ‘Integrated fault diagnosis and prognosis approach for predictive 

maintenance of wind turbine bearing with limited samples’ [41]. The paper presented a new 
model based approach of integrated fault diagnosis and prognosis for wind turbine remaining 
useful life estimation. 

The paper started with providing introduction on the importance of harnessing wind energy 
and the usage of wind turbines and the need for it to operate in a highly reliable manner to 
improve the economic viability of wind energy. The paper states that according to the latest 
statistics from the NREL gearbox reliability database [42], the majority (about 76.2%) of wind 
turbine gearbox failures are caused by bearings.  

In this paper to diagnose incipient defect and predict the remaining useful life of a wind turbine 
bearing, effective signal processing techniques and prognosis models have been investigated 
on monitoring sensing measurements [43] [44] [45]. In Ref. [46], an integrative approach of 
ensemble empirical mode decomposition and independent component analysis was 
investigated to separate bearing defect related signals from gear meshing signals for vibration 
analysis of bearing fault diagnosis. A linear regression analysis approach was presented in Ref. 
[47] to extract load-independent features for wind turbine bearing diagnosis. A dynamic time-
warping algorithm was also presented to eliminate the speed fluctuation in vibration fault 
diagnosis of a wind turbine [48].  

Considering there were a number of constraints in order to get large amount of reliable 
historical data, the paper presents a new integrated fault diagnosis and prognosis technique for 
the remaining useful life estimation of a wind turbine bearing with limited failure data 
measurements available. Firstly, a wavelet based enveloping order spectrum method was 
performed by the author on the noisy vibration measurements to extract fault-related weak 
features for early fault diagnosis. Then, the physics behind the degradation process and fault 
related features representing the degradation status were modelled in a Bayesian framework, 
and particle filter was employed to estimate the model parameter online and predict the 
degradation status with uncertainty quantification. The integrated fault diagnosis and prognosis 
approach was validated using lifetime test data acquired from a wind turbine in field, and the 
performance comparison with typical data driven technique outlines the significance of the 
presented method. 

The paper presented an overview on the predictive analytics, which refers to forecasting the 
future progression of a situation and has been widely investigated in a wide range of 
applications. According to the information utilization and modelling mechanism, the predictive 
modelling techniques are categorized into three groups: physics-based, data-driven, and model-
based. 

The physics-based approach typically describes the physical behaviors of a system using the 
first principle as a series of ordinary or partial differential equations according to the law of 
physics [49]. The data driven approach does not rely on physical knowledge, and it constructs 
a model representing the underlying relationship of a system based on data mining techniques. 
In comparison, the model-based approach takes advantage of established physical knowledge 
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and collected data to enhance the prediction performance. Comparing with the data driven 
approach, the model-based approach requires less historical data to construct the models. The 
comparison of these predictive modelling techniques was provided as below, 

 
Figure 3: Comparison of different predictive modelling techniques regarding defect prognosis 

 

 
Figure 4: Framework of the integrated diagnosis and prognosis technique for wind turbines 

 

From the results obtained, the authors arrived at the following conclusions, 

1. The presented method takes advantage of physical knowledge and statistical models in 
one approach, and the accurate prediction is achieved by Bayesian inference with 
uncertainty quantification. 

2. The extracted features based on wavelet transform manifest the incipient defects, and 
the fused feature shows a good representation of bearing defect conditions. 

3. The presented method can adaptively learn from the noisy data measurements, and it is 
robust to different steps-ahead predictions with limited set of degradation samples. 

Cunji Zhang, Xifan Yao, Jianming Zhang and Hong Jin have published a paper titled 
‘Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor 
in Dry Milling Operations’. This paper plays a vital role in the development of this thesis, 

because of the impeccable, clear pathway that has been provided in this paper. 

The paper introduces the Tool condition monitoring, by providing brief overview on the 
traditional machining operations like turning, milling, grinding and drilling. The importance of 
the Tool condition monitoring has been conveyed by iterating how a powerful TCM system 
can improve productivity and guarantee product quality, which has a considerable influence on 
machine efficiency [50].  

The paper suggested that there are basically two methods of measuring Tool wear.  
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Figure 5: Tool wear measuring Techniques 

In direct measuring methods, such as tool-workpiece junction resistance, radioactivity, vision 
inspection, and optical and laser beams, the shape parameters of the cutter are measured by 
microscope, surface profiler etc [51]. The advantages of the direct measuring methods were 
highlighted as the ‘Acquisition of accurate dimension changes due to tool wear’. However, this 
also meant that there were some disadvantages in using the direct method, as stated below, 

1. Vulnerable to field conditions, cutting fluid and various disturbances 
2. Since it is performed offline, this would interrupt the normal machining operations 

because of the contact between the tool and the measuring device  

This paved the way for the development of Indirect measuring methods. In indirect measuring 
methods, the tool wear is achieved by the corresponding sensor signals [52]. The measuring 
accuracy is lower than that of the direct measuring methods. However, they have the 
advantages of easy installation and easy to implement online in real time. This study focuses 
on indirect methods.  

In the indirect methods, tool wear is measured based on various sensor signals containing 
cutting force, torque, vibration, Acoustic Emission (AE), sound, surface roughness, 
temperature, displacement, spindle power and current. Among these sensors, cutting force, 
vibration and AE measurements are robust and have been used more frequently than any other 
sensor measurement methods, and are more fit for the industrial field environment [53] [5]. 
The features of the signals correlating to the tool wear are captured to monitor tool condition. 
To do this, a mass of signal processing methods was used, such as time series modelling, Fast 
Fourier Transform (FFT) and time–frequency analysis, the amount of calculation involved in 
corresponding parameters with tool wear is enormous. Wavelet Transform (WT) is a well-
developed signal processing method and has been successfully used in various science and 
engineering fields. In the process of TCM, the sensor signals contain information and noise 
typically. Therefore, it is needed to de-noise and extract the features that contain the 
characteristics of the tool wear from various noise disturbances [54]. 

Tool wear 
measurement 

Techniques

Direct 
(Intermittent -

Offline)

Indirect 
(Continuos -

Online)
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Figure 6: The framework of a Tool condition monitoring (TCM) system 

The framework of TCM was presented by generalizing that it consists of hardware and software 
parts to perform signal acquisition, signal pre-processing, features extraction, features selection 
and decision making [53]. A brief account of the milling operations and the introduction to the 
use of artificial intelligence through the introduction of neural network algorithms has been 
later provided by the authors.  

This follows with the explanation of the theoretical framework of this paper, where in the 
authors have presented the algorithms of neural network and Fuzzy logic. The reason, and the 
shortcomings of these algorithms has been briefed by stating that methods, NN is only suitable 
for solving a problem that is expressed by a large number of training data. At first, no empirical 
knowledge about the problem is required. Secondly, the comprehensible rules are not extracted 
directly from the NN structure. On the contrary, a FLS needs comprehensible rules instead of 
observed data as prior knowledge. Hence, the input and output variables need to be described 
linguistically. If the linguistic rules are incomplete, incorrect or contradictory, the FLS needs 
to be fine-tuned, and the tuning is completed with a heuristic way. The combination of NN and 
FLS forms NFN, which inherits the advantages and discards the disadvantages each other. 
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Figure 7: The architecture of Neuro-Fuzzy Network (NFN) 

The paper later dealt with the description of the experiment apparatus, signal processing 
methods, and the methods of making sense of the sensor data acquired. This led the way to the 
explanation on Feature Extraction and Feature Selection.  

Feature Extraction: The preprocessed signal is very large in volume, which is needed to further 
extract features. The goal of features extraction is to reduce the dimension of the original signal, 
meanwhile, the extracted features associate well with the cutter wear, and are not affected by 
process conditions. Generally, features are extracted in time, frequency, time-frequency and 
statistical domains [53]. The different extraction approaches have different abilities in 
extracting the meaningful information about the tool wear. 

With the help of below formulae, the ways of extracting the features in different domains were 
provided.  

 
Figure 8: Features extracted in time domain 
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Figure 9: Features extracted in frequency domain 

Feature Selection: With the usage of feature extraction from signals in time, frequency and 
time-frequency domain, results in large number of features.  The volume of signal features is 
very large, many of which are much distorted, or no correlation on cutter wear. TCM and RUL 
prediction with all the signal features are not the best selection, because irrelevant and 
redundant features are able to negatively influence the performance of the monitoring and 
prediction model. In order to improve the accuracy of the prediction model and increase the 
efficiency of calculation performance of a TCM system, it is desirable that the features should 
be optimized according to a criterion. The feature selection technique is adopted to reduce the 
number of utilized features. For this end, there are a lot of techniques, for example, Correlation-
based Feature Selection (CFS) method, Pearson’s chi-squared (2) statistics selection method, 
R squared (R2) statistics selection method and greedy hill climbing search algorithm [52]. 

With the help of pearson’s correlation coefficient, feature selection was carried out to select 
the optimal number of features. Later modelling of NFN was carried out with the data and the 
performance was measured. With the performance finalized, the model was used to arrive at 
the Remaining useful lifetime of the tool.  

In this paper, a novel approach for TCM and URL prognostics based on a wireless triaxial 
accelerometer was presented. The wireless triaxial accelerometer was used to detect the 
vibrations in three perpendicular directions (x, y and z) during cutting operations. The raw 
vibration signals were preprocessed by wavelet analysis. Different methods were applied to 
extract and select features. NFN was used to predict the tool wear and URL, and the NFN 
outperforms the others through the comparison.  

 One of the significant papers which helped in developing this thesis was, ‘Evaluation 

of tool life – tool wear in milling of Inconel 718 superalloy and the investigation of effects of 
cutting parameters on surface roughness with taguchi method’ authored by Ali Riza Motorcu, 

Abdil Kus, Ridvan Arslan, Yucel Tekin and Ridvan Ezentas.  

The paper was presented with the introduction to machinability which can be expressed as the 
easiness or difficulty in a machining operation involving cutting conditions such as cutting 
speed, feed rate and depth of cut. The paper then started with the introduction into alloys and 
super alloy materials re-iterating that the machinability of these materials is much more 
difficult compared to steel and stainless steels [55].   
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The paper later presented a number of uses and the versatility of the super alloys which can be 
used for applications like space, turbine and furnace accessories, transportation of chemicals 
and oil refinery, due to their better performance, The paper also presented the classification of 
the super alloys which has been done on the basis of structure and characteristics. Out of which 
Nickel base alloys form the largest part of alloys. And one of the most noted one is the Inconel 
718, which is a widely used nickel base super alloy. Nickel-based superalloys currently have 
hard abrasive carbides in the microstructure (e.g. MC, M23C6) that allow the formation of 
abrasive wear, which causes the formation of tool wear. The austenitic matrix used for 
machining nickel-based superalloys leads to rapid hardening. It is the main reason behind the 
abrasion along the cutting depth line [56].  

In this study, the effects of milling direction, coating layer/cutting tool, insert number and 
cutting speed on the tool life and surface roughness in the dry milling of Inconel 718 superalloy 
materials were investigated. The author later presented the experimental study consisting of 
workpiece material description, cutting tools description, machine tools description and 
Experimental procedure. The experiment was conducted on a Inconel 718 nickel base super 
alloy. The cutting tools that were used for machinability tests are, TiAlN coated carbide tools 
and TiAlN-TiN coated multi-purpose tools. And for machining test, the authors used 3 axis 
AWEA AV-610 CNC milling machine.  

The authors conducted machinability tests for both up milling and down milling directions. 
The tests were conducted under different parameter settings and the authors clearly presented 
the tabulation of readings obtained. Later the results were discussed on the experimentation 
performed.  In the surface milling of Inconel 718 superalloy, formation of flank wear depending 
on the cutting time is given in Figs. 3 ÷ 5. Machining time vs. flank wear curves were given to 
determine the effects of milling method, number of inserts and cutting tool coating material at 
different cutting speeds. One of the results that were shown was that the longer tool life can be 
obtained by down milling.  This result was concluded by conducting the experiment at 2 
different speeds under both up and down milling conditions.  

The second experiment that was conducted was using different number of inserts at 2 different 
speeds. Regardless of the insert number, a shorter tool life was obtained at high cutting speeds. 
Another conclusion that was drawn during this experiment was that when milling at higher 
cutting speeds, as the number of inserts on the tool holder increased, the necessary cutting time 
to reach the VB = 0,3 mm criterion increased. The reason was explained by stating that in the 
cutting at constant feed rate the turning chip amount per 4 inserts was lower compared to the 
milling with 2 inserts. As the chip removal volume decreases during cutting, the forces falling 
on the cutting tool will also decrease. 

Later the effect of the cutting tool coating material on the formation of flank wear depending 
on the machining time was investigated. TiAlN-TiN coated tools lasted longer than the TiAlN 
coated tools. This was due to the decreasing frictional coefficient between the tool and chip 
interface by the last TiN coating layer during machining. After the completion of the 
experiment, further observations were done on the tool wear. And the effects of this wear on 
the surface roughness were also studied.  

Following observations notes were made by the authors and PVD coated tools were preferred 
for the machining of nickel base super alloys. A non-uniform flank wear was seen as a result 
of down milling. With the increase of cutting speed, this non-uniform structure was seen 
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increasing. Due to high temperature at high cutting speed the molten workpiece material 
diffused to the area where the chip depth terminated. In the up milling, cutting edge deteriorated 
in the flank wear zone, coating layers got worn and reached the main material of the cutting 
tool and the progressing of tool wear was more rapid. In the TiN/AlTiN coated tools, among 
the different wear types, the first noticeable wear was nose wear and chippings on the cutting 
edge. The notching at the cutting depth caused by high temperature, high workpiece resistance 
and abrasive chips also created machining problems. In this milling study, the effective wear 
for both milling methods was free surface wear and nose wear. In both milling wear increased 
linearly depending on the cutting time [57]. Because of the irregular and increasing tool wear 
created in the up milling operations, contributions of TiN layer on the cutting tool performance 
came out to be insufficient.  

With the study on the effects of control factors on surface roughness, following observations 
were done. It was observed that surface roughness got worse depending on the increasing of 
cutting speed but the milling direction did not affect the increasing of surface roughness. It is 
also seen that cutting speed has no significant effect on the increase in surface roughness. In 
the down and up milling, a higher surface roughness value may be obtained because the number 
of tracks caused by the inserts on the surface during machining may be more in the milling 
with 4 inserts. At all the cutting speeds, the TiAlN-TiN coated tools exhibited better 
performances than the TiAlN coated tools.  

With all the observations, following conclusions were drawn from this paper, which were also 
utilized in assessing the results of this study.  

1. The effect of the cutting speed on tool life was higher than the effect of milling method and 
number of inserts. 

2. Tool life decreased depending on the increase in cutting speed. 

3. At both low and high cutting speeds, longer tool life was obtained with down milling method 
compared to up milling. 

4. The effective wear for both of the milling methods was free surface wear and nose wear. 
Wear increased linearly in both of the milling methods depending on the cutting time. 

5. A non-uniform flank wear was formed after down milling and this non-uniform structure 
increased with the increasing of cutting speed. 

6. Due to the high temperature generated during the high-speed cutting, molten workpiece 
diffused into the area where the cutting depth terminated. 

7. The contributions of TiN layer to the performance of the cutting tool for up milling 
operations were insufficient in the formation of increasing and irregular tool wear. 

8. The most effective control factors on the surface roughness parameter were cutting tool 
coating material, number of cutting tool inserts, the milling direction and the cutting speed 
accordingly. 
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Chapter 4 – Milling Process 
 

Synopsis 

This chapter deals with the metal cutting processes, gives an introduction into milling 
processes, the milling cutting tool and its wear phenomena with continuous usage. This chapter 
also gives an overview of the experimental setup that was used in order to obtain the data from 
the sensors for processing. 

 

4.1 Metal Cutting Process 

Metal cutting or traditional machining processes are also known as conventional 
machining processes. These processes are commonly carried out in machine shops or tool room 
for machining a cylindrical or flat job to a desired shape, size and finish on a rough block of 
job material with the help of a wedge shaped tool. The cutting tool is constrained to move 
relative to the job in such a way that a layer of metal is removed in the form of a chip.  These 
machining processes are performed on metal cutting machines, more commonly termed as 
machine tools using various types of cutting tools (single or multi-point). A machine tool is a 
power driven metal cutting machine which assist in managing the needed relative motion 
between cutting tool and the job that changes the size and shape of the job material. In metal 
cutting (machining) process, working motion is imparted to the workpiece and cutting tool by 
the mechanisms of machine tool so that the work and tool travel relative to each other and 
machine the workpiece material in the form of shavings (or swarf) known as chips [58]. 

 
Figure 10: Metal Cutting Operation 

The machine tools involve various kinds of machines tools commonly named as lathe, shaper, 
planer, slotter, drilling, milling and grinding machines etc. The machining jobs are mainly of 
two types namely cylindrical and flats or prismatic. Cylindrical jobs are generally machined 
using lathe, milling, drilling and cylindrical grinding whereas prismatic jobs are machined 
using shaper, planner, milling, drilling and surface grinding. 
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In metal cutting operation, the position of cutting edge of the cutting tool is important 
based on which the cutting operation is classified as orthogonal cutting and oblique cutting. 
Orthogonal cutting is also known as two dimensional metal cutting in which the cutting edge 
is normal to the work piece. In orthogonal cutting no force exists in direction perpendicular to 
relative motion between tool and work piece. Oblique cutting is the common type of three 
dimensional cutting used in various metal cutting operations in which the cutting action is 
inclined with the job by a certain angle called the inclination angle. 

 
Figure 11: Orthogonal cutting 

 
Figure 12: Oblique Cutting 

4.2 Milling cutting tool 

Cutting tools performs the main machining operation. They comprise of single point 
cutting tool or multipoint cutting tools. It is a body having teeth or cutting edges on it. A single 
point cutting tool (such as a lathe, shaper and planner and boring tool) has only one cutting 
edge, whereas a multi-point cutting tool (such as milling cutter, milling cutter, drill, reamer and 
broach) has a number of teeth or cutting edges on its periphery. 

4.2.1 Single Point Cutting Tool 

There are mainly two types of single point tools namely the solid type and the tipped 
tool. The solid type single point tool may be made from high speed steel, from a cast alloy. 
Brazed tools are generally known as tool bits and are used in tool holders. The tipped type of 
tool is made from a good shank steel on which is mounted a tip of cutting tool material. Tip 
may be made of high speed steel or cemented carbide. In addition to this, there are long index-
able insert tools and throwaway. The Insert type tool throwaway refers to the cutting tool insert 
which is mechanically held in the tool holder. The inserts are purchased which are ready for 
use. When all cutting edges are used, the insert is discarded and not re-sharpened. These tools 
can be further classified depending upon the operations for which they are used and the type 
of the shank (straight or bent shank type). Tools may be of the types planning tools, turning 
tools, facing tool, boring tools, parting and slotting tools etc.  

Different types of carbide tips are generally used on tipped tool. In general the straight shank 
type tools are cheaper to manufacture as compared to bent shank type. But bent shank type can 
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be used for turning either longitudinal or cross feed without resetting and for turning, facing 
and chamfering operations. Boring tools usually quite long and the cross-section is small. 

 
Figure 13: Solid type single point cutting tool 

 
Figure 14: Tipped type single point cutting tool 

 

 
Figure 15: Index-able insert type single point cutting tool 

A single point cutting tool can be understood by its geometry. Geometry comprises mainly of 
nose, rake face of the tool, flank, heel and shank etc. The nose is shaped as conical with 
different angles. The angles are specified in a perfect sequence as American Society of Tool 
Manufacturer for recognizing them as under. 

 
Figure 16: Geometry of single point cutting tool 

4.2.2 Mechanisms of Metal Cutting 

The work piece is securely clamped in a machine tool vice or clamps or chuck or collet. 
A wedge shape tool is set to a certain depth of cut and is forced to move in direction as shown 
in figure. All traditional machining processes require a cutting tool having a basic wedge shape 
at the cutting edge. The tool will cut or shear off the metal, provided  

1. the tool is harder than the metal 
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2. the tool is properly shaped so that its edge can be effective in cutting the metal 
3. the tool is strong enough to resist cutting pressures but keen enough to sever the metal, 

and  
4. provided there is movement of tool relative to the material or vice versa, so as to make 

cutting action possible.  

Most metal cutting is done by high speed steel tools or carbide tools. In metal cutting, 
the tool does not slide through metal as a jack knife does through wood, not does the tool split 
the metal as an axe does a log. The metal is forced off the workpiece by being compressed, 
shearing off, and sliding along the face of the cutting tool. The way a cutting tool cuts the metal 
can be explained as follows. All metals in the solid state have a characteristic crystalline 
structure, frequently referred to as grain structure. The grain or crystals vary in size from very 
fine to very coarse, depending upon the type of metal and its heat-treatment. The cutting tool 
advances again in the work piece. Heavy forces are exerted on the crystals in front of the tool 
face. These crystals, in turn exert similar pressures on crystals ahead of them, in the direction 
of the cut or force applied by the cutter. As the tool continues to advance, the material at sheared 
point is sheared by the cutting edge of the tool or it may be torn loose by the action of the 
bending chip which is being formed. As the tool advances, maximum stress is exerted along 
sheared line, which is called the shear plane. This plane is approximately perpendicular to the 
cutting face of the tool. There exists a shear zone on both sides of the shear plane, when the 
force of the tool exceeds the strength of the material at the shear plane, rupture or slippage of 
the crystalline grain structure occurs, thus forming the metal chip. The chip gets separated from 
the workpiece material and moves up along the tool face. In addition, when the metal is sheared, 
the crystals are elongated, the direction of elongation being different from that of shear. The 
circles which represent the crystals in the uncut metal get elongated into ellipses after leaving 
the shearing plane.  

 
Figure 17: Metal Cutting Operation 

 

4.3 Tool wear 

Cutting tools are subjected to an extremely severe rubbing process. They are in metal-
to-metal contact between the chip and work piece, under high stress and temperature. The 
situation becomes severe due to the existence of extreme stress and temperature gradients near 
the surface of the tool [59]. 

Tool wear is generally a gradual process due to regular operation. Tool wear can be compared 
with the wear of the tip of an ordinary pencil. According to Australian standard, the tool wear 
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can be defined as “The change of shape of the tool from its original shape, during cutting, 
resulting from the gradual loss of tool material”. 

Tool wear depends upon following parameters: 

1. Tool and work piece material. 
2. Tool shape. 
3. Cutting Speed. 
4. Feed. 
5. Depth of cut. 
6. Cutting fluid used. 
7. Machine Tool characteristics etc. 

Tool wear affects following items: 

1. Increased cutting forces. 
2. Increased cutting temperature. 
3. Decreased accuracy of produced parts. 
4. Decreased tool life. 
5. Poor surface finish. 
6. Economics of cutting operations. 

4.3.1 Types of Tool wear 

The high contact stresses are developed in machining process due to rubbing action of: 

1. Tool rake face and chips. 
2. Tool flank face and machined surface. 

These results in a variety of wear patterns observed at the rake face and the flank face. We call 
this gradual wear of the tool. The gradual wear is unavoidable but controllable. It is the wear 
which cannot be prevented. It has to occur after certain machining time. The gradual wear can 
be controlled by remedial action. The gradual wear can be divided into two basic types of wear, 
corresponding to two regions in the cutting tool. 

1. Flank wear 
2. Crater wear 

 
Figure 18: Tool wear phenomena 
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Figure 19: Flank and Crater wear 

4.3.1.1 Flank wear 

Wear on the flank face (relief or clearance face) of the tool is called flank wear.  

 

 
Figure 20: The Flank wear 

The characteristics of flank wear are following: 

1. It is the most important wear that appears on the flank surface parallel to the cutting 
edge. It most commonly results from abrasive/adhesive wear of the cutting edge against 
the machined surface. 

2. It generally results from high temperatures, which affect tool and work material 
properties. 

3. It results in the formation of wear land. Wear land formation is not always uniform 
along the major and minor cutting edge of the tool. 

4. It can be measured by using the average wear land size (V3) and maximum wear land 
size (VBmax). 

5. It can be described using the Tool Life Expectancy Equation. 

𝑉𝐶𝑇
𝑛 = 𝐶 

Equation 1: Tool Life Expectancy 

A more general form of the equation (considering depth of cut and feed rate) is  
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𝑉𝐶𝑇
𝑛𝐷𝑥𝐹𝑦 = 𝐶 

Equation 2: Generalized tool life expectancy equation 

Where, 

VC = Cutting speed 

T = Tool life 

D = Depth of cut (mm) 

F = Feed rate (mm/rev or inch/rev) 

x and y = Exponents that are determined experimentally for each cutting condition 

C = Machining constant, found by experimentation or published data book. Depends on 
properties of tool materials, work piece and feed rate 

n = exponential 

Values of n = 0.1 to 0.15 (For HSS tools) 

    n = 0.2 to 0.4 (For carbide tools) 

                 n = 0.4 to 0.6 (For ceramic tools) 

Reasons for the Flank wear can be summarized as below, 

1. Increased cutting speed causes flank to wear grow rapidly. 
2. Increase in feed and depth of cut can also result in larger flank wear. 
3. Abrasion by hard panicles in the work piece. 
4. Shearing of micro welds between tool and work-material. 
5. Abrasion by fragments of built-up edge, which strike against the clearance face (Flank 

face) of the tool. 

Following are the harmful effects of severe Flank wear, 

1. Increase in the total cutting force. 
2. Increase in component surface roughness. 
3. Also affect the component dimensional accuracy. 
4. When form tools are used, flank wear will also change the shape of the components 

produced, 

Following remedies can be suggested in order to minimize the Flank wear 

1. Reduce cutting speed. 
2. Reduce feed and depth of cut. 
3. Use hard grade of carbide if possible. 
4. Prevent formation of built-up edge, using chip breakers. 

4.3.1.2 Crater Wear 

Wear on the rake face of the tool is called crater wear. As the name suggests, the shape of wear 
is that of a crater or a bowl. 
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Figure 21: The Crater Wear 

 
Figure 22: Effects of Cutting speed V and Cutting time T, on Crater wear depth KT 

The characteristics of crater wear are following: 

1. In crater wear chips erodes the rake face of tool. 
2. The chips flows across the rake face develop severe friction between the chip and rake 

face. This produces a scar on the rake face which is usually parallel to the major cutting 
edge. 

3. It is somewhat normal for tool wear and does not seriously degrade the use of a tool 
until it becomes serious enough to cause a cutting edge failure. 

4. The crater wear can increase the working rake angle and reduce the cutting force, but it 
will also weaken the strength of the cutting edge. 

5. It is more common in ductile materials like steel which produce long continuous chips. 
It is also more common in H.S.S. (High Speed Steel) tools than the ceramic or carbide 
tools which have much higher hot hardness. 

6. The crater depth KT is the most commonly used parameter in evaluating the rake face 
wear. 

7. It occurs approximately at a height equal to the cutting depth of the material, i.e., Crater 
wear depth ⋍ cutting depth. 

8. At high temperature zones (nearly 700°C) crater wear occurs. 

Reasons of Crater Wear: 

1. Severe abrasion between the chip-tool interfaces, especially on rake face. 
2. High temperature in the tool-chip interface. 
3. Increase in feed results in increased force acting on tool interface, this leads to rise in 

temperature of tool-chip interface. 
4. Increase in cutting speed results in increased chip velocity at rake face, this leads to rise 

in temperature at chip-tool interface and so increase in crater wear. 

Remedies for Crater Wear: 
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1. Use of proper lubricants, can decrease the abrasion process, and so decrease in crater 
wear. 

2. Proper coolant for rapid heat dissipation from tool-chip interface. 
3. Reduced cutting speeds and feed rates. 
4. Use tougher and hot hardness materials for tools. 
5. Use of positive rake tool. 

Within the scope of this thesis, flank wear is considered for prediction as per the data acquired 
from the sensors.  

4.4 Milling data set – Case study 

The data in this set represents experiments from runs on a milling machine under 
various operating conditions. In particular, tool wear was investigated [60] in a regular cut as 
well as entry cut and exit cut. Data sampled by three different types of sensors (acoustic 
emission sensor, vibration sensor, current sensor) were acquired at several positions [61]. 

The data is organized in a 1x167 matlab struct array with fields as shown in Table 1 below: 

 
Table 1: Struct field names and description 

There are 16 cases with varying number of runs. The number of runs was dependent on the 
degree of flank wear that was measured between runs at irregular intervals up to a wear limit 
(and sometimes beyond). Flank wear was not always measured and at times when no 
measurements were taken, no entry was made. 

4.4.1 Experimental setup 

The basic setup encompasses the spindle and the table of the Matsuura machining center MC-
510V. An acoustic emission sensor and a vibration sensor are each mounted to the table and 
the spindle of the machining center. The signals from all sensors are amplified and filtered, 
then fed through two RMS before they enter the computer for data acquisition. The signal from 
a spindle motor current sensor is fed into the computer without further processing. 
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Figure 23: Experimental setup 

The matrix for the parameters chosen for the experiments were guided by industrial 
applicability and recommended manufacturer’s settings. Therefore, the cutting speed was set 

to 200 m/min which is equivalent to 826 rev/min. Two different depths of cut were chosen, 
1.5mm and 0.75mm. Also, two feeds were taken, 0.5mm/rev and 0.25mm/rev which translate 
into 413mm/min and 206.5mm/min, respectively. Two types of material, cast iron and stainless 
steel J45 were used and, as already mentioned earlier, with an inserts of type KC710. These 
choices equal 8 different settings. All experiments were done a second time with the same 
parameters with a second set of inserts. The size of the workpieces was 483mm x 178mm x 
51mm. 

 
Figure 24: A view of a portion of dataset in MATLAB 
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Chapter 5 – Tools utilized 

 

Synopsis 

In order to perform the analysis on the data, as well as to use the data to come up with the final 
result intended, tools are an essential part. This chapter gives an introduction on to the tools 
used for the same. 

5.1 Programming Language 

For the execution of the thesis, Python has been used as the primary programming 
language. Python is an interpreted, object-oriented, high-level programming language with 
dynamic semantics. Its high-level built in data structures, combined with dynamic typing and 
dynamic binding, make it very attractive for Rapid Application Development, as well as for 
use as a scripting or glue language to connect existing components together. Python's simple, 
easy to learn syntax emphasizes readability and therefore reduces the cost of program 
maintenance. Python supports modules and packages, which encourages program modularity 
and code reuse. The Python interpreter and the extensive standard library are available in source 
or binary form without charge for all major platforms and can be freely distributed [62]. 

According to the latest TIOBE Programming Community Index, Python is one of the top 10 
popular programming languages of 2017. Python is a general purpose and high level 
programming language. We can use Python for developing desktop GUI applications, websites 
and web applications. Also, Python, as a high level programming language, allows us to focus 
on core functionality of the application by taking care of common programming tasks. The 
simple syntax rules of the programming language further make it easier for us to keep the code 
base readable and application maintainable. There are also a few reasons why Python is 
preferred to other programming languages [63]. 

1. Readable and Maintainable Code 
 
While writing a software application, we must focus on the quality of its source code 
to simplify maintenance and updates. The syntax rules of Python allow us to express 
concepts without writing additional code. At the same time, Python, unlike other 
programming languages, emphasizes on code readability, and allows us to use English 
keywords instead of punctuations. Hence, we can use Python to build custom 
applications without writing additional code. The readable and clean code base helps 
us to maintain and update the software without putting extra time and effort. 
 

2. Multiple Programming Paradigms 
 
Like other modern programming languages, Python also supports several programming 
paradigms. It supports object oriented and structured programming fully. Also, its 
language features support various concepts in functional and aspect-oriented 
programming. At the same time, Python also features a dynamic type system and 
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automatic memory management. The programming paradigms and language features 
helps us to use Python for developing large and complex software applications. 
 

3. Compatible with Major Platforms and Systems 
 
At present, Python is supported many operating systems. We can even use Python 
interpreters to run the code on specific platforms and tools. Also, Python is an 
interpreted programming language. It allows us to run the same code on multiple 
platforms without recompilation. Hence, we are not required to recompile the code after 
making any alteration. We can run the modified application code without recompiling 
and check the impact of changes made to the code immediately. The feature makes it 
easier for us to make changes to the code without increasing development time. 
 

4. Robust Standard Library 
 
Its large and robust standard library makes Python score over other programming 
languages. The standard library allows us to choose from a wide range of modules 
according to our precise needs. Each module further enables us to add functionality to 
the Python application without writing additional code. For instance, while writing a 
web application in Python, we can use specific modules to implement web services, 
perform string operations, manage operating system interface or work with internet 
protocols. We can even gather information about various modules by browsing through 
the Python Standard Library documentation. 
 

5. Many Open Source Frameworks and Tools 
 
As an open source programming language, Python helps us to curtail software 
development cost significantly. We can even use several open source Python 
frameworks, libraries and development tools to curtail development time without 
increasing development cost. We even have option to choose from a wide range of open 
source Python frameworks and development tools according to our precise needs. For 
instance, we can simplify and speedup web application development by using robust 
Python web frameworks like Django, Flask, Pyramid, Bottle and Cherrypy. Likewise, 
we can accelerate desktop GUI application development using Python GUI frameworks 
and toolkits like PyQT, PyJs, PyGUI, Kivy, PyGTK and WxPython. 
 

6. Simplify Complex Software Development 
 
Python is a general purpose programming language. Hence, we can use the 
programming language for developing both desktop and web applications. Also, we can 
use Python for developing complex scientific and numeric applications. Python is 
designed with features to facilitate data analysis and visualization. We can take 
advantage of the data analysis features of Python to create custom big data solutions 
without putting extra time and effort. At the same time, the data visualization libraries 
and APIs provided by Python helps us to visualize and present data in a more appealing 
and effective way. Many Python developers even use Python to accomplish artificial 
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intelligence (AI) and natural language processing tasks. This feature has been utilized 
in the realization of this thesis work. 
 

7. Adopt Test Driven Development 
 
We can use Python to create prototype of the software application rapidly. Also, we can 
build the software application directly from the prototype simply by refactoring the 
Python code. Python even makes it easier for us to perform coding and testing 
simultaneously by adopting test driven development (TDD) approach. We can easily 
write the required tests before writing code and use the tests to assess the application 
code continuously. The tests can also be used for checking if the application meets 
predefined requirements based on its source code. 

Python can be extensively used for machine learning purposes. Machine learning and artificial 
intelligence-based projects are obviously what the future holds. We want better personalization, 
smarter recommendations, and improved search functionality. Our apps can see, hear, and 
respond – that’s what artificial intelligence (AI) has brought, enhancing the user experience 
and creating value across many industries [64].  

AI projects differ from traditional software projects. The differences lie in the technology stack, 
the skills required for an AI-based project, and the necessity of deep research. To implement 
our AI aspirations, we should use a programming language that is stable, flexible, and has tools 
available. Python offers all of this, which is why we see lots of Python AI projects today. 

From development to deployment and maintenance, Python helps developers be productive 
and confident about the software they’re building. Benefits that make Python the best fit for 
machine learning and AI-based projects include simplicity and consistency, access to great 
libraries and frameworks for AI and machine learning (ML), flexibility, platform 
independence, and a wide community. These add to the overall popularity of the language. 

1. Simple and consistent 
 
Python offers concise and readable code. While complex algorithms and versatile 
workflows stand behind machine learning and AI, Python’s simplicity allows 

developers to write reliable systems. Developers get to put all their effort into solving 
an ML problem instead of focusing on the technical nuances of the language. 
Additionally, Python is appealing to many developers as it’s easy to learn. Python code 

is understandable by humans, which makes it easier to build models for machine 
learning. 
 
Many programmers say that Python is more intuitive than other programming 
languages. Others point out the many frameworks, libraries, and extensions that 
simplify the implementation of different functionalities. It’s generally accepted that 

Python is suitable for collaborative implementation when multiple developers are 
involved. Since Python is a general-purpose language, it can do a set of complex 
machine learning tasks and enable you to build prototypes quickly that allow you to test 
your product for machine learning purposes. 
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2. Extensive selection of libraries and frameworks 

Implementing AI and ML algorithms can be tricky and requires a lot of time. It’s vital 

to have a well-structured and well-tested environment to enable developers to come up 
with the best coding solutions. 

To reduce development time, programmers turn to a number of Python frameworks and 
libraries. A software library is pre-written code that developers use to solve common 
programming tasks. Python, with its rich technology stack, has an extensive set of 
libraries for artificial intelligence and machine learning. Here are some of them: 

• Keras, TensorFlow, and Scikit-learn for machine learning 
• NumPy for high-performance scientific computing and data analysis 
• SciPy for advanced computing 
• Pandas for general-purpose data analysis 
• Seaborn for data visualization 

Scikit-learn features various classification, regression, and clustering algorithms, 
including support vector machines, random forests, gradient boosting, k-means, and 
DBSCAN, and is designed to work with the Python numerical and scientific libraries 
NumPy and SciPy. 

3. Platform independence 

Platform independence refers to a programming language or framework allowing 
developers to implement things on one machine and use them on another machine 
without any (or with only minimal) changes. One key to Python’s popularity is that it’s 
a platform independent language. Python is supported by many platforms including 
Linux, Windows, and macOS. Python code can be used to create standalone executable 
programs for most common operating systems, which means that Python software can 
be easily distributed and used on those operating systems without a Python interpreter. 

What’s more, developers usually use services such as Google or Amazon for their 

computing needs. However, we can often find companies and data scientists who use 
their own machines with powerful Graphics Processing Units (GPUs) to train their ML 
models. And the fact that Python is platform independent makes this training a lot 
cheaper and easier. 

4. Great community and popularity 

In the Developer Survey 2018 by Stack Overflow, Python was among the top 10 most 
popular programming languages, which ultimately means that 23 can find a 
development company with the necessary skill set to build your AI-based project. 

If we look closely at the image below, we can see that Python is the language that people 
Google more than any other [65]. 



35 
 

 
Figure 25: US, Google searches for coding languages (100 = highest annual traffic for any language) 

 

5.2 Integrated Development Environment 

An IDE, or Integrated Development Environment, enables programmers to consolidate 
the different aspects of writing a computer program. IDEs increase programmer productivity 
by combining common activities of writing software into a single application: editing source 
code, building executables, and debugging [66]. 

For the execution of python, Spyder has been used as the IDE for the realization of this thesis. 
Spyder is a powerful scientific environment written in Python, for Python, and designed by and 
for scientists, engineers and data analysts. It offers a unique combination of the advanced 
editing, analysis, debugging, and profiling functionality of a comprehensive development tool 
with the data exploration, interactive execution, deep inspection, and beautiful visualization 
capabilities of a scientific package [67]. 

Beyond its many built-in features, its abilities can be extended even further via its plugin 
system and API. Furthermore, Spyder can also be used as a PyQt5 extension library, allowing 
developers to build upon its functionality and embed its components, such as the interactive 
console, in their own PyQt software. 

Spyder has the following features [68], 

1. An editor with syntax highlighting, introspection, code completion 
2. Support for multiple IPython consoles 
3. The ability to explore and edit variables from a GUI 
4. A Help pane able to retrieve and render rich text documentation on functions, 

classes and methods automatically or on-demand 
5. A debugger linked to IPdb, for step-by-step execution 
6. Static code analysis, powered by Pylint 
7. A run-time Profiler, to benchmark code 
8. Project support, allowing work on multiple development efforts simultaneously 
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9. A built-in file explorer, for interacting with the filesystem and managing projects 
10. A "Find in Files" feature, allowing full regular expression search over a specified 

scope 
11. An online help browser, allowing users to search and view Python and package 

documentation inside the IDE 
12. A history log, recording every user command entered in each console 
13. An internal console, allowing for introspection and control over Spyder's own 

operation 

5.3 Libraries used 

Python library is a collection of functions and methods that allows you to perform lots of 
actions without writing your own code. A brief description of the libraries used are provided 
below 

5.3.1 Matplotlib 

Matplotlib is a Python library that uses Python Script to write 2-dimensional graphs and plots. 
Often mathematical or scientific applications require more than single axes in a representation. 
This library helps us to build multiple plots at a time. We can, however, use Matplotlib to 
manipulate different characteristics of figures as well [69]. 

Features of Matplotlib, 

1. Matplotlib can create such quality figures that are really good for publication. 
Figures we create with Matplotlib are available in hardcopy formats across different 
interactive platforms.  

2. We can use MatPlotlib with different toolkits such as Python Scripts, IPython 
Shells, Jupyter Notebook, and many other four graphical user interfaces.  

3. A number of third-party libraries can be integrated with Matplotlib applications. 
Such as seaborn, ggplot, and other projection and mapping toolkits such as 
basemap. 

4. An active community of developers are dedicated to help with any of the inquiries 
with Matplotlib.  

5. Another good thing is that we can track any bugs, new patches, and feature requests 
on the issue tracker page from Github. It is an official page for featuring different 
issues related to Matplotlib. 

5.3.2 Numpy 

Numpy is a popular array – processing package of Python. It provides good support for 
different dimensional array objects as well as for matrices. Numpy is not only confined to 
providing arrays only, but it also provides a variety of tools to manage these arrays. It is fast, 
efficient, and good for managing matrices and arrays [69]. 

Features of Numpy, 

1. Arrays of Numpy offer modern mathematical implementations on huge amount of 
data. Numpy makes the execution of these projects much easier and hassle-free.  
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2. Numpy provides masked arrays along with general array objects. It also comes with 
functionalities such as manipulation of logical shapes, discrete Fourier transform, 
general linear algebra, and many more.  

3. While we change the shape of any N-dimensional arrays, Numpy will create new 
arrays for that and delete the old ones.  

4. This python package provides useful tools for integration. We can easily integrate 
Numpy with programming languages such as C, C++, and Fortran code.  

5. Numpy provides such functionalities that are comparable to MATLAB. They both 
allow users to get faster with operations. 

5.3.3 Scipy 

Scipy is an open-source python library that is used for both scientific and technical 
computation. It is a free python library. And very suitable for machine learning. However, 
computation is not the only task that makes scipy special. It is also very popular for image 
manipulation, as well [69]. 

Features of Scipy, 

1. Scipy contains different modules. These modules are suitable for optimization, 
integration, linear algebra, and statistics, as well.  

2. It makes the best use of Numpy arrays for general data structures. In fact, Numpy 
is an integrated part of Scipy.  

3. Scipy can handle 1-d polynomials in two ways. Whether we can use poly1d class 
from numpy or we can use co-efficient arrays to do the job.  

4. High-level scipy contains not only numpy but also numpy.lib.scimath as well. But 
it is better to use them from their direct source.  

5. A supporting community of Scipy is always there to answer our regular questions 
and solve any issues if aroused. 

5.3.4 Pandas 

Pandas is a python software package. It is a must to learn for data-science and dedicatedly 
written for Python language. It is a fast, demonstrative, and adjustable platform that offers 
intuitive data-structures. We can easily manipulate any type of data such as – structured or 
time-series data with this package [69]. 

Features of Pandas, 

1. Pandas provide us with many Series and Data frames. It allows us to easily organize, 
explore, represent, and manipulate data. 

2. Smart alignment and indexing featured in Pandas offers a perfect organization and 
data labeling.  

3. Pandas has some special features that allows us to handle missing data or value with 
a proper measure.  

4. This package offers such a clean code that even people with no or basic knowledge 
of programming can easily work with it.  

5. It provides a collection of built-in tools that allows us to both read and write data in 
different web services, data-structure, and databases as well.  
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6. Pandas can support JSON, Excel, CSV, HDF5, and many other formats.  

5.3.5 Scikit Learn 

Scikit learn is a simple and useful python machine learning library. It is written in python, 
cython, C, and C++. However, most of it is written in the Python programming language. It is 
a free machine learning library. It is a flexible python package that can work in complete 
harmony with other python libraries and packages such as Numpy and Scipy [69]. 

Features of Scikit Learn, 

1. Scikit Learn comes with a clean and neat API. It also provides very useful 
documentation for beginners.  

2. It comes with different algorithms – classification, clustering, and regression. It also 
supports random forests, k-means, gradient boosting, DBSCAN and others 

3. This package offers easy adaptability.  
4. Scikit Learn offers easy methods for data representation. Whether we want to 

present data as a table or matrix, it is all possible with Scikit Learn.  
5. It allows us to explore through digits that are written in hands. We can not only load 

but also visualize digits-data as well. 
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Chapter 6 – Data Analysis 
 

Synopsis 

Before embarking on a journey to see how the machine learning has been implemented in order 
to predict the tool wear, we need to prepare the data that we have, (as explained in chapter 4) 
to make the prediction more accurate and the process to be simple enough. This chapter deals 
with the data analysis and helps in understanding the data mining process. 

6.1 Data Cleansing 

Data cleansing or data cleaning is the process of detecting and correcting (or removing) 
corrupt or inaccurate records from a record set, table, or database and refers to identifying 
incomplete, incorrect, inaccurate or irrelevant parts of the data and then replacing, modifying, 
or deleting the dirty or coarse data [70]. 

 
Figure 26:Data cleansing methods 

From the documentation for mill dataset presented in the previous chapter, it is already clear 
that, during the experiment, Flank wear was not measured always, and when no measurements 
were made, no entry was done. Considering this, the best solution was to implement the listwise 
deletion method mentioned above. 

Listwise deletion (complete-case analysis) removes all data for an observation that has one or 
more missing values. Particularly if the missing data is limited to a small number of 
observations, we may just opt to eliminate those cases from the analysis [71]. 



40 
 

With the implementation of the list wise deletion, the dataset which originally consisted of 167 
rows and 13 columns, was reduced to 146 rows and 13 columns. The rows containing the 
missing values has been identified and removed using the following code, 

cleaned_data = data.dropna() 
 

filtered_data = data[data['VB'].isnull()] 
filtered_data_index = filtered_data.index 
cleaned_index = cleaned_data.index  

Code Snippet 1: Data Cleansing 

6.2 Outlier Analysis 

An outlier is a data point that is significantly different from the remaining data. Hawkins 
defined [72] an outlier as follows: “An outlier is an observation which deviates so much from 

the other observations as to arouse suspicions that it was generated by a different mechanism.” 

Outliers are also referred to as abnormalities, discordant, deviants, or anomalies in the data 
mining and statistics literature. In most applications, the data is created by one or more 
generating processes, which could either reflect activity in the system or observations collected 
about entities. When the generating process behaves unusually, it results in the creation of 
outliers. Therefore, an outlier often contains useful information about abnormal characteristics 
of the systems and entities that impact the data generation process [73]. 

In the detection of an outlier, Data modelling plays a vital role. Virtually all outlier detection 
algorithms create a model of the normal patterns in the data, and then compute an outlier score 
of a given data point on the basis of the deviations from these patterns. For example, this data 
model may be a generative model such as a Gaussian-mixture model, a regression-based model, 
or a proximity-based model. All these models make different assumptions about the “normal” 

behavior of the data. The outlier score of a data point is then computed by evaluating the quality 
of the fit between the data point and the model. In many cases, the model may be 
algorithmically defined. For example, nearest neighbor-based outlier detection algorithms 
model the outlier tendency of a data point in terms of the distribution of its k-nearest neighbor 
distance. Thus, in this case, the assumption is that outliers are located at large distances from 
most of the data.  

Clearly, the choice of the data model is crucial. An incorrect choice of data model may lead to 
poor results. For example, a fully generative model such as the Gaussian mixture model may 
not work well, if the data does not fit the generative assumptions of the model, or if a sufficient 
number of data points are not available to learn the parameters of the model. Similarly, a linear 
regression-based model may work poorly, if the underlying data is clustered arbitrarily. In such 
cases, data points may be incorrectly reported as outliers because of poor fit to the erroneous 
assumptions of the model. Unfortunately, outlier detection is largely an unsupervised problem 
in which examples of outliers are not available to learn the best model (in an automated way) 
for a particular data set.  

This aspect of outlier detection tends to make it more challenging than many other supervised 
data mining problems like classification in which labeled examples are available. Therefore, in 
practice, the choice of the model is often dictated by the analyst’s understanding of the kinds 
of deviations relevant to an application. For example, in a spatial application measuring a 
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behavioral attribute such as the location-specific temperature, it would be reasonable to assume 
that an unusual deviation of the temperature attribute in a spatial locality is an indicator of 
abnormality. On the other hand, for the case of high- dimensional data, even the definition of 
data locality may be ill-defined because of data sparsity. Thus, an effective model for a 
particular data domain may only be constructed after carefully evaluating the relevant 
modelling properties of that domain. In order to understand the impact of the model, it is 
instructive to examine the use of a simple model known as the Z-value test for outlier analysis. 
Consider a set of 1-dimensional quantitative data observations, denoted by X1 . . . XN, with 
mean μ and standard deviation σ. The Z-value for the data point Xi is denoted by Zi and is 
defined as follows: 

 
Equation 3: Z-Score 

The Z-value test computes the number of standard deviations by which a data point is distant 
from the mean. This provides a good proxy for the outlier score of that point. An implicit 
assumption is that the data is modeled from a normal distribution, and therefore the Z-value is 
a random variable drawn from a standard normal distribution with zero mean and unit variance. 
In cases where the mean and standard deviation of the distribution can be accurately estimated, 
a good “rule-of-thumb” is to use Zi ≥ 3 as a proxy for the anomaly [73]. 

Upon implementation of the Z-score method, an outlier row was detected and was removed 
using the code below, 

for i in cleaned_index: 
    meani[i]=np.mean(cleaned_data.smcAC[i]) 
    stddev[i]=np.std(cleaned_data.smcAC[i]) 
    z_score1[i]=np.sum(meani[i] - stddev[i]) 
    z_score=np.divide(z_score1, stddev[i]) 
 

df_z_score = pd.DataFrame(z_score) 
df_z_score.columns = ['z_score']  

Code Snippet 2: Detection of Outliers using Z-Score method 

 

df = df_z_score[(df_z_score.z_score <= -3) | (df_z_score.z_score >= 3)] 

df_outliers = df.loc[(df!=0).any(axis=1)] 

a=df_outliers.index  
Code Snippet 3: Removal of Outliers 

After the implementation of outlier analysis, the data now reduced to 145 rows and 13 columns. 

 

6.3 Feature Extraction 

From the data, as we look closer to the columns representing the features, we can notice 
that each cell contains a huge number of rows of data, which is usually called as structured 
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array. In order to make sense of this data, we need to employ a process called Feature Extraction 
or Feature Generation. Feature extraction is a process of dimensionality reduction by which an 
initial set of raw data is reduced to more manageable groups for processing. A characteristic of 
these large data sets is a large number of variables that require a lot of computing resources to 
process. Feature extraction is the name for methods that select and /or combine variables into 
features, effectively reducing the amount of data that must be processed, while still accurately 
and completely describing the original data set [74]. 

The process of feature extraction is useful when we need to reduce the number of resources 
needed for processing without losing important or relevant information. Feature extraction can 
also reduce the amount of redundant data for a given analysis. Also, the reduction of the data 
and the machine’s efforts in building variable combinations (features) facilitate the speed of 

learning and generalization steps in the machine learning process [74].  

During the feature extraction stage, the most appropriate features which correlate well with 
tool wear and not affected by process conditions are extracted from the prepared signals. 
Mostly features are derived from any of the time, frequency, time–frequency, or statistical 
domain [53]. For the purpose of this thesis, the features have been extracted from Time and 
Frequency domains. 

For the time domain, Maximum value, Mean, RMS Value, Standard deviation, Skewness, 
Kurtosis and Peak to Peak value. An example of the same is Code Snippet 4: Example for 
Features Extraction in Time Domain. 

Once the features were extracted, the data now consisted of 145 rows and 85 columns.  

 

6.4 Normalization 

One of the most important transformations we need to apply to our data is feature 
scaling. With few exceptions, Machine Learning algorithms don’t perform well when the input 
numerical attributes have very different scales. There are two common ways to get all attributes 
to have the same scale: min-max scaling and standardization [75].  

Min-max scaling (normalization) is quite simple: values are shifted and rescaled so that they 
end up ranging from 0 to 1. We do this by subtracting the min value and dividing by the max 
minus the min. Standardization is quite different: first it subtracts the mean value (so 
standardized values always have a zero mean), and then it divides by the variance so that the 
resulting distribution has unit variance. Unlike min-max scaling, standardization does not 
bound values to a specific range, which may be a problem for some algorithms (e.g., neural 
networks often expect an input value ranging from 0 to 1). However, standardization is much 
less affected by outliers. For example, suppose a district had a median income equal to 100 (by 
mistake). Min-max scaling would then crush all the other values from 0–15 down to 0–0.15, 
whereas standardization would not be much affected [75].  

The feature scaling was performed using Min-Max Scaling (Normalization) and the data values 
were converted to the range of 0-1.  
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6.5 Feature Selection 

Though the feature extraction gave us an ample amount of data from which we can 
understand the dataset and the signals more precisely, this also posed a problem for arriving at 
the solution that we set out the project for.  

With the usage of feature extraction from signals in time, frequency and time-frequency 
domain, results in large number of features.  The volume of signal features is very large, many 
of which are much distorted, or no correlation on cutter wear. TCM and RUL prediction with 
all the signal features are not the best selection, because irrelevant and redundant features are 
able to negatively influence the performance of the monitoring and prediction model. In order 
to improve the accuracy of the prediction model and increase the efficiency of calculation 
performance of a TCM system, it is desirable that the features should be optimized according 
to a criterion. The feature selection technique is adopted to reduce the number of utilized 
features [50].  

One of the common feature selection method used for a Supervised learning method is Pearson 
Correlation. Pearson's correlation coefficient is the covariance of the two variables divided by 
the product of their standard deviations. The form of the definition involves a "product 
moment", that is, the mean (the first moment about the origin) of the product of the mean-
adjusted random variables; hence the modifier product-moment in the name [76]. 

With the Pearson correlation, the features which are more correlated with the Response 
Variable ‘VB’ are chosen as features of high importance to carry on with the next step. This 
can be visualized with the Heat map shown below, 

The heat map is an indication of the effect of each feature on the response variable. Here the 
features which are correlated more than 50% towards the response variable are selected as 
reference features for the next step. 23 features were selected with this method and they are 

'Maximum_smcAC', 'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 

'Maximum_smcDC', 'Mean_smcDC', 'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 

'Maximum_AE_table', 'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 

'p2p_AE_spindle', 'Maximum_power_smcAC', 'Total_Power_smcAC' , 

'Average_Power_smcAC', 'Standard_power_smcAC', 'Maximum_power_smcDC', 

'Total_Power_smcDC', 'Average_Power_smcDC', 'Standard_power_smcDC'    
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maxi=np.zeros(167, dtype=float) 

mini=np.zeros(167, dtype=float) 

meani=np.zeros(167, dtype=float) 

rms=np.zeros(167, dtype=float) 

stddev=np.zeros(167, dtype=float) 

skewi=np.zeros(167, dtype=float) 

kurti=np.zeros(167, dtype=float) 

p2p=np.zeros(167, dtype=float) 

kurt=np.zeros(167, dtype=float) 

kurto=np.zeros(167, dtype=float) 

 

for i in clean_index: 

    maxi[i]=np.max(cleaned_outlier_data.smcAC[i]) 

    mini[i]=np.min(cleaned_outlier_data.smcAC[i]) 

    meani[i]=np.mean(cleaned_outlier_data.smcAC[i]) 

    sizi=cleaned_outlier_data.smcAC[i].size 

    sumofsquares=np.sum(cleaned_outlier_data.smcAC[i]**2) 

    rms[i]=np.sqrt(sumofsquares/sizi) 

    stddev[i]=np.std(cleaned_outlier_data.smcAC[i]) 

    skewi[i]=skew(cleaned_outlier_data.smcAC[i]) 

     

    kurt[i]=np.sum((cleaned_outlier_data.smcAC[i]-meani[i])**4) 

    kurto[i]=np.divide(kurt[i], stddev[i]**4) 

    kurti[i]=np.divide(kurto[i], sizi) 

    

    p2p[i]=maxi[i]-mini[i] 

     

  

dfmax=pd.DataFrame(maxi) 

dfmean=pd.DataFrame(meani) 

dfrms=pd.DataFrame(rms) 

dfstd=pd.DataFrame(stddev) 

dfskew=pd.DataFrame(skewi) 

dfkurt=pd.DataFrame(kurti) 

dfp2p=pd.DataFrame(p2p) 

 

finalsmcAC = pd.concat([dfmax, dfmean, dfrms, dfstd, dfskew, dfkurt, 

dfp2p], axis =1) 

dffinalsmcAC=pd.DataFrame(finalsmcAC) 

AC = finalsmcAC.columns = ['Maximum_smcAC', 'Mean_smcAC', 'RMS_smcAC',      

'Std_Dev_smcAC', 'Skewness_smcAC', 'Kurtosis_smcAC', 'p2p_smcAC'] 

 

Final_smcAC = dffinalsmcAC.loc[(dffinalsmcAC!=0).any(axis=1)]  
Code Snippet 4: Example for Features Extraction in Time Domain 
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Figure 27: Feature Selection Heat map 

  



46 
 

Chapter 7 - Model Training and Testing 
 

Synopsis 

With the data all set for the implementation of machine learning models and start with the 
prediction task, this chapter gives the possible models that can be used, the training and testing 
methodologies implemented along with the strategy used to close in on the best model for 
further processes. 

7.1 Train and Test data Preparation 

From the feature selection, we obtained a data consisting of 145 rows and 30 columns 
(23 features). i.e. we have 145 data samples, with the target variable as ‘VB’ and the rest of 

them as features which we will employ to predict that target variable.  

One way of accomplishing this task is to train the machine learning model using the entire 
dataset we have and again test the same dataset for its prediction accuracy. This would always 
result in a very high accuracy since, upon training of the data with the entire dataset, the model 
would have memorized the corresponding target variable, and would replicate the answer every 
single time. This would prove disastrous when in the real-life scenario, the model is made to 
work with an entire new dataset. 

Following are the shortcomings if we use the same data for both testing and training [77] 

1. Goal is to estimate likely performance of a model on out-of-sample data. i.e. future 
observations in which we don’t know the true response values.  

2. But, maximising training accuracy rewards overly complex models that won’t 

necessarily generalize to future cases. i.e. models with high training accuracy may not 
actually do well while making predictions in out-of-sample data. 

3. Creating an unnecessarily complex model is known as over fitting. Models that overfit 
has learnt the noise in the data rather than the signal. 

A way to overcome these drawbacks is to split the data into training and testing datasets, where 
in we would be setting aside the testing dataset only for the evaluation of the model 
performance and the training dataset for training the model for the job it is intended to perform. 
Typically, as a thumb rule, 70% of the data is considered for training the model and 30% of the 
data for testing the same. 

In our dataset, considering that we have 15 cases altogether, 12 cases are considered for training 
and the remaining 3 cases for testing the model. This task is accomplished by the code snippet  

Train_dataset=z_final_normalized[z_final_normalized.case <=12] #70% of data 
Test_dataset = z_final_normalized[z_final_normalized.case >12] #30% of data  

Code Snippet 5: Train -Test dataset split 

In the future sections, for better representation of the process and results, each row of data is 
considered as observations, each column is referred as a feature, and the value that we are 
predicting i.e. ‘VB’ is referred as the response variable.  
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 The problem we are dealing with is Supervised learning, and as we know the supervised 
learning are further categorized into Regression problem and Classification problem. 
Classification is a supervised learning method in which the response is categorical. i.e. the 
values are in a finite un-ordered set. In contrast, a Regression problem is a supervised learning 
method, in which the response being predicted is ordered and continuous [77]. 

Within the scope of this thesis dissertation, only Regression analysis is considered. 

7.2 Regression Analysis 

With the conclusion made to use the regression analysis to move forward with the best model 
selection for prediction of the response variable, i.e. ‘VB’, with the help of one of the libraries 
of python i.e. Scikitlearn, following models are trained and tested. 

1. Linear Regression 
2. Decision Tree Regression 
3. Random forest Regression 
4. Bayesian Ridge Regression 
5. Neural Network Regression 
6. Knn Regression 
7. Kernel Ridge Regression 

Before the initialization of using the data to train the model, the features and the response 
variables are clearly distinguished. Once the training is completed, in order to assess the 
performance of the model, performance measuring metrics are used. Some of the commonly 
used and provided within the scikitlearn library are, 

1. Mean Squared Error 
2. Root mean squared error 
3. Mean Absolute Error 
4. Coefficient of Determination (R2) 
5. Explained Variance 

 

1. Mean Squared Error 

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator 
(of a procedure for estimating an unobserved quantity) measures the average of the squares of 
the errors—that is, the average squared difference between the estimated values and the actual 
value. MSE is a risk function, corresponding to the expected value of the squared error loss. 
The fact that MSE is almost always strictly positive (and not zero) is because of randomness 
or because the estimator does not account for information that could produce a more accurate 
estimate [78]. 

The MSE is a measure of the quality of an estimator—it is always non-negative, and values 
closer to zero are better. 

With the help of Scikit learn, Mean squared error can be found out as shown below [79], 
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sklearn.metrics.mean_squared_error(y_true, y_pred, sample_weight=None,   

multioutput='uniform_average', squared=True)  
Code Snippet 6: Example to find MSE 

2. Root mean squared error 

The root-mean-square error (RMSE) is a frequently used measure of the differences between 
values (sample or population values) predicted by a model or an estimator and the values 
observed. The RMSE represents the square root of the second sample moment of the 
differences between predicted values and observed values or the quadratic mean of these 
differences. These deviations are called residuals when the calculations are performed over the 
data sample that was used for estimation and are called errors (or prediction errors) when 
computed out-of-sample.  

The RMSE serves to aggregate the magnitudes of the errors in predictions for various times 
into a single measure of predictive power. RMSD is a measure of accuracy, to compare 
forecasting errors of different models for a particular dataset and not between datasets, as it is 
scale-dependent [80] . RMSE can be found out by just taking the square root of the Mean 
Squared Error. 

3. Mean Absolute Error 

In statistics, mean absolute error (MAE) is a measure of difference between two continuous 
variables. [81] This is robust to outliers.   

Mean absolute error can be found out with the help of Scikit learn as shown below [82], 

sklearn.metrics.mean_absolute_error(y_true, y_pred, sample_weight=None, 

multioutput='uniform_average')  
Code Snippet 7: Example to find MAE 

4. Coefficient of Determination (R2) 

It represents the proportion of variance that has been explained by the independent variables in 
the model. It provides an indication of goodness of fit and therefore a measure of how well 
unseen samples are likely to be predicted by the model, through the proportion of explained 
variance. 

As such variance is dataset dependent, R² may not be meaningfully comparable across different 
datasets. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily 
worse). A constant model that always predicts the expected value, disregarding the input 
features, would get a R² score of 0.0 [83]. 

It can be found out using scikit learn as shown [83], 

sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, 

multioutput='uniform_average')  
Code Snippet 8: Example to find R2 
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5. Explained Variance 

The explained variance score computes the explained variance regression score. If ŷ is the 
estimated target output, the corresponding (correct) target output, and is Variance, the square 
of the standard deviation, then the explained variance is estimated as follow: 

 
Equation 4: Explained Variance 

The best possible score is 1.0, lower values are worse. It can be found out using scikit learn as 
below, 

sklearn.metrics.explained_variance_score(y_true, y_pred, 

sample_weight=None, multioutput='uniform_average')  
Code Snippet 9: Example to find Explained Variance 

 

7.3 Linear Regression 

Linear regression is a linear model, e.g. a model that assumes a linear relationship between the 
input variables and the single output variable. When there is a single input variable, the method 
is referred to as simple linear regression. When there are multiple input variables, literature 
from statistics often refers to the method as multiple linear regression [84]. 

Different techniques can be used to prepare or train the linear regression equation from data, 
the most common of which is called Ordinary Least Squares. Learning a linear regression 
model means estimating the values of the coefficients used in the representation with the data 
that we have available. 

Other techniques within linear regression are as follows, 

1. Simple Linear Regression 

With simple linear regression when we have a single input, we can use statistics to estimate the 
coefficients. This requires that we calculate statistical properties from the data such as means, 
standard deviations, correlations and covariance. All of the data must be available to traverse 
and calculate statistics. 

2. Ordinary Least Squares 

When we have more than one input, we can use Ordinary Least Squares to estimate the values 
of the coefficients. The Ordinary Least Squares procedure seeks to minimize the sum of the 
squared residuals. This means, that given a regression line through the data we calculate the 
distance from each data point to the regression line, square it, and sum all the squared errors 
together. This is the quantity that ordinary least squares seek to minimize.  
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This approach treats the data as a matrix and uses linear algebra operations to estimate the 
optimal values for the coefficients. It means that all the data must be available, and we must 
have enough memory to fit the data and perform matrix operations. 

3. Gradient Descent 

When there are one or more inputs, we can use a process of optimizing the values of the 
coefficients by iteratively minimizing the error of the model on the training data. 

This operation is called Gradient Descent and works by starting with random values for each 
coefficient. The sum of the squared errors is calculated for each pair of input and output values. 
A learning rate is used as a scale factor and the coefficients are updated in the direction towards 
minimizing the error. The process is repeated until a minimum sum squared error is achieved 
or no further improvement is possible. 

When using this method, we must select a learning rate (alpha) parameter that determines the 
size of the improvement step to take on each iteration of the procedure. 

Gradient descent is often taught using a linear regression model because it is relatively 
straightforward to understand. In practice, it is useful when we have a very large dataset either 
in the number of rows or the number of columns that may not fit into memory. 

4. Regularization 

There are extensions of the training of the linear model called regularization methods. These 
seek to both minimize the sum of the squared error of the model on the training data (using 
ordinary least squares) but also to reduce the complexity of the model (like the number or 
absolute size of the sum of all coefficients in the model). 

Two popular examples of regularization procedures for linear regression are: 

Lasso Regression: where Ordinary Least Squares is modified to also minimize the absolute 
sum of the coefficients (called L1 regularization). 

Ridge Regression: where Ordinary Least Squares is modified to also minimize the squared 
absolute sum of the coefficients (called L2 regularization). 

These methods are effective to use when there is collinearity in your input values and ordinary 
least squares would overfit the training data. Under Scikit learn, Ordinary least squares Linear 
regression is readily available. The code below is used to train and test the model 
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X_train = Train_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_train = Train_dataset.VB 
X_test = Test_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_test = Test_dataset.VB 
 

linreg = LinearRegression() 
linreg.fit(X_train, y_train) 
 

y_pred = linreg.predict(X_test) 
y_pred = pd.DataFrame(y_pred) 
 

#Error calculation 
 

from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
 

lin_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred)) 
 

lin_mse = mean_squared_error(y_test, y_pred) 
 

lin_mae = mean_absolute_error(y_test, y_pred) 
 

lin_r2 = metrics.r2_score(y_test, y_pred) 
 

lin_variance = metrics.explained_variance_score(y_test, y_pred) 
 

lin_error = pd.DataFrame([lin_rmse, lin_mse, lin_mae, lin_r2, 

lin_variance]) 
lin_error.columns = ["Linear Regression"]  

Code Snippet 10: Linear Regression 
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Figure 28: Linear Regression 

With this, we arrived at following error values 

RMSE = 0.207 (must be as close as possible to zero) 

MSE = 0.0431 (must be as close as possible to zero) 

MAE = 0.134 (must be as close as possible to zero) 

R2 = 0.634 (must be as close as possible to one) 

Explained Variance = 0.647 (must be as close as possible to one) 

Though the prediction accuracy is very far from ideal requirement of 100%, out of 29 points, 
only prediction of two points can be seen as critical, since even-though the tool has failed based 
on the maximum value of VB of 0.6, the prediction shows it is still safe.  

7.4 Decision Tree Regression 

Decision tree learning is a method commonly used in data mining [85].The goal is to 
create a model that predicts the value of a target variable based on several input variables.  

Decision tree builds regression models in the form of a tree structure. It breaks down a dataset 
into smaller and smaller subsets while at the same time an associated decision tree is 
incrementally developed. The final result is a tree with decision nodes and leaf nodes. A 
decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy), each 
representing values for the attribute tested. Leaf node (e.g., Hours Played) represents a decision 
on the numerical target. The topmost decision node in a tree which corresponds to the best 
predictor called root node. Decision trees can handle both categorical and numerical data [86]. 

Important Terminologies related to Decision tree 

1. Root Node: It represents entire population or sample, and this further gets divided into 
two or more homogeneous sets. 
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2. Splitting: It is a process of dividing a node into two or more sub-nodes. 
3. Decision Node: When a sub-node splits into further sub-nodes, then it is called decision 

node. 
4. Leaf/Terminal Node: Nodes do not split is called Leaf or Terminal node. 
5. Pruning: When we remove sub-nodes of a decision node, this process is called pruning. 

You can say opposite process of splitting. 
6. Branch / Sub-Tree: A sub section of entire tree is called branch or sub-tree. 
7. Parent and Child Node: A node, which is divided into sub-nodes is called parent node 

of sub-nodes whereas sub-nodes are the child of parent node. 

 
Figure 29: Decision Tree 

The decision tree algorithm has been has been shown in Code Snippet 11: Decision Tree  

 

 

Figure 30: Decision Tree Regression 
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X_train = Train_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_train = Train_dataset.VB 
X_test = Test_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_test = Test_dataset.VB 
 

 

from sklearn.tree import DecisionTreeRegressor 
decreg = DecisionTreeRegressor(random_state = 2) 
decreg.fit(X_train, y_train) 
 

y_pred = decreg.predict(X_test) 
y_pred = pd.DataFrame(y_pred) 
 

y_pred.to_excel("y_pred_decision_tree.xlsx") 
y_test.to_excel("y_test_decision_tree.xlsx")  
 

dec_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred)) 
dec_mse = mean_squared_error(y_test, y_pred) 
dec_mae = mean_absolute_error(y_test, y_pred) 
dec_r2 = metrics.r2_score(y_test, y_pred) 
dec_variance = metrics.explained_variance_score(y_test, y_pred) 
 

dec_error = pd.DataFrame([dec_rmse, dec_mse, dec_mae, dec_r2, 

dec_variance]) 
dec_error.columns = ["Decision Tree Regression"]  

Code Snippet 11: Decision Tree 

With this, we arrived at following error values 

RMSE = 0.252 (must be as close as possible to zero) 

MSE = 0.063 (must be as close as possible to zero) 

MAE = 0.167(must be as close as possible to zero) 

R2 = 0.46 (must be as close as possible to one) 

Explained Variance = 0.51 (must be as close as possible to one) 

From the graph it can be seen that, two points are being predicted in such a way that the tool 
has to be replaced, even though it is actually well within the limit of VB of 0.6. And we have 
one point where in even though the tool has reached its limit, it is still being predicted as that 
it is safe.  
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Also, the performance of this regression method is very bad compared to linear Regression for 
the data we have. 

7.5 Random Forest Regression 

Random forest is a Supervised Learning algorithm which uses ensemble learning 
method for classification and regression [87].  

An Ensemble method is a technique that combines the predictions from multiple machine 
learning algorithms together to make more accurate predictions than any individual model. A 
model comprised of many models is called an Ensemble model. 

Random forest is a bagging technique and not a boosting technique. The trees in random forests 
are run in parallel. There is no interaction between these trees while building the trees. 

Bootstrap (Bagging) refers to random sampling with replacement. Bootstrap allows us to better 
understand the bias and the variance with the dataset. Bootstrap involves random sampling of 
small subset of data from the dataset. 

It is a general procedure that can be used to reduce the variance for those algorithm that have 
high variance, typically decision trees. Bagging makes each model run independently and then 
aggregates the outputs at the end without preference to any model. 

Random Forest operates by constructing a multitude of decision trees at training time and 
outputting the class that is the mode of the classes (classification) or mean prediction 
(regression) of the individual trees. 

A random forest is a meta-estimator (i.e. it combines the result of multiple predictions) which 
aggregates many decision trees, with some helpful modifications [87]: 

1. The number of features that can be split on at each node is limited to some percentage 
of the total (which is known as the hyperparameter). This ensures that the ensemble 
model does not rely too heavily on any individual feature and makes fair use of all 
potentially predictive features. 

2. Each tree draws a random sample from the original data set when generating its splits, 
adding a further element of randomness that prevents overfitting. 
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Figure 31: Random Forest 

 

Feature and Advantages of Random Forest are, 

1. It is one of the most accurate learning algorithms available. For many data sets, it 
produces a highly accurate classifier. 

2. It runs efficiently on large databases. 
3. It can handle thousands of input variables without variable deletion. 
4. It gives estimates of what variables that are important in the classification. 
5. It generates an internal unbiased estimate of the generalization error as the forest 

building progresses. 
6. It has an effective method for estimating missing data and maintains accuracy when a 

large proportion of the data are missing. 

Following are the disadvantages of Random Forest, 

1. Random forests have been observed to overfit for some datasets with noisy 
classification/regression tasks. 

2. For data including categorical variables with different number of levels, random forests 
are biased in favour of those attributes with more levels. Therefore, the variable 
importance scores from random forest are not reliable for this type of data. 

 

The Random forest regression has been employed using the following algorithm, 
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X_train = Train_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_train = Train_dataset.VB 
X_test = Test_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_test = Test_dataset.VB 
 

from sklearn.ensemble import RandomForestRegressor 
 

ranreg = RandomForestRegressor(random_state = 8) 
ranreg.fit(X_train, y_train) 
 

y_pred = ranreg.predict(X_test) 
y_pred = pd.DataFrame(y_pred) 
 

ran_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred)) 
ran_mse = mean_squared_error(y_test, y_pred) 
ran_mae = mean_absolute_error(y_test, y_pred) 
ran_r2 = metrics.r2_score(y_test, y_pred) 
ran_variance = metrics.explained_variance_score(y_test, y_pred) 
 

ran_error = pd.DataFrame([ran_rmse, ran_mse, ran_mae, ran_r2, 

ran_variance]) 
ran_error.columns = ["Random Forest Regression"]  

Code Snippet 12: Random Forest 

 
Figure 32: Random Forest Regression 
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With this, we arrived at following error values 

RMSE = 0.29 (must be as close as possible to zero) 

MSE = 0.084 (must be as close as possible to zero) 

MAE = 0.181(must be as close as possible to zero) 

R2 = 0.28 (must be as close as possible to one) 

Explained Variance = 0.384 (must be as close as possible to one) 

From the graph, it can be seen that 10 out of 29 points, are in a very critical phase, where in the 
model is predicting that the tool is safe even though the limit of 0.6 has already been reached. 
Apart from this, the performance scores are too low for the model to be accepted for further 
steps. 

7.6 Bayesian Ridge Regression 

In statistics, Bayesian linear regression is an approach to linear regression in which the 
statistical analysis is undertaken within the context of Bayesian inference. When the regression 
model has errors that have a normal distribution, and if a particular form of prior distribution 
is assumed, explicit results are available for the posterior probability distributions of the 
model's parameters [88]. 

Bayesian regression techniques can be used to include regularization parameters in the 
estimation procedure: the regularization parameter is not set in a hard sense but tuned to the 
data at hand [89]. 

The advantages of Bayesian Regression are: 

1. It adapts to the data at hand. 
2. It can be used to include regularization parameters in the estimation procedure. 

The disadvantages of Bayesian regression include: 

1. Inference of the model can be time consuming. 

Following algorithm is used to train and test the Bayesian Regression model, 
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X_train = Train_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_train = Train_dataset.VB 
X_test = Test_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_test = Test_dataset.VB 
 

from sklearn.linear_model import BayesianRidge 
 

bayreg = BayesianRidge() 
bayreg.fit(X_train, y_train) 
 

y_pred = bayreg.predict(X_test) 
y_pred = pd.DataFrame(y_pred) 
 

bay_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred)) 
bay_mse = mean_squared_error(y_test, y_pred) 
bay_mae = mean_absolute_error(y_test, y_pred) 
bay_r2 = metrics.r2_score(y_test, y_pred) 
bay_variance = metrics.explained_variance_score(y_test, y_pred) 
 

bay_error = pd.DataFrame([bay_rmse, bay_mse, bay_mae, bay_r2, 

bay_variance]) 
bay_error.columns = ["Bayesian Ridge Regression"]  

Code Snippet 13: Bayesian Ridge Regression 

 
Figure 33: Bayesian Ridge Regression 
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With this, we arrived at following error values 

RMSE = 0.206 (must be as close as possible to zero) 

MSE = 0.042 (must be as close as possible to zero) 

MAE = 0.136(must be as close as possible to zero) 

R2 = 0.637 (must be as close as possible to one) 

Explained Variance = 0.654 (must be as close as possible to one) 

From the graph, it is evident that the performance of this model is definitely better than all 
those models which were previously discussed. In addition to that, we can see only one point 
being predicted as safe even though the condition of tool is unsafe. This does not deviate from 
the fact that the prediction is still not very great for other values. 

7.7 Neural Network Regression 

Neural network is machine learning technique or algorithm that try to mimic the working of 
neuron in human brain for learning. At first it is unstable and after certain iteration of data it 
adjust itself such that it’s accuracy increases [90]. 

 
Figure 34: A simple feed neural network 

Neural networks are reducible to regression models—a neural network can “pretend” to be any 

type of regression model. For example, this very simple neural network, with only one input 
neuron, one hidden neuron, and one output neuron, is equivalent to a logistic regression. It 
takes several dependent variables = input parameters, multiplies them by their coefficients = 
weights, and runs them through a sigmoid activation function and a unit step function, which 
closely resembles the logistic regression function with its error term [91]. 

When this neural network is trained, it will perform gradient to find coefficients that are better 
and fit the data, until it arrives at the optimal linear regression coefficients (or, in neural network 
terms, the optimal weights for the model) [91]. 
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Figure 35: Regression in neural networks 

The below code snippet helps in conducting a neural network training and testing, 

X_train = Train_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_train = Train_dataset.VB 
X_test = Test_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_test = Test_dataset.VB 
 

 

from sklearn.neural_network import MLPRegressor 
 

 

mlpreg = MLPRegressor(random_state = 1) 
mlpreg.fit(X_train, y_train) 
 

y_pred = mlpreg.predict(X_test) 
y_pred = pd.DataFrame(y_pred) 
 

neu_rmse  = np.sqrt(metrics.mean_squared_error(y_test, y_pred)) 
neu_mse = mean_squared_error(y_test, y_pred) 
neu_mae = mean_absolute_error(y_test, y_pred) 
neu_r2 = metrics.r2_score(y_test, y_pred) 
neu_variance = metrics.explained_variance_score(y_test, y_pred) 
 

neu_error = pd.DataFrame([neu_rmse, neu_mse, neu_mae, neu_r2, 

neu_variance]) 
neu_error.columns = ["Neural Network"]  

Code Snippet 14: Neural Network regression 
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Figure 36: Neural Network 

With this, we arrived at following error values 

RMSE = 0.172 (must be as close as possible to zero) 

MSE = 0.029 (must be as close as possible to zero) 

MAE = 0.132 (must be as close as possible to zero) 

R2 = 0.746 (must be as close as possible to one) 

Explained Variance = 0.773 (must be as close as possible to one) 

From the error values and the graph, it is evident that this model has performed way better than 
the previous models. No point is critical as all the points at which the limit has reached has 
been predicted with nearest accuracy. Apart from the fact that, the prediction performance is 
not good for all the points, the model has done substantially well. 

7.8 k-nearest neighbor Regression 

K nearest neighbors is a simple algorithm that stores all available cases and predict the 
numerical target based on a similarity measure (e.g., distance functions). KNN has been used 
in statistical estimation and pattern recognition already in the beginning of 1970’s as a non-
parametric technique [92]. 

A simple implementation of KNN regression is to calculate the average of the numerical target 
of the K nearest neighbors.  Another approach uses an inverse distance weighted average of 
the K nearest neighbors. KNN regression uses the same distance functions as KNN 
classification. 

Choosing the optimal value for K is best done by first inspecting the data. In general, a large K 
value is more precise as it reduces the overall noise; however, the compromise is that the 
distinct boundaries within the feature space are blurred. Cross-validation is another way to 
retrospectively determine a good K value by using an independent data set to validate your K 
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value. The optimal K for most datasets is 10 or more. That produces much better results than 
1-NN [92]. 

kNN model training and testing has been done using the following algorithm, 

X_train = Train_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 

y_train = Train_dataset.VB 

X_test = Test_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 

y_test = Test_dataset.VB 

 

from sklearn import neighbors 

 

knn = neighbors.KNeighborsRegressor() 

knn.fit(X_train, y_train) 

 

y_pred = knn.predict(X_test) 

y_pred = pd.DataFrame(y_pred) 

 

knn_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred)) 

knn_mse = mean_squared_error(y_test, y_pred) 

knn_mae = mean_absolute_error(y_test, y_pred) 

knn_r2 = metrics.r2_score(y_test, y_pred) 

knn_variance = metrics.explained_variance_score(y_test, y_pred) 

 

knn_error = pd.DataFrame([knn_rmse, knn_mse, knn_mae, knn_r2, 

knn_variance]) 

knn_error.columns = ["knn Regression"]  
Code Snippet 15: knn regression 

 

With this, we arrived at following error values 

RMSE = 0.312 (must be as close as possible to zero) 

MSE = 0.097 (must be as close as possible to zero) 

MAE = 0.195 (must be as close as possible to zero) 

R2 = 0.171 (must be as close as possible to one) 

Explained Variance = 0.398 (must be as close as possible to one) 
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Figure 37: Knn Regression 

From the graph as well as the error values, it can be inferred that the performance of this model 
is not up to the mark with the other models. In fact, not a single point which has crossed the 
threshold has been predicted correctly. Hence, this model is not recommended for this data.  

7.9 Kernel Ridge Regression 

Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-
norm regularization) with the kernel trick. It thus learns a linear function in the space induced 
by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear 
function in the original space. 

The form of the model learned by KRR is identical to support vector regression (SVR). 
However, different loss functions are used: KRR uses squared error loss while support vector 
regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to 
SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized 
datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which 
learns a sparse model for epsilon > 0, at prediction-time. 

This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of 
shape [n_samples, n_targets]) [93]. 

This model is trained and tested using the following code, 
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X_train = Train_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 

y_train = Train_dataset.VB 

X_test = Test_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 

y_test = Test_dataset.VB 

 

from sklearn.kernel_ridge import KernelRidge 

 

kreg = KernelRidge() 

kreg.fit(X_train, y_train) 

 

y_pred = kreg.predict(X_test) 

y_pred = pd.DataFrame(y_pred) 

 

kernel_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred)) 

kernel_mse = mean_squared_error(y_test, y_pred) 

kernel_mae = mean_absolute_error(y_test, y_pred) 

kernel_r2 = metrics.r2_score(y_test, y_pred) 

kernel_variance = metrics.explained_variance_score(y_test, y_pred) 

 

kernel_error = pd.DataFrame([kernel_rmse, kernel_mse, kernel_mae, 

kernel_r2, kernel_variance]) 

kernel_error.columns = ["Kernel Ridge Regression"]  
Code Snippet 16: Kernel Ridge Regression 

With this, we arrived at following error values 

RMSE = 0.202 (must be as close as possible to zero) 

MSE = 0.0408 (must be as close as possible to zero) 

MAE = 0.1295 (must be as close as possible to zero) 

R2 = 0.653 (must be as close as possible to one) 

Explained Variance = 0.6822 (must be as close as possible to one) 
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Figure 38: Kernel Ridge Regression 

From the graph, it can be seen that, only one point has been predicted as safe, even though it 
isn’t. Apart from that the performance of the model is not quite satisfactory as it is very far 
from the ideal requirement of one. 

 
 

Linear 
Regression 

Decision 
Tree 
Regression 

Random 
Forest 
Regression 

Bayesian 
Ridge 
Regression 

Neural 
Network 

knn 
Regression 

Kernel 
Ridge 
Regression 

RMSE 0.2078 0.2523 0.2908 0.2068 0.1729 0.3128 0.2022 
MSE 0.0431 0.0637 0.0846 0.0427 0.0298 0.0978 0.0408 
MAE 0.1346 0.1673 0.1815 0.1364 0.1323 0.1955 0.1294 
R2 63% 46% 28% 64% 75% 17% 65% 
Explained 
Variance 

65% 52% 38% 65% 77% 40% 68% 

Table 2: Summary of Error metrics for Regression models 
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Chapter 8 – Model Improvement 

 
Synopsis 

In the previous chapter, various models were trained and were tested for its performance using 
separate training and testing data set. In the real case scenario, not all models can be used, and 
hence one of those models have to be selected. One way of accomplishing this task is by 
evaluating the error metrics and choosing the one with the best metric performance. Now this 
arises a question, whether the method of measuring the error metrics are efficient and 
consistent. This chapter deals with the Cross validation, a validation method to find and close 
in on the model to be used and Hyperparameter tuning, a method to improve the performance 
of the model chosen 

 

8.1 Cross Validation 

Cross-validation is a statistical method used to estimate the skill of machine learning 
models. It is commonly used in applied machine learning to compare and select a model for a 
given predictive modelling problem because it is easy to understand, easy to implement, and 
results in skill estimates that generally have a lower bias than other methods [94].  

As there is never enough data to train your model, removing a part of it for validation poses a 
problem of underfitting. By reducing the training data, we risk losing important patterns/ trends 
in data set, which in turn increases error induced by bias. So, what we require is a method that 
provides ample data for training the model and also leaves ample data for validation. K Fold 
cross validation does exactly that [95].  

Cross-validation is a resampling procedure used to evaluate machine learning models on a 
limited data sample. The procedure has a single parameter called k that refers to the number of 
groups that a given data sample is to be split into. As such, the procedure is often called k-fold 
cross-validation. When a specific value for k is chosen, it may be used in place of k in the 
reference to the model, such as k=10 becoming 10-fold cross-validation. Cross-validation is 
primarily used in applied machine learning to estimate the skill of a machine learning model 
on unseen data. That is, to use a limited sample in order to estimate how the model is expected 
to perform in general when used to make predictions on data not used during the training of 
the model.  

The general procedure is as follows: 

1. Shuffle the dataset randomly 
2. Split the dataset into k groups 
3. For each unique group: 

a. Take the group as a hold out or test data set 
b. Take the remaining groups as a training data set 
c. Fit a model on the training set and evaluate it on the test set 
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d. Retain the evaluation score and discard the model 
4. Summarize the skill of the model using the sample of model evaluation scores 

Importantly, each observation in the data sample is assigned to an individual group and stays 
in that group for the duration of the procedure. This means that each sample is given the 
opportunity to be used in the hold out set 1 time and used to train the model k-1 times. 

 
Figure 39: 5-Fold Cross Validation example 

8.1.1 Configuration of ‘k’ 

The k value must be chosen carefully for the data sample. A poorly chosen value for k 
may result in a mis-representative idea of the skill of the model, such as a score with a high 
variance (that may change a lot based on the data used to fit the model), or a high bias, (such 
as an overestimate of the skill of the model). 

Three common tactics for choosing a value for k are as follows: 

1. Representative: The value for k is chosen such that each train/test group of data samples 
is large enough to be statistically representative of the broader dataset. 

2. k=10: The value for k is fixed to 10, a value that has been found through 
experimentation to generally result in a model skill estimate with low bias a modest 
variance. 
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3. k=n: The value for k is fixed to ‘n’, where n is the size of the dataset to give each test 
sample an opportunity to be used in the hold out dataset. This approach is called leave-
one-out cross-validation. 

The choice of k is usually 5 or 10, but there is no formal rule. As ‘k’ gets larger, the difference 
in size between the training set and the resampling subsets gets smaller. As this difference 
decreases, the bias of the technique becomes smaller [96]. Hence, for execution of the k-fold 
cross validation for the dataset being used in this thesis is chosen as ‘10’.  

8.1.2 Execution of Cross Validation 

From the models which were previously trained and tested, some of the models showed 
a very bad performance, and some of the models showed comparatively a better performance. 
However, to get the conclusive result, all the models are subjected to cross validation to finalise 
the models for assessing remaining useful life of the tool. 

1. Linear Regression 
2. Bayesian Ridge Regression 
3. Kernel Ridge Regression 
4. Neural Network 
5. Decision Tree Regression 
6. Random Forest Regression 
7. knn Regression 

The 10-fold cross validation is performed for these models to arrive at the best model to further 
improve the same. 

1. Linear Regression 

The details of the Linear Regression have been already provided in the Chapter 7.  The details 
on the performance of the model in each fold is as shown in the  

Fold Number RMSE MSE MAE R2 Explained Variance 

0 0.1345 0.0181 0.1074 -0.0403 0.4003 

1 0.0769 0.0059 0.0622 0.6173 0.7650 

2 0.0938 0.0088 0.0784 0.6541 0.8256 

3 0.1094 0.0120 0.0948 0.2618 0.5244 

4 0.0629 0.0040 0.0543 0.8915 0.8928 

5 0.0655 0.0043 0.0449 0.9272 0.9272 

6 0.0772 0.0060 0.0603 0.8346 0.8518 

7 0.0645 0.0042 0.0489 0.8460 0.9347 

8 0.1790 0.0320 0.1408 0.6054 0.7607 

9 0.1442 0.0208 0.1111 0.2877 0.5662 

Mean 0.1008 0.0116 0.0803 0.5885 0.7449 

Std Dev 0.0400 0.0093 0.0320 0.3217 0.1853 
 

Table 3: 10_fold CV - Linear Regression 



70 
 

The code used in obtaining these results is as shown in Code Snippet 17: 10-Fold Cross 
Validation Linear Regression 

scores_rmse = cross_val_score(linreg, X_train, y_train, 

scoring="neg_mean_squared_error", cv=10) 

linscores_rmse = np.sqrt(-scores_rmse) 

linscores_rmse = pd.DataFrame(linscores_rmse) 

mean_linscores_rmse = linscores_rmse.mean() 

std_linscores_rmse = linscores_rmse.std() 

 

linscores_mse = cross_val_score(linreg, X_train, y_train, 

scoring="neg_mean_squared_error", cv=10) 

linscores_mse = pd.DataFrame(-linscores_mse) 

mean_linscores_mse = linscores_mse.mean() 

std_linscores_mse = linscores_mse.std() 

 

linscores_mae = cross_val_score(linreg, X_train, y_train, 

scoring="neg_mean_absolute_error", cv=10) 

linscores_mae = pd.DataFrame(-linscores_mae) 

mean_linscores_mae = linscores_mae.mean() 

std_linscores_mae = linscores_mae.std() 

 

linscores_r2 = cross_val_score(linreg, X_train, y_train, scoring="r2", 

cv=10) 

linscores_r2 = pd.DataFrame(linscores_r2) 

mean_linscores_r2 = linscores_r2.mean() 

std_linscores_r2 = linscores_r2.std() 

 

linscores_variance = cross_val_score(linreg, X_train, y_train, 

scoring="explained_variance", cv=10) 

linscores_variance = pd.DataFrame(linscores_variance) 

mean_linscores_variance = linscores_variance.mean() 

std_linscores_variance = linscores_variance.std() 

 

#To compile the scores 

 

linscores = pd.concat([linscores_rmse,linscores_mse, linscores_mae, 

linscores_r2, linscores_variance], axis = 1) 

linscores.columns = ["RMSE", "MSE", "MAE", "R2", "Explained Variance"] 

 

mean_linscores = pd.concat([mean_linscores_rmse, mean_linscores_mse, 

mean_linscores_mae, mean_linscores_r2, mean_linscores_variance], axis = 1) 

mean_linscores.columns = ["RMSE", "MSE", "MAE", "R2", "Explained Variance"] 

mean_linscores.rename(index = {0:'Mean'}, inplace = True) 

 

std_linscores = pd.concat([std_linscores_rmse, std_linscores_mse, 

std_linscores_mae, std_linscores_r2, std_linscores_variance], axis = 1) 

std_linscores.columns = ["RMSE", "MSE", "MAE", "R2", "Explained Variance"] 

std_linscores.rename(index = {0:'Std Dev'}, inplace = True) 

 

 

Total_linscores = pd.concat([linscores, mean_linscores, std_linscores], 

axis = 0) 

 
 

Code Snippet 17: 10-Fold Cross Validation Linear Regression 
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If we observe the mean values, which is comparatively a good measure of the performance of 
the model, there is a significance difference with the values we obtained from the normal 
train/test split method.  

2. Bayesian Ridge Regression 

The below table shows the 10-fold cross validation results.  

Fold Number RMSE MSE MAE R2 Explained Variance 

0 0.08114 0.00658 0.07732 0.62145 0.96521 

1 0.05840 0.00341 0.04792 0.77958 0.79932 

2 0.04939 0.00244 0.03989 0.90414 0.91586 

3 0.09092 0.00827 0.08137 0.49054 0.51685 

4 0.06474 0.00419 0.04856 0.88516 0.91487 

5 0.08053 0.00649 0.04544 0.88986 0.89817 

6 0.05643 0.00318 0.04978 0.91161 0.94121 

7 0.06597 0.00435 0.05125 0.83883 0.89783 

8 0.13100 0.01716 0.11411 0.78852 0.86738 

9 0.15452 0.02388 0.11827 0.18232 0.57829 

Mean 0.08330 0.00800 0.06739 0.72920 0.82950 

Std Dev 0.03425 0.00702 0.02907 0.23564 0.15572 
 

Table 4: 10-Fold Cross Validation Bayesian Ridge Regression 

From this, we get a clear picture of the performance of the model, since we calculate the mean 
of the 10 folds of the performance metrics. The Code Snippet 18: 10-Fold Cross Validation 
Bayesian Ridge Regression gives the method to find the scores. 

3. Kernel Ridge Regression 

Similar to Bayesian Regression, following table shows the scores obtained, 

Fold Number RMSE MSE MAE R2 Explained Variance 

0 0.09347 0.00874 0.08958 0.49756 0.95903 

1 0.05878 0.00345 0.04679 0.77671 0.77723 

2 0.04049 0.00164 0.03002 0.93556 0.93556 

3 0.07949 0.00632 0.06994 0.61057 0.61134 

4 0.07023 0.00493 0.05279 0.86485 0.90236 

5 0.08892 0.00791 0.05061 0.86572 0.87108 

6 0.07276 0.00529 0.06640 0.85307 0.89810 

7 0.06546 0.00428 0.05054 0.84134 0.88203 

8 0.11845 0.01403 0.10585 0.82711 0.87427 

9 0.15046 0.02264 0.11271 0.22470 0.58577 

Mean 0.08385 0.00792 0.06752 0.72972 0.82968 

Std Dev 0.03149 0.00620 0.02715 0.22152 0.13092 
 

Table 5: 10-Fold Cross Validation Kernel Ridge Regression 
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scores_rmse = cross_val_score(bayreg, X_train, y_train, 

scoring="neg_mean_squared_error", cv=10) 

bayscores_rmse = np.sqrt(-scores_rmse) 

bayscores_rmse = pd.DataFrame(bayscores_rmse) 

mean_bayscores_rmse = bayscores_rmse.mean() 

std_bayscores_rmse = bayscores_rmse.std() 

 

bayscores_mse = cross_val_score(bayreg, X_train, y_train, 

scoring="neg_mean_squared_error", cv=10) 

bayscores_mse = pd.DataFrame(-bayscores_mse) 

mean_bayscores_mse = bayscores_mse.mean() 

std_bayscores_mse = bayscores_mse.std() 

 

bayscores_mae = cross_val_score(bayreg, X_train, y_train, 

scoring="neg_mean_absolute_error", cv=10) 

bayscores_mae = pd.DataFrame(-bayscores_mae) 

mean_bayscores_mae = bayscores_mae.mean() 

std_bayscores_mae = bayscores_mae.std() 

 

bayscores_r2 = cross_val_score(bayreg, X_train, y_train, scoring="r2", 

cv=10) 

bayscores_r2 = pd.DataFrame(bayscores_r2) 

mean_bayscores_r2 = bayscores_r2.mean() 

std_bayscores_r2 = bayscores_r2.std() 

 

bayscores_variance = cross_val_score(bayreg, X_train, y_train, 

scoring="explained_variance", cv=10) 

bayscores_variance = pd.DataFrame(bayscores_variance) 

mean_bayscores_variance = bayscores_variance.mean() 

std_bayscores_variance = bayscores_variance.std() 

 

#To compile the scores 

 

bayscores = pd.concat([bayscores_rmse,bayscores_mse, bayscores_mae, 

bayscores_r2, bayscores_variance], axis = 1) 

bayscores.columns = ["RMSE", "MSE", "MAE", "R2", "Explained Variance"] 

 

mean_bayscores = pd.concat([mean_bayscores_rmse, mean_bayscores_mse, 

mean_bayscores_mae, mean_bayscores_r2, mean_bayscores_variance], axis = 1) 

mean_bayscores.columns = ["RMSE", "MSE", "MAE", "R2", "Explained Variance"] 

mean_bayscores.rename(index = {0:'Mean'}, inplace = True) 

 

std_bayscores = pd.concat([std_bayscores_rmse, std_bayscores_mse, 

std_bayscores_mae, std_bayscores_r2, std_bayscores_variance], axis = 1) 

std_bayscores.columns = ["RMSE", "MSE", "MAE", "R2", "Explained Variance"] 

std_bayscores.rename(index = {0:'Std Dev'}, inplace = True) 

 

 

Total_bayscores = pd.concat([bayscores, mean_bayscores, std_bayscores], 

axis = 0)  
Code Snippet 18: 10-Fold Cross Validation Bayesian Ridge Regression 
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4. Neural Network 

The below table shows the scores for the neural network, 

Fold Number RMSE MSE MAE R2 Explained Variance 

0 0.1058 0.0112 0.0995 0.3563 0.9256 

1 0.0634 0.0040 0.0506 0.7405 0.7495 

2 0.1321 0.0175 0.1208 0.3140 0.4117 

3 0.0900 0.0081 0.0784 0.5007 0.6411 

4 0.0972 0.0094 0.0726 0.7412 0.7996 

5 0.1223 0.0149 0.0957 0.7461 0.7655 

6 0.0844 0.0071 0.0725 0.8021 0.9479 

7 0.0561 0.0031 0.0474 0.8836 0.9196 

8 0.1247 0.0155 0.0954 0.8084 0.9205 

9 0.1022 0.0104 0.0902 0.6422 0.7830 

Mean 0.0978 0.0101 0.0823 0.6535 0.7864 

Std Dev 0.0253 0.0048 0.0227 0.1972 0.1649 
 

Table 6: 10-Fold Cross Validation Neural Network Regression 

We can see that, Neural network which showed a good performance in the previous assessment, 
tend to have a low score during cross validation. This shows that the model was over fitting the 
data in the first instance. 

5. Decision Tree Regression 

The below table shows the performance of Decision Tree Regression, 

Fold Number RMSE MSE MAE R2 Explained Variance 

0 0.1713 0.0293 0.1636 -0.6875 0.8523 

1 0.1382 0.0191 0.1236 -0.2338 0.4362 

2 0.1099 0.0121 0.0827 0.5252 0.7941 

3 0.0686 0.0047 0.0573 0.7103 0.7878 

4 0.1413 0.0200 0.1000 0.4531 0.5453 

5 0.1249 0.0156 0.0910 0.7352 0.7366 

6 0.0868 0.0075 0.0600 0.7907 0.7917 

7 0.0977 0.0095 0.0760 0.6467 0.8387 

8 0.1319 0.0174 0.0950 0.7857 0.8085 

9 0.2036 0.0415 0.1650 -0.4195 0.5129 

Mean 0.1274 0.0177 0.1014 0.3306 0.7104 

Std Dev 0.0400 0.0110 0.0383 0.5575 0.1520 

 

Table 7: 10-Fold Cross Validation Decision Tree Regression 
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6. Random Forest Regression 

The below table shows the performance of Random Forest Regression, 

Fold Number RMSE MSE MAE R2 Explained Variance 

0 0.1586 0.0251 0.1508 -0.4461 0.8619 

1 0.0731 0.0053 0.0601 0.6551 0.8691 

2 0.0638 0.0041 0.0504 0.8400 0.9142 

3 0.0565 0.0032 0.0481 0.8035 0.8098 

4 0.1054 0.0111 0.0911 0.6958 0.6963 

5 0.1239 0.0154 0.0920 0.7393 0.7433 

6 0.1054 0.0111 0.0917 0.6919 0.7678 

7 0.1278 0.0163 0.1039 0.3956 0.7786 

8 0.1162 0.0135 0.0910 0.8335 0.8337 

9 0.2153 0.0464 0.1753 -0.5879 0.4645 

Mean 0.1146 0.0151 0.0954 0.4621 0.7739 

Std Dev 0.0474 0.0128 0.0410 0.5323 0.1265 

 

Table 8: 10-Fold Cross Validation Random Forest Regression 

 7. knn Regression 

The below table shows the performance of knn Regression, 

Fold Number RMSE MSE MAE R2 Explained Variance 

0 0.1887 0.0356 0.1525 -1.0485 0.2896 

1 0.0397 0.0016 0.0344 0.8982 0.9000 

2 0.0549 0.0030 0.0455 0.8815 0.9274 

3 0.0853 0.0073 0.0738 0.5515 0.8334 

4 0.1051 0.0110 0.0870 0.6976 0.7393 

5 0.1320 0.0174 0.0888 0.7039 0.7112 

6 0.1112 0.0124 0.0968 0.6568 0.7219 

7 0.1006 0.0101 0.0914 0.6249 0.6682 

8 0.1879 0.0353 0.1370 0.5647 0.7144 

9 0.1843 0.0340 0.1548 -0.1634 0.5625 

Mean 0.1190 0.0168 0.0962 0.4367 0.7068 

Std Dev 0.0539 0.0133 0.0413 0.5990 0.1825 

 

Table 9: 10-Fold Cross Validation knn Regression 

From the error metric scores, following models were shortlisted, 

1. Linear Regression 

2. Neural Network 

3. Bayesian Ridge Regression and  

4. Kernel Ridge Regression 
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Now that the models have been finalized and metric scores were identified using the base 
parameters already defined in the model, another attempt was carried out to see if the model 
performance can be further increased by tuning the hyperparameters. 

 

8.2 Hyperparameter Tuning 
 

This section deals with the model improvement using hyperparameter tuning, with the 
simultaneous adoption of cross validation. 

Hyper-parameters are parameters that are not directly learnt within estimators. In scikit-learn 
they are passed as arguments to the constructor of the estimator classes. Typical examples 
include C, kernel and gamma for Support Vector Classifier, alpha for Lasso, etc [97]. So far, 
during the model training, the model was fitted with the data, using the default values for model 
parameters. And the results were tabulated for different models in order to shortlist them that 
can be employed for the available dataset. However, further tuning of the model performance 
is possible by defining the values for these parameters which is called as parameter tuning.  

In the current scenario, following models were shortlisted from the previous step based on the 
metrics score.  

1. Linear regression 

2. Bayesian Regression 

3. Kernel Ridge Regression 

4. Neural Network 

 

8.2.1 Linear Regression 

For Linear Regression, following ordinary least square Linear Regression sklearn function was 
used, 

class sklearn.linear_model.LinearRegression(fit_intercept=True, 

normalize=False, copy_X=True, n_jobs=None)  
Code Snippet 19: sklearn function for Linear Regression 

Linear Regression fits a linear model with coefficients w = (w1, …, wp) to minimize the 

residual sum of squares between the observed targets in the dataset, and the targets predicted 
by the linear approximation [98]. 

From the function, we can see the following parameters in the function [98] , 

1. fit_intercept: bool, optional, default True: Whether to calculate the intercept for this model. 
If set to False, no intercept will be used in calculations (i.e. data is expected to be centered). 

2. normalize: bool, optional, default False: This parameter is ignored when fit_intercept is set 
to False. If True, the regressors X will be normalized before regression by subtracting the mean 



76 
 

and dividing by the l2-norm. If you wish to standardize, please use 
sklearn.preprocessing.StandardScaler before calling fit on an estimator with normalize=False. 

3. copy_X: bool, optional, default True: If True, X will be copied; else, it may be overwritten. 

4. n_jobs: int or None, optional (default=None): The number of jobs to use for the computation. 
This will only provide speedup for n_targets > 1 and sufficient large problems. None means 1 
unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for 
more details. 

From this linear Regression doesn’t particularly have any hyperparameters for optimization. 

Hence no further improvement was done with respect to the Linear Regression.  

 
8.2.2 Bayesian Ridge Regression 

For Bayesian Ridge Regression, following modified linear sklearn function has been 
employed, 

class sklearn.linear_model.BayesianRidge(n_iter=300, tol=0.001, alpha_1=1e-

06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, alpha_init=None, 

lambda_init=None, compute_score=False, fit_intercept=True, normalize=False, 

copy_X=True, verbose=False)  
Code Snippet 20: sklearn function for Bayesian Ridge Regression 

From the function, following parameters are evident [99], 

 

1. n_iter: int, default=300: Maximum number of iterations. Should be greater than or equal to 
1. 

2. tol: float, default=1e-3: Stop the algorithm if w has converged. 

3. alpha_1: float, default=1e-6: Hyper-parameter : shape parameter for the Gamma distribution 
prior over the alpha parameter. 

4. alpha_2: float, default=1e-6: Hyper-parameter : inverse scale parameter (rate parameter) for 
the Gamma distribution prior over the alpha parameter. 

5. lambda_1: float, default=1e-6: Hyper-parameter : shape parameter for the Gamma 
distribution prior over the lambda parameter. 

6. lambda_2: float, default=1e-6: Hyper-parameter : inverse scale parameter (rate parameter) 
for the Gamma distribution prior over the lambda parameter. 

7. alpha_init: float, default=None: Initial value for alpha (precision of the noise). If not set, 
alpha_init is 1/Var(y). 

8. lambda_init: float, default=None: Initial value for lambda (precision of the weights). If not 
set, lambda_init is 1. 

9. compute_score: bool, default=False: If True, compute the log marginal likelihood at each 
iteration of the optimization. 
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10. fit_intercept: bool, default=True: Whether to calculate the intercept for this model. The 
intercept is not treated as a probabilistic parameter and thus has no associated variance. If set 
to False, no intercept will be used in calculations (i.e. data is expected to be centered). 

11. normalize: bool, default=False: This parameter is ignored when fit_intercept is set to False. 
If True, the regressors X will be normalized before regression by subtracting the mean and 
dividing by the l2-norm. If you wish to standardize, please use 
sklearn.preprocessing.StandardScaler before calling fit on an estimator with normalize=False. 

12. copy_X: bool, default=True: If True, X will be copied; else, it may be overwritten. 

13. verbose: bool, default=False: Verbose mode when fitting the model. 

From the parameters mentioned above, alpha_1, alpha_2, lambda_1 and lambda_2 can be 
identified as hyperparameters whose values can be further optimized to get better performance 
of the machine learning model.  

 
8.2.3 Kernel Ridge Regression 

For Kernel Ridge Regression, below mentioned sklearn function was utilized to model, 

class sklearn.kernel_ridge.KernelRidge(alpha=1, kernel='linear', 

gamma=None, degree=3, coef0=1, kernel_params=None)  
Code Snippet 21: sklearn function for Kernel Ridge Regression 

From the function, following parameters can be extracted [100], 

1. alpha: {float, array-like}, shape = [n_targets]: Small positive values of alpha improve the 
conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to 
(2*C)^-1 in other linear models such as LogisticRegression or LinearSVC. If an array is passed, 
penalties are assumed to be specific to the targets. Hence they must correspond in number. 

2. kernel: string or callable, default=”linear”: Kernel mapping used internally. A callable 
should accept two arguments and the keyword arguments passed to this object as 
kernel_params, and should return a floating point number. Set to “precomputed” in order to 

pass a precomputed kernel matrix to the estimator methods instead of samples. 

3. gamma: float, default=None: Gamma parameter for the RBF, laplacian, polynomial, 
exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; 
see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. 

4. degree: float, default=3: Degree of the polynomial kernel. Ignored by other kernels. 

5. coef0: float, default=1: Zero coefficient for polynomial and sigmoid kernels. Ignored by 
other kernels. 

6. kernel_params: mapping of string to any, optional: Additional parameters (keyword 
arguments) for kernel function passed as callable object. 
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8.2.4 Neural Network 

For Neural Network, following sklearn MLP regressor function was used to fit the model, 

class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100, ), 

activation='relu', solver='adam', alpha=0.0001, batch_size='auto', 

learning_rate='constant', learning_rate_init=0.001, power_t=0.5, 

max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, 

warm_start=False, momentum=0.9, nesterovs_momentum=True, 

early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, 

epsilon=1e-08, n_iter_no_change=10, max_fun=15000)  
Code Snippet 22: sklearn function for Neural Network MLP Regressor 

Following parameters are mentioned in the function, 

1. hidden_layer_sizes: tuple, length = n_layers - 2, default=(100,): The ith element represents 
the number of neurons in the ith hidden layer. 

2. activation: {‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, default=’relu’: Activation function for the 
hidden layer. 

• ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x 
• ‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)). 
• ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x). 
• ‘relu’, the rectified linear unit function, returns f(x) = max(0, x) 

3. solver: {‘lbfgs’, ‘sgd’, ‘adam’}, default=’adam’: The solver for weight optimization. 

 

• lbfgs’ is an optimizer in the family of quasi-Newton methods. 
• ‘sgd’ refers to stochastic gradient descent. 
• ‘adam’ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, 

and Jimmy Ba 

4. alpha: float, default=0.0001: L2 penalty (regularization term) parameter. 

5. batch_size: int, default=’auto’: Size of minibatches for stochastic optimizers. If the solver is 
‘lbfgs’, the classifier will not use minibatch. When set to “auto”, batch_size=min(200, 

n_samples) 

6. learning_rate: {‘constant’, ‘invscaling’, ‘adaptive’}, default=’constant’: Learning rate 
schedule for weight updates. 

• ‘constant’ is a constant learning rate given by ‘learning_rate_init’. 
• ‘invscaling’ gradually decreases the learning rate learning_rate_ at each time step ‘t’ 

using an inverse scaling exponent of ‘power_t’. effective_learning_rate = 

learning_rate_init / pow(t, power_t) 
• ‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as long as training 

loss keeps decreasing. Each time two consecutive epochs fail to decrease training loss 
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by at least tol, or fail to increase validation score by at least tol if ‘early_stopping’ is 

on, the current learning rate is divided by 5. 

7. learning_rate_init: double, default=0.001: The initial learning rate used. It controls the step-
size in updating the weights. Only used when solver=’sgd’ or ‘adam’. 

8. power_t: double, default=0.5: The exponent for inverse scaling learning rate. It is used in 
updating effective learning rate when the learning_rate is set to ‘invscaling’. Only used when 

solver=’sgd’. 

9. max_iter: int, default=200: Maximum number of iterations. The solver iterates until 
convergence (determined by ‘tol’) or this number of iterations. For stochastic solvers (‘sgd’, 

‘adam’), note that this determines the number of epochs (how many times each data point will 

be used), not the number of gradient steps. 

10.shuffle: bool, default=True: Whether to shuffle samples in each iteration. Only used when 
solver=’sgd’ or ‘adam’. 

11: random_state: int, RandomState instance or None, default=None: If int, random_state is 
the seed used by the random number generator; If RandomState instance, random_state is the 
random number generator; If None, the random number generator is the RandomState instance 
used by np.random. 

12. tol: float, default=1e-4: Tolerance for the optimization. When the loss or score is not 
improving by at least tol for n_iter_no_change consecutive iterations, unless learning_rate is 
set to ‘adaptive’, convergence is considered to be reached and training stops. 

13. verbose: bool, default=False: Whether to print progress messages to stdout. 

14. warm_start: bool, default=False: When set to True, reuse the solution of the previous call 
to fit as initialization, otherwise, just erase the previous solution. See the Glossary. 

15. momentum: float, default=0.9: Momentum for gradient descent update. Should be between 
0 and 1. Only used when solver=’sgd’. 

16. nesterovs_momentum: boolean, default=True: Whether to use Nesterov’s momentum. 

Only used when solver=’sgd’ and momentum > 0. 

17.early_stopping: bool, default=False: Whether to use early stopping to terminate training 
when validation score is not improving. If set to true, it will automatically set aside 10% of 
training data as validation and terminate training when validation score is not improving by at 
least tol for n_iter_no_change consecutive epochs. Only effective when solver=’sgd’ or ‘adam’ 

18. validation_fraction: float, default=0.1: The proportion of training data to set aside as 
validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True 

19. beta_1: float, default=0.9: Exponential decay rate for estimates of first moment vector in 
adam, should be in [0, 1). Only used when solver=’adam’ 

20. beta_2: float, default=0.999: Exponential decay rate for estimates of second moment vector 
in adam, should be in [0, 1). Only used when solver=’adam’ 
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21. epsilon: float, default=1e-8: Value for numerical stability in adam. Only used when 
solver=’adam’ 

22. n_iter_no_change: int, default=10: Maximum number of epochs to not meet tol 
improvement. Only effective when solver=’sgd’ or ‘adam’ 

23. max_fun: int, default=15000: Only used when solver=’lbfgs’. Maximum number of 
function calls. The solver iterates until convergence (determined by ‘tol’), number of iterations 

reaches max_iter, or this number of function calls. Note that number of function calls will be 
greater than or equal to the number of iterations for the MLPRegressor. 

From the extensive list of parameters mentioned above, following parameters can be 
considered as Hyperparameters, where an attempt has been carried out to optimize the values 
to improve the performance of the model, 

1. hidden layers: Here by default, the model is considering one hidden layer with 100 neurons 
constituting the layer. Considering that there are 27 features to be used to do the prediction of 
tool wear, an empirical method is followed where in two instances are tried, first with one 
hidden layer with 27 neurons and the second with two hidden layers constituting 54 neurons 
(double the number of neurons compared to the first hidden layer). 

2. activation function: Considering that there is possibility of employing any of the 4 mentioned 
activation functions, namely, ‘identity’, ‘logistic’, ‘tanh’ and ‘relu’ all of them have been tried 

to see the performance variation of the model in combination with the checking of the hidden 
layers. 

3. solver: Similar to the activation function, there are possibilities of utilizing the following 
solvers, namely ‘lbfgs’, ‘sgd’ and ‘adam’. All of them have been checked along with the 

combinations with hidden layers and activation functions with various combinations. 

4. batch size: Though there are a lot of possibilities of choosing the batch size to optimize the 
model, some of the instances showed that lower number of batch size increased the 
performance of the model. However, batch sizes of 1 and 2 were tested for analyzing the 
performance. 

5. learning rate: Similar to activation function and solver, following learning rate methods have 
been tested to check for the performance, ‘constant’, ‘invscaling’ and ‘adaptive’.  

With the hyperparameters values available, a method must be used where in a proper 
combination of these hyperparameters can be employed to optimize the models. There are 
several approaches to hyperparameter tuning, 

1. Manual: select hyperparameters based on intuition/experience/guessing, train the model with 
the hyperparameters, and score on the validation data. Repeat process until you run out of 
patience or are satisfied with the results. 

2. Grid Search: set up a grid of hyperparameter values and for each combination, train a model 
and score on the validation data. In this approach, every single combination of hyperparameters 
values is tried which can be very inefficient! 

3. Random search: set up a grid of hyperparameter values and select random combinations to 
train the model and score. The number of search iterations is set based on time/resources. 
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4. Automated Hyperparameter Tuning: use methods such as gradient descent, Bayesian 
Optimization, or evolutionary algorithms to conduct a guided search for the best 
hyperparameters. 

During the execution of this thesis, Grid search has been used to tune the hyperparameters. 
Grid search has been done to check the R2 and Explained variance error metrics of the model. 

The Code Snippet 23: Neural Network Grid search error R2 metric gives the code used for 
carrying out grid search based on R2 error metric. 

The Code Snippet 24: Neural Network Grid search explained Variance error metric gives the 
code used for carrying out grid search based on Explained Variance error metric. 

Upon completion of the Grid search with Cross validation of 10 folds, the best results and 
corresponding best parameters are as shown below, 

Hyperparameter Value R2 Score Explained Variance Score 

Activation function logistic 

0.79087 0.87591 

Batch size 1 

Hidden layer sizes 1 layer with 27 neurons 

Learning rate method constant 

Solver lbfgs 
 

Table 10: Hyperparameter tuning results: Neural Network 

The results that were obtained after hyperparameter tuning is significantly higher than the once 
obtained during the previous 10-fold cross validation as shown in Table 6: 10-Fold Cross 
Validation Neural Network Regression. Hence, the model is said to be tuned to optimize the 
performance.  
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#========================================================================== 

# Neural Network - GRID SEARCH - R2 

#========================================================================== 

 

from sklearn.model_selection import GridSearchCV 

 

hidden_layer = [[27], [54,27]] 

activation = ['identity', 'logistic', 'tanh', 'relu'] 

solver = ['lbfgs', 'sgd', 'adam'] 

batch_size = [1,2] 

learning_rate = ['constant', 'invscaling', 'adaptive'] 

 

param_grid = dict(hidden_layer_sizes = hidden_layer, activation = 

activation, solver = solver, batch_size = batch_size, learning_rate = 

learning_rate) 

 

grid = GridSearchCV(mlpreg, param_grid, cv=10, scoring='r2', 

return_train_score=False) 

grid.fit(X_train, y_train) 

 

import pandas as pd 

pd.DataFrame(grid.cv_results_)[['mean_test_score', 'std_test_score', 

'params']] 

 

print(grid.best_score_) 

print(grid.best_params_)  
Code Snippet 23: Neural Network Grid search error R2 metric 

 

#========================================================================== 

# Neural Network - GRID SEARCH - EXPLAINED VARIANCE 

#========================================================================== 

 

from sklearn.model_selection import GridSearchCV 

 

hidden_layer = [[27], [54,27]] 

activation = ['identity', 'logistic', 'tanh', 'relu'] 

solver = ['lbfgs', 'sgd', 'adam'] 

batch_size = [1,2] 

learning_rate = ['constant', 'invscaling', 'adaptive'] 

 

param_grid = dict(hidden_layer_sizes = hidden_layer, activation = 

activation, solver = solver, batch_size = batch_size, learning_rate = 

learning_rate) 

 

grid = GridSearchCV(mlpreg, param_grid, cv=10, 

scoring='explained_variance', return_train_score=False) 

grid.fit(X_train, y_train) 

 

import pandas as pd 

pd.DataFrame(grid.cv_results_)[['mean_test_score', 'std_test_score', 

'params']] 

 

print(grid.best_score_) 

print(grid.best_params_) 

 
 

Code Snippet 24: Neural Network Grid search explained Variance error metric 
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Chapter 9 – Remaining Useful Life 
 

Synopsis 

With the finalization of the model and its performance, this chapter deals with utilizing the 
machine learning models to estimate the Remaining useful life of the tool with respect to 
number of runs 

9.1 Remaining useful Life 

For the estimation of the remaining useful life of the tool, the test data which was kept aside in 
all the training instances as well as in the cross validation and hyper parameter tuning was used. 
By this way, the model can be truly tested in the real case scenario, since with the new data 
coming in with every new operation cannot be always trained. This method is adopted to 
automate the process of determining the RUL. However only the values of DOC, feed and 
material data which was used to train the model can be made available for good prediction of 
RUL. 

During the train test split, care was taken to choose the set in such a way that all different 
combinations of machining parameters are considered for training the model. From the data 
set, following summary of machining parameters which form the limits for Design of 
Experiment can be drawn for better understanding. 

Case DOC Feed  Material Set 
1 1.5 0.5 1 

Training 
Data set 

2 0.75 0.5 1 
3 0.75 0.25 1 
4 1.5 0.25 1 
5 1.5 0.5 2 
6 1.5 0.25 2 
7 0.75 0.25 2 
8 0.75 0.5 2 
9 1.5 0.5 1 
10 1.5 0.25 1 
11 0.75 0.25 1 
12 0.75 0.5 1 
13 0.75 0.25 2 

Hold 
out set  

14 0.75 0.5 2 
15 1.5 0.25 2 
16 1.5 0.5 2 

 

Table 11: Machining Parameters 
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Following steps were followed to estimate the remaining useful life of the tool wear, 

1. The VB was predicted for the hold out set using the machine learning model, which was 
trained from the training data set 

2. From this, the predicted VB which exceeded the safe VB limit of 0.6 was filtered and 
tabulated separately  

3. corresponding machining parameters were filtered and tabulated along with the feasible 
number of runs corresponding to each parameter 

4. the value under the column ‘runs’ corresponding to the maximum VB was identified 

5. to get the possible feasible runs, one run less than the identified was taken and provided to 
the operator 

6. This procedure is repeated for each request from operator based on the machining parameter 

Here, in order to train the model, the values of the parameters obtained during Hyperparameter 
tuning is used to obtain best possible performance. The Code Snippet 25: RUL Model Training 
gives the code used train model and obtain the prediction of VB. The corresponding 
performance of the model is shown in Figure 40: Improved Neural Network Performance. 

 
Figure 40: Improved Neural Network Performance 

From the graph it is evident that, apart from one critical point, where even after the tool wear 
has crossed the VB of 0.6, the prediction is showing it is safe, the rest of the threshold points 
have been predicted well.  
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#========================================================================== 
# REMAINING USEFUL LIFE - MODEL TRAINING 
#========================================================================== 
X = train_data = z_final_normalized[['run','DOC', 'feed', 

'material','Maximum_smcAC', 'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 

'Maximum_smcDC', 'Mean_smcDC', 'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 

'Maximum_AE_table', 'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 

'p2p_AE_spindle', 'Maximum_power_smcAC', 'Total_Power_smcAC' , 

'Average_Power_smcAC', 'Standard_power_smcAC', 'Maximum_power_smcDC', 

'Total_Power_smcDC', 'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y = z_final_normalized[['VB']].copy() 
 

X_train = Train_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_train = Train_dataset.VB 
X_test = Test_dataset[['run','DOC', 'feed', 'material','Maximum_smcAC', 

'RMS_smcAC', 'Std_Dev_smcAC', 'p2p_smcAC', 'Maximum_smcDC', 'Mean_smcDC', 

'RMS_smcDC', 'Std_Dev_smcDC', 'p2p_smcDC', 'Maximum_AE_table', 

'RMS_AE_table', 'p2p_AE_table', 'Maximum_AE_spindle', 'p2p_AE_spindle', 

'Maximum_power_smcAC', 'Total_Power_smcAC' , 'Average_Power_smcAC', 

'Standard_power_smcAC', 'Maximum_power_smcDC', 'Total_Power_smcDC', 

'Average_Power_smcDC', 'Standard_power_smcDC']].copy() 
y_test = Test_dataset.VB 
 

from sklearn.neural_network import MLPRegressor 
 

mlpreg = MLPRegressor(activation = 'logistic', solver = 'lbfgs', batch_size 

= 1, learning_rate = 'constant', random_state = 27, hidden_layer_sizes = 

[27]) 
mlpreg.fit(X_train, y_train) 
 

y_pred = mlpreg.predict(X_test) 
y_pred = pd.DataFrame(y_pred)  

Code Snippet 25: RUL Model Training 

 

Further the Figure 41: Flowchart to obtain RUL gives the method used to find the RUL. The 
Code Snippet 26: Remaining Useful life gives the code used to find the feasible runs available 
for each machining parameter. The performance of the prediction of RUL is as shown in Figure 
42: RUL prediction performance.  
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Figure 41: Flowchart to obtain RUL 

Remaining Useful 
life based on 

Number of Runs 

Filter the data based on 
DOC, Feed, Material, 

Runs and Predicted VB 

Input from User 
on DOC, Feed 
and Material 

Filter Predicted VB and 
Runs based on the input 

Unsafe_data = Predicted 
VB>0.6 

Take minimum of Predicted VB 
from Unsafe_data 

Take the run corresponding 
to the Least Predicted VB in 

unsafe data 

Feasible 
Runs = run-1 
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run=pd.DataFrame(X_test.run) 
 

case=z_feature_selection_subset1.case 
 

relevent_case = pd.DataFrame(case[z_final_normalized.case >=12]) 
relevent_case.reset_index(inplace = True)  
 

VB=pd.DataFrame(y_test) 
VB.reset_index(inplace = True)  
 

split_data = 

pd.DataFrame(cleaned_outlier_data[cleaned_outlier_data.Case>=12]) 
DOC_split_data = pd.DataFrame(split_data.DOC) 
 

DOC_split_data.reset_index(inplace = True) 
 

Feed_split_data = pd.DataFrame(split_data.feed) 
Feed_split_data.reset_index(inplace = True) 
 

material_split_data = pd.DataFrame(split_data.material) 
material_split_data.reset_index(inplace = True) 
 

run.reset_index(inplace = True)  
 

run_VB = pd.concat([relevent_case, run, y_pred, VB, DOC_split_data, 

Feed_split_data, material_split_data], axis = 1)  
print(run_VB) 
run_VB.drop(columns = ['index'], inplace = True) 
run_VB.columns = ["Case", "Run", "Predicted_VB", "Actual_VB", "DOC", 

"feed", "material"] 
 

unsafe_runs = pd.DataFrame(run_VB[run_VB.Predicted_VB >= 0.6]) 
print(unsafe_runs) 
 

# customer Input 
DOC = float(input('enter the DOC value : ')) 
feed =float(input('enter the feed value : ')) 
material =int(input('enter the material value : ')) 
 

df1=unsafe_runs[['DOC','feed','material']] 
df2=df1[(df1.DOC==float(DOC))&(df1.feed==float(feed))&(df1.material==float(

material))] 
store_vb = pd.DataFrame() 
 

for i in df2.index: 
    store_vb=store_vb.append(unsafe_runs.loc[unsafe_runs.index==i]) 
    min_pred=np.min(store_vb.Predicted_VB) 
    run1 = store_vb.loc[store_vb.Predicted_VB ==min_pred]['Run'] 
    run1 = run1 -1 
     

blankIndex=[''] * len(run1) 
run1.index=blankIndex 
   

print('Feasible Runs '+str(run1))  
Code Snippet 26: Remaining Useful life 
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Figure 42: RUL prediction performance – Neural Network 

From the graph, it is evident that the prediction of RUL has not been consistent with all the 
cases, however the result was obtained with only a maximum error of just 2 runs.  

Similar process was followed with other models which were shortlisted from the cross 
validation. Following graphs show the performance of the respective models, 

1. Linear Regression 

 
Figure 43: RUL prediction Performance – Linear Regression 

Using linear regression in assessing the remaining useful life of the tool gave a possible error 
of almost 6 runs which is very poor compared with the performance of the neural network, 
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2. Bayesian Ridge Regression 

 
Figure 44: RUL prediction performance – Bayesian Ridge Regression 

Using Bayesian Ridge Regression in estimating the RUL, gave similar results compared to the 
linear Regression.  

3. Kernel Ridge Regression 

 
Figure 45: RUL prediction performance – Kernel Ridge Regression 

The Kernel Ridge regression did not prove fruitful as well compared to the neural network, 
since it did not give any better result in estimating RUL. 
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Chapter 10 – Conclusions and Future Work 
 

Synopsis 

This concluding chapter gives the summary of the study carried out by highlighting the 
important steps. Here the future work that can be continued taking this study as the basis is also 
presented. 

10.1 Conclusion 

From the previous chapter, one clear conclusion that was arrived at, was that the neural network 
performed well compared with the rest of the models in estimating the RUL of tool. 

In this study, along with the exploration of machine learning models to predict the severity of 
the tool wear, wide range of concepts were investigated. 

1. The study explored into the different ways of adopting the cleaning of dataset, to optimize 
the learning process of the model during training period 

2. The study investigated into the outlier analysis, to detect the anomaly in the data by exploring 
ways to streamline the process of detecting the same in any new dataset inserted. The z-score 
method used here to conduct the outlier analysis, proved enough for the dataset used, 
considering the data largely lies in the normal distribution curve 

3. The study ventured into the adoption of machine learning framework for prediction by 
implementing Feature extraction and feature selection using optimum methods suitable for the 
dataset used. The Pearson’s co-relation method used for the feature selection paved way to 
implement the best features that can be used for the prediction process. 

4. Various machine learning models were initially trained by splitting the data into train and 
test data sets, and by analyzing the error metrics, the models were shortlisted. Scikitlearn library 
was extensively used for the model training, testing as well as for the to find the error metrics. 

5. The study also highlighted the uses of cross validation and hyperparameter training to 
improve the model performance, and finally the Remaining useful life was predicted using the 
improved model 

Once the complete algorithm is made to run, there appears a direct prompt for the operator to 
insert the machining parameters like DOC, Feed and material for which the feasible runs is 
displayed. Since the ‘hold out’ data set is very small, only a portion of remaining useful life 
prediction is demonstrated in the work.  
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10.2 Scope for Future Work 

Though the complete machine learning framework for the prediction of tool wear and also to 
determine the Remaining useful life of the tool was presented in this work, there lies a scope 
of improvement in many areas which can prove fruitful in further improving the prediction 
accuracy and thereby giving best suggestions for the operator with respect to the tool life. 

Some of the key areas where the work can be further developed are as follows, 

1. In the present work, only one method of outlier analysis was presented, where in few 
anomalies were removed. However, from the visual representation of the data, it is evident that 
there is a presence of machine noise. Additional methods can be explored in order to eliminate 
the background noise, thereby increasing the data set properties 

2. Only machine learning methods were employed here to train and test the models. Though 
many methods were explored to improve the performance, final accuracy obtained was not 
satisfactory. Deep learning methods can be implemented to further improve the performance 
of the model thereby increasing the prediction accuracy of the tool wear 

3. Considering that there was a limitation with the size of the data set, only a small amount of 
data was used to assess the algorithm performance in determining the Remaining useful life of 
the tool. If it is possible to obtain similar dataset with additional number of cases, significant 
amount of data points can be reserved for the final assessment thereby attesting the 
performance of the algorithm suggested in the study. 
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