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ABSTRACT

Resistance spot welding is frequently used welding method in a mass production like: electric
industry, production of white goods and production of body assembly in automotive industry.
Quality of a spot weld can be tested by both destructive and non-destructive methods. As most
of these quality testing methods have only post-weld applicability and higher costs, a monitoring
system that can detect the weld quality using the process data can be beneficial for cost
reduction and quality improvement. Selected welding parameters often cause excessive input,
that assure better reliability of full penetrating welds even in the case of deviations of sheet
thickness, surface conditions and deviations of electrode tips due to heat and mechanical
damage influences. Excessive energy inputs lead to excessive heating of welded material that
can cause unwanted expulsions and electrode tips damages. It shows up that in such cases we
get unwanted surface appearance of welded pieces at excessive energy consumption with
negative environmental influence and more expensive process. This is way users want different
sensors systems to monitor and control the welding process to attain optimal conditions. This
thesis has been developed keeping in mind the monitoring of a spot welding system. For data
acquisition different sensors have been applied, for the purpose of data acquisition. The process
of data acquisition also uses the National instrument Labview software. Data acquired is then
processed using matlab. A matlab script has been developed, which allows us to acquire graphs
of various process parameters.

Keywords: resistance spot welding, Monitoring, Automotive steel, sensor, Data Acquisition.
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CHAPTER 1
RESISTENCE SPOT WELDING

1.1 Introduction

Welding is the process of joining two materials together permanently. In the resistance
spot welding the materials to be joined are pressed between two electrodes, then for a
small passage of time a large quantity of current passes through the electrodes thus
fusing together the two materials. The fusion is the result of Joule heat generated
because of the resistance of materials to be welded; this heat is mostly accumulated at
the surface which melts the material. In order to assure the weld quality, the heat
accumulation on the surface and heat input rate should be sufficient enough, depending
on the material micro structure and the desired nugget size. But at times due to
progressive degradation of the electrodes, varying surface condition of material, fit-up
errors or other manufacturing problems this cannot be achieved, thus emergence of the
need to control and monitor the welding process. Welding is a metallurgical process and
it is difficult to get the information about the nugget formation and microstructure
during the welding. That is why macro parameters like Temperature, Voltage, Current,
Resistance, Force, Displacement, etc can be used to monitor and control the welding
process.

1.2 Physical phenomena in resistance welding

The most important part of Resistance spot welding is the physical process of heat
generation at the material surface. The material to be welded undergoes through five
stages: mechanical deformation, heating, melting, fusion and solidification.

1.2.1 Joule effect

The amount of heat generated when current is passing through the work piece during
RSW can be described by Joule’s law, Equation 1

Q = I’Rt

Q is the heat generated, / is the current passing through the work piece, R is the total
resistance and t is the time the current is allowed to flow though the circuit.



1.3 Weld inspection and requirements

The inspection and evaluation of the weld quality is of critical importance. Whenever a
new material or sheet thickness combination is being welded, it is very important to
ensure that the process is qualified to generate a reliable weld according to relevant
industry and process standards. Once the qualification is attained this process is used
for general production.

1.3.1 Evaluation attributes

The weld quality is evaluated by its physical characteristics and performance. All the
attributes of weld quality discussed in this chapter are evaluated according to American
National Standard AWS D8.1M:2013 (Welding, 2013). The physical characteristics can be
inspected by either destructive or non-destructive methods. The most common
parameters evaluated after welding are: (Welding, 2013)

e Nuggetsize

e Edge weld

e Penetration

e Indentation

e Cracks (surface and internal)

e Porosity/voids

e Shear and Cross tension strength

Among these attributes the nugget size is the most frequently measured and used for
qualified evaluations. The nugget size represents the weld size in terms of nugget width
or diameter. An acceptable weld has a nugget width greater or equal to the minimum
weld size shown in Table 1.



MINIMUM ACCEPTABLE WELD SIZE 1)

Governing Metal Thickness (mm) Weld Size (mm)

0.60-0.79 3.5
0.80-0.99 4.0
1.00-1.29 4.5
1.30-1.59 5.0
1.60-1.89 5.5
1.90-2.29 6.0
2.30-2.69 6.5
2.70-3.09 7.0
3.10-3.59 7.5

a: This table does not cover more than three thickness welding.
b: This table applies whether determined by destructive or metallographic inspection

Table 1: Minimum acceptable weld size (Welding, 2013)

An illustration of nugget width is shown in Figure 1.
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Figure 1: Example of measuring a crescent button (Welding, 2013)

In order to determine the weld size, average of the maximum and minimum dimension
is taken; aforementioned dimensions may or may not be at 90 from each other. Welds
with irregular shape can be measured as shown in Figure 2 and Figure 3. The aspect
ratio cannot exceed 2 to 1. While measuring the nugget size, tail formed due to
destructive tearing should not be included (Welding, 2013).
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Figure 3: Attributes of a Spot Weld Measured from a Cross Section (Welding, 2013)

Penetration must be more than 20% thickness of both base sheets; full penetration is
not desired and could result in some other discrepancies (Welding, 2013). An illustration
of fusion zone and penetration is shown in Figure 4.
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Figure 4: Penetration measurement (Welding, 2013)

Indentation due to electrode force should be less than 30% of the thickness of the
sheets to be joined. Measurement method is illustrated in Figure 5.

DIAL OR
DIGITAL
INDICATOR

INDICATOR
POSITIONING
FIXTURE
INDICATOR

ROTATION _
WHEEL \ =

SHEET 1

31
l

SHEET 2 . l

% INDENTATIOM SHEET 1= In1/t1 = 100
% INDENTATION SHEET 2 = In2/12 x 100

Figure 5: Indentation Measurement (Welding, 2013)

The acceptability of welding cracks when looked with naked eye depends on the
position of crack and steels being welded. Acceptance criteria are shown in Figure 6.
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Figure 6: Surface Cracks (Welding, 2013)

When visualized with a magnification of 10X, the acceptance criteria is described in
Figure 7.
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Figure 7: Examples of Discrepant Pores and Cavities (Welding, 2013)

Internal Cracks acceptance criteria, when visualized with 10 X magnification are
explained in Figure 8.
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Figure 8: Example of Discrepant Internal Cracks (Welding, 2013)

A weld is discarded when visualizing the weld with naked eye, an opening contained
inside the impression of electrodes found extending through the whole material
thickness

In order to evaluate the quality of the weld, the mechanical properties to be considered
are weld strength and weld energy. The strength of the weld is evaluated by the peak
load achieved during shear or cross tension testing. Both of which are the measures of
weld mechanical strength, minimum expected values of these, are calculated using
Equation 2 and Equation 3 respectively (Welding, 2013):

Equation 2:
o= (636X 1077 X 52 +6.58 X 1074 X S + 1.674) X § x 4 x t15
B 1000
Where

ST = Shear Tension Strength (kN)
S = Base Metal Tensile Strength (MPa)
t = Material Thickness (mm)



Equation 3:

CT =1.25 x t%2
Where

CT = Cross Tension Strength (kN)
t = Material Thickness (mm)

A shear tension test is performed on a tensile testing machine, by pulling the lap-joined
specimen. The test is performed according to (AWS D8.9M, 2010), also the tests
performed during this thesis were performed according to the standard mentioned
above. The results of which are mentioned in chapter 3 and in appendix 1. From these
results the values of peak load, displacement up-to the peak load, energy defined by the
area under the load-displacement curve up to the peak load can be extracted and the
value of shear strength can be evaluated according to equation 2.

The cross tension test is performed on a tensile testing machine by applying a quasi-
static force by pulling two coupons that have been spot welded together perpendicular
to each other. The procedure is documented in (AWS D8.9M, 2010). From the tests
performed the peak value of load, displacement up to the peak load, energy defined by
the area under the load-displacement curve up to the peak load and fracture mode can
be evaluated.



CHAPTER 2

RSW PARAMETERS AND THEIR
MONITORING

2.1 INTRODUCTION

The process of resistance spot welding is controlled by different parameters. These
parameters along with the physical phenomenon and the material to be welded,
determine the quality of welds performed.

The vital problems in resistance spot welding (RSW) quality evaluation are related to the
complexity of the basic welding processes and their complicated interactions. Apart
from them, variations in material composition and surface coating, process conditions
such as electrode wear, machine compliance, water cooling rate, and work-piece fit-up,
also influence the RSW monitoring. Electric current, voltage, force, displacement, and
dynamic resistance signals are the most used in a monitoring and control system.
However, some difficulties are encountered in obtaining these signals because of the
strong magnetic interference of the process, especially when alternating current is used
in welding. The monitoring and control of a resistance welding process are very closely
related to the quality definition of welds.

2.2 PROCESS MONITORING METHODS

2.2.1 Process Monitoring Using Infrared Thermography

In this method of monitoring resistance spot welding process infrared radiometer is used for
process monitoring. As the isotherm radiated at the electrode/base material surface contains
important information that can be used in the detection of the weld nugget and its quality. Weld
nugget measurement and tensile shear tests results show good correlation between isotherm
geometry, weld joint strength, and weld nugget size (Brown, 1986).



2.2.2 Process Monitoring Using Multi-Sensor Technology

As mostly systems of process monitoring use current, voltage and electrode force to give an
indication of weld quality; however these systems fail to provide any warning regarding the
changes in the weld environment. These changes could include material variability or electrode
condition, which could result in low quality weld. To solve this problem a system that utilizes an
array of sensors, including current, voltage, infrared and ultrasonic is applied (J.D. Cullen, 2011).

2.2.3 Acoustic Emission Measurement

When there is a deformation or cracking by force on a metal, deformation energy in the form of
elastic wave is generated. If this energy is big enough it emits an audible sound. Also in
resistance welding during the nugget formation and metallurgic transformation a sound wave is
generated. For different welding quality, the sound wave is different, which is the principle of
monitoring welding process by using structure-borne acoustic emission signals (S. I. Rocklin and
L. Adler, 1985) (Z. Luo, 2004) (Y. luo, 2013) (H.-T. Lee, 2003).

2.2.4 By Monitoring Dynamic Resistance Signatures

Since the flow of current is at the heart of a spot welding process, many researchers believe that
dynamic weld resistance can serve as a valuable indicator of the quality and consistency of the
underlying welding process. In view of this, a number of researchers have attempted to develop
reliable techniques for estimation of the dynamic resistance profiles. (D.Watney, 1983)
(S.A.Gedeon, 1987), (K.Asokkumar, 1997), (C.K.Datta, 1996) (Frank Garza, 2001)

2.2.5 Process Monitoring by Symbolic Regression

A method is used for modeling the observable process dynamics. This can be modeled by
parametric functions which can either be determined solely by expert knowledge and Nonlinear
Curve Fitting using an additional correction term that is found via Symbolic Regression. The
obtained model parameters characterize the process dynamics and can be used to detect
abnormal process behavior in order to adapt the process parameters by a control unit (Ingo
Schwab, 2012).

2.3 OBJECTIVES OF PROCESS MONITORING

1. Weld size estimation: The nugget width or button diameter is the most
commonly used quality index, as it is directly related to the strength of a joint
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when there is no expulsion. Because of dependence of the RSW process on
various parameters, a weld’s nugget size is determined by many factors, and
much of this dependence is not fully understood. An ideal monitoring system
should be able to provide an accurate on-line estimation of a nugget size based
on the signals obtained from process monitoring.

2. Detection of expulsion and evaluation of its severity: As it adversely influences
weld quality, thus inducing many unfavorable features to it. Therefore, a robust
monitoring system should be able to detect when expulsion occurs and its
severity, so that when deemed necessary, required corrective actions can be
implemented.

3. Process fault diagnosis: Discrepant welds (undersized welds, stick welds, and
welds with discontinuities or expulsions) are often resulted because of sub-
standard process conditions. The study of process faults is of critical importance,
as it is the first step to link laboratory-developed monitoring and control
algorithms to real-life production.

4. Process control: Effective control algorithms can be developed based on the
data obtained from process monitoring.

2.4 PARAMETERS MONITORED DURING RSW

As welding voltage and current are directly related to Joule Heating, so intuitively they
should be monitored as these directly influence the formation of weld nugget. As the
phenomenon of expansion or shrinkage of sheet metal stack-up reflects the thermal
process during resistance spot welding, it is beneficial to monitor them; these changes
can be measured and controlled by monitoring the changes in electrode displacement
and electrode force. The voltage, current, electrode force, and displacement are each
discussed in detail in this section.

2.4.1 WELD CURRENT

As evident from equation 1, current |, is the principal parameter, which influences the
heat generated during the welding process, as it is squared. It plays the vital role in weld
quality, if it is too low, it will not generate the required heat, thus forming the weld
nugget which is smaller than required. On the other hand, too high current can create
problems like expulsion and electrode damage both of which negatively affect weld
quality, and can also be hazardous for surrounding environment and personnel involved.

11



2.4.1.1 MONITORING OF WELD CURRENT

In the secondary circuit the magnitude of electric current is very high, because of this
reason current is measured indirectly, it is normally measured either by using a sensor
based on the Hall effect or a toroidal helical sensor. Both are based on the voltage
induced by a welding current. A high alternating or high frequency current induces a
strong time-varying magnetic field. Any wire loops present in this field will get the
induced voltage, the magnitude of which is given by Faraday’s law:

V dIA
= cos0
Where

V' = Induced Voltage

I = Induced Current

dl

= Rate of change of current

dt
A = Areaof the loop
6 = Angle of loop to the magnetic field

A toroidal helical sensor measures the current on the basis of Faraday’s law. Other than
this current can be measured either by using a Hall affect sensor or a resistive shunt.
The voltage induced by the magnetic fields, is measured across a semiconductor placed
inside the field. These sensors are small in size and are sensitive to temperature change,
and to the variations in orientation and position. The induced voltage is measured
across a known resistance in the resistive shunt method; it is the standard mode of
measuring low magnitude current and direct current. For the application resistive shunt
method in resistance spot welding, modifications in electrodes shape is required.

2.4.1.2 Rogowski Coil

Rogowski coil was proposed in 1912 (Yi Li, 2012), by a German physician Walter
Rogowski (M. H. Samimi, 2015). It can measure, both high-speed impulse current and
alternating current, on the basis of Ampere’s and Faraday’s law (M. H. Samimi, 2015).
Thanks to microprocessor based technology and modern signal processing techniques,
Rogowski coil sensors have become suitable for various applications (C. C. Yii, 2017).
Due to its non-magnetic core there is no saturation, and it can measure large currents
ranging from a few milliamperes to 1 mega ampere. It is compact and light weight.

The Rogowski coil is consisted of a wire wounded around a non-magnetic core. In order
to measure the current the coil is placed inside the magnetic field generated by the
current flowing through the conductor (Hofer-Noser, 2000). This field is converted into a
signal according to Faraday’s induction law; this signal is proportional to the current or
rate of change current flowing through the conductor (Hofer-Noser, 2000). Rogowski
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coil consists of helical coil of wires, which has both terminals of wire at the same end of
coil. The Rogowski coil is connected with integrator circuit. A basic illustration of
Rogowski coil can be seen in Figure 9.

Flaxible
_ Rogowskl Coil

-
T

Frimary Conductor

T
L

%@

+ Chatput

Figure 9: A Simple illustration of Rogowski Coil

2.4.2 Electric Voltage

As the voltage is kept at a fairly low level at the electrode tips, its value can be measured
directly, by using standard equipment. This voltage is influenced by the noise induced by
current; to reduce this noise, twist pairs can be used to reduce the area of wire loop, the
two wire leads follow the arms and cover the entire throat of welding machine and also
a compensating loop can be added to suppress the noise.

2.4.3 WELD TIME

Weld time, t, is the duration for which the current | passes through the electrodes. As
evident from equation 1, weld time t is also one of the parameters that directly
influence the heat generated thus the quality of the weld. Current is measured in both
milliseconds and cycles, depending on the current regulator being used. For alternate
current AC cycles are used and for direct current DC milliseconds is used, the later has
been brought to use fairly recently with the arrival of medium frequency direct current
MFDC technology.
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In automotive industry to reduce the weld cost, there is an incentive to keep the weld
time as low as possible, so it is common to regulate the weld current instead of weld
time to obtain the required results.

2.4.4 Electrode Displacement

The relative motion of electrode tips is called electrode displacement and it reflects the
thermal process occurring during welding. The displacement sensors are mounted as
close as possible to the electrodes, in order to avoid the influence of other components
of welder. To measure electrode displacement normally linear variable differential
transducer (LVDT) sensors and fiber-optic sensors are used.

2.4.5 ELECTRODE FORCE

Electrode force presses the sheets together and provides the required connection
during the welding process and it directly influences the weld quality. A high magnitude
of electrode force during the welding process will lower the contact resistance between
the sheets, thus decreasing the heat generated during the process thus affecting the
weld quality and weld nugget size. Too high electrode force may also deform the
material to be welded. On the other hand if electrode force is too small it increases the
risk of excessive heat formation and expulsion.

2.4.5.1 MONITORING ELECTRODE FORCE

Strain gauge-based sensors and piezoelectric sensors are commonly used to measure
electrode force. As the force measurement is influenced by the noise generated by
induced voltage, as the sensor set up has wire loops in magnetic field that cannot be
avoided, to nullify this noise twist pairs can be used as it may help in reducing the wire
loop area.

2.4.6 ELECTRODE GEOMETRY

The shape and size of electrode affects the contact area, which in turn changes the
contact pressure and the current density in the sheets. A general guideline is that the
diameter of the electrode tip should be approximately 5V t, where t is the thickness of
the thickest sheet. Specific geometries of various electrodes are described in detail in
the international ISO standard (1SO 5821:2009, 2009).

It is beneficial for the weld quality if different electrodes are used on each side
depending on the stack-up of the sheets. A smaller electrode can increase the current
density, thus providing higher heat generation while a larger electrode can increase the
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contact resistance over the interface by distributing the force over a larger area and
thus obtaining lower pressure. Different types of electrodes can be seen in Figure 10.

Truncatad cons Rodiusad Doemed/ Spherical

Flat offsat Speclals

Figure 10: Different electrode geometries (Senkara, 2012)

2.4.7 ELECTRODE MATERIAL

Electrodes are one of the most important components in a spot weld machine, and
provide two important functions of holding the sheets together and to conduct the
electric current. Most important properties are thermal and electrical conductivity,
compressive strength and hardness. It is important to find the balance between afore
mentioned material characteristics while selecting the electrodes. As copper and copper
based alloys provide high electric and thermal conductivity, for this reason most
electrodes are made from them. The electrode materials are described in the
international standard (ISO 5821:2009, 2009).

2.4.8 ELECTRODE DEGRADATION

The contact between the electrode and sheet effects several factors such as current
density, contact resistance and electrode pressure. So the condition of the electrode tip
affects significantly the weld result. Following are the mechanisms that contribute the
most in degradation of electrode tip (M. Kondo, 2010).

e Softening of the electrode contact area
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e Pitting and deformation of the contact area
¢ Alloy formation
e Re-crystallization

Continuous and repeated temperature changes can lead to softening of electrode tip
and increase the electrode deformation. As a result it can lead to an enlarged contact
area and lower current density. Pitting of the electrode area refers to a phenomenon
where irregularities and cavities form on the tip of the electrode. This reduces the
contact area and creates localized spots with high heat generation, which can further
lead to premature expulsion. When welding coated steels such as galvanized- and
aluminized steels the coating can interact with the electrode tip and accumulate oxide
layers on it. This accumulation of oxides will increase the resistance between the tip and
sheet, thus increasing the temperature, which results in further degradation of the
electrodes and increased risk for expulsion. Re-crystallization is the formation of new
grains formed by increased temperature as the material has been deformed. This results
in lowered hardness of the electrode tip. Electrode dressing is a specialized technique
used to clean the electrodes between welding. A standardized tool is used which cuts
away the upmost layer of material from the electrode tip as well as any oxides or alloy
formation. The frequency of electrode dressing in production can be modified
depending on the type of material being welded and on the welding parameters. Coated
steels have the tendency to form oxide layers on top of the electrodes, thus typically
requiring more frequent electrode dressing as oxides accumulation degrades the
electrodes faster, and also require relatively higher currents and longer weld times to
ensure optimum weld quality.
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CHAPTER 3

DATA ACQUISITION AND ANALYSIS

3.1 INTRODUCTION

The first step in monitoring of Resistance spot welding process is collection of process
information. The data acquired is related to the electrode tip voltage, electrode force,
welding current and electrode displacement as evident from Figure 11. In order to
capture the signals directly related to welding process, transducers are usually mounted
on a weld gun. The voltage is measured between the electrode tips. A toroidal helical
sensor can be used to measure the induced voltage, while the magnitude of weld
current is measured by integrating the toroid voltage. A strain gauge based force sensor
is installed near an electrode. In order to scale the signals to the desired scale level for
the analog-to-digital converter board in the computer, the signal conditioning box is
used to provide excitation to some sensors. Then the data is acquired by using National
instrument's Labview software. All the data is then extracted from the software in form
of a text file. Then with the help of matlab all the important signals have been analyzed.

CieCinode [nmcy

Figure 11: A Simple Data Acquisition System for RSW (Senkara, 2012)
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3.2 DATA ANALYSIS

Data acquired from labview software is stored in a text file. In Figure 12 a snap of the
text file can be seen. As evident, columns 2 to 7 provide the data related to primary
current and primary voltage. Whereas in columns 8 to 15 the data related to force, air
pressure, secondary voltage, secondary current, displacement, temperature, energy and
resistance can be seen.

Force  Afr Pressure  Secondary Voltage  Secondary Current  Displacement  Temeraturs  Energy Resistance
§ BaLTeE -0, 003168 -0, [1159% 3,870 0, 000000 200, 00073 0, 000000 0, 000000
5, 4348] -0,001251 -0,0116% 0, 71179 0,000000 200,000763 0,000000 0,000000
5, 100784 -0,000614 -0,0116% 3,367034 0,000000 200,000763 0,000000 0,000000
4 865508 2 B70288E-5  -0,00338 7,510341 0, 000000 200, 00073 0, 000000 0, 000000
419577 -0,001251 -0,0116% 0, 71179 0,000000 200,000763 0,000000 0,000000
4,561510 2,670188E-5  -0,00502% 7,510381 95999 988558 200,0007%3 0,000000 0,000000
467837 -0, 001892 -0, (1159% 3,870% 95999 98856 200,000763 0, 000000 0, 000000
4,044 -0, 003166 -0, 01505 0, 71179 95999 988558 200,0007%3 0,000000 0,000000
4,628952 -0,000614 -0,0116% 3,367034 95999 988558 200,0007%3 0,000000 0,000000
4 439819 -0,00259 -0, (11598 0, 71179 95999 9gE5s6  200,000763 0, 000000 0, 000000
3919846 -0,002529 -0,01335% 3,367034 95999 988558 200,0007%3 0,000000 0,000000
4, 298111 2,070186E-5  -0,0016% 3,367034 95999 988558 200,0007%3 0,000000 0,000000
4,981 -0, 003166 -0, 00505 7,510381 95999 988558 200,0007%3 0,000000 0,000000
4,044 -0, 003166 -0,01335% 0, 71179 95999 988558 200,0007%3 0,000000 0,000000
4,044 -0, 004444 -0,01335% 3,367034 95999 988558 200,0007%3 0,000000 0,000000
3,309672 -0, 003166 -0,0116% 7,510381 95999 988558 200,0007%3 0,000000 0,000000

1 7InMa T ETMIREE T NSNS 7 PRI ArAnn ASEFTE WA KKK M ARRARR M ARRARR

Figure 12: Snap showing the data acquired

In order to analyze the data obtained, the file is then opened in matlab software, where
all the data related to various parameters mentioned above is stored in vector arrays.
For the purpose of this thesis initially only four parameters are further analyzed. These
parameters are secondary voltage, secondary current, energy and resistance. In the next
step data related to only these four parameters is plotted against time. Time interval
throughout the data acquisition was 0.000025 seconds. The graphs obtained are shown
in following figures.
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Figure 16: Resistance
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As evident from the figures, during the whole weld cycle, only the section where current
is passing is useful to us. Keeping in mind this objective a cut off limit was applied to all
the parameters and following graphs have been obtained.

Figure 17 shows the graph of secondary voltage after the application of cut off value.
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Figure 17: Secondary Voltage cut
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Figure 18: Secondary Current Cut
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Figure 20: Resistance Cut
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Even after the graphs obtained above the data visualization is not clear, to solve this
problem already cut graphs have been further smoothen, by taking the root mean
square values locally. This has been done using the local RMS function in matlab. The
interval is set 20 80, which means that for all the 80 consecutive values a RMS value has
been taken, and all the graphs have been re plotted using only the RMS values. In the
following RMS graphs during active interval for secondary voltage, secondary current,
energy and resistance are shown:
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Figure 21: Secodary Voltage
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Figure 23: Energy
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i 107 01A : RMS of Resistance
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Figure 24: resistance

As evident from the graphs, all of them represent the parameters for weld test 01A. In
order to verify the strength of weld performed using these parameters, shear test is
performed according to American National Standard AWS D8.1M:2013. The results
obtained are acquired using the data acquisition system; this data is extracted on a text
file. Then by opening this file in matlab software, graphs are plotted for displacement
and Force. An example of shear test performed can be seen in figure 25.
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Figure 25: Shear test SF_01

To carry out the analysis 27 sets of weld were performed, each set contained 3 weld

tests, where all three welds are performed using same weld parameters. During these
27 sets mainly secondary current and electrode force are modified.

As each set contains the weld performed using same process parameters, in order to

compare the weld quality with process parameters, all the graphs for parameters and
shear tests are re-plotted, so that all the three plots for one parameter are shown in a
single plot together. Below you can see the combined plots for parameters and shear
tests.
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Figure 26: A combined plot containing graphs of secondary Currents for all three
replications.
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Figure 27: A combined plot containing graphs of Secondary Voltage for all three
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Figure 28: A combined plot containing graphs of Shear test for all three replications.
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Figure 29: A combined plot containing graphs of Energy for all three replications.

28



102 RMS Resistance

~R_01Afig
R_01E fig
R_01C.fig

Resistance

8] 0.5 1 1.5 . 2.5 3 3.5
Time A0
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Figure 32: A combined plot containing graphs of Current for all three replications of test
24.
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All the graphs of parameters (secondary voltage, secondary current, Energy, Resistance)
and their relative shear tests can be found in Appendix 1.

In order to analyze the data and obtain the respective graphs, a matlab script has been
written, which is to be used during this thesis, and also for all the tests to be performed
in the future. These scripts can be found in Appendix 2.
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CHAPTER 4

CONCLUSION

Monitoring of Resistance spot welding parameters done during this thesis has enabled
us to find out the affect of various weld parameters on weld quality. Then with the help
of data acquisition system, this data can be extracted and further analyzed. In order to
facilitate and accelerate the analysis, matlab scripts given in Appendix 2 are used. The
work done in this thesis is the base of further analysis to be done for studying the affect
of different parameters, material surface condition, and surface treatment on the weld
quality. The other objective is to compare the measured parameter values to the values
that were imposed. This can help find the discrepancies and losses in the system, and
help prepare a preventive maintenance plan for the system. On the basis of data
obtained effect of each process parameter will be evaluated on weld quality and also it
will be assessed whether the parameters imposed are energy efficient or not, if not then
try to achieve the required weld quality with less energy and time consumption.
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APPENDIX 2

%% Initialize variables.

filename = 'D:\Thesis\WAVEnew\OlA.dat';
file name = 'O1A'";
delimiter = "\t';

startRow = 24;

%% Read columns of data as strings:
formatSpec = '$*S%*s5%5%5%5%5%5%5%5%5%5%5%5%s%s%s% ["\n\r]"';

%% Open the text file.
fileID = fopen(filename, 'r');

%% Read columns of data according to format string.

textscan (fileID, '%["\n\r]', startRow-1, 'WhiteSpace', '',
'ReturnOnError', false);

dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter,
'ReturnOnError', false);

%% Close the text file.
fclose(filelD);

%% Convert the contents of columns containing numeric strings to
numbers.
raw = repmat ({''},length(dataArray{l}),length(dataArray)-1);
for col=l:length(dataArray)-1
raw(l:length (dataArray{col}),col) = dataArray{col};
end
numericData = NaN(size (dataArray{l},1l),size(dataArray,?2));

for col=[1,2,3,4,5,6,7,8,9,10,11,12,13,14]
% Converts strings in the input cell array to numbers. Replaced
non-numeric
% strings with NaN.
rawData = dataArray{col};
for row=l:size(rawData, 1);
% Create a regular expression to detect and remove non-numeric
prefixes and
% suffixes.
regexstr = ' (?<prefix>.*?) (?<numbers> ([-
1% (\Nd+[\.1*)+[\,1{0,1}\d*[eEdD] {0, 1} [-+]1*\d*[1]1{0,1}) | ([-
T (\NA+[\N.1*)*[\,1{1,1}\d+[eEdD] {0, 1} [=+]*\d*[1]1{0,1})) (?<suffix>.*)';
try
result = regexp(rawData{row}, regexstr, 'names');
numbers = result.numbers;

% Detected commas in non-thousand locations.

invalidThousandsSeparator = false;
if any(numbers=='.");
thousandsRegExp = '~\d+? (\.\d{3})*\, {0,1}\d*s";
if isempty (regexp (numbers, thousandsRegExp, 'once'));

numbers = NaN;
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invalidThousandsSeparator = true;
end
end

% Convert numeric strings to numbers.
if ~invalidThousandsSeparator;

numbers = strrep (numbers, '.', '');
numbers = strrep (numbers, ',', '.'");
numbers = textscan (numbers, 'Sf');
numericData (row, col) = numbers{l};
raw{row, col} = numbers{l};
end
catch me

end
end
end

%o

% Allocate imported array to column variable names
VPhaseR = cell2mat(raw(:, 1));

VPhaseS = cellZmat(raw(:, 2));

VPhaseT = cellZ2mat(raw(:, 3));

IPhaseR = cell2mat(raw(:, 4));

IPhaseS = cell2mat(raw(:, 5));

IPhaseT = cell2mat(raw(:, 6));

Force = cellZmat(raw(:, 7)) ;
AirPressure = cell2mat(raw(:, 8));
SecondaryVoltage = cellZmat (raw(:, 9));
SecondaryCurrent = cell2mat(raw(:, 10));
Displacement = cell2mat (raw(:, 11));
Temperature = cell2mat (raw(:, 12));

Energy = cellZmat(raw(:, 13));
Resistance = cell2mat(raw(:, 14));

delta = 0.000025;

$%Force

% fig Force = figure('Name', 'Force', "NumberTitle', 'off'");

5 t = (0: delta : (((length(Force)-1)) * delta) )';

% plot(t, Force)

% title(sprintf('$s : Force', file name));

% ylabel ({'Force', ' (daN)'})

% fig Force cut = figure('Name', 'Force Cut', 'NumberTitle', 'off');
% Force cut = Force((Force > 10 | Force < -10),:);

% t cut = (0: delta : (((length(Force cut)-1)) * delta) )';

% plot (t cut, Force cut)

% title(sprintf('%s : Force Cut', file name));

% ylabel ({'Force Cut', ' (daN)'})

% fig Force rms = figure('Name', 'Force RMS', 'NumberTitle', 'off');
% Force rms = rms(Force cut, 80, 20, 1);

% t rms = (0: delta : (((length(Force rms)-1)) * delta) )';

% plot (t rms, Force rms)

% title(sprintf('%s : RMS of Force ', file name));

oe

ylabel ({'Force RMS', ' (daN) '})

%$%Secondary Voltage
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fig SecondaryVoltage = figure('Name', 'Secondary
Voltage', "NumberTitle', 'off'");

t SecondaryVoltage = (0: delta : (((length(SecondaryVoltage)-1)) *
delta) )';

plot (t_SecondaryVoltage, SecondaryVoltage)

title(sprintf('%s : SecondaryVoltage', file name));

ylabel ({'SecondaryVoltage', ' (V) '})

fig SecondaryVoltage cut = figure('Name', 'SecondaryVoltage

Cut', "NumberTitle', 'off'");

SecondaryVoltage cut = SecondaryVoltage ((SecondaryVoltage > 0.00005 |
SecondaryVoltage < -0.5),:);

t SecondaryVoltage cut = (0: delta : (((length(SecondaryVoltage cut)-
1)) * delta) )';

plot (t_SecondaryVoltage cut, SecondaryVoltage cut)

title(sprintf('%s : SecondaryVoltage Cut ', file name));

ylabel ({'SecondaryVoltage', ' (V) '})

fnm = sprintf('svc %s.fig',file name);

savefig (fnm)

o)

% saveas (gcf, 'sv.m');

fig SecondaryVoltage rms = figure('Name', 'SecondaryVoltage

RMS', "NumberTitle', 'off");

SecondaryVoltage rms = rms(SecondaryVoltage cut, 80, 20, 1);

t SecondaryVoltage rms = (0: delta : (((length(SecondaryVoltage rms) -
1)) * delta) )';

plot (t _SecondaryVoltage rms, SecondaryVoltage rms)

title(sprintf('%s : RMS of SecondaryVoltage ', file name));

ylabel ({'RMS SecondaryVoltage',' (V) '})

fnml = sprintf('sv %s.fig',file name);

savefig (fnml)

%$%Secondary Current

fig SecondaryCurrent = figure('Name', 'Secondary

Current', "NumberTitle', 'off'");

t SecondaryCurrent = (0: delta : (((length(SecondaryCurrent)-1)) *
delta) )';

plot (t_SecondaryCurrent, SecondaryCurrent)

title(sprintf('%s : SecondaryCurrent', file name)) ;

ylabel ({'SecondaryCurrent', ' (A)'})

fig SecondaryCurrent cut = figure('Name', 'SecondaryCurrent

Cut', "NumberTitle', 'off'");

SecondaryCurrent cut = SecondaryCurrent (SecondaryCurrent > 1200 );
t _SecondaryCurrent cut = (0: delta : (((length(SecondaryCurrent cut)-
1)) * delta) )';

plot (t _SecondaryCurrent cut, SecondaryCurrent cut)
title(sprintf ('%s : SecondaryCurrent Cut', file name));

ylabel ({'SecondaryCurrent', ' (A)"'})

fnm2 = sprintf('scc %s.fig',file name);

savefig (fnm2)

fig SecondaryCurrent rms = figure('Name', 'SecondaryCurrent

RMS', "NumberTitle', 'off'");

SecondaryCurrent rms = rms (SecondaryCurrent cut, 80, 20, 1);

t SecondaryCurrent rms = (0: delta : (((length(SecondaryCurrent rms) -
1)) * delta) )';
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plot (t_SecondaryCurrent rms, SecondaryCurrent rms)

title(sprintf('%s : RMS of SecondaryCurrent ', file name));
ylabel ({ 'RMS SecondaryCurrent', ' (A)'})

fnm3 = sprintf('sc %s.fig',file name);

savefig (fnm3)

%$%$Energy

fig Energy = figure('Name', 'Energy', 'NumberTitle','off");

t Energy = (0: delta : (((length(Energy)-1)) * delta) )';
plot (t_Energy, Energy)

title(sprintf('%s : Energy', file name));

ylabel ({ "Energy', ' (J)'})
fig Energy cut = figure('Name', 'Energy Cut', 'NumberTitle',6 'off');
Energy cut = Energy((Energy > 0.5 | Energy < -0.5),:);

t Energy cut = (0: delta : (((length(Energy cut)-1)) * delta) )';
plot (t _Energy cut, Energy cut)

title(sprintf('%s : Energy Cut', file name));

ylabel ({'Energy', "' (J)"'})

fnm4 = sprintf('Ec %s.fig',file name);

savefig (fnm4)

fig Energy rms = figure('Name', 'Energy RMS', "NumberTitle',6 'off');
Energy rms = rms (Energy cut, 80, 20, 1);

t Energy rms = (0: delta : (((length(Energy rms)-1)) * delta) )';
plot (t_Energy rms, Energy rms)

title(sprintf('%s : RMS of Energy ', file name));

ylabel ({'RMS Energy','(J)'})

fnm5 = sprintf('E %s.fig',file name);

savefig (fnmb)

%$Resistance

fig Resistance = figure('Name', 'Resistance', "NumberTitle', 'off');

t Resistance = (0: delta : (((length(Resistance)-1)) * delta) )';
plot (t_Resistance, Resistance)

title(sprintf('%s : Resistance', file name));

ylabel ({'Resistance’', ' (ohm) '})

fig Resistance cut = figure('Name', 'Resistance

Cut', "NumberTitle', 'off'");

Resistance cut = Resistance((Resistance > 0.0000035 | Resistance < -
0.00335),:);

t Resistance cut = (0: delta : (((length(Resistance cut)-1)) * delta)

)i
plot (t_Resistance cut, Resistance cut)

title(sprintf('%s : Resistance Cut', file name));

ylabel ({'Resistance’', ' (ohm) '})

fnmé = sprintf('Rc %s.fig',file name);

savefig (fnmo6)

fig Resistance rms = figure('Name', 'Resistance

RMS', "NumberTitle', 'off'");

Resistance rms = rms (Resistance cut, 80, 20, 1);

t Resistance rms = (0: delta : (((length(Resistance rms)-1)) * delta)

) '

plot (t Resistance rms, Resistance rms)

title(sprintf('%s : RMS of Resistance ', file name));
ylabel ({'RMS Resistance',' (ohm) '})
fnm7 = sprintf ('R %s.fig',file name);

savefig (fnm7)

%% Clear temporary variables
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clearvars filename delimiter startRow formatSpec fileID dataArray ans
raw col numericData rawData row regexstr result numbers
invalidThousandsSeparator thousandsRegExp me;

%% DECLARATIONS AND INITIALIZATIONS

% Calculates windowed (over- and non-overlapping) RMS of a signal using
the specified windowlength

y = rms(signal, windowlength, overlap, zeropad)

signal is a 1-D vector

windowlength is an integer length of the RMS window in samples
overlap is the number of samples to overlap adjacent windows (enter 0
to use non-overlapping windows)

o 0o oe

oe

% zeropad is a flag for zero padding the end of your data... (0 for NO,
1 for YES)
% ex. y=rms (mysignal, 30, 10, 1). Calculate RMS with window of length

30 samples, overlapped by 10 samples each, and zeropad the last window
if necessary

% ex. y=rms (mysignal, 30, 0, 0). Calculate RMS with window of length
30 samples, no overlapping samples, and do not zeropad the last window

function y = rms(signal, windowlength, overlap, zeropad)

delta = windowlength - overlap;

%% CALCULATE RMS

indices = l:delta:length(signal);

o)

% Zeropad signal

if length(signal) - indices(end) + 1 < windowlength
if zeropad
signal (end+1l:indices (end) +windowlength-1) = 0;
else
indices = indices(l:find(indices+windowlength-1 <=
length(signal), 1, 'last'));
end
end
y = zeros(l, length(indices));
% Square the samples
signal = signal.”2;
index = 0;
for i = indices
index = index+1;
% Average and take the square root of each window
y (index) = sqgrt(mean(signal (i:i+windowlength-1)));
end
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$% Initialize variables.

filename = 'D:\Thesis\spot welding\shear tensione test\Replication
2\dati\d4.txt"';

file name = '44"';

delimiter = "\t';

startRow = 105;

o

% Format string for each line of text:

columnl: double (%f)

column?2: text (%s)

column3: text (%s)
For more information, see the TEXTSCAN documentation.
formatSpec = '$ESESESFSErsSHFSErsSH sEFsS [M\n\r] ",

o° oo oe

o\

%% Open the text file.
fileID = fopen(filename, 'r');

o

% Read columns of data according to format string.

This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the
code
% from the Import Tool.
textscan (fileID, '%["\n\r]', startRow-1, 'WhiteSpace', '',
'ReturnOnError', false);
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter,
'ReturnOnError', false);

oe

%% Close the text file.
fclose (filelID);

%% Post processing for unimportable data.

% No unimportable data rules were applied during the import, so no post
% processing code is included. To generate code which works for

% unimportable data, select unimportable cells in a file and regenerate
the

% script.

%% Allocate imported array to column variable names
Results = dataArray{:, 1};
VarName?2 = dataArray{:, 2};
VarName3 dataArray{:, 3};

Time = Results;
Displacement = VarNameZ2;
ShearForce = VarName3;

%$%Force

fig Force = figure('Name', 'Shear Test',6 'NumberTitle', 'off');
plot (Displacement, ShearForce)

title(sprintf('%s : ShearForce vs displacement', file name)) ;
ylabel ({'Force', "' (N)"'})

xlabel ({'Displacement' , ' (mm) '})

fnm = sprintf('SF %s.fig',file name);
savefig (fnm)
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%[val, SV] = max(Displacement) ;

shold on

stext (t SecondaryVoltage rms(SV), val, sprintf('Max RMS Value =
%$6.3f',val))

$fill(t_SecondaryVoltage rms, SecondaryVoltage rms(:,SV),'g');
%hold off

%$saveas (gcf, 'sv.m');

$cfg = sprintf ('SF _%s.jpg',file name);
$savefig(cfg,SF 01, "jpg'")

%% Clear temporary variables
clearvars filename delimiter startRow formatSpec fileID dataArray ans;
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