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Aerospace vehicles are subject to broadband, sometimes severe, vibroacoustic
and structure-borne excitations of various origin, which can danger the availability
of the payload on board and the electronic equipment, and consequently the un-
successful of the entire mission. It is therefore important for the modern industry
the development of analytical and numerical tools that can accurately predict the vi-
broacoustic response within structures of various geometries and subject to a combi-
nation of vibroacoustic excitations in order to mitigate unwanted phenomena able to
compromise the whole mission. Nowadays, A lot of research has been conducted on
the correctly modelling of wave propagation characteristics within representing the
reactivity of the structure in noise field. As sake of simplicity, we will deal a simple
test, coupled plate-cavity, where numerical modelling techniques risen are typically
based on deterministic approaches. The plate structure is often modelled by the fi-
nite element method and the Kirchhoff/Mindlin are mostly assumed to describe the
through-the-thickness variation of the resultant displacement field. These simple as-
sumptions of modelling the plate clearly reduce the required computational effort,
but can also introduce huge errors in the prediction of the plate dynamic response and
consequently affect the surrounding acoustic pressure field, where noise is risen. In
this work, a powerful notation has been used: Carrera’s Unified Formulation, whose
permits to obtain a wide class of refined plate theories (LW) with a unique formula-
tion, providing an optimal element to completely describe the complex risen effects
due to plate layouts and for higher frequency ranges.

This work was conducted through the use of Actran Software, in order to con-
duct research in Vibro-Acoustic field. Structural Vibroacoustic interaction is mod-
elled and analysed using the finite element method coupling (interfaces), to solve
the structure-acoustic coupled interaction for the noise radiation problem in a plate-
cavity system. The important keywords are the complete understanding of the gen-
eration of noise, its radiation in operating structure and the mitigation of the nega-
tive effect in order to improve the functionality of the system. Structures are gener-
ally characterized by the use of composite materials of various configurations/complexity
in term of thicknesses, as well as geometries. Acoustic load and high frequency vi-
bration can strictly and disadvantageously affect structures that represents a signifi-
cant issue in spacecraft structures. Because of the extensive geometric complexity of
structures, the usage of Finite Element (FE) modelling is frequently inevitable within
the aerospace industry. The use of such models is limited mainly because of the im-
mensity computation time required for calculations.
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Chapter 1

Introduction

When structure is in contact with a fluid, the the vibro acoustic coupling interac-
tion influences the structural vibration and the fluid pressure, in the same time. The
loading on the plate, due to the acoustic pressure distribution on the fluid/structure
interface, influences the induced vibration on the plate structure, whilst the acoustic
pressure inside the fluid volume is itself affected by the structural behaviour, the
mutual interaction is presented alongside this work, and that represents the main
aim of this dissertation.

We will deal a simple test, coupled plate-cavity, where numerical modelling tech-
niques risen are typically based on deterministic approaches. The plate structure is
often modelled by the finite element method and the Kirchhoff/Mindlin are mostly
assumed to describe the through-the-thickness variation of the resultant displace-
ment field.

In general, the methodology of the project can be observed in the following fig-
ure.

In the first chapter, we deeply explain the fluid structure interaction through the
noise transmission of acoustic waves, whose principles are shown in the following
chapter.

In chapter 4, the powerful actran software is shown through the determination of
noise frequency function. In chapter 5, The Vibroacoustic Modelling Techniques are
explained throughout the Carrera Unified Formulation (CUF) and the fluid - structure
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coupling. In chapter 8, Numerical Tests are introduced, considering different config-
uration in order to the powerful advanced layer wise theory in MUL2 for Acoustics
Noise Interaction. In the following, the relative correlation of the resulting solution
is introduced. Obviously, since MUL2 is based on a more advanced theory, we can
obtain more precise solution using less computational effort in terms of finite ele-
ments.

For a detailed outline, Please refer to the index page in vii.
In the following, we are treating the low-frequency range, in which all the system

components are small considered to the relative wavelength, and due to the long
structural wavelength, shape functions can be selected by low order polynomial,
but whenever the excitation frequencies increase, the global response is sensitive to
minor structural modification, this behaviour is associated considered shorter struc-
tural wavelength, resulting in a more complex system.

Finally, The conclusion and further developments are reported.

The whole organ will bring knowledge of interaction phenomenon
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Chapter 2

Sound-Structure Interaction
Fundamentals

The aim of this chapter is based on understanding concept of linear sound-structure
interaction. The normal velocity in the structure and on the fluid particle boundary along
the fluid-structure interaction must be the same.

This means that when a structure vibrates against a fluid, the component of the
vibration normal to the structural surface must be identical to the corresponding parti-
cle velocity in the neighbouring fluid. This concept must be kept on mind along this
chapter. This simple equality allows us to couple the equations that define structural
and fluid motion at the fluid-structure interface.

Another concept is important, that the normal particle velocity is identical onto
the structure and fluid boundary, but the tangential particle velocity is not the same,
defining the "slip condition" between the material wall and fluid, typical in Fluid
dynamic.

This concept is implemented in Actran software through the using f interfaces
and coupling surfaces. Remember that, as sake of simplicity, we are assuming the
Fluid Linearity, so that fluid properties do not depend on the fluctuating pressure
amplitude or phase.

2.1 Structural Waves Vibrating against an Acoustic Fluid

The Structural motion normal to an object’s material wall induces an equal motion
in a neighbouring fluid, we consider just transversely vibrating. We are going to
understand how structures radiate sound in free field.

The Sound radiated by structural waves may be considered in wave-number
space, and examine wave types on frequency-wave-number plot diagrams. This
shows a frequency dependent behaviour. At low frequencies, the structural wave-
numbers (or speed wave) are higher than those in the acoustic fluid ones, corre-
sponding to subsonic structural waves. These transversal waves radiate no sound
at all; due to the particle velocity in the fluid normal to the structure’s surface must
match those of the structure ones. At low frequencies, acoustic waves are faster than
structural ones, so their wavelengths are longer. This means that the structure sim-
ply can not induce a propagating wave in the fluid itself. Remember that for fre-
quency below the coincidence, no sound is radiated [26].

As matter of facts, Let us assume the following behaviour described in the fol-
lowing figure.
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FIGURE 2.1: Bending and acoustic wavenumber-frequency plot

The frequency at which the transversal and acoustic waves have the same wave-
number is called the coincidence frequency, where the transversal waves now radiate
sound in the free field, as shown in the figure (2.1) in the middle, as in ref (2.2)

FIGURE 2.2:
AT the Coin-

cidence

FIGURE 2.3:
AFTER the
Coincidence

At frequencies above coincidence, the transversal waves continue to speed up,
and the sound radiated by the transversal waves propagates in a preferred direction
which is computed comparing the flexural wave to the shorter acoustic wave, as in
ref (2.3) [34].

The angle of radiant noise is computed as follow

θc = arcsin
(

co

cB

)
(2.1)

where cB is the transversal wave speed. It is also possible to compute the infinite
plate’s coincidence frequency by setting the flexural and acoustic wave speeds equal
to each other, for thin plate
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c0 = cB =

(
Dω2

c
ρh

) 1
4

(2.2)

ω2
c = c4

0
ρh
D

(2.3)

where h is thickness of thin plate

D =
Eh3

12(1− ν2)
(2.4)

The position of coincidence frequency is very important. It may be useful to vary
it with the plate parameters, executing the Parametric Study. For instance, increasing
a plate’s elastic moduli (Young’s Modulus E) stiffens the plate itself, speeds up the
transversal waves, and lowers in the same time the plate’s coincidence frequency;
so increasing radiation efficiency. Conversely, increasing a plate’s density increases
its mass, slowing down the transversal waves, and raises the plate’s coincidence
frequency, so reducing the radiation efficiency.

FIGURE 2.4: Effects of stiffening on plate coincidence frequencies

The figure above shows that stiffening a thin plate reduces the coincidence fre-
quency, and adding mass increases it. This obviously influences the noise radiation
into the free space around, answering to most noise control problems to simply add
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mass to a plate while reducing its stiffness of themselves. But do not forget that we
are dealing with light structure.

In space Industry, all new structures are lightweight and stiff, like carbon-fiber
composites reinforced with ribbed. These kid of structures typically have low coinci-
dence frequencies, and therefore radiate sound very well. This is valid only for infinite
thin plate, if our plate is considered infinite, such that there were no reflections from
any of the plate boundaries.

Considering finite dimension, the discontinuities at the boundaries "scatter" the
energy in transversal waves into many wave-numbers, some of them supersonic, so
that a finite plate radiates sound below its coincidence frequency.

2.2 Structural Vibrations Induced by Acoustic Pressure Waves

In Spacecraft industry, vibrations induced in structures by impinging acoustic waves
can be so high that the structures may present failures and fail the mission. The
physics that explain this phenomenon are the same as those that explain how a vi-
brating structure radiates sound, in the previous chapter. Let us clear this idea.

Consider the classical problem of a flat infinite plate that is impinging by an in-
coming acoustic wave. There are three pressure waves next to the structural surface;
the incident wave, a reflected wave, and a wave re-radiated by the structure itself, which
has been forced into vibration by the incident and reflected waves.

For instance, the following images show the incident and reflected waves for a
30o angle of incident from the direction normal to the plate itself.

The sum of the incident and reflected waves forms a "blocked" pressure on the
surface, and if the surface is rigid, the blocked pressure field is, in fact, the total
pressure.

FIGURE 2.5: Blocked pressure field acting on a plate
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Since in this case the structure is flexible and vibrates, it radiates a third pressure
wave, which sums with the blocked one to form the overall pressure field. The
standing wave pattern propagates in the direction parallel to the surface at a speed
c0 sin(φ), where φ is the angle of incidence.

The fluid impedance depends on the pressure wave’s angle of incidence and the
fluid’s characteristic impedance

z f luid =
ρ0 c0√

1− (sin φincident)2
(2.5)

while the infinite plate’s impedance is as follows

zplane = D(k0sinφincident)
4 η

ω
− i

D(k0 sinφincident)
4 − ρhω2

ω
(2.6)

where η is the structural loss factor and h is the plate thickness.
According to the infinite plate theory, the plate vibration may be used to estimate

caused by the blocked pressure field:

vn =
2pincident

z f luid + zplate
(2.7)

The equation shows that the plate vibrates most when its structural impedance
is minimized. This occurs when annulling the imaginary part of zplane, as in ref (2.6).
Since k0 = ω/c0

D(k0 sinφincident)
4 = ρhω2 (2.8)

We obtain that

ωco =

√
ρh
D

c2
0

(sinφincident)2 (2.9)

This represent the most critical frequency of the system due to the severe level of
vibration induced by acoustic field on the structure.

It’s possible to provide a derivation of the sound power transmission coefficient
τ through an infinite plate (by Fahy and Gardonio). We provide it here

τ =
[2ρ0c0/sinφ]2

(2ρ0c0/sinφ + (D/ω)η(k0sinφ)4)2 + (ωρh− (D/ω)(k0sinφ)4)2 (2.10)

where η represents the damping (assumed a priori) and ρ represents the surface
mass density (of the infinite plate).
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Trasmission Loss Plot = 10 log10(1/τ) (2.11)

The analysis of typical transmission loss plots can reveal some important fea-
tures. As sake of clarity, let’s give an example

FIGURE 2.6: Blocked pressure field acting on a plate

For acoustic waves not normally incident on the plate, sharp apex appears in the
transmission loss plot; while considering different the perpendicular one, a strait
line is going to appear, as shown in figure (2.6). The apexes are at the coincidence
frequencies of the plate. The coincidence frequencies depend not only on the ge-
ometry of the plate, but also on the angle of incidence on which the sound waves
are acting; while the angle of incidence changes, the coincidence frequency and the
frequency of the transmission loss apex change as well. This is useful for designing
the interaction noise/structure.

At low frequencies, the mass term determines the transmission loss, which in-
creases with the square of frequency (6 dB/octave).

At high frequencies, above the coincidence frequency apex, plate stiffness is domi-
nant, and the transmission loss increases (more than the previous case) with the sixth
power of frequency (18 dB/octave).
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Chapter 3

Acoustics

3.1 Introduction of Acoustics

Sound waves might be considered as compressional oscillatory perturbations that
propagate in a fluid. The waves involve molecules of the fluid moving backward
and forward in the direction of propagation, accompanied by changes in the the
local pressure, density and temperature.

The Sound Pressure, the difference between the instantaneous value of the local
pressure and the static pressure, is the quantity that can be heard. Since the pressure
changes associated with a sound wave can be very small if compared with ambient
pressure: for instance the human hear can perceive as sound pressure variation in a
particular limited range, whereas the ambient pressure at sea level is about 1[atm] =
101 325 Pa.

As matter of fact, the Sound Pressure Level (SPL) is introduced. SPL is actually
defined the ratio of the absolute, Sound Pressure and a reference level (usually de-
fined as the Threshold of Hearing), the lowest intensity sound perceived by humans;
it’s measured in logarithmical scale and its unity is DeciBel (dB).

SPL = 10 log10
p2

rms(t)
p2

re f
= 20 log

prms(t)
pre f

(3.1)

where pre f is the lowest level perceived by humans, approximately in air
pre f = 10−12[Pa] and the local pressure level, measured in root mean square

p2
rms =

1
T

∫ T

0
p′2(t) dt (3.2)

It is important to note that these pressure perturbations are small (Ex. for 120dB,
relative perturbations (prms/p0 = 2 104) ). A mathematical description of the wave
motion in a fluid can be obtained through the combination of equations expressing:

1. Conservation of mass

2. Local longitudinal force caused by a difference in the local pressure is balanced
by the inertia of the medium

3. Sound is very nearly an adiabatic phenomenon, so there is no flow of heat.

The most important property of sound is that it could be treated by the lineariza-
tion of the Navier Stokes equations due to small perturbation and they usually carry
a tiny fraction of the total energy in the flow.
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It is important to understand the mechanisms of flow induced noise generation
in order to mitigate its production. The mechanisms of noise production depends on
the associated flow field which in turn depends on flow parameters like Reynolds
number, the type of boundary layer and the geometry of the object in the flow itself.

Vibrating structures radiate noise. The Radiated power is determined by the
acoustical coupling between the Vibrating Structure and the surrounding fluid. The
resulting acoustic field induced by the vibrating structure is also influenced by re-
flecting surfaces (constituting the structure itself) and variations, for example, tem-
perature and velocity in the fluid. For example, the noise generated by piece of
spacecraft is reflected on other pieces constituting the structure. In addition to re-
flection effects, the measured noise is influenced by a certain noise attenuation in air.
Temperature can influence the direction of the propagation of the sound waves and
the recorded noise level. Two field of measurement can be found:

Indoor measurements, the acoustical field induced by a source in a closed room
depends on the acoustical characteristics of the room as well the distance to the
source;

Outdoor measurements, the acoustical field induced is mainly created by the
reflection and air attenuation.

The Governing Equation of the wave propagation in fluids is now introduced.
Noise radiation from elementary sources as well as the effects of reflecting bound-
aries is discussed later on. The observation that most acoustic phenomena involve
perturbations that are several orders of magnitude smaller than the equilibrium val-
ues of the medium makes it possible to simplify the mathematical description by
neglecting higher-order terms.

3.2 Wave Equation in Fluid

Supposing an ideal non-viscous fluid is at rest; the ambient temperature T0, pressure
p0, and density ρ0 are constant with respect time and space. Let’s introduce a distur-
bance caused by a vibrating solid. It will produce a wave motion in the fluid, which
in turn will cause pressure local fluctuations, as previously stated, in small perturba-
tion. Equation governing are based on the principles of conservation of mass and
momentum as well as the equation of state for a perfect gas.

3.3 Wave Equation

The combination of these equations linearized gives the Wave Equation that is the
basic partial differential equation governing the spatial and time dependence of the
acoustic wave transmission.

∇2 p′ =
1
c2

∂2 p′

∂t2 (3.3)

where p’ is the fluctuating component of the pressure.
Noise Transmission is generated by the (small) fluctuation of pressure p′ and

related density, radiating though a medium (air, water).
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The main aim of an acoustic study is, firstly, to understand the mechanisms of
noise production, than identify the location and main sources of noise and accurately
compute far-field acoustic pressure fluctuations and directivity in order to mitigate.

FIGURE 3.1: Noise: Small Fluctuation of Pressure

3.4 Energy and Intensity

The fluid volumeΩ has Energy, as containing kinetic energy.

T =
∫

Ω

ρ0

2
|V|2dΩ =

∫
Ω

ρ0

2
|∇Φ|2dΩ (3.4)

Potential energy is stored in a fluid when the fluid is compressed, that’s equal to
the work carried out to compress the gas to the volume V to a new volume Ω− ∆Ω
The Work (W) stored during the compression may be calculated as follows

W = −
∫

p dΩ =
p2 Ω
ρ0c2 (3.5)

In Acoustics Problem, another concept is important: The Intensity.
The Intensity, better the intensity vector, resulting from a wave motion in the

fluid is defined as

I = p · v [W/m2] (3.6)

where p is the pressure and v the particle velocity vector in the fluid. Using
complex notations and assuming a time dependence in the form exp(iωt)



12 Chapter 3. Acoustics

I = Re
( p · v

2

)
= − Re[iωρ0Φ |∇Φ|] (3.7)

The intensity vector is set to equal the real part, that’s the active intensity. The
imaginary part of the intensity vector is the reactive intensity.

As shown in figure, In the case of Spherical Propagation wave, The intensity will
decrease with the radially distance from the source, not because for any process of
power-decay itself (the intensity will remain the same); but due to the increase of the
area. Since the area will increase with the distance, and the power is the same, the
overall result is the decrease of the intensity [W/m2], this concept will be explained
deeply in the next section, as in 3.7.

Intensity, as well, is measured in logarithmical scale. We define the Intensity
Level as

IL = 10 log10

(
I

10( − 12)[W/m2]

)
= 10log10I + 120dB. (3.8)

where Ire f = 10−12 [W/m2] is the reference intensity, that is energy over surface.

3.4.1 Losses

When sound is radiated over large distances in infinite space or in a flow through
narrow openings or close to boundaries, the losses can no longer be neglected.

In infinite space, the losses are due to a number of mechanisms in the fluid itself.
In air the losses are caused by viscosity, heat conduction, molecules diffusion, heat
radiation, and molecular losses. The effect of viscosity in the equation of motion in
a fluid leading up to the complete Navier-Stokes equation set.

The dissipation effect is caused by the presence of water molecules [for instance:
Humid Air], and due to the presence of wall in motion field, cause the viscosity
produces large velocity gradient, so the energy is dissipated.

For losses in air, the humidity or number of water molecules per volume of the
gas is an important parameter. In addition to humidity, the losses are functions of
temperature, atmospheric pressure, and frequency.

The losses, if small, can be included in the wave equation by letting the compress-
ibility be a complex quantity. Following this idea. the bulk modulus K may be written
as K = K0(1 + iδ), introducing δ as the loss factor in the fluid.

So the effect of dissipation is given considering the imaginary part of velocity, in
fact, for small losses the speed of sound in the fluid is obtained

c =

√
1

kρ0
=
√

K0(1 + iδ)/ρ0 ≈ c0(1 + iδ/2) (3.9)

The corresponding wave number k for noise wave radiating in fluid is expressed
as

k = ω/c = ω/[c0[1 + iδ/2]] ≈ k0(1− iδ/2) (3.10)
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3.5 Impedance

The ratio between the complex amplitude of the pressure and the complex ampli-
tude of the normal velocity in a given location is called impedance

Z =
p̂

ûn
(3.11)

where Z is the impedance and ûn represents the normal component on the sur-
face (pointing outside). The impedance is the result of the ratio between two com-
plex, and itself is complex.The real part of Z is called Resistance and its imaginary
part Reactance. The inverse 1/Z is known as Admittance.

Z = complex number = Resistance + j (Reactance) (3.12)

1
Z
7→ Admittance (3.13)

The characteristic impedance is inherent to the propagation medium throughout
it propagates, and it depends tightly on the material properties. Notice that when
Re(Z) > 0 the surface is passive and absorbs energy, useful for the representation of
Material losses, but when Re(Z) < 0 the surface is active and produces energy.
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Chapter 4

Actran

In Cooperation With

4.1 Actran Software

Actran is a complete acoustics, vibro-acoustics and aero-acoustics simulation soft-
ware, based on the finite and infinite element method through the linearization of
Navier Stokes Equation for Acoustics.

Actran offers different calculation procedures

1. Direct Frequency Response for the computation of the acoustic, vibro-acoustic or
aero-acoustic response of a system in the frequency domain and in physical
coordinates. This will be deeply treated, as in 4.2.

2. Time Response for the computation of the acoustic, vibro-acoustic response of a
system in the time domain in physical coordinates.

3. Modal Frequency Response for the computation of the vibro-acoustic response of a
system using a preliminary representation of the structure and the cavity in
the modal space.

4. Green Analysis for the computation of the radiation of a vibrating system using
the Green theorem for acoustics.

5. Pellicular Analysis for the computation of the radiation of a system using pellicular
modes.

6. Modal Extraction for computing the modes of an uncoupled and closed acoustic
or undamped structural model.

7. Compressible Flow Analysis for computing a compressible and irrotational flow
field on an acoustic domain.
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In most cases, The acoustic phenomena can be assumed to be linear. As a conse-
quence, Actran solves linear equations, as shown in the previous chapter 2.

Actran is divided in two different part:

1. ActranVI is used for projecting the Vibroacoustics Model, imposing the Boundary
Condition, Part, Component.

2. ACTRAN is used for running the computation, it’s the solver.

FIGURE 4.1: ActranVI Windows

FIGURE 4.2: Actran Windows
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An Actran model contains different kinds of information such as the description
of the finite elements (FE), the material properties, the parameters of the analysis
itself.

Each piece of data belongs to one of the 6 categories shown below

1. Domain and Element Set / Topology. An element set is a collection of finite
elements, while a domain is a collection of element sets.

2. Material. A material describes the physical properties of a material.

3. Component. A component characterizes the numerical properties and the physi-
cal interpretation of a domain of finite elements.

4. Boundary Condition. A boundary condition characterizes a boundary condition
or an excitation on the finite elements.

5. Analysis Parameter. An analysis parameter is any other parameter influencing
the computation of the model.

6. Fields and Tables.

FIGURE 4.3: 1st Summary of Actran Analysis

When using the software, The first step is to import the mesh, defining the el-
ement properties. We divide the whole model into different elements; after that,
we can unify the elements, previously defined, into a different Domain, building a
particular piece of the model.

The next important step is associate the material for each domain, building the
components, we have to decide the Analysis to make, in this latest step, the Boundary
Conditions and the components are the input.

Obviously, the objectives are different according to the analysis chosen. The last
step is extracting the file (.edat format, in ASCII format) in order to analyse with
Actran.

FIGURE 4.4: 2nd Summary of Actran Analysis

Actran reads the file .edat and solves the computation in order to give the results
of the analysis. This is summarized in figures (4.3) and (4.4).
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4.2 Direct Frequency Response

The direct frequency response is a computation procedure which is used to compute
the response of an acoustic, a vibro-acoustic or aero-acoustic system to a specific
excitation in physical coordinates. This is the most common Actran analysis type,
and we’ll later see important and simple examples of this. This will be used in the
second part for the following part.

The following system of equations is set-up and solved for various pulsations
ω = 2π f

(K + iωC−ω2 M) x(ω) = F(ω) (4.1)

yielding values of the unknown vector x(w) for every pulsation ω.

We will apply the acoustics theory through four simple examples. Thanks to this,
we will easily understand the more complex coupled system, which is the aim of this
dissertation.

4.3 Examples of Application

4.3.1 Virtual Kundt’s Tube

The Kundt’s tube may be considered as a device closed at one extremity by an ab-
sorbing material. At the other end of the tube, a sound generator corresponding to
a piston produces pure incident sine waves which are more or less reflected due to
the presence of the foam.

FIGURE 4.5: Kundt’s Tube

The objective of this training is to evaluate the absorption coefficient and the equiv-
alent impedance of an arbitrary porous material. In this simple example, we will
see the importance of Porous material in acoustics application as Damping material.
Calculate the SPL in the center of front face of the foam. The first step is building the
mesh as follows
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FIGURE 4.6: Kundt’s Tube Mesh

in which, the red line is the moving piston, the blue is the air, the acoustics do-
main, and the final yellow part is the foam to be characterized. The foam Properties
are

Foam Properties
Properties Value Unity
Porosity 0.94
Flow Resistivity 10000 Ns/m4

Tortuosity 1.06

After imposing the solver, the computation has been run. From the interpretation
of the results.

FIGURE 4.7: Sound Pressure Level in Kundt’s Tube
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in the previous figure, Resonance points are shown, in which sound wave in the
tube are in the form of standing waves; the first resonance peak is near 150 [Hz].

The ratio between the reflected incident pressure wave and the incident pressure
wave is known, the acoustic impedance of the material can be calculated using the
below equations

Absorption Coe f f icient→ α = 1− |R(ω)|2 (4.2)

Re f lection Coe f f icient→ R(ω) =
pre f lected(ω)

pincident(ω)
(4.3)

Impedance→ Z(ω) = ρ · c · 1 + R(ω)

1− R(ω)
(4.4)

α = 1− abs

(
p
v − ρ · c
p
v + ρ · c

)2

(4.5)

The absorption capability of this foam can be easily plotted as a function of the
frequency

FIGURE 4.8: Absorption Coefficient in Kundt’s tube

FIGURE 4.9: Admittance of FOAM
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Sound propagation in porous materials

The propagation of sound in porous media is an important topic though the ge-
ometry of the pores as innovative material for the propagation acoustic wave. The
propagation of sound in porous materials can be treated in two different philosophy:

Porous material having rigid frame This approach is optimal for porous ma-
terials directly subject to an acoustic field. The elastic part of the porous structure
can be neglected, being relevant only for frequencies close to the resonances of the
considered system.

Porous material having elastic frame This approach considers the frame with
no more relative motion respect to the fluid considering a certain level of elasticity.
The simulation of the frame elasticity is really important when studying a complex
system for which the vibroacoustic behaviour coupling is fundamental.

The absorption coefficient α may be defined as the ratio of the non-reflected sound
energy to the incident sound energy on a surface. It can take values between 0 and 1
and it’s dimensionless, and α = 1 means that all incident sound energy is absorbed
in the surface itself, in the foam, in this case.

As shown in figure (4.8), Higher the frequency of the system is, and more inci-
dent sound energy is absorbed, presenting higher coefficient.
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FIGURE 4.10: Evolution of Pressure Field inside the Kundt’s Tube
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4.3.2 Radiation of a Horn Speaker

A horn loudspeaker is a loudspeaker element which uses a horn to increase the overall
efficiency of the driving element (diaphragm driven by an electromagnet), emitting
sound. The horn itself is a passive component which improves the coupling effi-
ciency between the speaker driver and the air. The aim of this is characterizing the
acoustic directivity of the speaker at different frequencies. The mesh is therefore
presented hereafter

FIGURE 4.11: Mesh of a Horn Speaker
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As shown in figure (4.11), the mesh is composed by three different domain:

1. Acoustic Excitation (BC) representing the cause of noise.

2. Infinite Element (IFE) representing the unbounded free infinite space.

3. Air Volume (FE) representing the acoustic computation volume of interest.

We divide the surrounding space in two different plane perpendicular to the
acoustic source. The computation holds as follows

FIGURE 4.12: Acoustic Radiation Field of Horn

In the figure, the acoustic source is emitting and the red color is associated to the
emission of the signal (high pressure), and a list of virtual microphones around the
horn are inserted in order to characterize the directivity, as previously discussed in
section, we are going to analyse the directivity of the source

FIGURE 4.13: Directivity of the Horn: plane XZ / plane YZ

The previous figure shows that the directivity of horn is frequency dependent; in
fact in the low frequency regime, the source is omni-directional and uniform without a
preference direction, the resulting curve is a cycle. In high frequency regime, the horn
becomes directional (inner region), the resulting curve isn’t a cycle any more. The
behaviour is a frequency function. This may be exploited in different fields.
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4.3.3 Acoustic Transmission through a Muffler

The muffler is a closed acoustic cavity. The inlet and outlet sections are supposed
to be coupled to semi-infinite ducts in which the sound wave propagates without
reflection, assuming connecting with infinite energy tube. The objective of this part
is to study the Transmission Loss (TL) of a muffler.

FIGURE 4.14: Mesh of a Muffler

Let’s divide the whole model in 3 different element sets are created to support
the different domains as follows

1. One 2D element set to model the Inlet modal basis

2. One 2D element set to model the Outlet modal basis infinite space.

3. One 3D element set to model the computational acoustic domain

The transmission loss (TL) index is an indicator of the acoustic efficiency of the
muffler itself. It represents the accumulated decrease in intensity of a waveform
energy as a wave propagates outward from a source (the muffler in this case), or
such as it propagates through a certain area of the structure. It can be expressed in
terms of decibels



26 Chapter 4. Actran

TL = 10 log10
Win

Wt
[dB] (4.6)

where

1. Win the power of incident wave coming towards a defined area (incident).

2. Wt the power of transmitted wave coming away from the defined area (transmit-
ted).

After having run the computation, plotting the results in the frequency range
0− 5000[Hz] we obtain

In the muffler, "peaks" and "holes" are presented in the TL curve with important
meaning, also note that the maximum point are highlighted. The "Holes" (TL = 0)
indicates that all the acoustic energy radiates through the outlet of the muffler, while
"peaks" show the frequency for which is efficient, that is: Most of the acoustic energy
injected is reflected by the cavity and comes back through the inlet section. I’ve
selected six different cases. The First elementary frequency is 1610 [Hz].
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FIGURE 4.15: Muffler Acoustic Modes
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4.3.4 Diffuse Sound Field on Antenna for Spacecraft Application

During the lift off, Components like antenna carried on launchers are exposed to
intense acoustic excitation that can lead to a damage, damaging the communication
between spacecraft and Earth; for this reason it’s important to deeply study load
factor and reaction in spacecraft components like below.

In this case, we will analyse the antenna components below

FIGURE 4.16: Mesh of the Antenna

The objective of this part is to evaluate the vibro-acoustic response of a deploy-
able reflector loaded by a Diffuse Sound Field, mounted on a general spacecraft.

On the Structure, accelerometers will be fixed in order to calculate the acceler-
ation, as well as the force and stress acting on them. The general Structure will be
loaded by the central structure, are loaded with a Diffuse Sound Field, simulating the
vibroacoustic effects

FIGURE 4.17: Objects within the Reverberant Room with Diffuse
Sound Field

The object, in this case, an antenna is shaked by a Diffuse Sound Field around.
That permits us to build diagrams very similar to the envelope diagrams in aero-
nautical structures.
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Diffuse Sound Field is created by considering by 126 PW automatically gen-
erated all around the structure itself and equally spread around a reference sphere
with sampling random phases, based on the statistical data. The results are consid-
ered as deterministic ones.

The structural response is measured by 6 accelerometers located onto the antenna.

FIGURE 4.18: Location of six accelerometers

Actran is working on structure when loaded with a random excitation (DSF). In
order to compute the normal acceleration in [ g2

Hz ], the following formula is applied
to the normal displacement resulting in

an =
ω4

g2 un (4.7)

In following, we will graph the acceleration for different points in order to un-
derstand the most critical point

The behaviour is a function of the frequency. At different frequency, different
accelerometers are the most critical. Obviously, the general trend is in increasing the
value with increasing the frequency itself.
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FIGURE 4.19: Normal Acceleration [g2/Hz] in logarithmical scale

FIGURE 4.20: Normal Acceleration [g2/Hz] in linear scale
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As sake of clarity, Let’s introduce the mean values in the following table, using
Location of six accelerometers, as in ref (4.18)

accelerometer Number Mean Value [g2/Hz]
400362 22.1552
401355 1.3408
401866 4.0927
404000 24.7805
404647 0.7938
405998 0.4891
408368 10.2461

As shown in the previous table, the accelerometers 404000 and 400362 are the
most loaded, and they need to be designed in more deeply attention. In figure (4.18),
their location may be verified.

FIGURE 4.21: Reference map for Stress field

In the previous figure, Different points are numbered. According to this picture,
it’s possible to graph the stress and force acting on the element. After this analysis,
a local strengthening may be considered in order to make the structure work safely.

We observe that this behaviour is a function of the frequency, so that peaking
frequency may be avoided in the working range of the structure, since the antenna
is important for communication purpose, and so fundamental for the mission itself.



32 Chapter 4. Actran

FIGURE 4.22: Stress as a function of frequency

FIGURE 4.23: Element Force as a function of frequency
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FIGURE 4.24: Stress Field for 20 Hz

FIGURE 4.25: Stress field for 220 Hz
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Chapter 5

Vibroacoustic Modelling
Techniques

5.1 Introduction

The Finite Element allows the method e to be tailored to the specific application case
and field, in this case, different plate cavity structures coupled to surrounding fluid.
Firstly we have to determine the frequency range of interest, given the application
field; it is possible to combine different materials/thickness to obtain the structure
best performance. A important role in the design phase is played by the numerical
modelling of coupling surface between fluid and structure.

In this study case, A point load is applied on the plate. Excited structures radiate
sound mainly at frequencies corresponding to their structural resonances, condition
in which the plate becomes a perfect radiator, so detailfull knowledge of the struc-
ture modal behaviour, and modal shapes, plays a fundamental role in the prelimi-
nary design step of a vibroacoustic structure.

One of the most powerful tools in engineering field problem is the Finite Ele-
ment Method (FEM). This discretization method is based on the idea that a structure
can be approximated by replacing it with an assemblage of discrete elements, con-
stituting the whole structure itself.

FIGURE 5.1: Continuum discretized with Finite Element for FEM

We will deeply verify that the displacement field (within each element) and on
its boundaries is expressed as function of the nodes of the elements, using suitable
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(respecting precise rule) interpolating functions called "shape functions", which per-
mit the explanation of quantities (displacement, stress or strain; as an example) in
a certain point (within element) through the determination of quantities at nodal
element.

The displacement functions (u,v,w) define the state of strain (and later of stress)
within each element defined throughout the mesh. The constitutive law of the struc-
ture material (Hook-Generalized Problem), it is possible to define the stress state of
each element as function of strain. In this way a continuum problem is reduced to
a finite number of unknowns, the nodes displacement. This is what happens for
the structural problem. Something similar happens for the discretization of the fluid
with different element dimension (3D), but something important in this case is in-
troduced, the coupling surface between the structure element and the fluid ones. A
restriction is introduced, in fact the planar dimension of the fluid element should be
of the same dimension of element dimension used to discretize the whole structure
plate.

This is just a general introduction of what we will later deeply demonstrate.

5.2 Governing equations

The structure is described by the differential equations of motion for a continuum
body assuming small deformation since a linear behaviour of the fluid coupled
structure system is here assumed. The structure is coupled to a homogeneous, invis-
cid and irrotational compressible fluid. As sake of simplicity, Both the fluid and the
structure are modelled neglecting the gravity effects (for instance, no gravitational
force).

FIGURE 5.2: Continuum coupled system (fluid and structure) General
domain

Referring at (figure 5.2), the structure occupies the domain Ωs. The general struc-
ture could be subjected to Dirichlet boundary conditions ΓD

s , which prescribe the ap-
plied displacement; and to Neumann boundary conditions ΓN

s , which prescribe the
applied force on the control volume.

The interior fluid domain is denoted by Ω f and Γ f s is the fluid-structure inter-

face surface. The fluid boundary Γ f
N describes the rigid walled bounds of the fluid
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filled cavity, where the zero normal pressure gradient boundary condition is strictly
imposed. Please keep in mind that, in this work, the whole structure is assumed
to be rigid, so at this level, the intermediate surface is important for the coupling
problem.

As common in structural problem, The linearized deformation tensor is later de-
noted by εij and the corresponding stress tensor by σij, while the mass density of the
structure is denoted by ρs, while c f and ρ f are the constant speed of sound [m/s]
and mass density [Kg/m3] of the fluid. Finally nse is the unit normal external to gen-
eral Ωs and nsi is the unit normal internal to general Ωs, but with the assumption
that the interested structure is composed with parallel wall, the following condition
nse = −nsi is valid, or viceversa.

This problem could be divided in two different subsystem: Stucture and Fluid,
described by different set of equation. Let us start with the structure subsystem. The

equations that describes the elastic behaviour of the structure are

σij,j = ρs
∂2s
∂t2 on Ωs (5.1)

σij ns
j = fi on Γs

N (5.2)

si = sassigned
i on Γs

D (5.3)

σij ns
j = p n f

i on Γ f s (5.4)

The previous formula represent the resolution set for the structure subsystem,
and keep in mind that the Einstein notation is used. The first equation (5.1) describe
the Dynamic Structural behaviour (since the derivation in time is presented), while
the last one (5.4) represents the equality of stress (force per unit of surface) applied
on the structure with the pressure on fluid domain (force per unit of surface), while
the middle ones [(5.2) and (5.3)] represent the equation for the boundary condition,
for Neumann and Dirichlet respectively.

Finally, The derivation of fluid domain equation is introduced. The acoustic field
inside the cavity, assuming in absence of sound sources, is described by the wave
equation and the following boundary conditions

p,ii =
1
c2

f

∂2 p
∂t2 on Ω f (5.5)

p,i n f
i = −ρ f

∂2s
∂t2 n f

i on Γ f s (5.6)

p,i n f
i = 0 on Γ f

D (5.7)
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where the fist equation (5.5) represents the globally known "wave equation" for
the transmission of signal through a fluid domain. The second one (5.6) is valid
when the boundary wall of the structure is elastically modified in order to consider
wall deformation, where the normal pressure gradient is related to the motion of the
structure on the interface surface, while the last one (5.7) expresses the null normal
pressure gradient.

The previous last two set of equation represents the whole general behaviour of
system (fluid and structure) coupled written in formal way. Later we will specify
them for our numerical case.

The stress tensor σij are related to the linearized strain tensor εkl through the linear
constitutive relation

σij = cijkl εkl (5.8)

where the linearized strain tensor εkl and the displacement sk

εkl =
1
2
(sk,l + sl,k) (5.9)

5.3 The Variational Formulation

A generic weak formulation is reached, introducing arbitrary weighting functions
which are exactly the field variables (displacement and pressure) which describe the
evolution of the coupled system previously introduced; This procedure is equivalent
to the Principle of Virtual Displacement (PVD) applied on the same system.

We maintain the coupled problem divided, and firstly we consider the structure
and later the acoustic domain. The former is obtained by integrating over Ωs and
multiplying the dynamic equilibrium of system by arbitrary time-independent test-
function δsi (or virtual displacement).

∫
Ωs

∂εij σij dV +
∫

Ωs

∂si ρs
∂2s
∂t2 dV =

∫
∂Ωs

∂si σij ns
j ds (5.10)

where ∂εij = 1
2 (∂sk,l + ∂sl,k). Now distributing the right hand side integrals over

the boundaries, and coupling the acoustic fluid, we obtain

∫
Ωs

∂εij σij dV +
∫

Ωs

∂si ρs
∂2s
∂t2 dV =

∫
Γs

N

∂si fids +
∫

Γ f s

∂si pni ds (5.11)

This is the PVD statement for the mechanical variables including the acoustic
coupling term. This formulation exactly satisfy, in a weak formulation, the natu-
ral boundary conditions, that is the Neumann type boundary condition, because
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the virtual displacement ∂si must be chosen according with the essential conditions,
Dirichlet type. Everything is in accordance with the Principle of Virtual Displacement
(PVD) statement.

In the end, multiplying the wave equation of system (equation (5.5)) by ∂p, inte-
grating by parts, and applying Green’s formula and using the Neumann boundary
condition on the fluid-structure coupled interface surface, we obtain

∫
Ωs

∂p,i p,i dV +
∫

Ω f

1
c2

f
∂p,i

∂2 p
∂t2 dV = −

∫
Γ f s

∂p ρ f
∂2si

∂t2 ni ds (5.12)

The fluid-structure coupling appear evident in the terms in the right hand side
of the structural and fluid equations (5.11) and (5.12) respectively.

Our procedure was firstly based on the introduction of the general equation set,
then expressing the weak form, through the PVD statement; later we have to proceed
with the numerical approximation, since our goal is the resolution set.

5.4 The Numerical Approximation

The Finite Elements Method is usually applied for the analysis of sound field in
bounded or nearly bounded domains (within small dimension). The basic concept
of FEM in acoustics is exactly the same than in pure structural analysis. The do-
main is divided in elements sharing a common border, so that substantially smaller
than the highest frequency of interest. The Acoustic field problem determination is
shifted from the original problem of determining the pressure field at any position
in the fluid within a domain to determination the pressure values at some discrete
position of the domain, nodal (3D element). Within each element the pressure is
approximated as a expansion in terms of shape functions. The main drawback is
related to the problem size.

FIGURE 5.3: (a) Entire Acoustic Cavity (b) Finite Elements Mesh 3D

The fluid region is divided in elements and field values are assigned to the ele-
ments nodes. The finest is the mesh, and better the solution is captured within the
volume. This problem is a function of the frequency, so a particular rule of thumb
valid for lower frequency region may not be also valid for higher range and vicev-
ersa; this fact complicate everything.



40 Chapter 5. Vibroacoustic Modelling Techniques

As previously introduced, In order to obtain a numerical solution of the coupled
system, in term of displacement (u, v, w) a pressure p; an approximation of variable
set has to be considered, as follows

si = Ns
i U (5.13)

p = Np P (5.14)

where Ns
i and Np are generic column matrices functions of the space coordinates

xi, which interpolates the continuous unknown variables; while U and P are the
value of displacement (or pressure, respectively) at the nodal position mesh, through
the discrete Finite Element Method.

With the introduction of equations (5.13) and (5.14) into equation (5.11) and (5.12),
the resultant system of equations leads to the following sub matrices

∫
ΩS

∂εij cijkl εkl dV = ∂UT Kss U (5.15)

∫
ΩS

∂si ρs
∂2s
∂t2 dV = ∂UT Mss U (5.16)

∫
Γs

N

∂si fi dV = ∂UT Fs U (5.17)

∫
Γ f s

∂si p ni dV = ∂UT Ssp P (5.18)

∫
Ω f

∂pi pi dV = ∂PT H P (5.19)

1
c2

∫
Ω f

∂p
∂2 p
∂t2 dV = ∂PT Q

∂2P
∂t2 (5.20)

ρ f

∫
Γ f s

∂p
∂2si

∂2 ni ds = ρ f ∂UT ST
sp

∂2P
∂t2 (5.21)

where Mss and Kss are the mass and stiffness matrices of the structure; while Q and
H are the mass and stiffness matrices of the fluid; Ssp is the fluid structure coupling
matrix; Fs and F are the applied mechanical force applied.

It can be arranged as follows[
Mss 0
−ρ f ST

sp 0

] [ ∂2U
∂t2

∂2P
∂t2

]
+

[
Kss Ssp
0 H

] [
U
P

]
=

[
Fs
0

]
(5.22)
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5.5 The Finite Element Method

The finite element discretization is based on a representation of the geometry and
the unknown variables in terms of shape functions and nodal variables.

The analysis of a problem by FEM essentially consists of seven basic steps.

FIGURE 5.4: The seven steps of the FEM
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The previous figure (5.4) summarizes the required steps for FEM analysis:

Step 1: Writing the weak (or variational) integral form of the equations governing
the problem.

Step 2: Meshing or geometry discretization. It consists in breaking up the ge-
ometry of the domain Ω into a set of sub domains Ωe called “the elements.” The
sub domains are usually simple geometrical primitives (for instance, lines, triangles,
quadrangles, tetrahedral).

Step 3: Approximation of variables and calculation of elementary matrices. It
consists in defining on each sub domain Ωe an approximate function of the exact de-
sired function. This so-called nodal approximation function must have the follow-
ing features: Fist of all, it must only involve the nodal variables attached to nodes
located on Ωe and its boundary; Second of all, it must be continuous on Ωe. In
addition, all nodal approximation functions must satisfy the continuity conditions
between different sub domains. The calculation of the elementary matrices consist
then in evaluating, on each sub domain Ωe, the nodal approximation of the integral
form, determined in previous step 1.

Step 4: Assembling. In this step, the elementary matrices are combined to form
global matrices. In other words, the integral form is evaluated over the entire do-
main Ω. By doing so, continuity conditions between elements are enforced. Step 5:
Imposition of boundary conditions or constraints.

Step 6: Invocation of stationary condition. This step will lead to a system of
algebraic equations. This system is solved using conventional numerical algorithms.

Step 7: Study of the convergence of the solution; calculation of physical indica-
tors, and interpretation of results.

In the finite elements methods, steps (1) and (2) are part of the preprocessing
phase, while step (7) is part of the post processing phase.

Criterion of Building a Mesh

If we choose a partition of domain Ω constituted of ne elements Ωe. The nodes of
the elements are numbered sequentially from 1 to nN where nN is the total number
of nodes.

To define the mesh completely, two tables are built: a table of coordinates denoted
as XYZ(:, :) (denoted as NODES file) and a connectivity table referred to as IEN (:, :).

Table of coordinates: Table XYZ (:, :) of dimension nd x nN contains the coor-
dinates of the nodes (nd is the geometrical dimension of the problem; nd = 3 in the
three-dimensional case, the case of our interest; while nd = 2 in the bi-dimensional
case). (denoted as CONNECTIVITY file)

Table of Connectivity Dimension nne x ne establishes the correspondence be-
tween the local and the global numbering of the nodes, where nne is the total num-
ber of nodes per a single element and ne represents the total number of elements
constituting the mesh.
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As sake of simplicity, let me show a brief example of these two previous table for
the following easy example; Illustrate these two tables, considering the following
two-dimensional (2D for simplicity) mesh.

In this case, nd = 2, ne = 6, nne = 4, nN = 12

FIGURE 5.5: Bidimensional mesh.

In this simple case

Table of coordinates: XYZ(1, i) = x1, i; XYZ(2, i) = x2, i for i = 1, . . . , nN

Connectivity table:

FIGURE 5.6: Connectivity table

In following numerical test, We will build more complex tables. For example,
The acoustic cavity is modelled by using 10x10x10 mesh 3D element; while the plate
by using 10x10 mesh 2D element as the coupling surface. Keep in mind that the
dimension of element plate and the projection 2D of a 3D mesh must have the same
dimension for MUL2 program.
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Nodal approximation of the variable

Since a general variable must be differentiable as a requirement, we need to select at
least a linear approximation in order to evaluate it within the domain and to ensure
inter-elements continuity.

FIGURE 5.7: Two types of geometrical discretization of the one-
dimensional problem

In the following test case, This is very important because we will discretize the
thickness of the plate (normal displacement) as a 1D model; while in plane deforma-
tion will be discretized through a 2D model.

For sake of simplicity, here we are going to discuss just two these simple cases,
but please keep in mind that it can be used for more order, obtaining more precise
results.

The first line represents a two-noded linear element, knowing the values of the
normal displacement w1 and w2 at the two nodes of the element, we seek to construct
a linear approximation of displacement w within the element as follows

w(x) = a x + b (5.23)

In consequence,

w(xe
1) = w1 = ax1 + b and w(xe

2) = w2 = ax2 + b (5.24)

This leads to

w(x) =
xe

2 − x
xe

2 − xe
1

we
1 +

x− xe
1

xe
2 − xe

1
we

2 =
2

∑
i=1

Ne
i (x)we

i (5.25)

The nodal interpolation functions Ne
i (x) must satisfy precise conditions, first of

all, they should only involve the nodal variables attached to the nodes of the ele-
ment. They must be continuous across the element and differentiable as required
by the weak integral form. In general, polynomial functions are chosen to construct
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nodal interpolation functions since the process is simple and the numerical evalua-
tion of the integrals involved in the weak integral form is easy. When the interpo-
lation functions are polynomials, these polynomials must be complete in order to
represent all possible variations of the independent variable.

If we repeat the same procedure as shown for the linear but considering second
order, we obtain Quadratic approximation

w(x) = a + bx + cx2 (5.26)

This is mostly used for discretize thicknesses along plate in the FE application
method.

Assembling and Imposition of constraints

The assembly procedure consists in writing this sum in terms of the vectors of nodal
unknowns. Doing so requires the continuity of the variable between elements. Later,
the imposition of constraints and boundary condition of the problem. By the Struc-
tural point of view, two different boundary condition may be imposed.

Simply supported and Clamped
We have introduced in this part the fundamental concepts of FEM. The seven-

step-based methodology was introduced and illustrated via several examples. Later
we proceed with UFEM (Unified Finite Element Model), notation which permits the
complete unification for the resolution method.
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5.6 Generalized Hooke’s law

Constitutive equations characterize the individual material and its reaction to applied
loads. In the following, we are considering just Elastic materials are considered, for
which the constitutive behaviour is only a function of the current state of deforma-
tion, neglecting the load history path.

A material body is homogeneous if its properties are the same throughout the
body, it is called heterogeneous if the material properties are a function of position.
The material is defined anisotropic if it has different material properties in different
directions at a given point: the material properties are direction-dependent function.
An isotropic body has the same material properties in all directions at a point. The
material is called hyper-elastic if the work done by the stresses during the deforma-
tion depends only on the initial state and the current configuration.

The material is defined as elastic if it recovers its original form completely upon
removal of the forces causing deformations,making it possible an exact relationship
between the state of stress and the state of strain in the current configuration exists.
In the following, the most-general constitutive equations of linear elasticity is con-
sidered for the case of infinitesimal deformations, known as generalized Hooke’s
law.
Furthermore, we can suppose that the reference configuration has a residual stress
state indicated with σ0 First of all, we are considering the most general case, then
we reduce the scalar components

σij = Cijkl εkl + σ0
ij (5.27)

where Cijkl is called stiffness tensor. In general, it has 81 scalar components. The
number of independent components of Cijkl can be reduced considering both the
symmetry of σij and the symmetry of εkl . The number of independent material stiff-
ness components (presented in Stiffness tensor) is reduced to 54 for the principle
of angular momentum, making the stress tensor is symmetric (σij = σji) and the
tensor Cijkl is symmetric in the first two subscripts. The strain tensor is symmetric
too, εkl = εlk, then Cijkl is symmetric in the last two subscripts kl; in this way the
number of independent material stiffness components is reduced to 36; then If we
also assume the material hyper-elastic Cijkl = Cklij, the last statement permits us
to reduce the number of independent material stiffness components from 36 to 21,
making it possible the double subscript notation for the material stiffness coefficients

σi = Cijεj + σ0
i (5.28)

The subscript notation (5.6) for stresses and strains is called engineering nota-
tion or Voigt notation relation.
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The notation for stresses and strains is

In matrix notation, 5.6 can be written

So, for the most general elastic material, we have 21 independent stiffness coeffi-
cients. The previous equations are also invertible and the strain components can be
expressed to stress ones by

εi = Sijσj + ε0
i , ε0

i = −Sijσ
0
j (5.29)

where Sij are the material compliance parameters, where [S] = [C]−1.
In the next part of this chapter we consider as reference configuration the stress and
strain free configuration: σ0

j = 0 and ε0
j = 0.

Further reduction in the number of independent stiffness parameters comes from
the so-called material symmetry, considering the existence material plane of sym-
metry, where points mean present values for every pair of coordinate systems that
are mirror images of each other in a certain plane in symmetry. We will discuss
about various plane of symmetry and forms of associated stress-strain relations, in
particular monoclinic materials, orthotropic materials and isotropic materials.

Monoclinic materials

When the elastic coefficients at a point have the same value for every pair of coordi-
nate systems which are the mirror images of each other with respect to a plane mate-
rial is called a monoclinic material. So the independent parameters are 21 − 8 = 13.

C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0 (5.30)
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In matrix notation, for Monoclinic materials, 5.6 can be written

So the independent parameters are 21 − 8 = 13.

Orthotropic materials

In orthotropic materials three mutually orthogonal planes of symmetry exist, so the
number of independent elastic coefficients is reduced from 13 to 9. In matrix nota-
tion, for Orthotropic materials, 5.6 can be written

So the independent parameters are 9. The material properties are expressed in
terms of the engineering constants such as Young’s modulus E, shear modulus G and
Poisson’s ratios ν.
The material coefficients and engineering constants are expressed in the following
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Isotropic materials

When there is no preferred directions in the material, thus infinite number of planes
of material symmetry are considered. Such materials are called isotropic and the
number of independent elastic coefficients are reduced from 9 to 2.

In matrix notation, for Isotropic materials, 5.6 can be written

where
G =

E
2 (1 + ν)

(5.31)

An Alternative stress-strain relations can be written in a compact form by using 2
different independent constants known as Lamè constants λ and µ. The relations be-
tween the Lamè constants λ and µ and engineering constants E, G and are obtained
as in the following
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5.7 Unified Finite Element Model

The formulation of the structural coupled acoustic problem in terms of structural
displacements unknown si and acoustic pressure p previously presented (in general
form) will be specified for generic laminated plates made of orthotropic materials in
contact with an acoustic cavity.

Throughout the Constitutive equation

σ = C∗ ε (5.32)

where

σT =
[
σ11 σ22 σ33 σ23 σ13 σ12

]
(5.33)

εT =
[
ε11 ε22 ε33 ε23 ε13 ε12

]
(5.34)

C∗ =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (5.35)

where the symmetric matrix C∗ (material reference frame) grouped the 21 inde-
pendent elastic material properties, reduced by energetic consideration. Further re-
duction in the number of independent material parameters comes from the material
symmetry, for example, material parameters can exhibit symmetry properties about
specific directions (for instance, the esistance material planes of symmetry), and the
structure of the matrix C is modified consequently. Just two different independent
parameter exists: E (Young’s modulus), and ν (Poisson’s Modulus)

G =
E

2(1 + ν)
(5.36)

We consider two different type of material: Isotropic and Ortotropic. The for-
mer, when no preferred directions exist in the material properties, infinite number
of planes of material symmetry are considered, the number of independent param-
eters reduces from 9 to 2; while for the latter, three mutually orthogonal planes of
symmetry exist, then the number of independent elastic, reducing the independent
elastic coefficient from 21 to 9.

The constitutive equations with the material matrices described above are re-
ferred to the principal material directions (Local Reference System), indicated with
pedices 1, 2 and 3. It is necessary to describe the same relations in the plate reference
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FIGURE 5.8: Definition of the PLATE Reference System (x, y, z) and
Material one (1, 2, 3)

system (Laminate Reference System)(x, y, z). They are different because different ply
may be oriented in different direction α, that is because different layers may exhibit
different material symmetry directions.

Indicating with α the angle between the in plane material coordinates (1, 2) and
the plate coordinates (x, y), we can define the rotation matrix

R =



cos2α sin2α 0 0 0 −sin2α
sin2α cos2α 0 0 0 sin2α

0 0 1 0 0 0
0 0 0 cosα −sinα 0
0 0 0 sinα cosα 0

−sin2α
2

sin2α
2 0 0 0 cos2α − sin2α

 (5.37)

Therefore, The constitutive equation in the rotation reference (plate reference
frame) holds as follows

C = RT C∗ R (5.38)

Condensed notation for Mechanical Problems

In this section, we proceed to the rearrangement in a more suitable form of the for-
mula previously explained. In this way, a compact form for the Mechanical PVD is
introduced.

First of all, let us introduce the vector Uk containing the unknowns of the com-
posite plate in terms of displacement sk as follows
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Uk = [sk] = [uk vk wk]
T (5.39)

where the superscript (.)k indicates that the variables refer to the kth layer of
the plate. Please keep in mind that we are going to separate the initial 3D struc-
tural problem, into the resolution of two of different dimension: 2D for the in-plane
displacement (planar); while 1D for the out-plane displacement (normal).

εT =



ε11
ε22
ε12
ε33
ε13
ε23

 =

[
εplanar
εnormal

]
(5.40)

σT =

[
σplanar
σnormal

]
= [C] [εplanar εnormal ]

T (5.41)

σT =



σ11
σ22
σ12
σ33
σ13
σ23

 =

[
σplanar
σnormal

]
(5.42)

Defining the following differential matrix, we can rewrite

D =



∂
∂x 0 0 0
0 ∂

∂y 0 0
∂

∂y
∂

∂x 0 0
0 0 0 − ∂

∂x
0 0 0 − ∂

∂y
0 0 ∂

∂z 0
∂
∂z 0 ∂

∂x 0
0 ∂

∂z
∂

∂y 0
0 0 0 − ∂

∂z


(5.43)

We have

Ψk = D Uk (5.44)

Sk = Ck Ψk = Ck D Uk (5.45)
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This matrix formalism for the treatment of the structural variables permits to
rewrite the variational formulation (previously introduced) in a more compact form
that is useful for the introduction of the UF and for the next numerical approxima-
tion by FE method. From the coupling structure-fluid, we had

∫
(Ωs)k

∂ΨT
k Sk dV =

∫
(Ωs)k

∂(Uk)T f k
m dV +

∫
Γs f

∂(Uk
assigned)

T fs f ds (5.46)

∫
Ω f

∂p,i p,i dV = −
∫

Ω f

1
c2

f
∂p

∂2 p
∂t2 dV −

∫
Γ f s

∂p f f s ds (5.47)

where

f k
m =

[
−ρs

∂2s
∂t2

0

]
(5.48)

fs f = p
[

n
0

]
(5.49)

f f s = ρ f [nt 0]
∂2Uk

∂t2 (5.50)

are, respectively, the mechanical inertial load and, the fluid-structure mutual
loads. It can be highlighted that the first term of the first equation of system is the
internal work associated with the generic orthotropic layer k, while the right hand
side terms are the external work done for the structural variable U at layer k, includ-
ing the inertia of the structure and the fluid loading acting only on the displacement
field s. In the second equation, the left hand side term is the internal work of the
acoustic cavity, while the acoustic inertial loading and the fluid-structure coupling
term are on the right side. It is shown that the fluid-structure coupling term refers
only to the structural variables at layer k and then no summation has to be applied
for this term; indeed, only the lamina in contact with the enclosed fluid modifies the
boundary condition of the acoustic field.

5.8 Structural Hypothesis Through-the-thickness for primary
variables

As previously introduced, we divide the dependence of the 3D initial problem through-
out the application of a 2D model which permits to express the unknown variables
as a set of thickness function depending only on the thickness coordinate z, and
the correspondent coefficients depending on the in-plane plate coordinates x and y,
expressed in the plate reference frame [4]. The generic variable g(x, y, z, t) and its
variation ∂g(x, y, z) may be written as follows
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g(x, y, z, t) = Fτ(z) gτ(x, y, t) (5.51)

∂g(x, y, z) = Fτ(z) ∂gτ(x, y) (5.52)

with

τ = 1, ..., N. (5.53)

The summing convention with repeated index τ is assumed. The order of ex-
pansion goes from 1 to higher order values N and the models can be ESL (Equivalent
Single Layer) or LW (Layers Ways). In the former the expansion variables are assumed
for the whole plate, and a Taylor expansion centered on the mid-plane is employed
as thickness functions, with z that varies from −h/2 and h/2, where h is the whole
plate thickness. In LW philosophy, In the latter the variable is considered indepen-
dent in each layer and Lagrange polynomials are assumed as thickness functions,
where z is defined in the local thickness coordinate for the k-th layer and goes from
-1 (assumed, the bottom of layer k) to 1 (assumed, the top of layer k); different from
the previous.

5.8.1 Equivalent Solid Layer (ESL) Approach

This group of theories arises from the basic Kirchhoff plate theory. The composite
structure is considered as an integral equivalent layer. ESL gives sufficiently ac-
curate global laminate response but they are inadequate if stresses at ply level are
required. In addition, they may lead to inaccurate results in case of high anisotropy
or localized loads.

FIGURE 5.9: (ESL) Approach

the thickness expansion for s is obtained via Taylor polynomials, then for each
scalar displacement component

s(x, y, z, t) = F0s0 + F1s1 + ... + FNsN = Fτ(z)s(x, y, t) (5.54)
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Fτ = zτ (5.55)

Therefore the independent variables become the mid-plane displacements u0, v0
and w0 and their high order derivatives.

5.8.2 Layer Wise (LW) Approach

The composite structure is thought composed of independent layers. This approach
may be considered mandatory for a full (and complete) 3D description of the stress-
strain state in laminates. The description of the cross sectional deformation of each
layer may be inaccurate and normally the continuity of transverse shear stresses
among layers is not satisfied a priori [4].

FIGURE 5.10: LW model

Applying this theory, we obtain

sk(x, y, zk, t) = Fτ(zk) sk
τ(z, y, t) (5.56)

Each layer of a multi-layered structure is described as an independent plate. The
displacement sk is described for each layer, satisfying naturally the continuity piece-
function form of displacement. The variables at top and bottom of each layer permit
to satisfy the displacement continuity at the layer interfaces. LW description of the
plate allows easily to an accurate 3D description of the boundary conditions and the
relative applied stress.

Using the condensed structural variable U previously introduced

Uk(x, y, z, t) = Fτ(z)Uk
τ(x, y, t) (5.57)
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Please keep in mind that, when ESL description is employed, z indicates the
whole plate thickness coordinate, whereas for LW assumption, z indicates the kth
lamina local thickness coordinate.

Starting from the fundamental nucleus, the general stiffness matrix of the con-
sidered multilayer is obtained by expanding via the index r in case of FGM layers,
via the indexes τ and s for the order of expansion in the thickness direction and via
the index k for the multilayer assembling for both equivalent single layer (ESL) and
LayerWise (LW).

FIGURE 5.11: Three layered structure with the internal layer in as-
sembling Equivalent Single Layer (ESL) assembly procedures.

For composite structures in ESL (Equivalent Single Layer) theory for layer ex-
pansion, all the layers accumulate (see 5.11) but in layer-wise approach all the layers
expand like finite element assemblage with considering the continuity condition be-
tween the layers (see 5.12). In the latter point of view, The assembly procedure leads
to a bigger matrix and thus a huge calculation time needed. Actran is based on ESL,
while MUL2 results on LW, This points out the fact that the latter presents more ac-
curate results than the one reached in Actran, although the less computational time.
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FIGURE 5.12: Three layered structure with the internal layer in as-
sembling LayerWays (LW) assembly procedures.
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5.8.3 Applying the Finite Element Approximation

We have largely talked about the main featured of FEM method. Now we are going
to apply the previous rule, the structure coupled to fluid. In the FE implementation,
the unknowns can be expressed in terms of their nodal values via appropriate shape
functions Ni. Thus for the structural variable Uk and for the fluid scalar variable p
we have

Uk
τ(x, y, t) = Ns

i (x, y) Qk
τ(t) (5.58)

p(x, y, z, t) = Np
i (x, y, z) Pi(t) (5.59)

where i = 1, ..., Ns : n for structure variables, with Ns
n denotes the number of

nodes of the considered 2D structural element, and i = 1, ..., Np
n for fluid variable,

with Np
n denotes the number of nodes of the considered 3D acoustic element. Q

contains the FE nodal values of the thickness expansion coefficients provided by UF
model for the plate subsystem. Finally, substituting

Uk(x, y, z, t) = Fτ(z) Ns
i (x, y) Qk

τ(t) (5.60)

In the Numerical test case of this dissertation, we will assume the following ele-
ment For The structural plate discretization, and the coupling surface, QUAD9 element
(with nine nodes) is used

For The Acoustic Domain discretization, HEX27 element (with 27 nodes) is used
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5.9 Derivation of Fundamental Matrices

In the following, the structural mass M and stiffness matrix K, the loads vector F and
the fluid coupling matrix S are obtained in terms of fundamental nuclei, which are
independent from the order of the considered expansion in the thickness direction.

5.9.1 Structural Stiffness Matrix

Let us consider the left hand side term of the first equation (5.61)

∫
(Ωs)k

∂ΨT
k Sk dV =

∫
(Ωs)k

[∂Uk]T [D]t [Ck] [D] [Uk] dV (5.61)

Substituting equation (5.60), we are going to obtain

∫
(Ωs)k

[∂Uk]T [D]t [Ck] [D] [Uk] dV = [Qk
s ]
∫
(Ωs)k

Nj(x, y) Fs(z) [D] [Ck] [D] Fτ(z) Ni(x, y) dV [Qk
τ(t)]

(5.62)

∫
(Ωs)k

[∂Uk]T [D]t [Ck] [D] [Uk] dV = [∂Qk
sj]

T Ksjiτ Qk
sj (5.63)

where the 3 x 3 stiffness nucleus Kτsij.

5.9.2 Structural External Loads

Let us consider now the generalized Mechanical Load f k
m applied on the layer kth, as

shown in following figure

From right hand side of the first equation (5.61), we define the work done by fm
as
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∫
Γk
[∂Uk]T f k

m ds (5.64)

where

[ f k
m(x, y)]T = [ fu(x, y) fv(x, y) fw(x, y)] (5.65)

Then substituting the FE approximation of the UF variables, we can rewrite it as
follows

∫
Γk
[∂Uk]T f k

m ds = [∂Qk
sj]

T Fτ(zl)
∫

Ak
Ns

i Ns
j ds = [∂Qk

sj]
T Fk

si (5.66)

where Ak is the reference surface area for layer k and zl is z-coordinate on which
the load is applied. The matrix (previously introduced) Fk

si is fundamental 3x1 nuclei
of the external loads.

5.9.3 Fluid-Structure Coupling Matrix

Let us consider the work done by the fluid
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Introducing the Finite Element Approximation, we obtain

∫
Γ f s

[∂Uk]T f f s ds = [∂Qk
sj]

T Fτ(z f s)
∫

Ak
Ns

i Np
j ds [n 0]T Pj = [∂Qk

sj]
T Skτij Pj (5.67)

where the 4x1 fluid coupling nucleus Skτij has been introduced.

5.9.4 Structural Mass Matrix

The virtual work done by the inertial loads of the kth layer for the structural variables
Uk can be rewritten as

∫
Ωk

s

[∂Uk]T ρk
s I

∂2Uk

∂t2 ds = [∂Qk
sj]

T Mkτsij ∂2Qk
τi

∂t2 (5.68)

5.9.5 Fluid Stiffness and Mass Matrices

The fluid internal work and inertial load of fluid is obtained throughout the Finite
Element interpolation of the fluid variable p; obtaining the acoustic stiffness matrix
and the acoustic mass matrix

∫
Ω f

∂p,i p,i dV = ∂Pi Hij Pj (5.69)

1
c2

f

∫
Ω f

∂p
∂2 p
∂t2 dV = ∂Pi Qij ∂2Pj

∂t2 (5.70)

5.10 Final Form of the Coupled Equations

After having derived the fundamental nuclei matrices, the assembly procedure will
be obtained. It consists in substituting the matricial form in equation (5.61) for the
structural and in in equation (5.60) for the fluid.

This system has unknown in (s, p)
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A FE code based on the formulation presented in this chapter has been imple-
mented. In particular, even if a structural FE code based on the UF was available at
the Department of Aerospace Engineering of Politecnico di Torino, named "MUL2".
In the following, we present the comparing solutions (given by actran), and solu-
tions (given by MUL2 software). As we are going to see, they work on different
philosophy, but in the end they both converge to the same solution. For doing so,
we will take a plate cavity coupled by fluid.
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5.11 Acoustic Coupling

The aim of the following part is studying problems where the structure globally in-
teracts with a surrounding fluid. The importance of this interaction depends on the
fluid nature (in terms of density) on the structure of interest.

A simple criterion to characterize the amount of coupling for a plate-like structure
is given by

βc =
ρ0 c0

ρs hs ωs
(5.71)

where

• hs represents the characteristic thickness of the structure

• ρs and ρ0 represent the density of the structure and of the fluid respectively

• c0 represents the sound speed in the fluid

• ωc represents the first natural frequency of the structure.

For βc << 1, the coupling is considered as weak. This is generally the case of a
structure that is coupled to a light fluid.

Please keep in mind that in weak coupling, The calculation of the structural vi-
bratory response is sufficient for the fully determining the coupled solution with the
superposition of the modal fluid behaviour. [25]

For βc >> 1, the coupling is considered as strong. This is the case when the struc-
ture radiates in a heavy fluid. In this configuration, the fluid modifies the vibratory
and acoustic response of the structure. In this case, it is necessary to account for
the fluid loading in determining the coupled solution. In other words, the coupled
equations governing the wave propagation in the fluid and in the structure must be
solved simultaneously. [27]

In the following, we will consider two different cases. Cubic cavity coupled with
air and according to the previous formula

AIR βc '
1.225 340

2700 0.01 50
' 0.3085 Weak Coupling (5.72)

WATER βc '
1000 1500

2700 0.01 40
' 1388.88 Strong Coupling (5.73)

These values can be considered antipodes. The major values that changes is fluid
density.
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5.12 Drawback: Limitations due to the patch size

The approximation of space-dependent physical or numerical functions by uniform
patch averages reaches its limit when the fluctuation pattern within a patch cannot
be captured by the coarse resolution of the patch grid. When the wavelength be-
comes smaller than two patches, the grid resolution is not sufficient small anymore
to capture the wave shape and aliasing phenomenon will occur.

The main limitation of FEM-coupled method is that modes with a transverse
wavelength below the dimension of two patches are missed. In this case, the patch
grid is not able to represent the wave shape according to the Nyquist theorem and
aliasing effects occur.

As sake of simplicity, the relative difference might be quite high between two
solution, for instance, considering a parallelepiped cavity. The Mesh has an impor-
tance into the final solution. The coarse mesh is composed by [5x5x5], while the
finest one by [20x20x10]

When frequency are low, the pressure peak are almost the same; while increasing
the frequency, the pressure peak of the coarser one has lost its fairness, this because
we are going to consider a wide range of frequency.

Remark The missed modes in the higher frequency range lead to an underestimation of
the system response.
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Chapter 6

Weak Coupling Interaction

This chapter deals with the validation of the structural-acoustic Finite Element code
throughout the fluid-structure coupling in a plate cavity system coupled with fluid.
First of all, the acoustic elements are validated for a simple geometry, where ana-
lytical solution is already known in literature; firstly in a cubic cavity, and later in
parallelepiped one. The coupled fluid is also important, we will use two different
fluid: Air, in order to analyse the weak coupling; and water, instead, for the strong
coupling.

The coupling solution method is validated considering two test cases; the first is re-
ferred to a weak coupled system, while the second is a strong coupled case one. The
validation is valid by comparing the solution of a commercial software, Actran. The
main goal of this part is showing the differences between the two solution, and try-
ing to find why.

This means that when structures vibrate against a fluid, the normal component of
the vibration to the structural surface must be identical to the corresponding particle
velocity in the coupled fluid. This concept must be kept on mind along this chapter.
This simple equality allows us to couple the equations that define structural and fluid
motion at the fluid-structure interface, as previously explained.

The fluid-structure coupling concept is that the normal particle velocity is identical
onto the structure and fluid boundary, but the tangential particle velocity is not the
same, defining the "slip condition" between the material wall and fluid, typical in
Fluid dynamic.

This concept is implemented in Actran software through the using of interfaces
and coupling surfaces. Remember that, as sake of simplicity, we are assuming the
Fluid Linearity, so that fluid properties do not depend on the fluctuating pressure
amplitude or phase.

The coupling surface is the exactly interface between the structural force applied
onto the fluid, and in the same time, the pressure force applied onto the structure;
we will see that this coupling concept will be implemented in a different way; but
the solution will be comparable.

It is quite difficult to classify vibro-acoustic systems for their coupling behaviour,
the following classification is valid just for simple geometries, like those considered
in the following: Whenever an heavy fluid, like as water, is contact with a structure,
a strong coupling behaviour is observed, while the cavity is filled by a light fluid, like
air, a weak coupling is obtained.

The structure is composed as follows: Structural plate, coupling surface and the
acoustic volume. First of all, we start with the validation of structural plate results
only, comparing the results obtained with Actran. The Plate is modelled by the
Classical Plate Theory (CLPT)
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6.1 Classical Plate Theory (CLPT)

Considering a plate with dimension a (along x), width b (along y), thickness h (along
z) and number of layers Nl which can be both isotropic or orthotropic is defined
in the orthogonal coordinates (xk

1; xk
2; xk

3) of the kth lamina oriented at an angle θk.
Assuming the xy-plane of the problem in the undeformed mid-plane of the laminate.
The kth layer is located between the points z = zk and z = zk+1 in the thickness
direction. Consider the following assumptions

• Thickness of the plate is small compared to other dimensions.

• The displacement components of the mid surface of the plate are small com-
pared to the thickness.

• Transverse shear deformation is neglected. Perpendicular surface to the mid
surface before and after deformation remains normal.

• The transverse normal strain εzz under transverse loading can be neglected and
also σzz is small and is negligible compared with the other stress components.

• Constant Displacement throughout the thickness direction.

Out-of-plane Displacement of Plates

FIGURE 6.1: Undeformed and deformed geometry in thickness direc-
tion under Kirchhoff hypothesis

In the Kirchoff hypothesis displacements (u,v,w) are assumed as follows

u(x, y, z, t) = u0(x, y, t)− z
∂w0

∂x
(6.1)

v(x, y, z, t) = v0(x, y, t)− z
∂w0

∂y
(6.2)

w(x, y, z, t) = w0(x, y, t) (6.3)

where u0, v0, w0 are displacements of the mid-plane surface; and (x, y) are in-
plane coordinates and z is the thickness direction, assumed as reference.
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It is possible to define linear three-dimensional strain-displacement relations as
follows

where ε0
xx, ε0

yy, γ0
xy are the membrane strains and ε1

xx, ε1
yy, γ1

xy are the flexural (bend-
ing) strains which is known as the curvature.

We use the previous strain relation in order to calculate the force and momentum
applied on the plate through the following relation

where Mxx, Myy, Mxy are moments resultants and Nxx, Nyy, Nxy are force resul-
tants are expressed in matricial form.

The coefficients Aij, Bij, Dij are extensional stiffness, bending-extensional cou-
pling stiffness and bending stiffness, respectively defined as

Keep in mind that in our test case, Just a Point Force is applied on node of mesh
constituting the plate; please remember that these matrices could change consider-
ing different leyers, for instance, in the case of the Orthotropic Material, as we will
deal with them.
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6.2 Boundary Condition

In the following, we will deal with two different types of Boundary Condition (BC).

Boundary Condition: Simply Supported

For a simply supported plate, it is prevented from deflecting but it results free to
rotate about a line along the boundary edge.

For example, for a simply supported edge parallel to the y axis, they can be
expressed by imposing the following condition

w = 0 and Mx = 0 (6.4)

For practical ways, For thin shell elements in Actran, A simple support is modelled
by restraining only the transverse translational degrees of freedom. This will be
visualized as follows

FIGURE 6.2: Actran Visualization of Simply Supported edges plate

Boundary Condition: Clamped

If a plate is clamped at the boundary, the deflection and the slope of the middle
surface must vanish at the boundary itself.

For example, for a clamped edge parallel to the y axis, they can be expressed by
imposing the following condition

w = 0 and
∂w
∂x

= 0 (6.5)

For practical ways, For thin shell elements in Actran, a clamped edge is mod-
elled by restraining the translational and rotational degrees of freedom of the external
nodes. This will be visualized as follows

FIGURE 6.3: Actran Visualization of Clamped edges plate
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6.3 Cubic Cavity

6.3.1 Structural Validation

Fist of all, we have to validate the structural behaviour in term of displacement.
We will compare the displacement of the solution of MUL2 software, to the corre-
sponding Actran solution, in order to eliminate any structural responsibility in the
difference (shown in the following) valid for the coupled cavity.

In this Section, we will deal with a squared dimension 1x1 [m2] made by alu-
minium with thickness equal to 0.01 [m]; through a structural mesh [20x20 elements].
Firstly, we consider the following mechanical properties of the isotropic plate are as fol-
lows: Young’s Modulus Es = 70 [GPa], mass density ρs = 2700 [kg/m3] and Pois-
son’s ratio ν = 0.35. A constant amplitude force excitation of 1 [N], over the fre-
quency range from 0− 300 [Hz], was applied at one of the off-center nodes of the
structural FE mesh with coordinate (0.25m, 0.35m), point at which the measurement
of displacement is acted [20][21].

We will test this plate in these different condition

• Isotropic Plate with Simply Supported edges boundary condition

• Isotropic Plate with Clamped edges boundary condition

• Orthotropic Plate with Simply Supported edges boundary condition

• Orthotropic Plate with Clamped edges boundary condition

FIGURE 6.4: Simply Supported edges (at left); Clamped edges (at
right)

We will graph the displacement considering different polynomial-grade displace-
ment function through the thickness (Lawerwise), as previously explained; obtained
in MUL2 and Actran in order to compare the response. The point load will oscillate
with variable frequency in range (0/300 [Hz]).

The Point in which we will record the displacement results coincides with the
excitation point, that is (0.25m, 0.35m).
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FIGURE 6.5: Displacement at (0.25m, 0.35m) for Isotropic plate with
layer-wise 2 considering Simply Supported edges

FIGURE 6.6: Displacement at (0.25m, 0.35m) for Isotropic plate with
different layer-wise considering Clamped edges
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As we see MUL2 solutions are comparable for LW2 and LW3, despite in LW1 the
shape is captured, but it presents valuable error (compared to the Actran solution),
since it involves linear expansion through the thickness (Kinematics of displacement
not fully expressed through linear), probably it’s not sufficient grade to completely
represent the displacement, we can also verify that LW1 predicts bigger resonance
frequency, and the error (the distance between Actran peak and LW1 one) increases
with the frequency itself. As a matter of fact, the LW2 solution can properly represent
the structural point displacement in a correct way.

Both Simply supported and Clamped have comparable behaviour, but the Clamped
solution error is bigger than simply supported one (for the same frequency range).

After the interpretation of the following results, we can assume that the structure
part (just the plate)

Vibration Analysis

Vibration is time dependent displacements of a part of the structure from an equilib-
rium position; these displacements could be repetitive and their repetitions are exe-
cuted at equal interval of time from the equilibrium position the resulting motion is
said to be periodic in a particular frequency range.

In this case, a Point Load is excited in a particular point, the excitation point.
One of the most important parameters associated about vibration is its natural fre-
quency. Each structure has its own natural frequency for a series of different modes
which control its dynamic behaviour of the plate, as sake of simplicity, for Isotropic
plate (simply supporter edges) they can be visualize in following figures through its
maximum local peak. [15]



72 Chapter 6. Weak Coupling Interaction

Natural Frequency
mode Value
1 (1,1) 49 [Hz]
2 (2,1) 123 [Hz]
3 (2,2) 197 [Hz]
4 (3,2) 246 [Hz]

Each mode can be represented as follows

FIGURE 6.7:
49 [Hz]

FIGURE 6.8:
123 [Hz]

FIGURE 6.9:
197 [Hz] FIGURE 6.10:

246 [Hz]

Solution predicted by these theories can give us insight into the dynamic be-
haviour of plate and this includes the propagation of waves and the study standing
waves and for the vibration modes [8][13].

When an oscillating force is applied at a resonant frequency of a dynamical sys-
tem, the system will oscillate at higher amplitude than when the same force is ap-
plied at other non-resonant frequencies .

In the previous pictures, the peak are shown and they represent the Resonance
Frequency of vibration plate, and we later verify that these points act the sound
pressure level inside the cavity, in fact the peaks of SPL are influenced from the
’structural’ natural plate frequency [19].

This analysis is made for many others condition: Clamped, Orthotropic (Clamped
and Simply Supported) for [0°/90°/0°] and [90°/0°/90°] lamination, but the reason-
ing is all the same.
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Orthotropic Material plate

We consider a multi-layered composite plate; three-layered composite, composed
by the following mechanical constants E1 = 25 [GPa], E2 = E3 = 1 [GPa], G13 =
G23 = 0.5 [GPa], G12 = 0.2 [GPa] and ν13 = ν23 = ν12 = 0.25 considering differ-
ent lamination [0°/90°/0°] and [90°/0°/90°], despite we will not aspect any huge
difference. We consider the same dimension [1mx1m], and the same point of excita-
tion.

The results are the following

FIGURE 6.11: Displacement at (0.25m, 0.35m) for Orthotropic plate
LW2, lamination [0°/90°/0°], considering Simply Supported edges

Here we can verify that the differences become larger in the case of composite
plate, where the layers effects are more pronounced. Indeed, the layer-wise model
(implemented in MUL2) is able to capture the complex dynamic of the structure,
while the Actran solution is made up considering an average of the properties in
the multi-layer laminate. This may be create huge error between MUL2 and any
commercial software based on finite element method [23][24].

Indeed the Orthotropic behaviour is largely different from the isotropic one, in
fact if the latter presents a good estimate of displacement, the former is reduced in
such a limited range of frequency (smaller ones), while considering higher frequency
the error may increase since the average contribution presented in Actran solution
[18].

This difference obviously will interfere with the coupling fluid, as we will deeply
study [17].
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FIGURE 6.12: Displacement at (0.25m, 0.35m) for Orthotropic plate
LW2, lamination [90°/0°/90°], considering Simply Supported edges

As a sake of completeness, we are going to analyse the plate, changing the BC
into ’Clamped’ edges.

As we verified, in wish of obtaining the accurate prediction of displacement (and
stress) distribution and consequently model the entire kinematics of laminated com-
posites, the three dimensional state of displacement have to be analysed, in these
case the usage of new family of layer-wise theories (LW) is crucial, in which the
displacement field is defined for each layer, including discrete material layer [22].

Actran uses models based on the equivalent single layer (ESL), and in the case
of ortotropic plates, it produces much error (mostly in higher frequencies), while
in the isotropic plate case, the two solution Equivalent Single layer and Layer-wise
theories coincides.

Layer-wise Theories provide more accurate solutions of the three dimensional
states that are of primary importance in the structural behaviour, and subsequently,
for the acoustic field behaviour inside the cavity, and as matter of facts, we aspected
much error in ortotropic plates solutions at higher frequencies.
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FIGURE 6.13: Displacement at (0.25m, 0.35m) for Orthotropic plate
LW2 , lamination [0°/90°/0°], considering Clamped edges

FIGURE 6.14: Displacement at (0.25m, 0.35m) for Orthotropic plate
LW2 , lamination [90°/0°/90°], considering Clamped edges
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6.3.2 Coupled Fluid-Structure Cavity

The test here considered in this work is a simplified structure, a cubic cavity com-
posed by a rigid walled cubic cavity of dimensions 1x1x1 [m3], over which a square
isotropic plate is simply supported of dimension 1x1 [m2] made by aluminium with
thickness equal to 0.01 [m], as shown in figure (6.15).

FIGURE 6.15: Plate backed Cubic Cavity system.

Excitation location: A = (0.25m, 0.35m, 1m);

Measurement locations: B = (0.75m, 0.75m, 0.75m), C = (0.35m, 0.70m, 0.65m);

The mechanical properties of the plate are as follows: Young’s Modulus Es = 70 [GPa],
mass density ρs = 2700 [kg/m3] and Poisson’s ratio ν = 0.35. A constant amplitude
force excitation of 1 [N], over the frequency range from 0− 300 [Hz], was applied at
one of the off-center nodes of the structural FE mesh.

For Computational effect, a mesh composed by 10x10x10 elements, through us-
ing H27 (Hexa) for the discretization of the fluid, and Q9 (QUAD) for the discretiza-
tion of the plate.

The previous cavity will be analysed filled filled with air and water, respectively,
in order to study the weak and strong coupling effect.
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FIGURE 6.16: Coupled FE/FE model: Plate backed by a rigid walled
cavity.

6.3.3 Weak Coupling Interaction

The cubic cavity is filled with air with the following properties: speed of sound
c f = 343 [m] and mass density ρ f = 1.2 [Kg/m3]. In order to study, the Sound
Pressure Level (SPL) in points B and C, we added two ’Virtual Microphones’.

Plotting the Results, the frequency response functions (FRF), obtained in Actran

FIGURE 6.17: Actran Solution (FRF) in point B(0.75m, 0.75m,
0.75m)[left] and C(0.35m, 0.70m, 0.65m) [right] for Isotropic plates

Here we show the values of the absolute value of the fluid node pressure in
pascal in point B and C; obtained in Actran. We have to validate the results from
MUL2 program, in the same points and for the same condition. First of all, we have
to decide the order of expansion we used to discretize the thickness of the plate itself.
We later see how the MUL2 solution is modified by changing it [31].

Notation LDN is the notation adopted for LW models, where L define the use of
a LW description and D and N indicates the PVD variational principle and the order of
the expansion, respectively.

Plotting the Node Pressure for LDN for N = 2, 3, 4
we obtain
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FIGURE 6.18: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m)
[left] and C(0.35m, 0.70m, 0.65m) [right] for Isotropic plates
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It can be observed that there is no visible difference in the respective noise trans-
fer functions between the two softwares, despite the expansion order is increasing.
More it increases, more time is necessary to compute the solution. The LD1 approxi-
mates the function as linear so it will produce much error than the others, but in the
same time, if we add a double linear element through the thickness, we reach the
results given by LD2. [3]

The different behaviour is caused because the linear approximation is not suffi-
cient enough to represent the complete kinematics of the coupled system. That is
valid for Isotropic plates and for simply supported edges.

In the following, a Parametric study is made to analyse how the solution is mod-
ified due to relative changes, with the comparison of Actran solution.

We will test this plate in these different condition

• Isotropic Plate weakly Coupled increasing the thickness plate

• Isotropic Plate weakly Coupled changing the boundary condition

• Orthotropic Plate weakly Coupled with Simply Supported and Clamped edges BC
with different lamination [0°/90°/0°] and [90°/0°/90°].

Isotropic Plate Coupled increasing the thickness plate

The next key point is increasing the plate thickness, and analyse the resulting results.
Please keep in mind that thickness (reference value) is based on tre f = 0.01 [m],
whose results were previously displayed. Now, the object of this part is to point out
how the solution is modified in the case of 10 tre f , 20 tre f , 30 tre f respect to reference
value. A LW3 model will be used.

The results are shown in the following

FIGURE 6.19: Coupled plate with Thickness = 10 tre f using LW3
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FIGURE 6.20: Coupled plate with Thickness = 20 tre f using LW3

FIGURE 6.21: Coupled plate with Thickness = 30 tre f using LW3
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The Actran solution continues to converge to MUL2 one, despite the varying
plate thickness, this means that there is no depending effect over the resulting re-
sults, so any future difference is independent from the thickness.

After having verified the fairness of the solution, we may notice that peaks are
converging, useful in the project. The convergent values depend form the material
properties like the mass density and as well as the geometry and BCs.

The resonance frequencies corresponding to the maximum peak on the SPL ver-
sus frequency curve decreases as plate thickness dimension is increased, which is
expected because it produces a decrease of air cavity thickness which leads to in-
crease equivalent air stiffness.

Overall, the curve is shifted toward downwards with increasing thicknesses, in-
dicating that the sound transmission property is reduced due to the increase the
stiffness bending D = Et3

12(1−ν2)
.
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Isotropic Plate Coupled changing the boundary condition

Numerical studies are performed in this subsection to explore further the relation-
ships between the two different boundary conditions and the significant influence
of the boundary condition on the sound transmission properties of coupled panel
structures in terms of frequency characteristic curves.

It can be expected that the natural frequency of the clamped system are distinctly
higher than those of the simply supported system in the lower frequency range. This
is attributed to the more rigorous constraint provided by the clamped condition than
that by the simply supported condition, which is equivalent to increasing the panel
stiffness.

An analytical approach has been developed to investigate the influence of bound-
ary constraints (fully clamped versus fully simply supported) on the Fluid node
pressure performance of a finite panel structure containing an air cavity. The theory
is built upon the vibration responses of the panels coupled by the air cavity. Since
Actran solution converges to MUL2 to validate the theoretical model, with good
overall agreement achieved for both types of the boundary as in the following [5]

FIGURE 6.22: Clamped solution: Acoustic pressure in B (left); and
Acoustic pressure in C (right)

The intense peaks and dips in the SPL versus frequency curve reflect the inherent
modal behaviors of the panel system. The SPL dips in the simply supported case
are shifted to lower frequencies in comparison with those ones of the clamped case,
implying the fact that the natural frequencies of the simply supported system are
lower than their counterparts of the clamped system, as a consequence the natural
frequencies associated with the simply supported boundary condition are lower, as
the clamped condition provides a more rigorous constraint on panel vibration [5]

To explore the boundary effects further, the typical (2, 2) mode behaviour of a
fully clamped panel partition is compared in following figure with the relative of a
simply supported one.

The (2, 2) mode natural frequency of the fully simply supported plate system oc-
curs at f (2,2)

s = 197 [Hz], while in fully clamped system, it shifts to f (2,2)
s = 207 [Hz].

Although the plate mode shapes at different boundary conditions exhibit similar
forms, important discrepancies can be observed at panel edges, since these differ-
ences at the panel edges reflect the boundary effects, i.e., the requirement that ∂w

∂z = 0
for the clamped condition and that ∂2w

∂z2 = 0 for the simply supported condition.



6.3. Cubic Cavity 83

FIGURE 6.23: (2,2) mode Natural frequency comparison: Simply sup-
ported

FIGURE 6.24: (2,2) mode Natural frequency comparison: Clamped
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The consistency of the two models based separately on the clamped boundary
condition and the simply supported boundary condition is confirmed when the panel
dimensions become infinitely large; an excellent agreement is achieved between the
two models, as the effect of boundary condition becomes negligible. In order to
verify the last sentence, we are going to simulate a cubic cavity whose dimension
reaches 1000 [m], if we register the acoustic pressure in clamped and simply sup-
ported, we will not note any difference.

The Boundary Condition influence strictly depends on the structural dimension
of the considered plates, and it does not depend on the coupling influence.
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Orthotropic Material plate

We consider a multi-layered composite plate; three-layered composite, composed
by the following mechanical constants E1 = 25 [GPa], E2 = E3 = 1 [GPa], G13 =
G23 = 0.5 [GPa], G12 = 0.2 [GPa] and ν13 = ν23 = ν12 = 0.25 considering differ-
ent lamination [0°/90°/0°] and [90°/0°/90°], despite we will not aspect any huge
difference. We consider the same dimension [1mx1m], and the excitation is placed
in the same point as the previous, coupled the acoustic cavity below. The following
results are obtained though using LW2 theory.

The results are the following

FIGURE 6.25: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,
weakly coupled, for the lamination [0°/90°/0°], simply supported

edges

FIGURE 6.26: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,
weakly coupled, for the lamination [90°/0°/90°], simply supported

edges

In the previous figures, we can verify the the difference between the Actran so-
lution and the MUL2. As mostly explained before, in the case of ortotropic plates,
the difference arises in higher frequency range due to the fundamental difference of
structural behaviour.

The weak coupling may be influenced by the fluid density, in this case, low equal
to 1.2

[
Kg
m3

]
.
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FIGURE 6.27: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,

weakly coupled, for the lamination [0°/90°/0°], clamped edges

FIGURE 6.28: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,

weakly coupled, for the lamination [90°/0°/90°], clamped edges

As it clearly shows, the Actran solution, based on ESL approach is different from
the MUL2 one which is based on layer-wise; in fact the ESL is defined where all
the laminate layers are referred to the same degrees of freedom (DOFs), whose ad-
vantages are their inherent simplicity and low computational cost, due to the small
number of dependent variable, but it results to fail in the dynamic response, since in
the high frequency range, some differences are visible. The MUL2 solution is based
on Layer-wise theory (LW), this approach provide the variables to be linked to a
’specific’ layer.
In this work, a new high-order layer-wise plate formulation for vibration of lami-
nated composite plate is used, whose performance of these LW models is better but
it require high computational effort as the number of variables increases with the
number of layer themselves.
These differences will be also distinguished in the node local pressure because the
system is acted (throughout the initial displacement) in different way, because the
displacement continuity condition between the plate structure and the adjacent fluid
particle, the driving relation between the fluid particles and the plate dynamic re-
sponse, changes considering the different model.
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The previous results were obtained using LW2 theory, but in the following we
are asking how the solution (and the relative difference in Actran) using LW1 theory.

Now Let us consider LW1 Theory.

FIGURE 6.29: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,
weakly coupled, for the lamination [0°/90°/0°], simply supported

edges

In the previous figure (6.29), the behaviour does not change (from the LW2 one),
two different region are distinguished; low frequency, resulting the perfect match
between two solution (LW1 Mul2 and Actran), while the higher frequency, the rela-
tive difference will arise because of the theory used to describe the structural model.

FIGURE 6.30: Relative Difference from LW1 and LW2 theories, the
resulting solution are highly comparable
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Appendix - Loss of Reality: Shifting Mode

As we stated previously, we must define the order of approximation throughout the
thickness of the plate; this means that, if we define LD1, a first order approximation
function is defined, that is two points are necessary; while if we define LD2, a second
order approximation function is defined, that is three points are necessary, and so on.

These points are placed symmetrically throughout the thickness, so that, for the
case LD1, one point is placed at the top (+h/2), and the other one is placed down in
the bottom one (−h/2), where h is the entire thickness plate.

FIGURE 6.31: LD1 at the left without the central node, while LD2 at
the right with the central node

Considering the mid-surface laying at h = 0. For Actran, it is necessary the
presence of the nodes at the middle of thickness (h = 0), on which the fluid node
pressure will work; without them, the solution will get be totally wrong. While in
the case of LD2, down-half plate is placed inside the fluid volume, without numer-
ical solution loss, because the nodes of fluid will work on the central nodes of the
plate, although the loss of reality meaning.

In the case of LD1 since the missing of central nodes, the plate up-shifting for
h/2 is necessary to ri-obtain the solution as for LD2, considering errors due to low-
order expansion.

In the shifted mode, down-half plate is placed at the coupling interface as in the
reality: Fluid - Interface - Structure.

The Shifted mode is necessary for LDN with odd N; while for even N it is not, the
solution will converge to the same one as the not-shifted mode.
In this part, it is shown one of the most important difference between Industrial
software, like Actran, and the MUL2 software. While the former waives the reality
in order to use the finite element coupled method; the latter can produce the same
outputs without the loss. That’s a important key concept.
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6.3.4 Resume: Weak coupling Effect

Thanks to the low modal density in the considered frequency range 0[Hz] − 300[Hz],
every single modal contribution is clear visible to effect the node pressure response
because of concerning the structural response, and here to the weak coupling be-
tween fluid and structure, the natural frequencies of the coupled system are con-
trolled by the plate vibrations mode.

FIGURE 6.32: Comparison: FRF Pressure response (top) and Plate
Dynamic Response (bottom)

The effect of using the refined LD2 model with respect to the EDN solution is evi-
dent for the plate displacement dynamic; in fact, figures show that the FRF response
of the refined LW model appears shifted toward low frequencies, due to the over
stiffness exhibited by the ED2 solution, except the LW1 whose behaviour is simi-
lar to EDN models. In figure (6.32), that the resonance peak of the coupled system is
fully controlled by the modal vibration of plates, since the coupling fluid, in this case
air, has low density and so low effect in sway the FRF solution. We can also verify
that the resonance frequency, in the case of weak coupling, can be obtained through
the superposition of the modal vibration of plates (peak 1,2,4,5) and the missing are
given by the modal fluid cavity

In fact, through the modal extraction of the uncoupled fluid cavity, we obtain the
missing peak in FRF solution (peak 3,6)

Modal Extraction of the Uncoupled Fluid Cavity
Peak Value
3 171 [Hz]
5 242 [Hz]
6 297 [Hz]

As sake of simplicity, the weak coupling solution (in term of frequency) may be
obtained without the coupled resolution of the fluid structural system. This permits
a rapid evaluation and low computation effort. This is not true in the case of strong
coupling, in which the solution is reached just through the resolution of complete
system of equation.
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FIGURE 6.33: 1st Cavity Mode at 171 [Hz]

FIGURE 6.34: 2nd Cavity Mode at 242 [Hz]

FIGURE 6.35: 3rd Cavity Mode at 297 [Hz]
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Chapter 7

Strong Coupling Interaction

To fully complete the coupled problem, the displacement continuity condition be-
tween the plate particle and the adjacent fluid particle and the driving relation be-
tween the fluid particles and the plate dynamic response.

It is in usually complex to classify vibro-acoustic systems for their coupling be-
haviour, the following classification is valid just for simple geometries, like those
considered in this thesis, it states that whenever an heavy fluid fluid, like as water,
is contact with a structure, a strong coupling behaviour is observed.

In general, the continuity condition for the fluid-structure coupling is described
through the condition of the velocity of the particles pertaining separately to the
fluid medium and the solid plate when the fluid is at rest, closed within the sur-
rounding cavity. Firstly, we have considered the coupling with air, and since its
density is low, we have called the ’weak’ coupling. Now we are going to change the
the coupled fluid with water, and since its density is quite high, we call the ’Strong’
effect. In this part, we are going to analyse the difference effect of the acoustic cavity
in the the evaluation of the node pressure effect.

Please keep in mind that structure dimension will be unchanged, in order to
compare similar structure, so the dimension will be the same as the previous case;
later we are going to modify the plate dimension as a rectangular in order to evalu-
ate its effect, considering parallelepiped structure cavity.Please keep in mind that the
virtual microphones will be placed at the same as the weakly one. The only chang-
ing thing is fluid into Water.

It consists of a aluminium plate backed by a rigid-walled acoustic cavity in figure
(6.15) and in the case of Strong Coupling, Water, with the following material proper-
ties ρ0 = 1000 [Kg/m3], c0 = 1500 [m/s].

We will test this plate in these different condition

• Isotropic Plate with Simply Supported and Clamped edges boundary conditions

• Isotropic Plate strongly Coupled increasing the thickness plate

• Orthotropic Plate strongly Coupled with Simply Supported and Clamped edges
BC with different lamination [0°/90°/0°] and [90°/0°/90°].
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Notation LDN is the notation adopted for LW models, where L define the use of
a LW description and D and N indicates the PVD variational principle and the order of
the expansion, respectively.

Plotting the Node Pressure for LDN for N = 2, 3
For Simply Supported Edges (SS), we obtain

FIGURE 7.1: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m)
[left] and C(0.35m, 0.70m, 0.65m) [right] for Isotropic plates for Sim-

ply supported edges, using LW2 Mul solution.

FIGURE 7.2: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m)
[left] and C(0.35m, 0.70m, 0.65m) [right] for Isotropic plates for Sim-

ply supported edges, using LW3 Mul solution.

We observe, that in high density fluid like water, the mean pressure level are
higher than the correspondence of air due to the high difference in density value.
Nothing new about the behaviour of the relative solution Actran and MUL2 one. The
MUL2 LW1 has the usual different behaviour as the weak coupling for the isotropic;
This lets me assert that the coupling doesn’t influence on the rightness of the solu-
tion at least for the the Isotropic case. That was valid for Simply supported edge.

In order to evaluate the effect of the boundary condition on the interaction fluid
- structure, let us simulate imposing the null rotation around the edges, constituting
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the clamped solution with isotropic plate (Strong Coupling).

Remembering the structure:

In the following, let us graph the comparison between the LWn (n = 1,2,3) and
the actran solution:

FIGURE 7.3: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m)
for Isotropic plates for Clamped edges for LW2 and Actran for Strong

Coupling

It can be seen that the natural frequency of the clamped system are distinctly
higher than those of the simply supported system in the lower frequency range. This
is attributed to the more rigorous constraint provided by the clamped condition than
that by the simply supported condition, which is equivalent to increasing the panel
stiffness. Finally, it can be noticed that increasing the edge does not provide any
difference in solution, none effect could be attributed due to its constraint.

The difference between the MUL2 LW1 is due to locking effect.
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FIGURE 7.4: Fluid Node Pressure in point C(0.35m, 0.70m, 0.65m)
for Isotropic plates for Clamped edges for LW2 and Actran for Strong

Coupling



Chapter 7. Strong Coupling Interaction 95

7.0.1 The Locking Phenomenon in finite element method

The Locking Effect is a term describing the overestimation of the stiffness in a struc-
ture or element, leading to poor prediction of the structural response in terms of
displacement.

Solid elements with linear interpolation, as in the LW1 case, are especially sus-
ceptible to many locking phenomena. Special precautions to remedy these problems
are therefore needed in order to obtain an element that is usable in analysis of shell
like structures [29]. Common locking phenomena are due to the Poisson and thick-
ness locking whose phenomena occurs in out-of-plane bending analyses using solid
elements. The underlying reason for this effect is the approximation on the displace-
ment field. A linear displacement approximation, will produce constant transverse
normal strains through the thickness, which will couple with the linearly varying
in-plane strains due to the Poisson’s effect. This causes a discrepancy between the
transverse and in-plane strains, leading to overestimation of the stiffness.

In order to avoid it, we will considering two elements constituting the whole
plate thickness.

FIGURE 7.5: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m) for
Isotropic plate, considering considering MUL2 LW1 with element 1

and 2 and Actran

This is symptom of the locking effect affecting the MUL2 solution.
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7.0.2 Isotropic Plate strongly Coupled increasing the thickness plate

The influence of panel thickness, in the case of water, on SPL is particularly strong
for finite systems at low frequencies, the significance of which should not be over-
looked in the process of designing.

The Plate reference is fixed at tre f = 0.01 [m], it might be considered as thin shell
strongly coupled. In order to study the influence of panel thickness, we are going to
consider different thicknesses x10, x20, x30, so the panel plat may be considered as
a thick.
The results are the following

FIGURE 7.6: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m)
for Isotropic plate, considering thickness x10 tre f for LW3 MUL2 and

Actran for Strong Coupling

The solution seems not to be influenced by the coupling effect, and as in the
previous of weak coupling, The MUL2 solution and Actran one are comparable also
in this case.

FIGURE 7.7: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m)
for Isotropic plate, considering thickness x20 tre f for LW3 MUL2 and

Actran for Strong Coupling
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FIGURE 7.8: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m)
for Isotropic plate, considering thickness x30 tre f for LW3 MUL2 and

Actran for Strong Coupling

Finally, we can state that the thickness of the plate doesn’t influence the relative
error between the MUL2 and Actran solution.

7.0.3 Orthotropic Plate strongly Coupled with Simply Supported and Clamped
edges BC with different lamination [0°/90°/0°] and [90°/0°/90°].

We consider a multi-layered composite plate, coupled to water; three-layered com-
posite, composed by the following mechanical constants E1 = 25 [GPa], E2 = E3 =
1 [GPa], G13 = G23 = 0.5 [GPa], G12 = 0.2 [GPa] and ν13 = ν23 = ν12 = 0.25
considering different lamination [0°/90°/0°] and [90°/0°/90°], despite we will not
aspect any huge difference.

We consider the same dimension [1mx1m], and the excitation is placed in the
same point as the previous, coupled the acoustic cavity below. The following results
are obtained though using LW2 theory.

The results, using LW2 theory, are the following
In the previous figures, we can verify the the difference between the Actran so-

lution and the MUL2. As mostly explained before, in the case of ortotropic plates,
the difference arises in higher frequency range due to the fundamental difference of
structural behaviour model used in the description.

The strong coupling may be influenced by the fluid density, in this case, high
equal to 1000

[
Kg
m3

]
.
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FIGURE 7.9: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,
strongly coupled, for the lamination [0°/90°/0°], simply supported

edges

FIGURE 7.10: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,
strongly coupled, for the lamination [90°/0°/90°], simply supported

edges
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FIGURE 7.11: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,

strongly coupled, for the lamination [0°/90°/0°], clamped edges

FIGURE 7.12: Fluid Node Pressure in point B(0.75m, 0.75m, 0.75m);
[left] and C(0.35m, 0.70m, 0.65m) [right] for Orthotropic plates,

strongly coupled, for the lamination [90°/0°/90°], clamped edges

As it clearly shows, the Actran solution, based on ESL approach is different from
the MUL2 one which is based on layer-wise; in fact the ESL is defined where all
the laminate layers are referred to the same degrees of freedom (DOFs), whose ad-
vantages are their inherent simplicity and low computational cost, due to the small
number of dependent variable, but it results to fail in the dynamic response, since in
the high frequency range, some differences are visible. The MUL2 solution is based
on Layer-wise theory (LW), this approach provide the variables to be linked to a
’specific’ layer.
In this work, a new high-order layer-wise plate formulation for vibration of lami-
nated composite plate is used, whose performance of these LW models is better but
it require high computational effort as the number of variables increases with the
number of layer themselves.
These differences will be also distinguished in the node local pressure because the
system is acted (throughout the initial displacement) in different way, because the
displacement continuity condition between the plate structure and the adjacent fluid
particle, the driving relation between the fluid particles and the plate dynamic re-
sponse, changes considering the different model.
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The previous results were obtained using LW2 theory, but in the following we are
asking how the solution (and the relative difference in Actran) using LW1 theory.

7.0.4 Resume: Strong coupling Effect

Thanks to the high density in the considered frequency range 0[Hz] − 300[Hz], ev-
ery single modal contribution is clear visible to effect the node pressure response
because of concerning the structural response, and here to the strong coupling be-
tween fluid and structure, the natural frequencies of the coupled system are not just
controlled by the plate vibrations mode, as happened in low density effect.

The peak given by the single structure will not create a corresponding peak for
the coupled one, because the element associated due to the density is not negligible,
but high; affecting itself on solution.

In the following, We are going to deeply study another important geometry, rect-
angular cavity backed by a panel. This is important because it represents one of exam-
ples presented in vibroacoustic literature, in the thesis "Krylov Subspace Based Direct
Projection Techniques for Low Frequency, Fully Coupled, Structural Acoustic Analysis and
Optimization." and in the book "Finite Element and Boundary Methods in Structural
Acoustics and Vibration" by Sgard and Atalla.

In order to test the unknown validity of a program, MUL2; we are going to com-
pare it a solution presented in literature. That represents a precious mine to pursuit
our duty.
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Chapter 8

Numerical Model Validation

In the following, We are going to deeply study another important geometry, rectan-
gular cavity backed by a panel. This is important because it represents one of exam-
ples presented in vibroacoustic literature, in the thesis "Krylov Subspace Based Direct
Projection Techniques for Low Frequency, Fully Coupled, Structural Acoustic Analysis and
Optimization." and in the book "Finite Element and Boundary Methods in Structural
Acoustics and Vibration" by Sgard and Atalla [5].

In order to test the unknown validity of a program, MUL2; we are going to com-
pare it a solution presented in literature. That represents a precious mine to pursuit
our duty.

8.1 Vibro-Acoustic Response of a Rectangular Cavity (Water
Filled) backed by a Isotropic panel

FIGURE 8.1: Plate backed rectangular cavity (water filled) sys-
tem. Excitation location: A = (0.0435 [m], 0.28 [m], 0.14075 [m]); Mea-
surement location(s): A = (0.0435 [m], 0.28 [m], 0.14075 [m]), B =

(0.1305 [m], 0.175 [m], 0.07 [m]).
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In order to exhibit the limitations (as previously introduced) of using modal ba-
sis let us consider the following example as in figure 8.1.

This consists of a simply supported aluminium plate backed by a rigid-walled
acoustic cavity. The lateral dimensions of the plate are a = 0.35 [m], b = 0.29 [m]
and its thickness is 1.5 [mm].

The lateral dimensions of the cavity are the same as the plate and its depth is
hc = 14 [cm]. The material properties are the following: E = 72 [GPa], ρplate =

2700 [Kg/m3], ν = 0.33. The fluid properties (water) are ρ0 = 1000 [Kg/m3],
c0 = 1500 [m/s]. A harmonic unit point force (1N) is applied normally to the
plate at point A = (0.0435 [m], 0.28 [m], 0.14075 [m]) over the entire frequency range
of 0− 600 [Hz]. The mesh used for the discretization is [10x10x10].

In the case of air (weak coupling), the use of uncoupled or coupled modal basis
works well. However, in the case of water (strong coupling), the solution is not con-
verged.

The desired output quantities considered for this test case are as follows; the
structural displacement response at driving point at the unit structural point force
location A = (0.0435 [m], 0.28 [m], 0.14075 [m]), and fluid pressure (quite close to the
center of the rectangular domain) at B = (0.1305 [m], 0.175 [m], 0.07 [m]).

We are going to follow the same path (as in the previous chapter), but in this
case we are going to visually compare to the solution in available literature. We
have to validate the structural behaviour in term of displacement. We will compare
the displacement of the solution of MUL2 software, to the corresponding Actran
solution, in order to eliminate any structural responsibility in the difference (shown
in the following) valid for the coupled cavity [1].

We will test this plate in these different condition

• Isotropic Plate with Simply Supported edges boundary condition

• Isotropic Plate with Clamped edges boundary condition

First of all, we are going to measure structural displacement in A, both in Simply-
supported and Clamped condition consideringjust the Plate Analysis

From the previous pictures, we can state that the LW1 always present the ’differ-
ent’ behaviour respect to high order theories (LW2, LW3), and changing the bound-
ary condition (clamped) although more rigid, nothing new to be detected. The
MUL2 solution and Actran are comparable.

8.1.1 Water Coupled Cavity

Let us lead to the coupled structure analysis using simply supported edges and let
us compare it to the solution in literature
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FIGURE 8.2: Displacement at (4.35 [cm], 0.28 [m]) for Isotropic plate
LW2 considering Simply Supported edges

FIGURE 8.3: Displacement at (4.35 [cm], 0.28 [m]) for Isotropic plate
LW2 considering Clampled

FIGURE 8.4: Fluid Node Pressure in point B; (left) Actran and Mul2
(LW2) solution, (right) literature
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FIGURE 8.5: Fluid Node Pressure in point B using Actran and Mul2
(LW3)

In the previous figure, something important happens. The MUL2 solution highly
comparable to a solution in literature obtained with other ways. The validating
process has been passed. The main peak of the solution process highly coincide the
the solution in literature, and this is enough important for the validating process
design.

The displacement in A is the following desired feature.

FIGURE 8.6: Plate (coupled) Displacement in point A; (left) Actran
and Mul2 (LW2) solution, (right) literature

The displacement function follows the same directives explained in the previous
section. Finally, we are changing the boundary condition from Simply Supported to
Clamped. The resulting pressure in B for clamped edges is the following

We can observe the same difference in LW1 as in any other previous graph due
to the low kinematics parameters used for describing it, while the LW2 and LW3 are
almost comparable.
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FIGURE 8.7: Plate (coupled) Displacement in point A; Actran and
Mul2 (LW3) solution

FIGURE 8.8: Fluid Node Pressure at B for Isotropic plate LW2 consid-
ering Clampled
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MUL2 solutions are comparable for LW2 and LW3, despite LW1 shape presents
valuable error (compared to the Actran solution), since it evolves linear expansion
through the thickness (Kinematics of displacement not fully expressed through lin-
ear expansion), probably it’s not sufficient grade to completely represent the dis-
placement, we can also verify that LW1 predicts bigger resonance frequency, and
the error (the distance between Actran peak and LW1 one) increases with the fre-
quency itself.

As a matter of fact, the LW2 solution can properly represent the structural point
displacement in a correct way. Both Simply supported and Clamped have compara-
ble behaviour, but the Clamped solution error is bigger than simply supported one
(for the same frequency range).

Indeed, The solution in MUL2 seems to present the same trend as the solution
in literature, that behaviour encourage over the strong validity of MUL2, thanks to
the advance finite element (through the Carrera Unified Element), we can obtain better
solution over the composite plate applying the Layer-Wise Theory (LW).
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8.2 Sandwich Composite Plate

FIGURE 8.9: Example of Sandwich plate: Face Sheet and Core

We will deal with a squared dimension 1x1 [m2] made by aluminium with thick-
ness equal to 0.01 [m]; through a structural mesh [10x10 elements]. Firstly, we con-
sider the following multi-layered composite plate composed by the following me-
chanical constants Graphite-Epoxy: E1 = 132.38 [GPa], E2 = E3 = 10.76 [GPa], G13 =
G12 = 5.65 [GPa], G23 = 3.61 [GPa] and ν13 = ν12 = 0.24 ν23 = 0.49 for the face
sheets (superior and inferior); while we are considering a Isotropic material for the
core, whose mechanical constants are Young’s Modulus Es = 0.00689 [GPa], mass
density ρs = 0.097 [kg/m3] and Poisson’s ratio ν = 0.0.

The composite structure is made of two-layered Gr − Ep skins with lamination
scheme [90 / 0] and a soft core as above. The overall plate thickness is h = 12 [mm],
so divided: the face skins layers are 0.5 [mm] each; and the core thickness is 10 [mm].
A constant amplitude force excitation of 1 [N], over the frequency range from 0−
300 [Hz], was applied at one of the off-center nodes of the structural 10x10 Finite
Element mesh with coordinate (0.25m, 0.35m), point at which the measurement of
displacement is acted.

Excitation location: A = (0.25m, 0.35m, 1m);

Measurement locations: B = (0.75m, 0.75m, 0.75m), C = (0.35m, 0.70m, 0.65m);

The fluid constants are (343.0 [m/s], 1.2 [Kg/m3]) for Air, while (1500.0 [m/s], 1000.0 [Kg/m3])
for water, indicating the speed of the sound and density respectively [1]. The solu-
tion are as follows
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FIGURE 8.10: Sandwich Plate (Air coupled); Fluid node pressure in B
(left); Fluid node pressure in C (right) with the relative Actran solu-

tion

FIGURE 8.11: Sandwich Plate (Water coupled); Fluid node pressure
in B (left); Fluid node pressure in C (right) with the relative Actran

solution
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As we can see that two solution are quite different. In Weak coupling, modal so-
lution due to the lower modal density in the frequency interval 0 − 300 [Hz]; that is
in contrast considering the Strong coupling, because of high modal density, makes
the solution unpredictable.

Dealing with sandwich structures, they usually present two main components:
thin face sheets and a thick core. These layers are made to fulfill different functions.
The former, [thin face sheets], give the part of the structural resistance and bending
stiffness to the overall structure; while the latter, [core], is usually thicker than the
skins and performs different functions, as acoustic and thermal insulation purpose,
carrying the whole shear load acting on the structure itself. This fundamental char-
acteristic increases the vibration damping capability of the material, thus leads to a
more complex modelling, due to the frequency dependence of the material parame-
ters. [28][30]

On the other hand, we can observe a difference in the relative behaviour of the
solution. For Weak Coupling, A fully converged solution is reached considering
an uncoupled modal basis obtained with the acoustic and structural modes below
2.5 fmax, which means that below almost 100 [Hz] the Mul2 and Actran solution are
quite the same; while in exactly the same condition, but considering Strong Cou-
pling.

A fully converged solution is reached below 12 fmax, which represents that larger
difference between the two set of solutions is expected as the frequency increases,
and when larger wavelengths appear, tend to highlight this effect. It can be pointed
out that a poor description of the structural behaviour can potentially lead to signif-
icant error at high frequencies range. [10]

In weak coupling, thanks to the low modal density in the frequency range, every sin-
gle modal contribution is clear visible in the final solution, mostly for what concern
the structural response; here, due to the weak coupling between fluid and structure,
the final solution is represented by a simply over position of the modal problem so-
lution for both sandwich-plate and volume of fluid.
This is not true for the strong coupling. This results are in agreement with the analysis
reported in chapter 7, where it has been shown that for thin multi-layered laminated
plates. Although, the higher order effects get more important in the high frequency
range and affect the resultant acoustic field pressure measurement.

FIGURE 8.12: Sandwich Plate: Face Sheet and Core
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8.3 Vibro-Acoustic Response of a Cubic Cavity backed by a
Multi-layered panel

This test case consists of a simply supported orthotropic multi-layered cubic plate
backed by a rigid-walled acoustic cavity. The lateral dimension of the cubic plate
are l = 1 [m]. The lateral dimensions of the cavity are the same as the plate and its
depth is equal to the lateral side lcubic = 1 [m].

FIGURE 8.13: Multi-layered Plate

The multi-layered structure consists of nine layers in symmetric cross-ply config-
uration with sequent lamination scheme [0/90 , 0/90 , 0 90/0 , 90/0]. The plate thick-
ness is h = 3 [mm], and each lamina is 0.3333 [mm] thick. In order to deeply analyse
the behaviour of the ortotropic material, we are going to consider the following com-
posite - mechanical constants: E1 = 132.38 [GPa], E2 = E3 = 10.76 [GPa], G13 =
G12 = 5.65 [GPa], G23 = 3.61 [GPa] and ν13 = ν12 = 0.24 ν23 = 0.49 [9].

A harmonic unit point force is applied normally to the plate at point over the
frequency range from 0− 300 [Hz], was applied at one of the off-center nodes of the
structural 10x10 Finite Element mesh with coordinate (0.25m, 0.35m), point at which
the measurement of displacement is acted [6].

Excitation location: A = (0.25m, 0.35m, 1m);

Measurement locations: B = (0.75m, 0.75m, 0.75m);

The fluid constants are (343.0 [m/s], 1.2 [Kg/m3]) for Air, while (1500.0 [m/s], 1000.0 [Kg/m3])
for water, indicating the speed of the sound and density respectively. [1]

The results are the following
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FIGURE 8.14: Multi-layered (nine-ply) Plate (Air coupled): Fluid
node pressure in B with the relative Actran solution

FIGURE 8.15: Multi-layered (nine-ply) Plate (Water coupled): Fluid
node pressure in B with the relative Actran solution
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8.4 Mesh Variation Effect

The approximation of space-dependent physical or numerical functions by uniform
patch averages reaches its limit when the fluctuation pattern within a patch cannot
be captured by the coarse resolution of the patch grid. When the wavelength be-
comes smaller than two patches, the grid resolution is not sufficient small anymore
to capture the wave shape and aliasing phenomenon will occur.

FIGURE 8.16: Patch size limit at the spatial wavelength frequency

The main limitation of FEM-coupled method is that modes with a transverse
wavelength below the dimension of two patches are missed. In this case, the patch
grid is not able to represent the wave shape according to the Nyquist theorem and
aliasing effects occur.

As sake of simplicity, the relative difference might be quite high between two
solution, for instance, considering a parallelepiped cavity. The Mesh has an impor-
tance into the final solution. The coarse mesh is composed by [5x5x5], while the
finest one by [20x20x10] When frequency are low, the pressure peak are almost the

same; while increasing the frequency, the pressure peak of the coarser one has lost
its fairness, this because we are going to consider a wide range of frequency.

Remark The missed modes in the higher frequency range lead to an underestimation of
the system response.

In fact the dimension of mesh size in relation of the frequency may affect the re-
sulting solution of the problem. As sake of clarity, we are going compare solutions
at different resulting meshes, as we started using a 10 x 10 [elements] (coarser mesh);
while we are approaching handling a 20 x 20 [elements] (finer mesh); obviously the
resulting solution ws going to change; but the computational time is increasing as
well too.
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In this part, A simple laptop was not sufficient to achieve results, but Server
was necessary. We are going to analyse the variation of both solution (Mul2 and
Actran) for both situation (weak and strong coupling). We are using a simple Cubic
Cavity, with Ortotropic material [0°/90°/0°], using the same material property as in
reference (6).

FIGURE 8.17: Mesh 20x20 elements, Cubic Cavity, Orthotropic Mate-
rial Excitation Location in A =(0.25, 0.35m, 1m); Measurement Loca-

tion in B =(0.35m, 0.7m, 0.65m)
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Air Cavity

FIGURE 8.18: Fluid Node Pressure at B for Orthotropic plate LW2 con-
sidering Simply Supported for Air filled cavity

As we expected, at lower frequency [0 − 200 Hz] within two solutions (mesh10
and mesh20), Nothing different may be noticed, thus the mesh10 (10x10 elements)
solution is even better for the low computational effort; while in higher frequency
range, mesh20 solution must be considered due to the high error for the previous
one.
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Water Cavity

FIGURE 8.19: Fluid Node Pressure at B for Orthotropic plate LW2 con-
sidering Simply Supported for Air filled cavity

Due to the Strong coupling, the difference (mesh10 e mesh20) starts at lower
frequency (respect the weak coupling). In this case, at lower frequency [0 − 100 Hz]
within two solutions (mesh10 and mesh20), Nothing different may be noticed, thus
the mesh10 (10x10 elements) solution is even better for the low computational effort;
but this range is even smaller, so the model may be validated for lower frequency, or
in the same case, more elements (sharper mesh) are required to validate the solution
at higher frequency.
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8.5 Numerical Model Validation

Previously, we have presented different numerical tests in both couplings compar-
ing the MUL LW2 and Actran each other, but their solutions seem to be different and
completely independent. In the following, we are going to show that these solution
are exactly the same.

In fact, Actran solution is based on linear representation of structure deformation,
essentially models based on Equivalent Single Layer (ESL). ESL gives sufficiently
accurate global laminate response but they are inadequate, as seen in the previous
chapter, at higher frequency.

On the other hand, MUL2 solutions are based on a more developed theory (LW);
where the composite structure is thought as an different aggregate of independent
layers, introducing much less error than the one introduced by ESL theories, origi-
nating upon the precise construction of a overall kinematic model of the entire layers
within the thickness.

We might expect that the MUL2 result, based on its advanced theory, represent
the correct solution and represent a limit solution towards which the actran itself
tends to, under the same boundary condition.

As a sake of simplicity, we will deal with the most adverse example shown in
chapter 7; so that Strong coupling (Water filled) with Cubic Orthotropic material
plate.

In order to exhibit the correspondence between their solutions let us consider the
following example.

The plate is composed by three layers [0°, 90°, 0°], whose following mechanical
constants Graphite-Epoxy: E1 = 25.0 [GPa], E2 = E3 = 1.0 [GPa], G13 = G12 =
0.5 [GPa], G23 = 0.2 [GPa] and ν13 = ν12 = ν23 = 0.25.

We will keep the mesh used in MUL2 unchanged, fixed in 10x10.
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In order to show our statement, we are going to modify the Mesh used to dis-
cretize the structure in Actran, to show that it represents a limit solution reached by
Actran.

Firstly, in Actran, Let us use 10x10 mesh with quadratic interpolation for the
fluid; while we keep 20x20 mesh linear for the representation of structure. We Obtain
this

FIGURE 8.20: Test case: MUL2 LW2 vs 20x20 mesh structure in Actran

In the previous graph, a small part of the solutions are exactly the same, com-
pletely over position in the frequency 0 − 50 [Hz]; while in high frequency range,
difference may be encountered, since in Actran the structural behaviour is poorer
because the mutual interaction between acoustic and vibration activates a exciting
mechanism through the structural displacement by sound waves and induces waves
in the surrounding fluid. The numerical model of the problem should be able to han-
dle this phenomenon in order to obtain reliable results, so a poor representation (as
happens in Actran) can lead to rising errors, specially in high frequency range.
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In order to avoid it, and to overcome these deficiencies in actran, let us highly
increase just the structural mesh.

FIGURE 8.21: Test case: MUL2 LW2 vs 80x80 mesh structure in Actran

In Actran, We can verify the fact, that increasing the structural mesh, the solution
tends over the MUL2 one, since its advance representation of the latter. The over
position part (where the solutions are almost the same), increases in the frequency
reaching 0 − 200 [Hz], just modifying the actran structural mesh without modifying
the mul2 one, although the high adverse case (Strong coupling with Orthotropic
plate).

We can extend our thought by reaching the whole frequency interval 0 − 300 [Hz]
by increasing more and more the resultant mesh in Actran.

Finally, We have to highlight not just the fairness and the completeness of the
MUL2 solution at fixed frequency; but MUL2 can also reach results, affected by less
error, using larger dimension of the element. A good recovery in the solution is
therefore reached, so the structural representation is more important than the sur-
rounding fluid discretization. Behind these aspects, MUL2 program is a very pow-
erful tool for representing the mean pressure value even at coarse mesh grid (as we
seen Actran has more work to make).
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Chapter 9

Conclusion and Further
Developments

This final part sums up the whole research work.
Conclusions are drawn considering the achieved results and to conclude, some pos-
sible further developments are proposed in the field of fluid-structure coupling and
vibroacoustics response.

9.0.1 Conclusion

The current work is focused on the development of advanced numerical procedure
to predict vibroacoustic behavior (isotropic and orthotropic) structures.

A unified predicted model is needed to deeply explain the coupling between
fluid/structure. Nowadays, we are constantly looking for new numerical tools which
deal with fluid pressure in order to evaluate the surrounding noise.

The objective of this work aims at validate the MUL2 software, developed by MUL2
research group in the Polythecnic of Turin by comparing the results through com-
mercial software, like Actran; and also we have also pointed out the powerful of the
former.

The obtained results validate the model based CUF, that is their solution is com-
parable with Actran solution, but their behavior is also frequency dependant; in-
deed, for higher ranges of frequencies, this discrepancy is observed mainly in the
case of Strong coupling, due to reduced wavelenght. This shows that the model
based on the definition of Layer ways can take into account thickness effects that are
not covered by Actran element method.

The differences become larger in the case of composite plate, mainly for the water-
filled cavity where the coupling effects are more pronounced because the Actran
soluction is based on a general mixing of properties (mesh-up properties), resulting
in overall average; while this difference may be considered negligible in the case of
Isotropic material.
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Layer ways model may predict the structural dynamic response of multi-layered
composites which will influence the pressure level inside the cavity.

At the current state of the art, few works are available reporting a Layer ways
(LW) methodology that considers all the relevant aspects for vibroacoustic - struc-
tural coupling behavior. In literature, most of research works are typically focused
in numerical modelling more in Equivalent Single Leyer (ESL). Conversely, the cur-
rent research work considers the whole process required for a validation and reliable
vibroacoustic coupling prediction: numerical modeling and comparison with avail-
able solution in currently literature about vibroacoustic structures. The innovative
features of the presented work is the integration of CUF inside the discretization for
the plate displacement.

On the other hand, few works are presented in literature that reports an extended
model validation of both dynamic and acoustic numerical model thoughtout the
coupling. This aspect has instead been considered fundamental in the current pur-
pose alongside this dissertation. Reliability and Comparison are requirements for a
numerical procedure to validate.

In this thesis, the FE dynamic (frequency dependant) model numerical correla-
tion has been reported in terms of fluid node pressure, mode shapes and Frequency
Response Function. In addition, different boundary conditions have been consid-
ered for the validation of the dynamic model.
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9.0.2 Further Developments

Different aspects need to be further investigated. The main purpose is to accurately
represent the coupled interaction between the fluid and the structural behavior,
whose possible developments are mainly related to the structure design parame-
ter shape (like cicle)and tuning in order to optimize the vibroacoustic performances,
due to the high computational effort.

Furthermore, Vibroacoustic represent a frequency dependant problem; it is so
useful to investigate the domain behavior in high frequency, reducing the high fit-
ting meshes and enhances computational time, in the same way, thus combining the
FE approach for the structural modeling with the efficient technique for the acoustic
field, will surely obtain satisfactory results for the coupled problem.

It may be interesting also to extend of the numerically investigated frequency
range to the ultra high frequency range, using suitable numerical techniques, to give
a more complete acoustic characterization of the problem.

Finally, A constrained composite plate - rectangular cavity system was modeled
and the lamination angles of the composite structure, assuming one flexible wallmay
be used to demonstrate the feasibility of reducing interior noise levels through opti-
mal lamination angles of the superior plate, making an perfect tool for noise predic-
tion within a chamber; these effects might not be ignored by any manufacturer and
in general, automotive and aerospace designers place structural integrity higher up
in priority than acoustic comfort.

In this case, we dealt an Interior problem, where the fluid domain is bounded
within the cavity. The formulations used to solve the coupled problem are generally
based on the finite element method (Advanced FEM) for both fluid and structure. A
possibile generalization is considering Interior/exterior problems, in which the struc-
ture couples two different fluid domains. The interior domain is bounded and the
exterior one is unbounded; for instance the sound radiation of a structure coupled
to an internal cavity and radiating in a heavy fluid, may represent a possible gener-
alization
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This represents the starting point for a large variety of problems in different fields.



123

Chapter 10

Matlab® Sources Used

To calculate the Frequency Response Function (FRF), we used the following
Matlab® function that works with the files containing the solution for both MUL2

and Actran in Matlab® tool, for the following elaboration. There we had the
visualization of predicted Noise function and the displacement, where required, as

are showed in this dissertation.
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