POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Edile

Tesi di Laurea Magistrale

Fire Safety Engineering: Applicazioni e verifiche a un tunnel stradale

Relatori

Prof. Roberto Vancetti
Prof.ssa Anna Osello
Ing. Emiliano Cereda

Candidato

Roberta Tropiano

Anno Accademico 2019/2020
Abstract

The paper deals with the issue of fire safety in road tunnels. These works are confined spaces that require specific precautions in order to guarantee the protection of users.

The work involves the application of the Fire Safety Engineering (FSE) to the case study of the Demonte road tunnel with the aim of assessing the effectiveness of the emergency signs and identifying more suitable measures, if they are not such.

The study starts from the analysis of the regulatory provisions on fire safety in road tunnels and the requirements set out in the project of the tunnel; then the comparison is made between them.

The next step consists in choosing the project incidental scenarios among the possible incidental scenarios in the tunnel and by vehicular analysis of the road in which the tunnel is inserted.

The analysis of the consequences of critical events is subsequently carried out; in particular, the environmental conditions in which the exodus of the occupants takes place is analyzed.

The analysis is carried out through the support of Pyrosim fire simulation software.

The work continues with the study of one of the project scenarios examined thanks to the use of the exodus simulation software Pathfinder.

The overlap of the results obtained by the two software allows the subsequent analysis of the criticalities of the fire in the tunnel, with particular reference to the poor visibility caused by the smoke from the fire.

The final objective consists in the proposal of improvement and additional prescriptions for the installation of the emergency signs starting from the analysis of the 2D results coming from the simulations made with the Pyrosim software and from the graphic results obtained from the exodus simulations carried out with the software Pathfinder.

The aim is to obtain the effective installation of emergency signs in order to facilitate the exodus of tunnel users even when the visibility conditions are bad.
Indice

Indice delle figure .. IV
Indice delle tabelle .. VI
Introduzione .. 1
Capitolo 1 - Metodologia .. 2
Capitolo 2 - Il rischio trasporti in galleria e statistiche sull’incidentalità 4
Capitolo 3 - Caso studio: Galleria stradale Demonte ... 5
Capitolo 4 - Tunnel stradali: riferimenti normativi ... 7
Capitolo 5 - Progettazione della sicurezza antincendio nella galleria Demonte 11
Capitolo 6 - Applicazioni di Fire Safety Engineering .. 19
 6.1 Analisi di rischio .. 20
 6.1.1 Analisi del traffico veicolare .. 20
 6.1.2 Scenari incidentali in galleria ... 21
 6.2 Individuazione degli scenari di progetto .. 25
 6.3 Soglie di prestazione per gli utenti della galleria .. 26
 6.4 Criterio per la salvaguardia della vita .. 27
Capitolo 7 - Modellazione d’incendio ... 29
 7.1 Importazione del modello 3D e creazione di uno spazio di calcolo FDS 29
 7.2 Dati di input per la modellazione d’incendio ... 30
 7.2.1 Focolai analizzati .. 30
 7.2.2 Curve HRR ... 31
 7.2.2.1 Curva HRR di un’automobile .. 31
 7.2.2.2 Curva HRR di un’autocisterna di benzina .. 32
 7.1 Prodotti d’incendio .. 33
 7.2.1.1 Prodotti d’incendio di un’autovettura ... 33
 7.2.1.2 Prodotti d’incendio di una autocisterna di benzina ... 35
7.3 Dispositivi di misurazione dei parametri ambientali..35

Capitolo 8 - Analisi degli scenari di progetto e risultati delle simulazioni...............37

8.1 Scenario 1 - Incendio di un’autovettura in corrispondenza dell’imbocco della
galleria ..38

8.2 Scenario 2 - Incendio di un’autovettura in prossimità della galleria d’emergenza
47

8.3 Scenario 3 - Incendio di un’autovettura a metà tra imbocco del fornice e galleria
d’emergenza ...56

8.4 Scenario 4 - Incendio di una autocisterna in corrispondenza dell’imbocco della
galleria ..65

8.5 Scenario 5 - Incendio di una autocisterna in prossimità della galleria d’emergenza
75

8.6 Scenario 6 - Incendio di una autocisterna a metà tra l’imbocco del fornice e la
galleria d’emergenza ..85

Capitolo 9 - Determinazione del tempo disponibile per l’esodo ASET95

Capitolo 10 - Modellazione d’esodo ...97

10.1 Dati di input ...99

10.2 Risultati della simulazione d’esodo ...100

Capitolo 11 - Confronto dei risultati: criterio ASET > RSET.................................105

Capitolo 12 - Valutazione della segnaletica d’emergenza di progetto106

12.1 Segnaletica d’emergenza di progetto ...106

12.2 Criticità ...109

12.3 Prescrizioni sulla segnaletica d’emergenza ..114

12.4 Valutazione della segnaletica aggiuntiva proposta116

Capitolo 13 - Conclusioni ..117

Capitolo 14 - Sitografia e bibliografia ...119

Capitolo 15 - Normative di riferimento ..119
Indice delle figure

Figura 1: Inquadramento generale della Galleria Demonte .. 5
Figura 2: Planimetria della Galleria Demonte – Progetto definitivo SS 21 “della Maddalena”
Anas .. 6
Figura 3: Sezione tipologica della galleria stradale - Progetto definitivo SS 21 “della
Maddalena” Anas .. 6
Figura 4: segnale delle stazioni di emergenza in galleria – Linee Guida Anas 8
Figura 5: segnale luminoso per le vie di fuga – Linee Guida Anas .. 10
Figura 6: Schema funzionale della galleria d’emergenza - Progetto definitivo SS 21 “della
Maddalena” Anas .. 14
Figura 7: Schema della colorazione delle pareti delle gallerie stradali – Linee Guida Anas 14
Figura 8: dati sul traffico medio giornaliero SS21 – Anas ... 20
Figura 9: lunghezza dei tratti di galleria occupati dai veicoli dei due sensi di marcia in caso
di evento critico .. 23
Figura 10: Tempi del processo d’esodo – Sito Teknoring .. 28
Figura 11: Suddivisione in meshes del modello 3D della galleria Demonte 30
Figura 12: Curva HRR di un’autobile ricavata dai ricercatori ProfilARBED 31
Figura 13: Curva HRR di una autocisterna di benzina .. 32
Figura 14: Distribuzione dei devices in galleria .. 35
Figura 15: Posizione della slice orizzontale a 2 m da terra nella galleria 36
Figura 16: esempio di isosuperficie della visibilità ... 36
Figura 17: Schema degli scenari d’incendio di progetto .. 37
Figura 18: Localizzazione del focolare all’interno del fornece .. 38
Figura 19: Suddivisione della galleria in tratti .. 39
Figura 20: Localizzazione dei devices all’interno della galleria ... 39
Figura 21: Localizzazione del focolare all’interno del fornece .. 47
Figura 22: Suddivisione della galleria in tratti .. 48
Figura 23: Localizzazione dei devices all’interno della galleria ... 48
Figura 24: Localizzazione del focolare all’interno del fornece .. 56
Figura 25: Suddivisione della galleria in tratti .. 57
Figura 26: Localizzazione dei devices all’interno della galleria ... 57
Figura 27: Localizzazione del focolare all’interno del fornece .. 65
Figura 28: Suddivisione della galleria in tratti .. 66
Figura 29: Localizzazione dei devices all’interno della galleria ... 66
Figura 30: Localizzazione del focolare all’interno del fornece .. 75
Figura 31: Suddivisione della galleria in tratti .. 76
Figura 32: Localizzazione dei devices all’interno della galleria..........................76
Figura 33: Localizzazione del focolare all’interno del fornice...............................85
Figura 34: Suddivisione della galleria in tratti ..85
Figura 35: Localizzazione dei devices all’interno della galleria...............................86
Figura 36: Suddivisione della galleria in tratti ..95
Figura 37: Pianta galleria con uscite di emergenza ...98
Figura 38: interfaccia grafica degli output di Pathfinder ...100
Figura 39: lati di percorrenza della via d’esodo verso il luogo sicuro101
Figura 40: Valori della visibilità dell’occupante nel suo percorso d’esodo sul lato destro (dx) della carreggiata ..102
Figura 41: valori della visibilità dell’occupante nel suo percorso d’esodo sul lato sinistro (sx) della carreggiata ..102
Figura 42: Isosuperfici della visibilità (10 m) all’uscita del tratto n° 8 della galleria......103
Figura 43: Isosuperfici della visibilità (10 m) all’uscita del tratto n° 7 della galleria......103
Figura 44: Isosuperfici della visibilità (10 m) all’uscita del tratto n° 6 della galleria......104
Figura 45: Isosuperfici della visibilità (10 m) in corrispondenza della porta della galleria d’emergenza. ..104
Figura 46: Pianta della galleria Demonte con la segnaletica d’emergenza107
Figura 47: posizione delle plafoniere di evacuazione in galleria108
Figura 48: plafoniera di evacuazione ..108
Figura 49: visibilità in prossimità della segnaletica d’emergenza posta sul lato opposto dell’esodo ..110
Figura 50: visibilità in prossimità della segnaletica d’emergenza posta sul lato dell’esodo ..111
Figura 51: livello di visibilità in prossimità dell’ingresso alla galleria d’emergenza di un occupante posto sul lato destro della carreggiata112
Figura 52: livello di visibilità in prossimità dell’ingresso alla galleria d’emergenza di un occupante posto sul lato sinistro della carreggiata113
Figura 53: profilo con frecce luminescenti per l’indicazione della direzione d’esodo114
Figura 54: bollo di segnalazione del percorso d’esodo a pavimento114
Figura 55: luci lampeggianti poste intorno alla porta per la segnalazione di un’uscita d’emergenza ..115
Figura 56: suddivisione della galleria in virtù del verso delle frecce indicanti il senso dell’esodo ..115
Figura 57: segnaletica d’emergenza aggiuntiva nella galleria Demonte116
Figura 58: visibilità della segnaletica d’emergenza aggiuntiva116
Indice delle tabelle

Tabella 1: Numero di incidenti nella rete stradale extraurbana italiana nel 2018 – Indagini ISTAT ... 4
Tabella 2: Prescrizioni previste dalla Bozza RTV sulle gallerie stradali - Bozza RTV gallerie stradali ... 18
Tabella 3: Potenze dei veicoli – Linee guida Anas .. 22
Tabella 4: Eventi critici in galleria stradale .. 24
Tabella 5: scenari d’incendio di progetto ... 25
Tabella 6: Valori soglia di riferimento di alcuni parametri – Codice di prevenzione incendi 2019 ... 26
Tabella 7: Dimensioni dei veicoli utilizzate nel modello 30
Tabella 8: Dimensioni dei veicoli, HRR e parametri dei prodotti di combustione - Articolo “Tunnelling and Underground Space Technology” del giornale Elsevier 32
Tabella 9: Composizione media di un’autovettura – Matrec, Material Recycling 2003 33
Tabella 10: Prodotti di combustione dei materiali costituenti un’automobile - Handbook of fire safety engineering .. 34
Tabella 11: Yields of combustion products – SP Technical Research Institute of Sweden 34
Tabella 13: Informazioni varie sugli strumenti di misura adoperati.................... 36
Tabella 14: Caratteri principali del focolare ... 38
Tabella 15: Parametri significativi e soglie di prestazione 39
Tabella 16: Tempi in cui, per ogni parametro analizzato nello scenario 1, viene raggiunto il valore soglia ... 46
Tabella 17: Caratteri principali del focolare ... 47
Tabella 18: Parametri significativi e soglie di prestazione 48
Tabella 19: Tempi in cui, per ogni parametro analizzato nello scenario 2, viene raggiunto il valore soglia ... 55
Tabella 20: Caratteri principali del focolare ... 56
Tabella 21: Parametri significativi e soglie di prestazione 57
Tabella 22: Tempi in cui, per ciascun parametro analizzato nello scenario 3, viene raggiunto il valore soglia ... 64
Tabella 23: Caratteri principali del focolare ... 65
Tabella 24: Parametri significativi e soglie di prestazione 66
Tabella 25: Tempi in cui, per ciascun parametro analizzato nello scenario 4, viene raggiunto il valore soglia ... 74
Tabella 26: Caratteri principali del focolare ... 75
Tabella 27: Parametri significativi e soglie di prestazione.. 76
Tabella 28: Tempi in cui, per ciascun parametro analizzato nello scenario 5, viene raggiunto il valore soglia ... 84
Tabella 29: Caratteri principali del focolare .. 85
Tabella 30: Parametri significativi e soglie di prestazione.. 86
Tabella 31: Tempi in cui, per ciascun parametro analizzato nello scenario 6, viene raggiunto il valore soglia ... 94
Tabella 32: ASET assoluti per ogni tratto di galleria, per ciascuno scenario analizzato 96
Tabella 33: Tempi di inizio e fine percorrenza di ciascun tratto della galleria da parte dell’occupante .. 101
Tabella 34: Verifica del criterio ASET > RSET .. 105
Tabella 35: segnaletica d’emergenza di progetto ... 106
Introduzione

L’elaborato affronta il delicato tema del rischio trasporti in galleria con particolare riferimento al rischio incendio nelle gallerie stradali, opere la cui peculiarità è essere ambienti confinati per i quali sono richiesti accorgimenti specifici al fine di garantire la tutela degli utenti che vi transitano.

Il lavoro prevede l’applicazione della Fire Safety Engineering (FSE) al caso studio della galleria stradale Demonte con lo scopo di valutare l’efficacia della segnaletica d’emergenza prevista e di individuare misure più idonee nel caso in cui esse non risultano tali.

Lo studio parte dall’analisi delle attuali disposizioni normative in materia di sicurezza antincendio per le gallerie stradali e delle misure di protezione previste nel progetto della galleria oggetto di studio, redatto antecedentemente; segue la verifica della corrispondenza tra esse.

Il passo successivo consiste nello svolgimento di un’analisi di rischio al fine di individuare gli scenari di progetto per cui svolgere l’analisi delle conseguenze, con particolare riferimento alle condizioni ambientali in cui si svolge l’esodo degli utenti presenti in galleria.

Il lavoro prosegue con la modellazione 3D della galleria oggetto di studio e le successive modellazioni d’incendio degli scenari di progetto esaminati e d’esodo di uno solo tra essi. Per quest’ultimo viene effettuata la verifica del criterio ASET (*available safe escape time*) > RSET (*required safe escape time*) con lo scopo di appurare che le condizioni ambientali per tutta la durata dell’esodo degli occupanti verso un luogo sicuro siano tali da non comprometterne la salute.

L’obiettivo finale consiste nell’individuazione delle criticità riscontrabili nell’esodo degli occupanti dalla galleria e nella proposta di prescrizioni migliorative e aggiuntive per l’installazione della segnaletica di emergenza con lo scopo di ottenere un esodo più agevole.
Capitolo 1 - Metodologia

L’iter metodologico utilizzato nello sviluppo delle fasi per la valutazione delle conseguenze di un evento critico in galleria prevede l’utilizzo degli approcci sviluppati di seguito.

Il primo passo è stato quello di realizzare il modello 3D della galleria oggetto di studio attraverso la metodologia BIM ed in particolare mediante il software Autodesk Revit.

Il file .rvt creato può essere importato successivamente nei software per la modellazione d’incendio e d’esodo utilizzati, al fine di effettuare le relative simulazioni.

Gli scenari di progetto su cui svolgere le valutazioni vengono individuati sulla base degli scenari incidentali possibili in galleria, determinati in virtù di una attenta analisi dei parametri che hanno una maggiore influenza sugli accadimenti, e dello svolgimento dell’analisi veicolare condotta sul tratto stradale in cui si inserisce la galleria.

La modellazione d’incendio è svolta per tutti gli scenari di progetto individuati mediante l’uso di un modello di fluidodinamica computazionale FDS (Fire Dynamics Simulator) di cui il software Pyrosim ne rappresenta l’interfaccia grafica. Esso ha consentito l’importazione del file 3D e la caratterizzazione del focolare d’incendio.

La modellazione d’esodo è invece svolta per uno solo degli scenari presi in considerazione, scelto in virtù delle maggiori criticità che si sarebbero potute riscontrare durante l’esodo dell’utenza presente in galleria. Il software utilizzato è Pathfinder che consente di importare il file Pyrosim ed ottenere un unico file in cui sono presenti:
- Modello 3D;
- Informazioni relative alle caratteristiche del focolare e dei prodotti dell’incendio;
- Caratteristiche degli occupanti.

I due software consentono inoltre di effettuare le simulazioni d’incendio e d’esodo degli scenari presi in esame al fine di ricavare i tempi di ASET ed RSET e successivamente procedere con la sovrapposizione dei risultati ottenuti per la verifica della salvaguardia della vita.

Alla fine viene svolta un’analisi qualitativa dei risultati 2D provenienti dalle simulazioni d’incendio fatte con il software Pyrosim e di quelli grafici ottenuti dalle simulazioni d’esodo effettuate con il software Pathfinder.
Lo scopo consiste nella valutazione delle difficoltà nel seguire la segnaletica d’emergenza che conduce verso un luogo sicuro, a partire dalle quali formulare prescrizioni sulla sua progettazione.

Lo schema sottostante rappresenta una sintesi dell’iter metodologico seguito nella redazione dell’elaborato.

ITER

<table>
<thead>
<tr>
<th>Introduzione al caso studio</th>
<th>Analisi di rischio</th>
<th>Fire Safety Engineering</th>
<th>Risultati</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inquadramento</td>
<td>• Individuazione scenari incidentali</td>
<td>• Modellazione d’incendio e risultati</td>
<td>• Individuazione criticità segnaletica d’emergenza di progetto</td>
</tr>
<tr>
<td>• Caratteristiche costruttive</td>
<td>• Analisi veicolare</td>
<td>• Modellazione d’esodo e risultati</td>
<td>• Identificazione di prescrizioni</td>
</tr>
<tr>
<td>• Modello 3D</td>
<td>• Individuazione scenari di progetto</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STRUMENTI

- Metodologia BIM: Software Autodesk Revit
- Indagini ISTAT
- Analisi veicolare
- Software per modellazione d’incendio
- Software per modellazione d’esodo
- Visualizzazione 3D
Capitolo 2 - Il rischio trasporti in galleria e statistiche sull’incidentalità

I numerosi incidenti che hanno avuto luogo nell’ambiente confinato della galleria nei decenni scorsi hanno mostrato l’inadeguatezza delle misure in essa presenti.

Nonostante le statistiche mostrano che gli incidenti che avvengono nei tratti di strada in galleria sono in numero inferiore rispetto a quelli che si verificano nei tronchi stradali a cielo aperto, essi comportano maggiori preoccupazioni in quanto caratterizzati da un’amplificazione dei danni a carico sia delle persone che di impianti e strutture.

Le indagini ISTAT sugli incidenti stradali in Italia dell’anno 2018 forniscono un numero di incidenti avvenuti in galleria pari a 481 contro il numero totale di incidenti, pari 35799, avvenuti nella rete stradale italiana a cielo aperto.

La tabella seguente riassume i numeri di incidenti registrati in ogni regione.

<table>
<thead>
<tr>
<th>REGIONE</th>
<th>N° INCIDENTI A CIELO APERTO</th>
<th>N° INCIDENTI IN GALLERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMBRIA</td>
<td>669</td>
<td>14</td>
</tr>
<tr>
<td>MARCHE</td>
<td>1116</td>
<td>15</td>
</tr>
<tr>
<td>Lazio</td>
<td>3586</td>
<td>19</td>
</tr>
<tr>
<td>ABRUZZO</td>
<td>836</td>
<td>6</td>
</tr>
<tr>
<td>MOLISE</td>
<td>165</td>
<td>7</td>
</tr>
<tr>
<td>CAMPANIA</td>
<td>2017</td>
<td>36</td>
</tr>
<tr>
<td>PUGLIA</td>
<td>2204</td>
<td>10</td>
</tr>
<tr>
<td>BASILICATA</td>
<td>398</td>
<td>6</td>
</tr>
<tr>
<td>CALABRIA</td>
<td>1070</td>
<td>48</td>
</tr>
<tr>
<td>SICILIA</td>
<td>1939</td>
<td>60</td>
</tr>
<tr>
<td>SARDEGNA</td>
<td>1049</td>
<td>8</td>
</tr>
<tr>
<td>PIEMONTE</td>
<td>2588</td>
<td>13</td>
</tr>
<tr>
<td>VALLE D’AOSTA</td>
<td>102</td>
<td>1</td>
</tr>
<tr>
<td>LOMBARDIA</td>
<td>5584</td>
<td>87</td>
</tr>
<tr>
<td>TRENTINO ALTO ADIGE</td>
<td>1068</td>
<td>43</td>
</tr>
<tr>
<td>VENETO</td>
<td>3253</td>
<td>29</td>
</tr>
<tr>
<td>FRIULI VENEZIA GIULIA</td>
<td>804</td>
<td>1</td>
</tr>
<tr>
<td>LIGURIA</td>
<td>1059</td>
<td>45</td>
</tr>
<tr>
<td>EMILIA ROMAGNA</td>
<td>3526</td>
<td>15</td>
</tr>
<tr>
<td>TOSCANA</td>
<td>2766</td>
<td>18</td>
</tr>
<tr>
<td>ITALIA</td>
<td>35799</td>
<td>481</td>
</tr>
</tbody>
</table>

Tabella 1: Numero di incidenti nella rete stradale extraurbana italiana nel 2018 – Indagini ISTAT

Le situazioni incidentali che per conseguenza preoccupano maggiormente sono quelle da cui ne consegue il fenomeno dell’incendio.

Il motivo è che i fumi e i gas tossici sviluppati creano considerevoli difficoltà sia sulle persone presenti in galleria che sui soccorritori che devono intervenire.
Capitolo 3 - Caso studio: Galleria stradale Demonte

L’oggetto di studio è la Galleria stradale Demonte, sita nella regione Piemonte ed in particolare in provincia di Cuneo. La galleria nasce con lo scopo di consentire l’attraversamento del rilievo del Podio, inserito nel contesto alpino della valle dello Stura, e favorire l’accessibilità al territorio francese.

Il progetto della galleria si inserisce in un più ampio intervento che prevede anche la realizzazione di due viadotti, rispettando l’esigenza di allontanare il più possibile il raccordo tra la variante e l’attuale SS21 dal centro abitato di Demonte.

Il tracciato stradale in cui si inserisce la galleria si configura come una strada di collegamento internazionale interessata da un rilevante traffico di tipo commerciale con una elevata presenza di veicoli pesanti a causa della vicinanza con impianti industriali e turistici della valle Stura.

![Figura 1: Inquadramento generale della Galleria Demonte](image)

La galleria, a singolo fornice, ha una larghezza della piattaforma stradale pari a 10,5 m, lunghezza totale pari a 647,5 m ed è caratterizzata da un ampio raggio di curvatura, pari a 950 m.

Complementarmente a tale opera è prevista l’intersezione, nella parte centrale, di una galleria di esodo pedonale con lunghezza globale pari a 173,8 m e larghezza di 3 m.

La galleria d’emergenza sbuca su un piazzale di attesa in una zona pianeggiante alle spalle della zona artigianale/produttiva di Demonte.
L’immagine seguente mostra la pianta della galleria Demonte.

Figura 2: Planimetria della Galleria Demonte – Progetto definitivo SS 21 “della Maddalena” Anas

La sezione tipologica della galleria, trattandosi di una strada extraurbana secondaria, ha le seguenti principali caratteristiche, come da immagine sottostante:

- 2 corsie da 3,75 m, una per senso di marcia;
- Banchine laterali da 1,50 m.

Figura 3: Sezione tipologica della galleria stradale - Progetto definitivo SS 21 “della Maddalena” Anas
Capitolo 4 - Tunnel stradali: riferimenti normativi

Nel tempo è maturata l’esigenza di avere un quadro normativo di riferimento avente lo scopo di garantire la sicurezza degli utenti che transitano in galleria, anche perché il territorio italiano ha uno sviluppo in chilometri di gallerie elevato.

Il quadro normativo di riferimento per le gallerie non appartenenti alla rete stradale transeuropea è costituito dalle seguenti norme:

- D.lgs. 30-04-92, n. 285 e s.m.i.: “Nuovo codice della strada”;
- D.P.R. 16-12-1992 n. 495 e s.m.i.: “Regolamento di esecuzione e di attuazione del Codice della Strada”;
- Circolare LL.PP. n. 7938/99 ”Sicurezza della circolazione nelle gallerie stradali con particolare riferimento ai veicoli che trasportano merci pericolose”;
- D.M. 05-06-01, G.U. n. 217: ”Sicurezza nelle Gallerie Stradali”;
- D.M. 05-11-01, n.6792 e s.m.i.: ”Norme funzionali e geometriche per la costruzione delle strade”;
- D.M. 14.09.05 ”Norme di illuminazione delle gallerie stradali”;
- D.M. 19-04-06 ”Norme funzionali e geometriche per la costruzione delle intersezioni stradali”;
- D.M. 18-02-92, n.223 “Regolamento recante istruzioni tecniche per la progettazione, l’omologazione e l’impiego delle barriere stradali di sicurezza”;
- DM 21 giugno 2004 “Terminologia e criteri generali per i metodi di prova relative alle barriere di sicurezza stradali”;
- UNI 11095:2011 “Luce e illuminazione – Illuminazione delle gallerie stradali”;
- UNI 11248:2016 “Illuminazione stradale – Selezione delle categorie illuminotecniche”;
- UNI EN 13201:2004 “Illuminazione stradale”;
- UNI EN 16276:2013 “Illuminazione di evacuación nelle gallerie stradali”;
- UNI 10779:2007 “Impianti di estinzione incendi – reti di idranti”.

A fine ottobre 2018, quindi solo successivamente all’approvazione del progetto della galleria Demonte, entra in vigore la bozza della regola tecnica di prevenzione incendi per la progettazione, la costruzione e l’esercizio di gallerie stradali non appartenenti alla rete stradale transeuropea.

Le indicazioni della bozza RT sono molteplici e sono distinte e riassunte nel seguito in virtù dell’argomento di cui trattano.

Stazioni di emergenza

Nella galleria, a traffico bidirezionale, gli armadietti delle stazioni di emergenza devono essere posizionati ai portali e su entrambi i lati della carreggiata, secondo una distribuzione alternata, mantenendo la stessa interdistanza per lato, inferiore a 250 m.

Gli armadietti devono contenere almeno un telefono di emergenza, due estintori di idonea capacità estinguente e devono essere segnalate con opportuni segnali informativi indicanti l’equipaggiamento disponibile.

In corrispondenza delle stazioni di emergenza possono essere collocati anche gli idranti, anch’essi a quinconce con interdistanza inferiore a 250 m per lato.

Le stazioni di emergenza sono indicate con il segnale riportato di seguito.

![Figura 4: segnale delle stazioni di emergenza in galleria – Linee Guida Anas](image)

Idranti

La rete di idranti deve essere realizzata preferibilmente ad anello, ovvero essere dotata di una dorsale alimentata dai portali della galleria. La durata minima di funzionamento deve essere $\geq 2h$.

La rete è costituita da:
- idranti a colonna soprasuolo DN70, ai portali della galleria, con portata ≥ 300 l/min e pressione residua $\geq 0,4$ MPa, per prestazioni elevate;
- idranti DN 45, all’interno del fornice, con portata ≥ 120 l/min e pressione residua $\geq 0,2$ MPa.
Impianto di illuminazione di sicurezza

L’illuminazione di sicurezza, in caso di pericolo, è necessaria a garantire l’abbandono della galleria in sicurezza attraverso le vie di fuga. Gli obiettivi precisi dell’illuminazione di sicurezza sono i seguenti:

- l’indicazione chiara e non ambigua delle vie di fuga, garantita anche dalla guida fisica e luminosa del corpo illuminante e indicazioni adeguate;
- l’illuminazione delle vie di fuga;
- individuazione delle dotazioni di sicurezza a servizio degli utenti.

All’interno della galleria deve essere previsto una illuminazione tale da garantire un livello di illuminamento minimo su un piano orizzontale ad 1 m di altezza dal piano di calpestio pari a:

- percorsi pedonali d’esodo: $I = 10$ lux;
- stazioni di emergenza: $I = 5$ lux.

Le pareti laterali della galleria devono essere di colore chiaro per favorire la visibilità in presenza dell’impianto di illuminazione di emergenza.

Altri impianti

In galleria non è necessaria l’installazione di alcun impianto di ventilazione meccanica in quanto non previsto per legge per tutte quelle galleria con lunghezza inferiore ai 1000 m. Occorre invece prevedere il sistema di comunicazione in emergenza e l’impianto di rilevamento dell’incendio.

Alimentazione di riserva degli impianti

Gli impianti necessari in caso di emergenza devono essere dotati di alimentazione di riserva per garantire l’evacuazione della galleria.

La durata minima di autonomia richiesta per ogni impianto è la seguente:

- illuminazione di sicurezza: autonomia > 60’;
- sistemi di controllo degli incendi: autonomia > 120’;
- altri impianti: autonomia > 30’.
Segnaletica di emergenza

La segnaletica verticale di emergenza deve essere conforme al DPR 16 dicembre 1992 n.495.

Le caratteristiche che deve avere sono:
- i segnali verticali devono avere il bordo verticale interno a distanza non inferiore a 0,3 m e non superiore a 1,0 m dal bordo esterno dalla banchina (il segnale non deve sporgere sulla carreggiata);
- i sostegni verticali dei segnali devono essere posizionati a distanza non inferiore a 0,5 m dal bordo esterno della banchina;
- le altezze, minima e massima, del bordo inferiore del cartello dalla carreggiata sono 0,6 m e 2,2 m;
- la visibilità notturna della segnaletica è assicurata con dispositivi di illuminazione propria per trasparenza o per rifrangenza con o senza luce portata dal segnale stesso;

La segnaletica di sicurezza deve essere posta:
- in corrispondenza di impianti e presidi antincendio;
- in corrispondenza delle uscite di emergenza;
- ogni 100 per indicare la distanza dai luoghi sicuri e la direzione da percorrere.

Il segnale luminoso seguente indica la distanza per le vie di fuga più vicine.

![Figura 5: segnale luminoso per le vie di fuga – Linee Guida Anas](image)

Uscite di emergenza e percorsi d’esodo

Le porte delle uscite di emergenza devono essere con caratteristiche tagliafuoco.

Le uscite di emergenza devono essere poste a distanza non superiore a 500 m.

Nelle gallerie sprovviste di corsie di emergenza devono essere previste banchine pedonabili, sopraelevate o meno.
Capitolo 5 - Progettazione della sicurezza antincendio nella galleria Demonte

La progettazione della sicurezza nelle gallerie stradali ha l’obiettivo di garantire il conseguimento degli obiettivi di sicurezza minimi per legge, quali:

- Incolumanità delle persone
- L’esodo in sicurezza degli utenti occupanti la struttura;
- L’intervento dei servizi di soccorso e spegnimento;
- Il contenimento dei danni materiali.

Le misure di protezione previste nel progetto della galleria Demonte per rispondere alle condizioni di emergenza sono espletate di seguito.

Alimentazione di sicurezza

L’alimentazione di sicurezza è garantita da UPS alimentato in riserva dal gruppo elettrogeno.

Impianto di alimentazione di riserva

L’impianto di alimentazione di riserva è garantito da gruppi elettrogeni presenti in appositi locali tecnici localizzati su ciascun imbocco.

Impianto di rivelazione incendio

L’impianto di rivelazione incendio consiste in un sistema di monitoraggio delle temperature, costituito da sensori longitudinali per monitorare l’intera lunghezza della galleria, con il fine di rilevare la presenza di sovratemperature anomale e lo sviluparsi di fiamme libere. Il sistema di rilevazione incendio non è altro che un cavo sensore in fibra ottica collegato all’unità di controllo.

Impianto telefonico di richiesta soccorso

È previsto un impianto telefonico di richiesta di soccorso (SOS).
Impianto idrico antincendio

L’impianto idrico antincendio con centrale di pressurizzazione è composto da una rete di idranti preposta sia alla protezione interna che a quella esterna.

L’impianto idrico è costituito da:

- n. 9 idranti UNI 45 a protezione interna della galleria, con doppia tubazione flessibile da 30 m e lancia erogatrice, installati a quinconce in armadietti posti su ogni lato in adiacenza alle postazioni SOS. La distanza tra due presidi posti sullo stesso lato è di 125 m.
- n. 2 idranti UNI 70 soprasuolo con tubazione flessibile da 20 m e lancia erogatrice, installati in apposite cassette posti nelle vicinanze degli imbocchi della galleria;
- n. 2 attacchi di mandata DN 70 per collegamento con autopompa posti all’esterno della galleria, nei pressi degli imbocchi.

L’impianto idrico antincendio è costituito da una rete idrica ad anello alimentata da un gruppo di pompaggio UNI 12845 collegato ad una riserva idrica antincendio (2 serbatoi del volume utile di 100 m³). Il dimensionamento dell’impianto è tale da consentire il funzionamento contemporaneo di 4 idranti UNI 45 e 1 idrante UNI 70 installati nella posizione idraulicamente più sfavorevole, per una durata di 2 ore.

Gli idranti UNI 45 sono caratterizzati da una portata di 120 l/min e da pressione residua pari a 0,2 MPa; gli idranti UNI 70 hanno una portata di 300 l/min e una pressione residua di 0,4 MPa. La portata totale del sistema di spegnimento incendi è quindi di 780 l/min.

La rete è alimentata da una vasca di accumulo, ovvero un serbatoio incassato con soletta carrabile posizionato nel piazzale ad uno degli ingressi della galleria.

Impianto TVCC

È previsto un impianto TVCC, ovvero un impianto di videosorveglianza collegato ad un sistema di allarme.

Impianto di illuminazione di sicurezza

L’illuminazione di evacuazione della galleria stradale è garantita mediante plafoniere a LED, poste ad interdistanza di 12,5 m e ad un’altezza di 0,8 m, che garantiscono un illuminamento medio di 5 lux all’interno del quale l’illuminamento minimo non è inferiore a 2 lux.
La plafoniera è realizzata in modo da avere una sorgente luminosa a LED destinata a delineare il percorso di evacuazione e guidare i pedoni verso l’uscita di emergenza e un’altra sorgente luminosa a LED destinata all’illuminazione a terra del medesimo percorso. È prevista inoltre l’installazione di moduli luminosi di colore verde attorno la porta di uscita di emergenza in modo da garantire la visibilità anche in situazioni di fumo esteso. Ilati della carreggiata ospitano moduli luminosi led ad altissima luminosità con lo scopo di segnare il margine stradale.

È previsto inoltre un impianto di illuminazione di sicurezza nella galleria d’emergenza costituito da plafoniere fluorescenti 2x18W 2700 lumen IP65, posizionate ad interdistanza di 5 m e poste inoltre in prossimità delle uscite di emergenza. L’impianto garantisce un illuminamento orizzontale minimo a pavimento di 46 lux.

Banchine

Nella galleria, poiché sprovvista di corsia d’emergenza, sono previste banchine pedonabili di emergenza non sopraelevate che gli utenti possono utilizzare in caso di guasto o incidente. Tali banchine hanno una larghezza di 1,5 m.

Cunicolo di emergenza

Il cunicolo di emergenza rappresenta un luogo sicuro avente lo scopo di condurre l’utenza verso un piazzale di raccolta all’aperto. L’accesso al cunicolo di emergenza è realizzato mediante un filtro largo 3 m e lungo 3,5 m corredato da due porte REI 120 con maniglione antipanico e serranda tagliafuoco, con apertura nel senso dell’esodo, larghezza di 240 cm e altezza di 230 cm. Le porte sono opportunamente segnalate, essendo dipinte di verde, ed illuminate.

Oltrepassato il filtro inizia il cunicolo di emergenza “sicuro” in cui è installato un ventilatore assiale a soffitto in prossimità della porta e uno spazio adibito a luogo di calma. L’immagine sottostante mostra lo schema funzionale di tale cunicolo.
Colorazione pareti della galleria stradale

La colorazione delle pareti della galleria segue lo schema riportato nelle “Linee Guida dell’ANAS” e riportato nel seguito.

Impianto di segnaletica

In ingresso alla galleria sono previsti pannelli semaforici indicanti lo stato delle corsie per ciascun senso di marcia.
È previsto inoltre un impianto di segnaletica luminosa.
La segnaletica stradale di emergenza riguarda le seguenti tipologie di segnali:
- segnali che indicano la presenza di stazioni di emergenza, posti alternativamente sui due lati della galleria, ad intervalli di 62,5 m;
- segnali che indicano la distanza dal luogo sicuro più vicino, posizionati ogni 125 m sul solo lato della galleria dove è presente l’ingresso alla galleria d’emergenza;
- segnali, all’interno della galleria d’emergenza, che indicano la distanza rimane da percorrere per raggiungere un luogo a cielo aperto.

Tutti questi impianti sono concepiti in modo tale che possano essere gestiti e controllati, localmente e da remoto, anche mediante un sistema di controllo centralizzato.

Il sistema deve gestire il funzionamento degli impianti in modo automatico e con la sorveglianza continua di personale specializzato presente presso la Sala Operativa Compartimentale di Anas.

Tutti gli impianti di sicurezza sono provvisti di un’alimentazione da UPS con autonomia pari ad almeno 30 minuti.

Confronto tra il progetto e le prescrizioni della Bozza RT

L’analisi delle indicazioni previste dalla Bozza RT sulle gallerie stradali e quella sulle misure previste nel progetto della galleria Demonte hanno condotto alla redazione di una tabella di confronto dei contenuti dei due documenti. Lo scopo è quello di sottolineare le eventuali differenze sulla progettazione della sicurezza antincendio svolta a partire da due riferimenti normativi distanti nel tempo.

In particolare la tabella seguente sintetizza le prescrizioni previste dalla Bozza RT sulle gallerie stradali e mostra le corrispondenze e le discordanze tra tali disposizioni e quelle previste dal progetto della Galleria Demonte.
<table>
<thead>
<tr>
<th>ARGOMENTO</th>
<th>BOZZA RT</th>
<th>PROGETTO GALLERIA DEMONTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stazioni di emergenza</td>
<td>Stazioni di emergenza poste ad intervalli non superiori a 250 m.</td>
<td>Stazioni di emergenza, a quinconce, poste ad intervalli di 62,5 m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telefoni di emergenza,</td>
<td>Telefoni di emergenza, posizionati a quinconce, ad intervalli non superiori a 250 m.</td>
<td>Telefoni SOS, posizionati a quinconce, ad intervalli di 62,5 m.</td>
</tr>
<tr>
<td>posizionati a quinconce,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ad intervalli non</td>
<td></td>
<td></td>
</tr>
<tr>
<td>superiori a 250 m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Devono essere munite di</td>
<td>N°1 estintore portatile a schiuma da 6 kg e n°1 estintore portatile a polvere da 6 kg.</td>
<td></td>
</tr>
<tr>
<td>almeno 2 estintori di idonea capacità estinguente.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segnali informativi</td>
<td>Segnali informativi sull'equipaggiamento delle stazioni di emergenza,</td>
<td>Segnali informativi</td>
</tr>
<tr>
<td>sull'equipaggiamento</td>
<td>posizionati a quinconce, ad intervalli non superiori a 250 m.</td>
<td>luminosi sull'equipaggiamento delle stazioni di emergenza, posizionati a quinconce, ad intervalli di 62,5 m.</td>
</tr>
<tr>
<td>Impianto antincendio</td>
<td>N°2 estintori di idonea capacità estinguente, posizionati a quinconce,</td>
<td>N°1 estintore portatile a schiuma da 6 kg e n°1 estintore portatile a polvere da 6 kg.</td>
</tr>
<tr>
<td></td>
<td>ad intervalli non superiori a 250 m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rete idrica realizzata</td>
<td>Rete idrica realizzata preferibilmente ad anello.</td>
<td></td>
</tr>
<tr>
<td>preferibilmente ad anello.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durata di funzionamento</td>
<td>Durata di funzionamento ≥ 2 h.</td>
<td></td>
</tr>
<tr>
<td>≥ 2 h.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idranti a colonna</td>
<td>N° 2 idranti soprassuolo vicino ai portali della galleria:</td>
<td></td>
</tr>
<tr>
<td>soprassuolo ai portali</td>
<td>- idranti DN70;</td>
<td></td>
</tr>
<tr>
<td>della galleria:</td>
<td>- portata ≥ 300 l/min;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- pressione residua ≥ 0,4 MPa per prestazione elevata.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idranti all'interno del</td>
<td>Idranti a muro all'interno del fornice:</td>
<td></td>
</tr>
<tr>
<td>fornice:</td>
<td>- posizionati a quinconce, ad intervalli inferiori a 250 m;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- idranti DN 45;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- portata ≥ 120 l/min;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- pressione residua ≥ 0,2 MPa;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- corredati da lancia e almeno 2 tubazioni flessibili da 20 m.</td>
<td></td>
</tr>
<tr>
<td>Impianti di sicurezza</td>
<td>Tutti gli impianti di sicurezza devono essere dotati di un'alimentazione di riserva.</td>
<td>Alimentazione di riserva garantita da un gruppo elettrogeno e un gruppo UPS.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Illuminazione di sicurezza con autonomia > 60'; impianti di mitigazione ed estinzione degli incendi con autonomia > 120'; altri impianti con autonomia > 30'.</td>
<td>Autonomia garantita agli impianti di sicurezza di 24 h.</td>
</tr>
<tr>
<td>Impianto di rilevamento dell'incendio</td>
<td>Deve essere previsto l'impianto di rilevamento dell'incendio.</td>
<td>È previsto l'impianto di rilevazione incendi; sono previsti inoltre pulsanti allarme incendio manuali, posti a quinconce, ad intervalli di 62,5 m.</td>
</tr>
<tr>
<td>Illuminazione di sicurezza</td>
<td>Percorsi pedonali e uscite di sicurezza: illuminamento = 10 lux.</td>
<td>Banchine pedonabili d'esodo della galleria: illuminamento medio = 5 lux.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Galleria di sicurezza: illuminamento medio = 46 lux.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uscite di sicurezza: illuminamento medio > 10 lux.</td>
</tr>
<tr>
<td></td>
<td>Stazioni di emergenza: illuminamento = 5 lux.</td>
<td>Nessuna informazione.</td>
</tr>
<tr>
<td>Segnaletica di sicurezza</td>
<td>La visibilità notturna della segnaletica è assicurata con dispositivi di illuminazione propria per trasparenza o per rifrangenza con o senza luce portata dal segnale stesso. La rifrangenza è in genere ottenuta con l'impiego di idonee pellicole.</td>
<td>La segnaletica verticale di emergenza è di tipo luminoso, di classe minima L2 e rivestita da un film rinfrangente micropirismatico in grado di assicurare la visibilità del segnale anche in caso di assenza di energia elettrica.</td>
</tr>
<tr>
<td></td>
<td>Segnale che indica la presenza di un'uscita di emergenza in corrispondenza di ciascuna di esse.</td>
<td>Segnale che indica la presenza di un'uscita di emergenza in corrispondenza di ciascuna di esse.</td>
</tr>
<tr>
<td></td>
<td>Segnale che indica la distanza dal luogo vicino più sicuro e la direzione da percorrere ogni 100 m.</td>
<td>Galleria stradale: segnale che indica la distanza dal luogo vicino più sicuro e la direzione da percorrere posizionato ogni 62,5 m.</td>
</tr>
<tr>
<td>Articolo</td>
<td>Descrizione</td>
<td>Verifica</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Galleria d'emergenza: segnale che indica la distanza dal luogo vicino più sicuro e la direzione da percorrere posizionato ogni 30 m.</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Segnali informativi sull'equipaggiamento delle stazioni di emergenza.</td>
<td>Segnali informativi sull'equipaggiamento delle stazioni di emergenza.</td>
<td>✓</td>
</tr>
<tr>
<td>Segnaletica di sicurezza in corrispondenza di impianti e presidi antincendio.</td>
<td>Segnaletica di sicurezza in corrispondenza di impianti e presidi antincendio.</td>
<td>✓</td>
</tr>
<tr>
<td>Vie d'esodo e uscite di emergenza</td>
<td>Porta tagliafuoco REI 120.</td>
<td>✓</td>
</tr>
<tr>
<td>Nelle gallerie sprovviste di corsie di emergenza devono essere previste banchine pedonabili, sopraelevate o meno.</td>
<td>Banchine pedonabili non sopraelevate di larghezza pari a 1,5 m.</td>
<td>✓</td>
</tr>
<tr>
<td>Uscite di emergenza con interdistanza non superiore a 500 m.</td>
<td>Uscita che adduce ad una galleria pedonale di emergenza posta a circa 325 m dai due portali.</td>
<td>✓</td>
</tr>
<tr>
<td>Ventilazione di emergenza</td>
<td>La ventilazione di emergenza risulta essere non obbligatoria.</td>
<td>✓</td>
</tr>
</tbody>
</table>

Tabella 2: Prescrizioni previste dalla Bozza RTV sulle gallerie stradali - Bozza RTV gallerie stradali
Capitolo 6 - Applicazioni di Fire Safety Engineering

La Fire Safety Engineering è un approccio ingegneristico che permette di costruire un progetto antincendio sulla base di metodi scientifici e di individuare le misure di sicurezza più efficaci al fine di garantire la protezione delle persone, dei beni e dell’ambiente dalle conseguenze dell’incendio.

In Italia si parla per la prima volta di Fire Safety Engineering con l’introduzione del D.M. 9 maggio 2007 anche se tale riferimento non dava indicazioni sul quantitativo di scenari da presumere. Il passaggio definitivo all’impiego dell’approccio ingegneristico nella prevenzione incendi è avvenuto con l’entrata in vigore del D.M. 3 agosto 2015, conosciuto anche come “Codice di prevenzione incendi”.

La prima definizione della metodologia prestazionale su cui si basa l’approccio della FSE è stata introdotta con la normativa ISO/TR 13387: “L’applicazione di principi ingegneristici, di regole e di giudizi esperti basati sulla valutazione scientifica del fenomeno della combustione, degli effetti dell’incendio e del comportamento umano, finalizzati alla tutela della vita umana, alla protezione dei beni e dell’ambiente, alla quantificazione dei rischi dell’incendio e dei relativi effetti nonché alla valutazione analitica delle misure di protezione ottimali, necessarie e limitare, entro livelli prestabiliti, le conseguenze dell’incendio”.

L’approccio prestazionale della FSE fornisce la possibilità di simulare l’innescio e la propagazione di un incendio attraverso l’utilizzo di modelli di calcolo con lo scopo di avere un’idea concreta di quello che accade nell’ambiente del focolaio.

I risultati delle simulazioni forniscono dati affidabili sul tempo necessario alle persone per uscire da un edificio e quello in cui la struttura riesce a mantenere le sue caratteristiche di resistenza e funzionalità in caso di incendio.

Il primo step della progettazione antincendio con l’approccio prestazionale prevede lo svolgimento di una analisi di rischio che conduca prima alla definizione degli scenari incidentalì possibili in galleria e poi all’individuazione degli scenari di progetto. Occorre successivamente stabilire delle soglie di prestazione in modo da avere dei valori di riferimento da utilizzare per la valutazione degli obiettivi di sicurezza antincendio prefissati.
6.1 Analisi di rischio

La probabilità di accadimento di un incidente in galleria non è elevata, tuttavia occorre considerare la probabilità che ciò avvenga con le relative conseguente dovute al possibile innesco di incendio. Questo perché il calore e il fumo risulterebbero intrappolati nel tunnel, creando delle condizioni gravose per l’esodo dell’utenza presente.

Il livello di sicurezza nella galleria raggiunto con la progettazione deve assicurare la protezione efficace dei soggetti, direttamente coinvolti o no negli eventi incidentali, dalle conseguenze dovute a questi eventi.

L’analisi di rischio prevede di svolgere:
- la valutazione della tipologia di traffico veicolare che caratterizza la galleria;
- l’identificazione dei possibili scenari incidentali che possono verificarsi in galleria.

6.1.1 Analisi del traffico veicolare

Un dato importante per l’analisi di rischio è la definizione del numero di veicoli presenti in galleria. A tale scopo viene valutato il TGMA che indica la media annua del traffico medio giornaliero in una galleria, per corsia.

Nel calcolo del volume di traffico ogni veicolo a motore conta per una unità.

I dati inerenti al volume di traffico sono stati presi sul sito dell’ANAS e sono riferiti al traffico dell’anno 2017 sulla tratta di interesse.

![Diagramma del traffico veicolare](image)

Figura 8: dati sul traffico medio giornaliero SS21 – Anas
I dati estrapolati sono i seguenti:
- TGMA (veicoli totali) = 6632
- TGMA (veicoli pesanti > 3,5t) = 526 (circa 8 %)

I dati mostrano che in una giornata media la galleria è principalmente trafficata da veicoli leggeri e da un numero nettamente inferiore di veicoli pesanti.

6.1.2 Scenari incidentali in galleria

La molteplicità degli eventi critici possibili in galleria può essere sintetizzata nelle seguenti tipologie riportate nell’elenco seguente:
- Collisioni seguite da incendio dei veicoli coinvolti;
- Incendi dei veicoli;
- Sversamenti di sostanze infiammabili dai veicoli;
- Rilasci in fase gassosa di sostanze tossiche, nocive, infiammabili dai veicoli;
- Esplosioni.

Si osserva che quattro di queste tipologie di evento possono generare tutte il medesimo fenomeno, che si identifica nell’incendio. L’unica distinzione che sussiste tra questi eventi è legata alla natura della causa scatenante e a quella delle conseguenze.
È importante dunque indagare sulle variabili da cui dipende il rischio in galleria che può essere definito in funzione delle seguenti tre principali peculiarità:
- massa dei veicoli in transito;
- velocità dei veicoli in transito;
- caratteristiche chimico-fisiche dei veicoli e delle merci trasportate.

Tipologie di veicolo

La tipologia di veicolo coinvolto ha un’influenza decisiva sulle conseguenze di un evento critico poiché il carico di incendio è esclusivamente imputabile ai mezzi coinvolti.
La definizione delle categorie di trasporti da considerare nell’analisi di rischio è fatta a partire dall’analisi del traffico veicolare precedente.
È opportuno quindi considerare le seguenti tipologie di veicoli:

- veicolo leggero;
- veicolo pesante:
 - veicolo per il trasporto di merci;
 - cisterna per il trasporto di liquido infiammabile.

Caratteristiche dei veicoli e delle merci trasportate

Le categorie di veicoli considerate si distinguono in virtù dell’intensità della potenza dell’incendio che ne deriva. Quest’ultima è fortemente dipendente dai materiali di cui è costituito il veicolo e da quelli trasportati.

I materiali combustibili di cui tenere conto sono i seguenti:

- materiali costitutivi del veicolo stradale, tra cui i sedili, pneumatici e materiali plastici, la cui combustione produce una cospicua quantità di fumi densi;
- carburante all’interno del serbatoio dei veicoli che in caso di combustione comporta il rilascio di una quantità di energia termica ingente;
- carico dei veicoli, la cui natura è cospicuamente variabile, a cui viene associato un rischio elevato in caso di trasporto di merci pericolose, come ad esempio le autocisterne che trasportano liquido altamente infiammabile.

La tabella seguente riporta i valori indicativi delle potenze associate a ciascuna tipologia di veicolo.

<table>
<thead>
<tr>
<th>Tipologia della sorgente</th>
<th>E</th>
<th>\dot{Q}_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3 Autovetture</td>
<td>15000 - 18000</td>
<td>8</td>
</tr>
<tr>
<td>1 furgone</td>
<td>40000 - 65000</td>
<td>15</td>
</tr>
<tr>
<td>1 veicolo pesante</td>
<td>125000 - 150000</td>
<td>30-50</td>
</tr>
<tr>
<td>1 cisterna liquido infiammabile</td>
<td>450000 - 1000000</td>
<td>100-200</td>
</tr>
</tbody>
</table>

Tabella 3: Potenze dei veicoli – Linee guida Anas
Posizione all’interno del fornice

Le conseguenze dell’evento incidentale dipendono anche dalla posizione dello stesso all’interno della galleria in quanto coinvolgerà un numero variabile di persone e poiché potrebbe interessare una delle uscite di sicurezza presenti, compromettendone l’utilizzo. Risulta quindi fondamentale la specificazione della distanza delle diverse uscite di sicurezza dall’evento critico in modo tale da valutare la salvabilità degli utenti coinvolti nello stesso.

Nel caso in oggetto sono state prese in considerazione tre posizioni del focolaio all’interno del fornice, ritenute le più importanti e rappresentative tra tutte:

- imbocco del fornice;
- in prossimità della galleria d’emergenza;
- a metà tra imbocco e galleria d’emergenza.

Si nota inoltre che nella galleria, essendo bidirezionale, entrambi i sensi di marcia e quindi entrambe le correnti veicolari risultano interessate dall’evento. In particolare si ha che uno dei due sensi di marcia è occupato dalle vetture per una distanza X, coincidente con il tratto tra l’incendio e l’entrata, mentre per il senso di marcia opposto tale distanza è pari alla differenza tra la lunghezza complessiva della galleria L e il tratto X, come mostra la figura sottostante. I veicoli che si trovano oltre l’evento critico hanno l’opportunità di abbandonare la galleria in sicurezza continuando la loro marcia verso l’uscita del fornice.

![Figura 9: lunghezza dei tratti di galleria occupati dai veicoli dei due sensi di marcia in caso di evento critico](image)

L’analisi delle molteplici variabili considerate ha condotto all’elaborazione di una tabella in cui l’intersezione delle variabili prese in esame consente di ricavare gli scenari incidentalli possibili in galleria.
Ciascuno scenario risulta caratterizzato da una posizione all’interno del fornice, dalla tipologia di mezzi coinvolti, dall’accadimento di un evento critico e dalle derivate conseguenze.

<table>
<thead>
<tr>
<th>POSIZIONE ALL’INTERNO DEL FORNICE</th>
<th>TIPOLOGIA DI MEZZO</th>
<th>EVENTO</th>
<th>CONSEGUENZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMBOCCO</td>
<td>VEICOLO PESANTE</td>
<td>RILASCIO DI GAS TOSSICO</td>
<td>NESSUN EFFETTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BLEVE: ESPLOSIONE IN CONCOMITANZA DELLA ROTTURA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DI UN RECIPIENTE IN PRESSIONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NUBE TOSSICA</td>
</tr>
<tr>
<td></td>
<td>CISTERNA PER IL TRASPORTO DI LIQUIDO INFIAMMABILE</td>
<td>RILASCIO DI GAS LIQUEFATTO INFIAMMABILE</td>
<td>NESSUN EFFETTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BLEVE: ESPLOSIONE IN CONCOMITANZA DELLA ROTTURA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DI UN RECIPIENTE IN PRESSIONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FLASH-FIRE: FUOCO Istantaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VCE: ESPLOSIONE DI UNA NUBE DI VAPORE</td>
</tr>
<tr>
<td>IN PROSSIMITÀ DELLA GALLERIA D’EMERGENZA</td>
<td>VEICOLO PER IL TRASPORTO DI LIQUIDO INFIAMMABILE</td>
<td>RILASCIO DI LIQUIDO INFIAMMABILE</td>
<td>NESSUN EFFETTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POOL-FIRE: INCENDIO DI IDROCARBURI DA POZZA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FLASH-FIRE: FUOCO Istantaneo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VCE: ESPLOSIONE DI UNA NUBE DI VAPORE</td>
</tr>
<tr>
<td>A META’ TRA IMBOCCO E GALLERIA D’EMERGENZA</td>
<td>VEICOLO PER IL TRASPORTO DI MERCI</td>
<td>INCENDIO A CAUSA DI GUASTO</td>
<td>NESSUNA: ESTINZIONE RAPIDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SVILUPPO DELL’INCENDIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ESPLOSIONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NESSUNA: ESTINZIONE RAPIDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SVILUPPO DELL’INCENDIO</td>
</tr>
<tr>
<td>IMBOCCO</td>
<td>VEICOLO LEGGERO</td>
<td>INCENDIO A SEGUITO DI INCIDENTE</td>
<td>NESSUNA: ESTINZIONE RAPIDA</td>
</tr>
<tr>
<td>IN PROSSIMITÀ DELLA GALLERIA D’EMERGENZA</td>
<td>VEICOLO LEGGERO</td>
<td>INCENDIO A SEGUITO DI INCIDENTE</td>
<td>NESSUNA: ESTINZIONE RAPIDA</td>
</tr>
<tr>
<td>A META’ TRA IMBOCCO E GALLERIA D’EMERGENZA</td>
<td>VEICOLO LEGGERO</td>
<td>INCENDIO A SEGUITO DI INCIDENTE</td>
<td>NESSUNA: ESTINZIONE RAPIDA</td>
</tr>
</tbody>
</table>

Tabella 4: Eventi critici in galleria stradale
6.2 Individuazione degli scenari di progetto

A partire dai molteplici eventi critici possibili in galleria e dall’analisi veicolare del tratto stradale in cui si inserisce la galleria Demonte, vengono individuati gli scenari di progetto per cui svolgere l’analisi delle conseguenze.

La modellazione degli scenari d’incendio di progetto presuppone la definizione dell’evento incidentale che porta all’incendio all’interno del tunnel e la posizione all’interno del fornice. Gli eventi critici scelti riguardano due eventi incidentali con conseguente innesco di incendio; essi sono:

- innesco di un’autovettura a seguito di collisione tra automobili;
- innesco di un veicolo ADR (autocisterna) adibito al trasporto di benzina a seguito di urto con autovettura.

Lo studio delle conseguenze di questi eventi incidentali è effettuato in tre posizioni diverse all’interno del fornice della galleria, generando così i sei differenti scenari riportati nella tabella seguente.

<table>
<thead>
<tr>
<th>N° SCENARIO</th>
<th>DESCRIZIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Incendio di un’autovettura in corrispondenza dell’imbocco della galleria</td>
</tr>
<tr>
<td>2</td>
<td>Incendio di un’autovettura in prossimità della galleria d’emergenza</td>
</tr>
<tr>
<td>3</td>
<td>Incendio di un’autovettura a metà tra imbocco e uscita di emergenza</td>
</tr>
<tr>
<td>4</td>
<td>Incendio di una autocisterna adibita al trasporto di benzina in corrispondenza dell’imbocco della galleria</td>
</tr>
<tr>
<td>5</td>
<td>Incendio di una autocisterna adibita al trasporto di benzina in prossimità della galleria d’emergenza</td>
</tr>
<tr>
<td>6</td>
<td>Incendio di una autocisterna adibita al trasporto di benzina in corrispondenza dell’imbocco della galleria</td>
</tr>
</tbody>
</table>

Tabella 5: scenari d’incendio di progetto
6.3 Soglie di prestazione per gli utenti della galleria

La salvaguardia della vita viene affrontata nella progettazione prestazionale considerando gli aspetti comportamentali e ambientali, ovvero tenendo conto degli effetti dell’incendio sugli utenti della galleria.

La salvabilità degli utenti occupanti una galleria dipende quindi dalla quantificazione degli effetti sulla popolazione esposta e dalla zonizzazione del flusso del pericolo all’interno della struttura, definito quest’ultimo come l’evoluzione dei fenomeni fisici e chimici che determinano gli stati critici conseguenti all’accadimento degli eventi incidentali critici.

Le conseguenze sulla popolazione esposta sono determinate dalle caratteristiche dell’evento critico considerato e misurate in termini di dosi inabilitanti assorbite; le dosi inabilitanti dipendono dai campi di temperatura e concentrazione di sostanze tossiche e nocive all’interno della struttura.

Al fine di poter valutare le conseguenze sulla popolazione occorre effettuare una caratterizzazione energetica delle sorgenti di rilascio e dei focolai al mutare delle proprietà chimico fisiche dei materiali costituenti i veicoli e delle sostanze trasportate.

Gli effetti sulla salute vengono poi determinati mediante l’uso di software di simulazione d’incendio a partire dagli output ottenuti per i parametri di rischio lungo la galleria ed al tempo di esposizione dei soggetti a ciascun elemento di rischio (CO, CO2, HCl, HCN, etc.).

I valori ottenuti devono poi essere verificati rispetto ad un valore limite, coincidente con il parametro di riferimento per il calcolo del tempo disponibile per l’esodo.

Le soglie di prestazione di riferimento sono presenti nel codice di prevenzione incendi e sono quelle riportate in tabella.

<table>
<thead>
<tr>
<th>PRESTAZIONE</th>
<th>VALORE SOGLIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISIBILITA’ (visibilità minima valutata ad altezza di 1,80 m dal piano di calpestio)</td>
<td>10 m</td>
</tr>
<tr>
<td>TEMPERATURA (temperatura massima di esposizione)</td>
<td>60 °C</td>
</tr>
<tr>
<td>IRRAGGIAMENTO (irraggiamento termico massimo da tutte le sorgenti di esposizione degli occupanti)</td>
<td>2,5 kW/m²</td>
</tr>
<tr>
<td>FED (massima dose di gas tossico a cui un utente può essere esposto, valutata all’altezza di 1,80 m dal piano di calpestio)</td>
<td>0,1 [-]</td>
</tr>
</tbody>
</table>

Tabella 6: Valori soglia di riferimento di alcuni parametri – Codice di prevenzione incendi 2019
6.4 Criterio per la salvaguardia della vita

Il metodo prestazionale prevede la valutazione delle misure di prevenzione incendi impiegate in un progetto sulla base di una verifica in termini di tempo che consiste nel confronto tra i valori di RSET e ASET.

In particolare prevede di accertare che per tutti gli occupanti della struttura oggetto di studio il tempo disponibile per l’esodo (ASET) sia maggiore del tempo richiesto per l’esodo (RSET):

\[\text{ASET} > \text{RSET} \]

Il tempo necessario per l’esodo degli occupanti (RSET) dalla struttura dipende da numerose variabili legate alle caratteristiche di incendio, edificio ed occupanti. Il suo valore è determinato a partire dai risultati di simulazioni d’esodo, tenendo conto delle soglie di prestazione che il codice di prevenzione incendi impone di garantire quando viene usato il metodo avanzato. Le soglie di riferimento sono quelle riportate nel capitoletto precedente nella tabella n° 6.

In particolare si definisce l’RSET come il risultato del contributo dei seguenti tempi:

- Tempo di rivelazione \(t_{\text{det}} \), ovvero il tempo necessario al sistema di rivelazione automatico per accorgersi dell’incendio;
- Tempo di allarme generale \(t_{\text{a}} \), corrispondente al tempo che intercorre tra la rivelazione dell’incendio e la diffusione dell’informazione agli occupanti;
- Tempo di pre-movimento \(t_{\text{pre}} \), identificato con il tempo necessario agli occupanti per svolgere le attività che precedono il movimento verso un luogo sicuro;
- Tempo di movimento \(t_{\text{tra}} \), coincidente con il tempo impiegato dagli occupanti per raggiungere un luogo sicuro al termine dell’attività di pre-movimento.
La ripartizione dei tempi peculiari del processo di esodo in funzione del valore di ASET è rappresentata come segue:

![Diagram](image)

Figura 10: Tempi del processo d’esodo – Sito Teknoring

Il valore di ASET è determinato a partire dai risultati di simulazioni d’incendio effettuate con opportuni software.
In particolare è ricavato mediante l’applicazione di un metodo avanzato che consente di utilizzare modelli di fluidodinamica computazionale (CFD) per stimare la crescita dell’incendio e dei suoi effetti.

I modelli per cui è stato calcolato il valore di ASET mediante il metodo di calcolo avanzato sono:

- Modello dei gas tossici, basato sul concetto di dose inalata (exposure dose) e FED (fractional effective dose).
- Modello dei gas irritanti, basato sul concetto di FEC (fractional effective dose);
- Modello del calore;
- Modello dell’oscuramento della visibilità da fumo.

Il valore di ASET assoluto per la struttura in esame è assunto pari al più piccolo tra gli ASET calcolati secondo i quattro modelli precedentemente definiti, come suggerito dalla norma ISO 13571.
Capitolo 7 - Modellazione d’incendio

La modellazione d’incendio consiste nella descrizione quantitativa degli scenari d’incendio di progetto definiti. In particolare vengono identificate le caratteristiche principali inerenti all’attività, all’incendio e agli occupanti.

Al fine di descrivere l’evoluzione dell’incendio e dei suoi effetti sugli occupanti occorre utilizzare modelli di calcolo analitici e numerici che consentono di ottenere dati di output da confrontare con le soglie di prestazione prefissate.

Il software utilizzato per la modellazione dell’incendio è Pyrosim.

Pyrosim è un’interfaccia grafica del modello si fluidodinamica computazionale FDS (Fire Dynamics Simulator) che consente la modellazione in un incendio e la generazione di simulazioni dalle quali è possibile ricavare risultati sia numerici che grafici.

I modelli FDS consentono infatti di prevedere l’andamento di fumo, temperatura e di diverse sostanze prodotte durante uno scenario d’incendio, consentendo la valutazione della sicurezza negli edifici.

7.1 Importazione del modello 3D e creazione di uno spazio di calcolo FDS

Il software Pyrosim permette l’importazione del modello 3D della galleria Demonte, precedentemente creato attraverso l’utilizzo di Revit Autodesk ed esportato in formato “.fbx” tramite il modulo aggiuntivo Simlab.

Una volta importato il modello è necessario creare una serie di mesh, ovvero uno spazio riconosciuto dal software all’interno del quale vengono eseguiti tutti i calcoli FDS (Fire Dynamics Simulator).

Nel caso in oggetto, al fine di ottenere una precisione di simulazione adeguata, le mesh create sono caratterizzate da una maglia con dimensioni di 1 m x 1 m.

Di conseguenza tutti gli oggetti inseriti sono stati schematizzati come parallelepipedi con dimensione multipla a quella delle celle in quanto è importante la conformità con la mesh di riferimento.
La velocizzazione delle operazioni di calcolo FDS è stata ottenuta creando una concatenazione di mesh lungo tutto il profilo curvo della galleria, come mostrato nella figura sottostante, piuttosto che una unica mesh.

![Figura 11: Suddivisione in meshes del modello 3D della galleria Demonte](image)

Nella parte di superficie comune a 2 mesh confinanti sono presenti delle “vents”, ovvero prese d’aria con lo scopo di permettere lo sfiato attraverso i vari blocchi fino alla fuoriuscita dell’aria o dei fumi dagli ingressi al fornice.

7.2 Dati di input per la modellazione d’incendio

7.2.1 Focolai analizzati

In tutti gli scenari presi in esame i focolai sono costituiti da veicoli concepiti come blocchi rettangolari le cui dimensioni, multiple della grandezza della mesh di riferimento, sono elencate nella tabella seguente.

<table>
<thead>
<tr>
<th>Tipologia mezzo</th>
<th>Lunghezza [m]</th>
<th>Larghezza [m]</th>
<th>Altezza [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>automobile</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>autocisterna</td>
<td>18</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabella 7: Dimensioni dei veicoli utilizzate nel modello

In particolare si ipotizza che bruci una sola faccia del parallelepipedo, quella superiore. Tale superficie viene caratterizzata mediante parametri propri del focolaio quali:

- calore rilasciato da 1 m2 di superficie che brucia;
- tempo di crescita dell’incendio.
7.2.2 Curve HRR

Un parametro importante per la caratterizzazione del focolare, identificato come fonte di energia termica e di prodotti della combustione, è rappresentato dalla curva HRR. La curva Heat Release Rate (HRR), che in italiano si traduce in “curva di rilascio termico”, esprime l’andamento temporale della potenza termica rilasciata dall’incendio. Essa dipende fondamentalmente dal combustibile, dalle condizioni di ventilazione e caratteristiche geometriche del materiale. La produzione di fumo e calore aumenta cospicuamente in virtù della velocità con cui brucia il materiale combustibile e quindi in dipendenza del valore di HRR_{max}.

7.2.2.1 Curva HRR di un’automeobile

La curva HRR di riferimento per la velocità di rilascio del calore e la combustione di autoveicoli è una curva sviluppata da alcuni ricercatori appositamente per i calcoli di ingegneria antincendio; essa è stata ricavata sulla base dei dati raccolti da esperimenti.

![Curva HRR di un’automeobile ricavata dai ricercatori ProfilARBED](image)

La curva mostra un andamento crescente fino al valore di picco pari a circa 8337 kW in corrispondenza 1528,3 secondi.
7.2.2.2 Curva HRR di un’autocisterna di benzina

Il processo di combustione di focolai composti da veicoli pesanti, a differenza di quelli costituiti da veicoli più piccoli per i quali esistono sufficienti dati sperimentali, dispone di dati derivanti da un numero esiguo di prove condotte su scala reale.

Per tale motivo la caratterizzazione del focolaio è condotta per equivalenza con i focolai del carico trasportato dal mezzo.

I dati contenuti nella tabella sottostante, presa dall’articolo “Tunnelling and Underground Space Technology” del giornale Elsevier, sono stati utilizzati per la caratterizzazione energetica del focolaio di incendio dell’autocisterna.

<table>
<thead>
<tr>
<th>Vehicles</th>
<th>Dimensions (m)</th>
<th>HRR</th>
<th>Yeilds of combustion products (kg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two cars</td>
<td>2 x 6</td>
<td>8</td>
<td>CO2 0.084</td>
</tr>
<tr>
<td>Bus</td>
<td>12</td>
<td>30</td>
<td>CO 0.1</td>
</tr>
<tr>
<td>HGV</td>
<td>12</td>
<td>50</td>
<td>Soot 0.05</td>
</tr>
<tr>
<td>Petrol</td>
<td>2.5</td>
<td>100</td>
<td>CO2 0.15</td>
</tr>
<tr>
<td>Tanker</td>
<td>12</td>
<td>100</td>
<td>CO 0.025</td>
</tr>
</tbody>
</table>

Tabella 8: Dimensioni dei veicoli, HRR e parametri dei prodotti di combustione - Articolo “Tunnelling and Underground Space Technology” del giornale Elsevier

I valori della tabella fondamentali per la costruzione della curva HRR sono:

- HRR_{max}, potenza massima generata dal focolaio;
- t_{max}, tempo caratteristico della fase stazionaria dell’evento.

La curva HRR dell’autocisterna, riportata nell’immagine sottostante, è ricavata a partire da questi dati con il supporto del codice di prevenzione incendi.

La curva rappresentata mostra un andamento crescente fino al tempo massimo che corrisponde alla massima potenza HRR rilasciata nell’incendio; oltrepassato questo tempo si suppone che la potenza si stabilizzi al valore massimo.
7.2.1 Prodotti d’incendio

La valutazione dell’esposizione degli utenti della galleria a ciascun elemento di rischio prodotto dall’incendio di un veicolo può essere eseguita solo dopo un’attenta analisi dei materiali di cui esso è composto.

Una volta identificato il combustibile, la superficie che brucia viene caratterizzata ulteriormente da parametri relativi alla composizione in atomi del materiale che brucia e dai suoi prodotti di combustione.

7.2.1.1 Prodotti d’incendio di un’autovettura

Nel caso dell’incendio di un’automobile è conveniente conoscere i materiali principali di cui è composta. Tali materiali sono riportati nella tabella sottostante.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>%</th>
<th>Massa (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acciaio</td>
<td>59</td>
<td>619,5</td>
</tr>
<tr>
<td>zinco, rame, magnesio, piombo</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>gomma</td>
<td>5,6</td>
<td>58,8</td>
</tr>
<tr>
<td>ghisa</td>
<td>6,4</td>
<td>67,2</td>
</tr>
<tr>
<td>alluminio</td>
<td>8</td>
<td>84</td>
</tr>
<tr>
<td>plastica</td>
<td>9,3</td>
<td>97,65</td>
</tr>
<tr>
<td>adesivi e vernici</td>
<td>3</td>
<td>31,5</td>
</tr>
<tr>
<td>vetro</td>
<td>2,9</td>
<td>30,45</td>
</tr>
<tr>
<td>tessili</td>
<td>0,9</td>
<td>9,45</td>
</tr>
<tr>
<td>fluidi</td>
<td>0,9</td>
<td>9,45</td>
</tr>
<tr>
<td>miscellanea</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Totale autovettura</td>
<td>100</td>
<td>1050</td>
</tr>
</tbody>
</table>

Tabella 9: Composizione media di un’autovettura – Matrec, Material Recycling 2003

Il materiale “plastica” può essere scomposto ulteriormente in altri componenti tra cui i principali sono poliuretano (PU), polipropilene (PP), polietilene (PE), che vanno a comporre le diverse componenti in plastica di un’autovettura, quali paraurti, sedili, cruscotto, serbatoi, luci, tappezzerie e altro.

Tra i materiali sopra elencati sono stati presi in considerazione solo quelli che producono sostanze rischiose per gli utenti della galleria.
I prodotti di combustione relativi a ciascun materiale sono riportati nella tabella sottostante.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Quantità per autovettura [kg]</th>
<th>ΔHr [kJ/g]</th>
<th>YCO [g/g]</th>
<th>YS [g/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gomma</td>
<td>58,8</td>
<td>28</td>
<td>0,08</td>
<td>0,08</td>
</tr>
<tr>
<td>Vernici</td>
<td>31,5</td>
<td>-</td>
<td>0,114</td>
<td>0,166</td>
</tr>
<tr>
<td>Polyester-polyamide (Tessili)</td>
<td>9,45</td>
<td>-</td>
<td>0,008</td>
<td>0</td>
</tr>
<tr>
<td>Olio motore</td>
<td>5</td>
<td>46</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liquido freni</td>
<td>1</td>
<td>41,5</td>
<td>0,041</td>
<td>0,097</td>
</tr>
<tr>
<td>Liquido del servosterzo</td>
<td>0,5</td>
<td>41,5</td>
<td>0,041</td>
<td>0,097</td>
</tr>
<tr>
<td>Carburante</td>
<td>50</td>
<td>44,5</td>
<td>0,01</td>
<td>0,034</td>
</tr>
<tr>
<td>Olio del cambio</td>
<td>2,4</td>
<td>41,5</td>
<td>0,041</td>
<td>0,097</td>
</tr>
<tr>
<td>PU</td>
<td>19</td>
<td>-</td>
<td>0,2</td>
<td>-</td>
</tr>
<tr>
<td>PP</td>
<td>15</td>
<td>43,4</td>
<td>0,024</td>
<td>0,059</td>
</tr>
<tr>
<td>PE</td>
<td>11</td>
<td>43,6</td>
<td>0,024</td>
<td>0,06</td>
</tr>
<tr>
<td>Poliestere</td>
<td>11</td>
<td>32,5</td>
<td>0,08</td>
<td>0,089</td>
</tr>
<tr>
<td>PVC</td>
<td>8</td>
<td>16,4</td>
<td>0,063</td>
<td>0,172</td>
</tr>
<tr>
<td>Altre plastiche</td>
<td>26</td>
<td>34,06</td>
<td>0,08</td>
<td>0,09</td>
</tr>
</tbody>
</table>

Tabella 10: Prodotti di combustione dei materiali costituenti un’automobile - Handbook of fire safety engineering

Il software utilizzato consente però di tenere conto dei parametri di un solo materiale, non prevedendo quindi la possibilità di fare una somma pesata di tutti i componenti.

Pertanto è obbligata la scelta di un solo materiale che possa rappresentare il più possibile dal punto di vista delle conseguenze l’intero veicolo.

Dalla tabella si evince quindi che il materiale predominante, sia per il quantitativo in peso presente nel veicolo che per quello dei prodotti di combustione, è la gomma.

I valori dei prodotti di combustione della gomma sono i seguenti.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>ΔHr [kJ/g]</th>
<th>YCO [g/g]</th>
<th>YS [g/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>gomma</td>
<td>28</td>
<td>0,08</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Tabella 11: Yields of combustion products – SP Technical Research Institute of Sweden
7.2.1.2 Prodotti d’incendio di una autocisterna di benzina

Nel caso dell’autocisterna la valutazione dell’esposizione degli utenti della galleria ai rischi derivanti dall’incendio del mezzo è legata essenzialmente alle conseguenze dell’innesco del liquido trasportato.

Per tale motivo il materiale considerato nelle simulazioni dell’incendio come costitutivo del mezzo è la benzina, i cui valori dei prodotti di combustione sono riportati nella tabella sottostante.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>ΔH_f [kJ/g]</th>
<th>γ_{CO} [g/g]</th>
<th>γ_{S} [g/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzina</td>
<td>44,5</td>
<td>0,011</td>
<td>0,038</td>
</tr>
</tbody>
</table>

7.3 Dispositivi di misurazione dei parametri ambientali

La misurazione dei valori assunti dai vari parametri ambientali di interesse è effettuata attraverso l’utilizzo di strumenti quali “devices”, “slices”, “isosurfaces”.

I devices sono dispositivi che consentono la misurazione puntuale dei valori dei parametri scelti. Nel caso studio essi sono posizionati ad una altezza di 2 m dal pavimento e distribuiti lungo tutta la lunghezza della galleria. I parametri misurati attraverso questi apparecchi sono la temperatura, la visibilità, l’irraggiamento e la FED e possono essere analizzati grazie ai grafici di output del dispositivo che il software permette di generare.

L’immagine sottostante mostra la distribuzione dei devices all’interno della galleria.

Figura 14: Distribuzione dei devices in galleria

Le slices consentono di valutare i parametri sui piani scelti. Nel caso studio tali piani sono utilizzati per la valutazione di visibilità e temperatura e sono posizionati in orizzontale, parallelamente all’asse z e ad un’altezza di 2 m da terra, in modo tale da valutare le condizioni ambientali ad altezza uomo per tutta la lunghezza della galleria.
L’immagine sottostante mostra il posizionamento della slice orizzontale a 2 m da terra all’interno della galleria.

Figura 15: Posizione della slice orizzontale a 2 m da terra nella galleria

Le isosuperfici sono superfici tridimensionali utilizzate per tracciare il contorno tridimensionale di quantità gassose. Nel caso in oggetto vengono usate per la valutazione di visibilità e temperatura per i quali valgono rispettivamente i valori soglia di 10 m e 60 °C. L’immagine sottostante mostra l’aspetto caratteristico delle isosuperfici.

Figura 16: esempio di isosuperficie della visibilità

La tabella seguente riassume le informazioni principali riguardanti gli strumenti di misura adoperati nel modello:

<table>
<thead>
<tr>
<th>DISPOSITIVO</th>
<th>PARAMETRI MISURATI</th>
<th>POSIZIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>visibilità</td>
<td>x = valori vari;</td>
</tr>
<tr>
<td></td>
<td>temperatura</td>
<td>z = 2 m</td>
</tr>
<tr>
<td></td>
<td>irraggiamento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FED</td>
<td></td>
</tr>
<tr>
<td>SLICES</td>
<td>visibilità</td>
<td>z = 2 m</td>
</tr>
<tr>
<td></td>
<td>temperatura</td>
<td></td>
</tr>
<tr>
<td>ISOSUPERFICI</td>
<td>visibilità</td>
<td></td>
</tr>
<tr>
<td></td>
<td>temperatura</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 13: Informazioni varie sugli strumenti di misura adoperati
Capitolo 8 - Analisi degli scenari di progetto e risultati delle simulazioni

Gli scenari d’incendio di progetto precedentemente scelti e le loro principali caratteristiche sono sintetizzati nello schema seguente.

Figura 17: Schema degli scenari d’incendio di progetto

Nelle pagine seguenti viene effettuata la descrizione e la valutazione di ciascuno scenario di incendio considerato e l’analisi dei risultati delle simulazioni effettuate con il software Pyrosim.

Il metodo utilizzato per la stima di tali parametri è un metodo avanzato basato sull’analisi di quattro modelli di fluidodinamica computazionale al fine di stimare lo sviluppo dell’incendio e dei suoi prodotti.

La valutazione delle conseguenze derivanti dall’incendio nei vari scenari è stata effettuata considerando una durata delle simulazioni pari a 1800 s, ovvero 30 minuti, in modo tale da verificare le condizioni ambientali in un arco di tempo non troppo ristretto.
8.1 Scenario 1 - Incendio di un’autovettura in corrispondenza dell’imbocco della galleria

Lo scenario n° 1 descrive l’incendio di un’autobile nei pressi di uno dei due ingressi della galleria. In questo caso uno dei due sensi di marcia risulta completamente immobilizzato dall’evento critico, mentre il flusso di mezzi nel senso di marcia opposto è libero di raggiungere l’uscita della galleria.

Tra le posizioni del focolare considerate, questo scenario sembrerebbe essere il meno critico poiché più agevolmente raggiungibile dai soccorritori e poiché in questa situazione parte del quantitativo di fumo tende ad uscire direttamente dalla galleria.

In realtà in questo caso la distanza che divide gli occupanti in prossimità del focolaio dall’uscita d’emergenza più vicina coincide con metà della lunghezza della galleria quindi il percorso l’esodo non è il più breve. Inoltre, potrebbe capitare che a causa di un quantitativo elevato di fumo alcuni occupanti possano ignorare l’uscita verso la galleria d’emergenza proseguendo verso l’altro portale del fornice. In questo caso la distanza d’esodo risultrebbe raddoppiata.

L’immagine sottostante è una rappresentazione schematica della localizzazione del focolare all’interno del fornice.

![Figura 18: Localizzazione del focolare all’interno del fornice](image)

Le caratteristiche principali del focolare in oggetto sono sintetizzate nella tabella seguente.

<table>
<thead>
<tr>
<th>VEICOLO COINVOLTO</th>
<th>POSIZIONE NEL FORNICE</th>
<th>SUPERFICIE DEL FOCOLAIO [m²]</th>
<th>HRR$_{\text{max}}$ [kW]</th>
<th>t$_{\text{max}}$ [s]</th>
<th>Y$_{\text{SOOT}}$ [g/g]</th>
<th>Y$_{\text{CO}}$ [g/g]</th>
<th>ΔH$_T$ [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOBILE</td>
<td>INGRESSO GALLERIA</td>
<td>10</td>
<td>8336,8</td>
<td>1528</td>
<td>0,08</td>
<td>0,08</td>
<td>28000</td>
</tr>
</tbody>
</table>

Tabella 14: Caratteri principali del focolare
Risultati della simulazione

L’analisi dello scenario d’incendio di un’automobile posta all’imbocco della galleria è svolta considerando l’intera lunghezza del fornice. In particolare lo studio viene svolto su ciascuno dei nove tratti in cui è diviso il tunnel, coincidenti con le mesh in cui è stato scomposto per i calcoli FDS, come da immagine sottostante.

![Figura 19: Suddivisione della galleria in tratti](image)

I parametri ambientali analizzati per ciascun tratto e le relative soglie di prestazione di riferimento sono riportati nella tabella seguente:

<table>
<thead>
<tr>
<th>Prestazione</th>
<th>Soglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilità</td>
<td>10 m</td>
</tr>
<tr>
<td>Temperatura di esposizione</td>
<td>60 °C</td>
</tr>
<tr>
<td>Irraggiamento</td>
<td>2,5 kW/m²</td>
</tr>
<tr>
<td>FED</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabella 15: Parametri significativi e soglie di prestazione

Gli strumenti utilizzati per studiare l’andamento di tali parametri ambientali sono slices orizzontali poste ad una altezza pari a 2 m da terra, per i parametri visibilità e temperatura, e devices puntuali, per la misurazione dei valori di FED e irraggiamento.

L’immagine sottostante mostra il posizionamento degli strumenti di misurazione adoperati.

![Figura 20: Localizzazione dei devices all’interno della galleria](image)

Le tabelle riportate nel seguito mostrano i dati di output delle simulazioni d’incendio dello scenario di progetto sottoforma di grafici che mostrano l’andamento dei parametri in relazione del valore soglia individuato per ciascuno di essi.
RISULTATI DELLA VISIBILITA’ NELLO SCENARIO 1, INCENDIO DI UN'AUTOMOBILE ALL'IMBOCCO DELLA GALLERIA

<table>
<thead>
<tr>
<th>MESH 1</th>
<th>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 1800 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESH 2</td>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 1685 s</td>
</tr>
<tr>
<td>MESH 3</td>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 1500 s</td>
</tr>
<tr>
<td>MESH 4</td>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 1200 s</td>
</tr>
<tr>
<td>MESH 5</td>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 1170 s</td>
</tr>
<tr>
<td>MESH 6</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 1010 s</td>
<td></td>
</tr>
<tr>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 1290 s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 850 s</td>
</tr>
<tr>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 1195 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 830 s</td>
</tr>
<tr>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 1185 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 1000 s</td>
</tr>
<tr>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 1220 s</td>
</tr>
</tbody>
</table>
RISULTATI DI FED E IRRAGGIAMENTO NELLO SCENARIO 1, INCENDIO DI UN'AUTOMOBILE ALL'IMBOCCO DELLA GALLERIA

MESH 1

DEVICE 1

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

DEVICE 2

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

MESH 2

DEVICE 3

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

MESH 3
DEVICE 4

MESH 4
DEVICE 5

MESH 5
DEVICE 6

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
<table>
<thead>
<tr>
<th>Mesh</th>
<th>Device</th>
<th>FED < 0,1; z = 2 m; t < 937,9 s</th>
<th>IRR < 2,5 kW/m²; z = 2 m; t < 1407,6 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Device</th>
<th>FED < 0,1; z = 2 m; t < 1800 s</th>
<th>IRR < 2,5 kW/m²; z = 2 m; t < 1800 s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La tabella seguente riporta, per ciascun parametro e ciascun tratto della galleria, i tempi in cui viene raggiunto il valore di soglia.

<table>
<thead>
<tr>
<th>N° MESH</th>
<th>TEMPI IN CUI VENGONO RAGGIUNTI I VALORI SOGLIA PER I PARAMETRI:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VISIBILITA’ [s]</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1620</td>
</tr>
<tr>
<td>4</td>
<td>1430</td>
</tr>
<tr>
<td>5</td>
<td>1370</td>
</tr>
<tr>
<td>6</td>
<td>1290</td>
</tr>
<tr>
<td>7</td>
<td>1195</td>
</tr>
<tr>
<td>8</td>
<td>1185</td>
</tr>
<tr>
<td>9</td>
<td>1220</td>
</tr>
</tbody>
</table>

Tabella 16: Tempi in cui, per ogni parametro analizzato nello scenario 1, viene raggiunto il valore soglia.

I grafici mostrano che l’unico parametro per cui le condizioni ambientali incapacitanti per gli occupanti si potrebbero verificare durante l’esodo è la visibilità.
Essi mostrano infatti che nessuno degli altri parametri considerati raggiunge un valore critico durante l’intera durata della simulazione effettuata, pertanto essi non rappresentano un problema per tutto il suo decorso.
Si nota inoltre che la stessa visibilità raggiunge valori critici in tempi abbastanza lunghi, pertanto ciascun tratto della galleria risulta perfettamente praticabile per almeno 20 minuti. Infatti il fumo inizia ad avanzare all’interno del fornice gradualmente solo dopo circa 1200 s ma non compromettendo mai la visibilità all’interno degli ultimi due tratti, opposti al focolare.
8.2 Scenario 2 - Incendio di un’autovettura in prossimità della galleria d’emergenza

Lo scenario n° 2 consiste nell’innesco di incendio a partire da un’automobile collocata in prossimità della galleria d’emergenza pedonale a servizio della galleria stradale Demonte. In questo caso i flussi di veicoli di entrambi i due sensi di marcia sono interessati nello stesso modo perché il focolare si trova esattamente a metà della galleria, quindi ambedue le corsie risultano per metà occupate dal flusso veicolare.

Questa situazione risulta particolarmente critica perché l’accesso alla galleria d’emergenza risulta celermente impedito dagli effetti dell’incendio. Inoltre, essendo il tratto tra il focolare e l’ingresso della galleria molto lungo, sia l’esodo dell’utenza presente nel fornice che il raggiungimento del focolaio da parte dei vigili del fuoco risulterebbero affetti da complicazioni.

L’immagine seguente mostra in modo schematico la posizione del focolare all’interno del fornice.

Figura 21: Localizzazione del focolare all’interno del fornice

Le principali peculiarità del focolare studiato sono riepilogate nella tabella successiva.

<table>
<thead>
<tr>
<th>VEICOLO COINVOLTO</th>
<th>POSIZIONE NEL FORNICE</th>
<th>SUPERFICIE DEL FOCOLAIO [m²]</th>
<th>HRR$_{\text{max}}$ [kW]</th>
<th>t_{max} [s]</th>
<th>γ_{SOOT} [g/g]</th>
<th>γ_{CO} [g/g]</th>
<th>ΔH_T [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOBILE</td>
<td>IN PROSSIMITÀ DELLA GALLERIA D’EMERGENZA</td>
<td>10</td>
<td>8336,8</td>
<td>1528</td>
<td>0,08</td>
<td>0,08</td>
<td>28000</td>
</tr>
</tbody>
</table>

Tabella 17: Caratteri principali del focolare
Risultati della simulazione

L’analisi dello scenario d’incendio numero 2, che prevede l’incendio di un’autovettura in prossimità dell’uscita verso la galleria d’emergenza, è svolta su tutti e nove i tratti in cui è suddiviso il fornice. Questi tratti coincidono con le mesh in cui è stata scomposta l’intera lunghezza del tunnel per lo svolgimento dei calcoli FDS, come da immagine sottostante.

![Figura 22: Suddivisione della galleria in tratti](image)

In particolare sono stati analizzati i parametri ambientali riportati nella tabella seguente in virtù delle relative soglie di prestazione:

<table>
<thead>
<tr>
<th>Prestazione</th>
<th>Soglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilità</td>
<td>10 m</td>
</tr>
<tr>
<td>Temperatura di esposizione</td>
<td>60 °C</td>
</tr>
<tr>
<td>Irraggiamento</td>
<td>2,5 kW/m²</td>
</tr>
<tr>
<td>FED</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabella 18: Parametri significativi e soglie di prestazione

L’analisi è svolta utilizzando due diverse tipologie di dispositivi quali slices orizzontali collocate ad una altezza di 2 m dal piano stradale per i parametri visibilità e temperatura, e devices puntuali, anch’essi posti a 2 m da terra, per la misurazione dei valori di FED e irraggiamento.

La seguente immagine mostra la distribuzione degli strumenti di misurazione sopra citati all’interno della galleria.

![Figura 23: Localizzazione dei devices all’interno della galleria](image)

Nel seguito sono riportati i dati di output ricavati dalle simulazioni d’incendio dello scenario di progetto in esame sottoforma di grafici in cui è mostrato l’andamento dei parametri in virtù del valore soglia specificato per ciascuno di essi.
Risultati della Visibilità Nello Scenario 2, Incendio di un'Automobile in Prossimità della Galleria d’Emergenza

Mesh 1

<table>
<thead>
<tr>
<th>Galleria Libera dai Fumi:</th>
<th>Galleria con una Zona Libera dai Fumi:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z < 2 \text{ m}; t < 1260 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 1477 \text{ s}$</td>
</tr>
</tbody>
</table>

Mesh 2

<table>
<thead>
<tr>
<th>Galleria Libera dai Fumi:</th>
<th>Galleria con una Zona Libera dai Fumi:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z < 2 \text{ m}; t < 960 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 1175 \text{ s}$</td>
</tr>
</tbody>
</table>

Mesh 3

<table>
<thead>
<tr>
<th>Galleria Libera dai Fumi:</th>
<th>Galleria con una Zona Libera dai Fumi:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z < 2 \text{ m}; t < 770 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 940 \text{ s}$</td>
</tr>
</tbody>
</table>

Mesh 4

<table>
<thead>
<tr>
<th>Galleria Libera dai Fumi:</th>
<th>Galleria con una Zona Libera dai Fumi:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z < 2 \text{ m}; t < 680 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 800 \text{ s}$</td>
</tr>
</tbody>
</table>

Mesh 5

<table>
<thead>
<tr>
<th>Galleria Libera dai Fumi:</th>
<th>Galleria con una Zona Libera dai Fumi:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z < 2 \text{ m}; t < 710 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 840 \text{ s}$</td>
</tr>
<tr>
<td>MESH 6</td>
<td>MESH 7</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| **GALLERIA LIBERA DAI FUMI:**
$z < 2 \text{ m}; t < 680 \text{ s}$ | **GALLERIA CON UNA ZONA LIBERA DAI FUMI:**
$z < 2 \text{ m}; t < 800 \text{ s}$ |
GALLERIA LIBERA DAI FUMI:
$z < 2 \text{ m}; t < 780 \text{ s}$ |
GALLERIA CON UNA ZONA LIBERA DAI FUMI:
$z < 2 \text{ m}; t < 930 \text{ s}$ |
| | | **GALLERIA LIBERA DAI FUMI:**
$z < 2 \text{ m}; t < 960 \text{ s}$ |
GALLERIA CON UNA ZONA LIBERA DAI FUMI:
$z < 2 \text{ m}; t < 1160 \text{ s}$ |
| | | | **GALLERIA LIBERA DAI FUMI:**
$z < 2 \text{ m}; t < 1245 \text{ s}$ |
GALLERIA CON UNA ZONA LIBERA DAI FUMI:
$z < 2 \text{ m}; t < 1400 \text{ s}$ |
RISULTATI DI FED E IRRAGGIAMENTO NELLO SCENARIO 2, INCENDIO DI UN'AUTOMOBILE IN PROSSIMITÀ DELLA GALLERIA D'EMERGENZA

MESH 1

DEVICE 1

FED $< 0,1; z = 2 \text{ m}; t < 1800 \text{ s}$
IRR $< 2,5 \text{ kW/m}^2; z = 2 \text{ m}; t < 1800 \text{ s}$

DEVICE 2

FED $< 0,1; z = 2 \text{ m}; t < 1800 \text{ s}$
IRR $< 2,5 \text{ kW/m}^2; z = 2 \text{ m}; t < 1800 \text{ s}$

MESH 2

DEVICE 2

FED $< 0,1; z = 2 \text{ m}; t < 1800 \text{ s}$
IRR $< 2,5 \text{ kW/m}^2; z = 2 \text{ m}; t < 1800 \text{ s}$

DEVICE 3

FED $< 0,1; z = 2 \text{ m}; t < 1800 \text{ s}$
IRR $< 2,5 \text{ kW/m}^2; z = 2 \text{ m}; t < 1800 \text{ s}$

<table>
<thead>
<tr>
<th>FED μ</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempo [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>MESH 3</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 1800 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 4</th>
<th>DEVICE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 1800 s</td>
<td>IRR < 2,5 kW/m²; z = 2 m; t < 1800 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 5</th>
<th>DEVICE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 1800 s</td>
<td>IRR < 2,5 kW/m²; z = 2 m; t < 1800 s</td>
</tr>
</tbody>
</table>
DEVICE 7

FED < 0,1; z = 2 m; t < 1800 s

IRR < 2,5 kW/m2; z = 2 m; t < 1800 s

DEVICE 8

FED < 0,1; z = 2 m; t < 1800 s

IRR < 2,5 kW/m2; z = 2 m; t < 1800 s

MESH 6

DEVICE 9

FED < 0,1; z = 2 m; t < 1800 s

IRR < 2,5 kW/m2; z = 2 m; t < 1800 s

MESH 7

DEVICE 10

FED < 0,1; z = 2 m; t < 1800 s

IRR < 2,5 kW/m2; z = 2 m; t < 1800 s
MESH 8
DEVICE 11

\[
\text{FED} < 0,1; \ z = 2 \, \text{m}; \ t < 937,9 \, \text{s} \\
\text{IRR} < 2,5 \, \text{kW/m}^2; \ z = 2 \, \text{m}; \ t < 1407,6 \, \text{s}
\]

MESH 9
DEVICE 12

\[
\text{FED} < 0,1; \ z = 2 \, \text{m}; \ t < 1800 \, \text{s} \\
\text{IRR} < 2,5 \, \text{kW/m}^2; \ z = 2 \, \text{m}; \ t < 1800 \, \text{s}
\]

DEVICE 13

\[
\text{FED} < 0,1; \ z = 2 \, \text{m}; \ t < 1800 \, \text{s} \\
\text{IRR} < 2,5 \, \text{kW/m}^2; \ z = 2 \, \text{m}; \ t < 1800 \, \text{s}
\]
La tabella seguente riporta, per ciascun parametro e ciascun tratto della galleria, i tempi in cui viene raggiunto il valore di soglia.

<table>
<thead>
<tr>
<th>N° MESH</th>
<th>TEMPI IN CUI VENGONO RAGGIUNTI I VALORI SOGLIA PER I PARAMETRI:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VISIBILITA’ [s]</td>
</tr>
<tr>
<td>1</td>
<td>1477</td>
</tr>
<tr>
<td>2</td>
<td>1175</td>
</tr>
<tr>
<td>3</td>
<td>940</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
</tr>
<tr>
<td>5</td>
<td>840</td>
</tr>
<tr>
<td>6</td>
<td>800</td>
</tr>
<tr>
<td>7</td>
<td>930</td>
</tr>
<tr>
<td>8</td>
<td>1160</td>
</tr>
<tr>
<td>9</td>
<td>1400</td>
</tr>
</tbody>
</table>

Tabella 19: Tempi in cui, per ogni parametro analizzato nello scenario 2, viene raggiunto il valore soglia.

Dallo studio dei grafici risultanti dalle simulazioni d’incendio effettuate mediante il software Pyrosim e della tabella riepilogativa dei tempi in cui ciascun parametro raggiunge il valore soglia di riferimento si giunge alla conclusione che l’unico parametro per cui le condizioni ambientali incapacitanti per gli occupanti sopravvengono durante la durata della simulazione è la visibilità. Come risulta dai grafici infatti nessuno degli altri parametri considerati raggiunge un valore critico durante i 1800 s di simulazione, non comportando alcuna criticità per tutto il tempo considerato.

In questo caso si nota come i tratti maggiormente interessati dallo sviluppo dei fumi dell’incendio sono quelli centrali, prossimi al focolaio, da cui gli occupanti tendono a fuggire più rapidamente a causa della vicinanza con l’evento critico. I restanti tratti mostrano valori compromettenti per gli utenti in tempi decisamente più elevati, pari ad almeno 16 minuti.
8.3 Scenario 3 - Incendio di un’autovettura a metà tra imbocco del fornice e galleria d’emergenza

Lo scenario d’incendio n°3 prevede l’incendio di un’autovettura posizionata a metà tra l’imbocco della galleria stradale e quella d’emergenza.

In questa circostanza una delle due corsie è maggiormente interessata dall’evento critico poiché occupata da un numero più elevato di veicoli, viceversa nella corsia opposta i mezzi bloccati dall’evento sono in quantità inferiore.

Tale situazione presenta una configurazione intermedia rispetto a quelle previste nei due scenari precedenti poiché la distanza d’esodo che devono percorrere gli occupanti siti in prossimità del focolaio è pari a circa un quarto della lunghezza complessiva della galleria.

In questo caso il percorso d’esodo risulta più breve rispetto ai precedenti.

Nell’immagine che segue è rappresentato in modo schematico il punto della galleria in cui è posizionato il focolare.

![Figura 24: Localizzazione del focolare all’interno del fornice](image)

Le principali caratteristiche del focolare considerato sono sintetizzate nella tabella sottostante.

<table>
<thead>
<tr>
<th>VEICOLO COINVOLTO</th>
<th>POSIZIONE NEL FORNICE</th>
<th>SUPERFICIE DEL FOCOIAO [m²]</th>
<th>HRR_{max} [kW]</th>
<th>t_{max} [s]</th>
<th>Y_{SOOT} [g/g]</th>
<th>Y_{CO} [g/g]</th>
<th>ΔH_T [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOBILE</td>
<td>A META’ TRA IMBOCCO DEL FORNICE E GALLERIA D’EMERGENZA</td>
<td>10</td>
<td>8336,8</td>
<td>1528</td>
<td>0,08</td>
<td>0,08</td>
<td>28000</td>
</tr>
</tbody>
</table>

Tabella 20: Caratteri principali del focolare
Risultati della simulazione

Gli effetti sugli occupanti dello scenario numero 3, che prevede l’incendio di un’auto vettura a circa metà distanza tra l’imbocco del fornice e la galleria d’emergenza, sono analizzati in tutti i nove tratti in cui è suddivisa la galleria, coincidenti con le mesh in cui è stata scomposta per i calcoli FDS, come da immagine sottostante.

![Figura 25: Suddivisione della galleria in tratti](image)

L’analisi è svolta sui parametri ambientali riportati nella tabella seguente in relazione alle soglie di prestazione individuate per ciascuno di essi.

<table>
<thead>
<tr>
<th>Prestazione</th>
<th>Soglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilità</td>
<td>10 m</td>
</tr>
<tr>
<td>Temperatura di esposizione</td>
<td>60 °C</td>
</tr>
<tr>
<td>Irraggiamento</td>
<td>2,5 kW/m²</td>
</tr>
<tr>
<td>FED</td>
<td>0,1</td>
</tr>
</tbody>
</table>

![Tabella 21: Parametri significativi e soglie di prestazione](image)

I dispositivi utilizzati per lo svolgimento dell’analisi di tutti questi parametri sono slices orizzontali posizionate ad una altezza di 2 m da terra, per i parametri visibilità e temperatura, e devices puntuali per la valutazione dei valori di FED e irraggiamento. L’immagine sottostante mostra il posizionamento degli strumenti di misurazione nella galleria.

![Figura 26: Localizzazione dei devices all’interno della galleria](image)

I dati di output ricavati dalle simulazioni d’incendio dello scenario di progetto in esame sono riportati di seguito sottoforma di grafici che mostrano l’andamento dei parametri in virtù del valore soglia specificato per ciascuno di essi.
RISULTATI DELLA VISIBILITÀ NELLO SCENARIO 3, INCENDIO DI UN'AUTOMOBILE A META' TRA IMBOCCO E GALLERIA D'EMERGENZA

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Galleria libera dai fumi</th>
<th>Galleria con una zona libera dai fumi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z < 2 m; t < 1530 s</td>
<td>z < 2 m; t < 1680 s</td>
</tr>
<tr>
<td>2</td>
<td>z < 2 m; t < 1335 s</td>
<td>z < 2 m; t < 1485 s</td>
</tr>
<tr>
<td>3</td>
<td>z < 2 m; t < 1120 s</td>
<td>z < 2 m; t < 1280 s</td>
</tr>
<tr>
<td>4</td>
<td>z < 2 m; t < 855 s</td>
<td>z < 2 m; t < 985 s</td>
</tr>
<tr>
<td>5</td>
<td>z < 2 m; t < 830 s</td>
<td>z < 2 m; t < 920 s</td>
</tr>
<tr>
<td>MESH 6</td>
<td>MESH 7</td>
<td>MESH 8</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 935 s</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 1068 s</td>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 900 s</td>
</tr>
<tr>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 840 s</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 1120 s</td>
<td>GALLERIA LIBERA DAI FUMI: z < 2 m; t < 1150 s</td>
</tr>
</tbody>
</table>
RISULTATI DI FED E IRRAGGIAMENTO NELLO SCENARIO 3, INCENDIO DI UN'Automobile a Meta' tra Imbrocco e Galleria d'Emergenza

MESH 1

DEVICE 1

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

DEVICE 2

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

MESH 2

DEVICE 3

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
FED < 0,1; z = 2 m; t < 1800 s IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

MESH 3 DEVICE 4

MESH 4 DEVICE 5

MESH 5 DEVICE 6

FED < 0,1; z = 2 m; t < 1800 s IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
<table>
<thead>
<tr>
<th>DEVICE 7</th>
<th>DEVICE 8</th>
<th>MESH 6</th>
<th>DEVICE 9</th>
<th>MESH 7</th>
<th>DEVICE 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 1800 s</td>
<td>IRR < 2,5 kW/m²; z = 2 m; t < 1800 s</td>
<td>FED < 0,1; z = 2 m; t < 1800 s</td>
<td>IRR < 2,5 kW/m²; z = 2 m; t < 1800 s</td>
<td>FED < 0,1; z = 2 m; t < 1800 s</td>
<td>IRR < 2,5 kW/m²; z = 2 m; t < 1800 s</td>
</tr>
</tbody>
</table>
MESH 8
DEVICE 11

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>FED [-]</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>0,1</td>
<td>0</td>
</tr>
</tbody>
</table>

FED < 0,1; z = 2 m; t < 1800 s

MESH 9
DEVICE 12

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>FED [-]</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>0,1</td>
<td>0</td>
</tr>
</tbody>
</table>

FED < 0,1; z = 2 m; t < 1800 s

DEVICE 13

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>FED [-]</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>0,1</td>
<td>0</td>
</tr>
</tbody>
</table>

FED < 0,1; z = 2 m; t < 1800 s

IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
La tabella seguente riporta, per ciascun parametro e ciascun tratto della galleria, i tempi in cui viene raggiunto il valore di soglia.

<table>
<thead>
<tr>
<th>N° MESH</th>
<th>TEMPI IN CUI VENGONO RAGGIUNTI I VALORI SOGLIA PER I PARAMETRI:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VISIBILITA' [s]</td>
</tr>
<tr>
<td>1</td>
<td>1680</td>
</tr>
<tr>
<td>2</td>
<td>1485</td>
</tr>
<tr>
<td>3</td>
<td>1280</td>
</tr>
<tr>
<td>4</td>
<td>985</td>
</tr>
<tr>
<td>5</td>
<td>920</td>
</tr>
<tr>
<td>6</td>
<td>1068</td>
</tr>
<tr>
<td>7</td>
<td>1110</td>
</tr>
<tr>
<td>8</td>
<td>1120</td>
</tr>
<tr>
<td>9</td>
<td>1340</td>
</tr>
</tbody>
</table>

Tabella 22: Tempi in cui, per ciascun parametro analizzato nello scenario 3, viene raggiunto il valore soglia.

Anche per lo scenario numero 3, come per quelli precedentemente analizzati, il solo parametro per cui le condizioni ambientali diventano incapacitanti per gli occupanti della galleria è la visibilità.

I grafici relativi agli altri parametri analizzati mostrano che nessuno di essi raggiunge un valore critico per tutta la durata della simulazione eseguita pertanto non rappresenterebbero un problema per l’esodo degli utenti. Anche in questo caso il parametro visibilità raggiunge valori prossimi a quello soglia di riferimento in tempi elevati. A differenza degli altri scenari, il tratto in cui il parametro visibilità raggiunge valori critici nel minor tempo non coincide con quello in cui si genera il focolare, bensì corrisponde con la parte centrale della galleria dove è presente l’uscita verso la galleria d’emergenza.
8.4 Scenario 4 - Incendio di una autocisterna in corrispondenza dell’imbocco della galleria

Lo scenario n° 4 descrive l’incendio di un’autocisterna di benzina nei pressi di uno dei due ingressi della galleria. In questo caso valgono le considerazioni fatte per lo scenario n° 1. Infatti in questo caso solo uno dei due sensi di marcia è compromesso dall’evento critico, mentre il flusso di mezzi nel senso di marcia opposto è libero di proseguire verso l’uscita del tunnel.

In tale situazione il raggiungimento del focolaio da parte dei soccorritori risulta meno critico; inoltre in questo caso il fumo ha più difficoltà a riempire la sezione della galleria data la vicinanza all’ingresso che consente a gran parte di esso di uscire. In questo scenario la distanza tra gli occupanti vicini al focolaio e l’uscita d’emergenza più prossima è uguale alla metà della lunghezza della galleria; il percorso l’esodo non si configura quindi come il più breve.

Inoltre potrebbe capitare che il quantitativo elevato di fumo impedisca la visibilità della porta conducente alla galleria d’emergenza imponendo agli occupanti di proseguire l’esodo fino all’altro portale del fornice, raddoppiando il percorso d’esodo. L’immagine sottostante mostra in modo schematico la posizione del focolare all’interno del fornice.

![Diagram of focolare](image)

Figura 27: Localizzazione del focolare all’interno del fornice

Le peculiarità fondamentali del focolare descritto sono riportate nella tabella seguente.

<table>
<thead>
<tr>
<th>VEICOLO COINVOLTO</th>
<th>POSIZIONE NEL FORNICE</th>
<th>SUPERFICIE DEL FOCOCAIO [m²]</th>
<th>HRR$_{\text{max}}$ [kW]</th>
<th>t_{max} [s]</th>
<th>Y_{SOOT} [g/g]</th>
<th>Y_{CO} [g/g]</th>
<th>ΔH_T [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOCISTERNA DI BENZINA</td>
<td>INGRESSO GALLERIA</td>
<td>36</td>
<td>100000</td>
<td>600</td>
<td>0,038</td>
<td>0,011</td>
<td>44500</td>
</tr>
</tbody>
</table>

Tabella 23: Caratteri principali del focolare
Risultati della simulazione

Lo studio dello scenario che prevede l’incendio di un’autocisterna di benzina in prossimità dell’imbocco della galleria è eseguito sull’intera lunghezza della galleria ed in particolare su ciascuno dei nove tratti in cui è divisa, corrispondenti con le mesh in cui è stata suddivisa per lo sviluppo dei calcoli FDS, come mostra l’immagine sottostante.

Figura 28: Suddivisione della galleria in tratti

La tabella seguente riporta i parametri ambientali analizzati in ciascun tratto e le relative soglie di prestazione di riferimento.

<table>
<thead>
<tr>
<th>Prestazione</th>
<th>Soglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilità</td>
<td>10 m</td>
</tr>
<tr>
<td>Temperatura di esposizione</td>
<td>60 °C</td>
</tr>
<tr>
<td>Irraggiamento</td>
<td>2,5 kW/m²</td>
</tr>
<tr>
<td>FED</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabella 24: Parametri significativi e soglie di prestazione

I parametri sono stati analizzati mediante l’uso di strumenti di misurazione quali slices orizzontali collocate ad una altezza di 2 m da terra, per i parametri visibilità e temperatura, e devices puntuali per la stima dei valori di FED e irraggiamento.

Nell’immagine seguente è mostrata la posizione all’interno della galleria dei dispositivi utilizzati.

Figura 29: Localizzazione dei devices all’interno della galleria

I risultati delle simulazioni d’incendio del presente scenario sono presentati di seguito sotto forma di grafici in cui è evidente l’andamento dei parametri rispetto al valore soglia precisato per ognuno di essi.
<table>
<thead>
<tr>
<th>MESH 1</th>
<th>MESH 2</th>
<th>MESH 3</th>
<th>MESH 4</th>
<th>MESH 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALLERIA LIBERA DAI FUMI: (z < 2 \text{ m}; t < 785 \text{ s})</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI: (z < 2 \text{ m}; t < 850 \text{ s})</td>
<td>GALLERIA LIBERA DAI FUMI: (z < 2 \text{ m}; t < 690 \text{ s})</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI: (z < 2 \text{ m}; t < 745 \text{ s})</td>
<td>GALLERIA LIBERA DAI FUMI: (z < 2 \text{ m}; t < 606 \text{ s})</td>
</tr>
</tbody>
</table>
GALLERIA LIBERA DAI FUMI: $z < 2 \text{ m}; t < 412 \text{ s}$
GALLERIA CON UNA ZONA LIBERA DAI FUMI: $z < 2 \text{ m}; t < 487 \text{ s}$

GALLERIA LIBERA DAI FUMI: $z < 2 \text{ m}; t < 350 \text{ s}$
GALLERIA CON UNA ZONA LIBERA DAI FUMI: $z < 2 \text{ m}; t < 440 \text{ s}$

GALLERIA LIBERA DAI FUMI: $z < 2 \text{ m}; t < 325 \text{ s}$
GALLERIA CON UNA ZONA LIBERA DAI FUMI: $z < 2 \text{ m}; t < 380 \text{ s}$

GALLERIA LIBERA DAI FUMI: $z < 2 \text{ m}; t < 330 \text{ s}$
GALLERIA CON UNA ZONA LIBERA DAI FUMI: $z < 2 \text{ m}; t < 390 \text{ s}$
RISULTATI DELLA TEMPERATURA NELLO SCENARIO 4, INCENDIO DI UN’AUTOCISTERNA ALL’IMBOCCO DELLA GALLERIA

<table>
<thead>
<tr>
<th>MESH 1</th>
<th>MESH 2</th>
<th>MESH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 1800 s</td>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 1800 s</td>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 1750 s</td>
</tr>
<tr>
<td>MESH 4</td>
<td>MESH 5</td>
<td>MESH 6</td>
</tr>
<tr>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 1430 s</td>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 972 s</td>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 902 s</td>
</tr>
<tr>
<td>MESH 7</td>
<td>MESH 8</td>
<td>MESH 9</td>
</tr>
<tr>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 722 s</td>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 570 s</td>
<td>TEMPERATURA < 60 °C; z < 2 m; t < 490 s</td>
</tr>
</tbody>
</table>
RISULTATI DI FED E IRRAGGIAMENTO NELLO SCENARIO 4, INCENDIO DI UN'AUTOCISTerna ALL'IMBOCCO DELLA GALLERIA

MESH 1

DEVICE 1

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>FED [•]</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,12</td>
<td>0,0</td>
</tr>
<tr>
<td>500</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>1000</td>
<td>0,09</td>
<td>0,1</td>
</tr>
<tr>
<td>1500</td>
<td>0,08</td>
<td>0,2</td>
</tr>
</tbody>
</table>

DEVICE 2

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>FED [•]</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,05</td>
<td>0,0</td>
</tr>
<tr>
<td>500</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>1000</td>
<td>0,15</td>
<td>0,1</td>
</tr>
<tr>
<td>1500</td>
<td>0,12</td>
<td>0,2</td>
</tr>
</tbody>
</table>

DEVICE 3

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>FED [•]</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,25</td>
<td>0,0</td>
</tr>
<tr>
<td>500</td>
<td>0,15</td>
<td>0,05</td>
</tr>
<tr>
<td>1000</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>1500</td>
<td>0,12</td>
<td>0,2</td>
</tr>
</tbody>
</table>

MESH 2

DEVICE 2

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>FED [•]</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,02</td>
<td>0,0</td>
</tr>
<tr>
<td>500</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>1000</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1500</td>
<td>0,15</td>
<td>0,2</td>
</tr>
</tbody>
</table>

DEVICE 3

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>FED [•]</th>
<th>Irraggiamento [kW/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,12</td>
<td>0,0</td>
</tr>
<tr>
<td>500</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>1000</td>
<td>0,09</td>
<td>0,1</td>
</tr>
<tr>
<td>1500</td>
<td>0,08</td>
<td>0,2</td>
</tr>
</tbody>
</table>

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
FED < 0,1; z = 2 m; t < 1236,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

FED < 0,1; z = 2 m; t < 1038,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

MESH 3
DEVICE 4

MESH 4
DEVICE 4

MESH 5
DEVICE 5

MESH 6
DEVICE 6

FED < 0,1; z = 2 m; t < 1008 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
<table>
<thead>
<tr>
<th>DEVICE 7</th>
<th>DEVICE 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 938 s</td>
<td>IRR < 2,5 kW/m(^2); z = 2 m; t < 1800 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 6</th>
<th>DEVICE 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 1024 s</td>
<td>IRR < 2,5 kW/m(^2); z = 2 m; t < 1800 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 7</th>
<th>DEVICE 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 952 s</td>
<td>IRR < 2,5 kW/m(^2); z = 2 m; t < 1800 s</td>
</tr>
</tbody>
</table>
MESH 8

DEVICE 11

FED < 0,1; z = 2 m; t < 937,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 1407,6 s

MESH 9

DEVICE 12

FED < 0,1; z = 2 m; t < 887,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

DEVICE 13

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
La tabella seguente riporta, per ciascun parametro e ciascun tratto della galleria, i tempi in cui viene raggiunto il valore di soglia.

<table>
<thead>
<tr>
<th>N° MESH</th>
<th>TEMPI IN CUI VENGONO RAGGIUNTI I VALORI SOGLIA PER I PARAMETRI:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VISIBILITÀ’ [s]</td>
</tr>
<tr>
<td>1</td>
<td>850</td>
</tr>
<tr>
<td>2</td>
<td>745</td>
</tr>
<tr>
<td>3</td>
<td>645</td>
</tr>
<tr>
<td>4</td>
<td>560</td>
</tr>
<tr>
<td>5</td>
<td>527</td>
</tr>
<tr>
<td>6</td>
<td>487</td>
</tr>
<tr>
<td>7</td>
<td>440</td>
</tr>
<tr>
<td>8</td>
<td>380</td>
</tr>
<tr>
<td>9</td>
<td>390</td>
</tr>
</tbody>
</table>

Tabella 25: Tempi in cui, per ciascun parametro analizzato nello scenario 4, viene raggiunto il valore soglia

I risultati dello scenario numero 4 mostrano che il parametro per cui le condizioni ambientali incapacitanti per gli occupanti sopravvengono nel minor tempo rispetto agli altri è la visibilità.

I grafici mostrano valori di irraggiamento sempre inferiori alla soglia di riferimento; tale parametro non può costituire quindi un problema per tutta la durata della simulazione, pari a 1800 s.

Il parametro FED assume valori superiori alla soglia a partire da tempi decisamente elevati che difficilmente andranno ad influire sull’esodo degli occupanti in galleria; al contrario i valori di temperatura elevata vengono raggiunti in tempi medio-alti.

Si mostra quindi necessaria una ulteriore analisi sul parametro temperatura, svolta in virtù del tempo d’esodo, per essere certi che non ci siano conseguenze sugli occupanti.
8.5 Scenario 5 - Incendio di una autocisterna in prossimità della galleria d’emergenza

Lo scenario n° 5 consiste nell’innescare di incendio a partire da un’autocisterna di benzina collocata in prossimità della galleria d’emergenza pedonale a servizio della galleria stradale Demonte. Per questo scenario valgono le considerazioni fatte per lo scenario n° 2.

In questa situazione il focolare è posto esattamente a metà della galleria, pertanto i flussi veicolari di entrambi i sensi di marcia sono interessati in eguale modo. Ambedue le corsie risultano per metà occupate dal flusso veicolare.

La criticità della situazione è legata all’impossibilità di utilizzo della galleria d’emergenza a causa degli effetti dell’incendio. In questo caso il tratto tra il focolare e l’ingresso della galleria è molto lungo dunque sia l’esodo dell’utenza presente nel fornice che il raggiungimento del focolaio da parte dei vigili del fuoco risulterebbero complicati.

L’immagine seguente mostra in modo schematico la posizione del focolare all’interno del fornice.

![Figura 30: Localizzazione del focolare all’interno del fornice](image)

Le maggiori caratteristiche del focolare in oggetto sono riportate nella seguente tabella.

<table>
<thead>
<tr>
<th>VEICOLO COINVOLTO</th>
<th>POSIZIONE NEL FORNICE</th>
<th>SUPERFICIE DEL FOCOLAIO [m²]</th>
<th>HRR$_{\text{max}}$ [kW]</th>
<th>t_{max} [s]</th>
<th>γ_{SOOT} [g/g]</th>
<th>γ_{CO} [g/g]</th>
<th>ΔH_T [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOCISTerna DI BENZINA</td>
<td>IN PROSSIMITÀ DELLA GALLERIA D’EMERGENZA</td>
<td>36</td>
<td>100000</td>
<td>600</td>
<td>0,038</td>
<td>0,011</td>
<td>44500</td>
</tr>
</tbody>
</table>

Tabella 26: Caratteri principali del focolare
Risultati della simulazione

La simulazione d’incendio effettuata per lo scenario numero 5, che prevede l’incendio di una autocisterna in prossimità della galleria d’emergenza, genera una serie di output relativi alle condizioni ambientali caratteristiche di ciascuno dei nove tratti in cui è frazionata la galleria. La suddivisione utilizzata coincide con quella precedentemente adoperata per i calcoli FDS per i quali la galleria è stata suddivisa in nove mesh.

L’analisi concerne i parametri ambientali riportati nella tabella sottostante, valutati in virtù delle soglie di prestazione indicate per ciascuno di essi.

<table>
<thead>
<tr>
<th>Prestazione</th>
<th>Soglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilità</td>
<td>10 m</td>
</tr>
<tr>
<td>Temperatura di esposizione</td>
<td>60 °C</td>
</tr>
<tr>
<td>Irraggiamento</td>
<td>2,5 kW/m²</td>
</tr>
<tr>
<td>FED</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabella 27: Parametri significativi e soglie di prestazione

L’analisi è svolta utilizzando slices orizzontali poste ad una altezza pari a 2 m da terra per i parametri visibilità e temperatura e devices puntuali per la misurazione dei valori di FED e irraggiamento. L’immagine seguente mostra il posizionamento degli strumenti di misurazione all’interno della galleria.

Nelle pagine seguenti sono riportati i dati di output ottenuti dalle simulazioni d’incendio dello scenario di progetto in esame, sottoforma di grafici che presentano l’andamento dei parametri visibilità, temperatura, FED e irraggiamento rispetto al valore soglia precisato per ciascuno di essi.
RISULTATI DELLA VISIBILITA' NELLO SCENARIO 5, INCENDIO DI UN'AUTOCISTerna IN PROSSIMITA' DELLA GALLERIA D'EMERGENZA

<p>| MESH 1 | GALLERIA LIBERA DAI FUMI: z < 2 m; t < 473 s | GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 504 s |
| MESH 2 | GALLERIA LIBERA DAI FUMI: z < 2 m; t < 398 s | GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 455 s |
| MESH 3 | GALLERIA LIBERA DAI FUMI: z < 2 m; t < 338 s | GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 398 s |
| MESH 4 | GALLERIA LIBERA DAI FUMI: z < 2 m; t < 305 s | GALLERIA CON UNA ZONA LIBERA DAI FUMI: z < 2 m; t < 383 s |</p>
<table>
<thead>
<tr>
<th>MESH 5</th>
<th>MESH 6</th>
<th>MESH 7</th>
<th>MESH 8</th>
<th>MESH 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
<td>GALLERIA LIBERA DAI FUMI:</td>
</tr>
<tr>
<td>z < 2 m; t < 310 s</td>
<td>z < 2 m; t < 370 s</td>
<td>z < 2 m; t < 310 s</td>
<td>z < 2 m; t < 400 s</td>
<td>z < 2 m; t < 483 s</td>
</tr>
<tr>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
</tr>
<tr>
<td>z < 2 m; t < 405 s</td>
<td>z < 2 m; t < 410 s</td>
<td>z < 2 m; t < 350 s</td>
<td>z < 2 m; t < 465 s</td>
<td>z < 2 m; t < 510 s</td>
</tr>
<tr>
<td>MESH 1</td>
<td>MESH 2</td>
<td>MESH 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA < 60 °C:</td>
<td>TEMPERATURA < 60 °C:</td>
<td>TEMPERATURA < 60 °C:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z < 2 \ \text{m}; \ t < 1090 \ \text{s})</td>
<td>(z < 2 \ \text{m}; \ t < 785 \ \text{s})</td>
<td>(z < 2 \ \text{m}; \ t < 518 \ \text{s})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 4</th>
<th>MESH 5</th>
<th>MESH 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA < 60 °C:</td>
<td>TEMPERATURA < 60 °C:</td>
<td>TEMPERATURA < 60 °C:</td>
</tr>
<tr>
<td>(z < 2 \ \text{m}; \ t < 501 \ \text{s})</td>
<td>(z < 2 \ \text{m}; \ t < 485 \ \text{s})</td>
<td>(z < 2 \ \text{m}; \ t < 503 \ \text{s})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 7</th>
<th>MESH 8</th>
<th>MESH 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA < 60 °C:</td>
<td>TEMPERATURA < 60 °C:</td>
<td>TEMPERATURA < 60 °C:</td>
</tr>
<tr>
<td>(z < 2 \ \text{m}; \ t < 520 \ \text{s})</td>
<td>(z < 2 \ \text{m}; \ t < 596 \ \text{s})</td>
<td>(z < 2 \ \text{m}; \ t < 1382 \ \text{s})</td>
</tr>
</tbody>
</table>

RISULTATI DELLA TEMPERATURA NELLO SCENARIO 5, INCENDIO DI UN'AUTOCISTERNA IN PROSSIMITA' DELLA GALLERIA D'EMERGENZA
RISULTATI DI FED E IRRAGGIAMENTO NELLO SCENARIO 5, INCENDIO DI UN’AUTOCISTERNA IN PROSSIMITÀ DELLA GALLERIA D’EMERGENZA

MESH 1

DEVICE 1

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

DEVICE 2

FED < 0,1; z = 2 m; t < 1549,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s

MESH 2

DEVICE 3

FED < 0,1; z = 2 m; t < 1072,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 1459,5 s
<table>
<thead>
<tr>
<th>MESH 3</th>
<th>DEVICE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 806,5 s</td>
<td>IRR < 2,5 kW/m²; z = 2 m; t < 1130 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 4</th>
<th>DEVICE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 622,5 s</td>
<td>IRR < 2,5 kW/m²; z = 2 m; t < 522 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 5</th>
<th>DEVICE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 651,5 s</td>
<td>IRR < 2,5 kW/m²; z = 2 m; t < 514,5 s</td>
</tr>
</tbody>
</table>
DEVICE 7

FED < 0,1; z = 2 m; t < 556 s
IRR < 2,5 kW/m²; z = 2 m; t < 511 s

DEVICE 8

FED < 0,1; z = 2 m; t < 630 s
IRR < 2,5 kW/m²; z = 2 m; t < 531 s

MESH 6

DEVICE 9

FED < 0,1; z = 2 m; t < 630 s
IRR < 2,5 kW/m²; z = 2 m; t < 613 s

MESH 7

DEVICE 10

FED < 0,1; z = 2 m; t < 772 s
IRR < 2,5 kW/m²; z = 2 m; t < 1096 s
MESH 8

DEVICE 11

FED < 0,1; z = 2 m; t < 968 s
IRR < 2,5 kW/m²; z = 2 m; t < 1443,5 s

MESH 9

DEVICE 12

FED < 0,1; z = 2 m; t < 1301 s
IRR < 2,5 kW/m²; z = 2 m; t < 1747,5 s

DEVICE 13

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
La tabella seguente riporta, per ciascun parametro e ciascun tratto della galleria, i tempi in cui viene raggiunto il valore di soglia.

<table>
<thead>
<tr>
<th>N° MESH</th>
<th>TEMPI IN CUI VENGONO RAGGIUNTI I VALORI SOGLIA PER I PARAMETRI:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VISIBILITA’ [s]</td>
</tr>
<tr>
<td>1</td>
<td>504</td>
</tr>
<tr>
<td>2</td>
<td>455</td>
</tr>
<tr>
<td>3</td>
<td>398</td>
</tr>
<tr>
<td>4</td>
<td>383</td>
</tr>
<tr>
<td>5</td>
<td>370</td>
</tr>
<tr>
<td>6</td>
<td>400</td>
</tr>
<tr>
<td>7</td>
<td>410</td>
</tr>
<tr>
<td>8</td>
<td>465</td>
</tr>
<tr>
<td>9</td>
<td>510</td>
</tr>
</tbody>
</table>

Tabella 28: Tempi in cui, per ciascun parametro analizzato nello scenario 5, viene raggiunto il valore soglia

Gli output grafici risultanti dalla simulazione d’incendio del presente scenario rivelano che il parametro visibilità è quello per cui le condizioni ambientali diventano incapacitanti per gli occupanti in un tempo inferiore rispetto agli altri.

I parametri FED e irraggiamento assumono valori superiori alla soglia a partire da tempi decisamente più elevati, di conseguenza difficilmente andranno ad influire sull’esodo degli occupanti in galleria.

I valori di temperatura elevata vengono raggiunti invece in tempi più ristretti; risulta di conseguenza necessaria una valutazione ulteriore di tale parametro, svolta in virtù del tempo d’esodo, per accertarsi che non si verifichino conseguenze sugli occupanti.

I tempi in cui le condizioni di visibilità diventano critiche per gli utenti della galleria sono abbastanza esigui, pertanto occorre verificare che essi riescano a procedere nell’esodo e a raggiungere il luogo sicuro.
8.6 Scenario 6 - Incendio di una autocisterna a metà tra l’imbocco del fornice e la galleria d’emergenza

Lo scenario d’incendio n° 6 prevede l’incendio di un’autocisterna di benzina posizionata a metà tra l’imbocco della galleria stradale e quella d’emergenza.

Per tale scenario valgono le medesime considerazioni fatte per lo scenario n° 3.

Infatti in questo caso una delle due corsie risulta maggiormente coinvolta dall’evento critico poiché in essa è presente un numero più elevato di veicoli, al contrario la corsia opposta è occupata da un quantitativo inferiore di mezzi.

In questa situazione il percorso d’esodo degli occupanti in prossimità del focolaio è pari a circa un quarto della lunghezza complessiva del tunnel stradale, la distanza da percorrere è quindi più breve rispetto ai casi precedenti.

Nell’immagine che segue è rappresentato in modo schematico il punto della galleria in cui è posizionato il focolare.

![Figura 33: Localizzazione del focolare all’interno del fornice](image)

Le caratteristiche fondamentali del focolare osservato sono riassunte nella tabella inferiore.

<table>
<thead>
<tr>
<th>VEICOLO COINVOLTO</th>
<th>POSIZIONE NEL FORNICE</th>
<th>SUPERFICIE DEL FOCOLAIO [m²]</th>
<th>HRR$_{\text{max}}$ [kW]</th>
<th>t_{max} [s]</th>
<th>y_{SOOT} [g/g]</th>
<th>y_{CO} [g/g]</th>
<th>ΔH_{T} [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOCISTerna DI BENZINA</td>
<td>A META’ TRA IMBOCCO DEL FORNICE E GALLERIA D’EMERGENZA</td>
<td>36</td>
<td>100000</td>
<td>600</td>
<td>0,038</td>
<td>0,011</td>
<td>44500</td>
</tr>
</tbody>
</table>

Tabella 29: Caratteri principali del focolare
Risultati della simulazione

L’analisi dello scenario d’incendio numero 6, che prevede il focolaio di una autocisterna a metà della distanza tra l’imbocco del fornice e la galleria d’emergenza, è condotta su ciascuno dei nove tratti in cui è suddivisa la galleria, coincidenti con le mesh in cui è stata scomposta per lo svolgimento dei calcoli FDS, come da immagine numero 34.

![Figura 34: Suddivisione della galleria in tratti](image)

In particolare vengono analizzati i parametri ambientali riportati nella tabella seguente in virtù delle soglie di prestazione relative a ciascuno di essi.

<table>
<thead>
<tr>
<th>Prestazione</th>
<th>Soglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilità</td>
<td>10 m</td>
</tr>
<tr>
<td>Temperatura di esposizione</td>
<td>60 °C</td>
</tr>
<tr>
<td>Irraggiamento</td>
<td>2,5 kW/m²</td>
</tr>
<tr>
<td>FED</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabella 30: Parametri significativi e soglie di prestazione

L’analisi è svolta utilizzando due tipologie di strumenti di misurazione quali slices orizzontali ad una altezza di 2 m da terra, per i parametri visibilità e temperatura, e devices puntuali posti a 2 m dal piano stradale, per la misurazione dei valori di FED e irraggiamento.

L’immagine numero 35 mostra come sono posizionati all’interno del fornice gli strumenti di misurazione adoperati.

![Figura 35: Localizzazione dei devices all’interno della galleria](image)

Le tabelle seguenti riportano i dati di output ricavati dalle simulazioni d’incendio dello scenario di progetto in esame sotto forma di grafici in cui è visibile l’andamento nel tempo dei parametri analizzati rispetto al valore soglia specificato.
RISULTATI DELLA VISIBILITÀ NELLO SCENARIO 6, INCENDIO DI UN'AUTOCISTerna A META' TRA IMBOCCO E GALLERIA D'EMERGENZA

<table>
<thead>
<tr>
<th>MESH 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
</tr>
<tr>
<td>$z < 2 \text{ m}; t < 562 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 595 \text{ s}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
</tr>
<tr>
<td>$z < 2 \text{ m}; t < 512 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 530 \text{ s}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
</tr>
<tr>
<td>$z < 2 \text{ m}; t < 463 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 485 \text{ s}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
</tr>
<tr>
<td>$z < 2 \text{ m}; t < 397 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 417 \text{ s}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GALLERIA LIBERA DAI FUMI:</td>
<td>GALLERIA CON UNA ZONA LIBERA DAI FUMI:</td>
</tr>
<tr>
<td>$z < 2 \text{ m}; t < 370 \text{ s}$</td>
<td>$z < 2 \text{ m}; t < 400 \text{ s}$</td>
</tr>
<tr>
<td>Mesh</td>
<td>Galleria Libera dai Fumi</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Mesh 6</td>
<td>$z < 2 \text{ m}; t < 326 \text{ s}$</td>
</tr>
<tr>
<td>Mesh 7</td>
<td>$z < 2 \text{ m}; t < 325 \text{ s}$</td>
</tr>
<tr>
<td>Mesh 8</td>
<td>$z < 2 \text{ m}; t < 295 \text{ s}$</td>
</tr>
<tr>
<td>Mesh 9</td>
<td>$z < 2 \text{ m}; t < 328 \text{ s}$</td>
</tr>
</tbody>
</table>
RISULTATI DELLA TEMPERATURA NELLO SCENARIO 6, INCENDIO DI UN'AUTOCISTERNA A META’ TRA IMBOCCO E GALLERIA D’EMERGENZA

<table>
<thead>
<tr>
<th>MESH 1</th>
<th>MESH 2</th>
<th>MESH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 1594) s</td>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 1125) s</td>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 897) s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 4</th>
<th>MESH 5</th>
<th>MESH 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 588) s</td>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 521) s</td>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 490) s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 7</th>
<th>MESH 8</th>
<th>MESH 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 462) s</td>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 476) s</td>
<td>TEMPERATURA < 60 °C; (z < 2) m; (t < 496) s</td>
</tr>
</tbody>
</table>
RISULTATI DI FED E IRRAGGIAMENTO NELLO SCENARIO 6, INCENDIO DI UN'AUTOCISTerna A META' TRA IMBOCCo E GALLERIA D'EMERGENZA

MESH 1

![Graphs showing FED and Irraggiamento for Mesh 1.]

| FED < 0,1; z = 2 m; t < 1800 s | IRR < 2,5 kW/m²; z = 2 m; t < 1800 s |

DEViCE 2

![Graphs showing FED and Irraggiamento for Device 2.]

| FED < 0,1; z = 2 m; t < 1443,5 s | IRR < 2,5 kW/m²; z = 2 m; t < 1800 s |

MESH 2

DEViCE 3

![Graphs showing FED and Irraggiamento for Device 3.]

| FED < 0,1; z = 2 m; t < 1058,5 s | IRR < 2,5 kW/m²; z = 2 m; t < 1603,5 s; 1625,5 s < t < 1800 s |
FED < 0,1; z = 2 m; t < 919,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 1345 s;
1348 s < t < 1800 s

FED < 0,1; z = 2 m; t < 811,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 1100 s;
1103 s < t < 1800 s

FED < 0,1; z = 2 m; t < 752,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 973 s;
999 s < t < 1800 s
<table>
<thead>
<tr>
<th>DEVICE 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 628 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEVICE 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 750,5 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 707,5 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEVICE 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>FED < 0,1; z = 2 m; t < 615,5 s</td>
</tr>
</tbody>
</table>
MESH 8

DEVICE 11

FED < 0,1; z = 2 m; t < 635,5 s
IRR < 2,5 kW/m²; z = 2 m; t < 511 s;
715 s < t < 1106; 1200 s < t < 1800 s

DEVICE 12

FED < 0,1; z = 2 m; t < 997 s
IRR < 2,5 kW/m²; z = 2 m; t < 1555 s;
1642 s < t < 1800 s

DEVICE 13

FED < 0,1; z = 2 m; t < 1800 s
IRR < 2,5 kW/m²; z = 2 m; t < 1800 s
La tabella seguente riporta, per ciascun parametro e ciascun tratto della galleria, i tempi in cui viene raggiunto il valore di soglia indicato dalla norma.

<table>
<thead>
<tr>
<th>N° MESH</th>
<th>TEMPI IN CUI VENGONO RAGGIUNTI I VALORI SOGLIA PER I PARAMETRI:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VISIBILITA’ [s]</td>
</tr>
<tr>
<td>1</td>
<td>595</td>
</tr>
<tr>
<td>2</td>
<td>530</td>
</tr>
<tr>
<td>3</td>
<td>485</td>
</tr>
<tr>
<td>4</td>
<td>417</td>
</tr>
<tr>
<td>5</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>430</td>
</tr>
<tr>
<td>7</td>
<td>405</td>
</tr>
<tr>
<td>8</td>
<td>370</td>
</tr>
<tr>
<td>9</td>
<td>400</td>
</tr>
</tbody>
</table>

Tabella 31: Tempi in cui, per ciascun parametro analizzato nello scenario 6, viene raggiunto il valore soglia

I grafici consentono di determinare il parametro per cui le condizioni ambientali incapacitanti per gli occupanti sopravvengono nel minor tempo rispetto agli altri, tale parametro coincide con la visibilità.

Anche in questo scenario i valori di FED e irraggiamento superiori alla soglia si manifestano a partire da tempi elevati, di conseguenza difficilmente andranno ad influire negativamente sull’esodo degli occupanti della galleria.

Il parametro temperatura assume valori critici per gli occupanti in tempi medio-altri; di conseguenza si ritiene necessario lo svolgimento di una ulteriore analisi, svolta in virtù del tempo d’esodo, per assodare che non ci siano conseguenze sugli occupanti impegnati nell’esodo della galleria verso un luogo sicuro.
Capitolo 9 - Determinazione del tempo disponibile per l’esodo

ASET

I risultati delle simulazioni condotte con il software Pyrosim rappresentano il punto di partenza per la determinazione del tempo disponibile per l’esodo, definito ASET. L’ASET è in particolare quel tempo in cui, all’interno della struttura interessata dall’evento incendio, permangono condizioni ambientali non incapacitanti per gli occupanti.

Il valore di ASET è determinato per ciascuno dei nove tratti in cui è stata divisa la galleria.

![Figura 36: Suddivisione della galleria in tratti.](image)

Il valore di ASET assoluto è assunto per ciascun tratto della galleria pari al più piccolo tra gli ASET calcolati secondo i quattro modelli riportati di seguito, precedentemente definiti al capitolo 7.4:

- Modello dei gas tossici, basato sul concetto di dose inalata (exposure dose) e FED (fractional effective dose).
- Modello dei gas irritanti, basato sul concetto di FEC (fractional effective dose);
- Modello del calore;
- Modello dell’oscuramento della visibilità da fumo.

Tutti gli scenari analizzati risultano caratterizzati da un ASET assoluto legato alla visibilità; infatti è proprio la presenza di fumo a rendere le condizioni ambientali incapacitanti per gli occupanti in tutti gli scenari analizzati nel minor tempo.
La seguente tabella riassume i valori di ASET per la visibilità ottenuti per ogni tratto di galleria in ciascuno dei sei scenari d’incendio analizzati.

<table>
<thead>
<tr>
<th>N° tratto</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
<th>Scenario 5</th>
<th>Scenario 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>1477</td>
<td>1680</td>
<td>850</td>
<td>504</td>
<td>595</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1175</td>
<td>1485</td>
<td>745</td>
<td>455</td>
<td>530</td>
</tr>
<tr>
<td>3</td>
<td>1620</td>
<td>940</td>
<td>1280</td>
<td>645</td>
<td>398</td>
<td>485</td>
</tr>
<tr>
<td>4</td>
<td>1430</td>
<td>800</td>
<td>985</td>
<td>560</td>
<td>383</td>
<td>417</td>
</tr>
<tr>
<td>5</td>
<td>1370</td>
<td>840</td>
<td>920</td>
<td>527</td>
<td>370</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>1290</td>
<td>800</td>
<td>1068</td>
<td>487</td>
<td>400</td>
<td>430</td>
</tr>
<tr>
<td>7</td>
<td>1195</td>
<td>930</td>
<td>1110</td>
<td>440</td>
<td>410</td>
<td>405</td>
</tr>
<tr>
<td>8</td>
<td>1185</td>
<td>1160</td>
<td>1120</td>
<td>380</td>
<td>465</td>
<td>370</td>
</tr>
<tr>
<td>9</td>
<td>1220</td>
<td>1400</td>
<td>1340</td>
<td>390</td>
<td>510</td>
<td>400</td>
</tr>
</tbody>
</table>

Tabella 32: ASET assoluti per ogni tratto di galleria, per ciascuno scenario analizzato

L’analisi dei valori mostra come i valori di ASET sono sicuramente più critici negli ultimi tre scenari in cui è previsto il focolare di un’autocisterna di benzina.

Per tale motivo il campo di applicazione delle successive procedure di analisi è ristretto ad uno di questi tre scenari.

Nello specifico, al fine di assicurare agli occupanti la possibilità di raggiungere un luogo sicuro in sicurezza, è necessario valutare il tempo richiesto per l’esodo RSET in virtù del valore di ASET sopra specificato.
Capitolo 10 - Modellazione d’esodo

La modellazione d’esodo è eseguita con lo scopo di simulare l’evacuazione degli utenti da un edificio interessato da un focolaio d’incendio, in questo caso una galleria stradale.

Uno scenario d’esodo è principalmente definito attraverso 3 parametri:

- geometria: parametri caratterizzanti il layout delle vie di fuga e l’accessibilità a quest’ultime, la distribuzione iniziale della popolazione esposta;

- demografia: parametri caratterizzanti la composizione, le capacità motorie, i tempi di risposta, la velocità d’esodo dei gruppi costituenti la popolazione esposta;

- ambiente: parametri caratterizzanti il flusso del pericolo e gli effetti sulla salute della popolazione esposta.

Il software utilizzato per la modellazione e la simulazione d’esodo dello scenario di progetto scelto è Pathfinder.

Pathfinder è un software di simulazione dell’esodo che utilizza un modello agent-based e grazie al quale è possibile simulare il movimento degli occupanti di un edificio e conseguentemente valutare l’efficienza del sistema progettato.

Il software è composto da tre moduli quali un’interfaccia grafica, un simulatore e un visualizzatore tridimensionale per i risultati.

Un vantaggio di Pathfinder consiste nella possibilità di importare il file di esportazione di PyroSim in cui è presente sia il modello 3D della galleria oggetto di studio che la modellazione dell’incendio di ciascuno scenario di progetto considerato.

Sebbene il modello geometrico impiegato sia 3D le geometrie degli oggetti utilizzati al suo interno vengono trasformate in 2D, ovvero in superfici attraverso le quali gli utenti possono spostarsi, con lo scopo di contenere la complessità di calcolo durante la simulazione.

I risultati generati dall’applicazione del software hanno natura sia grafica che numerica e consentono al progettista di analizzare l’esodo degli utenti verso un luogo sicuro.
Nel caso in oggetto il software Pathfinder è stato utilizzato per la simulazione dell’esodo di del solo scenario 4, in cui il focolaio di un’autocisterna è posizionato all’imbocco della galleria stradale.

Il motivo di questa scelta risiede nel fatto che tra i vari scenari analizzati precedentemente solo quelli che riguardano l’incendio di una autocisterna di benzina hanno mostrato risultati considerevoli dal punto di vista delle conseguenze.

In particolare è stato analizzato l’esodo di un solo individuo in modo da perseguire i seguenti fini:

- individuare il tempo necessario a quest’ultimo per raggiungere una delle uscite della galleria e arrivare in un luogo sicuro;
- monitorare le condizioni ambientali per tutta la durata dell’esodo in modo da poter effettuare le opportune valutazioni.

L’immagine sottostante mostra la posizione del focolare e dell’occupante considerato all’interno della galleria; sono evidenziate inoltre le uscite di emergenza disponibili per l’esodo verso un luogo sicuro che coincide con l’esterno della galleria o con la galleria d’emergenza.

Figura 37: Pianta galleria con uscite di emergenza
10.1 Dati di input

Il software Pathfinder consente l’importazione del file di esportazione di Pyrosim, permettendo così di ottenere un unico file completo sia delle caratteristiche del focolaio che di quelle dell’occupante presente in galleria.

I dati di input per la modellazione dell’esodo riguardano:

- Tempo di pre-movimento dell’occupante;
- Velocità orizzontale di camminamento dell’occupante;
- Posizione dell’occupante, determinata in modo da valutare il massimo percorso che l’utente deve percorrere per raggiungere il luogo sicuro;
- Assenza di ostacoli lungo il percorso ad eccezione della componente strutturale;
- Uscite di sicurezza, corrispondenti rispettivamente con i due ingressi al fornice e con l’uscita che conduce alla galleria pedonale d’emergenza.

Le “Linee Guida dell’ANAS” forniscono dei valori indicativi dei tempi medi da adoperare nella modellazione dell’esodo per i parametri sopra definiti. Essi sono:

- Tempo di pre-movimento, posto uguale al tempo necessario all’abbandono dei veicoli da parte degli utenti:
 ▪ veicoli leggeri: 300 s;
 ▪ veicoli pesanti: 90 s.
- velocità di esodo degli utenti, riferiti alle condizioni di visibilità all’interno della galleria in condizioni critiche:
 ▪ condizioni di visibilità buona: 1 m/s;
 ▪ condizioni di visibilità ridotta: 0,5 m/s;
 ▪ condizioni di visibilità nulla: 0,3 m/s.

Tali parametri costituiscono i dati di ingresso per il software di simulazione d’esodo utilizzato, Pathfinder.
10.2 Risultati della simulazione d’esodo

Al termine della simulazione, il software restituisce differenti output che consentono la valutazione del modello.

Il principale risultato grafico è costituito dal visualizzatore 3D, come da immagine sottostante, che consente di riprodurre lo svolgimento dell’esodo da parte dell’utente e di estrarre le viste utili alla sua valutazione.

![Visualizzatore 3D di Pathfinder](image)

Figura 38: interfaccia grafica degli output di Pathfinder

I dati numerici, fondamentali per una valutazione precisa delle conseguenze dell’incendio, sono restituiti invece grazie all’utilizzo di un utente “sonda” che permette di registrare i dati ambientali lungo tutto il suo percorso d’esodo.

Lo scenario 4 è quindi valutato ulteriormente dal punto di vista della visibilità attraverso l’utilizzo di un occupante “sonda” in modo tale da verificare se le condizioni di visibilità rimangono per tutto l’esodo accettabili o no.

L’analisi è condotta considerando un utente sonda che percorre ciascun tratto di galleria sia nel lato destro che sinistro della carreggiata, come da immagine sottostante.
Vengono quindi individuati i valori di tempo in cui l’occupante inizia e termina la percorrenza di ciascun tratto fino al raggiungimento del luogo sicuro.
Tali valori sono riportati nella tabella sottostante.

<table>
<thead>
<tr>
<th>N° TRATTO</th>
<th>TEMPO DI INIZIO PERCORRENZA [s]</th>
<th>TEMPO DI FINE PERCORRENZA [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LATO DX</td>
<td>LATO SX</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>330,6</td>
<td>329,3</td>
</tr>
<tr>
<td>7</td>
<td>398,7</td>
<td>396,6</td>
</tr>
<tr>
<td>6</td>
<td>465,9</td>
<td>463,9</td>
</tr>
<tr>
<td>5</td>
<td>532,4</td>
<td>530,5</td>
</tr>
</tbody>
</table>

Tabella 33: Tempi di inizio e fine percorrenza di ciascun tratto della galleria da parte dell’occupante

I grafici sulla visibilità risultanti dalle simulazioni fatte con Pathfinder, mostrati nelle figure seguenti, mostrano entrambi un valore di visibilità costante e di molto lontano alla soglia minima imposta da norma nei primi 300 s; il livello di visibilità si abbassa poi abbastanza celermente ma mantenendosi sempre al di sopra del valore accettabile fino a circa 491 s nel lato destro di percorrenza e fino a circa 380 s sul lato sinistro della carreggiata.
Il restante tempo d’esodo risulta caratterizzato da un livello di visibilità al di sotto della soglia che impedisce la regolare prosecuzione dell’avanzata dell’occupante verso il luogo sicuro.
Figura 40: Valori della visibilità dell’occupante nel suo percorso d’esodo sul lato destro (dx) della carreggiata

Figura 41: valori della visibilità dell’occupante nel suo percorso d’esodo sul lato sinistro (sx) della carreggiata

Al fine di comprendere meglio la situazione di visibilità in cui si trova l’occupante durante la percorrenza della galleria sono riportate di seguito le immagini relative alla visibilità a 10 m all’uscita di ogni tratto percorso.

La rappresentazione delle condizioni di visibilità è fatta mediante isosuperfici in modo da fornire una comprensione visiva più chiara e d’impatto dell’espansione dei fumi nel tempo. In particolare è stato impostato il colore verde per indicare il valore di visibilità pari alla soglia di 10 m.
Tratto n° 8

L’immagine n° 42 mostra l’espansione ancora moderata dell’isosuperficie della visibilità nel momento in cui l’occupante esce dal tratto n° 8 della galleria percorrendo il lato destro della carreggiata; le condizioni di visibilità sul lato sinistro cominciano invece a scendere e diventare determinanti per l’esodo nonostante l’occupante si trovi neanche a metà del percorso verso l’uscita d’emergenza.

![Figura 42: Isosuperfici della visibilità (10 m) all’uscita del tratto n° 8 della galleria](image)

Tratto n° 7

L’immagine n° 43 mostra la condizione di visibilità al termine della percorrenza del tratto n° 7 mostrando ancora un livello di visibilità al di sopra della soglia nel lato destro del fornice; mentre sul lato opposto il livello di visibilità è continuato a scendere al di sotto del valore di riferimento.

![Figura 43: Isosuperficie della visibilità (10 m) all’uscita del tratto n° 7 della galleria](image)
Tratto n° 6

L’immagine n° 44 riporta le isosuperfici della visibilità all’uscita del tratto n° 6 della galleria mostrando in entrambi i casi un livello di visibilità al di sotto della soglia prevista dalla norma, anche se il percorso di sinistra è caratterizzato da una condizione più critica.

![Figura 44: Isosuperficie della visibilità (10 m) all’uscita del tratto n° 6 della galleria](image)

Tratto n° 5

L’ultima immagine mostra le condizioni di visibilità all’ingresso della galleria d’emergenza nel momento poco antecedente all’uscita dell’occupante dalla galleria stradale.

![Figura 45: Isosuperficie della visibilità (10 m) in corrispondenza della porta della galleria d’emergenza.](image)

I risultati hanno mostrato che i fumi si sono sviluppati occupando in un primo momento la parte alta della galleria per poi scendere piano piano fino a riempire tutta la sezione del fornice.
Capitolo 11 - Confronto dei risultati: criterio ASET > RSET

L’obiettivo della progettazione dell’esodo è il raggiungimento di un luogo sicuro da parte degli occupanti nel tempo più breve possibile e nelle migliori condizioni ambientali; a tale scopo la norma introduce il criterio ASET > RSET.

Noti i valori di RSET, posti uguali ai tempi di fine percorrenza di ciascun tratto, e di ASET per ogni tratto della galleria interessato dall’esodo, viene svolta la verifica del sopracitato criterio.

<table>
<thead>
<tr>
<th>N° TRATTO</th>
<th>RSET [s]</th>
<th>ASET [s]</th>
<th>ASET > RSET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LATO DX</td>
<td>LATO SX</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>330,5</td>
<td>329,2</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>398,6</td>
<td>396,5</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>465,8</td>
<td>463,8</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>532,3</td>
<td>530,4</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>596,5</td>
<td>587,3</td>
<td>X</td>
</tr>
</tbody>
</table>

Tabella 34: Verifica del criterio ASET > RSET

La tabella mostra valori si RSET sempre superiori a quelli dell’ASET per ogni tratto della galleria ad eccezione che per il tratto iniziale, ovvero il n° 9, dove si trova il focolare. Questo significa che quasi la totalità dell’esodo dell’occupante avviene in condizioni ambientali sfavorevoli a causa dei fumi prodotti dall’incendio, pertanto è necessaria la verifica dell’efficienza del sistema d’esodo e in particolare della segnaletica d’emergenza prevista da progetto.

Questo perché la segnaletica riveste un ruolo fondamentale nelle situazioni d’emergenza in quanto consente agli occupanti di mettersi in salvo grazie al raggiungimento di un luogo sicuro. Nel caso in cui i fumi siano tali da compromettere la visibilità dei segnali d’emergenza, occorre sviluppare appropriate considerazioni in modo da non ostacolare l’esodo degli occupanti e permetterne la sua prosecuzione.
Capitolo 12 - Valutazione della segnaletica d’emergenza di progetto

Nel caso dello scenario di incendio di progetto numero 4, i fumi si abbassano ad un livello tale da compromettere la visibilità dell’occupante per gran parte del suo esodo, pertanto è risultata necessaria la verifica dell’efficienza della segnaletica d’emergenza di progetto della galleria stradale Demonte. Questo perché occorre verificare che l’occupante riesca a raggiungere il luogo sicuro senza perdere l’orientamento.

12.1 Segnaletica d’emergenza di progetto

La segnaletica d’emergenza di progetto consiste nelle seguenti tipologie di segnali, fedelmente modellati attraverso la metodologia BIM come mostra l’immagine sottostante:

1. Segnale luminoso con pittogrammi armadio di emergenza, posto alternativamente su due lati della carreggiata, ogni 62,5 m;
2. Segnale luminoso con pittogrammi uscita d’emergenza con indicazione delle distanze dalle uscite, posto sul solo lato della galleria d’emergenza ogni 125 m;

<table>
<thead>
<tr>
<th>SEGNALETICA D’EMERGENZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
</tbody>
</table>

Tabella 35: segnaletica d’emergenza di progetto
In pianta la segnaletica d’emergenza è posizionata come nell’immagine seguente.

Figura 46: Pianta della galleria Demonte con la segnaletica d’emergenza
La segnaletica può essere posizionata, secondo il “Regolamento di esecuzione e di attuazione del nuovo codice della strada” DPR 16 dicembre 1992, n. 495, ad una altezza del bordo inferiore del cartello rispetto alla carreggiata che varia da 0,6 m a 2,2 m. Nel caso in oggetto, la presenza del profilo redirettivo alto 1 m impone un’altezza di posizionamento almeno pari a 1,2 m, risulta quindi che il bordo superiore dei segnali raggiunge un’altezza non inferiore a 2,2 m.

A supporto della segnaletica d’emergenza è predisposta una illuminazione di evacuazione costituita da plafoniere a LED poste su entrambi i lati della carreggiata ad interdistanza di 12,5 m e ad un’altezza di 0,8 m, che garantiscono un illuminamento medio di 5 lux all’interno del quale l’illuminamento minimo non è inferiore a 2 lux.

La plafoniera, come da immagine sottostante, è realizzata in modo da avere una sorgente luminosa a LED destinata a delineare il percorso di evacuazione e guidare i pedoni verso l’uscita di emergenza e un’altra sorgente luminosa a LED destinata all’illuminazione a terra del medesimo percorso.

![Figura 47: posizione delle plafoniere di evacuazione in galleria](image)

![Figura 48: plafoniera di evacuazione](image)
12.2 Criticità

Alcuni studi hanno dimostrato che durante l’emergenza le persone hanno la tendenza a cercare di raggiungere il portale principale del tunnel piuttosto che utilizzare le uscite di emergenza per pedoni più vicine.

Gli occupanti infatti potrebbero non sapere della presenza di uscite di emergenza e quindi, a causa delle condizioni di scarsa visibilità della segnaletica d’evacuazione dovuta all’espansione dei fumi prodotti dall’incendio, potrebbero non riconoscere le porte di uscita poste lungo il tunnel.

Si nota che nel caso studio analizzato la visibilità dell’occupante si riduce progressivamente finché esso si trova con il capo completamente immerso nel fumo, non riuscendo più a vedere la segnaletica. Proprio in queste condizioni l’utente potrebbe cominciare a perdere l’orientamento e avere difficoltà nella prosecuzione dell’esodo.

Risulta quindi necessario comunicare in modo chiaro l’ubicazione dell’uscita d’emergenza più vicina e il percorso d’esodo da seguire al fine di raggiungerla.

L’analisi della segnaletica d’emergenza di progetto si colloca quindi in questo contesto con l’obiettivo di valutare le criticità riscontrabili durante l’esodo di un occupante verso il luogo sicuro più vicino e di fornire successivamente prescrizioni in modo da facilitare l’evacuazione dal tunnel stradale.

Mediante l’utilizzo dei software di simulazione d’esodo e d’incendio, quali rispettivamente sono Pathfinder e Pyrosim, vengono estrapolate le immagini seguenti con lo scopo di mostrare e far comprendere al meglio le condizioni di visibilità in presenza dell’aggravante dei fumi prodotti dal focolare d’incendio in prossimità della segnaletica d’emergenza.

In particolare la verifica sulla visibilità della segnaletica viene svolta considerando lo svolgimento del percorso d’esodo verso il luogo sicuro più vicino sia sul lato destro che sinistro della carreggiata in modo da fornire un quadro completo delle condizioni di visibilità in cui si potrebbero trovare gli occupanti presenti in galleria.
L’immagine n° 49 è dimostrazione della visibilità della segnaletica d’emergenza dal punto di vista dell’occupante che svolge il suo esodo verso il luogo sicuro sul lato opposto della carreggiata.
Si nota che, nonostante la vicinanza, l’occupante ha una percezione nulla della segnaletica presente sul lato opposto a quello di percorrenza.
Per tale motivo si ritiene necessario il posizionamento della medesima su entrambi i lati della carreggiata.

Figura 49: visibilità in prossimità della segnaletica d’emergenza posta sul lato opposto dell’esodo
L’immagine n° 50 mostra il livello di visibilità in prossimità della segnaletica d’emergenza posta sul medesimo lato dell’esodo. Si nota che la distanza a partire dalla quale l’occupante inizia a percepire la segnaletica d’emergenza è esigua, si parla infatti di 6 m e 4,3 m.
Si può osservare inoltre che la distanza elevata tra i segnali posti sul medesimo lato della carreggiata, pari a 125 m, non aiuta l’occupante a comprendere la lunghezza del tratto che lo divide dall’uscita più vicina. Pertanto, al fine di garantire l’orientamento nell’esodo dell’occupante, si ritiene conveniente l’infittimento di tale segnaletica.
Analoghe considerazioni valgono per le plafoniere di evacuazione poste sul profilo redirettivo che andrebbero poste ad una distanza inferiore per garantire una maggiore continuità nella segnalazione del percorso di evacuazione e nell’illuminazione a terra del medesimo percorso.

Figura 50: visibilità in prossimità della segnaletica d’emergenza posta sul lato dell’esodo

Occorre inoltre specificare che la segnaletica indicante la distanza dall’uscita di emergenza più vicina è posta solo sul medesimo lato dell’uscita d’emergenza, pertanto l’occupante che si trova sul lato opposto non si renderà mai conto della distanza che lo divide da essa, è necessario quindi posizionarla anche sul lato opposto.
Le immagini n° 51 e 52 mostrano il livello di visibilità di un occupante, posto rispettivamente sul lato destro e sinistro della carreggiata, in prossimità dell’accesso alla galleria d’emergenza.

In particolare l’immagine n° 51 mostra che l’occupante che svolge il suo esodo sul lato destro della carreggiata non riesce a percepire in modo assoluto la segnaletica indicante la porta d’emergenza che si trova sul lato opposto. È importante quindi segnalare la presenza dell’uscita mediante apposita segnaletica posta anche sul lato destro della galleria.

Figura 51: livello di visibilità in prossimità dell’ingresso alla galleria d’emergenza di un occupante posto sul lato destro della carreggiata
L’immagine n° 52 mostra che l’occupante posto sul medesimo lato dell’uscita di emergenza percepisce la porta solo nel momento in cui si trova ad una distanza inferiore a 2,5 m. Si ritiene fondamentale l’aggiunta di un appropriato strumento per la segnalazione della porta con lo scopo di renderla maggiormente visibile in condizioni di bassa visibilità.

Figura 52: livello di visibilità in prossimità dell’ingresso alla galleria d’emergenza di un occupante posto sul lato sinistro della carreggiata
12.3 Prescrizioni sulla segnaletica d’emergenza

L’analisi sulla visibilità svolta nei precedenti paragrafi sia dal punto di vista numerico che grafico, mostra numerose e importanti carenze nella segnalazione della via d’esodo agli occupanti della galleria. Questo lavoro ha lo scopo di proporre soluzioni sia migliorative che aggiuntive alle misure già previste da progetto sulla base delle valutazioni sulla visibilità della segnaletica di emergenza in presenza di fumi.

Le prescrizioni proposte sono le seguenti:

- Posizionamento della segnaletica per l’evacuazione su entrambi i lati della carreggiata;
- Posizionamento della segnaletica che indica la presenza dell’ingresso alla galleria d’emergenza anche sul lato destro della carreggiata;
- Infittimento della segnaletica d’esodo, posizionandola almeno ogni 25 m;
- Riduzione della distanza tra le plafoniere d’evacuazione da 12,5 m ad almeno 5 m, meglio 3 m o comunque non maggiore di 10 m;
- Aggiunta di profilì con frecce luminescenti che indicano il percorso di uscita, poste al di sotto delle plafoniere di emergenza ad una altezza del bordo inferiore di circa 0,65 m da terra, in modo tale da migliorare l’orientamento pedonale e aumentare la velocità di evacuazione delle persone dal tunnel;

Figura 53: profilo con frecce luminescenti per l’indicazione della direzione d’esodo

- Aggiunta di segnaletica orizzontale da pavimento consistente in bolli (φ = 35 cm) con freccia fotoluminescente, posti a distanza di 3 m, per l’indicazione del percorso di esodo conducente all’uscita più vicina.

Figura 54: bollo di segnalazione del percorso d’esodo a pavimento
- Aggiunta di luci di segnalazione delle uscite di emergenza, per esempio luci chiare lampeggianti (bianche o verdi) intorno alla porta, come nell’immagine seguente.

Figura 55: luci lampeggianti poste intorno alla porta per la segnalazione di un’uscita d’emergenza

Si nota che l’accostamento ai marcatori statici di frecce direzionali che indicano il percorso di uscita e il posizionamento della segnaletica a pavimento trovano grande utilità nel caso di cattive condizioni visive causate dalla presenza di fumo. In particolare le indicazioni del percorso di uscita devono essere poste a non più di 1 m al di sopra del piano stradale in modo tale che, in caso di accumulo di fumo all’interno del tunnel, il posizionamento basso garantisce la visibilità ai pedoni che cominciano ad accovacciarsi o a strisciare per terra per evitare lo strato di fumo.

Il posizionamento dei bolli a pavimento e dei profili con frecce luminescenti deve essere fatto in modo tale da indicare il percorso d’esodo più veloce, pertanto la galleria viene concepita divisa in 4 parti in cui la segnaletica direzionale differisce per l’indicazione del verso di percorrenza. Per meglio capire questa suddivisione si rimanda all’immagine sottostante.

Figura 56: suddivisione della galleria in virtù del verso delle frecce indicanti il senso dell’esodo
12.4 Valutazione della segnaletica aggiuntiva proposta

La segnaletica aggiuntiva proposta nel capitolo precedente, consistente in bolli e profili con frecce luminescenti, è stata modellata ed inserita all’interno del modello della galleria Demonte, come mostra l’immagine sottostante.

![Figura 57: segnaletica d’emergenza aggiuntiva nella galleria Demonte](image1)

Il software di simulazione Pathfinder ha permesso di valutare la visibilità di tale segnaletica durante l’esodo di un occupante in presenza dei fumi prodotti dall’incendio. La figura n° 58 ricavata dalla simulazione d’esodo effettuata mostra che, al contrario della segnaletica prevista da progetto posta ad una altezza maggiore di 1,2 m, la segnaletica aggiuntiva posta a pavimento e all’altezza di 0,65 m continua ad essere visibile per tutta la durata dell’esodo nonostante i fumi si abbassano velocemente nel tempo.

![Figura 58: visibilità della segnaletica d’emergenza aggiuntiva](image2)
Il presente lavoro di tesi è stato svolto con lo scopo di verificare l’efficienza delle misure di protezione attuate nella galleria stradale e formulare delle prescrizioni migliorative nel caso si fossero dimostrate insufficienti.

Il primo approccio è stato quello di cercare risposte nelle norme ma esse sono spesso risultate non soddisfacenti e non applicabili alla complessità della galleria.

Un riscontro positivo si è avuto invece nell’applicazione degli strumenti della Fire Safety Engineering che ha permesso di valutare le condizioni in cui viene svolto l’esodo e le misure di protezione previste nel progetto della galleria oggetto di studio.

L’utilizzo di software di simulazione dell’incendio e dell’esodo è risultato efficace nello svolgimento dell’analisi delle condizioni in cui viene svolta l’evacuazione della galleria grazie agli output grafici e numerici che vengono generati. Inoltre il supporto della metodologia BIM, caratterizzata da una forte interoperabilità tra le diverse piattaforme, ha consentito di mettere insieme dati di tipologie differenti al fine di creare un unico modello completo di tutte le informazioni necessarie.

Il loro impiego si è inoltre dimostrato soddisfacente per la possibilità di reiterare le simulazioni e per la rapidità nella restituzione di un feedback sull’efficacia delle misure previste.

L’analisi degli output ottenuti mediante l’utilizzo di tali software ha condotto alla conclusione per cui in caso di eccessivo sviluppo di fumi, la visibilità in galleria si riduce sensibilmente e la funzione della segnaletica d’emergenza di progetto diventa nulla poiché quasi del tutto impercettibile.

In questo contesto si inserisce la necessità di formulare prescrizioni migliorative e aggiuntive riguardo la segnaletica d’emergenza in modo da garantire un più efficiente esodo da parte degli occupanti della galleria.

Tali misure sono state successivamente oggetto di ulteriore verifica grazie al supporto delle modellazioni di esodo che hanno consentito un accertamento qualitativo di tali prescrizioni. Risulta che la segnaletica complementare a quella ordinaria, al contrario di quella di progetto, continua a rimanere visibile per tutta la durata dell’esodo anche nel
momento in cui la maggior parte del volume della galleria risulta occupato dai fumi dell’incendio.

A partire dai risultati dei software di simulazione sarebbe utile creare delle linee guida per l’installazione della segnaletica d’emergenza in modo da garantire un esodo idoneo per ogni situazione critica.

L’impiego dei software potrebbe rappresentare uno strumento aggiuntivo nella progettazione delle misure di protezione di ciascuna galleria con lo scopo di plasmare le prescrizioni contenute nelle linee guida su ciascun progetto e raggiungere un risultato ottimale.

Tuttavia anche questi strumenti presentano dei limiti che si traducono nell’impossibilità di tenere conto di determinate variabili. Un esempio riguarda l’incapacità di valutare variabili dinamiche quali per esempio la segnaletica luminosa e i segnali acustici. Risulta chiaro quindi che in futuro occorrerà sviluppare delle funzionalità che consentano di implementare i fattori sopra descritti.
Capitolo 14 - Sitografia e bibliografia

- Progetto definitivo SS 21 “della Maddalena” Anas;
- Linee Guida Anas per la progettazione della sicurezza delle gallerie stradali;
- Dati Anas sul traffico stradale SS 21;
- Ministero delle infrastrutture e dei trasporti: http://www.mit.gov.it/;
- Linee guida dell’APAT sul trattamento dei veicoli fuori uso;
- Handbook of fire safety engineering;
- Report for DG Climate Action- Ricardo AEA;
- Articolo “Tunnelling and Underground Space Technology” del giornale Elsevier;
- Ricerca “Influences or fire suppression on combustion products in tunnel fires” SP Technical Research Institute of Sweden;
- Proposed Guidelines for emergency Exit Signs and Marking Systems for Highway Tunnel, NCHRP;
- PyroSim Manual;
- Pathfinder Manual;
- Articolo “BIM, realtà virtuale e realtà aumentata”: biblus.acca.it.

Capitolo 15 - Normative di riferimento

- Bozza RTV gallerie stradali;
- DPR 16 dicembre 1992 n.495;
- UNI 10779-2002;
- D.M. 3 agosto 2015 “Codice di prevenzione incendi” e successiva modifica D.M. 18 ottobre 2019;
- Norma ISO/TR 13387 “Fire Safety Engineering Application of Fire Performance concepts to design objectives”.