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Notations

For a matrix F ∈ Rn×m, F l denotes the l-th row of F .

For a vector x ∈ Rn, we de�ne ‖x‖2 := (xTx)1/2.

For a vector x ∈ Rn and positive de�nite matrix P ∈ Rn×n, we de�ne ‖x‖P :=
(xTPx)1/2.

For a symmetric matrix P , P > 0 (P ≥ 0) implies that P is a positive de�nite
(positive semide�nite) matrix.

For vectors u, v ∈ Rn, the notation u < v (u ≤ v) implies u(i) < v(i) (u(i) ≤ v(i)),
∀i = 1, . . . , n.

For vectors u, v ∈ Rn, the notation |u| < v (|u| ≤ v) implies |u(i)| < v(i) (|u(i)| ≤
v(i)), ∀i = 1, . . . , n.

For a positive de�nite matrix P ∈ Rn×n, a vector v ∈ Rn and a positive scalar η,
we de�ne the set E(P ,v, η) := {x ∈ Rn : (x− v)TP (x− v) ≤ η}

3





Abstract

In this thesis, the attitude dynamics of a system equipped with a cluster of four
Control Moment Gyros (CMGs) in a pyramidal con�guration is analyzed. CMGs
are angular momentum exchange devices used for precise attitude control, since they
are able to generate larger torque compared to Reaction Wheels (RWs). At least
three gimbals are necessary for full three-axis control, but a minimum of four CMGs
is usually employed to increase system redundancy. Moreover, one important dif-
�culty related to the use of CMGs is their singularity problem in which, under a
certain con�guration of CMG gimbal angles, no control torque can be generated. For
this reason, in order to develop the equations of spacecraft attitude dynamics, the
dynamics of a rigid body is studied. Thus, starting from the external control torque
and the angular momentum, whenever using momentum devices for attitude control,
it can be useful to write the equations in terms of the angular velocity, in order to
apply the controller considering the gimbal angles as control inputs. Furthermore,
the quaternion kinematic equation is used to describe the spacecraft reorientation
in terms of quaternions and the �rst dynamic test is made in order to check the
dynamics implementation. Consequently, two controllers are proposed to avoid the
CMGs singularity: Singular Direction Avoidance (SDA) steering law and a variation
of Classic Model Predictive Control (CMPC). The �rst method provides the ability
to avoid or escape the singularity with a particular �nite gimbal rate. Nevertheless,
since the SDA steering law uses the error between the desired and the current at-
titude, the tracking performance is slightly degradated during the escape from the
singularity. This controller is implemented for both simulation and experimental re-
sults. The experiments are conducted at the Yamada Laboratory, Graduate School
of Engineering, Osaka University, Osaka, Japan. The second method is generally
used for constrained problems as it can provide closed-loop stability and feasibility
at each time step by ensuring that the predicted trajectory satis�es the constraints.
MPC is a more complex controller with a higher computational cost, which consists
in a minimization of a cost function in order to get the control vector to be applied
to the attitude dynamics. The e�ectiveness of this controller is shown comparing
the tracking performance in the simulation results.
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Sommario

In questa tesi viene proposta un'analisi della dinamica d'assetto di un sistema
equipaggiato con quattro Control Moment Gyro (CMG) in con�gurazione pirami-
dale. I CMGs sono dispositivi per lo scambio di momento angolare usati per manovre
di precisione di controllo d'assetto, essendo in grado di generare un valore di mo-
mento molto più alto rispetto alle Reaction Wheels (RWs). Tre CMGs sono su�-
cienti per il completo controllo d'assetto ma la loro applicazione consiste general-
mente nell'utilizzo di almeno quattro CMGs per questioni di ridondanza. Inoltre,
un'importante di�coltà relativa all'utilizzo dei CMGs è il problema della singolarità,
in base al quale nessun momento di controllo può essere generato quando i gimbals
dei CMGs si trovano in una particolare con�gurazione angolare. Per questo motivo,
la dinamica del corpo rigido è stata inizialmente studiata per ricavare le equazioni
della dinamica d'assetto di uno spacecraft. Quindi, partendo dal momento esterno
applicato e dal valore del momento angolare, è utile esprimere le equazioni in termini
di velocità angolare per poter applicare il controllore scelto utilizzando gli angoli dei
gimbals come input di controllo. Successivamente, l'orientazione dello spacecraft
viene descritta utilizzando la cinematica dei quaternioni così da poter svolgere il
primo test dinamico per appurare la funzionalità della dinamica implementata. A
questo punto, per evitare la singolarità dei CMGs, vengono proposti due control-
lori: il Singular Direction Avoidance (SDA) steering law e una variante del Classic
Model Predictive Control (CMPC). Il primo metodo consiste nell'evitare la singolar-
ità dando ai gimbals un valore �nito di velocità angolare. Nonostante ciò, poichè il
metodo SDA utilizza l'errore tra la dinamica attuale e quella desiderata, si osserva un
leggero degradamento delle performance in vicinanza della singolarità. Il controllore
SDA è implementato per ottenere sia risultati in simulazione che sperimentali. Gli
esperimenti sono stati svolti sul testbed presente allo Yamada Laboratory, Graduate
School of Engineering, Osaka University, Osaka, Japan. Il secondo metodo (MPC)
viene generalmente utilizzato per problemi vincolati in quanto riesce a garantire sta-
bilità e fattibilità ad ogni step temporale, assicurando che la traiettoria desiderata
soddis� i suddetti vincoli. Si noti che MPC è un metodo di controllo molto più
complesso e che richiede un più elevato costo computazionale, essendo necessaria la
minimizzazione di una funzione di costo per ottenere il vettore di controllo che verrà
poi applicato alla dinamica d'assetto. L'e�cacia del secondo metodo presentato è
dimostrata attraverso i risultati di simulazione.
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Chapter 1

Introduction

The bene�ts of feedback control have been known to mankind for many years,
but the formal development as a mathematical tool for the analysis of the behavior
of dynamic systems is much more recent. It began 150 years ago with Maxwell
works and then continued with all the developments promoted by Laplace, Lya-
punov, Bode, Bellman who are a few of the major contributors to the edi�ce of
control theory. Particular interest, both from theoretical and practical point of
view, has optimal control theory, which addresses the problem of optimizing a cost
index that measures system performance through the choice of system parameters
that are designated as control inputs. This work provides a systematic approach to
the design of strategies that achieve optimal performance.

During the years, attitude control systems based on Control Moment Gyros
CMG have been used for a large scale of satellite as they can generate a large torque
compared to Reaction Wheels systems. A CMG is an angular momentum exchange
device used to produce control torque for spacecraft attitude control. It consists of
a spinning rotor and one or more motorized gimbals that tilt the rotor's angular
momentum: as the rotor tilts, the changing angular momentum causes a gyroscopic
torque that rotates the spacecraft realizing redundant three-axis attitude control.
Though CMG systems can provide rapid slew capability and high pointing accuracy
not using any of the limited propellant dedicated to the main propulsion system,
an important di�culty is their inherent geometric singularity problem, regardless
of how many CMGs are equipped. When the singularity occurs under certain con-
�gurations of CMG gimbal angles, no control torque in a speci�c direction can be
achieved. Many CMG singularity avoidance methods have been developed in litera-
ture in order to overcome this problem of implementation, each one with a respective
steering law that can lead to some advantages and disadvantages, though torque er-
rors can still be found due to the singularities. Thus, gain scheduling designs are
often proposed for Linear Time-Varying (LTV) systems, even if there is a limitation
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1 � Introduction

due to the high number of independent time-varying variables for spacecraft control
using CMGs. For this reason, gain scheduling design may be unfeasible. An exam-
ple of CMG singularity avoidance method is Singular Direction Avoidance (SDA)
steering law: when the commanded torque is parallel to the singular direction, zero
gimbal angular rates would result from using SDA. This method is discussed in this
thesis.

In the last decades, the issues of feasibility of the online optimization and sta-
bility of the closed loop system have been extensively studied. The optimal control
solution has the particularly simple form of linear state feedback for the case of linear
systems and quadratic cost functions, and the feedback gains can be computed by
solving an equation known as the steady-state Riccati equation [2]. This is applied
to both continuous time systems described by sets of di�erential equations and to
discrete time systems formulated in terms of di�erence equation models. The ben-
e�ts of optimal control are, however, di�cult to achieve in the case of systems with
nonlinear models and systems that are subject to constraints on input variables or
model states. For both this cases, in general, it is not possible to derive analytic ex-
pressions for the optimal control solution but one might hope that optimal solutions
could be computed numerically. However, the associated optimization problem is
di�cult to solve for all but the simpliest cases and approximate solutions have to be
considered. This leads to one of the most important reasons behind the phenomenal
success of Model Predictive Control (MPC).

MPC is probably the most widely accepted modern control strategy as it of-
fers a sensible compromise between optimality and speed of computation, thanks
to its receding horizon implementation. It works predicting future behaviors using
a system model, given measurements or estimates of the current state and a hy-
pothetical future input trajectory or feedback control policy. Thus, future inputs
are characterized by a �nite number of DOF used to optimize a predicted cost and
the process is repeated at each time step using updated information on the system
state in order to introduce feedback to this strategy. In closed-loop operations, this
repetition reduces the gap between the predicted and the actual system response
and provides a certain robustness to the uncertainty that can arise from unknown
variations in the model parameters as well as disturbances appearing additively in
the system dynamics. Considering a system in the absence of any uncertainty, MPC
strategy may take account of predicted behavior over a �nite horizon only and this
lacks guarantees of nominal stability. This problem is overcome by imposing ad-
ditional conditions as terminal constraints on the predicted model states in order
to ensure that the desired steady state is reached at the end of a �nite prediction
horizon. Therefore, stability and convergence properties are ensured as e�ects of

12



these constraints that render a �nite horizon equivalent to an in�nite one. A sta-
bilizing feedback law, known as terminal control law, could be used to de�ne the
predicted control inputs at future times beyond the initial, �nite prediction hori-
zon which presents computational challenges in the case of nonlinear systems. This
feedback law is often used for the actual system dynamics in the absence of con-
straints or it can be chosen for the unconstrained, linearized dynamics about the
desired steady state. Thus, additional constraints known as terminal constraints are
imposed in order to ensure that the control strategy meets the system constraints,
ensuring feasibility of the receding horizon strategy. These terminal constraints re-
quire that the system state at the end of the initial �nite prediction horizon should
belong to a subset of state space with the property that once entered the state of the
constrained system will never leave it. In the dual-mode approach, the open-loop
optimal control is initially applied, and then a terminal control law is utilized after
the state variable reaches a positively invariant set. This dual-mode MPC strategy
is widely accepted as one of the most systematic approaches to design an MPC that
guarantees feasibility and stability. All the ideas above are included in the Classic
Model Predictive Control (CMPC) theory, which has the advantages to be stable, to
meet constraints and to converge asymptotically to the desired steady state in closed
loop operation. However, it may be required that the controller has an acceptable
degree of robustness to model uncertainty. We refer to this more challenging control
problem as Robust Model Predictive Control (RMPC), in which the uncertainty
has known bounds but no further information is assumed. The concern for RMPC
would be to guarantee stability, constraint satisfaction and convergence of the state
vector to given steady-state condition or set of states, for all possible realizations
of uncertainty. However, uncertainty is subject to some statistical regularity and
can be modelled as random but with known probability distribution and some or all
of the constraints may be probabilistic in nature. We refer to this control problem
as Stochastic Model Predictive Control (SMPC). The object of SMPC is to ensure
that such constraints, together with any additional hard constraints that may be
present, are met in closed loop operation, and to simultaneously stabilize the system.

In order to cope with the disadvantage of signi�cant performance degradation
in the presence of uncertainty and disturbances, RMPC has received a great deal of
attention for both linear systems and nonlinear systems. It is sometimes possible
to formulate a stochastic model to represent the uncertainty and disturbance, as for
instance in the case of in�ow material in a chemical process or wind speed and tur-
bulence in wind turbine control, which have led to an increasing interest in SMPC.
A probabilistic description of the disturbance or uncertainty allows to optimize the
average performance or appropriate risk measures. However, the �rst problem in
SMPC is the derivation of computationally tractable methods in order to propagate
the uncertainty for evaluating the cost function. The calculation has multivariate
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1 � Introduction

integrals, whose evaluation requires the development of suitable techniques. A sec-
ond problem in SMPC is related to the di�culty of establishing recursive feasibility,
which is essential for stability. In CMPC recursive feasibility is usually guaranteed
through showing that the planned input trajectory remains feasible in the next op-
timization step, while the idea is then extended to RMPC by requiring that the
input trajectory remains feasible for all possible disturbances. In SMPC a certain
probability of future constraint violation is in general allowed, which leads to sig-
ni�cantly less conservative constraint tightening for the predicted input and state.
However, in this setup, the probability distribution of the state prediction at some
future time depends on both the current state and the time to go so that even under
the same control law, the violation probability changes at each sampling time and
this might render the optimization problem unfeasible. An exact evaluation of the
desired quantities is in general only possible in a linear setup with Gaussian noise or
�nitely supported uncertainties, as explained in "Stabilizing model predictive control
of stochastic constrained linear systems" [3]. These approximate solutions include
particle approaches and polynomial chaos expansion, as we can see respectively in
[4] and [5]. For linear systems with parametric uncertainty, "Stochastic nonlinear

model predictive control with probabilistic constraints" [6] proposes to decompose
the uncertainty tube into a stochastic part computed o�ine and a robust part com-
puted online. If there is an additive disturbance, the system is usually decomposed
into a deterministic, nominal part and an autonomous system involving only the
uncertain part in order to reduce the computational cost.

A scenario for MPC applications is Autonomous Rendezvous and Docking (ARVD)
maneuvers, which have been widely studied in the recent years, as it is expected that
most of the proximity operations will be performed autonomously with high per-
formance and on-board processors. Furthermore, this maneuvers have been gaining
relevance due to the complex �ight scenario which includes constraints in both the
mass and size that can be transported in a launching vehicle (depending on the mis-
sion) as well as the growing concern about space debris that has been accumulating
since the beginning of space exploration. Di�erent control techniques have been
proposed for ARVD maneuvers, including MPC due to its strategy in dealing with
constraints, in terms of relative position and velocity, and its degree of robustness
to system uncertainties due to its receding horizon implementation. Examples can
be found in Linear Quadratic Model Predictive Control (LQMPC) adopted to en-
force thrust magnitude limitation, velocity constraints for soft docking, low thrust
rendezvous and proximity operations, not taking into account, in all of these ap-
proaches, orbital perturbations, disturbances and model errors. Moreover, since the
phase of proximity involves highly nonlinear kinematics and dynamics, linear con-
trol methodologies have limited performance achievement if the linearization errors
are not taken into account. For these reasons, in "A general sampling-based SMPC
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approach to spacecraft proximity operations" [7], an SMPC controller able to per-
form the docking between the chaser and the target in an experimental setup 1 is
proposed, taking into account both parametric uncertainties and external additive
disturbances (due to variations of the spacecraft parameters during the �ight) and
reducing the computational e�ort with respect to other SMPC techniques, thanks
to the o�ine evaluation of the feedback gain matrix. Indeed, sampling-based SMPC
methods have a high computational cost, which may render these approaches not
easily implementable in real applications. The choice of adopting a stochastic ap-
proach instead of a robust one is motivated by the fact that the type of uncertainties
generally found in ARVD operations have in general a probabilistic description, and
the trajectory constraints imposed to the spacecraft may allow a probability of vio-
lation.

Recently, MPC has been extended to tracking control problems. Basically, the
setpoint tracking control can be achieved by regulating the state to the target state.
Also, by inserting the integrator into the feedback loop, it would be possible to
achieve zero steady state error in the presence of step disturbances and/or model-
ing errors. Further, several attempts have been made to extend MPC to tracking
control for time-varying reference signals. In many tracking control strategies, the
control algorithm is reduced to a convex optimization problem under Linear Ma-
trix Inequality (LMI) constraints. In "Constrained MPC to Track Time-Varying

Reference Signals: Online Optimization of Virtual Reference Signals and Controller

States" [8] it is shown that this method is an e�ective means to improve the tracking
control performance of an MPC system. However, the control method is applicable
only to the case where a reference signal is constant so that if a reference signal is
time-varying, closed loop stability as well as feasibility of the control algorithm may
not be guaranteed. In actual control systems, we frequently encounter a system with
control signals constrained to a �nite region whose bounds are time-varying. For
example, the tire force limitation in a vehicle control system [9] can be modeled as a
time-varying saturation nonlinearity imposed on the control signal. Also, the input
transformations used to simplify the control system design often cause time-varying
input saturation on the new control signal. If the standard MPC is applied to such
a system, feasibility and stability may not be guaranteed. In "Stabilized MPC for-

mulation for robust recon�gurable �ight control" [10], it is shown that the MPC
algorithm, with a target recalculation mechanism, is an e�ective control strategy
in dealing with such a control problem through various numerical examples on a
realistic nonlinear aircraft model. However, the control algorithm shown in [10] may
also not guarantee feasibility and stability of the control system.

1developed at the Naval Postgraduate School (NPS) of Monterey, called 'Proximity Operation
of Spacecraft: Experimental hardware In-the-loop DYNamic simulator (POSEIDYN)'
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1 � Introduction

The main idea of this thesis is to design and implement two di�erent controllers,
SDA and CMPC, for a CMG-based testbed, in which uncertainties and disturbances
are also included. As in [11] and [12] the MPC controller is proposed including
LTV system, starting from the theory of pole placement. In a similar way, in [13]
external disturbances are also included and a Nonlinear Model Predictive Control
(NMPC) is used to implement the attitude feedback control of the integrated system
of the spacecraft. In this research we use a cost function that includes the norm
of the deviation between the reference signal and the virtual reference signal. In
the proposed algorithm, the controller state as well as the control sequence and
the virtual reference signal are determined at each sampling time so that the cost
function is minimized. The main advantages of using MPC controllers with CMG
systems are related to two main aspects: the �rst one is that MPC controller can
directly calculate the angular velocity of the gimbals without calculating the external
control torque; the second one is that the input, state and hardware constraints can
be included in the implementation. Indeed, MPC is chosen alongside SDA because
it can take constraints into account, while this cannot be done by SDA because
of the singularity problem. As a consequence of the implementing procedure, if
the angular velocity of the gimbals is chosen as control input, the stability of the
closed loop system and its feasibility are guaranteed, as well as the convergence of
the tracking error, while even the tracking performance is improved under input
constraints. This feature guarantees the computational e�ciency of the proposed
controllers and the performance in the experimental tests.
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Chapter 2

Spacecraft dynamics

2.1 Rigid-body dynamics

The �rst step of the analysis is to consider the dynamics of a rigid body as
a basis for developing the equations of satellite attitude dynamics. According to
French mathematician Michel Chasles's (1793-1880) theorem, the motion of a rigid
body can be described by the displacement of any point of the body (the base
point) plus a rotation about a unique axis through that point.The magnitude of
the rotation does not depend on the base point. For this reason, a rigid body in a
general state of motion has an angular velocity vector whose direction is that of the
instantaneous axis of rotation. In order to describe the rotational component of the
motion of a rigid body in three dimensions, it is necessary taking advantage of the
vector nature of angular velocity and knowing how to take the time derivative of
moving vectors. Thus, it is possible to analyze the interaction between the motion
of a rigid body and the forces acting on it. In the two body problem, if we consider
only the traslational component of the motion, we can concentrate all of the mass at
the center of mass and then apply the methods of particle mechanics to determine its
motion. Analyzing the rotational dynamics requires computing the body's angular
momentum, and that in turn requires accounting for how the mass is distributed
throughout the body: this mass distribution is described by the six components
of the moment of inertia tensor. Thus, from these considerations, it is possible to
�nd the nonlinear Euler's equations of motion that are used to �rst express our
dynamics.

2.2 Reference frames

In the following analysis two reference frames are used to describe the spacecraft
dynamics: inertial reference frame and body reference frame. The purpose of this
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2 � Spacecraft dynamics

section is to de�ne these two reference frames used. For the transformation from
ECI to Body reference frame please refer to A.

2.2.1 Inertial Frame

The �rst reference frame considered is the Earth-Centered Inertial (ECI) that
is the so called Inertial Geocentric Reference Frame. It is commonly used to study
the motion of a body orbiting around Earth, referred to a pseudo geocentric inertial
frame, with the axis oriented to the �xed stars. Is has its origin in the center of
mass of Earth. Thus, the x axis x̂I is on the equatorial plane, oriented towards the
mean vernal equinox at J2000 epoch, the z axis ẑI is aligned with Earth spin axis
(celestial North Pole) and the y axis ŷI completes the right-handed frame. Using
the same formulation as [14]

FECI = (xECI , yECI , zECI) (2.1)

Figure 2.1: Earth Centered Inertial Reference Frame

The actual rotation of Earth θ referred to the inertial reference frame ECI can be
computed as

θ = θ0 + ΩE(t− t0) (2.2)

In this equation, θ0 is the Earth rotation at time t0, t is the actual time and, lastly,
ΩE = 7.272 · 10−5rad/s is the angular velocity of Earth about ZECI .
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2.3 � The inertia tensor

2.2.2 Body Frame

The second reference frame used is the Body Frame. It has been adopted to de-
scribe the attitude dynamics once introduced the CMGs to the equations of motion.
This frame has a body-�xed reference, with axis bound to the spacecraft during its
motion. The origin of the Body Frame is in the center of mass of the spacecraft.
If we consider principal axis of inertia, the Body Frame has the axis oriented along
the spacecraft principal axis of inertia.

FB(P.I.) = (xB(P.I.), yB(P.I.), zB(P.I.)) (2.3)

The zB(P.I.) direction is positive from the lower to the upper side of the spacecraft,
the xB(P.I.) is orthogonal to zB(P.I.) and aligned with the solar panels direction and
the yB(P.I.) completes the right-handed triad.

Figure 2.2: Body Reference Frame in CMG cluster

2.3 The inertia tensor

The angular momentum ∂h of a mass element ∂m, moving with velocity v is

∂h = r × (∂mv) (2.4)

where r is the position vector of the mass, with respect to the body reference frame.
For an extended rigid body as shown in Fig. 2.3 (from Ref. [1]), total angular
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2 � Spacecraft dynamics

Figure 2.3: Rotating rigid body (Ref. [1])

momentum is given by

h =

∫
B

(r × v)∂m (2.5)

Proceeding with the analysis as in [1], if the body is rotating around its center of
mass, the velocity of every mass element is

v = ω × r (2.6)

so that

h =

∫
B

[r × (ω × r)]∂m (2.7)

The integration over the body B of [r × (ω × r]∂m is strictly function of the mass
distribution only, as angular velocity components are independent of body shape
and location. Thus, considering

h = h1x̂+ h2ŷ + h3ẑ (2.8)

it is

h1 = Ixω1 − Ixyω2 − Ixzω3 (2.9)

h2 = −Ixyω1 + Iyω2 − Iyzω3 (2.10)

h3 = −Ixzω1 − Iyzω2 + Izω3 (2.11)
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2.4 � Euler's equation of motion

where the moments of inertia Ix, Iy, Iz, and the products of inertia Ixy, Ixz, Iyz are

Ix =

∫
B

(y2 + z2)∂m; Iy =
∫
b
(x2 + z2)∂m; Iz =

∫
B

(x2 + y2)∂m;

Ixy =

∫
B

(xy)∂m; Ixz =
∫
B

(xz)∂m; Iyz =

∫
B

(yz)∂m;

so that the equation of the angular momentum in matrix form can be written as

hB = IωB (2.12)

The inertia matrix I can be explicated with the moments of inertia and the products
of inertia written above and represents the inertia tensor in body axis

I =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 (2.13)

The matrix I is real and symmetric, so its eigenvalues are real and its eigenvectors
are mutually orthogonal. This means that there exists a body reference frame FP
such that the inertia matrix is diagonal

I =

Jx 0 0
0 Jy 0
0 0 Jz

 (2.14)

where the principal moment of inertia Jx, Jy and Jz are the eigenvalues of I and the
related eigenvectors are called principal axis. From he following section Î, Ĵ , K̂ is
the notation used for the inertial reference frame and î, ĵ, k̂ is the notation used for
the body reference frame.

2.4 Euler's equation of motion

When using a momentum device for attitude control it can be useful to write the
attitude equation of motion in terms of angular momentum. The common approach
used to analyze the dynamics of a rigid body refers to Euler's equation of motion
which states that the time derivative of the angular momentum is equal to the total
external torque applied to the body. In vector form, in an inertial reference frame
indicated with °

d°h

dt
= °M (2.15)

The angular momentum has the analytical expression

°h = hxÎ + hyĴ + hzK̂ = °I°ω (2.16)
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2 � Spacecraft dynamics

It is possible to express each parameter of the moment equation in a co-moving body
reference frame with angular velocity Ω, using an appropriate rotation matrix °RB

°I = °RBIB°R
T
B (2.17)

Hence, in this frame we assume for simplicity that

� The moving xyz axis are the principal axis of inertia

� The moments of inertia relative to xyz are constant in time

so that the formulation for ωB becomes

ωB = °RB°ω (2.18)

The angular momentum in the co-moving body reference frame is expressed as

hB = hxî+ hyĵ + hzk̂ (2.19)

The time derivative of hB is ḣB = ḣrel + Ω× hB so that 2.15 can be rewritten as

MB = ḣrel + Ω× hB (2.20)

If the angular velocity of the moving xyz coordinate system Ω and the angular
velocity of the rigid body itself ω are both absolute kinematic quantities, equation
2.17 contains their components as projected onto the axis of the non-inertial xyz
frame, as

Ω = Ωxî+ Ωyĵ + Ωzk̂ (2.21)

ωB = ωxî+ ωyĵ + ωzk̂ (2.22)

The absolute angular acceleration α is obtained as

αB = ω̇B = αrel + Ω× ωB =
dωx
dt
î+

dωy
dt
ĵ +

dωz
dt
k̂ + Ω× ωB (2.23)

It is generally true that

αx 6= ω̇x αy 6= ω̇y αz 6= ω̇z (2.24)

From the equation
hB = Jxωxî+ Jyωyĵ + Jzωzk̂ (2.25)

where Jx, Jy and Jz are the moments of inertia, constant in time, about the principal
axis of inertia, it is possible to write

ḣrel = Jxω̇xî+ Jyω̇yĵ + Jzω̇zk̂ (2.26)
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2.5 � Equation of motion for a spacecraft controlled by a cluster of CMGs

so that, substituting the equations 2.22 and 2.23 into equation 2.17 yields

MB = Jxω̇xî+ Jyω̇yĵ + Jzω̇zk̂ +

∣∣∣∣∣∣
î ĵ k̂

Ωx Ωy Ωz

Jxωx Jyωy Jzωz

∣∣∣∣∣∣ (2.27)

Expanding the cross product and collecting terms leads to

Mx = JX ω̇x + JzΩyωz − JyΩzωy (2.28)

My = Jyω̇y + JxΩzωx − JzΩxωz (2.29)

Mz = Jzω̇z + JyΩxωy − JxΩyωx (2.30)

If the co-moving frame is rigidly attached to the body, then its angular velocity is
the same as that of the body Ω = ωB. In that case, it follows that

αx = ω̇x αy = ω̇y αz = ω̇z (2.31)

and the Euler's equation of motion can be rewritten as

MB = ḣrel + ωB × hB (2.32)

where

Mx = Jxω̇x + (Jz − Jy)ωyωz (2.33)

My = Jyω̇y + (Jx − Jz)ωzωx (2.34)

Mz = Jzω̇z + (Jy − Jx)ωxωy (2.35)

2.5 Equation of motion for a spacecraft controlled

by a cluster of CMGs

A Control Moment Gyro is made of a spinning wheel mounted on a pivoting
gimbal, with the axis perpendicular to the wheel spin axis. Instead of accelerating
and decelerating the wheel in order to obtain the proper reaction from the spacecraft
platform, the momentum exchange between the wheel and the bus is achieved rotat-
ing the wheel spin axis about the gimbal. The consequence is a gyroscopic torque
obtained in a direction perpendicular to both the spin and the gimbal axis. At
least three gimbals are necessary for full three-axis control, but a minimum of four
CMGs is usually employed though a higher number of gimbals can be considered
for increasing system redundancy and overall control power. In Fig. 2.4, referring
to [1], it is shown an example of a cluster of four CMGs in a pyramid mounting.
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2 � Spacecraft dynamics

Figure 2.4: Example of a cluster of four CMGs in a pyramid mounting (Ref. [1])

Starting from the equation of motion 2.32 already written in the body �xed
reference frame, it is now possible to introduce

MB = ḣB + ωB × hB
hB = JBωB + hCB (2.36)

where

� ḣB is the time derivative of the total angular momentum, spacecraft and CMGs
(rotating parts)

� JBωB refers only to the spacecraft

� hCB refers only to the CMG system

The equation of the CMGs angular momentum can be explicated as

hCB = hW

4∑
i=1

h̄i(θi) (2.37)

where

� θi are the gimbal angles i = 1÷ 4
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2.5 � Equation of motion for a spacecraft controlled by a cluster of CMGs

� hW = JWωW is the angular momentum of each wheel (with rotation at con-
stant speed). hW is constant in settings, the speci�c numerical value refers to
the testbed used.

Note that the inertia tensor JB is assumed to take into consideration the contribution
of the spin-wheels to the mass distribution as if they were still. For this reason only
the relative contribution to angular momentum is added. By replacing all the terms
introduced, the equation of motion becomes

MB = ωB × (JBωB + hCB) + JBω̇B + ḣCB (2.38)

Assuming for simplicity a torque-free environment and a zero initial angular mo-
mentum, it is possible to rewrite the equation 2.38 as

JBω̇B + ωB × (JBωB) = u (2.39)

where
u = −ḣCB − ωB × hCB (2.40)

is the control torque generated on the spacecraft bus by the action on the spinning
gimbals. In this equation, ḣCB is the internal control torque while ωB × hCB is the
reaction torque of the spacecraft to all CMGs. The required control torque can be
determined on the basis of the quaternion control that is analyzed in the following
section. Once the required control torque u is known, the CMG steering logic can
be determined as

ḣCB = −u− ωB × hCB (2.41)

For a cluster of four CMGs, the internal angular momentum vector ḣCB is a function
of the rotation angles θ1, θ2, θ3, θ4 of each wheel about its gimbal axis, so that

hCB = h(θ) (2.42)

Taking the time derivative of this equation it is possible to get

ḣCB = hWA(θ)θ̇ (2.43)

Thus, we can convert the desired torque to a command for CMGs in order to have
an attitude control by tracking θ̇

θ̇ =
1

hW
A(θ)T (A(θ)A(θ)T )−1(−u− ωB × hCB) (2.44)

Anyway, due to the fact thatA(θ) is not a square matrix, there could be the presence
of a singularity that may not lead the problem to a convex solution. The case of a
cluster of four CMGs mounted with the gimbal axis perpendicular to the faces of a
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2 � Spacecraft dynamics

pyramid, the sides of which are inclined of a skew angle β, is the most utilized. In
order to perform the reorientation, it is necessary to drive the gimbal according to
Equation 2.42, where, considering sβ = sin β and cβ = cos β, it is

A(θ) =

−cβ cos θ1 sin θ2 cβ cos θ3 − sin θ4

− sin θ1 −cβ cos θ2 sin θ3 cβ cos θ4

sβ cos θ1 sβ cos θ2 sβ cos θ3 sβ cos θ4

 (2.45)

Thus, considering a torque-free environment as stated, the equation of motion can
be �nally rewritten as

ω̇B = −hWJ−1
B A(θ)θ̇ (2.46)

2.6 The quaternion dynamics

In order to de�ne the spacecraft orientation in terms of quaternion q = (q1, q2, q3, q4)T ,
it is now possible to introduce the quaternion kinematic equation that can be written
in two similar forms

q̇ =
1

2
Σ(ωB)q or q̇ =

1

2
η(q)ωB (2.47)

where Σ(ωB) and η(q) are respectively given by

Σ(ωB) =


0 ωzB −ωyB ωxB
−ωzB 0 ωxB ωyB
ωyB −ωxB 0 ωzB
−ωxB −ωyB ωzB 0

 , η(q) =


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (2.48)

In the algorithm described in this thesis, the formulation q̇ = 1
2
Σ(ωB)q is used. The

spacecraft attitude obtained with quaternion kinematics can also be expressed in
terms of Euler angles as follows

φ = arctan

(
2(q4q1 + q2q3)

1− 2(q2
1 + q2

2)

)
(2.49)

θ = arcsin (2(q4q2 − q1q3)) (2.50)

ψ = arctan

(
2(q1q2 + q3q4)

1− 2(q2
2 + q2

3)

)
(2.51)

Furthermore, we can de�ne the state vector of the complete attitude dynamics as

xp =


q

ω

 ∈ Rnp (2.52)
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2.7 � Dynamics implementation and simulation test

In our analysis, np = 7.
It is then possible, considering equations 2.46 and 2.47, to write the system dynamics
as

ẋp =


q̇

ω̇

 =

 ω̇B = −hWJ−1
B A(θ)θ̇

q̇ = 1
2
Σ(ωB)q

 (2.53)

In the state-space formulation, considering xp as the state vector, the system 2.53
can be rewritten as

ẋp =

04×4
1
2
Σ(ω)

03×4 03×3

xp +

 04×4

−hWJ−1A(θ)

 θ̇ (2.54)

where θ̇ ∈ R4 is supposed to be the control input.

The system 2.54 is linearized, considering the desired attitude in terms of angular
velocity ωd = [ωxd , ωyd , ωzd ]

T and qd = [q1d , q2d , q3d , q4d ]
T as equilibrium point and

introducing A(θ0) matrix calculated in θ = [0, 0, 0, 0]T = θ0 in the �rst step.

ẋp =

04×4
1
2
Σ(ωd)

03×4 03×3

xp +

 04×4

−hWJ−1A(θ0)

 θ̇ (2.55)

ẋp = Jxxp + Juθ̇ (2.56)

2.7 Dynamics implementation and simulation test

Using Matlab and Simulink it has been possible to implement the dynamics of
the spacecraft analyzed in the previous sections. The dynamics of nonlinear equa-
tions has been ful�lled on Simulink (see B) while the inputs have been given on a
Matlab script. In Fig. 2.5, 2.6, 2.7) the process is described step by step.

Figure 2.5: Nonlinear dynamics implementation �ow
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Figure 2.6: Particular of ω and θ dynamics implementation �ow
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2.7 � Dynamics implementation and simulation test

Figure 2.7: Particular of q dynamics implementation �ow

Before introducing the controller to the dynamics, a test has been made in order to
check the correct process between the Simulink blocks. The constant parameters
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2 � Spacecraft dynamics

and the initial conditions given to the system are shown below.

J =

 0.9684 −0.0062 −0.0087
−0.0062 0.9768 −0.0074
−0.0087 −0.0074 1.3000



β = 45°

hW = 0.0361

θ̇max = 4 [rad/s]

q0 = [0, 0, 0, 1]T

ω0 = [0, 0, 0]T [rad/s]

ω̇0 = [0,−0.3,−0.5]T [rad/s2]

θ0 = [0, 0, 0, 0]T [rad]

θ̇0 = [0, 0, 0, 0]T [rad/s]

Considering the results achieved with a given dynamics and considering the same
control input, it is possible to �nd the following graphs comparing the two dynamics.

As we can see from the results, the dynamics implemented, under a given control
input, is able to track the desired attitude shown in Fig.2.8 and Fig.2.10. In the
following Chapter the �rst controller, Singular Direction Avoidance (SDA) Steering
Law, is introduced to the already implemented dynamics and the results of both the
simulation and the experiments on the testbed are presented.
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Figure 2.8: Desired quaternion attitude
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Figure 2.13: Dynamic test results: θ
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Chapter 3

Singular Direction Avoidance (SDA)
Steering Law

3.1 Basics on Control Moment Gyros singularities

Control Moment Gyros (CMGs) are spacecraft attitude control actuators that
can be use for attitude hold and large spacecraft reorientation or for slew maneu-
vering. They provide the necessary torques by changing the direction of the angular
momentum vector with respect to the spacecraft reference frame. One of the most
important bene�t is their torque ampli�cation property as the �ywheel of a CMG
spins at a constant speed and the gimbal torque results in a gyroscopic torque (or-
thogonal to both the spin and gimbal axes) which is larger than the gimbal axis
command torque. However, though torque ampli�cation and other bene�ts like no
gases expulsion and the use of electricity instead of fuel as power source, the em-
ployment of CMGs in practice has been hindered by the possibility of geometric
singularities for certain combination of gimbal angles. Moreover, the complexity
associated with the non-linearity of the attitude control problem, along with the
terms introduced with the spinning �ywheels, poses the largest obstacle to their use
in spacecraft designs.

For de�nition, a singular state for a CMG is a gimbal angle combination at which
no torque is possible along a certain direction. We can identify two types of sin-
gular states: external or internal singularities. External or saturation singularities

occur when the sum of all CMG angular momenta reaches its maximum due to the
fact that a CMG changes only the direction of the angular momentum vector and
this leads to a maximal momentum surface. For this reason, For this reason, ex-
ternal singularities happens for those combinations in which the total CMG cluster
momentum has reached this surface so that the it cannot generate torque directed
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3 � Singular Direction Avoidance (SDA) Steering Law

outward this surface. Furthermore, internal singularities exist for singular states
at which the total angular momentum is smaller that the maximum. Description,
analysis and classi�cation of CMGsingularities can be found in [15], [16], [17] while
[18], [19], [20], o�er the visualization of the angular momentum surface.

While maneuvering, in order to be able to generate any commanded torque, the
gimbal angles should be steered away from the singular states. There exists a variety
of methods to avoid or escape these singularities and one of the most common one
is based on the minimum two-norm, pseudo-inverse solution to the gimbal steering
equation [17], [21], [22]. Though this method does not explicitly avoid the singu-
larities, many steering logics are all based on it as it can be e�ciently implemented
online without the need of any o�ine calculation. Moreover, one of the features of
this method is to steer the gimbal angles towards the singularities and rapidly transit
through them with a �nite torque error, which should be kept at a minimum value.
The basic form of this method is known as Singularity Robust (SR) method and
the variation implemented below is known as Singular Direction Avoidance (SDA)
steering law, which provides the ability to avoid or escape any singularity with a
particular �nite gimbal rate. As a matter of fact, di�erent choices of the singularity
avoidance parameters produce di�erent torque errors in the vicinity of the singular-
ities.

There exist alternative methods for handling the CMGs singularities. They can
be broadly categorized as local gradient methods and global avoidance methods.
Even though these methods produce a torque which is exactly the same as the
required torque, there still exist singularities which cannot be avoided using them.
Indeed, the o�ine calculation needed for these methods makes them of limited use
for online steering proceedings.

3.2 Moore-Penrose (MP) solution and Singular Di-

rection Avoidance (SDA) Steering Law

The CMG steering equation we refer to during the analysis, following the same
indications as in [21] and [23], is

Bθ̈ +Dθ̇ = Lr (3.1)

where both B,D ∈ R3×N matrices. However, B is a constant matrix while D de-
pends on ω and θ. The complete formulation of matrices B,D and Lr can be found
in C. Since the norm of the matrix B is quite smaller with respect to the norm of
D, in order to take full advantage of the torque ampli�cation property of CMGs,
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the gimbal commands need to be given at the gimbal rate level. Note that from
this section, it will not be used the bold notation to represent vectors or matrices
anymore but the dimensions will always be fully determined.

Choosing the gimbal rates and the accelerations that satisfy 3.1 ensures the
stability of the system, that is ω → ωf and q → qf , where the constant terms
ωf and qf are the desired �nal values for the reorientation maneuver. Thus, it is
possible to neglect the term Bθ̈ and rewrite the steering equation as

Dθ̇ = Lr (3.2)

with the objective to solve for θ̇, given any value of Lr. We can explicit the equation
as

θ̇ = D−1Lr (3.3)

As previously stated, matrix D in 3.2 has dimension 3×N . Its maximal rank is
3 and whenever it has maximal rank the equation 3.2 can be solved as

θ̇ = DT (DDT )−1Lr (3.4)

When there are more than three CMGs in the cluster, then the solution for θ̇ is
underdetermined and a minimum two-norm solution can be calculated from this
equation. This basic form for steering laws is called Moore-Penrose (MP) solution.
Since the equation in 3.2 is underdetermined (N ≥ 3), there are more than one
solution. However, the MP solution is the one that minimizes

min
θ̇
‖θ̇‖2 subject to Dθ̇ = Lr (3.5)

In particular, the CMG singular states are de�ned as those for which the rank of
the matrix D is less than 3 in 3.2. At these singular states, the matrix DDT is not
invertible and the steering law in 3.4 fails to produce the required torque. Indeed,
the linear system has a solution if and only if the vector Lr is in the range space of
the matrix D, which is always the case of rank D = 3. However, if rank D < 3 there
exist torque vector directions that cannot be met and no set of gimbal commands
θ̇ can produce torque along this direction. Moreover, the magnitude of the gimbal
rate θ̇ becomes excessive in the vicinity of the singular states, violating the gimbal
rate constraints.

The fact that MP steering law fails whenever the rank of D matrix is less than
3 can be shown in the solution 3.4, which drives the gimbal angles towards singular
con�gurations. For this reason, this law is of limited use on a real system unless
some other steering logics avoid or escape the singularities. Therefore, if the re-
quired torque is orthogonal to the singular direction, there is no reason to avoid
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3 � Singular Direction Avoidance (SDA) Steering Law

the singularity during the reorientation pro�le. Moreover, using the Singular Value
Decomposition (SVD) it is possible to steer through some singularities, resulting in
a much smoother reorientation.

The Singularity Robust (SR) steering law is a modi�ed version of Moore-Penrose
solution, originally developed in [24]. In the SR theory, in order to keep D matrix
well-conditioned and invertible, an extra singularity avoidance parameter is added
to the pseudo-inverse of D when the system is close to the singularity. This addition
ensures �nite gimbal rates in the vicinity of the singularity. The SR steering law is
given by

θ̇ = DT (DDT + αI3)−1Lr (3.6)

This equation solves the following minimization problem

min
θ̇
{1

2
α‖θ̇‖2 +

1

2
‖Dθ̇ − Lr‖2} (3.7)

In the equation in 3.6, the parameter α is chosen to be small or zero away from
the singular states and it takes a nonzero value at the singular states. Indeed, it is
negligible when DDT is nonsingular but increases as a singularity is approached. It
is commonly used for α value

α = α0e
−det(DDT )

where α0 is a small constant. Near or at a singularity, we have to accept some devi-
ation, as it may be possible to produce the desired torque with �nite gimbal rates.
Moreover, this steering logic shows gimbal lock in cases when the requested torque
direction is parallel to the singular direction, so that DTLr = 0. Thus, the gimbal
is locked at the same position and the commanded gimbal rate is zero.

Starting from the observation that the singularity of the matrix is determined by
its smallest singular value, a di�erent approach has been proposed to deal with the
singularity problem. In this second analysis, only the value close to the singularity
is modi�ed, instead of all the three values in equation 3.6. This method is called
Singular Direction Avoidance (SDA) steering law and has the bene�t of ensuring a
smaller torque error than the SR method.

It is generally possible to decompose any n×m matrix into the product of three
matrices using the Singular Value Decomposition as

D = USV T (3.8)

where U is a unitary matrix of dimension Rm×m, V ∈ Rn×n unitary matrix and S is
a diagonal matrix of dimension Rm×n. In particular, U and V vectors and S matrix
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can be explicated as

U = [ū1, ū2, ū3]

V = [v̄1, v̄2, v̄3, v̄4]

S =

[ ∑
r×r 0r×(4−r)

0(3−r)×r 0(3−r)×(4−r)

]
where

∑
r×r = diag[σ1, . . . , σr]. As we can see, if S has more columns than rows, so

that m < n, the last n−m columns are all zeros.

It is then possible to compute D−1, in the case where D is a square matrix, as

D−1 = V S−1UT (3.9)

When m < n, the matrix DT (DDT )−1 can be calculated form the elements of the
SVD by discarding the last m−n zero columns of S and V , inverting the new m×m
square matrix S and forming the following

D† = VtS
−1
t UT (3.10)

where Vt and St are the truncated matrices. This equation gives the minimum norm
solution to the undetermined case and can be easily used for the CMG problem
when rank (D) = 3. However, whenever the gimbals become singular, S−1

t does not
exist because a singular value goes to zero.

Therefore, the SDA steering logic is given by

θ̇ = V S‡SDAU
TLr (3.11)

where

S‡SDA =


1
σ1

0 0

0 1
σ2

0

0 0 σ3

σ2
3+α

0 0 0

 (3.12)

In this case, the singularity avoidance parameter α is chosen such that

α = α0e
−kσσ̄2

3

where σ̄3 =
√

(N/3)(σ3/hW ) is a non-dimensional variable normalized with respect
to the magnitude of the �ywheel momentum hW , so that the response of the sys-
tem is independent from the system size. Moreover, α and kσ are arbitrary constants.
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Equation 3.11 can be explicated in the same form as 3.6, so that

θ̇ = −[v̄1 v̄2 v̄3]

 1
σ1

0 0

0 1
σ2

0

0 0 σ3

σ2
3+α

ūT1ūT2
ūT3

Lr
θ̇ = −AT (AAT + λū3ū

T
3 )−1τc

where A = A(θ) derives from the dynamics in 2.45, λ is the SDA steering law
parameter and ū3 is the unitary matrix. The two forms are equivalent and τc is
de�ned using the errors between the desired attitude and the one calculated by the
system, with the appropriate control gains as follows

τc = −kd(q − qd)− kp(ω − ωd) (3.13)

3.3 Implementation and simulation results

The Proportional Derivative (PD) controller with SDA Steering Law has been
fully implemented on Matlab, using the dynamics already ful�lled in the dynamic
simulation test.

The dynamic constant parameters used in the simulations are

β = 45°

hW = 0.0361

θ̇max = 4 [rad/s]

J =

 0.9684 −0.0062 −0.0087
−0.0062 0.9768 −0.0074
−0.0087 −0.0074 1.3000


The PD gains and SDA parameter are, respectively

kd = 12.5

kp = 5

λ = 0.01

The initial conditions for the desired attitude are as follows

qd0 = [0, 0, 0, 1]T

ωd0 = [0, 0, 0]T [rad/s]

ω̇d0 = [0,−0.3,−0.5]T [rad/s2]
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3.3 � Implementation and simulation results

while the initial conditions for the current attitude, gimbal angles and gimbal rate
are

q0 = [0, 0, 0, 1]T

ω0 = [0, 0, 0]T [rad/s]

θ0 = [0, 0, 0, 0]T [rad]

θ̇0 = [0, 0, 0, 0]T [rad/s]

Lastly, the simulation is made considering

t0 = 0 [s]

tf = 25 [s]

dt = 10−3 [s]

The results are shown below.
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Figure 3.1: Quaternion attitude controlled by PD-SDA steering law

The desired attitude is represented by the red line in 3.1 and 3.2. It is in terms of
quaternions and angular velocity and it changes over the time. Though the desired
attitude is time-varying, the graphs show that the PD controller is able to track it.
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Figure 3.2: Angular velocity ω controlled by PD-SDA steering law
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Figure 3.3: Gimbal angles θ controlled by PD-SDA steering law
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3.4 Simulation results with parameter variation

In this section, an analysis of the simulation results with parameter variation is
considered. Each parameter is chosen to vary keeping all the others at the nominal
value. The variations of the parameters are considered in the following order:

- Variation of the inertia matrix JB

- Variation of the CMG skew angle β

- Variation of the PD-SDA gains kd, kp

- Variation of the SDA parameter λ

3.4.1 Variation of the inertia matrix JB

The analysis focuses on the variation of the inertia matrix JB, considering three
di�erent matrices which represent three system dynamics. The results achieved for
the three JB matrices will then be compared to the nominal results.
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(b) Angular velocity ω

Figure 3.4: Simulation results in terms of q and ω considering the nominal values of
JB, β, kd, kp and λ

Considering JBn the nominal JB matrix written in the previous section, the three
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di�erent matrices considered are:

JB1 =

 0.5684 −0.0124 −0.0042
−0.0124 0.5768 −0.0140
−0.0042 −0.0140 1.5000



JB2 =

 0.8684 −0.0062 −0.0160
−0.0062 0.1768 −0.0004
−0.0160 −0.0004 1.8000



JB3 =

 1.0000 −0.0050 −0.0100
−0.0050 1.0000 −0.0150
−0.0100 −0.0150 1.0000


The results, in term of quaternions and angular velocity, are shown below.

As we can see in 3.4, 3.5 and 3.6, the tracking performance of the three di�erent
dynamics are as worse as the value of JB gets away from the nominal one. The
desired attitude is still tracked but a variation of other dynamic parameters is needed
to keep the controller e�ective and with a small error.
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(b) Angular velocity ω with JB1

Figure 3.5: Simulation results in terms of q and ω considering JB1 matrix
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(b) Angular velocity ω with JB2
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(c) Quaternion dynamics with JB3
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(d) Angular velocity ω with JB3

Figure 3.6: Simulation results in terms of q and ω considering JB2 and JB3 matrices

3.4.2 Variation of the CMG skew angle β

The second analysis focuses on the variation of the Control Moment Gyro skew
angle β, which is a variation also related to the dynamics of the system, as for the
matrix JB.

Considering βn = 45° the nominal value of β written in the previous section, the
three di�erent skew angles considered are:

β1 = 40°

β2 = 44°

β3 = 50°

The results are shown in the next page.
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(a) Quaternion dynamics with β1
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(b) Angular velocity ω with β1
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(c) Quaternion dynamics with β2
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(d) Angular velocity ω with β2

0 5 10 15 20 25

time [s]

0

1

2

3

q
1

10-6

q
1

q
1d

0 5 10 15 20 25

time [s]

-0.2

-0.1

0

q
2

q
2

q
2d

0 5 10 15 20 25

time [s]

-0.4

-0.2

0

q
3

q
3

q
3d

0 5 10 15 20 25

time [s]

0.9

0.95

1

q
4

q
4

q
4d

(e) Quaternion dynamics with β3
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(f) Angular velocity ω with β3

Figure 3.7: Simulation results in terms of q and ω considering three di�erent values
of the skew angle β
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From Fig. 3.4 and 3.7 it is possible to notice that the results achieved with
β2 = 44° are similar to the nominal ones. Moreover, the results related to both β1

and β3 leads to a slightly di�erent trend of the tracking performance. Nevertheless,
it is still possible to ensure a good accuracy to the attitude of the system.

3.4.3 Variation of the PD-SDA gains kd, kp

The third analysis focuses on the variation of the PD-SDA gains kd and kp, used
in the PD formulation as multiplicative factors of the errors between the desired
attitude and the current one, as in 3.13.

Considering kdn and kpn the nominal values of kd and kp, respectively, previously
set as

kdn = 12.5

kpn = 5

the three di�erent couples of gains chosen for the analysis are:

kd1 = 1.5

kp1 = 1.5

kd2 = 10

kp2 = 3

kd3 = 25

kp3 = 15

The results are shown in the next page.

Fig. 3.4 and 3.8 show the importance of choosing the appropriate PD gains in
order to achieve a good accuracy of the tracking performance for the PD controller.
The �rst and third couples of gains, totally di�erent from the nominal one, leads to
a wider �uctuation of the solution, while the second couple of gains, which is similar
to the nominal one, has a more accurate trend. Nevertheless, in all the three cases
the desired attitude is tracked.
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(a) Quaternion dynamics with kd1 , kp1
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(b) Angular velocity ω with kd1 , kp1
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(c) Quaternion dynamics with kd2 , kp2
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(d) Angular velocity ω with kd2 , kp2
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(e) Quaternion dynamics with kd3 , kp3
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(f) Angular velocity ω with kd3 , kp3

Figure 3.8: Simulation results in terms of q and ω considering three di�erent couples
of SDA gains
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3.4.4 Variation of the SDA parameter λ

The fourth and last analysis focuses on the variation of the SDA parameter λ,
which is used to properly calibrate the steering law in order to avoid the CMG sin-
gularity.

Considering λn = 0.01 the nominal value of λ written in the previous section,
the three di�erent SDA parameters considered are:

λ1 = 0.0001

λ2 = 10

λ3 = 100

The results are shown below.
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(b) Angular velocity ω with λ1

Figure 3.9: Simulation results in terms of q and ω considering λ1

As we can see from Fig. 3.4, 3.9 and 3.10, the variation of λ leads to a di�erent
trend of the �rst component of both q and ω vectors. Moreover, the more SDA
steering law parameter λ increases its value, the more the tracking performance has
a degradation of accuracy. This is clearly shown in 3.10 (d), where also the second
component of the angular velocity ω has a shift compared to the desired value so
that the results are not completely e�ective.
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(a) Quaternion dynamics with λ2
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(b) Angular velocity ω with λ2

0 5 10 15 20 25

time [s]

-10

-5

0

q
1

10-4

q
1

q
1d

0 5 10 15 20 25

time [s]

-0.2

-0.1

0

q
2

q
2

q
2d

0 5 10 15 20 25

time [s]

-0.4

-0.2

0

q
3

q
3

q
3d

0 5 10 15 20 25

time [s]

0.9

0.95

1

q
4

q
4

q
4d

(c) Quaternion dynamics with λ3
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(d) Angular velocity ω with lambda3

Figure 3.10: Simulation results in terms of q and ω considering λ2 and λ3
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3.5 Testbed description and experimental results

The last section of the PD analysis is about the experimental results. The exper-
iments are made on a testbed located at the Yamada Laboratory, Graduate School
of Engineering, Osaka University, Osaka, Japan.

3.5.1 Experimental setup description

As shown in 3.11, the experimental setup simulates a spacecraft using an air
�oating table. The equipment consists in a compressor, a table and a support col-
umn. The table �oats slightly due to the compressed air and it can rotate freely
around three axes with almost no friction. However, the gravity torque arises when
the center of rotation and the center of gravity of the experimental setup are mis-
aligned. Thus, in order to minimize this gravity torque, the position of the three
counter weights, which are attached to the experimental platform by ball screws, is
manually adjusted and the period of the 3D pendulum is empirically maximized, so
that the center of gravity and the center of rotation coincide as much as possible.

Figure 3.12 shows four CMGs in pyramid con�guration arranged on the device
table. In addition, a 9-axes (9 DOF) sensor, two batteries, a PC and a microcom-
puter are installed, in order to acquire the correct attitude. The PC controls the
entire system, reads sensor information, sends instructions to the microcomputer
and makes calculations according to the steering law. The microcomputer rotates
at a constant speed while reading the CMG wheels information. Thus, angular speed
information is sent to the main PC as needed. Moreover, the device is controlled
and set up with wireless HDMI, wireless keyboard and mouse, and the experimental
device is completely stand-alone.

Therefore, 3.13 shows a close up of one CMG which has a DC motor for the
wheel rotation and a wheel angular speed control. It consists in a photo sensor for
the system control and a servo motor for the gimbal rotation. In addition, 3.14
shows a simple diagram of the experimental operations.

In tables 3.1, 3.2 and 3.3, it is possible to �nd information on the CMG per-
formance, 9 DOF sensor performance and computer performance, respectively. For
speci�c product names of experimental tools, refer to D.
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Figure 3.11: Experimental setup

Figure 3.12: Tools arranged on the device table
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Figure 3.13: Control Moment Gyro details

Figure 3.14: Operation diagram
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Table 3.1: CMG performance

Wheels

Nominal angular speed [rpm] 10000
Angular speed error [rpm] ±107

Maximum angular speed [rpm] 14500
Moment of inertia [kgm2] 3.44× 10−5

Angular momentum [Nm] 0.0361

Gimbals

Maximum torque [Nm] 4.1
Maximum angular velocity [rad/s] 4.76

Angular error [deg] 0.088
Operating angle range [deg] ±320

Table 3.2: 9 DOF sensor performance

Acceleration sensor

Resolution [bit] 14
Noise density [µg/

√
Hz] 650

Sensitivity [g/digit] 0.003-0.012

Gyro sensor

Resolution [bit] 16
Noise density [deg/s/

√
Hz] 0.009

Sensitivity [deg/s/digit] 0.00833

Magnetic sensor

Resolution [bit] 12
Sensitivity [mGa/digit] 0.73
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Table 3.3: Computer performance

PC

CPU - Core i5-4250U
Clock frequency [GHz] 1.3

Memory [GB] 4

Microcomputer

CPU - RX CPU(RX62N)
Clock frequency [MHz] 100

Memory [KB] 512

Figure 3.15: Experimental testbed in the Yamada Laboratory, Osaka University
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3.5.2 Procedure for using the experimental setup

The experimental setup must be used correctly according to the following pro-
cedure.

Before the experiment

Press the two power buttons in 3.16 on the center of the table, one for the PC and
one for the gimbal motor batteries.
Turn on the PC using wireless HDMI and wireless keyboard. As shown in Figure
3.17, turn on all the power supplies for the gimbal motors, the wheel motors and
the wheel control microcomputer.
Check that the wheel motor power brush is not touching so that the wheel motor
can rotate properly.
Turn on the compressor and wait until there is no vibration noise. When the vi-
bration noise stops, remove the column lid and place the table on the column with
great care.

Figure 3.16: First step to switch on the table tools
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Figure 3.17: Power supplies switch buttons

From the beginning to the end of the experiment

In order to communicate with the wheel control microcomputer, start Tera Term
program as shown in 3.18.
In order to communicate with the gimbal motors, launch the B3M Series Manager
in 3.19, set the top of the screen to COM6 and the adjacent �eld to 150, 000. If you
press Read All and the motor information appears, the communication is complete.
After con�rmation, close B3M Series Manager.
In order to conduct the experiment, the Matlab code used in the simulation is
converted in C++ language. Start Visual C++ and select the �le. By pressing F5 on
your keyboard the experiment starts.
The �rst part of the experiment consists in moving the gimbals to an arbitrary initial
angle, then rotating the wheels until they reach the nominal angular speed and
starting the experiment. After that, the 9 DOF sensor is automatically calibrated
and the steering law is activated.
To end the experiment, press any key while the setup is working in order to stop
the gimbal drive and wheels rotation.
To prepare the setup for the next experiment, press the reset button of the wheel
control microcomputer in 3.17 for about 1 s. When the wheels end up rotating,
close Visual C++ program, lower the table from the column and put on the column
lid. Lastly, loosen the compressor plug and let the air out.
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Figure 3.18: Tera Term

Figure 3.19: B3M Series Manager
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3.5.3 Experimental results

The parameters set on the simulations are now chosen to conduct the experiments
with the testbed. In particular

β = 45°

ωN = 104 rpm

where β is the skew angle and ωN is the nominal angular velocity. From ωN and the
wheel moment of inertia JW = 3.44 · 10−5 kgm2, the wheel angular momentum hW
can be de�ned as

hW = JWωN = 0.0361 Nm (3.14)

In all the experiments, a constraint of θ̇max = 4 rad/s is imposed on the angular
velocity so that there will not be any failure of the gimbal motor. Moreover, the
SDA Steering Law parameter is set as λ = 0.01.

The inertia matrix of the experimental setup is the one used in the simulations,
that is

J =

 0.9684 −0.0062 −0.0087
−0.0062 0.9768 −0.0074
−0.0087 −0.0074 1.300

 kgm2

Thus, the PD gains are set as

kd = 12.5

kp = 5

The data obtained from the 9 DOF sensor are subject to a low-pass �lter with a
frequency of 3 Hz. The time set for the experiment is 25 s as shown in the reference
trajectory and the time step is 1 ms.

As for the simulation, the initial conditions for the desired trajectory are as
follows

qd0 = [0, 0, 0, 1]T

ωd0 = [0, 0, 0]T [rad/s]

ω̇d0 = [0,−0.3,−0.5]T [rad/s2]

while the initial conditions for the current attitude, gimbal angles and gimbal rate
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are

q0 = [0, 0, 0, 1]T

ω0 = [0, 0, 0]T [rad/s]

θ0 = [0, 0, 0, 0]T [rad]

θ̇0 = [0, 0, 0, 0]T [rad/s]

The results are shown in the pictures below.
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Figure 3.20: Experimental setup: PD-SDA controlled quaternion dynamics

Figures 3.20, 3.21 and 3.22 show the desired attitude, represented by the red
and the black dotted lines, in terms of quaternions and angular velocity as in the
simulation results, and the present attitude, represented by the blue line. Though
the desired attitude is time-varying, the graphs show that the PD controller is
able to track it. The e�ectiveness of this controller is con�rmed by the simulation
and experimental results achieved up to 15 s. Thus, even if SDA steering law is
considered, torque errors can be observed due to the vicinity of the singularity, while
after 15 s of experimental test gimbal lock occurs and a performance degradation is
highlighted in both 3.21 and 3.22.
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Figure 3.21: Experimental setup: PD-SDA controlled angular velocity ω
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Figure 3.22: Experimental setup: PD-SDA controlled gimbal angles θ
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Chapter 4

Model Predictive Control

4.1 Classic, Robust and Stochastic MPC features

As previously introduced in the �rst chapter, optimal control theory has been
developed starting from the calculus of variations, choosing the system parameters
that will be used as control inputs in order to optimize a cost index that measures
the system performance. Considering linear systems, the optimal control solution
has a linear state feedback and a quadratic cost function, and the feedback gains can
be computed by solving the steady-state Riccati equation. Moreover, this method
can be applied to both continuous time systems, described by sets of di�erential
equations, and to discrete time systems, formulated in terms of di�erence equation
models. On the other side, considering nonlinear systems or systems under con-
straints on input variables or model states, the bene�ts of optimal control are more
di�cult to achieve, as it is not possible to derive an analytic expression for optimal
control solution. For this reason, the solution is in general computed numerically
and we have to consider approximate solutions, as the analysis is still di�cult for
almost all cases.

Model Predictive Control (MPC) is one of the most used control strategy due to
its capability to guarantee both optimality and computational speed. It is possible
to de�ne three main MPC strategies: Classic, Robust and Stochastic. The �rst and
simplest MPC strategy uses the measurements of the current state of the system
and a hypothetical future input trajectory to predict future behavior. Therefore,
the Degree Of Freedom of the future inputs are used to optimize the cost function.
Since feedback control policy is sometimes used instead of a hypothetical future in-
put trajectory, in order to introduce feedback to the optimization strategy, which
consists in implementing only the �rst control input of the optimal control sequence,
the whole process is repeated at each time step using updated available information
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on the current system state. This repetition is needed to reduce the gap between
the predicted and the current system state. Since it is possible to have an imperfect
knowledge or unknown variations in the model parameters due to the disturbances
a�ecting the system or uncertainties on both state and control input, MPC can also
provide a certain degree of robustness to the control process. In order to ensure
nominal stability and convergence properties at the end of a �nite prediction hori-
zon, additional conditions were �rst added as terminal constraints on the predicted
model states, even though there were many computational di�culties in the case of
nonlinear systems. It was subsequently introduced a stabilizing feedback control law
as terminal control law that could be used to de�ne the predicted control inputs at
each future step. This law is often used as optimal control law for the actual system
dynamics without any constraints or for the unconstrained and linearized dynamics
about the desired steady state. Furthermore, terminal constraints are also imposed
to guarantee the feasibility of the receding horizon strategy and the satisfaction of
the constraints imposed. This kind of constraints generally require that the system
state should belong to a subset of state space at the end of the initial �nite predic-
tion horizon and, once entered the state of the constrained system, never leaves the
subset. All the features explained are the basis of Classic Model Predictive Control
(CMPC).

Considering the state model of a system be

x+ = Ax+Bu+Dw (4.1)

where x and x+ indicate respectively the current state and the next time step state,
u denotes the control input vector and w is an unknown vector of external dis-
turbances. It is important to highlight that uncertainty is an important feature
of control applications, due to the presence of additive disturbances in the system
model but it can also be multiplicative in nature, as a result of an imprecise knowl-
edge of the model parameters. Despite the presence of uncertainties, it is essential
in both cases (additive or multiplicative) that the properties of closed loop stability
and performance are preserved. For these reasons, open loop strategies are compu-
tationally convenient but they may be conservative since they ignore information
about future uncertainty that will be available to the controller. In the state model
considered, whether the numerical values of the matrices A, B and D are not known,
it is the case of multiplicative uncertainty.

In this condition, Model Predictive Control �rst used a linear state feedback law
with a parameterization of predicted control inputs, in which the feedback gain is
computed online at each time step as an optimization variable. This method in-
cludes quadratic constraints as Linear Matrix Inequalities in order to ensure that
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the predicted state in contained in ellipsoids in which each constraint is satis�ed.
Additional optimization variables were then introduced in the form of a perturbation
sequence applied to the predicted linear feedback law, even though they considerably
increase the online computation which may be overly demanding for systems with
many uncertain parameters or high order systems. De�ning the predicted state and
input trajectories to be optimized through an o�ine optimization, and maximizing
the volume of an ellipsoidal region of attraction, can produce a signi�cant reduction
in online computation. However, in this case the uncertainty is bounded by a known
set of values, whether the model parameters may lie in particular intervals or in the
case they are constant in time. Thus, these uncertainties may be described by a
number of linear inequalities and the problem would probably be subject to con-
straints that have a linear representation such as Fx+Bu ≤ 1 which expresses the
constraints apply to the state, to the control input or both. Whether it is required
the controller should have an appropriate robustness to the uncertainties with none
but known bounds, MPC theory shifts to Robust Model Predictive Control (RMPC).
The main purposes of RMPC are to guarantee stability, constraints satisfaction and
convergence of the state vector to a given steady state, together with robustness.
Moreover, it is possible, in theory, to compute the optimal solution o�ine at the
regions of the state space de�ned by di�erent active constraints. However, the num-
ber of these regions generally grows exponentially with the size of the system so
that this approach may not be practicable for other than low order systems and
short prediction horizons. In order to avoid this problem, it is used an approach
based on an online interpolation between the current state and a state at which the
optimal control law is known. The strategy is so that the active constraint set is
updated during the interpolation and a constrained optimization problem is solved
at each set change. This programming approach leads to a computational reduction
in online steps, though o�ine steps still require the computation of controllability
sets. Thus, it may be preferable to perform the optimization over a restricted class
of control policies, in order to have a good approximation of the optimal solution at
a fraction of the computational cost.

Furthermore, MPC may incur in signi�cant performance degradation in the
presence of disturbances or uncertainties and, in order to cope this disadvantage,
a stochastic model has been frequently formulated to represent these uncertain-
ties which let the interest in Stochastic Model Predictive Control increase. Thus,
whether the model uncertainties have only a known probabilistic distribution or
the constraints are probabilistic in nature, the theory evolves to Stochastic MPC
(SMPC). Many examples can be found in process control, �nancial engineering,
electricity generation and distribution, climate control and telecommunications net-
work tra�c control ([25],[26],[27],[28],[29],[30],[31],[32]). This situation cannot be
described by a hard constraint such as Fx+Gu ≤ 1, but it can more appropriately

65



4 � Model Predictive Control

be modelled by probabilistic constraints in the form Pr{Fx+Gu ≤ 1} ≤ p where p
represents a given probability. Hence, SMPC ensures that such constraints, together
with any additional hard constraint that may be present, are met in closed-loop op-
eration and simultaneously stabilize the system by causing the state to converge to
a given steady-state set.

The determination of probability distributions for predicted variables is required
for constraint satisfaction, though the calculation is relatively easy only for additive
uncertainty, given the linear dependence of predictions on disturbances. Multiplica-
tive uncertainties, on the other hand, represent a more challenging occurrence as
the predicted future model states are random variables and they are multiplied by
stochastic model parameters in order to generate the successor states. Though a
probabilistic description of the disturbance or uncertainty can optimize the perfor-
mance or the appropriate risk measures, allowing a small probability of constraint
violation by introducing chance constraints is more appropriate in some applica-
tions. Moreover, hard constraints due to the physical limitations can be considered
in the same setup.

One of the problems in Stochastic Model Predictive Control is the method to
propagate the uncertainty for evaluating the cost function and the chance con-
straints, which require suitable techniques to approximate or bound the desired
quantities. Though this approach allows uncertainties in the system, the compu-
tational cost of the online optimization increases and recursive feasibility may not
be guaranteed. Thus, considering linear systems with additive stochastic distur-
bance, the system is usually decomposed into a deterministic part and an uncertain
part. Subsequently, the method consists in computing a con�dence region for the
uncertain part (using the results for constraint tightening) and then analyzing the
given evolution of the uncertainties, directly tightening the constraints. Even if the
distribution of model uncertainty is a useful information that should be taken into
account in the design of MPC algorithms, in SMPC a certain probability of future
constraint violation is generally allowed though the probability distribution of the
state prediction at some future time depends on both the current state and the time
to go, which leads to a signi�cantly less conservative constraint tightening. Whether
some or all of the system constraints are probabilistic in nature, their violations are
permitted providing the frequency or generically the number of violations in a given
time interval, which should be below a prede�ned limit. Thus, the violation proba-
bility changes from time k to time k + 1 even under the same control law and the
optimization problem may become infeasible. Even if the probability distribution of
the model uncertainty is available, it may be necessary to enforce the conditions that
require constraints to be satis�ed with certainty. However, this strategy is conser-
vative where constraint violation is allowed and this leads to a weaker performance
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and smaller regions of attraction.

Another problem for SMPC is the di�culty of guarantee the recursive feasibility.
Since it is essential for stability, in Classic Model Predictive Control described above
the recursive feasibility is usually guaranteed through showing that the planned
input trajectory remains feasible in each optimization step. Thus, in Stochastic MPC
strict recursive feasibility can only be guaranteed for the case that the uncertainty
in predicted states and inputs has a �nitely supported distribution. As a matter of
fact, even if a feasible predicted trajectory exists in the current state, the presence
of uncertainty with unbounded support may result in a successor state for which it
is impossible to guarantee the existence of a feasible trajectory. However, though
this di�culty has characterized earlier SMPC formulations, which used to consider
uncertainty with Gaussian distribution due to its mathematical convenience, this
assumption is now often not consistent with practice.

4.2 The algorithm used for a variation of Classic

MPC

Considering the model dynamics already described in Chapter 2, a linear state
space formulation is used and it can be described by the following simple equation

x(k + 1) = Ax(k) +Bu(k)

The system is subject to constraints, both on the state vector and on the control
input, and they are written in the form

umin ≤ u ≤ umax

The desired attitude is described is terms of q and ω, while neither parametric
uncertainties nor additive disturbances are considered in this formulation. For a
clear explanation of the mathematical notations used below please refer to Nota-

tions paragraph.

The system is described by the following equations

xp(k + i+ 1|k) = Apxp(k + i|k) +Bpu(k + i|k) (4.2)

y(k + i|k) = Cpxp(k + i|k) (4.3)

where xp ∈ Rnp is the state vector, u ∈ Rm is the control input and y ∈ Rny is the
controlled output. Notice that, from this chapter, the dimension of each variable
will be explained instead of indicating vectors with bold letters. The matrices Ap,
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Bp and Cp are created starting from Jx and Ju in 2.56 after a discretization process.
The form xp(k + i|k) shows the state vector at time k + i calculated at time k.

The constraints imposed to the control input are:

|u(k + i|k)| ≤ ū,∀i ≥ 0 (4.4)

where ū ∈ Rm. It is possible to rewrite this constraint in the form

Ψuu(k + i|k) ≤ θu,∀i ≥ 0 (4.5)

where θu ∈ R2m and Ψu ∈ R2m×m. Furthermore, both θu and Ψu are constant
matrices. Considering the case m = 4, which represents the dimension of the control
input in our simulation, the two matrices are given as:

θu =
[
ū(1) ū(1) ū(2) ū(2) ū(3) ū(3) ū(4) ū(4)

]T
(4.6)

(4.7)

Ψu =


1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


T

(4.8)

The constraints imposed on the state vector are given in a similar formulation
and can be expressed as follows:

Ψxpxp(k + i+ 1|k) ≤ θx,∀i ≥ 0 (4.9)

where Ψxp ∈ RnΨx×np . Ψxp is a constant matrix as well as θx, in which all the ele-
ments are positive.

For a given reference signal r(k|k) ∈ Rny , we have to design the control law

u(k + 1|k) = K(xp(k + i|k), r(k|k)) (4.10)

that minimizes the deviation between r(k|k) and y(k|k) at each time step and
achieves

lim
x→∞

y(k|k) = r̄ (4.11)

if r(k|k) = r̄, ∀k ≥ Tf , where r̄ is a constant vector and Tf is a positive constant.

In order to eliminate the steady state error, the following integrator is introduced
to the feedback system

xc(k + i+ 1|k) = xc(k + i|k) + e(k + i|k) (4.12)

e(k + i|k) = w(k|k)− y(k + i|k) (4.13)
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where xc ∈ Rnc and w(k|k) ∈ Rny is a virtual reference signal.

Starting from the system in 4.2 and 4.3, and then in 4.12 and 4.13, where both
xp and xc change at each time step, it is possible to introduce the following matrices

A :=

[
Ap 0
−Cp I

]
, B :=

[
Bp

0

]
, E :=

[
0
I

]
C :=

[
−Cp 0

]
, DW :=

[
I
]

(4.14)

in order to rewrite the system in the form

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k) + Ew(k|k) (4.15)

e(k + i|k) = Cx(k + i|k) +Dww(k|k) (4.16)

where x := [xTp ;xTc ]T .

In order to de�ne the cost function, there exist matrices Π ∈ R(np+nc)×ny and
Γ ∈ Rm×ny that satisfy

Π = AΠ +BΓ + E 0 = CΠ +Dw

This condition ensures that the setpoint tracking control problem is solvable in case
of linear systems.

After introducing the vector x as above, it is then possible to rewrite the state
constraints expressed in 4.9 in the form

Ψxx(k + i+ 1|k) ≤ θx,∀i ≥ 0 (4.17)

where Ψx := [Ψxp , 0].

The steady state value of the reference signal satis�es ΨuΓr̄ ≤ θu and ΨxΠr̄ ≤ θx.
Thus, the control signal u and the state vector x satisfy the constraints in 4.5 and
4.17 in the steady state.

Thus, introducing ξ and v expressed as

ξ(k + i|k) := x(k + i|k)− Πw(k|k) (4.18)

v(k + i|k) := u(k + i|k)− Γw(k|k) (4.19)

the error system can now be derived as

ξ(k + i+ 1|k) = Aξ(k + i|k) +Bv(k + i|k) (4.20)

e(k + i|k) = Cξ(k + i|k) (4.21)
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The following cost function is adopted

J(k) :=
Hs−1∑
i=0

{‖ξ(k + i+ 1|k)‖2
Q + ‖v(k + i|k)‖2

R}+

+‖ξ(k +Hs|k)‖2
P + ‖Π(w(k|k)− r(k|k))‖2

M (4.22)

where Q, R and P are positive de�nite matrices and Hs is the �nite horizon.

The last step of this process is to minimize the cost function assuming u(k +
i + 1|k) = u(0|k) at each sampling time. The implementation process will be fully
analyzed in the next paragraph.

4.3 Implementation process

The implementation of the variation of the Classic Model Predictive Control al-
gorithm has been made entirely on Matlab, without using Simulink block diagrams,
which have been very helpful during the dynamic test. The reason of this choice is
the same as for PD algorithm test, the necessity of converting the Matlab code in
C++ in order to do the experiments on the testbed.

The �rst step is de�ning the constant parameters and then introducing the de-
sired attitude that needs to be tracked with the application of this controller. The
attitude used for MPC is the same as for PD controller and dynamic test and it can
be seen in 2.8 and 2.10. The initial conditions imposed also for this desired time
varying signal are

qd0 = [0, 0, 0, 1]T

ωd0 = [0, 0, 0]T [rad/s]

ω̇d0 = [0,−0.3,−0.5]T [rad/s2]

θd0 = [0, 0, 0, 0]T [rad]

θ̇d0 = [0, 0, 0, 0]T [rad/s]

Thus, using Jx and Ju matrices as expressed in 2.56, a discretization is applied
in order to create Ap, Bp and Cp matrices as follows

Ap = dt · Jx + Inxp×nxp

Bp = dt · Ju
Cp = Inxp×nxp
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4.3 � Implementation process

where dt = 0.001s. Jx and Ju matrices are calculated in continuous time though a
discrete time calculation is needed for this analysis. Hence, as clearly explained in
the previous paragraph, A, B, C, Dw and E matrices are created as

A :=

[
Ap 0
−Cp I

]
, B :=

[
Bp

0

]
, E :=

[
0
I

]
C :=

[
−Cp 0

]
, DW :=

[
I
]

(4.23)

Furthermore, A(θ) matrix in 2.45 is considered time-varying as the parameter
θ ∈ Rm which �gures in the matrix values is updated at each time step. For this
reason, Ju matrix de�ned as

Ju =

 04×4

−hWJ−1A(θ)

 (4.24)

is considered parameter dependent and consequently Bp and B follow the same in-
dication.

It is then possible to introduce Π and Γ matrices starting from the matrices in
4.23. Since Π and Γ are required for the assumption that ensures the solvability of
the setpoint tracking control problems in case of linear systems, their values needs
to be related to the ones of the dynamic matrices stated above. For this reason,
considering the dimension n = np + nc, we �rst de�ne

AA :=

[
In×n − A −B

C 0np×m

]
, BB :=

[
E
Dw

]
where AA ∈ R(n+np)×(n+m) and BB ∈ R(n+np)×np . These matrices, with the help of
the Matlab command linsolve, are used to create X ∈ R(n+m)×np matrix, solution of
the QR factorization. Indeed, linsolve command solves the linear system AX = B
using Lower-Upper (LU) factorization with partial pivoting when A is a square
matrix, or QR factorization with column pivoting otherwise. With this step, Π and
Γ are already calculated, as

Π := X(1 : n, :) (4.25)

Γ := X(n+ 1 : n+m, :) (4.26)

and they can satisfy the conditions

Π = AΠ +BΓ + E

0 = CΠ +Dw
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4 � Model Predictive Control

The input constraint in 4.5 during 0 ≤ i ≤ Hs − 1 can be rewritten in the
following form

Ψ̃u(ṽ + Γ̃w(k|k)) ≤ θ̃u,∀i = 1, . . . ,mHs (4.27)

where Ψ̃u :=block-diag[Ψu, . . . ,Ψu], θ̃u := [θTu , . . . , θ
T
u ]T and Γ̃ := [ΓT , . . . ,ΓT ]T .

From 4.20 it is possible to obtain the vector of future predictions of the error state,
up to a horizon Hs = 10 as ξ̃ = Aξ(k|k) + AB ṽ, where ξ̃ := [ξ(k + 1|k)T , . . . , ξ(k +
Hs|k)T ]T and

A :=

 A
...

AHs

 , AB :=

 B · · · 0
...

. . .
...

AHs−1B · · · B

 (4.28)

Moreover, the state constraints in 4.17 during 0 ≤ i ≤ Hs − 1 can be rewritten
in the following form

Ψ̃x(Aξ(k|k) + AB ṽ + Π̃w(k|k)) ≤ θ̃x (4.29)

where Ψ̃x :=block-diag[Ψx, . . . ,Ψx], θ̃x := [θTx , . . . , θ
T
x ]T and Π̃ := [ΠT , . . . ,ΠT ]T .

In order to calculate P matrix which is needed to minimize the cost function, a
Linear Matrix Inequality (LMI) system is solved. The LMI features are shown in E.
Considering the dimensions nq = m = 4 and nω = 3, two arbitrary positive de�nite
matrices, Q and R, are de�ned as follows

Q =

10 · Inq×nq 0nq×nω 0nq×np
0nω×nq 10−1 · Inω×nω 0nω×np
0np×nq 0np×nω 10 · Inp×np

 (4.30)

R =
[
10 · Im×m

]
(4.31)

where Q ∈ Rn×n and R ∈ Rm×m.

Thus, we introduce a bounded convex set Wb, which is a subset of {w ∈ Rny :
ΨxΠw ≤ θx, |Γw| ≤ ū−ρ}, where ρ > 0. The parameter ρ, from its de�nition, needs
to satisfy 0 < ρ ≤ ū. Moreover, since ρ restricts the maximum value of the control
signal of the error system, in order to achieve higher tracking performance, a larger
value should be chosen. Therefore, ρ also restricts the maximum amplitude of the
virtual reference signal as w̄ ∈ Wb. For this reason, a smaller value needs to be
chosen in order to track a larger reference signal. This discussion leads to the fact
that the parameter ρ is determined by considering the trade o� between the maxi-
mum amplitude of the virtual reference signal and the tracking control performance.
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Considering the error system in 4.20 and 4.21, we assume that w(k|k) = w̄,
∀k ≥ 0, where w̄ is an arbitrary constant vector such that w̄ ∈ Wb with ρ > 0. The
values chosen for w̄ are:

w̄ = [0, 0, 0, 1, 0, 0, 0]T (4.32)

Thus, considering given positive de�nite matrices Q and R as above, and positive
scalars η̄2 and τ , there exist a matrix Y and a positive de�nite matrix S that satisfy

S ∗ ∗ ∗
AS +BY S ∗ ∗

Y 0 R−1 ∗
AS +BY 0 0 Q−1

 > 0 (4.33)

[
1
η̄2
S ∗

Y (l) ρ(l)2

]
≥ 0,∀l = 1, . . . ,m (4.34) τS ∗ ∗

0 θ
(j)2
x − τ η̄2 ∗

Ψ
(j)
x (AS +BY ) Ψ

(j)
x Πvi 1

 ≥ 0,∀i = 1, . . . , ns,∀j = 1, . . . , nx (4.35)

where ∗ stands for symmetric block in matrix inequalities.

From this LMI system we assume that ξ(k +Hs|k) ∈ E(P, 0, η̄2), where

P = S−1 (4.36)

and P ∈ Rn×n. Then, by applying the control law v(k + i|k) = Fξ(k + i|k) to
the error system in 4.20 and 4.21, where F = Y S−1, the set E(P, 0, η̄2) becomes
positively invariant and it is possible to hold the following relations

J2(k) :=
∞∑

i=Hs

{‖ξ(k + i+ 1|k)‖2
Q + ‖v(k + i|k)‖2

R} < ‖ξ(k +Hs|k)‖2
P

|u(k + i|k)| ≤ ū, ∀i ≥ Hs

Ψxx(k + i+ 1|k) ≤ θx, ∀i ≥ Hs

‖ξ(k +Hs|k)‖2
P ≤ η̄2

The proof of this theorem can be found in F.

Based on the discussion above, we design a feedback gain F = Y S−1 which
makes the state variables achieve fast convergence and expands the size of the set
E(P, 0, η̄2) by suitably choosing the parameters Q, R, η̄2 and τ . This formulation is
an LMI optimization problem. Also, as we can see from 4.35, the positive scalars τ
and η̄2 need to be chosen so that the inequalities

θ(j)2
x − τ η̄2 ≥ 0, ∀j = 1, . . . , nx
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4 � Model Predictive Control

are satis�ed. In this implementation process, considering the maximum allowable
value of the rotational speed ωmax = 5 [rad/s], we de�ne

η̄2 = 105 (4.37)

τ = ωmax/η̄2 = 5 · 10−5 (4.38)

Hence, P matrix is used as a �nal constraint for the new Q̃ and R̃ matrices
involved in the second LMI system used to minimize the cost function. Q̃ and R̃ are
de�ned as

Q̃ =


Q · · · 0 0
...

. . .
...

...
0 · · · Q 0
0 · · · 0 P

 (4.39)

R̃ =

R · · · 0
...

. . .
...

0 · · · R

 (4.40)

where Q̃ ∈ RnQ̃×nQ̃ and R̃ ∈ RnR̃×nR̃ , with nQ̃ = n ·Hs and nR̃ = m ·Hs.

By using the representation of A and Ab in 4.28 and applying the Schur comple-
ment in [33], it can be shown that the inequality

J1(k) :=
Hs−1∑
i=0

{‖ξ(k + i+ 1|k)‖2
Q + ‖v(k + i|k)‖2

R} < η̃1

can be rewritten as  η̃1 ∗ ∗
ṽ R̃−1 ∗

Aξ(k|k) + AB ṽ 0 Q̃−1

 > 0

where η̃1 is a positive scalar. Moreover, by applying the Schur complement to the
inequality

‖ξ(k +Hs|k)‖2
P ≤ η̄2

it is possible to write [
η̄2 ∗

ξ(k +Hs|k) S

]
≥ 0

Since ξ(k +Hs|k) can be represented as ξ(k +Hs|k) = AHsξ(k|k) + AH ṽ, where

AH :=

A
Hs−1B
...
B

 (4.41)

74



4.3 � Implementation process

we obtain an LMI with respect to the variable ṽ. Thus, in order to solve

min
ṽ,w̃,η̃1,η̃2,η̃3,x̃c

η̃1 + η̃2 + η̃3 (4.42)

the LMI system is described by the following inequalities η̃1 ∗ ∗
ṽ R̃−1 ∗

Aξ̃(x̃c, w̃) + AB ṽ 0 Q̃−1

 > 0 (4.43)

[
η̃2 ∗

AHs ξ̃(x̃c, w̃) + AH ṽ S

]
≥ 0 (4.44)[

η̃3 ∗
Π(w̃ − r(k|k)) M−1

]
≥ 0 (4.45)

Ψ̃u(ṽ + Γ̃w̃) ≤ θ̃u (4.46)

Ψ̃x(Aξ̃(x̃c, w̃) + AB ṽ + Π̃w̃) ≤ θ̃x (4.47)

|Γw̃| ≤ θu − ρ (4.48)

where the matrix M = P + k · In×n, the vector ξ̃(x̃c, w̃) := [xp(k|k)T , x̃Tc ]T − Πw̃
and ρ := [ρ1, · · · , ρm]T . Moreover, the condition 4.45 derives from the inequality
‖Π(w̃ − r(k|k))‖2

M ≤ η̃3 and the conditions 4.46, 4.47 derive from 4.27 and 4.29,
respectively.

Once calculated v̄, it is possible to apply the condition

ṽ(k + i+ 1|k) = ṽ(0|k) (4.49)

so that only the �rst value of the current ṽ is chosen for the next time step. Thus,
from the relation 4.19 we can simply derive ũ as follows

ũ(k + i|k) = ṽ(k + i|k) + Γw̃(k|k) (4.50)

where ū is exactly the control input which consists in the angular velocity of the
gimbal angles θ̇. Furthermore, a comparison between θ̇ and θ̇max is needed in order
to correctly choose the updated value which will be used in the following step. In
particular, if θ̇ ≥ θ̇max, θ̇max is chosen; if θ̇ ≤ −θ̇max, −θ̇max is chosen.

Finally, with the updated value of θ̇ it is possible to calculate the A(θ) matrix
used in the dynamic equation of ω̇ in 2.46 and consequently solve the quaternion
equation of q̇ in 2.47 in order to achieve the desired attitude.
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4 � Model Predictive Control

4.4 Implementation and simulation results

The MPC controller has been fully implemented on Matlab using the dynamics
already ful�lled in the dynamic simulation test, as for the PD controller with SDA
steering law.

The dynamic constant parameters used in the simulation are

β = 45°

hW = 0.0361

θ̇max = 4 [rad/s]

ωmax = 1.3 [rad/s]

J =

 0.9684 −0.0062 −0.0087
−0.0062 0.9768 −0.0074
−0.0087 −0.0074 1.3000


The MPC parameters used for the minimization of the cost function are

Hs = 10

η2 = 104

τ =
ωmax
η2

Q =

10 · I4×4 04×3 04×7

03×4 10−1 · I3×3 03×7

07×4 07×3 10 · I7×7


R =

[
10 · I4×4

]
The initial conditions for the desired attitude are as follows

qd0 = [0, 0, 0, 1]T

ωd0 = [0, 0, 0]T [rad/s]

ω̇d0 = [0,−0.3,−0.5]T [rad/s2]

while the initial conditions for the current attitude, gimbal angles and gimbal rate
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4.4 � Implementation and simulation results

are

q0 = [0, 0, 0, 1]T

ω0 = [0, 0, 0]T [rad/s]

θ0 = [0, 0, 0, 0]T [rad]

θ̇0 = [0, 0, 0, 0]T [rad/s]

xc0 = [0, 0, 0, 0, 0, 0, 0]T

Lastly, the simulation is made considering

t0 = 0 [s]

tf = 20 [s]

dt = 10−2 [s]

The results are shown in the following page.

As in the previous simulations, 4.1 and 4.2 show the desired attitude, represented
by the red line, and the current attitude, represented by the blue line. The MPC
controller is able to track the time-varying desired attitude, even with some �uctu-
ations around the nominal value due to the vicinity of the singularity. Nevertheless,
the �uctuations have a small width so that a good tracking performance is achieved.
Thus, the e�ectiveness of both controllers, PD-SDA and MPC, is con�rmed by sim-
ulations.
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Figure 4.1: Quaternion attitude controlled by MPC
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Figure 4.2: Angular velocity ω controlled by MPC
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4.5 Simulation results with parameter variation

In this section, an analysis of the simulation results with parameter variation is
considered. As for the SDA analysis, each parameter is chosen to vary keeping all
the others at the nominal value. The variations of the parameters are considered in
the following order:

- Variation of the inertia matrix JB

- Variation of the CMG skew angle β

- Variation of xc0 vector

- Variation of Q, R matrices

4.5.1 Variation of the inertia matrix JB

The analysis focuses on the variation of the inertia matrix JB, considering three
di�erent matrices which represent three di�erent system dynamics. The results
achieved for the three di�erent JB matrices will then be compared to the nominal
results.
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(a) Quaternion dynamics
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Figure 4.3: Simulation results in terms of q and ω considering the nominal values of
JB, β, xc0 , Q and R
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Considering JBn the nominal JB matrix written in the previous section, the three
di�erent matrices considered are:

JB1 =

 0.5684 −0.0124 −0.0042
−0.0124 0.5768 −0.0140
−0.0042 −0.0140 1.5000



JB2 =

 0.8684 −0.0062 −0.0160
−0.0062 0.1768 −0.0004
−0.0160 −0.0004 1.8000



JB3 =

 1.0000 −0.0050 −0.0100
−0.0050 1.0000 −0.0150
−0.0100 −0.0150 1.0000


The results, in terms of quaternions and angular velocity, are shown in the pictures
below.
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(a) Quaternion dynamics with JB1
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(b) Angular velocity ω with JB1

Figure 4.4: Simulation results in terms of q and ω considering JB1 matricx
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(a) Quaternion dynamics with JB2

0 2 4 6 8 10 12 14 16 18 20

time [s]

-0.01

0

0.01

1
 [

d
e

g
/s

]

1

1d

0 2 4 6 8 10 12 14 16 18 20

time [s]

-3

-2

-1

0

2
 [

d
e

g
/s

]

2

2d

0 2 4 6 8 10 12 14 16 18 20

time [s]

-4

-2

0

3
 [

d
e

g
/s

]

3

3d

(b) Angular velocity ω with JB2
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(c) Quaternion dynamics with JB3
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(d) Angular velocity ω with JB3

Figure 4.5: Simulation results in terms of q and ω considering JB2 and JB3 matrices

As we can see in 4.3, 4.4 and 4.5, the tracking performance of the three di�erent
dynamics are as worse as the value of JB gets away from the nominal one. The
desired attitude is still tracked but the �uctuations have a more important width so
that the error makes the controller ine�ective without changing MPC parameters
other than the inertia matrix JB.

4.5.2 Variation of the CMG skew angle β

The second analysis focuses on the variation of the Control Moment Gyro skew
angle β, which is a variation also related to the dynamics of the system.
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Considering βn = 45° the nominal value of β written in the previous section, the
three di�erent angles considered are:

β1 = 40°

β2 = 44°

β3 = 50°

The results are shown in the pictures below.
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(a) Quaternion dynamics with β1
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(b) Angular velocity ω with β1
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(c) Quaternion dynamics with β2
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(d) Angular velocity ω with β2

Figure 4.6: Simulation results in terms of q and ω considering β1 and β2
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(a) Quaternion dynamics with β3
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(b) Angular velocity ω with β3

Figure 4.7: Simulation results in terms of q and ω considering β3

From Fig. 4.6 and 4.7 it is possible to notice that the results achieved with
β2 = 44° are similar to the nominal ones. Moreover, both β1 and β3 have 5° less
and more than the nominal value, respectively, and this leads to a slightly di�erent
trend of the tracking performance. Nevertheless, it is still possible to ensure a good
accuracy to the attitude of the system.

4.5.3 Variation of xc0 vector

The third analysis focuses on the variation of the vector xc0 related to the error
dynamics of the system.

Considering xc0,n the nominal value of xc0 set as

xc0,n = [0, 0, 0, 0, 0, 0, 0]T

where x0 = [xp0 ;xc0 ]T , the three di�erent values assigned to the initial condition of
the error dynamic vector are:

xc0,1 = 0.1 · [1, 1, 1, 1, 1, 1, 1]T

xc0,2 = 0.001 · [1, 1, 1, 1, 1, 1, 1]T

xc0,3 = 0.0001 · [1, 1, 1, 1, 1, 1, 1]T

The results are shown in the next page.
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(b) Angular velocity ω with xc0,1
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(c) Quaternion dynamics with xc0,2
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(d) Angular velocity ω with xc0,2
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(e) Quaternion dynamics with xc0,3
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(f) Angular velocity ω with xc0,3

Figure 4.8: Simulation results in terms of q and ω considering three di�erent xc0
vectors
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4.5 � Simulation results with parameter variation

Fig. 4.8 show how the tracking performance improves as the values related to
the error dynamics get smaller. This is an intuitive result and perfectly on point
with the analysis made so far.

4.5.4 Variation of Q, R matrices

The fourth and last analysis focuses on the variation of Q matrix and R matrix,
needed to minimize the MPC cost function and optimize the control problem.

Considering Qn and Rn the nominal values of Q and R, respectively, previously
set as

Qn =

10 · I4×4 04×3 04×7

03×4 10−1 · I3×3 03×7

07×4 07×3 10 · I7×7


Rn =

[
10 · I4×4

]
the three di�erent couples of matrices chosen for the analysis are:

Q1 =

10 · I4×4 04×3 04×7

03×4 0.5 · I3×3 03×7

07×4 07×3 10 · I7×7


R1 =

[
10 · I4×4

]

Q2 =

10 · I4×4 04×3 04×7

03×4 30 · I3×3 03×7

07×4 07×3 10 · I7×7


R2 =

[
10 · I4×4

]

Q3 =

104 · I4×4 04×3 04×7

03×4 104 · I3×3 03×7

07×4 07×3 10 · I7×7


R3 =

[
10−3 · I4×4

]
The results are shown in the next page.
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(a) Quaternion dynamics with Q1, R1
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(b) Angular velocity ω with Q1, R1
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(c) Quaternion dynamics with Q2, R2
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(d) Angular velocity ω with Q2, R2
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(e) Quaternion dynamics with Q3, R3
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(f) Angular velocity ω with Q3, R3

Figure 4.9: Simulation results in terms of q and ω considering three di�erent Q and
R matrices
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4.5 � Simulation results with parameter variation

Q and R, from the implementation process description, are two arbitrary positive
de�nite matrices needed to calculate P matrix used to minimize the cost function
through solving a Linear Matrix Inequality. In Fig.4.9, it is possible to notice a
degradation of tracking performance as we move away from the nominal values. In
particular, the terms of Q matrix that have been changed in the �rst two steps are
the ones related to the angular velocity ω, while all the terms are di�erent from the
nominal ones in the last try and this leads to the said degradation.
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Chapter 5

Conclusions

This work proposes an analysis of two controllers applied on a system with a
cluster of four Control Moment Gyros in a pyramidal con�guration. The �rst step
of the analysis consists in a study of the dynamics of a rigid body in order to develop
the equations of spacecraft attitude dynamics. A rigid body in a general state of
motion has an angular velocity vector whose direction is that of the instantaneous
axis of rotation. Describing the rotational component of a rigid body motion in its
three components is necessary to analyze the interaction between the motion and
the forces acting on the rigid body. Thus, analyzing the rotational dynamics re-
quires computeing the body's angular momentum and how the mass is distributed
throughout the body: this mass distribution is described by the six components of
the moment of inertia tensor.

In order to mantain the attitude, an actuator which can generate a large torque,
in this case a cluster of CMGs, is required. Whenever using a momentum device
for attitude control, it can be useful to write the attitude equations of motion in
terms of angular momentum, which states that the time derivative of the angular
momentum is equal to the external control torque applied to the body. If using a
cluster og CMGs, the momentum exchange between the wheel and the bus leads to
a gyroscopic torque in perpendicular direction to both the spin and the gimbal axis.
At least three gimbals are necessary for full three-axis control, but a minimum of
four CMGs is usually employed for increasing system redundancy. For these reasons,
it is useful to write the equation of motion in terms of angular velocity instead of
the external control torque, in order to apply the two controllers considering the
gimbal angles as control inputs. The case of a cluster of four CMG mounted with
the gimbal axis perpendicular to the faces of a pyramid, the sides of which are in-
clined of a certain skew angle, is the most utilized. Moreover, in order to de�ne the
spacecraft reorientation in terms of quaternions, the quaternion kinematic equation
is introduced.
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5 � Conclusions

Nevertheless, a CMG system leads to the presence of a singularity in a com-
bination of gimbal angles which cannot generate torque in that certain direction.
While, maneuvering, the gimbal angles should be able to avoid the singular states in
order to generate any commanded torque. The method used in this analysis is the
Singularity Robust (SR) method and the variation implemented is the Singular Di-
rection Avoidance (SDA) steering law, which provides the ability to avoid or escape
any singularity with a particular �nite gimbal rate. Since the controller and the
gimbal steering law, which generate a commanded torque and the control torque to
escape from or avoid the singularity, respectively, are not designed simultaneously,
an error derives from the application of this method and the performance is slightly
degradated during the escape from singularity.

Several simulation tests are made to study the trend of the tracking performance
of SDA steering law. The results are all described in terms of quaternions and an-
gular velocity and though the desired attitude is time-varying, the SDA controller is
able to track it, even changing some dynamic parameters or PD control gains. The
results are con�rmed with both simulation and experimental tests.

The second controller analyzed is a variation of Classic Model Predictive Control
(CMPC). One the reasons of MPC success is due to the ability to provide optimal
solution for constrained problems. Moreover, closed-loop stability and feasibility of
MPC are required at each time step and this is guaranteed by ensuring that the pre-
dicted trajectory satis�es the constraints. Thus, one way to achieve computational
e�ciency is to reduce the Degree Of Freedom over which the optimization of MPC
is performed. On the other hand, improvements are possible using longer horizons
but leads to an increment of computational cost.

In this work, a simple algorithm for a variation of CMPC for constrained linear
system is proposed. In this method, the integrator state is reset at each sampling
time so that the cost function is minimized. Moreover, the optimization process is re-
duced to an optimization problem with LMI constraints. From the results achieved,
it is possible to notice that both closed-loop stability and feasibility are guaranteed
and that this method has a certain level of robustness against disturbances, while the
introduction of the integrator state reset is an improvement of the tracking control
performance.
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Appendix A

Euler angles and reference frames
transformation matrices

In order to specify the orientation of a rigid body relative to an inertial frame,
three angles are required. The Euler angles (ψ, θ, φ) give the orientation of a rigid,
orthogonal xyz frame relative to the XY Z inertial frame. The orthogonal triad of
unit vectors parallel to the inertial axis XY Z are Î, Ĵ and K̂ respectively, while
the orthogonal triad of unit vectors oriented to the axis of the xyz frame are î, ĵ
and k̂ respectively.

Figure A.1: Euler angles

In Fig. A.1, ÎĴK̂ triad and îĵk̂ are shown, along with the three successive
rotations required to bring unit vectors initially aligned with ÎĴK̂ into alignment
with îĵk̂. For simplicity we consider the two frames sharing a common origin.

The xy plane intersects the XY plane along the node line, de�ned by the unit
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A � Euler angles and reference frames transformation matrices

vector î. The �rst rotation ¬ is around K̂ axis, through the Euler angle φ. It
rotates the ÎĴ directions to the î′ĵ′ directions. This rotation can be expressed as

î′ = cosφÎ + sinφĴ (A.1)

ĵ′ = − sinφÎ + cosφĴ (A.2)

k̂′ = K̂ (A.3)
î′

ĵ′

k̂′

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


Î

Ĵ

K̂

 (A.4)

Thus, the orthogonal transformation matrix associated with this rotation is

[R3(φ)] =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (A.5)

The second Euler rotation is around the node line î′, through the angle θ. It rotates
the Z axis into alignment with the z axis, and ĵ′ simultaneously rotates into ĵ′′. We
can deduce that

î′′ = î′ (A.6)

ĵ′′ = − cos θĵ′ + sin θK̂ (A.7)

k̂ = − sin θĵ′ + cos θK̂ (A.8)
î′′

ĵ′′

k̂

 =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


î′

ĵ′

K̂

 (A.9)

The orthogonal transformation matrix is

[R1(θ)] =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (A.10)

The third Euler rotation is in the xy plane and rotates the unit vectors î′ and ĵ′′

through the angle ψ around the z axis. The rotation can be expressed as

î = cosψî′ + sinψĵ′′ (A.11)

ĵ = − sinψî′ + cosψĵ′′ (A.12)

k̂ = k̂ (A.13)
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î

ĵ

k̂

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


î′

ĵ′′

k̂

 (A.14)

Thus, the orthogonal transformation matrix associated with this rotation is

[R3(ψ)] =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (A.15)

Finally, the transformation matrix [Q]Xx from the inertial XYZ frame into the mov-
ing xyz frame is just the product of the three rotation matrices given by Equations
A.5, A.10 and A.15

[QXx] = [R3(ψ)][R1(θ)][R3(φ)] (A.16)

Substituting the three matrices on the right we can obtain

[QXx] =

 cosφ cosψ − sinφ sinψ cos θ sinφ cosψ + cosφ cos θ sinψ sin θ sinψ
− cosφ sinψ − sinφ cos θ cosψ sin θ cosψ

sinφ sin θ − cosφ sin θ cos θ


(A.17)
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Appendix B

Simulink implementation of the
spacecraft dynamics

Figure B.1: Nonlinear dynamics implemented on Simulink

99



B � Simulink implementation of the spacecraft dynamics

Figure B.2: Particular of ω and θ dynamics implemented on Simulink

Figure B.3: Particular of q dynamics implemented on Simulink
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Appendix C

CMG Steering Equation

The equation of motion for a rigid spacecraft with a cluster of N CMGs can be
written as

J̇ω + Jω̇ + AgIcgθ̈ + AtIws[Ω]dθ̇ + [ω×](Jω + AgIcgθ̇ + AsIwsΩ) = ge (C.1)

where ω = (p, q, r)T ∈ R3 is the spacecraft angular velocity vector. As for Chapter
3, from this Appendix on the dimensions of vectors and matrices will be clearly
explicated without using bold notation. The inertia matrix J of the whole spacecraft
is de�ned as

J = BI + AsIcsA
T
s + AtIctA

T
t + AgIcgA

T
g (C.2)

where BI is the combined matrix of inertia of the spacecraft platform and the point-
masses of the CMGs, while all the vectors and matrices in C.1 are expressed in a
body-�xed frame located at the center of rotation of the spacecraft platform. The
matrices Ic∗ and Iw∗ are diagonal, with elements the values of the inertias of the
gimbal plus wheel structure and wheel-only-structure of the CMGs, respectively.
Moreover, the vector Ω = (Ω1, . . . ,ΩN)T ∈ RN represents the wheel speeds of the
CMGs with respect to the gimbals while the vector θ = (θ1, . . . , θN)T ∈ RN rep-
resents the gimbal angles. On each CMG, a frame located at the center of the
gimbal/wheel combination having unit vector êcj, êsj, êtj, with j = 1, . . . , N , along
the gimbal axis, the wheel spin axis and the torque producing axis respectively is
attached, so that êtj = êgj × êsj. The matrices A∗ ∈ R3×N are used to collect these
unit vectors such that A∗ = [e∗1, . . . , e∗N ], with ∗ = g, s or t.

Considering any vector x = (x1, x2, x3)T ∈ R3, the notation [x×] denotes the
skew-symmetric matrix

[x×] =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (C.3)
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C � CMG Steering Equation

whereas, for a vector x ∈ RN , the notation [x]d ∈ RN×N denotes the diagonal matrix
having as elements the components of the vector x, that is

[xd] = diag(x1, . . . , xN) (C.4)

As a reminder, we have to note that both matrices As and At are functions of the
gimbal angles, so that As = As(θ) and At = At(θ). Thus, the inertia matrix J = J(θ)
is also a function of the gimbal angles θ, whereas the matrix BI is constant. It is
possible to observe that the time variation of the inertia matrix due to the changes
of the gimbal angles is re�ected in the �rst term of C.1 and it is generally a small
term.

The di�erential equation that governs the attitude kinematics in terms of the
quaternion vector q = [q1, q2, q3, q4]T is the one in 2.47, that is

q̇ =
1

2
η(q)ω (C.5)

Therefore, the term in the right side of C.1 represents the gravity torque owing
to the misalignment between the mass center and the center of rotation of the
spacecraft simulator platform. Generally, there exists a gravity torque that tends to
deteriorate the performance and it has to be compensated by the controller in order
to achieve an accurate attitude. This gravity torque acting on the spacecraft can be
written as

~ge = mg~r × ~n0 = −~n0 ×mg~r (C.6)

where ~n0 is the inertial unit vector along the local vertical and ~r is the position vector
from the center of rotation of the platform to the center of mass. Whether the grav-
ity torque is expressed in the body reference frame it takes the form ge = −mg[n×0 ]r.

Rearranging equation C.1 by moving all the terms involving the gimbal rates
and accelerations onto the right side, it is possible to obtain

Jω̇ + [ω×]BIω +mg[n×0 ]r =

− J̇ω − AgIcgθ̈ − AtIws[Ω]dθ̇ − [ω×]
(
GI(θ)ω + AgIcgθ̇ + AsIwsΩ

)
(C.7)

where the inertia term has been split into the constant term BI and a time-varying
term GI(θ) that is

GI(θ) = As(θ)IcsA
T
s (θ) + At(θ)IctA

T
t (θ) + AgIcgA

T
g (C.8)

It is now possible to introduce, for any three dimensional vector v = [v1, v2, v3]T ,
the notation

BIv = ΓT1 (v)ϑ1 (C.9)
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where

ΓT1 (v) =

v1 v2 v3 0 0 0
0 v1 0 v2 v3 0
0 0 v1 0 v2 v3

 , ϑ1 =
[
Ix Ixy Ixz Iy Iyz Iz

]T
Furthermore, by multiplicating

[v×]BIv = ΓT2 (v)ϑ1 (C.10)

we can de�ne

ΓT2 (v) =

 0 −v1v3 v1v2 −v2v3 v2
2 − v2

3 v2v3

v1v3 v2v3 v2
2 − v2

1 0 −v1v2 −v1v3

−v1v2 v2
1 − v2

3 −v2v3 v1v2 v1v3 0


Lastly, we have

mg[v×]r = ΓT3 (v)ϑ2 (C.11)

where ΓT3 (v) = [v×] and ϑ2 = mg[rx, ry, rz]
T .

Therefore, in order to denote all the terms involving the gimbals, we introduce
the term u de�ned as

u = −J̇ω − AgIcgθ̈ − AtIws[Ω]dθ̇ − [ω×]
(
GI(θ)ω + AgIcgθ̇ + AsIwsΩ

)
(C.12)

that can be used to simplify the equation of motion in C.1, using the equations C.9,
C.10, C.11, as

ω̇ = −J−1
(
ΓT2 (ω)ϑ1 + ΓT3 (n̂0)ϑ2 − u

)
(C.13)

If we consider the following dynamic state feedback control law

u = −k1q̄ − k2ω − ΓT (q, ω)ϑ̂− 1

2

(
GI(θ)η(q)ω + J̇ q̄ + J̇ω

)
(C.14)

where q = [q1, q2, q3, q4]T and q̄ = [q1, q2, q3]T , with the update law

˙̂
θ = KΓ(q, ω)(q̄ + ω) (C.15)

where

Γ(q, ω) =

[
Γ1( ˙̄q)− Γ2(ω)
−Γ3(n̂0)

]
(C.16)

and where ϑ̂ = [ϑ̂1, ϑ̂2] is the estimate of the unknown vector ϑ, K is a positive
de�nite matrix and k1, k2 are positive numbers, the closed loop system of equa-
tions C.5, C.12, C.14, is globally asymptotically stable about the equilibrium point
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C � CMG Steering Equation

[η0, q̄, ω] = 0, where η0 = 1 − q0 and η̇0 = −q̇0. The proof of this theorem can be
found in [34].

Thus, it is possible to obtain the steering equation for a cluster of N CMGs by
equating C.12 and C.14, and then arranging the terms with respect to both the
gimbal rate θ̇ and the gimbal acceleration θ̈ as

k1q̄ + k2ω + ΓT (q, ω)ϑ̂+
1

2

(
GI(θ)η(q)ω + J̇ q̄ + J̇ω

)
=

J̇ω + AgIcgθ̈ + AtIws[Ω]dθ̇ + [ω×]
(
GI(θ)ω + AgIcgθ̇ + AsIwsΩ

)
(C.17)

Furthermore, after de�ning the matrices

B = AgIcg (C.18)

Dθ̇ = AtIws[Ω]dθ̇ + [ω×]AgIcgθ̇ +
1

2
J̇ω − 1

2
J̇ q̄ (C.19)

Lr = k1q̄ + k2ω + ΓT (q, ω)ϑ̂+ [ω×]
(
GI(θ)ω + AsIwsΩ

)
+ (C.20)

− 1

2
GI(θ)η(q)ω

where the time derivative of the total inertia matrix is

J̇ = Gİ = At[θ̇]
d(Ics − Ict)ATs + As[θ̇]

d(Ics − Ict)ATt (C.21)

the CMG steering equation becomes

Bθ̈ +Dθ̇ = Lr (C.22)

Since D matrix can be written as

D = AtIws[Ω]d + [ω×]AgIcg+[
(es1e

T
t1 + et1e

T
s1)(ω − q̄) . . . (esNeTtN + etNe

T
sN)(ω − q̄)

]
(Ics − Ict) (C.23)

the norm of the matrix B = AgIcg is very small compared to the norm of matrix
D in C.22. For these reason, it is possible to neglect the term Bθ̈ and rewrite the
equation C.22 as

Dθ̇ = Lr (C.24)

Thus, the objective of these CMG steering laws is to solve for θ̇, given any value of
Lr.
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Appendix D

Experimental tools

Table D.1: CMG components

Tool Company Product

Servo motor (Gimbal) Kondou Kagaku B3M-SB-1040-A
DC motor (Wheel) electro kit 41003370

Photo sensor Akizuki Denshi Tsuushou TPR-105F
Wheel motor case Gyroscope.com CMG Platform

Table D.2: Wheel speed control board components

Tool Company Product

Operational ampli�er RS LM224N
Level shifter Akizuki Denshi Tsuushou 8-bit conversion module

Schmitt trigger RS SN74LS14N
Binary counter RS TC74HC4060AP
Motor driver RS TB6612FNG (IC)
Motor driver RS RE931-04 (SMD conversion)

3-port regulator RS TC74HC4060AP
miniUSB Akizuki Denshi Tsuushou USB connector

Microcomputer Renesas AP-RX62N-0A
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Table D.3: Table tools

Tool Company Product

PC Impactics D3NU2-IR-25-B
9 DOF sensor YEI technology 3-space sensor
Battery 1 Sanwa Direct 700-BTL011
Battery 2 Anker Astro E3

Wireless HDMI Logitec LDE-WHDI202TR
Wireless Keyboard/Mouse Microsoft Wireless Desktop 2000
USB-RS232c converter Alpha Project PC-USB-04
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Appendix E

Problems involving LMIs

Considering the analysis in [33], given the symmetric matrices Fi = F T
i ∈ Rn×n,

with i = 0, . . . ,m, a Linear Matrix Inequality (LMI) has the form

F (x) , F0 +
m∑
i=1

xiFi > 0 (E.1)

where x ∈ Rm. The inequality symbol in E.1 means that Fx is positive de�nite, i.e.
uTF (x)u > 0 for all nonzero u ∈ Rn. This LMI is equivalent to a set of n polynomial
inequalities in x.
Moreover, it is possible to �nd nonstrict LMIs, with the form

F (x) ≥ 0 (E.2)

Strict LMIs in E.1 and nonstrict LMIs in E.2 are closely related, though only strict
LMIs are considered in the following analysis.

The LMI in E.1 is a convex constraint on x and the set {x|F (x) > 0} is con-
vex indeed. Furthermore, it can represent a wide variety of convex constraints on
x. In particular, linear inequalities, convex quadratic inequalities, matrix norm in-
equalities and constraints that arise in control theory, such as Lyapunov and convex
quadratic matrix inequalities, can all be cast in the form of an LMI.
Multiple LMIs such as F (1)(x) > 0, . . . , F (p)(x) > 0 can be expressed as the single
LMI diag(F (1)(x), . . . , F (p)(x)) > 0. Thus, no distinction will be made between a
set of LMIs and a single LMI.

Whether the matrices Fi are diagonal, the LMI F (x) > 0 is just a set of linear
inequalities. Nonlinear convex inequalities are represented as an LMI using Schur
complements. In particular, the LMI[

Q(x) S(x)
S(x)T R(x)

]
> 0 (E.3)
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where Q(x) = Q(x)T , R(x) = R(x)T and S(x) depend a�nely on x, is equivalent to

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0 (E.4)

As we can see, the set of nonlinear inequalities can be represented as an LMI.

In the following example, the matrix norm constraint ‖Z(x)‖ < 1, where Z(x) ∈
Rp×q and depends a�nely on x, is represented as an LMI[

I Z(x)
Z(x)T I

]
> 0 (E.5)

since ‖Z‖ < 1 is equivalent to I − ZZT > 0. The case q = 1 reduces to a general
convex quadratic inequality on x.

The constraint c(x)TP (x)−1c(x) < 1, P (x) > 0, where c(x) ∈ Rn and P (x) =
P (x)T ∈ Rn×n depend a�nely on x, is expressed as an LMI[

P (x) c(x)
c(x)T 1

]
> 0 (E.6)

Generally, the constraint TrS(x)TP (x)−1S(x) < 1, with P (x) > 0, where it is
P (x) = P (x)T ∈ Rn×n and S(x) ∈ Rn×p which depend a�nely on x, is handled by
introducing a new matrix variable X = XT ∈ Rp×p, and the LMI is

TrX < 1,

[
X S(x)T

S(x) P (x)

]
> 0 (E.7)

It is often possible to deal with problems in which the variables are matrices as
follows

ATP + PA < 0 (E.8)

where A ∈ Rn×n is given and P = P T is the variable. We can put the Lyapunov
inequality in E.8 in the form of E.1 considering P1, . . . , Pm as a basis for symmetric
n × n matrices (m = n(n + 1)/2) and then taking F0 = 0 and Fi = −ATPi − PiA.
Furthermore, leaving LMIs in a condensed form as E.8, in addition to saving nota-
tion, may lead to more e�cient computation.

Consider the quadratic matrix inequality

ATP + PA+ PBR−1BTP +Q < 0 (E.9)

where A, B, Q = QT , R = RT > 0 are given matrices of appropriate sizes and
P = P T is the variable. It can be expressed as the Linear Matrix Inequality[

−ATP − PA−Q PB
BTP R

]
> 0 (E.10)
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This representation shows that the quadratic matrix inequality in E.10 is convex in
P .

In some problems it is possible to �nd linear equality constraints on the variables
such as

P > 0, ATP + PA < 0, TrP = 1 (E.11)

where P ∈ Rk×k is the variable. In order to write E.11 in the form F (x) > 0 we can
eliminate the equality constraint considering P1, . . . , Pm as a basis for symmetric
k × k matrices with trace zero (m = (k(k + 1)/2) − 1) and P0 as a symmetric
k × k matrix with TrP0 = 1. Thus, lastly, F0 = diag(P0,−ATP0 − P0A) and also
Fi = diag(Pi,−ATPi − PiA), for i = 1, . . . ,m, should be used in the analysis.

E.1 Standard LMI and EVP problems

Given an LMI F (x) > 0, the corresponding LMI problem is to �nd xf , with
f = feasible such that F (xf ) > 0 or determine that the LMI is infeasible. This
is a convex feasibility problem and corresponds to �nd a nonzero G ≥ 0 such that
TrGFi = 0, for i = 1, . . . ,m and TrGF0 ≤ 0.

As an example, consider the given Ai ∈ Rn×n, with i = 1, . . . , L. We need to
�nd P that satis�es the LMI

P > 0, ATi P + PAi < 0, i = 1, . . . , L (E.12)

or determine that no P exists. Whether no such P exists, the problem corresponds
to �nding Q0, . . . , QL, not all zero, such that

Q0 ≥ 0, . . . , QL ≥ 0, Q0 =
L∑
i=1

(QiA
T
i + AiQi) (E.13)

which is a nonstrict LMI.

Furthermore, the Eigenvalue Problem (EVP) is to minimize the maximum eigen-
value of a matrix that depends a�nely on a variable, subject to an LMI constraint,
as follows

minimize λ

subject to λI − A(x) > 0, B(x) > 0
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where A and B are symmetric matrices that depend on the optimization of the
variable x, conducting the analysis on a convex optimization problem.
This kind of problems can be written in the equivalent forms of minimizing a linear
function subject to an LMI as

minimize cTx minimize λ

subject to F (x) > 0 subject to A(x, λ) > 0

where F is an a�ne function of x and A is a�ne in (x, λ). Whether the case of the
matrices Fi being all diagonal, the problem reduces to the general linear problem of
minimizing the linear function cTx subject to a set of linear inequalities on x.

In addition of the theory explained, an example is shown below. Consider the
problem

minimize γ

subject to
[
−ATP − PA− CTC PB

BTP γI

]
> 0, P > 0

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rm×n are given, and P and γ are the opti-
mization variables. This EVP can also be expressed using an associated quadratic
matrix inequality as follows

minimize γ

subject to ATP + PA+ CTC + γ−1PBBTP < 0, P > 0
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Appendix F

Theorem demonstration for LMI
systems

The equation 4.33 implies that the inequality

‖ξ(l + i+ 1|k)‖2
P − ‖ξ(k + i|k)‖2

P ≤ −‖ξ(k + i+ 1|k)‖2
Q − ‖v(k + i|k)‖2

R (F.1)

holds. Therefore, from this inequality and from ξ(k + Hs|k) ∈ E(P, 0, η̄2), the rela-
tions ξ(k+ i|k) ∈ E(P, 0, η̄2), ∀i ≥ Hs hold. As a result, since V(ξ(k+ i|k)) = ξ(k+
i|k)TPξ(k + i|k) is a positive de�nite function, the conclusion is that V(ξ(k + i|k))
and consequently ξ(k + i|k) converge to zero as i tends to in�nity.

Thus, by summing the inequalities

‖ξ(k + i+ 1|k)‖2
P − ‖ξ(k + i|k)‖2

P ≤ −‖ξ(k + i+ 1|k)‖2
Q − ‖v(k + i|k)‖2

R (F.2)

∀i ≥ Hs, and using ‖ξ(∞|k)‖P ≥ 0, it is possible to obtain

J2(k) < ‖ξ(k +Hs|k)‖2
P (F.3)

Furthermore, from ξ(k + i|k) ∈ E(P, 0, η̄2), ∀i ≥ Hs, the following relation holds

‖ξ(k +Hs|k)‖2
P ≤ η̄2 (F.4)

By performing a congruence transformation to 4.34 by block-diag[S, I]−1, and
applying the Schur complement to the resulting inequality, we obtain(

1

η̄2

)
P −

(
1

ρ(l)2

)
F (l)TF (l) ≥ 0 (F.5)

Hence, from ξ(k + i|k) ∈ E(P, 0, η̄2), ∀i ≥ 0, the relation

|v(l)(k + i|k)| ≤ ρ(l), ∀l = 1, . . . ,m, ∀i ≥ Hs (F.6)
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holds. Moreover, from the analysis of the two relations

ρ(l) + Γ(l)w̄ ≤ ρ(l) + |Γ(l)w̄| ≤ ū(l) (F.7)

−ρ(l) + Γ(l)w̄ ≥ −ρ(l) − |Γ(l)w̄ ≥ −ū(l) (F.8)

the inequality |u(l)(k + i|k)| ≤ u(l), ∀i ≥ Hs, ∀l = 1, . . . ,m holds.

Moreover, as we can see from 4.35, the following relation holds τS ∗ ∗
0 θ

(j)2
x − τ η̄2 ∗

Ψ
(j)
x (AS +BY ) Ψ

(j)
x Πw(k|k) 1

 ≥ 0, ∀j = 1, . . . , nx (F.9)

By performing a congruence transformation to F.9, by block-diag[S, 1, 1]−1, and
applying the Schur complement to the resulting inequality it is possible to obtain[

τS−1 ∗
0 θ

(j)2
x − τ η̄2

]
−

[
ÃTΨ

(j)T
x

w(k|k)TΠTΨ
(j)T
x

] [
Ψ

(j)
x Ã Ψ

(j)
x Πw(k|k)

]
≥ 0 (F.10)

∀j = 1, . . . , nx, where Ã = A+BF . Moreover, by multiplying F.10 from the left by
[ξ(k + i|k)T , 1] and from the right by [ξ(k + i|k)T , 1]T we obtain

(Ψ(j)
x x(k + i+ 1|k))TΨ(j)

x x(k + i+ 1|k)− θ(j)2
x ≤

τ [ξ(k + i|k)TS−1ξ(k + i|k)− η̄2] (F.11)

∀j = 1, . . . , nx. Thus, this equation implies that

Ψxx(k + i+ 1|k) ≤ θx, ∀i ≥ Hs (F.12)

holds.
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