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Chapter 1

Introduction

1.1 Introduction to Formation Flying for small satellites

1.1.1 General introduction

In the last century, as a result of the so-called ”space race”, humankind successfully started
a new era of opportunities and discoveries, giving a great contribution to scientific and social
progress.
Nowadays, space technologies and applications have brought many innovations in a large variety
of fields, from scientific to commercial ones. As of October 2019, approximately 5290 satellites
are orbiting Earth [1], providing services and applications related to communications, navigation
and positioning, meteorology, Earth observation and disaster monitoring, marine exploration,
and other fields [2].
Most of these achievements are based on a single satellite, which is the most classical mission
concept and also the main force in applications of satellites. Nevertheless, the quick development
of space technology at the present days is leading towards two different trends [2]:

• Increasing the weight and size of a single satellite, making its structure and functions
more complex at the same time.

• Employing small satellites with various structures and simple functions, coordinated to
work together in order to replace the complexity of a single large satellite.

Multiple small satellites can be employed instead of a much bigger and more complex conven-
tional satellite for a large amount of different applications, such as communication services and
synthetic aperture radars [3, 4]. The advantage of using multiple small satellites instead of a
single one is that a comparable operativity can be achieved, but with significantly enhanced
flexibility and robustness [4].
Small satellites are universally classified into different categories based on their mass:

• Miscrosatellites in the range 10-500 kg

• Nanosatellites in the range 1-10 kg

• Picosatellites in the range 0.1-1 kg

• Femtosatellites less than 100 g

A class of standardized nanosatellites, called CubeSats [5], range in size from 1U (10x10x10 cm)
to 6U (30x20x10 cm), weigh between 1 and 8 kg, and are usually launched using the standard-
ized CubeSat deployment system called Poly Picosatellite Orbital Deployer (P-POD) [6]. This
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(a) GPS Constellation. Credits: NASA

(b) TanDEM-X Formation. Credits: DLR

Figure 1.1: Comparison between a Constellation and a Formation.

kind of standardization makes the whole design-implementation-launch process esponentially
faster and cheaper for a multitude of CubeSats than for a single complex satellite.
Multisatellite missions can be broadly divided into two categories [4]:

• Formation Flying missions, if at least one satellite tracks a desired state relative to another
satellite, and its control law must depend upon the state of this satellite.

• Constellation missions, i.e. missions that don’t satisfy the Formation Flying definition.

Constellation missions can also be subclassified into controlled constellation missions [4], where
each satellite actively maintains its position (e.g. GPS), and uncontrolled constellation mis-
sions, where satellites have no active control over their position. Satellites in Formation Flying
missions and controlled constellation missions must have active propulsion systems.

1.1.2 Formation Flying methods classification

Figure 1.2: Architecture of Formation Flying coordination.[2]

The architecture of satellite formation coordination can be divided into centralized and de-
centralized systems in general [2], and also the decentralized structure can be subdivided into
hierarchical and distributed ones, as shown in fig. 1.2.
In terms of different structures [7], formation control methods can be classified as:
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• Leader/Follower (L/F) architecture, called also Chief/deputy, uses a hierarchical arrange-
ment of individual spacecraft controllers that reduces formation control to individual
tracking problems to a reference satellite. The Chief spacecraft can be single, multiple or
virtual (fig. 1.3).

• Virtual Structure, the spacecraft behave as embedded in a larger, virtual rigid structure.
In particular, the overall motion of the virtual structure and the constant, specified po-
sitions and orientations of spacecraft within it are used to generate reference trajectories
for the spacecraft to track using individual spacecraft controllers.

• Cyclic method, a formation controller in the Cyclic architecture is formed by connecting
individual spacecraft controllers. However, Cyclic differs from L/F in that the controller
connections are not hierarchical but rather distributed (fig. 1.2).

• Behavorial method, combines the outputs of multiple controllers designed for achieving
different and possibly competing behaviors. For example, an L/F algorithm plus a re-
pulsive potential field centered on each spacecraft is a Behavioral algorithm consisting of
maintain-formation and collision-avoidance behaviors.

Figure 1.3: Leader/Follower architecture.[2]

1.1.3 Formation Flying Control Techniques

The first step in order to design a satellite controller for Formation Flying consists of choosing
a dynamic system describing the relative motion of spacecraft in the formation. The most
popular ones in literature are:

• Hill-Clohessy-Wiltshire Equations, describing the relative motion in the along-track, ra-
dial, out-of-plane space, valid only if the distance between the spacecraft is small [8]. This
approach offers an easy implementation of the drag perturbance but on the other hand
makes difficult the implementation of the Earth’s oblateness effect.

• Gauss’ Variational Equations (GVE), describing the variation of the 6 Keplerian orbital
elements in time. This approach offers an easier implementation of the Earth’s oblateness
effect with respect to HCW equations, at least for the J2 term (using Brouwer formulation
[9]).

• Mean Relative Orbital Elements (ROE), deriving from GVEs and describing the relative
motion in terms of mean relative orbital elements. This approach offers the same advan-
tages as GVEs, but since it uses mean elements which are approximately constant during
the mission time, allows the linearization of the model [10, 11].
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Once the dynamic system describing the relative motion of the formation has been chosen, a
control theory can be applied for the development of the tracking control law. Based on the
chosen formation architecture and on the system, there are several viable options, here are
some examples: H∞ for L/F control [12], LQR control for linearized systems [13] and coupled
with Deep Learning techniques to include nonlinearities [14], Lyapunov stability theory [15, 16],
artificial potential fields (especially for collision avoidance algorithms [16]).

1.2 Thesis workflow overview

Low-thrust guidance and control of satellite Formation Flying relative motion is a field of study
that is gaining more and more attention by researchers from every part of the world due to
the recent development of more and more performing electric propulsion systems [17] and since
future missions will follow the trend of miniaturizing spacecraft [18]. The challenge is to design
a controller that must address limited thrusting and propellant capabilities while maintaining
operational aspects, such as collision safety and time constraints [16].
For the scope of this work, a formation of satellites in LEO will be considered, employing
thrusters capable of providing thrust in the order of µ-Newtons. In the first place the formation
will include two spacecraft (deputy and chief), and it will be then expanded to more spacecraft
once the model will have been validated. The workflow could be summarized as follows:

• Definition of a dynamic model for the relative motion of spacecraft in the formation;

• Definition and implementation of a control strategy in order to achieve an optimal (or
near-optimal) tracking of the state space vector’s desired configuration;

• Implementation of a method to guide the state space vector along a reference trajectory
in order to guarantee collision avoidance (Potential Field Technique);

• Definition of a strategy to assure fuel balance of the whole formation, in order to avoid
that one spacecraft would run out of fuel before the others;

• Validation of the model using an orbital propagation tool such GMAT.

See fig. 1.4 for further details.
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Figure 1.4: Work Flowchart
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Chapter 2

Mean Relative Orbital Elements (ROE)
System for Formation Relative Motion

2.1 Introduction to ROE State Transition Matrix

2.1.1 Introduction

As already said in the previous chapter, the first State Transition Matrix (STM) for spacecraft
relative motion is the well-known Hill-Clohessy-Wiltshire STM for formations in unperturbed,
near-circular orbits. The HCW STM uses a relative state defined from the relative position and
velocity in a rotating frame centered about one of the spacecraft. This STM has been applied
to several different missions in the past including Apollo, the Space Shuttle, and many others.
The most popular models in literature involving HCW equations are the following ones [11]:

• Schweighart’s and Izzo’s [19, 20] models, including first-order secular effects of J2 and
differential drag;

• Yamanaka-Ankersen’s [21] model, which includes no perturbations, but has been formu-
lated for linear propagation of relative position and velocity in eccentric orbits.

It can be seen that there is no state-of-the-art model involving HCW equations suitable for
both eccentric and perturbed orbits.
This is the reason why recent works have derived STMs using states defined as functions of
the Keplerian orbit elements of the spacecraft, hereafter called relative orbital elements (ROE).
These states vary slowly with time and allow astrodynamics tools such as the Gauss variational
equations to be leveraged to include perturbations [11]. The contributions to this kind of model
came from two different sources:

• The first model originates from a STM derived by Gim and Alfriend [22], which includes
first-order secular and osculating J2 effects in arbitrarily eccentric orbits;

• The second model was derived by DAmico and includes the first-order secular effects of
J2 on formations in near-circular orbits [10]. This model has then been expanded to
include the effect of differential drag on the relative semi-major axis, and the effect of
time-varying differential drag on the relative eccentricity vector [23].

For the purpose of this work, the model proposed by Koenig and D’Amico [11] will be exploited,
which includes the following features:

• STMs for three mean ROE state definitions (singular, quasi-singular, non-singular) in
order to guarantee model validity for different types of orbit (near-circular, eccentric);
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• Includes first-order secular effects of J2;

• Includes the effect of differential drag thanks to an accurate Density-Free Model (DFM)
that takes in account an a-priori estimate of the time derivative of the relative semi-
major axis δȧdrag, which can be estimated in flight, and requires the State Vector to be
augmented.

2.1.2 State Vector definition

As it has been said in the previous section, there are three different formulations for the State
Vector. Let a, e, i, Ω, ω, M denote the classical mean Keplerian orbital elements, for a
formation of two spacecraft called Chief, subscript c, and Deputy, subscript d, we have [11]:

• Singular State Vector

δXs =


δa
δλ
δex
δey
δix
δiy

 =



ad−ac
ac

Md −Mc

ed − ec
ωd − ωc
id − ic

Ωd − Ωc

 (2.1)

It is not uniquely defined when either spacecraft is in a circular or equatorial orbit.

• Quasi-Nonsingular State Vector

δXqns =


δa
δλ
δex
δey
δix
δiy

 =



ad−ac
ac

(Md + ωd)− (Mc + ωc) + (Ωd − Ωc) cos ic
ed cosωd − ec cosωc
ed sinωd − ec sinωc

id − ic
(Ωd − Ωc) sin ic

 (2.2)

The quasi-nonsingular state is not unique when the deputy is in an equatorial orbit.

• Nonsingular State Vector

δXns =


δa
δλ
δe?x
δe?y
δi?x
δi?y

 =



ad−ac
ac

(Md + ωd + Ωd)− (Mc + ωc + Ωc)
ed cos (ωd + Ωd)− ec cos (ωc + Ωc)
ed sin (ωd + Ωd)− ec sin (ωc + Ωc)

tan id
2

cos Ωd − tan ic
2

cos Ωc

tan id
2

sin Ωd − tan ic
2

sin Ωc

 (2.3)

The nonsingular state is uniquely defined for all possible chief and deputy orbits.

For the purpose of this work, since almost none spacecraft has an equatorial orbit in LEO, the
quasi-nonsingular state vector represents the most suitable one to the problem.
The quasi-nonsingular state is identical to D’Amicos ROE [10], whose main advantage is that
they provide insight into passive safety and stability for Formation Flying design in a sim-
ple manner using eccentricity/inclination vector separation that will be discussed in the next
section.
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2.1.3 Eccentricity/Inclination vector separation

The eccentricity/inclination vector separation methodology has been initially developed for safe
collocation of geostationary satellites, by Eckstein et al. [24], and then exploited and rearranged
by Montenbruck [25] for Formation Flying proximity operations design and control.
Eccentricity/Inclination vector separation is a powerful methodology because it can be used
to completely describe the relative motion of spacecraft flying in close formations. In the
following mathematical formulation, the orbital parameters a, e, i, Ω, ω, M will be referred to
an ECI (Earth Centered Inertial) coordinate frame, while the relative motion will be studied
in a Radial-Tangential-Normal coordinate frame. The RTN frame (fig. 2.7) is centered on the
Chief spacecraft and has the following orthogonal axes:

• R, aligned to the radial vector joining the Chief with Earth’s Center, pointing towards
space;

• T, tangential to the Chief’s orbit, same direction as the velocity vector;

• N, normal to the orbital plane, completing the orthonormal frame.

The relative motion of spacecraft 2 (Deputy) with respect to spacecraft 1 (Chief) can be ex-
pressed in the Chief-centered RTN frame as:

∆r = r2 − r1 = ∆rReR + ∆rT eT + ∆rNeN (2.4)

In contrast to an elaborate numerical integration of the orbit followed by a subsequent differ-
encing of individual trajectories, the equation of motion for the two-body problem can directly
be differenced [25]. Two assumptions are used to derive an appropriate relative motion model:

• First, the spacecraft are assumed to fly in near-circular orbits (i.e., e� 1);

• Second, they are taken sufficiently close to each other to justify the linearization of the
equations of relative motion.

As a consequence, the in-plane (eR, eT ) and out-of-plane (eN) relative motions are decoupled
and can be expressed separately.
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Relative Inclination vector and out-of-plane motion

Figure 2.1: Spherical triangles for the relative inclination vector definition [25]

As showed in fig. 2.1, simple geometrical considerations suggest adopting the angle enclosed
by the two orbital planes δi and the relative ascending node θ at which spacecraft 2 crosses the
orbital plane of spacecraft 1 in ascending direction to define a relative inclination vector as:

∆i =

(
∆ix
∆iy

)
= sin (δi)

(
cos θ
sin θ

)
(2.5)

Let us now consider the sphere of radius a1 = a2 = a centered on the Earths center of mass.
As it can be recognized from the law of sines and cosines for the spherical triangle with vertices
N1, N2, and N12 (i.e., the absolute and relative ascending nodes), for small differences in the
orbital elements definition (2.5) simplifies to:

∆i '
(

∆i
∆Ω sin i

)
(2.6)

i is the inclination of spacecraft 1, but can be also substituted by i2 in the frame of first-order
theory. The omission of the satellite designating subscript indicates that the orbital elements of
both satellites can be used equivalently. It is possible to apply the law of sines to the spherical
triangle with vertices s/c 1, s/c 2, and N12, to get a first-order approximation of the relative
motion in cross-track direction [25]:

∆rN
a
' sin (u2 − θ) sin (δi) = −∆iy cos (u) + ∆ix sin (u) (2.7)

where u = ω +M is the mean argument of latitude.
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Relative Eccentricity vector and in-plane motion

Figure 2.2: Relative eccentricity vector definition [25]

For near-circular satellite orbits, the Keplerian elements eccentricity and argument of perigee
are commonly replaced by the eccentricity vector:

e =

(
ex
ey

)
= e

(
cos (ω)
sin (ω)

)
(2.8)

The relative motion of two satellites as a result of variations in the eccentricity e and argument
of perigee ω (fig. 2.2) is easily described by introducing the difference:

∆e = e2 − e1 =

(
∆ex
∆ey

)
= δe

(
cos (ϕ)
sin (ϕ)

)
(2.9)

where ϕ is the relative perigee.
This so-called relative eccentricity vector characterizes the periodic relative motion within the
orbital plane [25]. It can be shown that for near-circular orbits the difference between true
anomaly f and mean anomaly M is given by:

f −M = 2e sin (M) = −2ey cos (u) + 2ex sin (u) (2.10)

While the radius r can be expressed as:

r

a
= 1− e cos (M) = −ex cos (u)− ey sin (u) (2.11)

Differencing (2.10) and (2.11) between two satellites in close proximity with identical mean
argument of latitude yields to:

∆rT
a

= (f2 −M2)− (f1 −M1) = −2∆ey cos (u) + 2∆ex sin (u) (2.12)

and also:
∆rR
a

=
r2 − r1

a
= −∆ex cos (u)−∆ey sin (u) (2.13)
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Eccentricity/Inclination vector separation

Let’s suppose that ∆a = 0, rewriting (2.7), (2.12) and (2.13) using the polar representation
[25], we obtain the following:

∆rR
a

= −δe cos (u− ϕ) (2.14)

∆rT
a

= 2δe sin (u− ϕ) (2.15)

∆rN
a

= δi sin (u− θ) (2.16)

The relative orbit of spacecraft 2 with respect to spacecraft 1 is an ellipse of semi-major axis
2aδe in along-track direction and semi-minor axis aδe in radial direction (fig. 2.3).

Figure 2.3: In-plane relative motion of two spacecraft with e/i vector separation [25]

Whenever the argument of latitude u equals ϕ, spacecraft 2 is located right below the center.
As soon as u = ϕ+ π

2
, spacecraft 2 takes over and is just ahead of the Chief satellite.

In analogy with the previous concepts, the relative inclination vector is used to describe the
relative motion perpendicular to the orbital plane. The cross-track relative motion is described
by a harmonic oscillation of amplitude aδi and phase angle u− θ (fig. 2.4).
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Figure 2.4: Out-of-plane relative motion of two spacecraft with parallel e/i vectors (top) and
orthogonal e/i vectors (bottom) [25]

Parallel vectors ∆e and ∆i imply equality of the associated angles ϕ and θ. As in fig.
2.3, u = ϕ + kπ (k = 0, 1, 2, ...) marks the positions at which the two spacecraft exhibit their
maximum radial separation; instead, u = ϕ +

(
k + 1

2

)
π are the points of vanishing radial

separation. Considering out-of-plane motion when ϕ = θ (in case of parallel vectors, fig.
2.4-top), having ∆e//∆i ensures maximum rR when rN = 0 and vice versa, maximum rN
when rR = 0. In contrast to this, the radial and cross-track separation can jointly vanish
(rR = rN = 0) for orthogonal vectors ∆e ⊥ ∆i, which is risky in the presence of along-track
position uncertainties (fig. 2.4-bottom).

2.2 Quasi-Nonsingular State Transition Matrix formula-

tion

2.2.1 Derivation Methodology

In this section, an overview of the derivation methodology for the Quasi-Nonsingular STM will
be presented, referring to Koenig’s work [11].
The STM is derived using a simple method which allows inclusion of multiple perturbations in
orbits of arbitrary eccentricity and admits a wide range of ROE states. The only requirement
is a closed-form expression of the time derivatives of the relative state as a function of the
absolute states of the chief and deputy. Consider a general absolute state X and relative state
δX which include parameters to model non-conservative forces. Let the time derivatives of the
relative state be given as:

δẊ (t) = f
(
Xd

(
Xc (t) , δX (t)

)
, Xc (t) , γ

)
(2.17)
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where the absolute state of the deputy is formulated explicitly as a function of the chief state and
the relative state, while γ denotes a general set of parameters relevant to included perturbations.
The STM is derived by first performing a first-order Taylor expansion on the equations of
relative motion, given as:

δẊ (t) = A
(
Xc (t) , γ

)
δX (t) +O

(
δX2

)
(2.18)

A
(
Xc (t) , γ

)
=
∂δẊ

∂Xd

∣∣∣∣∣
δX=0

∂Xd

∂δX

∣∣∣∣
Xd=Xc

(2.19)

where the plant matrix A is computed by a simple chain rule derivative. If the terms of A
are constant, the resulting system of linear differential equations is solved exactly in closed-form:

δX (ti + τ) = Φ
(
Xc (ti) , γ, τ

)
δX (ti) (2.20)

where Φ
(
Xc (ti) , γ, τ

)
denotes the STM. However, in some cases the plant matrix cannot

reasonably be treated as time-invariant. This issue is corrected by transforming the state into
a modified form by a simple linear transformation provided that the relevant dynamics of the
chief absolute state are known. The STM for the modified state can then be computed from
the time-invariant plant matrix. In these cases, the STM for the original state can be expressed
in closed-form as:

Φ
(
Xc (ti) , γ, τ

)
= J−1

(
Xc (ti) + Ẋc (ti) τ

)
Φ′
(
Xc (ti) , γ, τ

)
J
(
Xc (ti)

)
(2.21)

where Ẋc (ti) denotes the time derivative of the chief state at time ti, Φ′
(
Xc (ti) , γ, τ

)
denotes

the STM for the modified state, and J
(
Xc (ti)

)
denotes the transformation matrix to the

modified state at time t.

Keplerian Dynamics

Under the assumption of a Keplerian orbit, the time derivatives of the orbit elements are given
as:

ȧ = ė = i̇ = Ω̇ = ω̇ = 0 (2.22)

Ṁ = n =

√
µ

a
3
2

(2.23)

Because only M is time varying, the time derivatives of all previously described ROE states
are equivalent and given as:

δX =


0

Ṁd − Ṁc

0
0
0
0

 =
√
µ



0

a
− 3

2
d − a

− 3
2

c

0
0
0
0

 (2.24)

The first-order Taylor expansion of (2.24) about zero separation is given as:

δẊ = Akep
(
Xc

)
δX +O

(
δX2

)
(2.25)
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Akep
(
Xc

)
=


0 0 0 0 0 0
−3

2
nc 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (2.26)

It is evident from (2.24) that Keplerian relative motion depends only on the semi-major axes
of each of the spacecraft orbits. Accordingly, the only non-zero higher order terms will be
proportional to powers of δa. Thus, this relative motion model is valid for unperturbed orbits
with small δa and arbitrary separation in all other state components [11].

J2 Perturbation

The Quasi-Nonsingular Keplerian STM is generalized to include the first-order secular effects
of the second-order zonal geopotential harmonic J2. The J2 perturbation causes secular drifts
in the mean anomaly M , right ascension of the ascending node Ω, and the argument of perigee
ω. These drift rates are given by Brouwer [9]:Ṁω̇

Ω̇

 =
3

4

J2R
2
E

√
µ

a
7
2η4

η (3 cos2 (i)− 1)
5 cos2 (i)− 1
−2 cos (i)

 (2.27)

The whole derivation process in the Quasi-Nonsingular state vector case is omitted, see [11] for
further details. The result of the first-order Taylor expansion is the following:

AJ2
(
Xc (T )

)
= k


0 0 0 0 0 0

−7
2
EP 0 exiFGP eyiFGP −FS 0

7
2
eyfQ 0 − (4exieyfG+ C)Q − (1 + 4eyieyfG−D)Q 5eyfS 0
−7

2
exfQ 0 (1 + 4exiexfG−D)Q (4exfeyiG− C)Q −5exfS 0
0 0 0 0 0 0

7
2
S 0 −4exiGS −4eyiGS 2T 0


(2.28)

where ηc =
√

1− e2
c , k = 3

4

J2R2
E

√
µ

a
7
2 η4

, exi = ec cos (ωc), eyi = ec sin (ωc), E = 1 + ηc, C = sin (ωc),

D = cos (ωc), F = 4 + 3ηc, G = 1
η2
c
, P = 3 cos2 (ic) − 1, Q = 5 cos2 (ic) − 1, S = sin (2ic),

T = sin2 (ic), ω̇ = kQ, exf (t) = ec cos (ωc + ω̇t), eyf (t) = ec sin (ωc + ω̇t).
The range of applicability is again assessed by considering higher order terms of the Taylor
expansion. It can be seen that the time derivative of the state does not depend on M or Ω,
which correspond to the δλ and δiy state components. Accordingly, the model is valid for small
separations in δa, δex, δey, and δix, but arbitrary separations in δλ and δiy. Moreover, while
the quasi-nonsingular state avoids the circular orbit singularity present in the singular state,
the cost of this property is that arbitrary differences in the argument of perigee are no longer
allowed [11].

Density-Free Model for differential drag

It is known that the density of the atmosphere can vary widely due to solar activity and other
effects, rendering development of an accurate differential drag model difficult. This problem
can be mitigated by using a density-model-free formulation of the effects of differential drag on
eccentric orbits [11]. This approach requires a ROE state augmented with the time derivative of
the relative semi-major axis, denoted δȧdrag, which can be estimated by the relative navigation
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system in-flight. Recalling that atmospheric drag circularizes eccentric orbits, the relative
dynamics must satisfy:

δė = (1− e) δȧdrag (2.29)

The result of the first-order Taylor expansion in this case is the following:(
δẊ
δädrag

)
= Adrag

(
Xc (t)

)( δX
δȧdrag

)
(2.30)

Adrag
(
Xc (t) , τ

)
= k



0 0 0 0 0 0 1
k

0 0 0 0 0 0 2
(
−3

4
nc
k
− 7

4
EP + 1

2
e (1− e)FGP

)
τ

0 0 0 0 0 0
D−exf

k
− 2eyfQ

(
−7

4
+ 2e (1− e)G

)
τ

0 0 0 0 0 0
C−eyf
k

+ 2exfQ
(
−7

4
+ 2e (1− e)G

)
τ

0 0 0 0 0 0 0
0 0 0 0 0 0 2S

(
7
4
− 2e (1− e)G

)
τ

0 0 0 0 0 0 0


(2.31)

This model is only valid as long as the semi-major axis and eccentricity of the chief orbit and
the time derivative of the relative semi-major axis can be treated as constant. Additionally,
this STM require orbit eccentricities large enough that the circularization assumptions holds,
this means that this model is not valid for perfectly circular orbits.

Complete model

Since the model is linearized, we can obtain the complete model by summing all the contributes
analyzed previously (Keplerian, J2, differential drag). We can write as follows:(

δẊ
δädrag

)
= A

(
Xc (t)

)( δX
δȧdrag

)
(2.32)

where A = Akep + AJ2 + Adrag. We obtain:

A = k



0 0 0 0 0 0 1
k

−
(

3
2

nc
k

+ 7
2
EP

)
0 exiFGP eyiFGP −FS 0 2

(
− 3

4
nc
k
− 7

4
EP + 1

2
e (1− e)FGP

)
τ

7
2
eyfQ 0 −

(
4exieyfG + C

)
Q −

(
1 + 4eyieyfG−D

)
Q 5eyfS 0

D−exf
k

− 2eyfQ
(
− 7

4
+ 2e (1− e)G

)
τ

− 7
2
exfQ 0

(
1 + 4exiexfG−D

)
Q

(
4exf eyiG− C

)
Q −5exfS 0

C−eyf
k

+ 2exfQ
(
− 7

4
+ 2e (1− e)G

)
τ

0 0 0 0 0 0 0
7
2
S 0 −4exiGS −4eyiGS 2T 0 2S

(
7
4
− 2e (1− e)G

)
τ

0 0 0 0 0 0 0


(2.33)

Let’s see know what is the effect of the STM on the relative motion.

2.2.2 Relative motion due to STM

Effect of Keplerian Dynamics and J2

First of all, the effect of Keplerian and J2 is considered [11]:
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Figure 2.5: Effect of Keplerian and J2 STMs on relative motion. [11]

As reported in fig. 2.5, the combined effects of Kepler and J2 produce four distinct types
of motion:

• 1: a constant drift of δλ due to both Keplerian relative motion and J2;

• 2: a rotation of the relative eccentricity vector due to J2;

• 3: a secular drift of the relative eccentricity vector proportional to the chief eccentricity
and orthogonal to the phase angle of the chief argument of perigee due to J2;

• 4: a constant drift of δiy due to J2.

Effect of differential drag

Now, let’s consider also the effect of the differential drag.
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Figure 2.6: Effect of differential drag on relative motion. [11]

There are three new effects caused by differential drag (fig. 2.6):

• 1: a linear drift of δa;

• 2: a quadratic drift in δλ due to the coupling between differential drag and Keplerian
relative motion;

• 3: a linear drift of the relative eccentricity vector parallel to the phase angle of the chief
argument of perigee.

There are also additional effects due to terms in the STM that are quadratic in time which
derive from the coupling between drag and J2, but because the secular drifts due to drag are
already small and the quadratic terms are multiplied by k, these terms are generally negligible
unless the propagation time is very long [11].

2.3 Control Matrix

2.3.1 Definition

Since the goal is to control the spacecraft relative motion, we need to write the dynamical
system as follows: (

δẊ
δädrag

)
= A

(
Xc (t)

)( δX
δȧdrag

)
+ B

(
Xc (t)

)
u (2.34)

where B is the Control Matrix and u is the Control Vector.
Considering spacecraft on near-circular orbits, the chosen control parameters are the accelera-
tions in the RTN (Radial-Tangential-Normal) directions.
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Figure 2.7: RTN Frame. [25]

The Control Matrix B considering Quasi-Nonsingular STM and u =

uRuT
uN

 has been

derived by Chernick and D’Amico [26]:

B
(
Xc (t)

)
=

1

acnc



2
ηc
ec sin (fc)

2
ηc

(1 + ec cos (fc)) 0

− 2η2
c

1+ec cos (fc)
0 0

ηc sin (ωc + fc) ηc
(2+ec cos (fc)) cos (ωc+fc)+ex

(1+ec cos (fc))

ηcey
tan(ic)

sin (ωc+fc)
1+ec cos (fc)

−ηc cos (ωc + fc) ηc
(2+ec cos (fc)) sin (ωc+fc)+ey

(1+ec cos (fc))
− ηcex

tan(ic)
sin (ωc+fc)

1+ec cos (fc)

0 0 ηc
cos (ωc+fc)
1+ec cos (fc)

0 0 ηc
sin (ωc+fc)

1+ec cos (fc)

0 0 0


(2.35)

where fc is the Chief’s True Anomaly.

2.3.2 ∆V lower bound for impulsive maneuvers

It is useful to define the ∆V lower bound for RTN maneuvers, in order to compare later the
total ∆V s of our continuous maneuver to this optimal value. It can be deduced from the B
Matrix that [26]:
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ROE Change Direction of Maneuver Optimal Location ∆V Lower Bound m
s

∆δa Radial fc = π
2
, 3

2
π, ...

Tangential fc = 0 ηc
2(1+ec)

ncac |∆δa|
∆δλ Radial fc = π

2
, 3

2
π, ... ηc

3ec∆M+2η3
c
ncac |∆δλ|

Tangential fc = 0 ηc
3(1+ec)∆M

ncac |∆δλ|
|∆δe| Radial Anywhere

Tangential fc = 0, π, 2π, ... 1
2ηc
ncac |∆δe|

Normal ωc + fc = arctan
(

∆δey
∆δex

)
∣∣∆δi∣∣ Normal ωc + fc = arctan

(
∆δiy
∆δix

)
1−ec
ηc
ncac |∆δi|

Table 2.1: ∆V lower bound in RTN directions during control interval identified by a shift of
mean anomaly ∆M = Mf −M0 [26]

It can be seen that a variation of δλ can be achieved through a tangential or radial ∆V which
introduces the proper drift in modified relative mean longitude for the duration of the recon-
figuration. Radial maneuvers provide a direct shift of ∆δλ = 3

ηc
ec∆M + 2η2

c , while tangential

maneuvers provide a direct shift of ∆δλ = 3
ηc
ec∆M + 3 3

ηc
∆M . As a result, tangential maneu-

vers are more efficient than radial maneuvers in the case that 3
ηc

∆M > 2η2
c or ∆M > 2

3
η3
c .

Since 0 ≤ ηc ≤ 1, this condition translates to a reconfiguration span of ∆M = [0, 38.2] degrees,
dependent on the reference eccentricity. The limit cases are provided by a control window of
zero degrees, where only radial maneuvers can affect the modified relative mean longitude, and
38.2 degrees, for a circular orbit [26].
The most general in-plane and out-of-plane ∆V lower bound for orbits of arbitrary eccentricity
is given by:

∆VLB = ncacηc ·max
(
|∆δa|

2 (1 + ec)
,
|∆δλ|

K (ec,∆M)
,
|∆δe|
2η2

c

+
1− ec
η2
c

∣∣∆δi∣∣) (2.36)

whereK (ec,∆M) = max (3ec∆M + 2η3
c , 3 (1 + ec) ∆M). It should be noted that as the mission

time increases, ∆M increases and a mean longitude separation ∆δλ could be achieved with a
lower ∆VLB.
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Chapter 3

Linear Quadratic Regulator Overview
and Implementation

3.1 Theoretical Overview

3.1.1 Introduction to Continuous-Time LQR

In the theory of Optimal Control, the main concern is to find a way to control and operate a
dynamical system at minimum cost. The case where the dynamics of a system are described
by a set of linear differential equations and the cost is represented by a quadratic function, is
called LQ problem.
A largely used method in literature to solve this kind of problems is the Linear Quadratic
Regulator. Let’s consider the following linear time-varying plant [27]:

ẋ = A (t)x+ B (t)u (3.1)

where x ∈ Rn is the State Vector and u ∈ Rm is the Control Vector. In LQR theory, the
quadratic cost function to be minimized is defined as follows:

J (t0) =
1

2
xT (T )M (T )x (T ) +

1

2

∫ T

t0

(
xTQ (t)x+ uTR (t)u

)
dt (3.2)

The time interval over which we are interested in the behavior of the plant is [t0, T ]. We shall
determine the control u? on [t0, T ] that minimizes J , knowing: the initial state x0, the target
final state xd, the initial and final times t0, T .
Three different weighting matrices are present in (3.2):

• M , which is symmetric and positive semi-definite in [t0, T ], it is the solution of the
Differential Riccati Equation and will be used later to calculate the Gain Matrix;

• Q, which is also symmetric and positive semi-definite in [t0, T ], it modulates the effect of
the state vector in the cost function. This means that if we increase the elements in Q,
the error on the state vector will decrease, viceversa if we decrease the values in Q the
errors in the state vector will increase.

• R, which is symmetric and positive definite in [t0, T ], it modulates the effect of the control
vector in the cost function. This means that if we increase the elements in R, we force
the control parameters to be smaller, viceversa if we decrease the values in R the control
parameters will be larger.

The Q and R matrices should be tuned in order to match the constraints.
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3.1.2 State and Costate Equations

The Hamiltonian associated to the system is:

H (t) =
1

2

(
xTQx+ uTRu

)
+ λ

T
(Ax+ Bu) (3.3)

where λ (t) ∈ Rn is a set of costate variables, that can be thought as a set of undetermined
Lagrange multipliers associated to the state equations representing the marginal cost of violating
the system constraints. The Hamiltonian itself, introduced for the first time by Lev Pontryagin,
is a function used to solve a problem of optimal control for a dynamical system. It can be
thought as an instantaneous increment of the Lagrangian expression of the problem that has
to be optimized over a certain time horizon.
Once the Hamiltonian and the costate variables have been defined, we can write the State and
Costate Equations :

ẋ =
∂H

∂λ
= Ax+ Bu (3.4)

−λ̇ =
∂H

∂x
= Qx+ ATλ (3.5)

The stationarity condition should also be added:

0 =
∂H

∂u
= Ru+ BTλ (3.6)

From (3.6) we can write the optimal control in terms of the costate variables:

u (t) = −R−1BTλ (3.7)

Putting (3.7) into the state equation yields to the homogeneous Hamiltonian System:(
ẋ

λ̇

)
=

[
A BR−1BT

−Q −AT

](
x

λ

)
(3.8)

To find the optimal control, we must take into account the boundary conditions and solve (3.8).
We have two different formulations based on T :

• Finite-Horizon if the final time has a finite value;

• Infinite-Horizon if T →∞

3.1.3 Finite-Horizon derivation methodology

We can find an optimal control law in the form of a state feedback by fixing the final state at
a desired final value xd, the optimal solution will also minimize the cost function defined by
(3.2).
To solve the two-point boundary-value problem specified by (3.4) and (3.5), given x (t0) = x0

and x (T ) = xd = 0, let’s assume that x (t) and λ (t) are related by a linear relation thanks to
M as follows [27]:

λ (t) = M (t)x (t) (3.9)

If we can find such a matrix M , then this assumption is valid. In order to find the intermediate
function M , let’s differentiate (3.9):

λ̇ = Ṁx+ M ẋ = Ṁx+ M
(
Ax−BR−1BTMx

)
(3.10)
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Substituting the costate equation (3.5) we obtain:

−Ṁx =
(
ATM + MA−MBR−1BTM + Q

)
x (3.11)

for all t. Since this holds for all state trajectories given any x0, it is necessary that:

−Ṁ = ATM + MA−MBR−1BTM + Q (3.12)

This is called Differential Riccati Equation, and if M (t) is its solution with final condition
M (T ), then (3.9) holds for all t ≤ T . In terms of the Riccati equation’s solution M (t), the
optimal control is given by (3.7) and (3.9) as:

u (t) = −R−1BTMx (t) = −K (t)x (3.13)

where
K (t) = R−1BTM (3.14)

is the Gain Matrix. The control (3.13) is a time-varying state feedback, since even if A, B, Q
and R are time invariant, K (t) varies with time.

3.1.4 Infinite-Horizon derivation methodology

In the Infinite-Horizon case, since T → ∞, we can assume that the matrix M evolves really
slowly from M (t0) to M (T ):

Ṁ ' 0 (3.15)

Then (3.12) is simplified as follows:

0 = ATM + MA−MBR−1BTM + Q (3.16)

(3.16) is called Algebraic Riccati Equation, and it gives M (t) as solution. The Gain matrix
and the optimal control are still given by (3.13) and (3.14).

3.1.5 Controllability Property

In order to successfully control a dynamic system, it must satisfy a property called Controlla-
bility. A system with initial state vector x (t0) = x0 is controllable to x (t1 > t0) = x1 if there
exists an admissible control function u such that x (t1, u) = x1.
For a time-invariant linear system in the form:

ẋ = Ax (t) + Bu (t) (3.17)

we can define the Controllability Matrix as follows:

C (A,B) =
[
B,AB,A2B, ...,An−1B

]
∈ Rn×n·m (3.18)

Property

• A system is controllable if the Controllability Matrix C is full-rank.

For time-varying linear systems we can formulate the Silverman-Meadows criteria [28], the
Controllability Matrix is thus defined:

Cv (A,B, t) = [P0,P1,P2, ...,Pn−1] ∈ Rn×n·m (3.19)

where
P0 = B (t) ,Pk+1 = −A (t)Pk (t) + Ṗk, k = 0, 1, ..., n− 2 (3.20)

Theorem

• The system is completely controllable if rank (Cv) = n for some t ∈ [t0, T ];

• The system is totally controllable if and only if rank (Cv) = n ∀t ∈ [t0, T ].
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3.2 Implementation of LQR for ROE system control

3.2.1 Controllability assessment of ROE system

Let’s consider our dynamic system, largely discussed in the previous chapter:(
δẊ
δädrag

)
= A

(
Xc (t)

)( δX
δȧdrag

)
+ B

(
Xc (t)

)
u (3.21)

where

A = k



0 0 0 0 0 0 1
k

−
(

3
2

nc
k

+ 7
2
EP

)
0 exiFGP eyiFGP −FS 0 2

(
− 3

4
nc
k
− 7

4
EP + 1

2
e (1− e)FGP

)
τ

7
2
eyfQ 0 −

(
4exieyfG + C

)
Q −

(
1 + 4eyieyfG−D

)
Q 5eyfS 0

D−exf
k

− 2eyfQ
(
− 7

4
+ 2e (1− e)G

)
τ

− 7
2
exfQ 0

(
1 + 4exiexfG−D

)
Q

(
4exf eyiG− C

)
Q −5exfS 0

C−eyf
k

+ 2exfQ
(
− 7

4
+ 2e (1− e)G

)
τ

0 0 0 0 0 0 0
7
2
S 0 −4exiGS −4eyiGS 2T 0 2S

(
7
4
− 2e (1− e)G

)
τ

0 0 0 0 0 0 0


(3.22)

and

B
(
Xc (t)

)
=

1

acnc



2
ηc
ec sin (fc)

2
ηc

(1 + ec cos (fc)) 0

− 2η2
c

1+ec cos (fc)
0 0

ηc sin (ωc + fc) ηc
(2+ec cos (fc)) cos (ωc+fc)+ex

(1+ec cos (fc))

ηcey
tan(ic)

sin (ωc+fc)
1+ec cos (fc)

−ηc cos (ωc + fc) ηc
(2+ec cos (fc)) sin (ωc+fc)+ey

(1+ec cos (fc))
− ηcex

tan(ic)
sin (ωc+fc)

1+ec cos (fc)

0 0 ηc
cos (ωc+fc)
1+ec cos (fc)

0 0 ηc
sin (ωc+fc)

1+ec cos (fc)

0 0 0


(3.23)

It can be already seen from (3.22) and (3.23) that, since the last rows of A and B are null, the
Controllability Matrix has rank (Cv) 6= n ∀t ∈ [t0, T ]. This means that we cannot control the
system, since we have no way to control specifically δȧdrag.
In order to solve this issue, the effect of differential drag can be implemented in the model as
an external disturbance. The system can be therefore written as follows:

δẊ = A′
(
Xc (t)

)
δX + B′

(
Xc (t)

)
u (3.24)

δY = Co

(
Xc (t)

)( δX
δȧdrag

)
(3.25)

where δẎ is the output state vector.

A′
(
Xc (t)

)
= k


0 0 0 0 0 0

−
(

3
2
nc
k

+ 7
2
EP
)

0 exiFGP eyiFGP −FS 0
7
2
eyfQ 0 − (4exieyfG+ C)Q − (1 + 4eyieyfG−D)Q 5eyfS 0
−7

2
exfQ 0 (1 + 4exiexfG−D)Q (4exfeyiG− C)Q −5exfS 0
0 0 0 0 0 0

7
2
S 0 −4exiGS −4eyiGS 2T 0


(3.26)

B′
(
Xc (t)

)
=

1

acnc



2
ηc
ec sin (fc)

2
ηc

(1 + ec cos (fc)) 0

− 2η2
c

1+ec cos (fc)
0 0

ηc sin (ωc + fc) ηc
(2+ec cos (fc)) cos (ωc+fc)+ex

(1+ec cos (fc))

ηcey
tan(ic)

sin (ωc+fc)
1+ec cos (fc)

−ηc cos (ωc + fc) ηc
(2+ec cos (fc)) sin (ωc+fc)+ey

(1+ec cos (fc))
− ηcex

tan(ic)
sin (ωc+fc)

1+ec cos (fc)

0 0 ηc
cos (ωc+fc)
1+ec cos (fc)

0 0 ηc
sin (ωc+fc)

1+ec cos (fc)


(3.27)
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Co

(
Xc (t)

)
=
[
I6×6, 0

6×1
]

+

∫ t+τ

t

(
Adrag

6×7

(
Xc (t) , τ

))
dt (3.28)

Co

(
Xc (t)

)
= k



1 0 0 0 0 0 τ
k

0 1 0 0 0 0
(
−3

4
nc
k
− 7

4
EP + 1

2
e (1− e)FGP

)
τ 2

0 0 1 0 0 0
D−exf

k
τ − eyfQ

(
−7

4
+ 2e (1− e)G

)
τ 2

0 0 0 1 0 0
C−eyf
k

τ + exfQ
(
−7

4
+ 2e (1− e)G

)
τ 2

0 0 0 0 1 0 0
0 0 0 0 0 1 S

(
7
4
− 2e (1− e)G

)
τ 2

 (3.29)

where Adrag
6×7 is the Adrag matrix without the last row.

Using this new configuration, the system is totally controllable in the interval [t0, T ]

3.2.2 Software Implementation

Figure 3.1: LQR Feedback Controller block scheme.

Since our controller must track the desired reference state vector Xd, the control will be in the
form:

u (t) = −KδY + KdδXd (3.30)

where Kd is the reference Gain Matrix that takes in account steady-state errors, Kd = K will
be used in this framework.
In order to solve the Differential Riccati Equation, a final condition on M will be imposed as
follows:

M (T ) = 0 (3.31)

This means that at time T , i.e. when Xd will be reached, the Gain Matrix will be 0 as well:

K (T ) = −R−1BT (T )M (T ) = 0 (3.32)

The cost function to be minimized is then:

J (t0) =
1

2

∫ T

t0

(
δxTQ (t) δx+ uTR (t)u

)
dt (3.33)

It can be seen that for the Finite-Horizon approach, a backward integration of the Differential
Riccati Equation is needed in order to obtain M (t). Known data:
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• Chief’s state Xc;

• Initial relative state δX0;

• Final relative state δXd;

• Initial time t0;

• Final time T ;

• Q and R matrices.

Unknown:

• Control u

The model has been implemented using MATLAB R©, where the backward integration of the
Differential Riccati Equation is possible thanks to the command ode.

Figure 3.2: MATLAB R© logo. Credits: Mathworks

The flowchart describing the sequence of operations performed by MATLAB R© is showed in
fig. 3.3, for both Finite-Horizon and Infinite-Horizon cases.
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Figure 3.3: Flowchart of the algorithm.

3.3 Model testing and results

3.3.1 Input Data

Let’s consider a scenario with a Virtual Leader and another spacecraft, the goal is to control
the second spacecraft from an initial relative state with respect to the virtual leader to a final
state in the given time [t0, T ]. The chosen Chief’s reference orbit, expressed in classical orbital
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elements, is:

Xc =


ac
ec
ic
Ωc

ωc
fc

 =


6878km
0.0002
110 deg
260 deg
90 deg
315 deg

 (3.34)

It should be noted that these elements are different from the mean orbital elements, and they
vary a lot throughout the mission. In order to implement the Mean ROE model, we should
convert this set of orbital parameters into mean orbital parameters; this can be done us-
ing GMAT R©, an open-source software developed by NASA (fig. 3.4), which implements a
Brouwer-Lyddane theory-based algorithm to compute short-term and long-term averaged or-
bital elements.

Figure 3.4: GMAT R© logo. Credits: NASA

Since we will consider a mission time of one order of magnitude greater than the orbital
period, the long-term average of orbital parameters will be used:

Xc =


ac
ec
ic
Ωc

ωc
M0

 =


6878km
0.000935
110 deg

260.5 deg
310.6 deg

90 deg

 (3.35)

These elements remain approximately constant throughout the mission, except for the mean
anomaly that increases linearly, M = M0 + nct.
We can compute the orbital period:

Torbit = 2π

√
a3
c

µ
' 5677s (3.36)

Let’s set the initial and final mission times:

t0 = 0 (3.37)

T = 15 · Torbit ' 85152s (3.38)
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The initial and final relative states (expressed in meters) are:

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 800m 250m
ac · 1000 · δex 600m 250m
ac · 1000 · δey 600m 250m
ac · 1000 · δix 0m 0m
ac · 1000 · δiy 500m 250m

Table 3.1: Initial and final relative states.

The chosen Q and R matrices are:

Q =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5 0
0 0 0 0 0 5

 (3.39)

R =

3 0 0
0 3 0
0 0 3

 (3.40)

3.3.2 Results

State

The evolution of the spacecraft relative state with respect to the virtual chief, for both Finite-
Horizon and Infinite-Horizon approaches, is showed in fig. 3.5a and fig. 3.5b.
As regards the Infinite-Horizon approach, it can be seen that δex and δey are not converging to
the desired final state. This is a critical issue related to the chosen timestep τ , that should be:

• Small enough in order to consider A (t) and B (t) constant;

• Large enough in order to let the system converge to the instant solution.

Unfortunately, there is no timestep that satisfies both those conditions; therefore the conclusion
is that the Infinite-Horizon approach is not suitable for this problem.
Concerning the Finite-Horizon approach, since we are considering that Ṁ 6= 0 by integrating
the Differential Riccati Equation, the timestep doesn’t have to satisfy the second condition
anymore; therefore the system will converge to the final state, given that the timestep itself is
sufficiently small.
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(a) Infinite-Horizon, relative state evolution.

(b) Finite-Horizon, relative state evolution.

Figure 3.5: Comparison between Infinite-Horizon and Finite-Horizon relative state evolutions.
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ROE Variable Desired Final
ac · 1000 · δa 0m 0.7590m
ac · 1000 · δλ 250m 245.4m
ac · 1000 · δex 250m 253.0m
ac · 1000 · δey 250m 245.1m
ac · 1000 · δix 0m −0.03169m
ac · 1000 · δiy 250m 250.4m

Table 3.2: Finite-Horizon: Desired and final relative states.

Control

In order to simulate a real micro-Newton thruster, a thrust range of 0.1µN − 2mN has been
imposed; if the thrust level is below the minimum limit, the thruster will be turned off:

u (ti) =

{
0 if mass · u (ti) < 0.1µN
u (ti) otherwise

(3.41)

Figure 3.6: Control Accelerations in the RTN Directions.

The total acceleration magnitude can be calculated as follows:

utot (t) =
√
u2
R (t) + u2

T (t) + u2
N (t) (3.42)
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Figure 3.7: Total acceleration magnitude over time (in orbits).

∆V

Using 2.36, the ∆V lower bound for the maneuver can be computed as:

∆VLB = ncacηc

(
|∆δe|
2η2

c

+
1− ec
η2
c

∣∣∆δi∣∣) = 0.5504
m

s
(3.43)

The real ∆V can be computed by integrating numerically the total acceleration magnitude
profile, shown in fig. 3.7, over time. The result of this operation is shown in fig. 3.8.
The value of the real ∆V required by the maneuver can be found in 3.3, it can be seen that it
is only 2.1% more than the optimal ∆V .

Lower Bound Real
∆V 0.5504m

s
0.5619m

s

Table 3.3: Comparison between the real ∆V and the lower bound.
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Figure 3.8: ∆V over time (in orbits).
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Chapter 4

Collision Avoidance using Artificial
Potential functions

4.1 Mathematical Overview

4.1.1 Introduction

Satellites in a formation might need to maneuver to avoid potential collisions that may occur
when a satellite within the formation drifts into the path of another. In order to guide and
control satellites toward their desired final states while assuring collision avoidance at the same
time, we need to find a way to guide the state vector along collision-free reference trajectories.
To do so, the following strategy is presented in this work:

• Definition of a Reference Governor strategy in order to guide the satellite state vector
along a reference trajectory, the controller will track the instant applied reference instead
of the desired reference itself;

• Calculation of the minimum distance between satellites using Eccentricity/Inclination
vectors separation [25];

• Definition of an Artificial Potential Field in order to update the applied reference at each
timestep.

4.1.2 Reference Governor

Instead of applying a control of the type u (t) = −KδY +KdδXd that will guide the state vector
linearly towards the desired reference, we can think about introducing an applied reference δXa

that can be used to guide the state δX along a reference trajectory. In order to do so, we need
to apply a control in the form:

u (t) = −KδY + KdδXa (4.1)

and we need to update δXa at each iteration according to some particular law that allows us

to compute δẊa.
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Figure 4.1: Applied reference concept.

In order to guarantee that δXa would converge to δXd, we need to define a global attractive

potential field centered in δXd that allows us to compute the required δẊa [29]. This potential
field can be defined as:

ϕglobal =

{ ∣∣δXa − δXd

∣∣ if
∣∣δXa − δXd

∣∣ ≥ η

1
2

|δXa−δXd|2
η

+ 1
2
η otherwise

(4.2)

where η ∈ R and η ≥ 1.
The gradient of this potential field is given by:

∇ϕglobal =
δXa − δXd

max
(∣∣δXa − δXd

∣∣ , η) (4.3)

Which is unitary if
∣∣δXa − δXd

∣∣ ≥ η and tends to zero if
∣∣δXa − δXd

∣∣ < η. The parameter η
is defined such that the gradient tends to zero for very small tracking errors with respect to
the desired reference δXd.
At this point we can compute the applied reference gradient as follows:

ρglobal = −ε∇ϕglobal (4.4)

δẊa = ρglobal (4.5)

where ε ∈ R+ is an arbitrary small scaling factor, ε = 1
τ

will be assumed.
Now we can update the applied reference:

δXa (t+ τ) = δXa (t) + δẊaτ (4.6)

4.1.3 Reference Governor model testing and results

Let’s test this Finite-Horizon Reference Governor-based model using the same scenario of the
previous chapter.
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Input Data

• Xc as in (3.35);

• t0 and T as in (3.37) and (3.38);

• Initial and Desired states as in table 3.1.

The chosen Q and R matrices are:

Q =


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 (4.7)

R =

1 0 0
0 1 0
0 0 1

 (4.8)

State

Figure 4.2: Finite-Horizon Reference Governor model relative state evolution.
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ROE Variable Desired Final
ac · 1000 · δa 0m 0.2139m
ac · 1000 · δλ 250m 248.5m
ac · 1000 · δex 250m 251.5m
ac · 1000 · δey 250m 248.0m
ac · 1000 · δix 0m −0.02274m
ac · 1000 · δiy 250m 250.4m

Table 4.1: Finite-Horizon RG: Desired and final relative states.

Control

A thrust range constraint of 0.1µN − 2mN has been imposed also in this case; if the thrust
level is below the minimum limit, the thruster will be turned off as in (3.41).

Figure 4.3: Finite-Horizon RG: Control Accelerations in the RTN Directions.
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Figure 4.4: Finite-Horizon RG: Total acceleration magnitude over time (in orbits).

∆V

The ∆V lower bound for the maneuver can be computed in the same way as (3.43).
The numerical integration of the acceleration magnitude profile (fig. 4.4) is shown in fig. 4.5.
A comparison between the value of the real ∆V required by the maneuver, the real ∆V of the
previous scenario and the lower bound can be found in 4.2.

Lower Bound Finite-Horizon Reference Governor
∆V 0.5504m

s
0.5619m

s
0.5563m

s

% more than LB 0 2.1 1.1

Table 4.2: Comparison between the RG ∆V , the FH ∆V and the lower bound.
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Figure 4.5: Finite-Horizon RG: ∆V over time (in orbits).

As we can see, the Reference Governor-based model performs better both in terms of state
convergence and fuel optimality.

4.1.4 Minimum distance using Eccentricity/Inclination vector sep-
aration

The concept of e/i-vector separation has originally been developed for the safe collocation
of geostationary satellites [24], but can likewise be applied for proximity operations in LEO
formations [25], as showed in section 2.1.3. It is based on the consideration that the uncertainty
in predicting the along-track separation of two spacecraft is generally much higher than for the
radial and cross-track component. Because of the coupling between semi-major axis and orbital
period, small uncertainties in the initial position and velocity result in a corresponding drift
error and thus a secularly growing along-track error. Predictions of the relative motion over
extended periods of time are therefore particularly sensitive to both orbit determination errors
and maneuver execution errors [10].
To avoid a collision hazard in the presence of along-track position uncertainties, care must be
taken to properly separate the two spacecraft in radial and cross-track direction. As shown for
GEO satellites, this can be achieved by a parallel (or anti-parallel) alignment of the relative
eccentricity and inclination vectors. It is utterly important to avoid at all costs that eccentricity
and inclination vectors become perpendicular, because in that case the distance in radial and
cross-track direction vanishes and collision avoidance cannot be guaranteed (fig. 2.4). The
relative distance between deputy and chief spacecraft, projected onto the cross-track/radial
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plane, is:
δrnr =

√
δr2
n + δr2

r (4.9)

Using relative orbital elements, and assuming bounded relative motion δa = 0, the minimum
distance in the radial and cross-track plane can be expressed in meters as:

δrminnr = ac · 1000 ·
√

2
∣∣δe · δi∣∣(

|δe|2 +
∣∣δi∣∣2 +

∣∣δe+ δi
∣∣ · ∣∣δe− δi∣∣) 1

2

(4.10)

It can be seen that this distance is maximum when eccentricity and inclination vectors are
parallel (or anti-parallel) and is null when they are perpendicular. Furthermore, considering
parallel eccentricity and inclination vectors, this distance increases as δe and δi increase.

4.1.5 Artificial Potential Field for Collision Avoidance

Let’s consider two satellites with state vectors δX1 and δX2, we can compute the relative state
between these two satellites as:

∆δX = δX1 − δX2 =


∆δa
∆δλ
∆δex
∆δey
∆δix
∆δiy

 (4.11)

The relative applied reference state can be computed as well:

∆δXa = δXa1 − δXa2 =


∆δaa
∆δλ

∆δexa
∆δeya
∆δixa
∆δiya

 (4.12)

Since the Artificial Potential field will affect the applied references, it makes sense to consider
the minimum radial and cross-track relative distance between the two applied references:

δrminanr = ac · 1000 ·
√

2
∣∣∆δea ·∆δia∣∣(

|∆δea|2 +
∣∣∆δia∣∣2 +

∣∣∆δea + ∆δia
∣∣ · ∣∣∆δea −∆δia

∣∣) 1
2

(4.13)

Assumption:

• ∆δea and ∆δia are never perpendicular throughout the mission.

In order to define the potential field for collision avoidance, few parameters should be introduced
first:

• ζ is the influence distance, i.e. the distance from where the repulsive potential field starts
to act;

• γ is the safety margin, i.e. the distance where the repulsive potential field reaches its
maximum;
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Since the distance depends on ∆δea and ∆δia, we can think about defining a 4D repulsive
potential field; we need then a matrix that enables those variables of the state vector:

G =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


T

(4.14)

The repulsive potential field is defined as [29]:

ϕcollision =

{
1
2
γ2(δranr−ζ)

2

δranr (γ2−ζ2)
if δranr ≤ ζ

0 otherwise
(4.15)

The gradient of this potential field is given by:

∇ϕcollision = max

(
min

(
γ2
(
δr2
anr − ζ

2
)

δr2
anr (γ2 − ζ2)

, 1

)
, 0

)
·G · GT∆δXa∣∣GT∆δXa

∣∣ (4.16)

It can be seen that ∇ϕcollision = 0 if δrminanr ≥ ζ, ∇ϕcollision = G · GT∆δXa

|GT∆δXa| if δrminanr ≤ γ,

0 < ∇ϕcollision < G · GT∆δXa

|GT∆δXa| if γ < δrminanr < ζ.

ρ1collision
= α∇ϕcollision (4.17)

ρ2collision
= −α∇ϕcollision (4.18)

δẊa1 = ρ1global
+ ρ1collision

(4.19)

δẊa2 = ρ2global
+ ρ2collision

(4.20)

δXa1 (t+ τ) = δXa1 (t) + δẊa1τ (4.21)

δXa2 (t+ τ) = δXa2 (t) + δẊa2τ (4.22)

where α ∈ R+ is an arbitrary small scaling factor.

4.2 Scenario for Collision Avoidance potential field test-

ing

4.2.1 Input Data

Let’s consider a scenario with two spacecraft whose relative state vector is expressed with
respect to a virtual chief. Let the virtual chief orbit be the same as the previous scenarios, see
(3.34) and (3.35).
Let’s set the initial and final mission times:

• t0 = 0;

• T = 25Torbit ' 141920s
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The initial and final states (expressed in meters) of the two spacecraft are:

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex 150m 550m
ac · 1000 · δey 150m 550m
ac · 1000 · δix 100m 250m
ac · 1000 · δiy 100m 250m

Table 4.3: Collision Avoidance: Initial and final relative states of Spacecraft 1.

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex 190m 348m
ac · 1000 · δey 95m 696m
ac · 1000 · δix 126m 195m
ac · 1000 · δiy 63m 290m

Table 4.4: Collision Avoidance: Initial and final relative states of Spacecraft 2.

The chosen Q and R matrices are:

Q1 = Q2 =


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 (4.23)

R1 = R2 =

1 0 0
0 1 0
0 0 1

 (4.24)

A α = 0.015 will be chosen.
Three different cases will be simulated:

• Case 1 : γ = 0m, ζ = 0m, i.e. no collision avoidance;

• Case 2 : γ = 20m, ζ = 25m;

• Case 3 : γ = 35m, ζ = 40m;
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4.2.2 Results

State

(a) Case 1: Spacecraft 1 state evolution.

(b) Case 1: Spacecraft 2 state evolution.

Figure 4.6: Case 1: Spacecraft 1 and 2 relative state evolutions.
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(a) Case 2: Spacecraft 1 state evolution.

(b) Case 2: Spacecraft 2 state evolution.

Figure 4.7: Case 2: Spacecraft 1 and 2 relative state evolutions.
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(a) Case 3: Spacecraft 1 state evolution.

(b) Case 3: Spacecraft 2 state evolution.

Figure 4.8: Case 3: Spacecraft 1 and 2 relative state evolutions.

It can be seen that the difference in the relative state vector’s evolution is slightly different for
the three cases.
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Minimum separation in RN plane and angle between ∆δea and ∆δia

(a) Case 1: γ = 0, ζ = 0.

(b) Case 2: γ = 20, ζ = 25.
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(c) Case 3: γ = 35, ζ = 40.

Figure 4.9: Minimum separation between the applied references and the state vectors for the
three cases.

The collision avoidance algorithm has been proven to work since the constraints given by ζ and
γ are satisfied for each of the three cases.
As regards the angle between ∆δea and ∆δia, since the repulsive potential field is proportional
to the difference

∣∣δXa1 − δXa2

∣∣, it can be deduced how the algorithm itself tends to parallelize
the two vectors, decreasing the angle between them. This can be seen in fig. 4.10a, 4.10b,
4.10c.
This is a good property since the assumption of non-orthogonality between the two vectors is
satisfied as long as the maneuver without collision avoidance is planned properly.
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(a) Case 1: Angle between ∆δea and ∆δia.

(b) Case 2: Angle between ∆δea and ∆δia.
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(c) Case 3: Angle between ∆δea and ∆δia.

Figure 4.10: Angle between ∆δea and ∆δia for the three cases.

∆V

Lower Bound Case 1 Case 2 Case3
∆V 0.5476m

s
0.5650m

s
0.5655m

s
0.5683m

s

% more than LB 0 3.2 3.3 3.8

Table 4.5: Sat 1: Comparison between the ∆V s of the three cases with the lower bound.

Lower Bound Case 1 Case 2 Case3
∆V 0.6063m

s
0.6096m

s
0.6093m

s
0.6095m

s

% more than LB 0 0.54 0.49 0.53

Table 4.6: Sat 2: Comparison between the ∆V s of the three cases with the lower bound.
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Chapter 5

Fuel Balance between satellites

Fuel Balance between all the spacecraft in a formation is a very important issue that must be
addressed in order to avoid that a satellite would run out of fuel before the other ones. If this
happens, the controllability of the whole formation is irremediably lost.
In this chapter, two different strategies to prevent this issue will be presented:

• Exploitation of the R matrix in the LQR theory, increasing the fuel consumption of the
less-consuming spacecraft;

• Smart mission and maneuver planning to let the LQR controller achieve Fuel Balance
automatically.

5.1 Fuel Balance exploiting the R matrix

5.1.1 Basic Idea

As already discussed in the LQR chapter, the cost function minimized by the Linear Quadratic
Regulator is given by (3.33).
In particular, the R matrix modulates the effect of the control vector in the cost function. This
means that if we increase the elements in R, we force the control parameters to be smaller,
viceversa if we decrease the values in R the control parameters will be larger. So, considering
a scenario with only two satellites, we can think about implementing an iterative algorithm
that decreases the values in the R matrix of the satellite with the smaller real ∆V , until the
difference between the ∆V s of the two spacecraft is below a certain tolerance value.

5.1.2 Algorithm Implementation

Let’s suppose that satellite 2 consumes more than satellite 1. If we express the R matrices of
the two satellites as follows:

R2 = a ·

1 0 0
0 1 0
0 0 1

 (5.1)

R1 = b ·

1 0 0
0 1 0
0 0 1

 (5.2)

The algorithm itself is a basic search of the right value for b such that |∆V2−∆V1|
∆V2

< tol. Let’s
impose a constraint on b in order to avoid singularities in the problem:

b > 10−2.5 (5.3)
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The pseudocode of the algorithm is presented in Algorithm 1.

Algorithm 1: Algorithm Pseudocode.

flag = 0;

% This flag is used to check if |∆V2−∆V1|
∆V2

< tol;

incr = 0;
ss = 0.2;
% ss is a step value used for the calculation of b;

R2 = a ·

1 0 0
0 1 0
0 0 1

;

while flag == 0 do

R1 = 10incr·ss ·

1 0 0
0 1 0
0 0 1

;

Configure controller and perform analysis;
Compute ∆V1 and ∆V2;

if |∆V2−∆V1|
∆V2

> tol then

if ∆V1 > ∆V2 then

incr = incr + floor

( |∆V2−∆V1|
∆V2

tol

)
;

else

incr = incr − floor
( |∆V2−∆V1|

∆V2

tol

)
;

end

else
flag = 1;

end

end

5.1.3 Algorithm testing and results

Introduction to Scenario

This scenario consists in the deployment of two 3U Cubesats (4 kg each) from a chief spacecraft
in LEO; the LQR control system will then actively guide to and maintain the satellites on two
elliptical trajectories around the chief spacecraft in order to perform proximity operations. This
scenario is based on some existing Cubesats mission:

• The AAReST mission [30] (expected to launch in 2019-2020), led by California Institute of
Technology and Surrey Space Centre and funded by Keck Institute for Space Studies, aims
to demonstrate autonomous assembly and reconfiguration of a space telescope by having
two 3U CubeSats autonomously un-dock and re-dock with a central 9U nanosatellite
core. The central nanosatellite houses two fixed mirrors and a boom-deployed focal plane
assembly, while the two 3U CubeSats each carry an electrically actuated adaptive mirror.

• The QUEST mission [4], which is a joint project between Arizona State University, Santa
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Clara University, and Kyushu University, Japan; aims to first deploy a 2 km long tether
in space and then maintain a formation by cooperatively controlling the main satellite
and sub-satellite.

Input Data

• Xc as in (3.35);

• t0 = 0;

• T = 25Torbit = 141920s;

• tol = 0.05.

The initial and final states (expressed in meters) of the two spacecraft are:

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex 1m 350m
ac · 1000 · δey 1m 350m
ac · 1000 · δix 1m 250m
ac · 1000 · δiy 1m 250m

Table 5.1: R Exploitation: Initial and final relative states of Spacecraft 1.

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex −1m −450m
ac · 1000 · δey −1m −450m
ac · 1000 · δix −1m −450m
ac · 1000 · δiy −1m −450m

Table 5.2: R Exploitation: Initial and final relative states of Spacecraft 2.

Initial and final states were chosen in order to assure that ∆δe and ∆δi remain parallel
while ϕ1, θ1 and ϕ2, θ2 are out of phase by 180 deg. Because of this, collision avoidance is
assured and the relative motion of the two spacecraft with respect to the virtual chief is defined
by (2.14), (2.15) and (2.16).
Two different cases will be simulated, one without fuel balancing and another with the afore-
mentioned algorithm:

• Case 1 : a = b = 3;

• Case 2 : a = 3, b according to the aforementioned iterative procedure.

State

As regards Case 2, the algorithm converges after 2 iterations with the following results:

incr = −3 (5.4)
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b = 10−0.6 (5.5)

(a) Case 1: Spacecraft 1 state evolution.

(b) Case 1: Spacecraft 2 state evolution.

Figure 5.1: Case 1: spacecraft state evolution.
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(a) Case 2: Spacecraft 1 state evolution.

(b) Case 2: Spacecraft 2 state evolution.

Figure 5.2: Case 2: spacecraft state evolution.
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Minimum separation in RN plane and angle between ∆δea and ∆δia

Figure 5.3: Case 1-2: Minimum separation between the applied references and the state vectors.

Figure 5.4: Case 1-2: Angle between ∆δea and ∆δia.
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∆V

(a) Case 1: ∆V over time.

(b) Case 2: ∆V over time.

Figure 5.5: ∆V over time for cases 1-2.
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Lower Bound Case 1 Case 2
∆V 0.6625m

s
0.6786m

s
0.874m

s

% more than LB 0 2.4 32

Table 5.3: Sat 1: Comparison between the ∆V s of the two cases with the lower bound.

Lower Bound Case 1 Case 2
∆V 0.8972m

s
0.906m

s
0.906m

s

% more than LB 0 0.98 0.98

Table 5.4: Sat 2: Comparison between the ∆V s of the two cases with the lower bound.

Case |∆V2−∆V1|
∆V2

Case 1 25%
Case 2 3.5%

Table 5.5: Percentual relative difference in ∆V between the two satellites in the two cases.

Relative motion in the RT and RN planes

Figure 5.6: Relative motion in the RN plane.
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Figure 5.7: Relative motion in the RT plane.

Conclusion

An observation should be done regarding the maximum ∆V1 achievable using the b = 10−2.5

lower bound; running multiple simulations showed that we can achieve in most cases ∆V1max =
1.5 ·∆V1min , but in order to be sure that this strategy works we should assure that at least:

|∆V2LB −∆V1LB |
∆V2LB

< 35%− 40% (5.6)

It is clear how this kind of strategy is quite inefficient, since we force one satellite to consume
more than necessary.

5.2 Fuel Balance through smart mission and maneuver

planning

A better approach to this problem, from the fuel efficiency perspective, would be to wisely
design the final states in order to match the mission constraints and achieve automatically fuel
balance with the LQR controller at the same time. In order to show this kind of approach,
some scenarios will be presented in the next sections.

5.2.1 Scenario 1: TanDEM-X like mission

The TanDEM-X mission is an extension of the TerraSAR-X mission, coflying a second satellite
of nearly identical capability in a close formation [3]. TanDEM-X was Germanys first national
remote sensing formation that has been realized in a public private partnership between DLR
and industry. This formation had been supplying high quality radar images for scientific and
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commercial applications. The TanDEM-X operational scenario requires the coordinated oper-
ation of two satellites flying in close formation in order to operate a Synthetic Aperture Radar
configuration.
Several possible configuration have been investigated, and the Helix satellite formation shown in
fig. 5.8 has finally been selected for operational DEM generation. This formation combines an
out-of-plane (horizontal) orbital displacement by different ascending nodes with a radial (ver-
tical) separation by different eccentricity vectors, resulting in a helix-like relative movement of
the satellites along the orbit. Since there exists no crossing of the satellite orbits, arbitrary
shifts of the satellites along their orbits are allowed. This enables a safe spacecraft operation
without the necessity for autonomous control.

Figure 5.8: TanDEM-X Helix configuration [3].

Referring to fig. 2.3 and 2.4, it can be seen that as long as δe and δi are parallel for each of
the two satellites while ϕ1, θ1 and ϕ2, θ2 are out of phase by 180 deg, the maximum horizontal
and vertical baselines are given by:

BH = ac · 1000 ·
∣∣∆δi∣∣ (5.7)

BV = ac · 1000 · |∆δe| (5.8)

where ∆δe = δe1 − δe2 and ∆δi = δi1 − δi2.
This Scenario will involve a TanDEM-X like configuration, from the deployment of the two
satellites to the achievement of the target configuration.
Mission constraint :

• horizontal and vertical maximum baselines in the range 700− 750m.

Input Data

The chief reference orbit expressed in absolute relative elements will be:

Xc =


ac
ec
ic
Ωc

ωc
fc

 =


6878km
0.0002

97.4 deg
260 deg
90 deg
315 deg

 (5.9)
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The mean relative elements are computed using GMAT and the Brouwer-Lyddane method.
ic has been chosen in order to realize a Sun-Synchronous orbit.
Time data:

• t0 = 0;

• T = 25Torbit = 141920s.

Initial and final states:

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex 1m 250m
ac · 1000 · δey 1m 250m
ac · 1000 · δix 1m 250m
ac · 1000 · δiy 1m 250m

Table 5.6: TanDEM-X 1: Initial and final relative states of Spacecraft 1.

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex −1m −250m
ac · 1000 · δey −1m −250m
ac · 1000 · δix −1m −250m
ac · 1000 · δiy −1m −250m

Table 5.7: TanDEM-X 1: Initial and final relative states of Spacecraft 2.

Final states are chosen in order to keep δe and δi parallel for each of the two satellites while
ϕ1, θ1 and ϕ2, θ2 are out of phase by 180 deg. Using the final states, the final baselines can be
computed:

BH = BV ' 707m (5.10)

Q1 = Q2 = 10 ·


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.11)

R1 = R2 = 10 ·

1 0 0
0 1 0
0 0 1

 (5.12)
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State

(a) TanDEM 1: Spacecraft 1 state evolution.

(b) TanDEM 1: Spacecraft 2 state evolution.

Figure 5.9: TanDEM 1: spacecraft state evolution.
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∆V

Figure 5.10: ∆V over time.

Lower Bound Scenario
∆V 0.5840m

s
0.5932m

s

% more than LB 0 1.6

Table 5.8: Sat 1: Comparison between the scenario ∆V with the lower bound.

Lower Bound Scenario
∆V 0.5840m

s
0.5897m

s

% more than LB 0 1

Table 5.9: Sat 2: Comparison between the scenario ∆V with the lower bound.

Let’s suppose tol = 5%, the fuel balance is achieved since:

|∆V2 −∆V1|
∆V2

= 0.6% (5.13)
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Relative motion in the RT and RN planes

Figure 5.11: Relative motion in the RN plane.

Figure 5.12: Relative motion in the RT plane.
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Helix formation

Figure 5.13: Helix projection in TN plane.

Figure 5.14: Helix projection in RT plane.
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We can see the final Horizontal Baseline in fig. 5.13 and the Vertical Baseline in fig. 5.14. In
this case the two are equal BH = BV ' 707m. Both the mission constraint and the fuel balance
are satisfied.

5.2.2 Scenario 2: Deployment of a 4-sats formation with along-track
separation

Another viable configuration for an Interferometric SAR mission would be to allocate the
satellites on the same orbit assuring a fixed along-track separation, i.e. a relative mean longitude
∆δλ.
As already said regarding (2.36), as the mission time increases, ∆M increases as well and a
mean longitude separation ∆δλ could be achieved with a lower ∆VLB. In particular, if the
∆VLB requested to change the eccentricity/inclination vectors is greater than the one requested
for the mean longitude change, then we can achieve this kind of separation ’for free’.
This Scenario will simulate the deployment of four satellites from a chief spacecraft, the LQR
will compute the control necessary to reach a target along-track separation.
Mission Goal :

• Achieve an along-track separation of 720m between consecutive satellites.

Input Data

The chief reference orbit expressed in absolute relative elements will be:

Xc =


ac
ec
ic
Ωc

ωc
fc

 =


6878km
0.0002

97.4 deg
260 deg
90 deg
315 deg

 (5.14)

The mean relative elements are computed using GMAT and the Brouwer-Lyddane method.
ic has been chosen in order to realize a Sun-Synchronous orbit.
Time data:

• t0 = 0;

• T = 25Torbit = 141920s.

Initial and final states:

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 1m 360m
ac · 1000 · δex 1m 250m
ac · 1000 · δey 1m 250m
ac · 1000 · δix 1m 150m
ac · 1000 · δiy 1m 150m

Table 5.10: 4 Sats: Initial and final relative states of Spacecraft 1.
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ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 1m 1080m
ac · 1000 · δex 1m 250m
ac · 1000 · δey 1m 250m
ac · 1000 · δix 1m 150m
ac · 1000 · δiy 1m 150m

Table 5.11: 4 Sats: Initial and final relative states of Spacecraft 2.

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ −1m −360m
ac · 1000 · δex 1m 250m
ac · 1000 · δey 1m 250m
ac · 1000 · δix 1m 150m
ac · 1000 · δiy 1m 150m

Table 5.12: 4 Sats: Initial and final relative states of Spacecraft 3.

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ −1m −1080m
ac · 1000 · δex 1m 250m
ac · 1000 · δey 1m 250m
ac · 1000 · δix 1m 150m
ac · 1000 · δiy 1m 150m

Table 5.13: 4 Sats: Initial and final relative states of Spacecraft 4.

It can be seen how final states have been chosen in order to keep δe and δi parallel while
ϕ1, ϕ2, ϕ3, ϕ4 and θ1, θ2, θ3, θ4 are in phase.

Q1 = Q2 = Q3 = Q4 =
13

2
·


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.15)

R1 = R2 = R3 = R4 = 5 ·

1 0 0
0 1 0
0 0 1

 (5.16)
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∆V

Figure 5.15: ∆V over time.

Sat Lower Bound Scenario % more than LB
1 0.4277m

s
0.4322m

s
1.1

2 0.4277m
s

0.4378m
s

2.4
3 0.4277m

s
0.4327m

s
1.2

4 0.4277m
s

0.4288m
s

0.26

Table 5.14: 4 Sats: Comparison between the scenario ∆V with the lower bound.

Let’s suppose tol = 5%, the fuel balance is achieved since the maximum fuel difference is:

|∆V2 −∆V4|
∆V2

= 2.1% (5.17)
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RT plane relative motion

Figure 5.16: RT plane motion relative to the virtual chief.

Figure 5.17: RT plane motion relative to Sat 1.
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Sat Desired δλ Real δλ
1 360m 358m
2 1080m 1078m
3 −360m −361m
4 −1080m −1081m

Table 5.15: 4 Sats: Comparison between desired and real δλ.

It can be seen from 5.15 that the along-track separation between adjacent satellites is ' 720m.

Minimum and real separations between satellites

Assuming that in this case we can eliminate the along-track uncertainties, the minimum sepa-
ration between satellites is given by:

δrmin =
√
δr2
t + δr2

nr (5.18)

δrnr is given by (4.10) and

δrt =

{
0 if |∆δλ| − 2 |∆δe| < 0
ac · 1000 · (|∆δλ| − 2 |∆δe|) if |∆δλ| − 2 |∆δe| > 0

(5.19)

Figure 5.18: 4 Sats: Minimum separation over time.
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Figure 5.19: 4 Sats: Real separation over time.

5.2.3 Scenario 3: TanDEM-X like mission with initial fuel unbalance

This Scenario is very similar to Scenario 1, the main difference is that we will suppose an initial
fuel unbalance between the two spacecraft due to previous maneuvering errors or collision
avoidance burns.
Let’s suppose that for some reason Satellite 2 consumed 0.15m

s
more than Satellite 1; then we

should design our maneuver such that:

∆V1 −∆V2 = 0.15
m

s
(5.20)

In this scenario, a reconfiguration maneuver will be simulated, from a configuration where the
two baselines are in the range 1450 − 1550m to the final configuration according to mission
constraints.
Mission constraint :

• Horizontal and Vertical baselines in the range 500− 550m.

Input Data

The chief reference orbit expressed in absolute relative elements will be:

Xc =


ac
ec
ic
Ωc

ωc
fc

 =


6878km
0.0002

97.4 deg
260 deg
90 deg
315 deg

 (5.21)
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The mean relative elements are computed using GMAT and the Brouwer-Lyddane method.
ic has been chosen in order to realize a Sun-Synchronous orbit.
Time data:

• t0 = 0;

• T = 25Torbit = 141920s.

Initial and final states:

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex 530m (190− x)m
ac · 1000 · δey 530m (190− x)m
ac · 1000 · δix 530m (190− x)m
ac · 1000 · δiy 530m (190− x)m

Table 5.16: TanDEM-X 2: Initial and final relative states of Spacecraft 1.

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex −530m (−190− x)m
ac · 1000 · δey −530m (−190− x)m
ac · 1000 · δix −530m (−190− x)m
ac · 1000 · δiy −530m (−190− x)m

Table 5.17: TanDEM-X 2: Initial and final relative states of Spacecraft 2.

Final states have been chosen in order to keep δe and δi parallel for each of the two satellites
while ϕ1, θ1 and ϕ2, θ2 are out of phase by 180 deg. The initial baselines are:

BH0 = ac · 1000 ·
∣∣∆δi0∣∣ =

∣∣∣∣(1060m
1060m

)∣∣∣∣ = 1499m (5.22)

BV0 = ac · 1000 · |∆δe0| =
∣∣∣∣(1060m

1060m

)∣∣∣∣ = 1499m (5.23)

Using the final states, the final baselines can be computed:

BHf = ac · 1000 ·
∣∣∆δif ∣∣ =

∣∣∣∣(380m
380m

)∣∣∣∣ ' 537m (5.24)

BVf = ac · 1000 · |∆δef | =
∣∣∣∣(380m

380m

)∣∣∣∣ ' 537m (5.25)

Since our controller can achieve a near-optimal ∆V , we can rewrite (5.20) as:

∆Vmin1 −∆Vmin2 = 0.15
m

s
= ∆Vunb (5.26)

Then, we should find the value of x such that (5.26) is satisfied.
Using (2.36), we can write:

∆Vmin1 = 1000

(
ac
nc
ηc

)(
|δe01 − δed1|

2
+ (1− ec)

∣∣δi01 − δid1

∣∣) (5.27)
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∆Vmin2 = 1000

(
ac
nc
ηc

)(
|δe02 − δed2|

2
+ (1− ec)

∣∣δi02 − δid2

∣∣) (5.28)

Substituting in (5.26) we find:

1000

(
ac
nc
ηc

)(
|δe01 − δed1| − |δe02 − δed2|

2
+ (1− ec)

(∣∣δi01 − δid1

∣∣− ∣∣δi02 − δid2

∣∣)) = ∆Vunb

(5.29)√
2 (340m+ x)−

√
2 (340m− x) =

ηc

nc
(

1
2

+ 1− ec
)∆Vunb (5.30)

x =
1

2
√

2

ηc

nc
(

3
2
− ec

)∆Vunb ' 32m (5.31)

Other input data:

Q1 = Q2 = 10 ·


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.32)

R1 = 4 ·

1 0 0
0 1 0
0 0 1

 (5.33)

R2 = 15 ·

1 0 0
0 1 0
0 0 1

 (5.34)

∆V

Figure 5.20: ∆V over time.
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Sat Lower Bound Scenario % more than LB
Sat1 0.8725m

s
0.91m

s
4.3

Sat2 0.7225m
s

0.758m
s

4.9

Table 5.18: TanDEM 2: Comparison between the scenario ∆V with the lower bound.

∆V1 −∆V2 = 0.152
m

s
(5.35)

Relative motion in the RT and RN planes

Figure 5.21: Relative motion in the RN plane.
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Figure 5.22: Relative motion in the RT plane.

Helix formation

Figure 5.23: Helix projection in TN plane.
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Figure 5.24: Helix projection in RT plane.

We can see the final Horizontal Baseline in fig. 5.23 and the Vertical Baseline in fig. 5.24. In
this case the two are equal BH = BV ' 537m. Both the mission constraint and the fuel balance
are satisfied.
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Chapter 6

Model Validation using GMAT

6.1 Chapter Overview

6.1.1 Introduction

The purpose of this chapter is to validate the proposed framework using the high-precision
orbit propagator implemented on GMAT (logo in fig. 3.4).
General Mission Analysis Tool (GMAT) is an open source software system for space mission
design, optimization, and navigation developed by NASA in collaboration with Universities and
Research Institutes around the world.
At this scope, a Scenario will be first simulated using the proposed framework and then validated
using GMAT, in order to show the equality of the results.

6.1.2 Validation Procedure

This kind of analysis will follow the following steps:

• Definition of a Scenario;

• Simulation of that Scenario using the proposed LQR framework;

• Exportation of control accelerations to GMAT environment;

• Orbit propagation using GMAT.

At the end, the state results from the MATLAB and GMAT simulations will be compared.
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Figure 6.1: Validation procedure scheme.

6.2 Scenario for Model Validation

6.2.1 Scenario Introduction

This scenario consists in the deployment of two 3U cubesats (4 kg) from a chief spacecraft in
order to perform proximity operations, the goal is to make them orbit around the chief at a
fixed minimum distance in the RT plane (different for each satellite).
Mission constraints :

• Fixed minimum distance between Sat 1 and virtual chief in the RT plane rmin1 = 495m;

• Fixed minimum distance between Sat 2 and virtual chief in the RT plane rmin2 = 565m;

• Fuel Balance;

• Collision Free deployment.

Input Data

• Xc as in (3.35);

• t0 = 0;

• T = 25Torbit = 141920s;

• tol = 0.05.
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The initial and final states (expressed in meters) of the two spacecraft are:

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex 1m 350m
ac · 1000 · δey 1m 350m
ac · 1000 · δix 1m 250m
ac · 1000 · δiy 1m 250m

Table 6.1: GMAT Scenario: Initial and final relative states of Spacecraft 1.

ROE Variable Initial Final
ac · 1000 · δa 0m 0m
ac · 1000 · δλ 0m 0m
ac · 1000 · δex −1m −400m
ac · 1000 · δey −1m −400m
ac · 1000 · δix −1m x m
ac · 1000 · δiy −1m x m

Table 6.2: GMAT Scenario: Initial and final relative states of Spacecraft 2.

Initial and final states were chosen in order to assure that ∆δe and ∆δi remain parallel
while ϕ1, θ1 and ϕ2, θ2 are out of phase by 180 deg. Because of this, collision avoidance is
assured and the relative motion of the two spacecraft with respect to the virtual chief is defined
by (2.14), (2.15) and (2.16).
Furthermore, the RT plane minimum distance constraints are satisfied:

rmin1 = ac · 1000 · |δed1| = 495m (6.1)

rmin2 = ac · 1000 · |δed2| = 565m (6.2)

We should compute x in order to achieve fuel balance. We know that:

∆Vmin1 = 1000

(
ac
nc
ηc

)(
|δe01 − δed1|

2
+ (1− ec)

∣∣δi01 − δid1

∣∣) (6.3)

∆Vmin2 = 1000

(
ac
nc
ηc

)(
|δe02 − δed2|

2
+ (1− ec)

∣∣δi02 − δid2

∣∣) (6.4)

The condition that must be imposed is:

∆Vmin1 = ∆Vmin2 (6.5)

By solving (6.5) for x we obtain:
x = −225m (6.6)

Other input data:

Q1 = Q2 = 10 ·


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6.7)

R1 = R2 = 3 ·

1 0 0
0 1 0
0 0 1

 (6.8)
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6.2.2 Model Results

State

(a) GMAT Scenario: Spacecraft 1 state evolution.

(b) GMAT Scenario: Spacecraft 2 state evolution.

Figure 6.2: GMAT Scenario: spacecraft state evolution.
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Control

(a) GMAT Scenario: Spacecraft 1 control accelerations.

(b) GMAT Scenario: Spacecraft 2 control accelerations.

Figure 6.3: GMAT Scenario: spacecraft control accelerations.

The accelerations in fig. 6.3a and 6.3b will be exported as a text file and then imported in the
GMAT environment.
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Minimum separation and angle between ∆δe and ∆δi

Figure 6.4: GMAT Scenario: Minimum separation between the applied references and state
vectors of the two satellites.

Figure 6.5: GMAT Scenario: Angle between ∆δe and ∆δi.
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It can be seen from fig. 6.4 and 6.5 how collision avoidance is assured.

Relative motion in the RT and RN planes

Figure 6.6: Relative motion in the RN plane.

Figure 6.7: Relative motion in the RT plane.
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∆V

Figure 6.8: ∆V over time.

Sat Lower Bound Scenario % more than LB
Sat1 0.6625m

s
0.677m

s
2.2

Sat2 0.6625m
s

0.679m
s

2.5

Table 6.3: GMAT Scenario: Comparison between the scenario ∆V with the lower bound.

Since tol = 5%, fuel balance is achieved:

|∆V2 −∆V1|
∆V2

= 0.3% (6.9)
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6.2.3 GMAT Simulation

The script implemented on GMAT is similar to the following pseudocode:

Algorithm 2: GMAT Script Pseudocode.

Chief orbit configuration;
Sat1 orbit configuration;
Sat2 orbit configuration;

Configuration of tanks and engines for Sat1 and Sat2;
Propagator configuration;
Continuous maneuvers definition;
Plots and Reports declaration;
Matlab function call in order to read the accelerations text file;

Begin Mission Sequence;
Control vector (u) and time vector (t) input from text file;
for i in t do

Set engine accelerations u(i) from text file;
Propagate;
Compute state variables to display on plots;

end
End Mission Sequence;

Integrator RungeKutta89
Central Body Earth
Gravity Model JGM-2

Degree: 2
Order: 2

Drag MSISE-90

Table 6.4: GMAT Scenario: Propagator properties.

State variables results

(a) GMAT Sim: Spacecraft 1 state evolution.
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(b) GMAT Sim: Spacecraft 2 state evolution.

Figure 6.9: GMAT Sim: spacecraft state evolution.

6.2.4 Conclusion

Let’s compare the results obtained with both the MATLAB and GMAT simulations:

ROE Variable Desired MATLAB GMAT
ac · 1000 · δex 350m 351m 356m
ac · 1000 · δey 350m 348m 344m
ac · 1000 · δix 250m 250m 249m
ac · 1000 · δiy 250m 253m 252m

Table 6.5: GMAT Scenario: Comparison between MATLAB and GMAT results for relative
state variables of Spacecraft 1.

ROE Variable Desired MATLAB GMAT
ac · 1000 · δex −400m −398m −397m
ac · 1000 · δey −400m −400m −408m
ac · 1000 · δix −225m −225m −224m
ac · 1000 · δiy −225m −228m −223m

Table 6.6: GMAT Scenario: Comparison between MATLAB and GMAT results for relative
state variables of Spacecraft 2.

The greatest error between the simulation results is scored by δiy for Sat 2:

errmax =
δiyMATLAB

− δiyGMAT

δiyGMAT

= 2.2% (6.10)

This error is still very small, then we can consider validated the MATLAB model.
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Chapter 7

Conclusions and future work

7.1 Conclusions about the Model

In this thesis, the workflow presented in 1.4 has been discussed completely and in detail: firstly
explaining all of its parts from a theoretical and mathematical point of view, secondly showing
the implementation method and how it could be applied to real-world scenarios.
The Mean Relative Orbital Elements (ROE) dynamical system, developed by [11, 26] very re-
cently, has been found to be very practical and insightful for Formation-Flying applications in
LEO. The main feature of this model was the linearity, thanks to which a Linear Quadratic
Regulator could be implemented in order to control the relative motion; another incredible ad-
vantage of this dynamic system was the easy visualization of the relative motion with respect
to the Chief spacecraft, thanks to the eccentricity/inclination vector separation [25, 24].
The Controller based on the Linear Quadratic Regulator Theory has proven itself to be very
solid and accurate, either in terms of fuel optimality and desired state tracking accuracy, still
requesting a limited computational load (only one ODE must be solved). The Controller was
then improved for reference trajectory tracking using an elegant Reference Governor method
[29], which has proven to perform outstandingly well.
Collision Avoidance could be implemented easily in the model using a powerful mathematical
tool as Artificial Potential Functions, in combination with the aforementioned Reference Gov-
ernor approach. In order to employ this method, parallelism between relative eccentricity and
inclination vectors must be assured. This assumption can be easily satisfied by proper mission
and maneuver planning, in particular by choosing wisely the desired states.
Fuel Balance between spacecraft in a formation is an often disregarded issue in literature but
yet very important; in fact, it is vital to avoid that one spacecraft would run out of fuel before
the other ones, which is a situation that would cause a loss of controllability for the entire
formation. In this work, this issue has been thoroughly addressed by proposing two different
strategies:

• R matrix values have been exploited in order to increase the fuel consumption of the
less-consuming satellite;

• Fuel Balance has been achieved by smart reconfiguration planning, by choosing wisely
the desired states in order to satisfy the mission goals and constraints.

A discussion about the two strategies has been made, showing how the first one has proven itself
to be quite inefficient from a fuel-optimality point of view compared to the second strategy,
which is then the preferred one.
Finally, the whole model has been succesfully validated by importing its results in the GMAT
environment in order to perform an high-precision Orbit Propagation simulation, and then by
comparing the final results.
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7.2 Future Work

A very interesting idea for future work could be to perform a computational load analysis of
the model an then adapt it for the purpose of implementing it on a real satellite On-board
Computer. The model should be modified in order to use real noisy GPS measurements, which
should be filtered by a Kalman Filter. This could be done by implementing a Controller based
on Linear Quadratic Gaussian theory, which is an optimal control problem where a quadratic
cost function is minimized when the plant has random initial conditions, white noise disturbance
input, and white measurement noise.
After this, the algorithm should be coded in a programming language suitable for On-board
computers, as:

• C

• C++

• Python

After this, a propulsion subsystem testing could be performed, involving state-of-the-art µ-
Newton thrusters such as Field Emission Electric Propulsion thrusters (FEEP), which nowa-
days are starting to be sold also for commercial applications.
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