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Abstract 

This thesis presents a sensor-orientated approach to on-orbit position uncertainty 

generation and quantification for both ground-based and space-based surveillance 

applications. A mathematical framework based on the least squares formulation is 

developed to exploit real-time navigation measurements and tracking observables to 

provide a sound methodology that supports separation assurance and collision avoidance 

among Resident Space Objects (RSO). In line with the envisioned Space Situational 

Awareness (SSA) evolutions, the method aims to represent the navigation and tracking 

errors in the form of an uncertainty volume that accurately depicts the size, shape, and 

orientation. Both radar sensor and Passive optical sensor (Coupled Charged Device (CCD)) 

have been used in order to understand and compare the performance limitations that each 

sensor present. Simulation case studies are then conducted to verify under which sensors 

performance the method meets Gaussian assumptions, with a greater view to the 

implications that uncertainty has on the cyber-physical architecture evolutions and 

Cognitive Human-Machine Systems required for Space Situational Awareness and the 

development of a comprehensive Space Traffic Management framework. 
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1. Introduction 

The ever-increasing number of Resident Space Objects (RSO) is strongly highlighting the 

need for an evolution from traditional Space Situational Awareness (SSA) capabilities 

towards Space Domain Awareness (SDA) [1, 2]. Analogous to its atmospheric counterpart 

(i.e., Air Domain Awareness) SDA aims to elevate current SSA capabilities through the 

dissemination of confidence-building measures, necessary to reliably estimate the future 

states of RSO’s with the aim of optimal coordination and accommodation in a future Space 

Traffic Management (STM) system. Confidence-building measures ideally encapsulate the 

functional characteristics of an RSO (e.g., shape and size), and, when possible, mission 

objectives and planned operational activities of active spacecraft. Even so, an increase alone 

in the available data will not solve the current issues of RSO ambiguity and collision 

avoidance subjectivity – contextualizing information must be used together with 

transparent and traceable Time and Space Position Information (TSPI) reflective of sensor 

performance. Cooperative RSO equipped with TSPI enabling systems such as GNSS and 

data sharing capabilities equivalent to Automatic Dependent Surveillance Broadcast (ASD-

B) system will be an important aspect in managing uncertainty in the on-orbit environment. 

Nonetheless, due to the inherently high threat of space debris, it is imperative that the notion 

of transparent and traceable TSPI information extends to classification of non-cooperative 

RSOs. In most cases, the position of large orbiting object (>10 cm) can be predicted with 

reasonable uncertainty, based upon data accrued by the SSA Space Surveillance and 

Tracking (SST) segment and other non-government owned ground-based sensors (Table 1). 

Ground-

Based 

System 

Devices Description 

 

Location 

AN/FPS-85 UHF Phased-array radar0 

Maximum peak power: 30 MW, it can 

detect 1.0 𝑚2objects in 

geosynchronous orbits 

Florida, USA 

Globus II 
X-Band mono-pulse radar with 

27m parabolic dish antenna 

Track spacecraft of all type up to 

range of 4,000 Km 

Vardo, 

Norway 

ZEISS 

Telescope 

1 m-diameter telescope, FOV 

of about 0.7º 

can detect and track near-GEO 

objects up to magnitudes of +19 to 

+21 (down to 10–15 cm in size) 

Tenerife, Spain 

NASA-LMT 
3 m (9.8 ft) aperture liquid-

mirror telescope 

Detection threshold of 17.5 mag, can 

detect objects > 3cm at distance of 

several thousand kilometers 

 Cloudcroft, 

New Mexico 

Table 1. Overview of Space Surveillance and Tracking (SST) ground-based systems 

Although ground-based systems will continue to be a vital aspect in filling the SST role, the 

feasibility of Space-Based Space Surveillance (SBSS) is being explored to monitor the Low 

Earth Orbit (LEO) [3] and Geosynchronous Orbit (GEO) regions [4,5], due to the advantage 

of persistent coverage of smaller sized RSOs (<10cm) elusive to traditional ground-based 

systems. Understandably spaceborne tracking of RSOs is not a trivial matter [6,7] – effective 

coverage of the space environment will require constellations of SBS platforms each under 

https://en.wikipedia.org/wiki/Aperture
https://en.wikipedia.org/wiki/Liquid-mirror_telescope
https://en.wikipedia.org/wiki/Liquid-mirror_telescope
https://en.wikipedia.org/wiki/Cloudcroft,_New_Mexico
https://en.wikipedia.org/wiki/Cloudcroft,_New_Mexico
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complex tasking regimes to overcome performance and physical constraints [8]. Given that 

true collisions are a rare space event, the cost of platforms devoted to debris detection may 

exceed their benefit given that there would be minimal power available for mission-oriented 

payloads. This is especially the case for spaceborne radar due to the higher power 

requirements associated with this sensor. For future SBSS platforms to be commercially and 

economically viable, it is imperative that a low size weight, power, and cost (SWaP-C) 

approach must be taken. Regardless of the sensor suite chosen, SBSS platforms will be 

subject to dynamic positional errors from onboard TSPI/Navigation systems, in contrast to 

traditional ground-based systems that perform observations from accurately surveyed 

locations. As such, there is a strong case for analysis on the effect of initial RSO position 

estimation based on both navigation and tracking system errors. Nevertheless, in both 

ground-based and SBSS applications, a sensor-focused approach must be taken to establish 

an unambiguous initial estimate of RSO uncertainty. 

In the context of SSA, realistic orbital uncertainty directly underpins the effectiveness of 

operational activities that include the following: RSO Orbit determination, data or track 

association/correlation, maneuver detection, the computation of the probability of collision 

for conjunction assessment and sensor management [9,10]. Within the SSA/STM research 

community, Sensor Management is comprised of Sensor Tasking (ST) and Sensor 

scheduling (S2). ST is defined as the generation of a set of tasks that a sensor or sensor 

network is intended to accomplish. On the other hand, Sensor Scheduling (S2) refers to the 

specific decisions involved in the tasks, to include the exact definition of when and where a 

sensor is to be used. ST and S2 are typically the constituting elements of an optimal control 

problem to dynamically assign the available sensor resources (ST) to accomplish specific 

SSA tasks (S2) [10]. 

Most importantly, these processes require the knowledge of how the uncertainty of RSOs 

will propagate over time subject to orbital dynamics and perturbations from residual 

atmospheric drag, solar radiation pressure, non-spherical Earth, and other celestial bodies. 

Largely, Orbital uncertainty propagation methodologies can be grouped under either 

Linear and Non-Linear Methods [11]. Typical Non-Linear methods include Unscented 

Transformations, Polynomial Chaos Expansions, and Fokker Plank Methods. Undoubtedly, 

these methods can capture well the non-linear growth of RSO uncertainty subject to orbital 

dynamics, however, can be computationally burdening due to the high dimensionality of 

the problem especially for longer propagation periods. The mathematical derivation of these 

methods is beyond the scope of this thesis, the reader is referred to reference [11]. A popular 

alternative is to construct a linearized model of the dynamics so that the uncertainty about 

an RSO can be propagated in a computational efficient manner. However, linearized 

propagation methods are not without shortcomings -which if not explicitly quantified have 

significant implications on the realism of subsequent analysis made based on the estimated 

uncertainty. Uncertainty quantification is defined as follows: ‘The process of determining the 

various sources of errors and uncertainties, properly characterizing these errors and uncertainties, 

and the roll up of these in the prediction of the quantities of interest”[10]. In the context of 

linearized uncertainty propagation methods, two fundamental assumptions are made: 
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 A linearized model sufficiently approximates the dynamics of neighboring 

trajectories with respect to a nominal trajectory. 

 The uncertainty can be completely characterized by a Gaussian probability 

distribution. 

To quantify the uncertainty, we are interested in testing the uncertainty realism, which 

under Gaussian assumptions (linear), coincides with covariance realism – the 

characterization (size, shape, and orientation) of the (gaussian) uncertainty of the RSO in 

question. Various covariance realism tests and metrics have been used to assess realism with 

a primary focus on determining the length of Gaussian validity, i.e., the amount of time 

(commonly described in orbital periods) a linearized uncertainty propagation method can 

be used to confidently and accurately describe the estimated position uncertainty of an RSO. 

Nonetheless, by reiteration of the above assumption, linear propagation methods are only 

valid if the initial RSO uncertainty (input) is in fact Gaussian. This presents the necessary 

case of applying covariance realism testing to the sensor level with the aim of quantifying 

tracking and navigation system performance characteristics that support, or not, a 

linearized (Gaussian) method to describe initial RSO position uncertainty. By taking a 

sensor level perspective to model tracking and navigation system uncertainty, this thesis 

addresses three SST representative case studies: a traditional ground-based radar, a 

proposed Millimetre Wave (MMW) Space-Borne Radar (SBR) and a Space-Based passive 

Optical Sensor for the tracking of space debris aboard larger spacecraft platforms such as 

the International Space Station (ISS) and future space transportation vehicles [6,12]. 
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2. Literature review 

2.1 History of debris environment 

The population of objects in orbit around the Earth has dramatically increased in the past 

decade. In April 2005, the National Aeronautics and Space Administration (NASA) 

performed its first collision avoidance maneuver on a robotic spacecraft (Terra satellite). 

Two years later, the Chinese satellite Fengyun-1C was voluntarily destroyed, causing the 

largest increase in debris in space history (3,000 objects larger than 10 cm). On February 10th 

2009, the collision between operational communication satellite Iridium 33 and retired 

Russian communication satellite Cosmos 2251 generated 2,000 debris larger than 10 cm and 

thousands smaller pieces at an altitude of 800 km. The effects of these collision can be 

observed in the step changes in Figure 1.  

 

Figure 1: Monthly number of objects in the earth orbit cataloged by the US Space Surveillance Network (SSN), 

organized by object type 

It is now quite common that the International Space Station (ISS) needs to be moved to avoid 

collisions. In 2015, four collision avoidance maneuvers and one “shelter-in-Soyuz” 

procedure were performed by the ISS [36, 37]. The “shelter-in-Soyuz” procedure is a safety 

protocol that requires the three astronauts on-board to seek emergency shelter in the Soyuz 

capsule, docked to the space station, to prepare for a getaway. ESA astronaut Tim Peake 
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took a photo, figure 2, from inside the International Space Station cupola in 2016, showing 

a 7 mm-diameter circular chip gouged out by the impact from a tiny piece of space debris, 

possibly a paint flake or small metal fragment no bigger than a few thousandths of a 

millimeter across. The background just shows the inky blackness of space. 

 

 Figure 2: ESA FONT 

Beyond 4 km/s, depending on the materials, an impact will lead to a complete breakup and 

melting of the projectile, and an ejection of crater material to a depth of typically 2–5 times 

the diameter of the projectile. 

In hypervelocity impacts, the projectile velocity exceeds the speed of sound within the target 

material. The resulting shockwave that propagates across the material is reflected by the 

surfaces of the target. The superimposition of progressing and reflected waves can lead to 

local stress levels that exceed the material’s strength, thus causing cracks and the separation 

of spalls at significant velocities. With decreasing target thickness, the effects will range 

from cratering, via internal cracks, to spall detachment to, finally, clear-hole perforations. 

ESA’s space projects use damage assessment tools in combination with debris and 

meteoroid environment models to predict potential damage from hypervelocity impacts, 

and to define effective protection measures through shielding and design. 

The figure 3 shows the damage that a spherical object with 1.2 cm diameter causes with an 

impact velocity of 6.8 km/s on a metallic layer  
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Figure 3: Space debris damage [ESA font] 

Space debris environment in number 

There are currently 34,000 objects orbiting the Earth that are at least 10 cm wide. Among 

them, more than 5,000 are spacecraft (1,950 are still operational), 22,300 are number of debris 

objects regularly tracked by Space Surveillance Network (SSN) and maintained in their 

catalogue (some of these resulted from the Iridium 33 collision with Cosmos 2251 and the 

destruction of Fengyun-1C). In addition to these relatively big objects, it is estimated that an 

extra 900,000 objects larger than 1 cm and 128 million objects larger than 1 mm are in orbit. 

Even submillimiter objects represent a threat for humans and satellites because of the very 

high speed that orbiting objects have relative to each other: the average relative velocity of 

satellites orbiting at a Low Earth Orbit (LEO) is 10 km/s and the average relative velocity of 

satellites orbiting at the Geosynchronous Earth Orbit (GEO) is 0.5 km/s. The table 2 shows 

the number of resident space objects (RSO) updated in February 2020 

 

Type of object Number of Object 
Number of rocket launches since the start of the space age in 1957 About 5560 

Number of satellites these rocket launches have placed into Earth orbit About 5500 

Number of these still in space About 2300 

Number of debris object regularly tracked by SSN and maintain in their 

catalogue 

About 22300 

Estimated number of break-ups, explosions, collisions or anomalous events 

resulting in fragmentation 

More than 500 

Total mass of all space objects in Earth orbit More than 8800 tonnes 

Number of debris objects estimated to be in orbit > 10 cm 34 000 

Number of debris objects estimated to be in orbit from 1 cm to 10 cm 900 000 

Number of debris objects estimated to be in orbit from 1 mm to 1 cm 128 million 
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Table 2: Resident Space Object data [ESA, February 2020] 

The term Resident Space Object includes different type of object that could be, for example, 

an operational spacecraft or a rocket body piece or a debris with an unknown origin. The 

figure 4 shows the evolutions of the RSO number in all orbit underling the difference own 

nature, described in Table 3.  

 

Figure 4: Evolution of space environment in term of number and type of RSO 

 

Table 3: Object Classification 

The figure highlights that an important percentage of the number of the RSO derive from a 

collision.  

Collision probabilities with large orbiting objects (>10 cm) can be predicted with reasonable 

uncertainties, based upon data accrued by SSN and other sensor such the European Space 

Agency’s Optical Ground Station, allowing spacecraft (S/C) to maneuver, reducing the 

probability of collision. However, the same cannot be said for smaller objects which have 

less, lower fidelity tracking data, or no tracking data from ground-based sensors. With the 
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increasing number of small objects in orbit improved debris detection, coupled with 

predictive modeling is essential to reduce collision probabilities. Collisions with small 

untracked debris are responsible to cause many anomalies and continuous degradation (e.g. 

degraded solar cells) of satellites performance. 

If we want to express the space debris collision in everyday terms, we can use the kinetic 

energy equation and we observe that:  

 A 2 mm space debris fragment colliding at 10 km/s is like being hit with a cricket ball 

at 100 km/hour 

 A 10 mm fragment at the same speed is like being hit by a large motorbike at 100 

km/hour 

 A 10 cm RSO fragment at 7 km/s has the same kinetic energy of 6 Kg TNT 

Passive techniques, like shielding, are used against smaller debris or against meteoroids that 

cannot be tracked either [43]. For example, the ISS is shielded to resist debris smaller than 

1.4 cm but there are over 1200 objects with diameters greater than 1.4 cm in orbits crossing 

the ISS orbit and some part of S/C, like solar panels or optical aperture, are hard to shield. 

The figure 5 shows the number of fragmentation events per event cause: 

 

 Figure 5: Absolute number of fragmentation event per event cause 

A detailed analysis indicates that the predicted catastrophic collisions and the resulting 

population increase are nonuniform throughout LEO. About 60% of all catastrophic 

collisions occur between 900-1000 km altitudes. The figures 6 and 7 underline the 

concentration of the LEO object in term of Perigee altitude and inclination of the orbit.  
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Figure 6: Concentration of RSO in term of Number of objects in LEO 

 

Figure 7: Concentration of RSO in term of Area Distribution in LEO 

 

The current debris population in the LEO region has reached the point where the 

environment is unstable and collisions will become the most dominant debris-generating 

mechanism in the future. Even without new launches, collisions will continue to occur in 

the LEO environment over the next 200 years, primarily driven by the high collision 

activities in the region and will force the debris population to increase, as shown in figure 

8. 
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Figure 8: Projected amount of RSO resulting from the Kessler Syndrome if spacecraft is stopped for the next 

200 years (Image: NASA) 

This population growth is due to higher spatial densities, larger and more massive rocket 

bodies and spacecraft with near-polar inclinations. The number of objects 10 cm and larger 

triples in 200 years, leading to a factor of 10 increase in collisional probabilities among 

objects in this region. In reality, the situation will undoubtedly be worse because spacecraft 

and their orbital stages will continue to be launched.  

Another concern is that debris stay in orbit for a very long time. Due to friction with the 

atmosphere, debris at relatively low altitude (under 700 km) re-enter the atmosphere, but 

sometimes only after decades. However, objects at higher altitude, particularly in GEO 

orbits, never re-enter the atmosphere and therefore, since launches continue, they 

accumulate with time. The GEO orbit regime is widely used for telecommunications and 

Earth observations, as well as space science. If no orbit maintenance maneuver is performed 

on a GEO satellite, gravitational perturbations from the Sun and the Moon make its 

inclination 2 oscillate around the Equator with an amplitude of 15 degrees. This can pose a 

threat for operational GEO satellites that orbit at the Equator as the inactive satellites drift 

back through the GEO belt. A solution is to increase the altitude by a few hundred km at 

the end of the spacecraft life, moving the satellite into a “graveyard orbit”.  

The figure shows the evolution of the number of objects since the first satellite was launched 

in 1957. The figure 9 shows RSO orbiting not only in LEO and includes also RSO in GEO, 

underlining where the debris concentration is focus. 
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Figure 9: Evolution of the number of tracked objects since the first satellite in orbit in 1957. In each panel, the 

Earth on the left shows debris in LEO orbits, and the Earth on the right shows debris in GEO orbits 

The dots represent space objects in LEO and GEO orbits [36]. Note that only tracked objects 

cataloged in the Space Surveillance Network are shown, so a large number of small debris 

(< 10 cm) are not represented. The number of objects has been increasing dramatically over 

the last few decades: debris keep accumulating in orbit, dangerously increasing the 

probability of collision with operational satellites. Separation assurance and Collision 

avoidance requires the knowledge of the position and velocity of all objects in orbit. 

Occasionally, satellite mission operators can keep track of their satellites with good accuracy 

using Global Positioning System (GPS) data, but the trajectories of all the other orbiting 

objects are much harder to follow. For this reason, Space Situational Awareness (SSA) and 

Space Surveillance Network (SSN) are becoming a primary area of interest for ESA and 

NASA respectively. 
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2.2 Space Situational Awareness 

The term Space Situational Awareness (SSA) refers to the ability to view, understand and 

predict the physical location of natural and manmade objects in orbit around the Earth, with 

the objective of real-time surveillance and collision analysis on a limited basis. SSA has 

become a prominent concern for both military and commercial systems, largely due to 

increasing of space assets. Two organizations support the SSA process worldwide: Joint 

Space Operations Center (JSpOC) and the Space Data Association (SDA). SDA, an 

international organization of satellite operators working to, in part, enhance the “accuracy 

and timeliness of collision warning notifications”, was established for satellite operators to 

share the most up-to-date satellite data [44]. JSpOC is currently the single 24/7 global 

provider used in collision avoidance due to the accuracy and timeliness of the available 

information [45] and it coordinates the input from various sensor around the world. In order 

to describe the RSO population (catalogued and not yet catalogued population), 

mathematical models have been developed, as will be described in Section 2.2.2. The SSA 

system can be divided in two different sub-system, as described in the figure 10: 

  

Figure 10: Space Situation Awareness System 

As described in the previous figure, effective SSA requires constant surveillance and 

tracking of the space environment, a task traditionally performed by a network of ground-

based observation facilities known as the Space Surveillance Network (SSN), owned and 

operated by the US Department of Defence (DoD). SSN (and in general all space surveillance 

systems) have to make the following actions: 

 Detects new man-made objects in space 

 Produces a running catalog of man-made space objects 

 Determines which country is responsible for an orbiting or reentering space object 

 Charts the present position of space objects and plots their anticipated trajectories 

 Predicts when and where a space object will reenter the Earth’s atmosphere 

The United States Space Command SSN is composed of ground and space-based sensor 

systems, as shown in figure 11, whose charter is to track human-made resident space 



21 

 

objects. These data are compiled daily into Keplerian element sets and distributed to the 

user community via NASA Goddard Space Flight Center’s Orbital Information Group. All 

the un-classified spacecraft currently in orbit are cataloged by the United States Space 

Command in the Two-Line Element (TLE) catalog.  

Two Line Elements is a format for distributing orbital elements data considering all objects 

orbiting around Earth (both operative satellites and debris) cataloged by North American 

Aerospace Defense (NORAD) Command, a joint organization of Canada and US that 

provides aerospace warning and air sovereignty. The orbits of the TLE catalogue objects are 

maintained thanks to the observations performed by the US Space Surveillance Network 

(SSN). With 75.7%, the vast majority of catalogue objects reside in the LEO region. Another 

8.7% of the catalogue objects are in or near the GEO ring. The remainder of the catalogue 

mainly belongs to the MEO region. The limiting size of the objects included in the catalog 

(due to limitations in sensors power and in observation and data processing procedures) is 

about 3 to 10 cm below a few thousands km of altitude and about 0.5 - 1 m in higher orbits 

(up to the geostationary ones). 

 

Figure 11: Space Surveillance Network with ground sensors 

Albeit, ground based radar, laser and telescope systems will continue to provide a vital role 

in providing situational awareness of the space environment, however the feasibility of 

conducting space-borne measurements has been identified [5, 46]. This is credit of onboard 
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sensors ability to offer greater performances in terms of accuracy, larger field of view and 

weather independency allowing space-borne measurements to provide a wider set of useful 

observations [47]. Further, space-based observation systems are not subject to the scattering, 

diffraction, turbulences and aberrations that exist within the atmosphere [48]. 

Thus, the strengths of Space-Based Space Surveillance (SBSS) for SSA and space debris 

observations are: 

 Full longitudinal GEO belt coverage with one sensor enabling catalogue generation 

and maintenance  

 Tracking in all orbital regions (LEO, MEO, GTO, Molniya, NEOs) for orbit 

refinements  

 Vicinity to LEO small debris enables in-situ measurements  

 No restrictions by weather, atmosphere and day/night cycle, hence operational 

robustness  

 High astrometric accuracy (no atmospheric seeing, diffraction limited design 

possible)  

 No geographical and -political restrictions 

The use of radar sensors to provide space-borne measurements has been explored in the 

past, however due to challenges associated with size & power consumption, there has been 

a shift in research towards optical based systems. Technological advancements in optical 

sensor principles (e.g. Coupled Charged Device (CCD) [46], complementary metal–oxide–

semiconductor (CMOS), photon counting sensors [47,49]) have significantly increased 

optical detection performance, demonstrating the ability to track a 3 cm diameter object at 

a 3000 km range [47,50]. Nevertheless, orbital estimation via optical tracking is a difficult 

task due to the relatively limited field of view the sensors offer and the subsequent 

extremely short observation arc. To address this problem, the use of multi-spacecraft 

approach has been proposed [47]. This concept uses a formation of coordinated spacecraft 

to work in synergy and compile tracking and estimation data to obtain more accurate and 

complete situational awareness. 

2.2.1 SSA at European Space Agency (ESA) 

The Space Situational Awareness (SSA) is an initiative of ESA created in 2008 [51]. SSA is 

defined as a comprehensive knowledge, understanding and maintained awareness of: 

 the population of space objects 

 the space environment 

 the existing threats and risks 

As described in reference [71], the overall aim of the SSA is to support the European 

independent utilization of and access to space for research or services, through providing 

timely and quality data, information, services regarding the environment, the threats and 

the sustainable exploitation of the outer space surrounding our planet Earth. While some 

European optical and radar facilities exist for tracking and imaging space objects, Europe 
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has no systematic, operational capability for space surveillance, and is therefore strongly 

dependent on external information, mainly from the US. 

The SSA programme will, ultimately, enable Europe to autonomously detect, predict and 

assess the risk to life and property due to remnant man-made space objects, re-entries, in-

orbit explosions and release events, in-orbit collisions, disruption of missions and satellite-

based service capabilities, potential impacts of Near Earth Objects, and the effects of space 

weather phenomena on space and ground-based infrastructure. Space-based systems have 

become indispensable to many services critical to Europe’s economies and governmental 

functions, including those related to security. Despite of recent progress in implementing 

space debris mitigation measures [2] the frequency of in-orbit fragmentation events is still 

significant, as shown in figure 5. Studies finds that while considering only those events 

which resulted in more than 50% of the fragments having an orbital lifetime greater than 20 

years, one still obtains a yearly rate of about 3.4 breakups as the average of the last 10 years.  

The SSA programme is active in three main areas [51]: 

 Space Surveillance and Tracking of objects in Earth orbit (SST): comprising active and 

inactive satellites, discarded launch stages and fragmentation debris that orbit the 

Earth. 

 Monitoring Space Weather (SWE): comprising particles and radiation coming from 

the Sun that can affect communications, navigation systems and other networks in 

space and on the ground 

 Watching for Near-Earth Objects (NEO): comprising natural objects that can 

potentially impact Earth and cause damage and assessing their impact risk and 

potential mitigation measures 

The first aspect, the survey and tracking of space debris in the SSA program, is the context 

of this thesis. The central aim of SST is to provide an independent ability to acquire prompt 

and precise information regarding objects orbiting the Earth. Using this data, a wide range 

of services will be provided, such as warning of potential collisions between these objects 

or alerting when and where debris re-enters the Earth’s atmosphere. This data will be stored 

in a catalogue, made available to SSA customers across Europe. 

SST can be summarized as follows: 

 full coverage of LEO (Low-Earth orbit (below 2000 km altitude)), GEO 

(Geostationary Earth orbit) and near-circular MEO (Medium Earth orbit) orbits 

 autonomous build-up and maintenance of a catalogue of all observable space objects 

 detection, tracking, orbit determination, target correlation, and physical 

characterization for objects in LEO, MEO and GEO with a reliability and sensitivity 

matching the one of the US Space Surveillance Network (SSN) 

 estimation of orbit maneuvers 

 detection of on-orbit break-up events and correlation with the source object 

The SSA-SST Space Surveillance Test and Validation Center (SSTC) is located at ESA/ESAC, 

Spain. Some main elements are required to ensure that the SST segment can meet critical 

customer requirements and provide reliable operational services: 

 A data catalogue. The core of the SST Segment is the catalogue; this contains 

information on everything that has been detected in orbit. In order to produce this 
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catalogue, it is necessary to: reconstruct an orbit from the data that is produced by 

the sensors (orbit determination); check to see if this object has already been seen and 

is already in the catalogue (correlation); and monitor the data in the catalogue so that 

sensors can be tasked to update the information when needed. 

 A network of sensors to accurately detect objects orbiting the Earth. These sensors 

are usually either optical or radar systems. They are divided into two groups: 

surveillance or tracking. 

a) Surveillance sensors perform the routine task of ensuring that data in the tracking 

catalogue is accurate and up-to-date. They can observe multiple objects 

simultaneously and continually add to the quality of the data in the catalogue. 

b) Tracking sensors are used when very high-precision data are needed about a 

specific object. This happens, for example, if it is predicted that this object will 

collide with an operational satellite. 

2.2.2 Modeling the orbital debris environment 

In order to describe the spatial distribution of the debris population (catalogued and not yet 

catalogued population), mathematical models have been developed. Models are used to 

take the information obtained by measurements and turn them into useful estimates of the 

debris population. 

As described in reference [71], the idea is to put together as accurate a picture of the past, 

present, and future environments as possible. Future projections are linked to human 

activities, launch rates and explosion rates. 

Heavy-duty modeling tools have been developed to answer these types of questions. The 

modeling tools require informations on historical launch and explosion behavior, they 

propagate debris orbits, describe the orbital behavior of breakup clouds, and compute rates 

of accidental collisions and their effects on the environment. 

Most models take the cataloged population as a basis and add fragments from known 

breakups in the micron to 50 cm size regime to account for the incompleteness of the 

catalogue. For sizes larger than 50 cm, the breakup model parameters are calibrated such 

that the theoretical population fits the catalogued population. For the size range between 1 

mm and 50 cm, however, observational data are sparse and the uncertainties in the models 

increase considerably with decreasing object size. However, validation of the models in the 

size range from a few millimetres to 50 cm can be achieved with special ground-based 

measurement campaigns using high performance radar facilities or with space-based 

measurements. When a new explosion or a new collision happens in the space debris 

environment, debris models have some problems about their efficiency. 

The two more important software tools are the MASTER-2009 (Meteoroid and Space Debris 

Terrestrial Environment Reference) and NASA Orbital Debris Engineering Model (ORDEM 

2010), respectively the ESA and NASA reference software tools which describe the earth’s 

debris environment.  
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2.3 Uncertainty in the orbital environment 

The precise knowledge of a RSO's position and velocity is and will continue to be an 

increasingly important factor for the future space traffic management programs. These 

estimations are provided by non-cooperative and cooperative systems. Cooperative systems 

rely on state estimates from on-board navigation systems (e.g. GNSS, IMU) and on their 

proactive exchange with all other vehicles in potential collision course. Non-cooperative 

surveillance is generally provided by tracking systems such as ground- and space-based 

radar or electro-optical systems, which do not require response by the tracked object. These 

systems are subject to errors that are a function of physical phenomenon or from the 

mathematical extrapolation itself. Navigation and tracking errors are the differences 

between the measured states and the actual states of the space vehicle. Also attitude and 

timing error are relevant but at this stage they won’t consider. Errors can particularly arise 

from either within the reference coordinate system, from effects such as precession and 

polar motion or from errors specific to the position measurement such as clock accuracy, 

and atmospheric effects (ionospheric and tropospheric refraction) [11]. Every sensor has, 

therefore, an accuracy and this lead to have a measurement error that affects the sensor 

performance. Tables 4 – 8 illustrate the performance of common spacecraft navigation and 

ground tracking related systems. 
 

Spaceborne attitude 

sensor(s) 

performance 

Accuracy  

[mrad] 

Limitations 

Sun Sensor 0.2-200  

Star Tracker 0.005-0.3 Angular Rotation, Sun, Earth and Moon stray light  

Earth Horizon Sensor 1-20 Accuracy is limited by the horizon uncertainty. 

Applicable to LEO spacecraft 

Table 4: Spaceborne attitude sensors(s) performance 

Spaceborne Inertial 

Sensors 

Accuracy Limitations 

Single-axis gyroscope Angular random walk: 

0.035–1 [ μ rads /s] 

Subject to short and long term 

bias instability 

Linear accelerometer 20–400 μm/s2 Subject to short and long term 

bias instability 

Table 5: Spaceborne inertial Sensor(s) performance 

GNSS Sensor Accuracy (3𝝈) 
 Radial (R) In- Track (S) Cross Track (W) 

GPS 20 m 13 m 7.3 m 

Table 6: Reference spaceborne GNSS performance 
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Ground Station Radar Min. size range 

Threshold 

Altitude Range (Km) 

Haystack (US) 

 

1 cm 350 to 2000 

HAX (US) 

 

1 cm 350 to 2000 

Goldstone (US) 

 

2 mm to 2 cm 300 to 3200 

Cobra Dane (US) 

 

4 cm 500 to 2300 

Tira (ESA) 

 

1 cm 1000 

EISCAT (ESA) 

 

2 cm 500 to 1500 

Graves (ESA) 

 

10 cm LEO 

Table 7. Characteristics of the important radar in the world 

Telescope Min size range / 

magnitude threshold 

Region of survey 

LMT (US) 

 

1-5 cm / 24 mag LEO 

Zimerwald (ESA) 

 

19 mag GEO 

MCAT (US) 

 

1 cm LEO 

Tenerife (ESA) 

 

10-20 cm / 21 mag GEO 

Table 8. Characteristics of the important telescope in the world 

Representation of measurement errors is a key aspect in current orbital coordination and 

deconfliction operations.  

Moreover, modelling errors occur from discrepancies in the orbital dynamic model. Errors 

included in the dynamic model are classified as the differences between the nominal model 

parameters and the real model parameters, which can be further categorized as rather 

gravitational or non-gravitational in nature: 

 gravitational parameters include mass of the Earth, geopotential coefficients, solid 

Earth and ocean tide perturbations, mass and position of the Moon and planets, as 

well as general relativistic perturbations.  

 Drag (due to atmospheric density), solar and Earth radiation pressure, magnetic 

perturbations and spacecraft thrusting (actuating errors) are the non-gravitational 

accelerations required for consideration in orbital modelling [11]  

The general analytical expressions for these perturbations will provide in Section 2.5. 
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To understand and analyze the RSO position in an inertial reference frame it will be 

necessary relate different type of measurement error, as described in the following section  

2.3.1 Unified sensor-centric approach 

Considering the prospective certification requirements for non-segregated Unmanned 

Aircraft Systems (UAS) operations in all classes of airspace, an unified approach for multi-

platform Separation Assurance (SA) and Sense and Avoid (SAA) was proposed [53]. This 

computationally inexpensive method allows to efficiently and effectively combine the 

measurement errors related to various navigation and tracking systems and to determine a 

combined avoidance volume that's position, shape, size and evolution can be computed in 

real-time [53]. As described in Ref. [73], The unified approach accounts for navigation and 

tracking measurements as well as relative dynamics and maneuvrability and can adapt to 

both cooperative and non-cooperative encounters by considering the position, velocity and 

attitude uncertainties of both tracked and host platforms as well as their statistical 

correlation:  

 A non-cooperative scenario in the orbital environment is defined as the encounter 

between a host spacecraft and space debris or potentially an uncooperative spacecraft 

(tracked by non-cooperative means), where only the host spacecraft has the ability to 

prevent a potential collision.  

 A cooperative scenario is defined as when all potentially colliding RSO have the 

means to exchange position information and when possible perform de-confliction 

maneuvers. 

This sensor-centric approach has clear applicability to the orbital domain, where 

deconfliction processes have long relied on a simplified representation of measurement 

uncertainty. 

In this thesis only a non-cooperative scenario will be analyzed by using, first, a Millimetre 

Wave (MMW) Space-Borne Radar (SBR) and then a passive Optical Space-Based 

Surveillance multi-platform system 
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2.4 Study of accuracy sensors  

This thesis will be focus on analyze the sensor performance such as radar and electro optical 

sensors. As described before, it is necessary create an error model for analyze the sensor 

performance that will allow us to quantify the RSO position uncertainty. 

2.4.1 Radar Error Model 

The SNR (Signal to Noise Ratio) of the radar is a key measure of its performance, which is 

defined as the ratio of signal power to noise power at the output of the radar receiver.  

𝑆𝑁𝑅 =
𝑃𝑟
𝑃𝑛
=

𝑃𝐺𝑡𝜎𝐴𝑟𝜏

(4𝜋)2𝑅4𝑘𝐹𝑇0𝐿
 (1) 

Where: 

𝐺𝑡: Radar transmit antenna gain (power ratio) 

𝑃: Peak transmitted power [W] 

𝐴𝑟: Radar receive antenna effective aperture area [𝑚2] 

σ: Target radar cross-section (RCS) [𝑚2] 

R: Range from radar to target [m] 

F: Noise figure of the receiver subsystem 

L: Radar system losses  

T0: Standard Temperature [290 K] 

k: Boltzmann’s constant [1.38064852 × 10−23 𝑚2Kg 𝑠−2𝐾−1] 

𝜏: Radar pulse duration [sec] 

Target state vector information is measured relative to the radar site in a spherical 

coordinate system in range, elevation and azimuth (𝑟𝑅𝐷𝑅 , 𝜂𝑅𝐷𝑅 , 𝜖𝑅𝐷𝑅  respectively). The 

measurements in each of the elements are prone to specific error sources that include the 

following [27]: 
𝜎𝑟𝑅𝐷𝑅

2 = 𝜎𝑅𝑁
2 + 𝜎𝑅𝐹

2 + 𝜎𝑅𝐵
2  (2) 

where 𝜎𝑅𝑁 is an SNR dependent random range measurement error, which can be calculated 

as: 

𝜎𝑅𝑁 =
𝑐

2𝐵√2(𝑆NR)
 (3) 

Where: B is waveform bandwidth, c is the speed of light and signal to noise ratio (SNR). 𝜎𝑅𝐹  

is a random measurement error having fixed standard deviation, due to noise sources in the 

latter stages of the radar receiver. 𝜎𝑅𝐵 is a range bias error associated with the radar 

calibration and measurement process. We assume the Zero-mean condition, so. 𝜎𝑅𝐵 and 𝜎𝑅𝐹  

are equal to zero. 

Radar angular measurements are commonly made using monopulse receive antennas that 

provide a difference pattern characterized by a deep null on boresight. The difference 

pattern formed by these beams may be used to measure target angular position with a single 

signal transmission. The measurement accuracy in each angular coordinate is characterized 

by the RMS of the SNR dependent random angular measurement error, angular bias, and 
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random measurement error. As with the range error, we assume angular bias and random 

measurement error to be 0 under the Zero-mean condition 
𝜎𝜖𝑅𝐷𝑅

2 = 𝜎𝐴𝑁𝜖
2 + 𝜎𝐴𝐹𝜖

2 + 𝜎𝐴𝐵𝜖
2  (4) 

𝜎𝜂𝑅𝐷𝑅
2 = 𝜎𝐴𝑁𝜂

2 + 𝜎𝐴𝐹𝜂
2 + 𝜎𝐴𝐵𝜂

2  (5) 

As with the range errors, the SNR dependent error dominates the radar angle error: 

𝜎𝐴𝑁 =
𝜗

𝑘𝑚√2(𝑆𝑁𝑅)
 (6) 

Where: 𝜗 is the radar beamwidth in the angular coordinates and 𝑘𝑚 is the monopulse 

pattern difference slope. 

2.4.2 Passive Optical Sensor Error Model 

The utilization of radar technology has been proposed in the past. Its on-board 

implementation requires considerable expenditure in terms of power consumption, 

spacecraft size and mass with limited benefits in terms of performance [38]. Therefore, the 

utilization of optical sensors appears to be a viable solution for this kind of missions. Such 

sensors can use different working principles (CCD, CMOS or photon counting sensors [39]) 

and their accuracy on the debris detection is currently improving thanks to recent 

advancements. Other studies show that the debris detection is also possible by exploiting 

Star Tracker (ST) [40]. The use of STs is passive: the incoming solar radiation is reflected by 

debris particles back to space to be recorded by optical system. As shown in figure 12, RSO 

will appear as tracks in images and it can easily be identified against point-like stars. 

 

Figure 12: Camera view of the stars background and the streak due to the debris motion 
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A fixed background of stars is used as a reference coordinate system for detecting the 

relative motion of space debris by using either long exposure shot or multiple shot by the 

camera. It is worth noting that the main prerequisite for allowing this kind of detection is to 

maintain the orientation of the camera subsystem. The onboard camera is modeled using 

the central-projection model. Figure 13 shows the camera coordinate frame, the real and the 

projected points into the image plane, which is located at a focal distance f far from the 

camera origin. 

 

 

Figure 13: Camera coordinate frame, image plane and image formation geometry 

The number of pixels of the image plane depends on the characteristics of the camera 

system, and they are expressed in terms of 𝑁𝑢 x 𝑁𝑣 number of pixels. This implies that an 

object will be visible only if it is inside the field of view of the camera. Defined by the two 

angles: 

𝛼𝑢 =
𝑁𝑢𝜌𝑢
2 𝑓

 

𝛼𝑣 =
𝑁𝑣𝜌𝑣
2 𝑓

 
(7) 

Where 𝜌𝑢 and 𝜌𝑣 are the width and the height of each pixel. 

Optical sensor properties 

The radar technology is characterized by decreasing of the signal which is function of the 

inverse of the fourth power of the distance. The optical observations have an advantage on 

radar observations because the signal to noise ratio (SNR) for an optical observation is 

proportional to: 
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𝑆𝑁𝑅 ≈  
𝑎2𝐷2

𝑅2
 (8) 

Where a is the diameter of the object, D is the diameter of the photo collecting area in the 

telescope and R is the sensor-debris distance (range). This means that the minimum 

observable diameter a is the inversely proportional to the range, for the same diameter D of 

the telescope.  

Hence, a key parameter is the minimum size  of detectable RSO 𝑎𝑚𝑖𝑛 [57] determined by: 

𝑎𝑚𝑖𝑛 = [
4ℎ𝑐𝜎𝑅𝐹𝜈

𝑞𝜂𝜆𝜇𝜋𝛼𝐷𝑃0
]
1/2

 (9) 

Where: 

h=6.63x10−34 𝐽 is the Planck’s constant, c= 3x108 m/s is the speed of light, 𝜼 is the quantum 

efficiency, 𝝀 is the wavelength, q is the A/D conversion factor, R is the range, 𝜶 is the albedo, 

𝑷𝟎 ≈  1400 𝑊/𝑚
2 is the solar constant, D is the lens diameter, F is the focal length of the 

lens, 𝝂 is the RSOs relative velocity projected into the array plane, 𝝈 is the noise of the 

detector and μ is the CCD array pixel size. 

Figure 14 shows the results of the calculating maximum detectable RSO size as a function 

of the particle velocity 𝜈 and the range R. Calculations were carried out for Star Tracker 

having the following characteristics: 

D =70 mm, F = 40 mm, μ = 13.5 μm  

 

Figure 14: Maximum detectable RSO size vs Range 

It is fundamental to understand SSA requirements in order to find what parameters are 

more important and develop some observation strategies. 

RSO observations by using optical sensor have also other limitations:  

 RSO that are in the Earth’s shadow cannot be seen by the sensor. The illumination of 

an object is determined by whether or not it is in the Earth’s shadow. Given the sun 

vector s and r the vector position of the object, two conditions have to be satisfied: 
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𝐫 ∙  𝐬 > 𝟎 
‖ 𝐬 𝑥 𝐫 ‖ ≤  𝑅𝑒 

 (10) 

 

Where 𝑅𝑒 is the radius of the Earth 

 The RSO brightness is a key element to define whether or no the object will be 

observable by optical sensor. The visual magnitude of RSOs (𝑀𝑣) behave different 

from stellar objects and change in intensity with changes in RSO attitude and 

observing geometry. As shown in figure 15, the phase angle ϕ, defined as the angle 

between the vector from the observer to the RSO and the RSO’s Sun vector, is 

responsible for large changes in the apparent visual magnitude of an RSO.  

 

Figure 15: Solar phase angle defined [63] 

The phase function F(ϕ) is given by:  

F(ϕ) =
2

3𝜋2
[(𝜋 − 𝜙)𝑐𝑜𝑠(𝜙) + 𝑠𝑖𝑛(𝜙)] (11) 

Assuming a spherical RSO, the visual magnitude can be estimated by [63]: 

𝑀𝑣 = 𝑀𝑆𝑢𝑛 − 2.5 log10 (
𝜌𝐴F(ϕ)

𝑅2
) (12) 

Where: 𝑀𝑆𝑢𝑛= -26.74, ρ is the albedo of the object, A is the cross-sectional area and R 

is the range. 

Figure 16 shows how the visual magnitude of an RSO varies as a function of its phase 

angle. This relationship is approximately linear. As no direct model is available for 

either a given RSO's attitude or its reflectivity then, in general, an RSO is brightest 

when the phase angle is at minimum. In this configuration a maximal amount of 

sunlight is then reflected to the observer. 
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Figure 16: Visual Magnitude vs Solar Phase Angle (ϕ) [63] 

The SNR equation, using the visual magnitude, can be written as: 

𝑆𝑁𝑅 = 1.274
1010−𝑀𝑣

√1.274 𝑥 1010−𝑀𝑣  +  817.772 𝑥 𝑁 
 (13) 

Where N is the noise (intended as the sum of the different source contributions) 

The SNR values characterizes the quality of a measurement and determines the 

ultimate performance of the system 

 The size of debris must be fit with the detecting capacity of the telescope. We need to 

compare the real size of the object and the limiting size of debris that the telescope 

can be detect. 

Errors and noise 

The existence of errors and noise in the system are inevitable. The sources of error in tracking 

can be divided into two primary classes: static and dynamics errors. The first class covers 

all errors related to static measurement, which includes errors occurring while using the 

tracking system in a static way and errors during calibrating the system. In contrast to static 

errors, dynamic errors are caused by end-to-end system delays when parts of the tracking 

system are moving. Dynamics errors are not covered by this thesis. The class of static errors 

can again be split into two different groups of errors [69, 70]:  

 Systematic errors, also called biased errors, are repeatable which means when doing 

the same measurement several times the error will remain the same 

 Random noise, this type of error is not repeatable. Noise in sensor input is inevitable 

with any measurement system. For this reason, noise cannot be corrected with 

calibration, but their effect can be reduced. For example, readout noise of the sensor 

can be reduced by selecting the appropriate mode of operation of the device reading 

out with a lower frequency. 
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2.4.2.1 Error Model of Systematic Errors  

The factors that affect the results of the RSO tracking include the position error of principal 

point, error of focal length, inclination of the image plane and lens distortion. Therefore, it 

is necessary to establish a calibration model for above the parameter errors and analyze 

error model [64]. Doing this, we will use a Star Tracker model as passive optical sensor. 

The optical system of the star tracker is presented in Figure 17. The Star Tracker is a high-

accuracy attitude measurement device, but it can be used for RSO tracking and detection. 

𝑂𝑋𝑆𝑌𝑆𝑍𝑆 denotes the Star Tracker coordinate system without the image plane displacement 

error. 

 

Figure 17: Star Tracker Ideal Imaging Model 

For any Star/RSO image point (𝑥𝑑, 𝑦𝑑) in the image plane exist a direction vector in the 

inertial coordinate system I that can be expressed as: 

𝑽𝒊  = [
𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛿
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛿
𝑠𝑖𝑛𝛿

] =  [

𝑣1
𝑣2
𝑣3
] (14) 

Where 𝛼 and 𝛿 are the azimuth and elevation angles 

The temperature difference in orbit will generate displacement errors and distortion of the 

optical system. The displacement errors mainly include the principal point drift, rotation 

and tilt. The schematic diagram of the image plane is shown in figure 18. 𝑂′′𝑋𝑑𝑌𝑑𝑍𝑑 denotes 

the optical sensor coordinate system with the main point drift, the focal length error and the 

image plane tilt-rotary error, and (𝑥𝑑, 𝑦𝑑) denotes the RSO image point in the plane 

𝑂′′𝑋𝑑𝑌𝑑𝑍𝑑. 
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Figure 18: The diagram of the image plane displacement error 

The rotation angles of 𝑂′′𝑋𝑑𝑌𝑑𝑍𝑑 relative to 𝑂′𝑋𝑠′𝑌𝑠′𝑍𝑠′ are successively φ, θ and ψ. These 

angles denote the image-plane rotary and tilt angles of the optical system. 𝐶𝑂′𝑂′′ denote   the 

attitude transformation matrix: 

𝐶𝑂′𝑂′′ = [
𝑐𝑜𝑠θcosφ −  sinθsinψsinφ 𝑐𝑜𝑠ψcosφ +  sinθcosψsinφ −𝑐𝑜𝑠θsinφ 

−𝑐𝑜𝑠θsinψ 𝑐𝑜𝑠θcosψ sinθ
𝑐𝑜𝑠θcosφ −  sinθsinψsinφ 𝑐𝑜𝑠θcosφ −  sinθsinψsinφ 𝑐𝑜𝑠θcosφ

] (15) 

Lens distortion 

Lens distortion are also one of the main measurement errors of star tracker sensors. The 

common distortion model is the Brown-Conrady model proposed by Brown in 1966 [68]. As 

shown in figure 19, the model is divided into the radial and tangential distortion. 

 

Figure 19: (a) Radial and tangential distortions; (b) Effect of radial distortion; (c) Effect of tangential distortion 

[64]. 
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The relationship between the imaging point with the distortion and without the distortion 

can be expressed as: 
𝑥𝑑 = 𝑥𝑑

′  −  𝛿𝑥𝑑(�̂�𝑑, �̂�𝑑) 

𝑦𝑑 = 𝑦𝑑
′  −  𝛿𝑦𝑑(�̂�𝑑, �̂�𝑑) 

(16) 

 (𝑥𝑑
′ , 𝑦𝑑

′ ) denote the actual measurement coordinates of the RSO image point, and (𝑥𝑑 , 𝑦𝑑 ) 

denote the coordinates without the optical system distortions. (𝛿𝑥𝑑 , 𝛿𝑦𝑑) denote the 

combination of the radial and the tangential distortion model and can be estimated by 

(�̂�𝑑, �̂�𝑑) that are the estimated values of (𝑥𝑑, 𝑦𝑑). For doing this, the assumption that the 

image plane without lens distortion is similar to the plane with lens distortion is necessary. 

Thus, 𝛿𝑥𝑑 and 𝛿𝑦𝑑 can be written as: 

𝛿𝑥𝑑(�̂�𝑑, �̂�𝑑) =  3𝜇1�̂�𝑑
2 + 2𝜇2�̂�𝑑�̂�𝑑 + 𝜇1�̂�𝑑

2 + 𝜆1�̂�𝑑(�̂�𝑑
2 + �̂�𝑑

2) 

𝛿�̂�𝑑(�̂�𝑑, �̂�𝑑) =  3𝜇2�̂�𝑑
2 + 2𝜇1�̂�𝑑�̂�𝑑 + 𝜇2�̂�𝑑

2 + 𝜆1�̂�𝑑(�̂�𝑑
2 + �̂�𝑑

2) (17) 

Where: 𝜇1, 𝜇2 are the tangential distortion coefficient, 𝜆1 is the radial distortion coefficient, 

(�̂�𝑑, �̂�𝑑) are the estimated values of (𝑥𝑑, 𝑦𝑑). 

According to the previous analysis, the following equation is obtained: 

𝑽𝒊  =  𝐶𝐼𝑂′𝐶𝑂′𝑂′′  
1

√(𝑥𝑑
′ −  𝛿𝑥𝑑 − ∆𝑥)

2
+ (𝑦𝑑

′  −  𝛿�̂�𝑑 − ∆𝑦)
2
+ (𝑓 + ∆𝑓)2

 

[

− (𝑥𝑑
′ −  𝛿𝑥𝑑 − ∆𝑥)

− (𝑦𝑑
′  −  𝛿�̂�𝑑 − ∆𝑦)

𝑓 + ∆𝑓

] 

(18) 

Let: 𝐶𝐼𝑂′𝐶𝑂′𝑂′′ = [

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

] 

𝑽𝒊  denotes the object direction vector in the inertial coordinate system, 𝐶𝐼𝑂′ is the attitude 

transformation matrix where I is the Inertial reference frame.   

According to equations 17 and 18, we obtain Equation: 

xd
′ = −(𝑓 + ∆𝑓).

c11𝑣1 + c12𝑣2 + c13𝑣3
c31𝑣1 + c32𝑣2 + c33𝑣3

+ 3𝜇1𝑥𝑑
2+ 2𝜇2�̂�𝑑�̂�𝑑 + 𝜇1�̂�𝑑

2 + 𝜆1�̂�𝑑(�̂�𝑑
2 + �̂�𝑑

2) + ∆𝑥 

yd
′ = −(𝑓 + ∆𝑓).

c21𝑣1+ c22𝑣2 + c23𝑣3
c31𝑣1+ c32𝑣2 + c33𝑣3

+ 3𝜇2�̂�𝑑
2 + 2𝜇1𝑥𝑑�̂�𝑑 + 𝜇2�̂�𝑑

2 + 𝜆1�̂�𝑑(�̂�𝑑
2 + �̂�𝑑

2) + ∆𝑦 
(19) 

Equation 19 is the systematic error model which is related to ∆𝑥, ∆𝑦, ∆𝑓,  𝜆1, 𝜇1, 𝜇2, 

c11, c12, c13, c21, c22, c23, c31, c32, c33. 
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2.4.2.2 Random Noise 

In sense of tracking this will cause randomly changing gray values in the image plane, 

which then causes errors in estimation of the 2D position of the object which then again 

cause errors when solving the 2D-to-3D pose estimation problem. The line-of-sight (LOS) 

uncertainty consists primarily of small mechanical excursions in the optical sensor which 

cannot be calibrated out, caused by thermal expansion and launch effect. The main effect of 

the noise is a tremble of the visual features in the image plane. The variances of the errors 

can be expressed in pixel. With growing distance the LOS effect grows, which results in a 

greater error of the triangulated position. They are fundamentally unavoidable, but their 

effect can be significantly reduced: 

 The effect of shot noise decreases with the increase of exposure time  

 The effect of random dark signal component cane be reduced by cooling the sensor 

 Readout noise of the sensor can be reduced by selecting the appropriate mode of 

operation of the device 

  



38 

 

2.5 Orbital Mechanics and perturbation 

Newton's law of universal gravitation describes the physics that allow satellites to be put 

into orbit. Essentially, the satellites are in freefall towards the earth but moving fast enough 

parallel to the curvature of the earth that they never hit the ground. An orbit is described by 

an ellipse on a plane through the earth's center of gravity. It is characterized by six orbital 

elements, described in table 9 

Element Symbol Description 
Semi-major axis a Shape of elliptic orbit 

Eccentricity e Shape of elliptic orbit 

Inclination i Orientation of the orbital plane 

Right ascension of the ascending node (RAAN) Ω Orientation of the orbital plane 

Argument of perigee ω Orientation of the orbital plane 

Mean anomaly at epoch ν Position in orbit at specific time 

Table 9: Six orbital element 

The equation that governs the motion of the satellite/RSO relative to the Earth is given by 

the two bodies problem. This second order differential equation doesn’t take into account 

the perturbation forces that a resident space object is subject in orbit but it can be used in 

different situations. 

2.5.1 Perturbation Forces 

When predicting short-term evolution of orbital motion in proximity of a relatively large 

gravitational attractor, the simplified two body problem is sufficient; however, when 

estimating long-term orbital evolution, the effect of perturbation must be taken into account. 

Orbital perturbations in proximity of Earth can be classified in the three following 

categories: 

 Perturbations due to the presence of the other large celestial bodies but mainly Moon 

and Sun ( 𝒓𝑳𝑺⃗⃗⃗⃗ ⃗⃗  
̈ ) 

 Perturbation due to the Earth not being a perfect point-mass (𝒓𝑮⃗⃗⃗⃗ 
̈ ) 

 Perturbations due to non-gravitational sources like Residual atmospheric drag 

(𝒓𝑫⃗⃗ ⃗⃗  
̈ ) and Solar radiation pressure (𝒓𝑹𝑷⃗⃗ ⃗⃗⃗⃗  ⃗̈ ) 

The total perturbation in proximity of Earth is then simply summed into the two-body 

problem using the Cowell formulation: 

�⃗� ̈ =  𝒓𝟐𝑩⃗⃗ ⃗⃗ ⃗⃗  
̈  + 𝒓𝑮⃗⃗⃗⃗ 

̈ + 𝒓𝑫⃗⃗ ⃗⃗  
̈  +  𝒓𝑳𝑺⃗⃗⃗⃗ ⃗⃗  

̈ +  𝒓𝑹𝑷⃗⃗ ⃗⃗⃗⃗  ⃗̈  (20) 

𝒓𝟐𝑩⃗⃗ ⃗⃗ ⃗⃗  
̈  =  −

𝝁�⃗� 

𝒓𝟑
 (21) 
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Where: 𝝁: Gravitational parameter, �⃗� : Vector from the center of the Earth to the object, 𝒓: 

Magnitude of the vector 

𝒓𝑮⃗⃗⃗⃗ 
̈ = (

𝝏𝑽

𝝏�⃗� 
)
𝑻

 (22) 

𝑽 =  
𝝁

𝒓
(∑ (

𝒂𝒆
𝒓
)
𝒏

∑𝑷𝒏𝒎(𝒔𝒊𝒏(𝝋)[ 𝒄𝒐𝒔(𝒎𝝀) + 𝑺𝒏𝒎𝒔𝒊𝒏(𝒎𝝀)]

𝒏

𝒎=𝟎

𝒏𝒎𝒂𝒙

𝒏=𝟐

) (23) 

Where: 𝒂𝒆: Mean equatorial radius of the Earth, 𝑷𝒏𝒎: Legendre polynomials, 𝝋 and 𝝀 : 

latitude and longitude of sub-point; 𝑷𝒏𝒎 and 𝑺𝒏𝒎: Constant called spherical harmonics 

whose values depends on the Earth model selected 

𝒓𝑫⃗⃗ ⃗⃗  
̈ = −

𝟏

𝟐

𝑪𝒅𝑨

𝒎
 𝝆�⃗⃗� 𝒂𝝂𝒂 (24) 

Where: 𝑪𝒅: Coefficient of Drag, A: Frontal area of the object, m: Mass of the object, 𝝆: Local 

atmospheric density, �⃗⃗� 𝒂: Vector velocity of the object relative to the atmosphere. 

𝒓𝑳𝑺⃗⃗⃗⃗ ⃗⃗  
̈ = −𝝁𝒎 (

�⃗� 𝒎𝒃
|�⃗� 𝒎𝒃|𝟑

+
�⃗� 𝒆𝒎
|�⃗� 𝒆𝒎|𝟑

) − 𝝁𝒔 (
�⃗� 𝒔𝒃
|�⃗� 𝒔𝒃|𝟑

+
�⃗� 𝒆𝒔
|�⃗� 𝒆𝒔|𝟑

) (25) 

Where: 𝝁𝒎: Gravitational constant of the Moon, 𝝁𝒔: Gravitational constant of the Sun, �⃗� 𝒎𝒃: 

Position vector from Moon to S/C, �⃗� 𝒔𝒃: Position vector from Sun to S/C; �⃗� 𝒆𝒎: Position 

vector from Earth to Moon; �⃗� 𝒆𝒔: Position vector from Earth to Sun 

𝒓𝑹𝑷⃗⃗ ⃗⃗⃗⃗  ⃗̈ = 𝜞 
�⃗� 𝒔𝒃

|�⃗� 𝒔𝒃|
𝟑 (26) 

Where: 𝜞: Solar radiation pressure coefficient 

The figure 20 shows the influence of the perturbations force for a spacecraft orbiting in LEO. 

 

Figure 20: Perturbations effect vs altitude 
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2.5.2 Effects of the Earth’s oblateness  

The earth is an oblate spheroid, lacking the perfect symmetry of a sphere (A basketball can 

be made an oblate spheroid by sitting on it.). This lack of symmetry means that the force of 

gravity on an orbiting body is not directed towards the center of the Earth. Whereas the 

gravitational field of a perfectly spherical planet depends only on the distance from its 

center, oblateness causes a variation also with latitude, that is, the angular distance from the 

equator (or pole). This is called a zonal variation. The dimensionless parameter which 

quantifies the major effects of oblateness on orbits is J2, the second zonal harmonic. J2 is not 

a universal constant and each planet has its own 

value. This generates a perturbing acceleration p that can be resolved into three 

components: the radial 𝐩𝑟, the trasverse 𝐩⊥ and the normal 𝐩ℎ. 

The mainly effects of this perturbing acceleration are the time variation of the right 

ascension and the change of the argument of perigee [66] 

The average rate of precession of the node line can be expressed by the equation: 

�̇� = − [
3

2

√𝜇 𝐽2 𝑅
2

(1 − 𝑒2)2𝑎
7
2

] cos (𝐢) (27) 

Observe that if 0< i <90° then �̇� < 0. That is, for posigrade orbits, the node line drifts 

westward. Since the right ascension of the node continuously decreases, this phenomenon 

is called regression of the nodes. If 90°< i <180° we see that �̇� >0. The node line of retrograde 

orbits therefore advances eastward. For the polar orbit (i = 90°) the node line is stationary. 

In a similar fashion the time rate of change of the argument of perigee is found to be: 

�̇� = −[
3

2

√𝜇 𝐽2 𝑅
2

(1 − 𝑒2)2𝑎
7
2

] (
5

2
 sin2(𝐢) − 2) (28) 

Figure 21 is a plot of Equations 27 and 28 for several low-earth orbits. The effect of 

oblateness on both �̇� and �̇� is greatest at low inclinations, for which the orbit is near the 

equatorial bulge for longer portions of each revolution. 

 

Figure 21: Regression of the node and advance of perigee for nearly circular orbits [66] 
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As described in ref. [66], The effect of orbit inclination on node regression and advance of 

perigee is taken advantage of for two very important types of orbits. Sun-synchronous orbits 

are those whose orbital plane makes a constant angle α with the radial from the sun, as 

illustrated in Figure 22. For that to occur, the orbital plane must rotate in inertial space with 

the angular velocity of the earth in its orbit around the sun, which is 360° per 365.26 days, 

or 0.9856° per day. With the orbital plane precessing eastward at this rate, the ascending 

node will lie at a fixed local time. In the illustration it happens to be 3 pm. During every 

orbit, the satellite sees any given swath of the planet under nearly the same conditions of 

daylight or darkness day after day. The satellite also has a constant perspective on the sun. 

 

Figure 22: Sun-Synchronous Orbit [66] 
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2.6. Orbital uncertainty propagation methods 

Orbit propagation begins with an estimation of a space object's state vector. State 

measurement(s) are given by ground or on-board surveillance and navigation systems, for 

which measurement uncertainties can be assumed to be Gaussian and described by a mean 

and covariance matrix or PDF, unless otherwise recommended. From this initial state 

measurement, the orbit is propagated using one of the various approaches, inflating the 

position uncertainty ellipsoid with respect to time until the next measurement, which is 

commonly dictated by the update rate or availability of the navigation and/or surveillance 

system. 

The estimation of state can be seen as a convergent process that shrinks the volume of the 

ellipsoid at each observation epoch. Additionally, if any actuation is performed by the 

spacecraft the associated uncertainties should be included in the propagation at the time of 

maneuvre [11]. 

An intuitive and rigorous empirical technique to propagate uncertainties and to reconstruct 

a statistical distribution is to perform the well-known Monte Carlo simulation, which 

involves the perturbation of initial states and of the dynamic coefficients in all their possible 

combinations. 

Nonetheless, conducting this approach with high fidelity is computationally expensive and 

can be deemed impractical in evaluating most collision scenarios. 

A theoretical treatment of the stochastic uncertainty propagation in dynamic systems was 

attempted as early as 1914 and led to the Fokker-Plank Equation (FPE), which describe the 

evolution of the PDF in time for a problem that satisfies the Ito stochastic differential 

equation. This approach augments the original deterministic flight mechanics equations 

with statistical moments. Although extensive efforts were targeted at the development of a 

computationally efficient solution method for the FPE, the high dimensionality and the 

significant nonlinearities of rigid-body (6-DoF) orbital mechanics so far encumbered these 

efforts and forced to make extensive use of linearity and Gaussian statistics [54]. To 

overcome the challenges associated with the rigorous statistical treatment of nonlinearities 

and high-dimensionality, it is necessary to employ approximation methods. Lou and Yang 

[11] provide a comprehensive review on the available uncertainty propagation methods for 

spaceflight mechanics. Their ontology is recaptured in Figure 23. 

Of these, linear methods provide the user with a convenient approach as only the mean 

position and covariance matrix need to be propagated when the following assumptions are 

taken [11]:  

1. A linearized model sufficiently approximates the dynamics of neighbouring 

trajectories with respect to a nominal trajectory 

2. The uncertainty can be completely characterized by a Gaussian probability 

distribution. 

The dynamics can then be linearized via local or statistical means under the well-known 

Linear Covariance analysis (LinCov) and CADET [55, 56] techniques, respectively. 
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Figure 23: Ontology of uncertainty propagation methods [1] 

2.6.1 Linear Orbital Propagation 

 

Linear Covariance Analysis (LinCov) is a class of statistical analysis techniques to produce 

an accurate statistical portrayal of estimation errors and to assess the impact of neglecting 

to estimate on the accuracy of the state estimate. The basic operation of the LinCov analysis 

is as follow:  

 Load idealized reference trajectory �̅�(t) 

 Initialize augmented covariance matrix 𝑃0 based on initial uncertainties 

 Propagate covariance matrix using the expression: 
𝑃𝑖 =  𝛟(𝑡, 𝑡0) 𝑃𝑖−1𝛟(𝑡, 𝑡0)

𝑻 (29) 

where 𝛟(𝑡, 𝑡0) is state transition matrix calculated using Markley’s method [57]. 

Markley’s method uses two states, one at 𝑡𝑘−1 time and the other at the 𝑡𝑘  time and calculates 

the transition matrix between them by using μ, 𝐽2, Δt and two state vectors. 

Markley’s method consists of making one approximation for the transition matrix of the 

state vector based on the Taylor series expansion for short intervals of propagation, Δt. This 

method can be used by any kind of orbit and the equations are simple and easily 

implemented.  

The state transition’s differential equation is defined by: 
𝑑𝛟(𝑡, 𝑡0)

𝑑𝑡
= [

0 𝐈
𝑮(𝑡) 0

]𝛟(𝑡, 𝑡0) (30) 

Where 𝛟(𝑡, 𝑡0) is state transition matrix at time t, 𝑮(𝑡) ≡ ∂a(r,t)/ ∂r ≡ the gradient matrix, 

𝐫 = (𝑥 𝑦 𝑧)𝑇 𝐯 = (�̇� �̇� �̇�)𝑇are the Cartesian state at the instant t, a(r,t) is the accelerations of 

the satellite. 

Developing 𝛟(𝑡, 𝑡0) in Taylor’s series at 𝑡 = 𝑡0 the transition matrix of the position and 

velocity obtained after some simplifications is given by: 
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𝛟(𝑡, 𝑡0) ≈  [
𝛟𝑟𝑟 𝛟𝑟𝑣

𝛟𝑣𝑟 𝛟𝑣𝑣
] 

(31) 

Where: 

𝛟𝑟𝑟 ≡  I + (2𝐺0 +  𝐺) 
(Δt)2

6
 

𝛟𝑟𝑣 ≡  I Δt + (𝐺0 +  𝐺) 
(Δt)3

12
 

𝛟𝑣𝑟 ≡ (𝐺0 +  𝐺) 
(Δt)

2
 

𝛟𝑟𝑣 ≡  I + (𝐺0 + 2𝐺) 
(Δt)2

6
 

 

(32) 

And Δt = t − 𝑡0, 𝐺0 ≡   𝐺(𝑡0) 

The G gradient matrix including only the central force and the 𝐽2 is given by: 

G(t)= ∂a(r,t)/ ∂r = 

[
 
 
 
 
𝝏𝒂𝒙

𝝏𝒙

𝝏𝒂𝒙

𝝏𝒚

𝝏𝒂𝒙

𝝏𝒛

𝝏𝒂𝒚

𝝏𝒙

𝝏𝒂𝒚

𝝏𝒚

𝝏𝒂𝒚

𝝏𝒛

𝝏𝒂𝒛

𝝏𝒙

𝝏𝒂𝒛

𝝏𝒚

𝝏𝒂𝒛

𝝏𝒛 ]
 
 
 
 

 (33) 
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2.7 STM framework and regulatory environment 

The development of STM system will require the implementation of policy, rules and 

regulations, standards, guidelines. 

This task that will not be accomplished without significant legal and political barriers. In 

any case, policy related decisions will have significant influence on chosen technology and 

operational framework employed in a STM system. The technology domain acts to provide 

an STM system with Space Situational Awareness (SSA), which at a minimum, will enable 

an acceptable level of space-flight safety. This requires the necessary integration of products 

and services, applications, computing platforms, data sensors and other related 

technological aspects that together curtail the risks associated with existing and projected 

increase of orbital traffic. How these SSA related tools are controlled and maintained will 

be subject to the systematic steps, activities and actions defined within the operational 

domain. Evidently, the level of autonomy that will exist in executing these processes and 

procedures will be dictated by the complexity of required decisions and the effectiveness of 

Human Machine Interaction (HMI) within the operational environment. Decisions made 

within the policy domain shall capitalize on historical lessons, proven research, technical 

considerations, and operational limitations and time-lines [58]  

The “outer space treaty” developed by the United States, United Kingdom, and the Soviet 

Union provides the basis of an STM framework. Comprised of 17 articles, the treaty 

addresses fundamental concerns including the non-ownership of orbits and appropriation 

of space (Articles I, II), operator responsibilities in situations of distress (Article V) and 

damage liabilities from in space accidents (Article VII) among others. Although 

foundational, the Outer Space Treaty at present does not provide the necessary framework 

to assign space traffic management functions to new international decision-making STM 

authorities [59]. To accommodate such an aspect, it has been recommended that the treaty 

should be amended to establish a standing international organization for STM, equivalent 

to ICAO and related atmospheric traffic standards and services [59]. Nevertheless, fast-

forward 50 years and the problematic scenarios associated with the absence of a central STM 

authority are now becoming increasingly tangible. 

 2.7.1 Space Debris Mitigation problem  

In 1995 NASA was the first space agency in the world to issue a comprehensive set of orbital 

debris mitigation guidelines. Two years later, the U.S. Government developed a set 

of “Orbital Debris Mitigation Standard Practices” based on the NASA guidelines. Other 

countries and organizations, including Japan, France, Russia, and the European Space 

Agency (ESA), have followed suit with their own orbital debris mitigation guidelines. In 

fact, in February 1999, ESA issued a Space Debris Mitigation Handbook, followed by a draft 

Space Debris Safety and Mitigation Standard in 2000. In 2002, after a multi-year effort, the 

Inter-Agency Space Debris Coordination Committee (IADC), comprised of the space 

agencies of 10 countries (ASI, CNES, CNSA, CSA, DLR, ESA, ISRO, JAXA, KARI, NASA, 
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ROSCOSMOS, SSAU, and UKSA) adopted a consensus set of guidelines designed to 

mitigate the growth of the orbital debris population. 

In February 2007, the Scientific and Technical Subcommittee (STSC) of the United Nations' 

Committee on the Peaceful Uses of Outer Space (COPUOS) completed a multi-year work 

plan with the adoption of a consensus set of space debris mitigation guidelines based on the 

IADC guidelines. The guidelines were accepted by the COPUOS in June 2007 and endorsed 

by the General Assembly of the United Nations in late 2007. 

The information contained in these documents address the specific hazard(s) present during 

each operational phase (launch, re-entry, on-orbit). The launch and re-entry phases are 

principally concerned with range safety which is addressed by Standard 321-07 “Common 

Risk Criteria Standards for National Test Ranges”. Standard 321-07 also extends to the on-

orbit environment where separation and collision probability requirements are provided. 

Moreover, the on-orbit phase is subject to the irrefutably hazardous space-debris 

environment, with increasing concerns of initiating an irreversible, cascading debris 

generating process widely recognised as Kessler syndrome [61, 62]. By 2009, the intentional 

destruction of the Chinese weather satellite Fengyun-1C in 2007, along with the accidental 

collision between Iridium 33 and Cosmos 2251 in 2009, greatly increased the amount of 

debris in LEO. As a result, the likelihood that active spacecraft would collide with orbital 

debris increased significantly. The figure 24 underlines the importance of the mitigation 

guidelines, showing the uncertainty of RSO number without mitigation actions 

 

Figure 24: 2009 projection of orbital debris in LEO [Credit NASA] 
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 2.7.1.1 Space Debris Mitigation Guidelines 

Founded on the common findings and recommendations produced by several international 

and national agencies such as NASA, DLR, JAXA, ESA, AIAA, the IADC  “Space Debris 

Mitigation Guidelines” have been developed as a comprehensive reference on 

recommended orbital debris mitigation strategies [60]. Focusing specifically on the 

following aspects, the IADC aims to provide guidance across all operational phases (launch, 

mission and disposal) of spacecraft and launch vehicle orbital stage: 

1. Limitation of debris released during normal operations 

2. Minimization of the potential for break-ups during operational phases 

3. Limitation the probability of accidental collision in orbit 

4. Avoid intentional destruction and other harmful activities 

5. Minimization the potential for post-mission breaks-up resulting from stored energy 

6. Limitation of the long-term presence of spacecraft and launch vehicle orbital stage in 

the LEO and GEO region after the end of their mission 

Figure 25 illustrates the IADC framework, highlighting common causes of orbital debris 

and recommended mitigation practices across both operational and end of mission phases. 

Distinction is also made between the typical categories of space debris associated with 

different causes.  

 

Figure 25: IADC orbital debris mitigation framework. Mission-related debris, fragments and spacecraft/rocket 

bodies are designated yellow, red and green respectively.  
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3. Models and Tools 

We outline here a mathematical framework to combine tracking and navigation uncertainty 

with the aim providing a rigorous methodology to describe and analyse the position 

uncertainty of a tracked RSO from different platforms, subject to navigation errors if we 

consider a Space-Based Surveillance (SBS) platform. We define a “Navigation” coordinate 

system from which measurements from the space-based or the ground-based are made 

within. 

Radar and then Passive optical error models for the Tracking model are developed. Instead 

representative values of navigation (NAV) performance are selected from documented on-

orbit GPS performance. To represent the uncertainty in a convenient and common reference 

frame coordinate transformations are required.  

Attention is then turned to methods to assess the “realism” of the uncertainty under 

Gaussian assumptions using two common approaches - the Average Mahalanobis Distance 

(AMD) statistic metric and Cramer–von Mises (CVM) test. A Monte-Carlo framework is 

then presented to obtain the required Empirical Distribution of both tracking and navigation 

uncertainty. The quantification of the total uncertainty, in a common reference frame, at the 

sensor level and an analysis of the tracking limitations to uphold uncertainty realism 

assumptions are the results of this model [72]. 

The flowchart in Figure 26 shows the framework of the proposed model  

  

Figure 26: Proposed Approach flowchart and associated processes  
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3.1. Uncertainty Quantification using Radar system 

The target state vector information is measured relative to the radar site in a spherical 

coordinate system in range, elevation and azimuth (𝑟𝑅𝐷𝑅 , 𝜂𝑅𝐷𝑅 , 𝜖𝑅𝐷𝑅  respectively) as shown 

in Figure 27 a 

 

Figure 27: Generic Tracking (a) and Navigation (b) RSW coordinate systems detailing corresponding error 

geometry. 

The RSW satellite coordinate system is chosen to express position uncertainty of RSO. At 

the time of observation, we assume that the nominal spacecraft position (SP) is centered at 

the origin of the RSW axis. The Radial (R) axis always points from the earth centre along the 

radius vector towards the satellite. The S-Axis is pointed tangentially to the track’s direction, 

where, in the case of elliptical orbits, it is only parallel to the velocity vector at apogee and 

perigee. The W (cross-track) axis is normal to the orbital plane and completes the right-hand 

triad (Figure 27b). The coordinate system can then be constructed through the following 

unit vector approach [28]: 

�̂� =  
𝑅𝐸𝐶𝐼
|𝑅𝐸𝐶𝐼|

 (34) 

�̂� =
𝑅𝐸𝐶𝐼 × 𝑉𝐸𝐶𝐼  

|𝑅𝐸𝐶𝐼 × 𝑉𝐸𝐶𝐼  |
 (35) 

�̂� = �̂� × 𝑹 ̂ (36) 

The transfer matrix(s) between the RSW and ECI coordinate systems is then following:  

𝑀𝑅𝑆𝑊→𝐸𝐶𝐼 = [𝑹 ̂𝑺 ̂�̂� ]  𝑀𝐸𝐶𝐼→𝑅𝑆𝑊 =  [𝑹 ̂𝑺 ̂�̂�]
𝑇
 (37) (38) 

Positional errors from the on-board navigation system are then expressed as deviations, 

𝛿𝑿𝑵𝑨𝑽, from the origin of the axis, defined as the difference between the true state, 𝑿𝑵𝑨𝑽, 

and the nominal state �̅�𝑵𝑨𝑽 under the zero mean 

𝛿𝑿𝑵𝑨𝑽 = 𝑿𝑵𝑨𝑽 − �̅�𝑵𝑨𝑽 (39) 
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𝑿𝑵𝑨𝑽 = [
𝑅𝑇
𝑆𝑇
𝑊𝑇

] , �̅�𝑵𝑨𝑽 = [
𝑅𝑁
𝑆𝑁
𝑊𝑁

] (40) 

Navigation uncertainty is assumed to be Gaussian, and can then be expressed in terms of 

covariance, where the assumption of zero main is made: 

𝑄𝑁𝐴𝑉
𝑅𝑆𝑊 = 𝐸[𝛿𝑿𝑵𝑨𝑽𝛿𝑿𝑵𝑨𝑽

𝑇] = [

𝜎𝑅𝑁𝐴𝑉
2 0 0

0 𝜎𝑆𝑁𝐴𝑉
2 0

0 0 𝜎𝑊𝑁𝐴𝑉
2

 ]  (41) 

Similarly, tracking measurement errors are expressed as measurement deviations in the 

spherical dimension,𝛿𝑿𝑻𝑹𝑲, defined as the difference between the true state, 𝑿𝑻𝑹𝑲, and the 

nominal state �̅�𝑻𝑹𝑲 of the RSO [29]. 

𝛿𝑿𝑻𝑹𝑲 = 𝑿𝑻𝑹𝑲 − �̅�𝑻𝑹𝑲 (42) 

𝑿𝑻𝑹𝑲 = [

𝑟𝑇
𝜖𝑇
𝜂𝑇
] , �̅�𝑻𝑹𝑲 = [

𝑟𝑁
𝜖𝑁
𝜂𝑁
] (43) 

The tracking error of the radar is then expressed in terms of covariance: 

𝑄𝑇𝑅𝐾𝑆𝑃𝐻
𝑅𝐷𝑅 = 𝐸[𝛿𝑿𝑻𝑹𝑲𝛿𝑿𝑻𝑹𝑲

𝑇] = [

𝜎𝑟𝑇𝑅𝐾
2 0 0

0 𝜎𝜖𝑇𝑅𝐾
2 0

0 0 𝜎𝜂𝑇𝑅𝐾
2

 ]  (44) 

To combine NAV & TRK uncertainty from the spacecraft and tracked RSO both covariance 

matrices must belong to the same coordinate frame. In this case, a transformation from the 

spherical to the Cartesian system must be performed. Position and velocity measurements 

(and uncertainty) should be expressed in a reference frame that is most convenient to the 

user, where in this case a Cartesian Earth-Centered Inertial (ECI) frame is chosen. As such, 

the navigation covariance matrix must be transformed to the Cartesian Earth-Centred 

inertial (ECI) frame. As this is a linear process (cartesian to cartesian), a simple coordinate 

transformation can be applied to the covariance matrix. Following the derivation of the RSW 

to ECI transformation matrix previously described we can write: 

𝑄𝑁𝐴𝑉𝐶𝐴𝑅𝑇
𝐸𝐶𝐼 = 𝑀𝑅𝑆𝑊→𝐸𝐶𝐼  𝑄𝑁𝐴𝑉𝐶𝐴𝑅𝑇

𝑅𝑆𝑊 ∙ 𝑀𝑅𝑆𝑊→𝐸𝐶𝐼
𝑇 (45) 

𝑄𝑁𝐴𝑉𝐶𝐴𝑅𝑇
𝐸𝐶𝐼 = [

𝜎𝑥𝑁𝐴𝑉
2 𝜎𝑥𝑦𝑁𝐴𝑉 𝜎𝑥𝑧𝑁𝐴𝑉

𝜎𝑦𝑁𝐴𝑉
2 𝜎𝑦𝑧𝑁𝐴𝑉

𝑠𝑦𝑚 𝜎𝑧𝑁𝐴𝑉
2

 ] (46) 

In contrast, the tracking covariance matrix is expressed in a spherical coordinate system 

within the radar frame. This requires both a transformation from spherical to Cartesian 

system and then a translation to the ECI frame. As the transformation between these systems 

is nonlinear, a basic coordinate transformation is not sufficient, and mathematical tools such 

the Jacobian of the spherical to Cartesian transformation matrix must be calculated to 

linearize the process. The spherical to Cartesian Jacobian (D) is expressed as the following, 

where c, s and represent the cosine and sine of the radar angular measurements. 

𝐷 = [

− c 𝜖𝑇𝑅𝐾 c 𝜂𝑇𝑅𝐾 𝑟𝑇𝑅𝐾 c 𝜖𝑇𝑅𝐾 s 𝜂𝑇𝑅𝐾 𝑟𝑇𝑅𝐾 s 𝜖𝑇𝑅𝐾 c 𝜂𝑇𝑅𝐾
c 𝜖𝑇𝑅𝐾 s 𝜂𝑇𝑅𝐾 𝑟𝑇𝑅𝐾 c 𝜖𝑇𝑅𝐾 c 𝜂𝑇𝑅𝐾 −𝑟𝑇𝑅𝐾 s 𝜖𝑇𝑅𝐾 s 𝜂𝑇𝑅𝐾

s 𝜖𝑇𝑅𝐾 0 𝑟𝑇𝑅𝐾 c 𝜖𝑇𝑅𝐾
 ]  (47) 
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The transformation from spherical tracking error matrix in Radar coordinate system to the 

Cartesian ECI is then given by the following: 

𝑄𝑇𝑅𝐾𝐶𝐴𝑅𝑇
𝐸𝐶𝐼 = (𝑀𝑅𝐷𝑅→𝐸𝐶𝐼 ∙ 𝐷) ∙ 𝑄𝑇𝑅𝐾𝑆𝑃𝐻

𝑅𝐷𝑅 ∙ (𝑀𝑅𝐷𝑅→𝐸𝐶𝐼 ∙ 𝐷)
𝑇  (48) 

𝑄𝑇𝑅𝐾𝐶𝐴𝑅𝑇
𝐸𝐶𝐼 = [

𝜎𝑥𝑇𝑅𝐾
2 𝜎𝑥𝑦𝑇𝑅𝐾 𝜎𝑥𝑧𝑇𝑅𝐾

𝜎𝑦𝑇𝑅𝐾
2 𝜎𝑦𝑧𝑇𝑅𝐾

𝑠𝑦𝑚 𝜎𝑧𝑇𝑅𝐾
2

 ] (49) 

Where 𝑀𝑅𝐷𝑅→𝐸𝐶𝐼 is the transformation matrix from the chosen Radar (TRK) coordinate frame 

to the ECI frame. The covariance matrix of both the navigation and tracking can now be 

expressed geometrically as an ellipsoid centered about the nominal position in the ECI 

Frame. Due to the transformation and translations between the Radar Spherical and 

Cartesian coordinate systems to the ECI frames, the covariance terms within the error matrix 

(off-diagonal) are now non-zero. The geometric interpretation of 𝑄𝑇𝑅𝐾
𝐸𝐶𝐼  now requires that the 

ellipsoid considers both the variances about the principal axis but also the rotation within 

the cardinal system (ECI). 

The navigation and tracking errors are now expressed in a common ECI frame and can be 

summed together to express the total position uncertainty about the debris in the ECI frame. 

Measurements are uncorrelated, variance and covariance terms can be summed directly. 
𝑄𝑇𝑂𝑇 = 𝑄𝑇𝑅𝐾 +𝑄𝑁𝐴𝑉 (50) 

𝑄𝑇𝑂𝑇 = [

𝜎𝑥
2 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦
2 𝜎𝑦𝑧

𝑠𝑦𝑚 𝜎𝑧
2

 ]

𝐸𝐶𝐼

 (51) 

The total uncertainty matrix, 𝑄𝑇𝑂𝑇, is now expressed as an ellipsoid centered about the 

nominal position of the RSO in the ECI Frame. Figure 28 illustrates the concept of individual 

navigation and tracking volume and the resultant combined ellipsoid. 

 

Figure 28: Illustration of navigation, tracking and total error volumes 
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We can obtain the same result by following the Gauss-Helmert method [27, 28] where the 

generic form consists in resolution of the following equation system: 
                                         𝑭(𝑿, 𝒍) = 𝟎                                      (52) 

Where 𝑿, �̂� are estimated parameters and observation vector respectively. The linearized form 

of the previous equation is: 
𝑨𝜹 + 𝑩𝒓 +𝐰 = 𝟎 (53) 

Where 𝑨 =
𝝏𝑭

𝝏�̂�
 and 𝑩 =

𝝏𝑭

𝝏𝒍
 are the matrix of partial derivates with respect to 𝑿, 𝒍 and w is the 

misclosure vector. 𝜹  and 𝒓, the parameters and observations correction vector respectively, 

are: 

�̂� = −(𝑨𝑻𝑴𝑨)−𝟏𝑨𝑻𝑴𝒘 
�̂� = −𝑪𝒓𝑩

𝑻𝑴(𝑨𝜹 +𝒘) 
(54) 

Where 𝑴 = (𝑩𝑪𝒓𝑩
𝑻)−𝟏 and 𝑪𝒓 is the covariance matrix of the observations. We obtain the 

covariance matrix of parameters: 

𝐶𝑁𝐴𝑉+𝑇𝑅𝐾 = (𝑨𝑻𝑴𝑨)−𝟏 (55) 

In our case, equation (37) can be written as: 

𝑭(𝑿, �̂�) =  𝑿𝑫 − 𝑴𝑹𝑺𝑾→𝑬𝑪𝑰𝑿𝑻𝑹𝑲 − 𝑹𝐸𝐶𝐼 = 𝟎 (56) 

Where: 

𝑿𝑫 = [

𝑋𝐷
𝐸𝐶𝐼

𝑌𝐷
𝐸𝐶𝐼

𝑍𝐷
𝐸𝐶𝐼

] and 𝑹𝐸𝐶𝐼 = [

𝑋ℎ
𝐸𝐶𝐼

𝑌ℎ
𝐸𝐶𝐼

𝑍ℎ
𝐸𝐶𝐼

] are the RSO and SBR (host) position in ECI frame 

𝑿𝑇𝑅𝐾 = [

−𝑟𝑇𝑅𝐾𝑐𝑜𝑠(𝜖𝑇𝑅𝐾)𝑐𝑜𝑠(𝜂𝑇𝑅𝐾)
𝑟𝑇𝑅𝐾𝑐𝑜𝑠(𝜖𝑇𝑅𝐾)𝑠𝑖𝑛(𝜂𝑇𝑅𝐾)

𝑟𝑇𝑅𝐾𝑠𝑖𝑛(𝜖𝑇𝑅𝐾)
] is the position of the target in RSW system.  

𝒍 = [𝑟𝑇𝑅𝐾, 𝜖𝑇𝑅𝐾 , 𝜂𝑇𝑅𝐾, 𝑥𝑁𝐴𝑉 , 𝑦𝑁𝐴𝑉 , 𝑧𝑁𝐴𝑉]
𝑻 is vector of estimated observations  

𝑪𝒓= 

[
 
 
 
 
 
 
 
𝜎𝑟𝑇𝑅𝐾
2

𝜎𝜖𝑇𝑅𝐾
2

𝜎𝜂𝑇𝑅𝐾
2

𝜎𝑥𝑁𝐴𝑉
2

𝜎𝑦𝑁𝐴𝑉
2

𝜎𝑧𝑁𝐴𝑉
2]
 
 
 
 
 
 
 

 is the covariance matrix of the 

observations   

We assume that all observations are independent, so all non-diagonal values in the matrix 𝑪𝒓 

are equal to zero. Since 𝐴(3×3) = 𝟙, the covariance matrix of estimated parameters is computed 

by: 

𝑪𝑁𝐴𝑉+𝑇𝑅𝐾(3×3) = (𝑩𝑪𝒓𝑩
𝑻) (57) 

By applying this method, we obtain a result identical to the initial formulation, confirming 

the validity of this approach. 

From covariance matrix to ellipsoid 
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It is necessary to study how the covariance matrix represents the ellipsoid in 3D. This 

analysis This analysis allows us to understand how the single term of the covariance matrix 

influence the size and the orientation of the ellipsoid. 

Using the framework of Principle Component Analysis (PCA), the relation between the 

covariance matrix, Q, and rotated ellipsoid in ℝ3 is described by the following: 

𝑄 = [

𝜎𝑥
2 𝜌𝑥𝑦𝜎𝑥𝜎𝑦 𝜌𝑥𝑧𝜎𝑥𝜎𝑧

𝜌𝑥𝑦𝜎𝑥𝜎𝑦 𝜎𝑦
2 𝜌𝑦𝑧𝜎𝑦𝜎𝑧

𝜌𝑥𝑧𝜎𝑥𝜎𝑧 𝜌𝑦𝑧𝜎𝑦𝜎𝑧 𝜎𝑧
2

] (58) 

Where 𝜌 is correlation coefficient given by: 

𝜌𝑥𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 

𝜌𝑥𝑧 =
𝑐𝑜𝑣(𝑥, 𝑧)

𝜎𝑥𝜎𝑧
 

𝜌𝑦𝑧 =
𝑐𝑜𝑣(𝑦, 𝑧)

𝜎𝑦𝜎𝑧
 

(59) 

Using the covariance matrix Q, the ellipsoid equation can be conveniently expressed as: 

𝑥 𝑇𝑄−1𝑥 = 1 (60) 

Where 𝑥 = {𝑥 𝑦 𝑧}𝑇 is a vector of Cartesian coordinates. It is therefore necessary to calculate 

𝑄−1: 

𝑄−1 =
1

𝜌

[
 
 
 
 
 
 
 

1 − 𝜌𝑦𝑧
2

𝜎𝑥2
− 𝜌𝑥𝑦 + 𝜌𝑦𝑧𝜌𝑥𝑧

𝜎𝑥𝜎𝑦

− 𝜌𝑥𝑧 + 𝜌𝑦𝑧𝜌𝑥𝑦
𝜎𝑥𝜎𝑧

− 𝜌𝑥𝑦 + 𝜌𝑦𝑧𝜌𝑥𝑧
𝜎𝑥𝜎𝑦

1 − 𝜌𝑥𝑧
2

𝜎𝑦
2

− 𝜌𝑦𝑧 + 𝜌𝑥𝑦𝜌𝑥𝑧
𝜎𝑦𝜎𝑧

− 𝜌𝑥𝑧 + 𝜌𝑦𝑧𝜌𝑥𝑦
𝜎𝑥𝜎𝑧

− 𝜌𝑦𝑧 + 𝜌𝑥𝑦𝜌𝑥𝑧
𝜎𝑦𝜎𝑧

1 − 𝜌𝑥𝑦
2

𝜎𝑧2 ]
 
 
 
 
 
 
 

 (61) 

Where 𝜌 = (1 + 2𝜌𝑥𝑦𝜌𝑥𝑧𝜌𝑦𝑧 − 𝜌𝑦𝑧
2 − 𝜌𝑥𝑧

2 − 𝜌𝑥𝑦
2). So, the rotated ellipsoid equation can 

finally be expressed as: 
(1 − 𝜌𝑦𝑧

2)

𝜎𝑥2
𝑥2 +

(1 − 𝜌𝑥𝑧
2)

𝜎𝑦2
𝑦2 +

(1 − 𝜌𝑥𝑦
2)

𝜎𝑧2
 𝑧2 − 

 𝜌𝑥𝑦 − 𝜌𝑦𝑧𝜌𝑥𝑧
𝜎𝑥𝜎𝑦

2𝑥𝑦 

− 
 𝜌𝑥𝑧 − 𝜌𝑦𝑧𝜌𝑥𝑦

𝜎𝑥𝜎𝑧
2𝑥𝑧 − 

𝜌𝑦𝑧  −  𝜌𝑥𝑦𝜌𝑥𝑧
𝜎𝑦𝜎𝑧

2𝑦𝑧 = 𝜌 
(62) 

This expression illustrates the contribution of the individual terms of the covariance matrix 

to the overall ellipsoid shape and size. Concerning the covariance matrix Q itself, its 

properties are as follows: 

Symmetric 𝑄 = 𝑄𝑇  

Definite positive: 𝑥 𝑇𝑄−1𝑥 > 0 for all 𝑥  with |𝑥 | ≠ 0 

Those two conditions allow to conclude that all eigenvalues 𝜆𝑖 are real and positive, and 

there exists an orthogonal matrix U of eigenvectors. Q is then written as the following 

decomposition:  

𝑄 = 𝑈Λ𝑈𝑇 (63) 
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where, 

Λ=[
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

] (64) 

So, the ellipsoid equation 𝑥 𝑇𝑄−1𝑥 = 1 is then: 
(𝑥 − 𝑐 )𝑇𝑅 𝐴−1 𝑅𝑇(𝑥 − 𝑐 ) = 1 

(65) 

Where, 𝑥 , is a vector of Cartesian coordinates about the nominal position (origin), 𝑐 , of the 

ellipsoid. R and A are respectively the rotation matrix and the diagonal eigenvalues matrix, 

each of which are derived from the specific error matrix (Q): 

𝑥 =  [

𝑥𝐸𝐶𝐼
𝑦𝐸𝐶𝐼
𝑧𝐸𝐶𝐼

] (66) 

𝑐 =  [

𝑥𝐸𝐶𝐼𝑁
𝑦𝐸𝐶𝐼𝑁
𝑧𝐸𝐶𝐼𝑁

] (67) 

𝑅 = [

𝑣(1,1) 𝑣(1,2) 𝑣(1,3)
𝑣(2,1) 𝑣(2,2) 𝑣(2,3)
𝑣(3,1) 𝑣(3,2) 𝑣(3,3)

] (68) 

𝐴 =  [
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] (69) 

The ellipsoid equation is then transformed to a spherical coordinate system where r, , , 

are range, azimuth, elevation respectively. The equation can then be parametrized as a 

function of r to reduce information transfer between cooperative space-based and ground 

system infrastructure. 

𝑥 =  [
𝑟 ∙ cos   ∙ cos 
𝑟 ∙ sin   ∙ cos 
𝑟 ∙ sin  

] (70) 

Given an angle pairs a corresponding radial distance (R) from the nominal position (centre 

of ellipse) is then calculated. 
𝑟2 [(𝑥 − 𝑐 )𝑇𝑅 𝐴−1𝑅𝑇  ((𝑥 − 𝑐 ))] = 1 

𝑟 = [((𝑥 − 𝑐 ))𝑇𝑅𝐴−1 𝑅𝑇  ((𝑥 − 𝑐 ))]−
1
2 

Where,  ∈ {−180 ∶ 180},  ∈ {−90 ∶ 90} 

(71) 

3.2 Uncertainty Quantification using Optical Sensor 

The detection of RSOs position by using passive optical sensors can be solved in two 

different ways: 

 Initial orbit determination (IOD) problem: IOD can be solved using multiple 

observations provided by one single sensor at different times. Angles-only IOD short 

tracks is subject to large orbit uncertainties, if it is even possible due to the short tracks 

involved 

 Triangulation technique with two or more passive, angles-only, optical sensors 

In this thesis it will be applied the triangulation technique for the RSO position tracking: a 

proper formation of small and cooperative spacecraft work in synergy detecting and 
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tracking common targets. A single angles-only sensor does not provide range information. 

However, the use of two angles-only sensor allows one to use triangulation to determine 

range and the 3D RSO position. [65]. Two sensors are placed at known location (x, y, z) and 

are pointed in the direction of the object. For a focal plane array sensor, triangulation is 

performed by taking an image of the object for both sensors. The object location in each 

image is computed and the pointing angle to the object is determined. The pointing angles 

are usually azimuth and elevation, measured in the reference frame of the sensor platform. 

These informations will be transformed in a common reference frame. 

In order to describe triangulation problem using two angles-only sensors, we need to define 

a common coordinate system for both sensors as shown in figure 29. The x- and y- axis form 

the horizontal plane and the z-axis pointing in the vertical direction. The azimuth angle (θ) 

is measured clockwise toward the positive x-axis from the positive y-axis. The elevation 

angle (φ) increases from 0 in the x-y plane to a maximum of 90° when pointing vertically. 

We define the horizontal range to target, 𝑟𝑖, as the distance between the x-y components of 

 𝑖𝑡ℎ sensor location and the x-y components of target location. The sensor separation angle 

𝜃𝑆𝑒𝑝  is the angle measured from sensor one through the target to sensor two. 

 

Figure 29: Coordinate system definition, showing target location and 𝑖𝑡ℎ sensor location  

The sensor position and the LOS from the sensor to the target allow us to compute the 3D 

target location using 3 equation [65]: 

𝑥𝑡 =
𝑥2 𝑡𝑎𝑛(𝜃1) − 𝑥1 𝑡𝑎𝑛(𝜃2) + (𝑦1 − 𝑦2)𝑡𝑎𝑛(𝜃1)𝑡𝑎𝑛(𝜃2)

𝑡𝑎𝑛(𝜃1) − 𝑡𝑎𝑛(𝜃2)
 

𝑦𝑡 =
𝑦1 𝑡𝑎𝑛(𝜃1) − 𝑦2 𝑡𝑎𝑛(𝜃2) + (𝑥2 − 𝑥1)

𝑡𝑎𝑛(𝜃1) − 𝑡𝑎𝑛(𝜃2)
 

(72) 
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𝑟𝑖 = √(𝑥𝑖 − 𝑥𝑡)2 + (𝑦𝑖 − 𝑦𝑡)2 

 

𝑧𝑡 =
𝑟1𝑡𝑎𝑛(𝜑1) + 𝑧1 + 𝑟2𝑡𝑎𝑛(𝜑2) + 𝑧2

2
 

 

 

The uncertainty position of RSO, using multi-sensor platforms, is determined by the 

accuracy of sensor locations and sensor to target Line of Sight (LOS) knowledge. For each 

sensor, we need to know sensor location (x, y, z) and the LOS vector (azimuth θ and 

elevation φ). These five parameters have an error component depending on several other 

measurements. In order to relate measurement errors (σ𝑝𝑜𝑠1, σ𝑝𝑜𝑠2, σθ1, σθ2, σφ1, σφ2) to 

error in our final position (σ𝑥, σ𝑦, σ𝑧) we need to use a mathematic framework based on 

Gauss-Helmert method. 

We define l and X, vector of estimated observations and estimated parameters respectively: 
𝒍 = [𝑥1, 𝑦1, 𝑧1, 𝜃1, 𝜑1, 𝑥2, 𝑦2 , 𝑧2, 𝜃2, 𝜑2]

𝑻 
𝑿 = [𝑥𝑡, 𝑦𝑡 , 𝑧𝑡]

𝑻 (73) 

Where: 

 (𝑥1, 𝑦1, 𝑧1, 𝜃1, 𝜑1) and (𝑥2, 𝑦2, 𝑧2, 𝜃2, 𝜑2) are the five parameters of the first and the 

second sensor respectively  

 (𝑥𝑡, 𝑦𝑡 , 𝑧𝑡) is the target position 

We need to resolve the following equation: 
                                         𝑭(𝑿, 𝒍) = 𝟎                                      (74) 

That, in this case, can be written: 

{
  
 

  
 𝑥𝑡 −

𝑥2 𝑡𝑎𝑛(𝜃1) − 𝑥1 𝑡𝑎𝑛(𝜃2) + (𝑦1 − 𝑦2)𝑡𝑎𝑛(𝜃1)𝑡𝑎𝑛(𝜃2)

𝑡𝑎𝑛(𝜃1) − 𝑡𝑎𝑛(𝜃2)
= 0

𝑦𝑡 −
𝑦1 𝑡𝑎𝑛(𝜃1) − 𝑦2 𝑡𝑎𝑛(𝜃2) + (𝑥2 − 𝑥1)

𝑡𝑎𝑛(𝜃1) − 𝑡𝑎𝑛(𝜃2)
= 0

𝑧𝑡 −
𝑟1𝑡𝑎𝑛(𝜑1) + 𝑧1 + 𝑟2𝑡𝑎𝑛(𝜑2) + 𝑧2

2
 =  0

 (75) 

The covariance matrix of the observation can be written: 

𝑪𝒓 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜎𝑥1
2

𝜎𝑦1
2

𝜎𝑧1
2

𝜎𝜃1
2

𝜎𝜑1
2

𝜎𝑥2
2

𝜎𝑦2
2

𝜎𝑧2
2

𝜎𝜃2
2

𝜎𝜑2
2]
 
 
 
 
 
 
 
 
 
 
 
 

 (76) 
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We assume that all observations are independent, so all non-diagonal values in the matrix 𝑪𝒓 

are equal to zero. The covariance matrix of estimated parameters is computed by: 

𝑪𝑇𝑂𝑇(3×3) = (𝑩𝑪𝒓𝑩
𝑻) (77) 

Where: 𝑩 =
𝝏𝑭

𝝏𝒍
 is the matrix of the partial derivates respect l  

3.3 Covariance Realism 

Within the SSA/Astrodynamics community, the assessment of covariance realism (also 

known as covariance consistency) has been predominately focused upon identifying the 

point at which Gaussian assumptions in the propagation of orbital uncertainty breakdown. 

As discussed, this paper interested at applying this approach to the sensor level and in turn 

validating when gaussian assumptions of navigation and tracking error break down. In 

doing so, 2 commonly used statistical metrics and goodness of fit tests have been adopted. 

The Mahalanobis distance [30] provides a convenient metric for testing covariance realism, 

where a set of empirically generated points, 𝒙mc, from the measurement model are tested to 

see if it corresponds to the gaussian distribution defined by a covariance matrix P centered 

about the truth state, 𝒙truth, of the target. The squared Mahalanobis distance between the 

estimated orbit state and the truth target is defined as: 

ℳ((𝒙mc, 𝒙truth, 𝐏) = ( 𝒙mc − 𝒙truth)
𝑇𝐏−1( 𝒙mc − 𝒙truth) (78) 

The expected value of ℳ is n, where n is the dimension of the state vector 𝒙truth, which in 

the case of a cartesian coordinate system corresponds to 3. As an uncertainty realism metric, 

one can consider the values of ℳ , averaged over at each observation condition. Let ℳ (𝑖) 

be the uncertainty realism metric computed in the i-th Monte Carlo trial. Let k be the total 

number of independent trials. 

ℳ =
1

𝑛𝑘
∑ℳ (𝑖)
𝑘

𝑖=1

 (79) 

A stronger test for uncertainty realism is to consider the statistical distribution determined 

from the measurement model in the form of a physics-based Monte-Carlo simulation. As 

such, the second covariance realism metric test used is the Cramer–von Mises goodness of 

fit test statistic [9,10]. This test permits to verify the consistency of the sample and test how 

well the theoretical Gaussian distribution fits the empirical distribution. The Cramer–von 

Mises (CVM) test is based in a statistic of the type  

𝑄𝑘 = ∫ [𝐹𝑛(𝑥) − 𝐹
∗

 +∞   

−∞

(𝑥)]2𝜑(𝐹(𝑥))𝑑𝐹∗(𝑥) (80) 

Where 𝐹∗(𝑥) is the cumulative distribution function (CDF) of the Mahalanobis distance ℳ 

and 𝐹𝑛(𝑥) is the Empirical CDF of the AMD representing the n degree of freedom system 

being analyzed. Where the results are from a Monte Carlo simulation of the measurement 
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error model with N samples. Specializing to 𝜑(𝐹(𝑥)) = 1, the CVM test is then calculated 

by:  

𝑄𝑘 =
1

12𝑁
∑[

2𝑖 − 1

2𝑁
− 𝐹(ℳ (𝑖))]

2𝑁

𝑖=1

 (81) 

Sorting the Mahalanobis squared distance of the samples,ℳ (𝑖), from the smallest to largest, 

𝐹(ℳ (𝑖)) can be obtained by: 

𝐹(ℳ (𝑖)) = 𝑒𝑟𝑓 (√
ℳ (𝑖)

2
) − √

2 ℳ (𝑖)

𝜋
𝑒−

 ℳ(𝑖)

2  (82) 

Given a significance level 𝛼, one can derive a two-sided 100(1- 𝛼)% confidence interval for 

the distribution ℳ (𝑛). As with the averaged Mahalanobis distance (AMD), the acceptable 

degree of the CVM metric is determined by defining a confidence level. Table 10 outlines 

the acceptable ranges of the CVM and AMD for a commonly selected confidence level for 

measurement models of dimension 3. 

 90% 95% 99% 99.9% 

AMD [0.9655,1.0457] [0.9578,1.0534] [0.9427,1.0685] [0.9106,1.1006] 

CVM [0,0.3430] [0,0.46136] [0,0.74346] [0,1.16204] 

Table 10. Confidence interval for Cramer–von Mises (CVM) [12] and Mahalanobis Distance (MD) for ∞ 

samples. 

As described the Squared Mahalanobis Distance Metric and the Cramer–von Mises 

distribution matching test require the generation of an Empirical Distribution. In doing so, 

a measurement model using the calculated uncertainty of the radar and tracking error 

models is constructed, generating N observation samples about the nominal measurement. 

Under the assumption that each measurement variable is independent (non-correlated): 

The navigation Error contribution, (considered only for SBSS platform), is given by: 

{

𝑅𝑁 =  𝜎𝑅𝑁𝐴𝑉𝑁

𝑆𝑁 = 𝜎𝑆𝑁𝐴𝑉𝑁

𝑊𝑁 = 𝜎𝑊𝑁𝐴𝑉
𝑁
} (83) 

The tracking contribution is given by: 

{

𝑟𝑇 = 𝑟0 + 𝜎𝑟𝑇𝑅𝐾𝑁

ϵ𝑇 = ϵ0 + 𝜎𝜖𝑇𝑅𝐾  𝑁

𝜂𝑇 = 𝜂0 + 𝜎𝜂𝑇𝑅𝐾𝑁
} (84) 

The total uncertainty about the object when tracked from the space-based platform is then 

described by: 

{

𝑅𝑇 = 𝑅𝑁 + 𝑟𝑇   𝑐𝑜𝑠(𝜂𝑇) 𝑐𝑜𝑠(ϵ𝑇)
𝑆𝑇 = 𝑆𝑁 + 𝑟𝑇   𝑐𝑜𝑠(𝜂𝑇) 𝑠𝑖𝑛(ϵ𝑇)

𝑊𝑇 = 𝑊𝐻 + 𝑟𝑇   𝑠𝑖𝑛(ϵ𝑇)
} (85) 

Under the assumption the position of observation is well known and therefore the error is 

negligible, the total uncertainty from the ground station is: 
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{

𝑆𝑇 = 𝑟𝑇𝑐𝑜𝑠(𝜂𝑇)𝑐𝑜𝑠(ϵ𝑇)

𝐸𝑇 = 𝑟𝑇𝑐𝑜𝑠(𝜂𝑇)𝑠𝑖𝑛(ϵ𝑇)

𝑍𝑇 = 𝑟𝑇𝑠𝑖𝑛(ϵ𝑇)
} (86) 

4. Simulation and Verification 

4.1 Ground-Based Tracking Scenario 

The aim of the first case studies is to apply the above framework for the typical scenario of 

RSO tracking from a radar ground station for the practical purpose of identification and 

assessment of a potential collision with an operational spacecraft (Figure 30). Typically 

ground-based tracking stations utilize the South East Zenith Topocentric Horizon 

Coordinate frame (SEZ). The SEZ coordinate system is defined for a given longitude and 

latitude at a local sidereal time and rotates with the site where the local horizon forms the 

fundamental plane. The S axis points due South from the site, The E axis points East from 

the site and the Z axis (Zenith) points radially outward from the site along the site position 

vector from the ECI origin. 

 

Figure 30. Illustration of ground-based tracking scenario and subsequent conjunction region with operational 

satellite. 

The coordinate system is constructed using the site position vector, 𝑟 𝑆𝐼𝑇𝐸, in ECI frame: 

�̂� =  
𝑟 𝑆𝐼𝑇𝐸
|𝑟 𝑆𝐼𝑇𝐸|

 (87) 

�̂� = �̂� × �̂� (88) 

�̂� = �̂� × �̂� (89) 
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The transfer matrix between the RSW and ECI coordinate systems is then following: 

𝑀𝑆𝐸𝑍→𝐸𝐶𝐼 = [𝑺 ̂�̂� �̂�] (90) 

Within the SEZ coordinate frame the tracked RSO range, azimuth and elevation (𝜌, 𝜖, 𝜂) and 

their derivates are measured where then by implementing the SITE-TRACK algorithm [28] 

the position 𝑋 𝑇𝑅𝐾 and the velocity �⃗� 𝑇𝑅𝐾  in the ECI frame can be determined. 

𝑋 𝑇𝑅𝐾 = 𝑟 𝑆𝐼𝑇𝐸 +𝑀𝑆𝐸𝑍→𝐸𝐶𝐼 [

𝜌𝑐𝑜𝑠(𝜂)𝑐𝑜𝑠(𝜖)
𝜌 𝑐𝑜𝑠(𝜂)𝑠𝑖𝑛(𝜖)

𝜌 𝑠𝑖𝑛(𝜂)
] (91) 

�⃗� 𝑇𝑅𝐾 = 𝑀𝑆𝐸𝑍→𝐸𝐶𝐼  𝑣 𝑆𝐸𝑍 +�⃗⃗�  𝑥 𝑋 𝑇𝑅𝐾 (92) 

Where: 𝑣 𝑆𝐸𝑍 is the velocity vector determined from observations at the site in SEZ coordinate 

frame and �⃗⃗�  is the Earth’s rotation vector. Based on the calculated radar performance 

parameters using radar error equations (Equations (2), (4), (5)), it is then necessary to 

transform the TRK uncertainty (𝜎𝑟𝑇𝑅𝐾 , 𝜎𝜖𝑇𝑅𝐾 , 𝜎𝜂𝑇𝑅𝐾) into the ECI coordinate system, 𝑄𝑇𝑅𝐾𝐶𝐴𝑅𝑇
𝐸𝐶𝐼  

as described in Section 3.1. Assuming the velocity measurement error to be zero we obtain 

the following 3 × 3 Covariance matrix for each observation. 

𝑄𝑇𝑅𝐾𝐶𝐴𝑅𝑇
𝐸𝐶𝐼 = (𝑀𝑆𝐸𝑍→𝐸𝐶𝐼 ∙ 𝐷) ∙ 𝑄𝑇𝑅𝐾𝑆𝑃𝐻

𝑆𝐸𝑍 ∙ (𝑀𝑆𝐸𝑍→𝐸𝐶𝐼 ∙ 𝐷)
𝑇  (93) 

𝑄𝑇𝑅𝐾𝐶𝐴𝑅𝑇
𝐸𝐶𝐼 = [

𝜎𝑥𝑇𝑅𝐾
2 𝜎𝑥𝑦𝑇𝑅𝐾 𝜎𝑥𝑧𝑇𝑅𝐾

𝜎𝑦𝑇𝑅𝐾
2 𝜎𝑦𝑧𝑇𝑅𝐾

𝑠𝑦𝑚 𝜎𝑧𝑇𝑅𝐾
2

 ] (94) 

Subject to a linearized propagation method, the dynamic evolution of the RSO uncertainty 

𝑄𝑇𝑅𝐾𝐶𝐴𝑅𝑇
𝐸𝐶𝐼  now be estimated. As this paper is focused on the sensor level analysis, the full 

derivation of this technique beyond scope and as such the reader is referred to [11] and [31] 

for this additional framework. As previously discussed, the propagation of uncertainty is a 

fundamental aspect of SSA, as it allows the determination of probability of collision between 

two RSO’s if a close approach is predicted from each nominal RSO trajectory, a region 

known as the “Conjunction Region” is then defined. The covariance matrix’s that describe 

the propagated position uncertainty of the tracked RSO (𝑄′𝑇𝑅𝐾) and the spacecraft (𝑄′𝑁𝐴𝑉) 

are then summed together and represented as an ellipsoid typically centered on the nominal 

position of the tracked (non-cooperative) RSO. Measurements are uncorrelated, variance 

and covariance terms can be summed directly [32]. 
𝑄𝑇𝑂𝑇 = 𝑄′𝑇𝑅𝐾 +𝑄′𝑁𝐴𝑉  (95) 

𝑄𝑇𝑂𝑇 = [

𝜎𝑥
2 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦
2 𝜎𝑦𝑧

𝑠𝑦𝑚 𝜎𝑧
2

 ]

𝐸𝐶𝐼

 (96) 

Following from reference REF 𝑄𝑇𝑂𝑇 now provides a convenient form to analyze the 

probability of collision between the tracked and operation RSO. Figure 31 illustrates the 

concept of individual navigation and tracking uncertainty’s volume and the resultant 

combined ellipsoid. 
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Figure 31. Conceptual illustration of navigation(purple) tracking(black), total uncertainty volume(magenta) 

and major(orange), semi-major(red) and minor axis (blue) of total uncertainty volume. 

4.2 Space-Based Surveillance Scenario 

Based on proposed MMW SBR systems and documented GPS system performance, we 

outline here a mathematical framework to combine tracking and navigation uncertainty 

with the aim providing a rigorous methodology to describe and analyze the position 

uncertainty of a tracked RSO from a SBSS Radar platform. As with the ground-based 

scenario, we focus on the case of representing uncertainty expressed in a common satellite 

coordinate system to a convenient Earth-Centred Inertial (ECI) reference frame as described 

in Figure 32.  

 

Figure 32: Reference geometry of the non-cooperative tracking and RSW coordinate system. 
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In this case, the RSW coordinate system is used for both navigation and tracking 

observations, where the MMW radar (TRK) and GNSS (NAV) system is assumed to be 

centered about the origin. The key symbols for this scenario are introduced in Figure 33. 

 

 

Figure 33: Space-based observation geometry and measurement deviations in RSW frame. 

To quantify the total error about the RSO position, we reformulate the framework described 

in Section 2.2 as an Errors in-variable model following the Gauss–Helmert method [33,34]. 

In this case, we assume the attitude error of the spacecraft is zero (𝛿𝜖𝑁𝐴𝑉 = 0, 𝛿𝜂𝑁𝐴𝑉 =

0, 𝛿𝜓𝑁𝐴𝑉 = 0). The generic Gauss–Helmert form consists in resolution of the following 

equation system: 
𝑭(𝑿, 𝒍) = 𝟎 (97) 

Where 𝑿, �̂� are estimated parameters and observation vector respectively. The linearized form 

of the previous equation is: 

𝑨𝜹 + 𝑩𝒓 +𝒘 = 𝟎 (98) 

Where 𝑨 =
𝝏𝑭

𝝏�̂�
 and 𝑩 =

𝝏𝑭

𝝏𝒍
 are the matrix of partial derivates with respect to 𝑿, 𝒍 and w is the 

misclosure vector. 𝜹 and 𝒓, the parameter and observation correction vector respectively, are: 

�̂� = −(𝑨𝑻𝑴𝑨)−𝟏𝑨𝑻𝑴𝒘 
�̂� = −𝑪𝒓𝑩

𝑻𝑴(𝑨𝜹+ 𝒘) 
(99) 

Where 𝑴 = (𝑩𝑪𝒓𝑩
𝑻)−𝟏 and 𝑪𝒓 is the covariance matrix of the observations. We obtain the 

covariance matrix of parameters: 

𝐶𝑁𝐴𝑉+𝑇𝑅𝐾 = (𝑨
𝑻𝑴𝑨)−𝟏 (100) 

Equation (43) is then: 
𝑭(𝑿, 𝒍) =  𝑿𝑫 − 𝑴𝑹𝑺𝑾→𝑬𝑪𝑰𝑿𝑻𝑹𝑲 − 𝑹𝐸𝐶𝐼 = 𝟎 (101) 

Where:  
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𝑿𝑫 = [

𝑋𝐷
𝐸𝐶𝐼

𝑌𝐷
𝐸𝐶𝐼

𝑍𝐷
𝐸𝐶𝐼

] and 𝑹𝐸𝐶𝐼 = [

𝑋ℎ
𝐸𝐶𝐼

𝑌ℎ
𝐸𝐶𝐼

𝑍ℎ
𝐸𝐶𝐼

] are the RSO and spacecraft position in ECI frame 

𝑿𝑇𝑅𝐾 = [

−𝑟𝑇𝑅𝐾𝑐𝑜𝑠(𝜖𝑇𝑅𝐾)𝑐𝑜𝑠(𝜂𝑇𝑅𝐾)
𝑟𝑇𝑅𝐾𝑐𝑜𝑠(𝜖𝑇𝑅𝐾)𝑠𝑖𝑛(𝜂𝑇𝑅𝐾)

𝑟𝑇𝑅𝐾𝑠𝑖𝑛(𝜖𝑇𝑅𝐾)
] is the nominal position of the target in RSW frame. 

𝒍 = [𝑟𝑇𝑅𝐾, 𝜖𝑇𝑅𝐾 , 𝜂𝑇𝑅𝐾, 𝑥𝑁𝐴𝑉 , 𝑦𝑁𝐴𝑉 , 𝑧𝑁𝐴𝑉]
𝑻 is vector of estimated observations, and  

𝑪𝒓  =

[
 
 
 
 
 
 
 
𝜎𝑟𝑇𝑅𝐾
2

𝜎𝜖𝑇𝑅𝐾
2

𝜎𝜂𝑇𝑅𝐾
2

𝜎𝑥𝑁𝐴𝑉
2 𝜎𝑥𝑦𝑁𝐴𝑉 𝜎𝑥𝑧𝑁𝐴𝑉

𝜎𝑦𝑥𝑁𝐴𝑉
𝜎𝑧𝑥𝑁𝐴𝑉

𝜎𝑦𝑁𝐴𝑉
2 𝜎𝑦𝑧𝑁𝐴𝑉

𝜎𝑧𝑦𝑁𝐴𝑉 𝜎𝑧𝑁𝐴𝑉
2]
 
 
 
 
 
 
 

= [
𝑄𝑇𝑅𝐾𝑆𝑃𝐻

𝑄𝑇𝑅𝐾𝐶𝐴𝑅𝑇
𝐸𝐶𝐼

]  

is the covariance matrix of observations. 

The assumption is made that all navigation and tracking observations errors are 

independent, so covariance terms between the 2 observation sets in the matrix 𝑪𝒓 are set to 

zero. However, covariance terms between navigation uncertainty exist due to the 

transformation from the RSW to ECI coordinate frame described by equation 45. With, 

𝐴(3×3) = 𝟙 the covariance matrix of observation is then computed by: 

𝑪𝑁𝐴𝑉+𝑇𝑅𝐾(3×3) = (𝑩𝑪𝒓𝑩
𝑻) (102) 
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4.3 Space-Based Optical sensor scenario 

Since the utilization of radar technology has been proposed but it has different type of 

limitation, optical sensor appears to be a viable solution for space debris surveillance. A 

mathematical framework will be described, and it will be able to quantify the position 

uncertainty of a tracked RSO from a formation of multiple space-based using passive optical 

sensors. The platforms, involved in this formation, detect and track common target by using 

the concept of multiple point of view observations solving the triangulation technique. The 

proposed RSO surveillance mission uses multiple space-based distributed in several Sun-

synchronous orbits, located in order to allow for a complete worldwide coverage and 

multiple observation of space debris orbiting in LEO. It is imperative to develop a 

coordination architecture within at least two spacecrafts would be able to perform the tasks. 

Therefore, the basic tasks that can be carried on all or part of the team members include [67]: 

 Detecting of the debris  

 Tracking of the debris  

 Identification of the neighboring satellites  

 Gathering and updating information about detected debris 

The system should address and be robust against some relevant issues related to the space 

environmental and working conditions, such as [67]: 

 Non-optimal illumination conditions 

 Sensor degradation  

 False target detections  

 Variability of the inter-satellite communication link 

 Timing problem 

For this thesis, a formation of two sensor platforms will be analyze. As the radar scenario, 

we focus on representing the uncertainty from the satellite reference frame (RSW) to a 

common reference frame. In this case, the RSW coordinate system is used for both 

navigation and tracking observations, where the GNSS system and the optical observation 

is assumed to be centered about the origin. The camera is rigidly attached to the body frame: 

no gimbal mechanisms are considered in this preliminary design. The camera optical axis is 

aligned with the satellite R axis and the image plane XY is parallel to the WS satellite body 

plane. The reference geometry and the key symbols for this scenario are introduced in 

Figures 34 and 35. 
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Figure 34: Reference geometry of the non-cooperative tracking and RSW coordinate system. 

 

Figure 35: measurement deviations in RSW frame. 

To quantify the total error about the RSO position, we need to use the framework described 

in section 3.2, following the Gauss-Helmert method. Firstly, it is necessary to express the 

two platforms position and the direction of the viewed target, the pointing angles, from each 

sensor into a common reference frame. 

Then, we need to solve the following equation: 
                                         𝑭(𝑿, 𝒍) = 𝟎                                      (103) 

Where 𝑿, �̂� are estimated parameters and observation vector respectively. 
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That, in this case, can be written: 

{
  
 

  
 𝑥𝑡 −

𝑥2 𝑡𝑎𝑛(𝜃1) − 𝑥1 𝑡𝑎𝑛(𝜃2) + (𝑦1 − 𝑦2)𝑡𝑎𝑛(𝜃1)𝑡𝑎𝑛(𝜃2)

𝑡𝑎𝑛(𝜃1) − 𝑡𝑎𝑛(𝜃2)
= 0

𝑦𝑡 −
𝑦1 𝑡𝑎𝑛(𝜃1) − 𝑦2 𝑡𝑎𝑛(𝜃2) + (𝑥2 − 𝑥1)

𝑡𝑎𝑛(𝜃1) − 𝑡𝑎𝑛(𝜃2)
= 0

𝑧𝑡 −
𝑟1𝑡𝑎𝑛(𝜑1) + 𝑧1 + 𝑟2𝑡𝑎𝑛(𝜑2) + 𝑧2

2
 =  0

 (104) 

Where: 

  (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) are the two platform positions in ECI reference frame 

 (𝑥𝑡, 𝑦𝑡, 𝑧𝑡) is the RSO position in ECI reference frame 

 (𝜃1, 𝜑1) and (𝜃2, 𝜑2) are the azimuth and elevation angles of the RSO from each sensor 

platforms  

Instead, the error analysis, described in section 3.2, requires transforming also the 

uncertainty position of the two sensors from RSW into ECI reference frame by using the 

equation 45: 

𝑄𝑁𝐴𝑉𝐶𝐴𝑅𝑇
𝐸𝐶𝐼 = 𝑀𝑅𝑆𝑊→𝐸𝐶𝐼  𝑄𝑁𝐴𝑉𝐶𝐴𝑅𝑇

𝑅𝑆𝑊 ∙ 𝑀𝑅𝑆𝑊→𝐸𝐶𝐼
𝑇      (45) 

Also in this case, we assume the attitude error of the spacecraft is zero (𝛿𝜖𝑁𝐴𝑉 = 0, 𝛿𝜂𝑁𝐴𝑉 =

0, 𝛿𝜓𝑁𝐴𝑉 = 0). 

For the sensor accuracy, the onboard camera provides information about the location of the 

object in the image plane [�̃� �̃�]. Such positioning includes the noise, so the equation become: 

[
�̃�
�̃�
] = [

𝑢
𝑣
] + [

𝛿𝑢
𝛿𝑣
]     (105) 

Where 𝛿𝑢 and 𝛿𝑣 are the noise elements along the u and v axes of the image plane 

respectively 

The noise elements can be modeled with a zero-mean Gaussian distribution and a 

covariance matrix given by: 

𝑪𝑻𝑹𝑲 = 𝐸([𝛿𝑢 𝛿𝑣]
𝑇[𝛿𝑢  𝛿𝑣]) = [

𝜎𝑢
2 0

0 𝜎𝑣
2]     (106) 

Where 𝜎𝑢
2, 𝜎𝑣

2 are the variances of the errors, expressed in pixel, along the two coordinate 

axes. We can now transform 𝜎𝑢
2 and 𝜎𝑣

2 into variances of error expressed in rad:  

𝜎𝜃 =
𝜎𝑢𝜌𝑢
2 𝑓

 

𝜎𝜑 =
𝜎𝑣𝜌𝑣
2 𝑓

 
    (107) 

Where 𝜌𝑢 and 𝜌𝑣 are the width and the height of each pixel and f the focal length 

So, the covariance matrix of the observation can be written:  
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𝑪𝒓= 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜎𝑥1
2 𝜎𝑥𝑦1

𝜎𝑥𝑦1 𝜎𝑦1
2

𝜎𝑥𝑧1
𝜎𝑦𝑧1

𝜎𝑥𝑧1 𝜎𝑦𝑧1 𝜎𝑧1
2

𝜎𝜃1
2

𝜎𝜑1
2

𝜎𝑥2
2 𝜎𝑥𝑦2 𝜎𝑥𝑧2

𝜎𝑥𝑦2
𝜎𝑥𝑧2

𝜎𝑦2
2 𝜎𝑦𝑧2
𝜎𝑦𝑧2 𝜎𝑧2

2

𝜎𝜃2
2

𝜎𝜑2
2 ]
 
 
 
 
 
 
 
 
 
 
 
 

     (108) 

The assumption is made that all navigation and tracking observations errors are 

independent, so covariance terms between the 2 observation sets in the matrix 𝑪𝒓 are set to 

zero. However, covariance terms between navigation uncertainty exist due to the 

transformation from the RSW to ECI coordinate frame described by equation 45. With 

𝐴(3×3) = 𝟙, the covariance matrix of observation is then computed by: 

𝑪𝑁𝐴𝑉+𝑇𝑅𝐾(3×3) = (𝑩𝑪𝒓𝑩
𝑻) (109) 

Where: 𝑩 =
𝝏𝑭

𝝏𝒍
 is the matrix of the partial derivates respect l 
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5. Results 

5.1 Radar Results 

The aim of both Radar scenarios was to demonstrate an effective framework for 

measurement uncertainty analysis while gaining a deeper understanding on the limits of a 

normally distributed representation of the uncertainty of the measurement models. In the 

first scenario, radar design parameters were selected based on ground-based radar tracking 

stations in the SSA SST network where in the second case radar parameters were selected 

from proposed spaceborne MMW Radar designs for larger orbiting platforms such as the 

ISS. As described in Section 4.2, the second case implements an error in variables model 

under a Gauss–Helmert formulation to combine both tracking the navigation measurements 

when determining the total position uncertainty of the tracked RSO. In doing so, navigation 

measurements are assumed to be provided by an on-board GNSS system where 

corresponding uncertainty values are taken from a LEO GPS accuracy experiment found in 

the literature [35]. Table 11 outlines the specific radar parameter and nominal tracking 

measurements (azimuth and elevation) values for both cases and the spacecraft orbital 

parameters (at measurement epoch) and associated uncertainty values within the RSW 

frame. To reflect the advantages of spaceborne MMW radar <10 cm RSO size was selected 

for the simulation, as opposed to the larger debris sizes (>10 cm) which have been chosen 

for the ground station scenario. 

Table 11. Ground and Space-based tracking scenario inputs. 

Spacecraft Position a= 6829km e =0.00001 i = 51.6° ω = 90° Ω = 90° 

Navigation Error 
Radial (R) 𝜎𝑅𝑁𝐴𝑉 13.81m 

In-Track (S) 𝜎𝑆𝑁𝐴𝑉 4.15m 

Cross-Track (W) 𝜎𝑊𝑁𝐴𝑉
 3.0m 

Nominal Tracking Angle Space-Based Radar Ground-Based Radar 
𝜖𝑇𝑅𝐾 45° 45° 

𝜂𝑇𝑅𝐾 45° 45° 

Fixed Radar Parameters 
Frequency 95 GHz (W band) 442 MHz (UHF) 

Peak transmit power 1200 W 36 MW 

Beamwidth 0.2° 1.3° 

Aperture Dimension 1.0m 58.0 m 

Noise Figure 4.5 dB 4.5dB 

Radar pulse duration 1 μs 1 μs 

Transmit antenna Gain 58 dBi 48dBi 

Varied Parameters 
Debris Diameter 1, 3, 6 cm 10,20,30cm 

Range to Target 𝑟𝑇𝑅𝐾 1:60 km 1:850 km 
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To test the covariance realism of the total position uncertainty the RSO the average 

Mahalanobis distance metric and Cramer–von Mises test statistic outlined in Section 3.3 is 

computed. Adapting the test procedure outlined in [10] for a sensor level analysis, the 

following steps are performed for both cases: 

 Define a range to target and debris size, calculate the performance of the radar system 

and fuse the tracking + navigation errors using the approach outline in Section 3.1 

 Generate N Monte Carlo points based on the measurement model performance as 

described in Section 3.3. (10,000 points were chosen in the case of these simulations) 

 Calculate the corresponding average Mahalanobis distance metric (AMD) and 

Cramer–von Mises (CVM) goodness of fit statistic. 

 Repeat steps 1–3 for every range to target for each RSO size.  

 Plot the averaged uncertainty metric (AMD) and the Cramer–von Mises test statistic 

versus range to target for each tracked RSO size 

 Determine the range to target when the averaged metric and the Cramer-von Mises 

test statistic first pierce a pre-defined confidence level interval (Table 10) – and 

declare that the covariance realism has broken down under the corresponding sensor 

performance. 

Figure 36 and 37 displays the results of the above uncertainty realism test procedure which 

can be interpreted as follows: The calculated degree of the CVM test and AMD metric are 

plotted for each range to target as well as the confidence interval for each. Until the first 

point of intersect from either realism test and the corresponding confidence interval, the 

uncertainty distribution can be assumed to represent the calculated RSO covariance matrix 

under the chosen level of confidence. In both the ground and space-based cases, a 

confidence level of 99% was chosen arbitrarily. Both figures demonstrate that for all tracked 

RSO sizes, the CVM test statistic with the corresponding confidence interval provides a 

more restrictive statistical measure, when compared against the first-moment AMD metric. 

This is not a surprising result as the CVM test statistic is determined from the empirical CDF 

measurement model, giving more indication on the actual shape, size and orientation of the 

distribution. In turn the CVM test can distinguish finer discrepancies between the empirical 

(CDF) and the theoretical uncertainty distribution (covariance) when compared to the AMD 

metric. Table 12 outlines the difference in the range to target when between the CVM test 

statistic and AMD metric at the 99% confidence interval. 
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Figure 36. Covariance realism of theoretical uncertainty volume as a function of range for Ground-Based 

radar 

 

Figure 37. Covariance realism of theoretical uncertainty volume as a function of range for Space-Based Radar. 
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Table 12. Max Range-to-Target for 99% Average Mahalanobis Distance (AMD) and CVM Covariance Realism 

Test Statistic. 

 Space-Based Tracking Ground-Based Tracking 

RSO Size 1cm 3 cm 6 cm 10 cm 20 cm 30 cm 

AMD range [km] 21.393 36.689 51.825 505.54 716.61 876.80 

CVM range [km] 20.027 34.618 48.958 479.15 677.03 827.80 

Δ range to target [km] 1.115 2.071 2.867 26.38 39.57 49 

 

Due to the significant impact on the calculated SNR of the radar system, assessing the 

covariance realism in relation to the specific range to target and debris size provide a 

practical relationship to defining an acceptable magnitude of measurement errors. Figures 

38 and 39 illustrate this relationship for the ground and space-based case, where the 

magnitude of range and angular errors and corresponding 99% CVM interval are plotted 

against the range-to-target for each debris size. 

 

Figure 38. Ground Based Radar range and angular errors as a function of range to target 
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Figure 39. Space Based Radar range and angular errors as a function of range to target. 

Mathematically, the confidence interval represents the point at which the original 

curvilinear distribution described by the radars spherical uncertainty can no longer be 

truthfully represented as rectilinear covariance within the cartesian ECI system. To illustrate 

this point further; Figure 40a) shows the generation of Monte Carlo points used to generate 

the empirical distribution for the 6cm RSO at the 99% CVM confidence interval for the 6cm 

debris size. The calculated Cartesian covariance matrix inflated to 3 sigma is then overlaid 

as an ellipsoid centered about the nominal RSO position. As expected, the corresponding 

contour map (Figure 40b), illustrates that the Monte Carlo points conform to a rectilinear 

Gaussian distribution and therefore the corresponding uncertainty can be represented in 

terms of covariance within the ECI cartesian frame. Conversely, Figure 40c, d illustrate the 

distribution corresponding to range to 6cm target of far-beyond the 99% CVM confidence 

interval. The distribution is now morphed from an ellipsoidal shape to a “bananoid”, a 

curvilinear gaussian distribution inherent to the radar measurement uncertainty model. 

Although this demonstrates the extreme case, meaning practically that the radar would not 

be used under these conditions due to the large uncertainty of the measurements, the figures 

aims to show physically what it means when the distribution becomes non-gaussian at the 

sensor level (in the rectilinear sense) and therefore cannot be described in terms of cartesian 

covariance.  
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Figure 40. Monte Carlo generated distribution and corresponding contour maps for the 6cm debris. Clockwise 

from bottom left: (a) 99%CVM CI Monte Carlo distribution (b) 99%CVM Contour Map, (c) >>99% CVM 

Confidence Interval Contour Map (d) >>99% CVM Confidence interval Monte Carlo distribution. 

As previously highlighted, the importance of quantifying uncertainty at the sensor level is 

to meet the required assumptions of covariance realism for SSA activities such as orbit 

determination and uncertainty propagation for RSO collision probability analysis and 

subsequent avoidance activities. In effect, covariance realism at the sensor level provides 

means of covariance “fidelity” to these processes. Previously published studies on 

covariance realism for orbital propagation demonstrate that the initial AMD and CVM 

metric should tend unity and (1/12k) respectively to demonstrate that a large enough Monte 

Carlo sample size of the initial covariance matrix (of RSO position uncertainty) has been 

taken. Nonetheless, the sensor level analysis performed in this thesis show that the initial 

covariance matrix used for these analyses may, in fact, vary in its actual realism/gaussianity 

if its intrinsic observation uncertainties have been mapped from its original coordinate 

system. For example, if an observation is taken under a certain tracking performance (in the 

case of this paper, RSO size and range-to-target), the subsequent covariance goodness of fit 

determined by the CVM test will lay somewhere along plot as shown in Figures  36 and 37. 

Analysis of the effect of varying gaussianity as inputs to typical SSA analysis (orbit 

determination, probability of collision) is beyond the scope of this paper and will be 

addressed in future research. 

𝑏) 

𝑑) 𝑎) 

𝑐) 
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Turning attention now specifically to the second case of an SBSS platform. Using the Gauss–

Helmert errors in variables framework a measurement model was produced that combines 

both navigation and tracking errors to generate a position uncertainty of the tracked RSO. 

We are interested in identifying the influence of the navigation error on the total position 

uncertainty and any effect on the covariance realism tests described previously. In doing so, 

plotting the range to target against the ratio between NAV+TRK (𝑄𝑇𝑂𝑇) and TRK (𝑄𝑇𝑅𝐾) 

uncertainty provides an indication of the total effect of the navigation error on the total 

uncertainty of the RSO. This is done by taking the eigenvalues of each respective covariance 

matrix (𝑄𝑇𝑂𝑇 , 𝑄𝑇𝑅𝐾) and summing them in an RSS manner, where the ratio between the two 

is then calculated. 

𝑇𝑂𝑇𝑅𝑆𝑆 = √ 𝜆1𝑄𝑇𝑂𝑇
+ 𝜆2𝑄𝑇𝑂𝑇

+ 𝜆3𝑄𝑇𝑂𝑇
 (110) 

𝑇𝑅𝐾𝑅𝑆𝑆 = √ 𝜆1𝑄𝑇𝑅𝐾 + 𝜆2𝑄𝑇𝑅𝐾 + 𝜆3𝑄𝑇𝑅𝐾  (111) 

From Figure 12a, it is clear the navigation error uncertainty has a strong influence on the 

total error uncertainty volume at close target ranges, however as the range increases the 

ratio between the two uncertainty volumes decreases asymptotically to 1. This result is 

expected as the navigation error is assumed fixed during observation however the 

calculated radar performance is dynamic and heavily dependent on the range to target. Not 

surprisingly, Figure 41 demonstrates that navigation error has a significantly larger 

influence when a higher performance radar configuration is used, which in the case of the 

SNR dependent error corresponds to a larger size RSO being tracked. Figure 41 a,b,c 

graphically illustrates the influence of navigation uncertainty error on the total uncertainty 

size and orientation at the 10, 15, 20 km range to a 6cm target. At each range value, the 

navigation (NAV), tracking (TRK) and total (NAV+TRK) are represented as magenta, black 

and purple respectively. Regarding the effect of navigation uncertainty has the covariance 

realism, we can see that that the navigations uncertainty region of influence as defined by 

the ratio between 𝑇𝑂𝑇𝑅𝑆𝑆 and 𝑇𝑅𝐾𝑅𝑆𝑆 asymptotes to unity well before the range to target of 

the corresponding confidence interval. This indicates that under these specific simulation 

parameters the navigation error is not a limiting factor in maintaining gaussianity 

assumptions. However, on referring to Figure 37, it is shown that under close range where 

the navigation error is a dominant, oscillations of the CVM test occur for all debris sizes. 

Further research will address these findings and aim to address under what conditions 

could be detrimental to covariance realism. 
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Figure 41: Effect of Navigation errors on total RSO uncertainty of tracked debris (clockwise from top right:). a) 

10 km b) 15 km, c) 20 km range to target. In each figure the magenta, black and purple ellipsoids represent the 

Navigation, Tracking, and Total (NAV+TRK) uncertainty volumes respectively. 

The aleatoric benefits of the presented framework and covariance realism studies are quite 

clear – by accurately modelling all prominent sources of error that contribute to RSO 

uncertainty a realistic uncertainty regarding the position of an RSO is determined 

(Parameter value uncertainty). Additionally, by addressing under what specific sensor 

performance RSO uncertainty (gaussian) assumptions maintain realism, Model-Based 

Uncertainty is also explicitly quantified providing both a top down and bottom up 

methodology to sensor performance requirements.  
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5.2 Optical Results 

The aim of this scenario is to demonstrate an effective framework, by using passive optical 

sensor platforms, for measurement uncertainty analysis while gaining a deeper 

understanding on the limits of a normally distributed representation of the uncertainty of 

the measurement models. In this scenario, the passive optical sensor design parameters 

were selected based on a typical Star Tracker, device used for attitude determination. For 

the tracking error, we assume that all systematic errors in the device are taken into account 

while processing and they are negligible after the calibration. In this preliminary design, 

only the random error will be considered.   As described in section 4.3, to combine both 

tracking and navigation measurements when determining the total position uncertainty of 

the tracked RSO, a model based on the Gauss-Helmert formulation has been implemented. 

As the radar scenario, navigation measurements are assumed to be provided by an on-board 

GNSS system. Table 13 outlines the specific optical parameters of the device and the 

uncertainty spacecraft position values within the RSW frame. 

 

Navigation Error 
Radial (R) 𝝈𝑹𝑵𝑨𝑽 12 m 

In-Track (S) 𝝈𝑺𝑵𝑨𝑽  5.0 m 

Cross-Track (W) 𝝈𝑾𝑵𝑨𝑽
 5.0 m 

Fixed Parameters 
Lens Diameter D   70 mm 

Focal length f  40 mm 

CCD Pixel Size μ  5 μm 

Albedo α 0.1 

Quantum Efficiency q 0.4 

Field of view (FOV) 5° x 5° 

CCD array 1000 x 1000 

Tracking Error (3σ) 
Noise Pixel (𝝈𝒖, 𝝈𝒗) 66 μrad (1.1 pixel) 

Table 13: Space-based tracking scenario inputs using optical sensor 

For this scenario, we need to do some assumptions: 

 The RSO is in the field of view (FOV) of both camera sensors during the tracking 

period 

 The RSO has a visual magnitude value acceptable for the considered optical sensors 

during the tracking period 

 No timing errors 

 At this stage, the sizes of the RSO aren’t considered  

As the Radar scenario, to test the covariance realism of the total position uncertainty of the 

RSO the average Mahalanobis distance metric and Cramer–von Mises test statistic, outlined 

in Section 3.3, is computed. Adapting the test procedure outlined in [10] for a sensor level 

analysis, the following steps are performed for both cases: 
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 Define the orbital parameters of two SBSS and a RSO and decide a period of tracking, 

expressed in second. 

 Calculate the performance of the optical system and fuse the tracking + navigation 

errors using the approach outline in Section 3.2 

 Generate N Monte Carlo points based on the measurement model performance as 

described in Section 3.3. (10,000 points were chosen in the case of these simulations) 

 Calculate the corresponding average Mahalanobis distance metric (AMD) and 

Cramer–von Mises (CVM) goodness of fit statistic. 

 Repeat steps 2–4 for every tracking second.  

 Plot the averaged uncertainty metric (AMD) and the Cramer–von Mises test statistic 

versus tracking time, corresponding on different position of three objects 

 Determine the tracking time when the averaged metric and the Cramer-von Mises 

test statistic first pierce a pre-defined confidence level interval (Table 10) – and 

declare that the covariance realism has broken down under the corresponding sensor 

performance. 

Considering for this scenario two Space-Based sensors and a RSO orbiting around the Earth, 

at this stage, we have decided to divide the analysis in two sub-case: 

1. The first analysis has been done with two SBSS having a fixed position during their 

Sun-Synchronous orbit and the RSO orbiting in a known orbit 

2. The second analysis has been done with the RSO having a fixed position and two 

SBSS following a Sun-Synchronous orbit.  
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5.2.1 First case  

The first case wants to analyze how the orbital plane separation angle, defined as the 

angular difference of platforms orbital plane, influence the sensor performance and the RSO 

position uncertainty. The table 14 shows the orbital parameters of the two sensor platforms 

that follow a Sun-synchronous trajectory. In this preliminary stage, we decided to fix their 

positions, near to an equatorial latitude. Instead the space object has a known orbit based 

on the concentration debris study, described on figure 6 and 7. Moreover, we decided to 

analyze the uncertainty position changing the RAAN Ω of the second sensor platform. 

Therefore, the two Space-Based will have an orbital plane separation angle of 20°, 30° and 

45°. 

Orbital Parameters Sensor 1 Sensor 2 RSO 
Semi-Major Axis, a 7171 Km 7171 Km 7621 Km 

Eccentricity, e 0 0 0 

Inclination, i 98.5621° 98.5621° 100.6535° 

Right Ascension of Ascending 

Node (RAAN), Ω 

0° [20°, 30°, 45°] [10°, 15°, 22.5°] 

Argument of perigee, ω 0° 0° 0° 

Starting true anomaly, 𝛎𝒐𝒏 2° 2° -15° 

Ending true anomaly, 𝛎𝒐𝒇𝒇 2° 2° 17.62° 

Table 14: Input orbital parameters for 2 SBS platforms and RSO.  

The figure 42 shows which part of the RSO orbit the two sensors track. We decide to track 

the object for 600 seconds, corresponding to RSO delta true anomaly Δν of 32.62°. For 

simplicity, we put the RSO orbital plane in the middle of two sensors planes as shown in 

the figure. 

 

Figure 42: Scenario with RAAN separation: 20° (a), 30° (b), 45° (c)    

The figure 43 displays the results of the above uncertainty realism test procedure which can 

be interpreted as follows:  The calculated degree of the CVM test and AMD metric are 

plotted for second of tracking. Until the first point of intersect from either realism test and 

the corresponding confidence interval, the uncertainty distribution can be assumed to 

represent the calculated RSO covariance matrix under the chosen level of confidence. A 

confidence level of 99% was chosen arbitrarily. The figure demonstrates that the CVM test 

statistic with the corresponding confidence interval provides a more restrictive statistical 

measure, when compared against the first-moment AMD metric. The table 15 highlight the 
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difference of the tracking period available between the AMD metric and the CVM test. This 

is not a surprising result as the CVM test statistic is determined from the empirical CDF 

measurement model, giving more indication on the actual shape, size and orientation of the 

distribution. In turn the CVM test can distinguish finer discrepancies between the empirical 

(CDF) and the theoretical uncertainty distribution (covariance) when compared to the AMD 

metric 

 

Figure 43: Covariance realism of theoretical uncertainty volume for Space-Based Optical Sensor 

Orbital plane 

Separation angle 

(deg) 

Tracking Period Available (sec) Delta Tracking 

Time (sec) AMD Metric CVM Test 

20° 537 496.7  40.3 

30° 384 281 103 

45° 317 165 152 

Table 15: Tracking Time available for the three sub-case 

The factors that influence these results can be mainly: 

 the range to target, distance between the sensors and the object. For simplicity, we 

calculate the average range from the two sensors to the RSO, given by the equation: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑛𝑔𝑒 =  
𝑅𝑎𝑛𝑔𝑒1 + 𝑅𝑎𝑛𝑔𝑒2

2
 (112) 

 the separation angle, the angle measured from sensor one through the target object 

to sensor two. 

 

The figure 44 and 45 show the importance of the range and the separation angle for the RSO 

tracking by using optical sensors with the only-angles determination problem. It is clear that 

the Average Mahalanobis Distance metric and the Cramer von-Mises test values are 

acceptable, that means values inside of the interval determined by the 99% CVM Confidence 

Interval, when both average range and separation angle decrease their values. Due to the 
significant impact on the RSO relative position respect the two platforms, assessing the covariance 
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realism in relation to the specific range to target and separation angle provide a practical 

relationship to defining an acceptable magnitude of measurement errors.  
 

 

Figure 44: Average Distance from the sensor to RSO during tracking period 

 
 

Figure 45: Separation angle during the tracking period 

The table 16 highlights the maximum values of separation angle and average range in which 

the ellipsoid generated by the covariance matrix can follow the Gaussian assumptions. It is 

evident that if the RAAN separation is bigger, the maximum separation angle value 

decreases. 

RAAN Separation (deg) Max Separation angle 

(deg) 

Max Average Range (Km) 

20° 146° 2408.7 

30° 142° 2349 

45° 141° 3061 

Table 16: Maximum Separation angle and Maximum Average Range for 99% Average Mahalanobis Distance 

(AMD) and CVM Covariance Realism Test Statistic. 
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The last table confirms the results of the table 15, where we can outline that two optical 

sensor platforms with an orbital plane separation angle of 20° can represent the RSO 

uncertainty with an ellipsoid for 496 seconds against the 165 seconds of the third sub-case 

(45°).  

The results underline a clear relationship between the separation angle and the covariance 

realism: angular values too high lead to have an ellipsoid that doesn’t represent the Monte 

Carlo points generated by using a normal distribution for each measurement variables.  

The considerations about the range to target are affected by the camera assumptions. A 

deeper analysis should be considered where the visual magnitude and the size of the RSO 

are two parameters. 

Mathematically, the confidence interval represents the point at which the original 

distribution can no longer be truthfully represented as rectilinear covariance within the 

cartesian ECI system. The figure 46 shows the generation of Monte Carlo points used to 

generate the empirical distribution for the RSO at the 99% CVM confidence interval. The 

calculated Cartesian covariance matrix inflated to 3 sigma is then overlaid as an ellipsoid 

centered about the nominal RSO position. As expected, the figure illustrates that the Monte 

Carlo points can represent the corresponding uncertainty in terms of covariance within the 

ECI cartesian frame 

 
Figure 46: Montecarlo Generated distribution with 99% CVM CI and the relative ellipsoid 

Conversely, the figure 47 shows the generation of Monte Carlo points for the RSO outside 

the 99% CVM confidence interval. The calculated Cartesian covariance matrix inflated to 3 

sigma is then overlaid as an ellipsoid centered about the nominal RSO position. It is 

interesting to note how the covariance matrix, represented by an ellipsoid, is not able to 

follow the orientation of the MC point distribution.  
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Figure 47: Montecarlo Generated distribution with 99% CVM CI and the relative ellipsoid 

The stretched ellipsoid shown in figure 47 is due to the increase of the separation angle and 

the range to target. This stretching of the shape has led the covariance matrix to lose 

information specially about the orientation and for this reason the discrepancy between the 

original distribution and the rectilinear covariance become evident. 

Although this demonstrates the extreme case, meaning practically that the optical sensor 

would not be used under these conditions due to the high value of the separation angle, the 

figures aims to show physically what it means when the distribution becomes too stretched 

at the sensor level  and therefore cannot be described in terms of cartesian covariance.  
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5.2.2 Second case  

The second case would analyze how the altitude RSO orbit influence the sensor 

performance and then the quantification of the RSO uncertainty position.  

The two Space-Based have a Sun-synchronous orbit. Orbiting in opposite direction and 

starting with a true anomaly of 160° and -20° respectively, they will cross the equatorial 

plane at the same moment. We decide to track the space debris for 700 seconds and thus the 

two SBSS will cover a Δν of 41.70°. The RSO will have a fixed position with equatorial 

latitude. The table 17 shows the orbital parameters of the two SBSS and the RSO. Moreover, 

for a deeper understanding, we change the altitude orbit of the RSO and thus the Semi-

Major Axis, a. Therefore, the RSO orbit altitude will have 3 values: 850, 1000 and 1150 Km 

from the Earth surface.  

Orbital Parameters Sensor 1 Sensor 2 RSO 
Semi-Major Axis, a 7171 Km 7171 Km 6371 + [850, 1000, 1150] Km 

Eccentricity, e 0 0 0 

Inclination, i 98.5621° 98.5621° 100° 

Longitude of ascending node, Ω 180° 45° 22.5° 

Argument of perigee, ω 0° 0° 0° 

Starting true anomaly, 𝛎𝒐𝒏 160° -20° 0° 

Ending true anomaly, 𝛎𝒐𝒇𝒇 201.70° 21.70° 0° 

Table 17: Input orbital parameters for 2 SBS Platforms and RSO 

The figure 48 shows a graphic representation of the scenario, where the black dot is the RSO 

position and the purple and green lines are respectively the orbits of the first and the second 

sensor platform. For simplicity, we decided to put the RSO position in the middle of two 

sensors planes.  

 

Figure 48: scenario with three RSO orbit altitudes: 850 Km, 1000 Km, 1150 Km     
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The figure 49 displays the results of the above uncertainty realism test procedure which can 

be interpreted as follows:  The calculated degree of the CVM test and AMD metric are 

plotted for each tracking second. Until the first point of intersect from either realism test and 

the corresponding confidence interval, the uncertainty distribution can be assumed to 

represent the calculated RSO covariance matrix under the chosen level of confidence. A 

confidence level of 99% was chosen arbitrarily. The figure demonstrates that the CVM test 

statistic with the corresponding confidence interval provides a more restrictive statistical 

measure, when compared against the first-moment AMD metric. The table 18 highlight the 

difference of the tracking period available between the AMD metric and the CVM test. This 

is not a surprising result as the CVM test statistic is determined from the empirical CDF 

measurement model, giving more indication on the actual shape, size and orientation of the 

distribution. In turn the CVM test can distinguish finer discrepancies between the empirical 

(CDF) and the theoretical uncertainty distribution (covariance) when compared to the AMD 

metric 

 

Figure 49: Covariance realism of theoretical uncertainty volume for Space-Based Optical Sensor 

It is evident that for AMD metric the tracking period available is longer respect CVM test 

and this difference grows when the RSO orbit has a semi-major axis a bigger.   

 

RSO Altitude (Km) Tracking Period Available (sec) Delta Tracking 

Period (sec) AMD Metric CVM Test 
850 138 97.5  40.5 

1000 304 242.5 61.5 

1150 700 474.5 225.5 

Table 18: Tracking Period available for 3 RSO altitude 

As the previous case, the separation angle and the average range parameters, given by the 

equation 112, will be analyze. The figures 50 and 51 underline the importance of these two 

factors that lead to restrict the field where the covariance matrix follows the Gaussian 

assumptions. It is clear that the Average Mahalanobis Distance metric and the Cramer von-
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Mises test values become unacceptable, that means values inside of the interval determined 

by the 99% CVM Confidence Interval, when both average range and separation angle 

increase their values.  

Figure 50: Average Distance between two sensors and the RSO during the tracking period  

 

 

Figure 51: Separation angle during the tracking period 

The table 19 highlights the maximum values of separation angle and averaged range in 

which the ellipsoid generated by the covariance matrix can represent the RSO total 

uncertainty upholding the uncertainty realism assumptions. We can see that the maximum 

values of the separation angle for these three sub-cases are very similar, in fact the difference 

is only a few degrees. For the maximum average range, we outline a linear relationship with 

the RSO altitude but we can highlight the same consideration of the first case and a deeper 

analysis will be necessary. 
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RSO Altitude (Km) Max Separation angle 

(deg) 

Max Average Range (Km) 

850 138.64° 2954 

1000 139.36° 2607 

1150 140.73° 2127 

Table 19: Max Separation angle ad Average Range for 99% Average Mahalanobis Distance (AMD) and CVM 

Covariance Realism Test Statistic. 

Mathematically, the confidence interval represents the point at which the original 

curvilinear distribution can no longer be truthfully represented as rectilinear covariance 

within the cartesian ECI system.  

The figure 52 shows the generation of Monte Carlo points used to generate the empirical 

distribution for the RSO at the 99% CVM confidence interval. The calculated Cartesian 

covariance matrix inflated to 3 sigma is then overlaid as an ellipsoid centered about the 

nominal RSO position. As expected, the figure illustrates that the Monte Carlo points can 

represent the corresponding uncertainty in terms of covariance within the ECI cartesian 

frame 

 

Figure 52: Montecarlo Generated distribution with 99% CVM CI and the relative ellipsoid 

Conversely, the figure 53 shows the generation of Monte Carlo points for the RSO outside 

the 99% CVM confidence interval. The calculated Cartesian covariance matrix inflated to 3 

sigma is then overlaid as an ellipsoid centered about the nominal RSO position. It is 

interesting to note how the covariance matrix is not able to follow the orientation of the MC 

points.  
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Figure 53: Montecarlo Generated distribution with 99% CVM CI and the relative ellipsoid 

As the previous sub-case, the stretched ellipsoid shown in the figure is due to the increase 

of the separation angle and the range to target. This shape stretching has led the covariance 

matrix to lose information specially about the orientation and for this reason the discrepancy 

between the original distribution and the rectilinear covariance become evident. 

As the previous sub-case, this means practically that the optical sensor would not be used 

under these conditions due to the high values of the separation angle and range to target 

leading the distribution to become too stretched. 

  



88 

 

6 Conclusions and Future Research 

Ground and space-based surveillance platforms will form a necessary aspect in the 

categorization and maintenance of resident space object databases, required for timely and 

effective SSA operation within a future Space Traffic Management (STM) system. 

Nonetheless, for this to be a viable and useful asset, it is necessary that a sensor focused 

approach is taken when determining position uncertainty of Resident Space Objects (RSO). 

Through a representative case study of a Ground-Based and Space-Based by using both 

radar and passive optical sensors, this thesis aimed to demonstrate an error model that 

captures both the platform navigation and tracking sensor errors in determining RSO 

position uncertainty. Practically, the results show that sensor performance must be 

determined under different tracking conditions to uphold uncertainty realism assumptions 

and support key SSA decision-making processes.  

The results of the research highlighted different type of limitations due to the nature of the 

sensor itself: 

 the limitation of the radar system regards the curvilinear distribution described by 

the spherical uncertainty of the radar: when the range to target grows the distribution 

morphs from an ellipsoidal shape to a “bananoid” and becomes non-gaussian when 

mapping to a cartesian system. Therefore, the corresponding uncertainty cannot be 

represented in terms of covariance matrix (cartesian normal distribution) 

 the passive optical system has the limitation of the separation angle: when the two 

sensor platforms form with the RSO a high separation angle, the generated ellipsoid 

starts to have a stretched shape and it cannot provide the information of the empirical 

distributions about the orientation, the shape and the size   

 

Future research will focus on building a more rigorous description of RSO uncertainty 

through the inclusion of velocity measurement errors and associated uncertainty. This is a 

necessary to fully define the uncertainty of the RSO.  

Further, deeper analysis of the constellation space-based optical platforms will be necessary 

to optimize the constellation in regarding to effectively reducing the uncertainty of RSO. 

Uncertainty propagation is a key aspect of the SSA evolutions. A linear propagation method 

such as Linear Covariance (LinCov) analysis, that linearized the orbital dynamics, has been 

developed to estimate the propagation of RSO error over time. Thus, it is will be useful to 

analyze the complete covariance matrix (6x6), that includes the position and the velocity 

uncertainty, to fully understand how uncertainty grows and when covariance assumptions 

break down over the propagation period. 

The addition of cooperative RSO scenario case studies also prove necessary due to the 

continuous increase of collision warnings involving operational spacecraft. This will require 

the modelling of RSO equipped with TSPI enabling systems such as GNSS and data sharing 

capabilities equivalent to Automatic Dependent Surveillance Broadcast (ASD-B) system  
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