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Abstract

The objective of this thesis is the optimal operation of a complex energy system
via the “Rolling Horizon” algorithm (also known as “Receding Horizon” or “Model
Predictive Control”). The target of the optimization will be achieving the lowest
possible monetary expense given a pre-determined energy demand (heating, cooling
and electric power), by determining the optimal mix of power production from the
components of a HRES system, including the option of buying or selling energy to
the national grid. The energy system will also be subjected to uncertainty in the
energy demand forecast, which is going to be managed thanks to the Rolling Horizon
algorithm. The computation will be carried out using MATLAB.

After an overview of the Rolling Horizon algorithm, its implementation for this
thesis’ purposes will be examined in a step-by-step fashion. Afterwards, the results
obtained will be presented, and a sensitivity analysis on the most relevant parameters
will be performed. In the end, the necessary conclusions will be drawn.
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Chapter 1

Introduction

The ever-increasing energy demand (according to IEA’s Current Policies scenario,
energy demand will rise by 1.3% each year to 2040, with increasing demand for en-
ergy services unrestrained by further efforts to improve efficiency1), the greenhouse-
gas emissions regulations and the limited availability of fossil fuel reserves have led
many power producers to shift towards renewable energy, the fastest-growing of
which are solar and wind power. However, such energy sources depend heavily on
weather and climatic conditions and present severe fluctuations in power generation.

This is why energy source diversification has become of utmost importance:
mixes of two or more sources coupled with a suitable storage system (also known as
Hybrid Renewable Energy Systems or HRES) have proven to be a valid and reliable
power generation method. In order to better exploit the several technologies these
systems are composed of, the control and operation of HRES is often performed with
the aid of optimization algorithms. To this end, it is necessary to have some form
of forecast of the future energy demand (the more accurate the prediction, the more
efficient the optimization), which is going to be used by the algorithm to achieve
the most efficient system configuration that satisfies that demand.

A few examples2 of the most widely used optimization algorithms in the energy
field are:

• Genetic Algorithms: developed by John Holland and later popularized by
Goldberg, it is a family of algorithms which emulates the population and
natural genetics mechanisms present in nature; this type of algorithm is very
useful to avoid the problem of being ”stuck” on local minima.

• Particle Swarm Optimization: developed by Kennedy and Eberhart, it
emulates the swarm intelligence behavior of birds and fishes. The advantages
of this algorithm are its simplicity of implementing, relative flexibility, low
memory requirements and short convergence times.

• Fuzzy Logic Control: developed by L. Zadeh, it performs the comparison
of a set of multiple logical states (differently from binary logic, in which a
statement can be either true (1) or false (0)). Fuzzy logic is advantageous for
implementing optimal control as a number of input parameters can be taken
into the design of the fuzzy rule base to achieve the desired control objective.

1IEA. World Energy Outlook 2019. 2019.
2Barnam Saharia. “A review of algorithms for control and optimization for energy management

of hybrid renewable energy systems”. In: Journal of Renewable and Sustainable Energy (2018).
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CHAPTER 1. INTRODUCTION

• Rolling Horizon: developed independently by Richalet et al. (1978) and
Cutler and Ramaker (1980),3 it operates by dividing the problem at hand in
smaller sub-problems, whose scope is a smaller time window than that of the
original one. It is very useful when the future forecast is characterized by
uncertainty and there’s a need to update input data with the passing of time.

In the following chapters of this work, the Rolling Horizon algorithm will be further
analyzed and implemented in the operation of a HRES system.

3Giovani Cavalcanti Nunes. Design and analysis of multivariable predictive control applied to
an oil-water-gas separator: a polynomial approach. 2001. url: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.6.6300&rep=rep1&type=pdf.
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Chapter 2

Case Study

2.1 Presentation of the problem

The case that is going to be analyzed in this thesis will involve the optimization
of the operation of a Hybrid Renewable Energy System. The system is connected
to the electric grid and the district heating grid, with the option of both buying
and selling electric and thermal power to them. Furthermore, the system is able to
purchase natural gas from the national distribution system. The time period over
which the optimization is going to be performed is 24 hours, while the chosen ∆t
for the discretization of the problem will be 15 minutes. The following data are
provided beforehand:

• The system’s energy demand in terms of heating, cooling and electricity (re-
spectively ΦH ,ΦC ,ΦE) over the 24 hours; note that these values are merely a
forecast, thus being subjected to uncertainty

• The components’ minimum and maximum generated power and their efficiency
curves

• The storage systems’ capacity

• The electric power produced by the photovoltaic panels (ΦPV ) during the
course of the day

• The maximum electric power which the wind turbine is able to produce (Φwind,max)

• The cost of electricity during the day (cE)

• The average cost of thermal power for district heating (cH)

• The average cost of natural gas (cG)
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CHAPTER 2. CASE STUDY

2.2 Description of the system’s components

2.2.1 Combined Heat and Power

A Combined Heat and Power unit (Figure 2.1) is a system capable of producing
electricity by exploiting the enthalpy of a gas (usually air) which is heated via fuel
combustion (in this case the fuel is natural gas) and sent into a turbine which
converts the gas’ internal energy first into mechanical and then electric power via an
alternator. The gas exits the turbine at 400-600°C: its remaining thermal energy is
then available for consumption. To summarize, the CHP system is able to produce
both electric power (ΦCHP,E) and heat (ΦCHP,H) via the combustion of a natural
gas mass flow at the inlet (ΦCHP,G). The component’s efficiency curves are shown
in Figure 2.2.

Figure 2.1: A CHP unit.1
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(a) Electric efficiency curve.
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(b) Heating efficiency curve.

Figure 2.2: Efficiency curves of the CHP system.
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2.2.2 Gas Heat Pump

The Gas Heat Pump (Figure 2.3) is able to produce both cooling (ΦGHP,E) and heat-
ing (ΦGHP,H) thermal power via the combustion of a natural gas mass flow, which is
used to supply a thermodynamic cycle (ΦGHP,G). The component’s efficiency curves
are shown in Figure 2.4.

Figure 2.3: Schematization of a GHP system.2
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(a) Cooling efficiency curve.
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Figure 2.4: Efficiency curves of the GHP system.

1TEDOM a.s. url: https://www.tedom.com
2Efficient energy centre. url: http://www.efficientenergycentre.co.uk/heat-pumps/
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2.2.3 Boiler

The boiler (Figure 2.5) exploits the combustion of a natural gas mass flow (ΦBoil,G)
to heat (ΦBoil,H) a water flow. In this case, the efficiency will be considered constant
and equal to 0.9, so the efficiency curve (Figure 2.6) is a straight line.

Figure 2.5: A gas boiler.3

0 20 40 60 80 100 120 140 160 180 200

Inlet fuel (natural gas) chemical power (KW)

0

20

40

60

80

100

120

140

160

180

H
e

a
ti
n

g
 P

o
w

e
r 

(K
W

)

Figure 2.6:
Heating efficiency curve of the boiler.

2.2.4 Absorption Chiller

The absorption chiller (2.7) is able to produce cooling power (ΦAbs,C) by exploiting
a heat source (ΦAbs,H) via an absorption refrigeration cycle (usually using a mixture
of water and lithium bromide). Its efficiency curve is shown in Figure 2.8.

Figure 2.7:
An absorption chiller.4
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Figure 2.8:
Cooling efficiency of the absorption chiller.

3Viessmann. url: https://www.viessmann.it/it/riscaldamento- casa/caldaie- a-

condensazione-a-gas/caldaie-a-condensazione-a-gas-murali/caldaia-condensazione-

vitodens-200w.html
4Thermotech Green Products. url: http://thermotechgp.com/absorption-chiller/
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2.2.5 Electric Chiller

The electric chiller (Figure 2.9) employs electricity (ΦChill,E) to generate cooling
power (ΦChill,C) via a standard refrigeration cycle. Its efficiency curve is displayed
in Figure 2.10.

Figure 2.9: An electric chiller.5
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Figure 2.10:
Cooling efficiency of the electric chiller.

2.2.6 Storage

The system includes storage units (2.11) for heating, cooling and electric power.
Thermal storage units are usually tanks equipped with one or two coils for heat
exchange, while electric storage units are electrochemical batteries.

(a) A thermal storage tank6. (b) An electricity storage battery7.

Figure 2.11: Storage units.

5Engineered Systems. url: https://www.esmagazine.com/articles/98678- york- yz-

magnetic-bearing-centrifugal-chiller-johnson-controls
6Markki Piho. url: http://www.markki.com/design/thermal-energy-storage-tanks/
7General Electric. url: https://www.ge.com/reports/leading-charge-battery-storage-

sweeps-world-ge-finding-place-sun/
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CHAPTER 2. CASE STUDY

The flux of energy type j (heat, cooling power or electricity) exiting the storage
device at the generic time t is calculated as:

ΦStor,j(t) =
EStor,j(t− 1)− EStor,j(t)

∆T
(2.1)

Where EStor,j(t) is the quantity of energy stored in the unit at the end of the time-
step t. No energy losses will be considered during the storing process.

2.2.7 Photovoltaic

The Phovovoltaic panel (2.12) takes advantage of the photoelectric effect of silicon
to produce electric power (ΦPV ) from solar irradiance. In this work, the forecast on
the solar irradiance will be considered exact (not subjected to uncertainty), but in
some cases this parameter might also be a source of uncertainty. The electric power
produced by the PV is already known, but to have a better idea of its performance it
is possible to calculate its efficiency from the data on the solar irradiance, as shown
in Figure 2.13:

Figure 2.12:
A monocristalline silicon
PV panel.8
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Figure 2.13:
PV efficiency compared to environment’s tempe-
rature.

8LG. url: https://www.lg.com/us/business/solar-panels/lg-lg340n1c-v5#
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2.2.8 Wind Turbine

The wind turbine (Figure 2.14) exploits the wind’s kinetical energy to produce
electric power (ΦWind).

Figure 2.14: A wind turbine.9

Only the maximum electric power generated by the turbine (ΦWind,max) is available.
For this reason, the actual power values (as a function of wind speed v) will be
generated according to a Weibull distribution (k = 2, c = 6), displayed in Figure
2.15:
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k

c

(v
c

)k−1
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ΦWind(v) = ΦWind,max ·
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(2.3)
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Figure 2.15: Wind power values generation method.

9Paul Cryan. url: https://www.usgs.gov/media/images/wind-turbine-and-forest
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2.2.9 Summary

Here is a summary of the consumed and generated power of each component:

Component Power IN Power OUT

CHP Gas Heat, Electricity

GHP Gas Heat, Cool

Boiler Gas Heat

Absorption chiller Heat Cool

Electric Chiller Electricity Cool

PV Solar irradiance Electricity

Wind Turbine Wind’s kinetical energy Electricity

Hot Storage Heat Heat

Cold Storage Cool Cool

Electricity Storage Electricity Electricity

Table 2.1: HRES components summary
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Chapter 3

The Rolling Horizon method

3.1 Background

Model Predictive Control (i.e. Rolling Horizon) was developed independently by
Richalet et al. (1978) and Cutler and Ramaker (1980), to satisfy the needs of more
stringent production requests in the industry.1 The Rolling Horizon algorithm has
been used in process industries (such as oil refineries and chemical plants) since the
1980s, but more recently it has found applications in power electronics and in the
balancing of energy systems (such as the one described in this thesis).

3.2 Peculiarities of the method

One of the advantages of the Rolling Horizon algorithm is its adaptability to many
optimization problems characterized by uncertainty: in fact, the algorithm can easily
adjust the control system’s response if one or more variables in the model are not
as predicted.

Furthermore, if implemented correctly, it can greatly decrease the computa-
tional time of certain types of problem (with respect to other optimization algo-
rithms), since it only forecasts the events contained within a pre-defined Prediction
Horizon (which can be significantly smaller than the full scope of the problem), and
it only actively performs the optimization within the Control Horizon (which might
be even shorter that the Prediction Horizon). This means that, instead of solving
a very large problem, it actually solves several smaller sub-problems (one for each
iteration), which might lead to a severe decrease of the computational effort.

However, it follows that the solution that the algorithm computes might not be
the optimal one (since a single iteration does not consider the entire time window of
the problem): for this reason, the Prediction and Control Horizon have to be chosen
wisely to avoid major miscalculations.

1Giovani Cavalcanti Nunes. Design and analysis of multivariable predictive control applied to
an oil-water-gas separator: a polynomial approach. 2001. url: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.6.6300&rep=rep1&type=pdf,
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CHAPTER 3. THE ROLLING HORIZON METHOD

3.3 Algorithm overview

For simplicity’s sake, the problem considered in this section as an example will be a
plain and straight-forward one: the control of the horizontal trajectory of a vehicle,
as it is outlined in Figure 3.1. Let’s suppose to be driving a car which needs to
follow a given reference trajectory; furthermore, let’s imagine to currently be off the
correct path, so that the current course of action needs to be corrected by acting on
the steering wheel, which is the control system of the vehicle.

Time

Past Control Input Reference Trajectory Measured Trajectory

Control Horizon

Prediction Horizon

Figure 3.1: Representation of the vehicle problem.

To implement the algorithm, a few parameters have to be defined first.

3.3.1 Time discretization

To be analyzed, the time period under examination needs to be first subdivided
into elementary time-steps ∆t of constant size: the duration a single time-step must
not be too large (otherwise there would be an unacceptable approximation of the
phenomenon), and not too small (this would lead to excessive computational times).

3.3.2 Prediction Horizon and Control Horizon

Subsequently, the duration (in time-steps) of the Prediction Horizon and the Control
Horizon needs to be selected. They are defined as follows:
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Prediction Horizon (PH)

The Prediction Horizon (Figure 3.2) is the time period during which the problem
relative to a single iteration is analyzed; in other words, the optimization algorithm
is going to compute the solution which optimizes the objective function relative
to this time-span alone. The duration of the Prediction Horizon must be chosen
carefully: if it’s too long, the computational effort will be too great (losing this way
one of the main advantages of this algorithm); if it’s too short, when there is a
sudden change in the reference trajectory, the control system might not be able to
correct its course in time, or might react too drastically (which is not optimal).

Time

Past Control Input Reference Trajectory Measured Trajectory Predicted Trajectory

Control Horizon

Prediction Horizon

Figure 3.2: Representation of the Prediction Horizon; in this example, it has a size
of 6∆t. Note that as there is no active control after time 0, the predicted trajectory
is a straight line.

Control Horizon (CH)

The Control Horizon (Figure 3.3) is the time period during which the algorithm
can act on the control system; it needs to be equal or shorter than the Prediction
Horizon (for obvious reasons: we cannot try to control something we are not able to
foresee). It must not be too long (it will lead to a higher complexity of the problem),
nor too short (the regulation of the control system might not be optimal, because
the algorithm does not have enough degrees of freedom). If the Control Horizon
is smaller than the Prediction Horizon, after the CH ends it is assumed that the
control input will remain constant throughout the remaining time-steps.

3.3.3 System modelization

An adequate model defining the problem at hand has to be formulated: the nature
of this model may vary greatly, depending on the system to be analyzed and the
problem itself. Usually it is a set of equations or inequalities describing the physics of
the system, plus other mathematical correlations of technical or economical nature.
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Time

Past Control Input Predicted Control Input Reference Trajectory

Measured Trajectory Predicted Trajectory

Control Horizon

Prediction Horizon

Figure 3.3: An example of implementation of Rolling Horizon. Note that the pre-
dicted control input remains constant out of the Control Horizon, which in this case
has a size of 4∆t.

3.3.4 Optimization Problem

Now it is possible to employ the equations of the model described above to define a
linear optimization problem, which is often presented in this form:

min c′ · x
s.a. A · x ≤ b

Aeq · x = beq

(3.1)

Where x is the control variables vector, while c′ is the costs vector; their dot product
c′ · x is the objective function. The two systems A · x ≤ b and Aeq · x = beq are
the constraints set for the problem. The remainder of this section will be aimed to
analyze these elements in greater detail.

Control variables

They are the variables which describe the behavior of the control system; the objec-
tive of the simulation is to optimize their values in order to minimize the objective
function. There may be more than one control variable for each time-step (more
degrees of freedom for the control system). In the vehicle example these correspond
to the angle at which the steering wheel is turned.

Objective function

It is the value which summarizes the effectiveness of the computed solution. It can
represent a physical quantity, a monetary value, or any other kind of parameter
which needs to be optimized (or even a combination of the three). In the vehicle
example, this function may be represented by a fictitious cost times the distance from
the reference trajectory, but it can also account, for instance, for the abruptness of
the steering (we may not want the curve to be too steep to guarantee the stability
of the vehicle or the comfort of the passengers).
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Constraints

They are the conditions which the solution of the problem has to satisfy. They can
express physical laws, technical/economical limitations, or other limitations that
need to be imposed. They can be hard constraints (they must be satisfied at all
costs), or soft constraints (they can be broken, but at a cost which is specified in the
objective function). They can be expressed as equations (Aeq ·x = beq) or inequalities
(A · x ≤ b).

3.3.5 Application of the algorithm and re-iteration

The solution of the optimization sub-problem within the selected Prediction Horizon
will produce a part of the control variables vector x (ranging from t0+∆t to t0+CH,
where t0 is the time of the current iteration). Only the values relative to the first
time step (viz. x(t0 + ∆t)) are actually adopted in the final solution, while the rest
are discarded. Afterwards, the current time becomes t0 = t0 +∆t and both horizons
shift (”roll”) of one time-step ∆t. The system’s current state is measured and, in
case it is not the same as the one that was predicted, it is updated. Subsequently, the
optimization sub-problem is solved once more and the system’s behavior is predicted
again by the model using the new data; the process is repeated until the desired
time span is reached. A schematic of the process is displayed in Figure 3.4.

System Model

Current state

Predicted output +

-

Future
error

Reference
trajectory

Optimizer
Optimized
current and
future input

Objective
function

Constraints

Figure 3.4: Schematization of the Rolling Horizon algorithm.
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3.4 Application of the algorithm in the case study

3.4.1 Time discretization

As stated before, the 24-hour period will be discretized in time-steps of 15 minutes:
that means that there is going to be a total of 96 time-steps.

3.4.2 Prediction and Control Horizon

In this particular case, there is no need to predict the behavior of the HRES system
if it is not possible to regulate it actively: for this reason, the Prediction Horizon
and the Control Horizon will be set to the same length.

3.4.3 Uncertainty

The problem presents a source of uncertainty: a random variation of ±10% is im-
plemented at each iteration for the predicted energy demand relative to the current
time-step. This will simulate a real-life scenario in which the actual energy con-
sumption varies with respect to the forecast.
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3.4.4 Flow diagram of the algorithm

The MATLAB algorithm can be summarized as follows:

START

Data and Parameters definiton (efficiency
curves, energy demands, k, PH, etc.)

t = t0?
YES

NO

ΦH(t) = ΦH(t) + ∆ΦH(t)
ΦC(t) = ΦC(t) + ∆ΦC(t)
ΦE(t) = ΦE(t) + ∆ΦE(t)

Constraints and objective function
definition: f,intcon,A,b,Aeq,beq,lb,ub

Computation of X using intlin-
prog with the previously defined

constraints and objective function

ΦIN,i(t + ∆t) = Xi(t + ∆t)
Estor,j(t+ ∆t) = Xj(t+ ∆t)

Xold = X

t = t + ∆t

t = tend?
NO

YES

END

Figure 3.5: Flow diagram of the MATLAB algorithm.
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Chapter 4

Optimization problem formulation

4.1 Efficiency curves linearization

Since the optimization algorithm that is going to be used involves linear program-
ming, the efficiency curves of the components need to be approximated with a first
order (linear) polynomial. The power generated by the i-th component will then be
calculated as:

ΦOUT,i = η0,i + η1,i · ΦIN,i (4.1)

This linearization will not be performed for the boiler (since it’s already linear),
nor for the PV panels and the wind turbine, which are not going to be part of
the control variables, given that they are virtually ”cost-free” and they’re always
consumed when available; moreover, their output power is already known, so there’s
no need to calculate it. The approximation will be carried out via linear regression
of the real efficiency curve. Figure 4.1 shows the linearized curves:
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(a) CHP heating efficiency.
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(b) CHP electric efficiency.
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(c) GHP heating efficiency.
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(d) GHP cooling efficiency.
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(e) Absorption chiller cooling efficiency.
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(f) Electric chiller cooling efficiency.

Figure 4.1: Efficiency curves linearization.

4.2 Implementation of linear optimization

Now that the model of the system has been defined, the linear optimization problem
can be formulated; more specifically, it is possible to write a formulation of the
objective function and the linear constraints of the problem. The linear approach
has been chosen since it does not require a heavy computational effort (in a real-life
scenario, the optimization would need to be performed every 15 minutes).

4.2.1 Control variables

The control variables vector x comprises the values that it is possible to directly
modify to influence the system’s behavior: the value of ΦIN,i of each component
(except for ΦPV and ΦWind, which are not going to be controlled), the thermal and
electric power exchanged with the grids and the storage energy level EStor,i(t).
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The vector x can then be written as:

x =



ΦCHP,G

ΦGHP,G

ΦBoil,G

ΦEGrid,in

ΦEGrid,out

ΦTGrid,in

ΦTGrid,out

ΦAbs,H

ΦChill,E

EStor,H(t)
EStor,C(t)
EStor,E(t)



(4.2)

4.2.2 Objective function

Now that the control variables are defined, it is possible to assign a cost to each
of them. In this case there are no soft constraints, so the objective function will
only account for real costs (not fictitious ones): the cost of natural gas, the cost of
buying thermal energy and electricity from the grid, and the revenues from selling
them. The objective function for each time-step can be written as:

c′ · x = cG · (ΦCHP,G + ΦGHP,G + ΦBoil,G)

+ cE · (ΦEGrid,in − k · ΦEGrid,out)

+ cH · (ΦTGrid,in − k · ΦTGrid,out)

(4.3)

The coefficient k is there to account for the difference between the buying and the
selling price (usually it’s smaller than 1). cG and cH are calculated from the average
price assuming a random variation in a ±20% range for each time-step.

4.2.3 Linear constraints

The problem’s constraints can be categorized as:

Energy balance constraints

The heating, cooling and electricity balance has to be satisfied at each time-step.

Heating :

ΦCHP,H + ΦGHP,H + ΦBoil,H − ΦAbs,H + ΦTGrid,in+

−ΦTGrid,out −
EStor,H(t− 1)− EStor,H(t)

∆t
= ΦH

(4.4)

Cooling :

ΦGHP,C + ΦAbs,C + ΦChill,C −
EStor,C(t− 1)− EStor,C(t)

∆t
= ΦC (4.5)
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Electricity :

ΦCHP,E − ΦChill,E + ΦEGrid,in − ΦEGrid,out+

−EStor,E(t− 1)− EStor,E(t)

∆t
= ΦE − ΦPV − ΦWind

(4.6)

Note that ΦPV and ΦWind are not variables, but known values.

Energy conversion via calculated efficiency

These are the equations correlating the inlet and outlet power of each component i:

ΦOUT,i = η0,i + η1,i · ΦIN,i (4.1)

(For the boiler η0,Boil = 0).

These equations can be integrated in the energy balances, which are rewritten as:

 η1,CHP,H η1,GHP,H η1,Boil 0 0 1 −1 −1 0
0 η1,GHP,C 0 0 0 0 0 η1,Abs,C η1,Chill,C

η1,CHP,E 0 0 1 −1 0 0 0 −1

 ·



ΦCHP,G

ΦGHP,G

ΦBoil,G

ΦEGrid,in

ΦEGrid,out

ΦTGrid,in

ΦTGrid,out

ΦAbs,H

ΦChill,E


+

+

 − 1
∆t

0 0 1
∆t

0 0
0 − 1

∆t
0 0 1

∆t
0

0 0 − 1
∆t

0 0 1
∆t

 ·


EStor,H(t)
EStor,C(t)
EStor,E(t)

EStor,H(t− 1)
EStor,C(t− 1)
EStor,E(t− 1)

 =

=

 ΦH − η0,CHP,H − η0,GHP,H

ΦC − η0,GHP,C − η0,Abs,C − η0,Chill,C

ΦE − ΦPV − ΦWind − η0,CHP,E


(4.7)

Minimum and maximum values

Each component is characterized by a minimum and a maximum value of power it
can produce. Moreover, each storage has a maximum capacity. The constraint on
the generic control variable x can be written as:

Min value ≤ x ≤Max value (4.8)

In this case the minimum value has to be set equal to 0, and not to the actual
minimum power the component is able to generate, because that would mean it is
always functioning.
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4.3 Issues with linear optimization

The implementation of linear optimization poses several issues, which might lead to
a non-accurate or non-optimal solution.

4.3.1 Efficiency’s zero-degree term

As stated before, a component’s generated power is calculated as:

ΦOUT,i = η0,i + η1,i · ΦIN,i (4.1)

The issue with this formulation is that it provides an inaccurate estimate of the
output power when ΦIN,i assumes values that are equal or close to 0. This is due to
the fact that the linear fit is calculated in the interval [Φmin,i,Φmax,i], so it does not
accurately approximate the curve outside of that range.

As an example, let us consider the CHP: its electric efficiency coefficients are
η0,CHP,E ≈ −8.5 and η1,CHP,E ≈ 0.5. Let us suppose to have a value of ΦCHP,G =
1kW : that means that the produced electric power would be ΦCHP,E = −8.5 + 0.5 ·
1 = −8kW , which is not only unrealistic, but physically impossible.

4.3.2 Minimum value of variables

To avoid the previous issue, one might impose a minimum value for ΦIN,i which
is sufficiently high (for example Φmin,i, since we know that each component has a
minimum amount of power it can generate), but that would force this component to
be always on: simple linear programming is not able to discriminate between OFF
and ON states of components.

4.3.3 Inaccurate linear efficiency

For some components like the electric chiller or the GHP, a linear fit of the efficiency
curve doesn’t approximate the component’s behavior in an accurate way; employing
a piecewise linear approximation or using a higher order polynomial is not possible
since the constraints and the objective function’s equations have to be strictly linear.

4.4 Implementation of MILP optimization

To solve the previously described issues, it is possible to exploit the Mixed Integer
Linear Programming (MILP) approach: it involves the implementation of integer
variables, in addition to the linear ones described previously. In particular, for this
study’s purposes the integer variables are going to be binary.
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4.4.1 Definition of the binary variables

A binary variable Yi is assigned to each component i of the HRES system (except
for the boiler, the storage and the grids): it will have to be equal to 1 when the
component is on, equal to 0 when it is off.

The control variables vector x then becomes:

x =



ΦCHP,G

ΦGHP1,G

ΦGHP2,G

ΦBoil,G

ΦEGrid,in

ΦEGrid,out

ΦTGrid,in

ΦTGrid,out

ΦAbs,H

ΦChill,E

EStor,H(t)
EStor,C(t)
EStor,E(t)
YCHP

YGHP1

YGHP2

YAbs

YChill1

YChill2

YChill3



(4.9)

4.4.2 Additional constraints

To make the binary variable follow the behavior of the i-th component, two addi-
tional constraints have to be set:

Φi ≥ Φmin,i · Yi (4.10)

Φi ≤ Φmax,i · Yi (4.11)

This way, when Yi = 0 (OFF state) the component’s power will be forced to 0, when
Yi = 1 (ON state) the component’s power will be limited in the interval [Φmin,Φmax].
This means that the previously set constraints for these values (i.e. equation 4.8)
have become redundant, so they can be discarded.

Furthermore, it is possible to employ the binary variables to make sure that when
a component’s inlet power is 0, the generated power value is not influenced by the
zero-degree term of the efficiency η0,i; this way, equation 4.1 becomes:

ΦOUT,i = η0,i · Yi + η1,i · ΦIN,i (4.12)

4.4.3 Piecewise linearization of efficiency curves

Now it is also possible to implement a piecewise linear regression of the efficiency
curve of the electric chiller and of the cooling efficiency curve of the gas heat pump
(Figures 4.2 and 4.3):
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(a) One-piece linear regression
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(b) Three-piece linear regression

Figure 4.2: Comparison between one-piece and three-piece linear fit of the chiller’s
efficiency
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(a) One-piece linear regression
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(b) Two-piece linear regression

Figure 4.3: Comparison between one-piece and two-piece linear fit of the gas heat
pump’s cooling efficiency

The distinct pieces of the curve will be treated as separate components by the
algorithm, but it is necessary to impose an additional constraint to make sure that
only one of them is active at any given time:

Ychill1 + Ychill2 + Ychill3 ≤ 1 (4.13)

YGHP1 + YGHP2 ≤ 1 (4.14)
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4.4.4 Inequality constraints

The inequality constraints of the system for every time-step can now be written as:

−1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0



·



ΦCHP,G

ΦGHP1,G

ΦGHP2,G

ΦAbs,H

ΦChill1,E

ΦChill2,E

ΦChill3,E


+

+



ΦCHP,G,min 0 0 0
−ΦCHP,G,max 0 0 0

0 ΦGHP1,G,min 0 0
0 −ΦGHP1,G,max 0 0
0 0 ΦGHP1,G,min 0
0 0 −ΦGHP1,G,max 0
0 0 0 ΦAbs,H,min

0 0 0 −ΦAbs,H,max

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0
0 0 0 0



·


YCHP

YGHP1

YGHP2

YAbs

+
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+



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

ΦChill1,E,min 0 0
−ΦChill1,E,max 0 0

0 ΦChill2,E,min 0
0 −ΦChill2,E,max 0
0 0 −ΦChill3,E,min

0 0 ΦChill3,E,max

0 0 0
1 1 1



·

 YChill1

YChill2

YChill3

 ≤



0
0
0
0
0
0
0
0
0
0
0
0
1
1


(4.15)

To have a better understanding of the size of the problem, it might be useful to
estimate how many inequalities make up the constraints: there are 2 inequalities
for each component (minimum and maximum power constraints) and 1 inequality
for each component whose curve has been piecewise linearized; this means that, for
each time-step of the Prediction Horizon, there are 16 inequality constraints with
11 variables.
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4.4.5 Equality constraints

The equality constraints of the problem consist of the three energy balance equations
for every time-step and are formulated as:

 η1,CHP,H η1,GHP,H η1,GHP,H η1,Boil 0 0 1 −1 −1
0 η1,GHP1,C η1,GHP2,C 0 0 0 0 0 η1,Abs,C

η1,CHP,E 0 0 0 1 −1 0 0 0

 ·



ΦCHP,G

ΦGHP1,G

ΦGHP2,G

ΦBoil,G

ΦEGrid,in

ΦEGrid,out

ΦTGrid,in

ΦTGrid,out

ΦAbs,H


+

+

 0 0 0
η1,Chill1,C η1,Chill2,C η1,Chill3,C

−1 −1 −1

 ·
 ΦChill1,E

ΦChill2,E

ΦChill3,E

+

+

 − 1
∆t

0 0 1
∆t

0 0
0 − 1

∆t
0 0 1

∆t
0

0 0 − 1
∆t

0 0 1
∆t

 ·


EStor,H(t)
EStor,C(t)
EStor,E(t)

EStor,H(t− 1)
EStor,C(t− 1)
EStor,E(t− 1)

+

+

 η0,CHP,H η0,GHP,H η0,GHP,H 0
0 η0,GHP1,C η0,GHP2,C η0,Abs,C

η0,CHP,E 0 0 0

 ·


YCHP

YGHP1

YGHP2

YAbs

+

+

 0 0 0
η0,Chill1,C η0,Chill2,C η0,Chill3,C

0 0 0

 ·
 YChill1

YChill2

YChill3

 =

=

 ΦH

ΦC

ΦE − ΦPV − ΦWind


(4.16)

Note that, for the first time-step, the variable EStor,i(t) does not exist: it is instead
replaced by the known value EStor,i(0) (i.e. the initial amount of energy stored),
which is set equal to 0 for all three storage units.
In this case, for each time-step of the Prediction Horizon, there are 3 equality con-
straints with 25 variables.
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4.4.6 Implementation in MATLAB

The MILP optimization will be performed by using MATLAB’s built-in function
intlinprog. The function’s syntax is presented in this form:
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0,options)

Where:

• intcon is the vector specifying which variables are integer;

• A · x ≤ b is the system of inequality constraints (i.e. equations 4.10, 4.11,
4.12);

• Aeq · x = beq is the system of equality constraints (i.e. equation 4.16);

• lb and ub are the vectors specifying the minimum and maximum value of each
variable;

• x0 is the starting point of the optimization which must be a feasible solution:
in this study, it is not possible to use the previous iteration’s solution as a
starting point because the energy demand changes every time, rendering the
past solution unfeasible;

• options is an object specifying the options for intlinprog, such as the opti-
mization’s tolerance or the heuristics of the algorithm.
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Optimization results

The optimization’s results are going to vary based on the following parameters:

• The uncertainty associated to the energy demand and the method used to
generate it;

• The coefficient k, which affects both the electricity and the thermal energy’s
selling price (the higher k, the higher the revenues);

• The size of the Prediction Horizon PH (which is also equal to the size of the
Control Horizon CH) that will heavily affect computational times and the
objective function’s value.

For the preliminary optimization, the following values are going to be adopted:
k = 0.3, PH = CH = 60. Later on, a sensitivity analysis on these parameters will
follow.
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5.1 Results of the optimization

5.1.1 Heating

As shown in Figure 5.1, the CHP significantly contributes to cover the energy de-
mand (in fact it is always producing the maximum power), while the other compo-
nents are used to make up for the remaining power peaks. No thermal energy is
bought from the grid, and very little is sold to it.
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Figure 5.1: Results for heating power.
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5.1.2 Cooling

As shown in Figure 5.2, the GHP and the storage are used to cover the demand,
while the electric and the absorption chiller are never used.
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Figure 5.2: Results for cooling power.
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5.1.3 Electricity

As shown in Figure 5.3, the CHP and the PV are the components that contribute
the most to the power generation, while wind power generates a modest amount.
The storage is mainly used with the purpose of selling electricity when the price is
highest. The wind turbine has a marginal role in contributing to the total electric
power generation. No electricity is bought from the grid.
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Figure 5.3: Results for electric power.
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5.1.4 Storage

Figure 5.4 shows the usage of the storage units during the day. Heat storage is
mainly used in the evening, while cooling storage is used in the morning. The
electric storage unit presents several fluctuations during the day, corresponding to
the moments in which power is sold to the grid.
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Figure 5.4: Energy cumulated in the heating (red), cooling (blue) and electric (yel-
low) storages.

5.2 Considerations

The most frequently used component of the system is the CHP: this is not surprising,
since it is able to produce heat and electricity, both of which have the option of being
sold to the grid, while the coefficient k is high enough to make this economically
profitable. Since the heating power required by the user is often higher than the
electric power demand, electricity production is significantly higher than the user’s
request, allowing for an effective use of the storage system to sell electricity when
it’s most convenient.

The only component which is used to cover the cooling demand is the GHP: this
is probably because it is more convenient to sell electricity than to use it to power
the electric chiller; at the sime time, since heating demand is already very high,
rather than raising it even further by using the absorption chiller, the algorithm
chooses to increase the consumption of natural gas to fuel the GHP.

It is also possible to calculate the penetration of renewables for electricity pro-
duction in this specific scenario, as:

Renewables penetration =
Electricity produced by PV and wind turbine

Total electricity produced
(5.1)
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The value calculated using this formula is 24,78%. It could be higher if the system
included a component capable of generating heating power using renewable energy
(such as a thermal solar panel or a fuel cell/electrolyzer): this way, it wouldn’t need
to resort to the CHP as its main source of heat production (which subsequently
influences electricity production).

5.3 Assessment of the algorithm’s effectiveness

The daily cost calculated using this algorithm is e 35.33; to evaluate the efficacy of
the optimization, one might want to compare it with a scenario where the system’s
operation is not aided by the Rolling Horizon algorithm: the difference between the
objective function’s values in the two cases will be a significant benchmark.

Comparison with priority order method

A good way to perform the HRES system’s operation without an optimization algo-
rithm might be to establish a priority order of the system’s components: the most
efficient ones are the first ones to be employed, while the others cover the (eventual)
remaining demand. The priority of the components has been decided according to
the results obtained during the Rolling Horizon optimization:

• Electricity: the PV panel and the wind turbine’s generated power is the
first one to be used to cover the demand; if it is higher than the demand,
the remaining part is sold to the grid, if it is lower, the remaining demand is
covered by the combined heat and power unit; in case the three components
are not enough to cover the demand, additional power is bought from the grid.

• Cooling: the gas heat pump has the highest priority, followed by the electric
chiller and by the absorption chiller.

• Heating: heat generated by the CHP and the GHP is used first in this case,
while the boiler covers the remaining demand; in case the three components
are not enough to cover the demand, additional power is bought from the grid.

The results obtained using this method are displayed in Figure 5.5:
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Figure 5.5: Results of the priority order simulation.

The most evident aspect of this method is that the storage units are never used,
since there is no prediction of the future demands; moreover, no energy is bought
from the grid, while in certain cases it is sold, but the amount is not comparable
to the Rolling Horizon simulation. The value of the objective function calculated
using this method is e 124.72, resulting in a 253% increase when compared to the
Rolling Horizon optimization cost.

5.3.1 Comparison with standard MILP optimization

An alternative way of optimizing the control of the HRES without resorting to the
Rolling Horizon method might be the solution of a single MILP problem on the whole
time period under examination, using the predicted energy demand values and not
accounting for uncertainty. The following results (Figure 5.6) were obtained using
this method:
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Figure 5.6: Results of the standard MILP optimization.

The resulting scenario is not too different from the one simulated using the
Rolling Horizon algorithm and the calculated objective function is even lower: e 35.27;
however, this type of simulation does not account for the forecast’s uncertainty, so
the entire optimization is performed using the data available at the first time-step.
This results in differences between the predicted energy requirements and the actual
ones, which are managed as follows:

• If heat generation is higher than the actual demand for that specific time-step,
the difference is sold to the district heating grid; otherwise, the boiler will cover
for the remaining demand (cheaper than buying from the grid);

• If cooling generation is higher than the actual demand for that specific time-
step, the difference is lost; otherwise the electric chiller will cover for the
remaining demand (since the minimum cooling power of the electric chiller is
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0, it allows for greater flexibility with small energy demands). The electric
power required will be bought from the grid;

• If the electricity generation is higher than the actual demand for that specific
time-step, the difference is sold to the national grid; otherwise, it will be
bought from it.

By considering these additional costs, it is possible to calculate a difference of e 42.05
from the predicted value, resulting in a total cost of e 77.33; this amounts to a 119%
increase when compared to the Rolling Horizon simulation’s objective function; note
that most of the additional cost is due to the extra cooling demand, since it is the
most costly type of energy to produce and it is not possible to buy it from the grid.

5.4 Error due to linearization

The linearization of the components’ efficiency curves will generate an error due to
the approximation; it is possible to estimate this error by:

• Interpolating the values of ΦOUT,i calculated with the linearized efficiency, with
the values of the original efficiency curves (obtaining the ”corrected” ΦIN,i);

• Evaluating the ”corrected” objective function using the interpolated values;

• Calculating the error of the computed objective function relative to the ”cor-
rected” one.

Following this procedure, the error is calculated as:

|Computed objective function− Corrected objective function|
|Corrected objective function|

(5.2)

The relative error, for PH = 60 and k = 0.3, is 14%, while the absolute error
is e 5.79. This value is very small when compared to the difference between the
Rolling Horizon optimization result and the one obtained using different algorithm,
so it can be deemed acceptable.

51





Chapter 6

Sensitivity analyses results

To perform the sensitivity analysis on the algorithm’s most relevant parameters, the
uncertainty will not be generated randomly every time, but it will be the same for
every simulation. This way, there will be no external factors to influence the results.

6.1 Sensitivity analysis on the Prediction Horizon

The sensitivity analysis on the Prediction Horizon is going to take into account two
main parameters: the obtained value of the objective function and the computational
time. The parameter k (corresponding to the energy selling/buying price ratio) will
be set equal to 0.3 for all iterations.
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Figure 6.1: Sensitivity analysis on the parameter PH.

The overall trend (Figure 6.1) is easy to observe: the objective function becomes
lower with the increase of PH (because it optimizes a larger time-window at each
iteration, thus obtaining a ”better” solution), while the computational time gets
higher (because it involves solving more complex problems).
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6.2 Sensitivity analysis on selling/buying price ra-

tio

The sensitivity analysis on the coefficient k will be performed by keeping PH con-
stant and equal to 60. The value of the objective function will be representative of
the effect of varying this parameter.
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Figure 6.2: Sensitivity analysis on the parameter k.

As it was to be expected, the objective function decreases with the increase of k
(displayed in Figure 6.2), because energy is sold at a higher price, thus reducing the
costs. For values higher than k ≈ 0.4 the objective function becomes negative, due
to earnings being higher than the costs, meaning that it is possible to turn a profit.

Moreover, it is evident how the slope of the curve is not always linear; in fact, it
is possible to distinguish between three zones:

• 0 ≤ k ≤ 0.3: non-linear slope

• 0.4 ≤ k ≤ 0.7: linear slope

• 0.8 ≤ k ≤ 1: non-linear slope

This behavior can be explained by looking at the energy sold by the system (Fi-
gure 6.3): in the sections in which the slope is not linear, we can notice a significant
increase in the amount of energy sold to the grid, while in the linear section this
quantity remains more or less constant.

Furthermore, it is possible to observe how the sold thermal energy undergoes a
much more dramatic increase than electric energy: this might be due to the fact
that the thermal storage unit has a higher capacity than the electric one; moreover,
the boiler has a thermal efficiency of 0.9: this means that in some cases we can turn
a profit by simply buying natural gas and selling the thermal power produced.

6.3 Error due to linearization

To assess the efficacy of the efficiency curves linearization in different conditions, a
cross sensitivity analysis on the parameters PH and k has been performed (Figures
6.4 and 6.5).
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Figure 6.3: Energy sold for each value of the parameter k.

Figure 6.4: Relative error due to linearization.

By looking at Figure It is evident how the size of the prediction horizon doesn’t
have any noticeable effects on the relative error, while a dramatic spike is present
for k = 0.4. This phenomenon can be explained by taking into account the absolute
error values and comparing them to the objective function.
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Figure 6.5: Absolute error due to linearization.

The absolute error remains almost constant with the varying of both PH and k
(with the exception of a few cases for very low values of k); the sudden spike in the
relative error is due to the fact that for k = 0.4 the objective function is very close
to 0: in this case, the absolute error will weigh more in proportion to the total cost.

6.4 Uncertainty generation

For the previously presented results, the predicted energy demand has been sub-
jected to a random uncertainty of ±20%, with a uniform probability distribution.
Nevertheless, one might want to also take into account the fact that uncertainty is
higher for peaks in the demand; for this reason, two methods of uncertainty gener-
ation have been implemented:

• Constant uncertainty: the actual energy demand is calculated as:
Φi,actual(t) = (1 − u) · Φi(t) + 2u · ρ · Φi(t), where u is the value associated
to uncertainty (0.2 in this case) and ρ is a random value (generated with a
uniform probability distribution) between 0 and 1.

• Uncertainty depending on peaks: the actual energy demand is calculated
as: Φi,actual(t) = Φi(t) + (−u+ 2u ·ρ) · (mean(Φi)−Φi(t)), where u is the value
associated to uncertainty (1.5 in this case) and ρ is a random value (generated
with a uniform probability distribution) between 0 and 1.
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Here is a comparison between the two generation methods (Figures 6.6, 6.7 and
6.8):
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Figure 6.6: Uncertainty generation for heating demand.
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Figure 6.7: Uncertainty generation for cooling demand.
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Figure 6.8: Uncertainty generation for electricity demand.

While the constant uncertainty generation method presents more or less a uniform
variance with respect to the predicted energy needs, the second method concentrates
it on the values which deviate more from the average demand.

After establishing the uncertainty generation methods, a cross sensitivity analysis
on the value of u and PH was performed (Figures 6.9 and 6.10): both methods were
applied, and each value of the objective function was then compared with the best
possible solution (i.e. the objective function’s value computed with no uncertainty
and using a MILP optimization on the whole time window of the problem).

10 20 30 40 50 60 70 80 90 96
0 0.664 0.347 0.129 0.113 0.061 0.079 0.045 0.030 0.004 0.000 35.273
0.1 0.887 0.374 0.219 0.155 0.142 0.151 0.107 0.106 0.111 0.106 35.655
0.2 0.993 0.627 0.375 0.196 0.198 0.220 0.149 0.133 0.132 0.133 35.571
0.3 1.744 1.081 1.030 1.014 0.934 1.013 0.808 0.865 0.886 0.888 35.095
0.4 1.840 1.299 1.028 0.943 0.865 0.861 0.868 0.882 0.934 0.934 32.371
0.5 1.221 1.084 0.869 0.599 0.606 0.641 0.639 0.611 0.604 0.598 32.892
0.6 3.372 2.682 2.381 1.892 2.207 1.913 1.969 1.971 1.992 1.976 40.098
0.7 2.912 2.476 2.161 2.002 1.952 1.986 1.993 2.099 2.012 2.012 38.276
0.8 1.752 1.624 1.096 0.983 1.025 0.900 1.053 1.077 1.069 1.070 33.110
0.9 2.883 1.856 2.151 2.126 2.146 2.113 2.112 2.110 2.123 2.098 33.378
1 3.140 2.612 2.495 1.939 2.275 2.270 2.259 2.261 2.269 2.269 42.335

Difference wrt best solution
Best solution

u
PH

Figure 6.9: Sensitivity analysis for the constant uncertainty generation method.
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10 20 30 40 50 60 70 80 90 96
0 0.664 0.347 0.129 0.113 0.061 0.079 0.045 0.030 0.004 0.000 35.273

0.25 0.833 0.277 0.135 0.100 0.092 0.083 0.050 0.018 0.032 0.000 35.216
0.5 1.233 1.043 0.927 0.846 0.854 0.830 0.818 0.812 0.816 0.815 35.545
0.75 0.959 0.602 0.503 0.437 0.406 0.396 0.400 0.379 0.409 0.351 35.322
1 1.247 0.902 0.513 0.382 0.431 0.368 0.410 0.392 0.422 0.414 32.967
1.5 1.227 0.712 0.653 0.623 0.606 0.512 0.684 0.557 0.653 0.606 31.087
2 1.111 0.919 0.623 0.573 0.442 0.324 0.349 0.343 0.336 0.337 34.724
2.5 3.192 2.810 2.490 2.180 2.175 2.201 2.198 2.238 2.240 2.240 38.188

Difference wrt best solution
Best solution

u
PH

Figure 6.10: Sensitivity analysis for the uncertainty depending on peaks generation
method.

The overall trend is easily discernible (independently from the uncertainty genera-
tion method considered): the solution computed by the Rolling Horizon algorithm
becomes ”worse” (higher with respect to the optimal solution) when u increases
(meaning that the forecast is less accurate and the optimization less efficient) and
PH decreases (meaning that the algorithm has less degrees of freedom to compen-
sate for the inaccurate prediction).

6.5 Imposed value of storage

In standard conditions, with no additional constraints, the algorithm will be inclined
to impose the storage units’ levels equal to 0 at the last time-step of the prediction
horizon. This is because it would make no sense to store energy without using it,
since this would involve additional costs. However, in real-life situations this might
not always be the case: it could be useful to make sure that, at a certain time, the
storage level is equal to a particular value.

A cross-sensitivity analysis has been performed on both the time and the level
of the storage unit that have been imposed. The analysis was then performed for
both uncertainty generation methods.

Additionally, a tolerance equal to 2% of the total capacity has been imposed
on the storage levels, in order to allow the algorithm to manage both the addi-
tional constraints on the storage and the energy demand uncertainty (otherwise the
simulation might stop because there is no feasible solution).
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6.5.1 Imposed value on all three storage units

The storage level was imposed for all 3 storage units (Figures 6.11, 6.12 and 6.13).

0.25 3 6 9 12 15 18 21 24
0% 37.379 37.151 38.798 37.798 37.632 36.847 38.471 36.989 36.907

10% 37.085 36.918 38.373 37.479 37.535 36.962 37.813 36.906 38.375
20% 39.485 36.830 38.014 37.325 37.370 37.284 37.596 36.853 40.434
30% 43.219 36.790 37.639 37.308 37.302 37.383 37.389 36.891 42.963
40% 48.004 36.954 37.373 37.149 37.240 37.727 37.169 37.030 45.199
50% 51.549 37.135 37.216 37.083 37.208 37.985 37.032 37.115 47.646
60% 56.705 37.332 37.116 37.040 37.195 38.142 37.098 37.464 50.178
70% N.F. 38.111 37.213 37.022 37.206 38.439 37.059 37.829 52.806
80% N.F. 39.096 37.508 37.077 37.229 38.750 37.167 38.195 55.456
90% N.F. 41.561 37.806 37.083 37.254 39.093 37.369 38.567 58.120

100% N.F. 43.959 38.132 37.233 37.458 39.553 37.592 38.949 60.819

Storage 
level

Time (h)

Figure 6.11: Imposed level on 3 storage units: constant uncertainty

0.25 3 6 9 12 15 18 21 24
0% 38.322 38.906 39.024 37.886 37.646 36.889 38.296 37.135 36.864

10% 37.196 36.942 38.407 37.549 37.539 36.949 37.950 36.988 38.381
20% 39.659 36.881 38.006 37.423 37.465 37.145 37.716 36.955 40.425
30% 43.399 36.992 37.682 37.320 37.404 37.355 37.497 36.919 42.753
40% 48.194 37.149 37.419 37.263 37.370 37.579 37.235 36.960 45.159
50% 51.668 37.297 37.200 37.254 37.340 37.817 37.089 37.228 47.606
60% 56.826 37.490 37.119 37.201 37.352 38.097 36.981 37.559 50.143
70% N.F. 37.746 37.234 37.184 37.344 38.391 37.044 37.902 52.784
80% N.F. 40.190 37.471 37.200 37.365 38.706 37.133 38.245 55.496
90% N.F. 42.643 37.817 37.300 37.424 39.023 37.248 38.589 58.159

100% N.F. 45.103 38.580 37.601 37.597 39.527 37.680 38.954 60.852

Storage 
level

Time (h)

Figure 6.12: Imposed level on 3 storage units: uncertainty depending on peaks

0

0.2

0.4

0.6

0.25 3 6 9 12 15 18 21 24

0.000

5.000

10.000

15.000

20.000

25.000

30.000

0.25 3 6 9 12 15 18 21 24

M
ax

 -
M

in
 (

€
/d

)

Uncertainty depending on peaks Constant uncertainty

Figure 6.13: Difference between minimum and maximum objective function value.

It is possible to observe that imposing a storage level higher than 70% of the total
capacity on the first time-step is not feasible; furthermore, the first and last time-
step have the most severe effect on the objective function: in particular, imposing
a high level of the storage on these time-steps will cause a dramatic increase in the
total cost. On the other hand, the type of uncertainty generation holds almost no
influence on the final result.
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6.5.2 Imposed value on heat storage

The storage level was imposed for the heat storage unit (Figures 6.14, 6.15 and
6.16).

0.25 3 6 9 12 15 18 21 24
0% 36.905 37.015 36.764 36.939 36.789 36.850 37.054 36.917 36.789

10% 36.802 36.856 36.789 36.790 36.798 36.805 36.913 36.850 37.300
20% 36.934 36.799 36.790 36.795 36.817 36.789 36.852 36.806 37.949
30% 37.596 36.811 36.871 36.814 36.841 36.844 36.801 36.792 38.602
40% 38.929 36.936 36.955 36.838 36.861 36.866 36.793 36.842 39.256
50% 40.265 37.103 37.072 36.863 36.911 36.886 36.814 36.905 39.915
60% 41.623 37.211 37.172 36.900 36.963 36.911 36.833 36.968 40.577
70% 42.992 37.389 37.309 36.948 37.025 36.955 36.863 37.035 41.243
80% 44.404 37.596 37.535 37.005 37.094 36.986 36.892 37.113 41.917
90% 45.799 37.790 37.700 37.073 37.183 37.055 36.933 37.193 42.624

100% 47.194 38.012 37.807 37.275 37.326 37.129 37.009 37.280 43.379

Storage 
level

Time (h)

Figure 6.14: Imposed level on heat storage: constant uncertainty

0.25 3 6 9 12 15 18 21 24
0% 37.854 37.131 36.948 37.029 36.846 36.905 37.141 37.015 36.843

10% 36.898 36.939 36.840 36.896 36.847 36.862 37.014 36.948 37.336
20% 37.117 36.843 36.843 36.893 36.910 36.849 36.935 36.903 37.951
30% 37.725 36.969 36.882 36.916 36.927 36.844 36.890 36.860 38.588
40% 39.062 37.065 36.917 36.934 36.935 36.853 36.863 36.846 39.226
50% 40.415 37.222 36.976 36.942 36.983 36.877 36.849 36.872 39.875
60% 41.781 37.403 37.113 36.988 37.035 36.908 36.845 36.899 40.533
70% 43.157 37.568 37.225 37.038 37.099 36.938 36.825 36.991 41.202
80% 44.533 37.770 37.381 37.095 37.165 36.971 36.847 37.040 41.909
90% 45.924 37.944 37.527 37.255 37.268 37.035 36.873 37.054 42.655

100% 47.319 38.159 37.648 37.500 37.377 37.111 36.936 37.132 43.431

Storage 
level

Time (h)

Figure 6.15: Imposed level on heat storage: uncertainty depending on peaks
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Figure 6.16: Difference between minimum and maximum objective function value.

In this case, there are no unfeasible solutions because it is possible to buy thermal
energy from the grid; furthermore, the first and last time-step have the most severe
effect on the objective function: in particular, imposing a high level of the storage on
these time-steps will cause a dramatic increase in the total cost. On the other hand,
the type of uncertainty generation holds almost no influence on the final result.
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6.5.3 Imposed value on cool storage

The storage level was imposed for the cool storage unit(Figures 6.17, 6.18 and 6.19).

0.25 3 6 9 12 15 18 21 24
0% 37.212 37.371 36.844 36.990 36.861 36.789 37.074 36.852 36.907

10% 36.789 36.854 36.852 36.845 36.812 36.813 36.789 36.851 36.986
20% 36.942 36.789 36.842 36.777 36.724 36.966 36.798 36.812 37.249
30% 37.371 36.733 36.702 36.816 36.721 36.882 36.817 36.865 37.698
40% 37.522 36.805 36.710 36.718 36.726 37.030 36.812 36.992 37.792
50% 37.665 36.758 36.742 36.713 36.745 37.086 36.882 37.038 38.075
60% 38.181 36.782 36.807 36.720 36.785 37.046 37.098 37.330 38.364
70% N.F. 36.862 36.882 36.745 36.944 37.139 37.047 37.635 38.658
80% N.F. 36.965 37.019 36.866 36.961 37.251 37.133 37.941 38.963
90% N.F. 37.076 37.047 36.877 36.943 37.367 37.301 38.249 39.269

100% N.F. 37.127 37.176 36.953 37.208 37.607 37.401 38.556 39.598

Storage 
level

Time (h)

Figure 6.17: Imposed level on cool storage: constant uncertainty

0.25 3 6 9 12 15 18 21 24
0% 38.155 38.015 37.076 37.070 36.875 36.818 36.898 36.968 36.864

10% 36.884 36.898 36.869 36.910 36.843 36.824 36.819 36.868 37.017
20% 37.045 36.850 36.822 36.878 36.828 36.858 36.828 36.888 37.273
30% 37.366 36.843 36.826 36.830 36.822 36.890 36.847 36.867 37.525
40% 37.578 36.831 36.861 36.825 36.869 36.925 36.807 36.923 37.808
50% 37.713 36.857 36.883 36.867 36.867 36.987 36.877 37.186 38.106
60% 38.223 36.905 36.897 36.842 36.914 37.045 36.950 37.480 38.410
70% N.F. 36.990 36.970 36.867 36.932 37.102 37.033 37.786 38.720
80% N.F. 37.041 37.052 36.937 36.987 37.194 37.126 38.092 39.031
90% N.F. 37.138 37.224 36.984 37.067 37.291 37.227 38.399 39.364

100% N.F. 37.244 37.338 37.111 37.242 37.534 37.491 38.707 39.656

Storage 
level

Time (h)

Figure 6.18: Imposed level on cool storage: uncertainty depending on peaks
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Figure 6.19: Difference between minimum and maximum objective function value.

It is possible to observe that imposing a storage level higher than 70% of the total
capacity on the first time-step is not feasible; in this case, the first and last time-
steps still are the most influential on the final solution, but the difference between
the maximum and minimum values of the objective function is much smaller than in
the other cases. Except for the 3rd hour, there is no significant difference between
the two uncertainty generation types.
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6.5.4 Imposed value on electric storage

The storage level has been imposed for the electric storage unit(Figures 6.20, 6.21
and 6.22).

0.25 3 6 9 12 15 18 21 24
0% 37.071 36.828 38.748 37.556 37.560 36.789 37.881 36.822 36.789

10% 37.073 36.793 38.311 37.424 37.482 36.910 37.693 36.791 37.653
20% 39.301 36.820 37.961 37.324 37.403 37.131 37.505 36.794 38.835
30% 41.529 36.847 37.634 37.247 37.324 37.286 37.316 36.805 40.289
40% 43.758 36.874 37.317 37.171 37.246 37.477 37.128 36.816 41.786
50% 45.986 36.901 37.031 37.094 37.167 37.668 36.940 36.827 43.311
60% 48.214 36.927 36.797 37.018 37.088 37.858 36.789 36.838 44.916
70% 50.442 36.994 36.791 36.941 37.010 38.049 36.789 36.848 46.606
80% 52.670 38.248 36.889 36.864 36.931 38.240 36.796 36.859 48.307
90% 54.899 40.497 37.054 36.789 36.852 38.431 36.811 36.870 50.007

100% 57.127 42.745 37.237 36.803 36.789 38.621 36.896 36.881 51.708

Storage 
level

Time (h)

Figure 6.20: Imposed level on electric storage: constant uncertainty

0.25 3 6 9 12 15 18 21 24
0% 38.021 36.882 38.769 37.601 37.614 36.843 37.976 36.880 36.843

10% 37.127 36.847 38.377 37.470 37.536 36.945 37.788 36.848 37.715
20% 39.355 36.874 38.023 37.378 37.457 37.099 37.600 36.846 38.906
30% 41.583 36.901 37.696 37.301 37.378 37.289 37.412 36.857 40.371
40% 43.812 36.928 37.388 37.225 37.300 37.480 37.223 36.867 41.880
50% 46.040 36.955 37.102 37.148 37.221 37.671 37.035 36.878 43.406
60% 48.268 36.992 36.867 37.072 37.142 37.862 36.869 36.889 45.009
70% 50.496 37.063 36.846 36.995 37.064 38.052 36.843 36.900 46.699
80% 52.724 39.295 36.960 36.919 36.985 38.243 36.854 36.911 48.392
90% 54.953 41.543 37.128 36.843 36.906 38.434 36.868 36.921 50.092

100% 57.181 43.791 37.310 36.857 36.843 38.624 36.985 36.932 51.793

Storage 
level

Time (h)

Figure 6.21: Imposed level on electric storage: uncertainty depending on peaks
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Figure 6.22: Difference between minimum and maximum objective function value.

In this case, there are no unfeasible solutions because it is possible to buy electric
energy from the grid; furthermore, the first and last time-step have the most severe
effect on the objective function: in particular, imposing a high level of the storage on
these time-steps will cause a dramatic increase in the total cost. On the other hand,
the type of uncertainty generation holds almost no influence on the final result.
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6.6 Initial level of storage

All of the analyses so far have been performed by supposing that, at the beginning
of the simulated day, all of the storage units are empty. It is possible to perform a
sensitivity analysis on this parameter, too, which will be useful to see which type of
storage influences the objective function’s value the most (Figure 6.23).

(a) 3D visualization of the objective function’s sensitivity to the storage
level. The planes correspond to 50% of the total capacity.

(b) Sensitivity to heat and cooling storage. Electric storage level is equal
to 50% of the total capacity.
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(c) Sensitivity to heat and electric storage. Cooling storage level is equal
to 50% of the total capacity.

(d) Sensitivity to cooling and electric storage. Heat storage level is equal
to 50% of the total capacity.

Figure 6.23: Sensitivity of the objective function to the storage’s initial level.

It is possible to see that the type of storage which has the greatest influence on
the objective function is the electric one, closely followed by the heat storage; on the
other hand, the cooling storage has a much smaller impact on the total cost: this
is probably because cooling thermal power is the only one which cannot be sold to
the grid. Furthermore electric power is a more ”valuable” type of energy than heat,
since it has a higher production cost and a higher market price.
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Conclusions

The purpose of the thesis was to increase the overall efficiency of the operation
of a complex energy system, in order to satisfy the given energy demands and to
minimize monetary expenses. A suitable optimization algorithm, named ”Rolling
Horizon”, was chosen and implemented in order to achieve this result.

After a brief introduction on Hybrid Renewable Energy Systems and optimiza-
tion algorithms, the problem to solve was analyzed: the starting data were intro-
duced and each component was concisely described. Afterwards, the Rolling Horizon
method was presented and explained via a step-by-step walk-through. Subsequently,
the available data were manipulated in order to employ them in the linear optimiza-
tion algorithm: the efficiency curves were approximated with a linear fit and the
optimization problem was formulated.

Following the first iteration of the linear optimization algorithm, several issues
arose, such as: the zero-degree efficiency term leading to inaccurate results, the
impossibility of imposing a minimum power value different from 0 without having
a component always turned on, the inaccurate linear approximation of the electric
chiller and the gas heat pump. To be able to overcome these problems, the standard
linear programming optimization was substituted with a Mixed Integer Linear Pro-
gramming approach, which requires more computational effort but is better suited
for the formulation of this problem; using this method the algorithm gained the
ability to discern between ON and OFF states of components and the possibility to
apply a three-piece linear fit to the electric chiller’s efficiency and a two-piece linear
fit to the gas heat pump’s cooling efficiency (which led to a much more accurate
approximation of the curve).

After completing the formulation of the Mixed Integer Linear Programming op-
timizer, it was possible to apply it within the Rolling Horizon algorithm: for the
initial simulation, the values of the parameters k (corresponding to the ratio be-
tween the selling and buying price of thermal and electric energy) and PH (the size
of the prediction horizon) were chosen hypothesizing a realistic scenario in which
this method would be applied. To assess the actual efficacy of the algorithm, the
results were compared with a ”priority order” operation method, in which an order
was assigned to the activation of the system’s components: the most efficient ones
are the first ones to be employed, then the other ones are activated in sequence (ac-
cording to their efficiency); in this case there is no forecast on the future demand,
which explains why the storage units are never used. The objective function’s value
obtained with this method is e 124.72, 253% higher than the Rolling Horizon opti-
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mization’s result. A further comparison was made with a standard Mixed Integer
Linear Programming optimization (computed at the beginning of the day on the
whole time window of the problem), in which no adjustments are made during the
operation of the system to account for the uncertainty in the forecast; this method
also performed very poorly when compared to the Rolling Horizon simulation (
e 77.33 daily cost, for a 119% increase in the objective function). Afterwards, the
error due to the linearization of the problem was computed, and it was deemed
acceptable in comparison to the previous simulations (around e 6 per day).

In the final part of the work, a sensitivity analysis was performed on the most
relevant parameters of the algorithm: it was found that k (ratio between selling
and buying price of energy) greatly influences the system’s behavior and the value
of the objective function (which decreases with the increase of k); the size of the
Prediction Horizon PH affects the computed solution’s efficacy, but for large values
the decrease in the objective function becomes negligible and increasing PH only
leads to a negative effect on the computational effort. The absolute error due to the
linearization of the problem is not affected by neither of the previously mentioned
parameters, while the relative error depends on the value of the objective function.
Furthermore, the uncertainty’s severity also affects the solution: the results show
that the algorithm computes a worse solution when uncertainty increases, showing
that the forecast needs to be as accurate as possible. A further analysis was made on
the effect of the storage units level on the solution: it was found that the objective
function is most sensitive to the electric storage level, followed by the heat storage
and the cool storage.

In conclusion, the Rolling Horizon algorithm proved to be a flexible and reliable
method to manage a complex energy system, especially in scenarios characterized
by great uncertainty. Moreover, if the Prediction Horizon is chosen carefully it can
significantly decrease the computational effort without much reducing the solution’s
accuracy.
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List of Symbols

Notation

Symbol Meaning Unit

t Time s

t0 Time of the current iteration s

∆t Time-step duration s

PH Prediction Horizon -

CH Control horizon -

c′ Costs vector -

c Energy price €/kWh

x Control variables vector -

A Inequality constraints coefficients matrix -

b Inequality constraints known terms vector -

Aeq Equality constraints coefficients matrix -

beq Equality constraints known terms vector -

Φ Power kW

E Energy kWh

T Temperature °C

T0 Reference temperature °C

v Wind Speed m/s

u Uncertainty parameter -

η Efficiency -

Y Binary variable -
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Superscripts and subscripts
Symbol Meaning

i i-th unit

j j-th unit

H Heating

C Cooling

E Electricity

G Natural gas

CHP Combined Heat and Power unit

GHP Geothermal Heat Pump

Boil Boiler

Abs Absorption chiller

Chill Electric chiller

Stor Storage

PV Photovoltaic panel

env Environment

IN Inlet

OUT Outlet
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