
POLITECNICO DI TORINO

Dipartimento di Ingegneria Meccanica ed Aerospaziale

Tesi di Laurea Magistrale

Development of a localization system

based on ArUco markers

for a small space platforms test bench

Relatori

Prof. Sabrina Corpino

Ing. Fabrizio Stesina

Candidato

Luca Patrioli

Matr. 246972

Aprile 2020

i

TABLE OF CONTENTS

Table of Contents .. i

List of Figures .. iv

List of Tables .. vii

Abbreviations .. viii

Abstract ... x

1 Introduction ... 1

2 The CAST Project ... 3

2.1 CAST Main Elements ..5

2.2 Frictionless Table System .. 6

2.2.1 FTS Main Systems .. 8

2.2.2 FTS Localization System .. 13

3 LocSys: Problem Formulation .. 15

3.1 Pinhole Camera Model .. 15

3.1.1 Camera Intrinsic Parameters ... 18

3.1.2 Camera Extrinsic Parameters .. 19

3.2 Problem Formulation and Solution .. 21

3.3 Fiducial Marker: ArUco ... 23

3.4 Camera Calibration .. 25

3.4.1 Calibration Pattern ... 26

3.5 Camera Pose Estimation .. 29

3.6 Multiple Camera Architecture... 31

3.6.1 Stereo Vision .. 31

3.6.2 LocSys Solution ... 34

4 LocSys: Software Development ... 36

4.1 Software Methodology and Tools ... 36

4.1.1 Python ... 36

4.1.2 Python Multithreading Approach ... 38

ii

4.1.3 OpenCV ... 40

4.1.4 Software Requirements .. 40

4.1.5 Software Directory Structure ... 41

4.2 Camera Class .. 43

4.2.1 Basic methods ... 43

4.2.2 loadIntrinsicParamJSON and loadExtrinsicParamJSON methods ... 44

4.2.3 calibChArUcoBoard method .. 44

4.2.4 calibExtrinsicParam method ..47

4.3 OneCamera Class ... 52

4.3.1 Initialization method .. 52

4.3.2 loadCalibParam method .. 56

4.3.3 testInitialization and cameraPreview methods 56

4.3.4 evaluatePosAndOrien method .. 57

4.3.5 testRun method .. 58

4.4 LocSys_OneCamera Main Program .. 60

4.5 MultiCamera Class ... 62

4.5.1 Initialization method .. 63

4.5.2 cameraInitialization method ... 64

4.5.3 threadInitialization method ... 66

4.5.4 loadCalibParam method .. 66

4.5.5 testInitialization and cameraPreview methods 66

4.5.6 eveluatePosAndOrien method .. 68

4.5.7 programClosure method .. 68

4.5.8 testRun method .. 68

4.6 LocSys_MultiCamera Main Program ... 70

5 LocSys: Tests and Results... 72

5.1 Software Performance ... 72

5.1.1 Software Debugging ... 72

5.1.2 Software Profiling .. 73

iii

5.2 Test Requirements and Conditions ... 77

5.3 LocSys_OneCamera Test Sessions ...79

5.3.1 TS-01 ... 85

5.3.2 TS-02 .. 87

5.3.3 TS-03... 88

5.3.4 TS-04 .. 89

5.3.5 TS-05 ... 90

5.3.6 TS-06 ... 91

5.3.7 TS-07 ... 92

5.3.8 TS-08 .. 93

5.3.9 TS-09 .. 95

5.3.10 TS-10 ... 95

5.3.11 TS-11 ...97

5.3.12 TS-12 ... 98

5.3.13 TS-13, TS-14 and TS-15 ... 99

5.4 LocSys_MultiCamera Test Sessions .. 102

5.4.1 TM-01 and TM-02 ...106

5.4.2 TM-03 ..109

5.4.3 TM-04 and TM-05 ... 110

5.5 LocSys Baseline ... 112

6 Conclusions .. 113

References ... 115

iv

LIST OF FIGURES

Figure 1: HIL simulation example .. 1

Figure 2: Three generations of spacecraft simulator at the NPS ©[2]........................ 2

Figure 3: V-model and multiV-model comparison ©ESA .. 3

Figure 4: CAST functional architecture ..5

Figure 5: FTS Functional Tree .. 7

Figure 6: FTS exploded view.. 9

Figure 7: TowerSat 1st floor .. 10

Figure 8: TowerSat functional architecture .. 11

Figure 9: Pinhole camera model. ©[1] ... 15

Figure 10: Rearranged pinhole camera model. ©[1] .. 16

Figure 11: Radial distortion. ©[6] .. 18

Figure 12: Tangential distortion. ©[6] ... 19

Figure 13: Camera and object coordinate frame relationship. © [1] 20

Figure 14: Example of ArUco marker .. 23

Figure 15: ArUco relative coordinate system. ©[9] ... 24

Figure 16: Chessboard calibration pattern .. 26

Figure 17: Example of ArUco Board ... 27

Figure 18: ChArUco Board creation concept ... 28

Figure 19: ArUco marker pose ambiguity. ©[9] .. 29

Figure 20: 3D object points example ... 30

Figure 21: Epipolar Geometry ... 32

Figure 22: Left and Right image planes relationship .. 33

Figure 23: FOVs intersection ... 33

Figure 24: LocSys reference systems ... 34

Figure 25: Example of class creation .. 37

Figure 26: Example of class execution .. 38

Figure 27: Thread life cycle. ©[14] .. 39

Figure 28: LocSys Directory Structure .. 42

Figure 29: Camera class methods .. 43

Figure 30: calibChArUcoBoard method flowchart .. 45

v

Figure 31: ChArUco calibration configuration .. 45

Figure 32: ChArUco board geometry ... 46

Figure 33: 3D calibration tool with its reference system ..47

Figure 34: 3D calibration tool corners... 48

Figure 35: 3D calibration tool sizes ... 48

Figure 36: calibExtrinsicParam method flowchart ... 50

Figure 37: 3D calibration tool configuration .. 51

Figure 38: OneCamera class methods ... 52

Figure 39: OneCamera initial configuration ... 53

Figure 40: loadCalibParam OneCamera method flowchart 55

Figure 41: Output .dat file example ... 56

Figure 42: testRun method flowchart.. 58

Figure 43: LocSys_OneCamera flowchart ... 60

Figure 44: MultiCamera class methods ... 62

Figure 45: MultiCamera initial configuration ... 63

Figure 46: Cameras list configuration file example ... 64

Figure 47: MultiCamera reference systems relationship... 65

Figure 48: loadCalibParam MultiCamera method flowchart67

Figure 49: testRun MultiCamera method flowchart ... 69

Figure 50: LocSys_MultiCamera flowchart ... 71

Figure 51: Debugging process ... 72

Figure 52: LocSys_OneCamera profiling output.. 73

Figure 53: classOneCamera profiling ...74

Figure 54: multiCamera frames acquisition timing ...76

Figure 55: Test evaluation flowchart ..79

Figure 56: OBJ marker and RS for OneCamera test ..79

Figure 57: 3D calibration tool RS and camera RS relationship 82

Figure 58: Camera and Marker reference systems .. 83

Figure 59: TS-01 distance and orientation AKE .. 86

Figure 60: TS-01 example frame ... 87

Figure 61: TS-02 distance and orientation AKE .. 88

Figure 62: TS-03 distance and orientation AKE ... 88

vi

Figure 63: TS-04 distance and orientation AKE ... 89

Figure 64: TS-05 configuration ... 90

Figure 65: TS-05 distance and orientation AKE .. 91

Figure 66: TS-06 distance and orientation AKE ... 92

Figure 67: TS-07 distance and orientation AKE .. 92

Figure 68: TS-08 configuration ... 93

Figure 69: TS-08 distance and orientation AKE ... 94

Figure 70: TS-08.2 distance and orientation AKE .. 94

Figure 71: TS-09.2 distance and orientation AKE ... 95

Figure 72: Flickering effect .. 96

Figure 73: TS-10 example frame .. 96

Figure 74: TS-10 distance and orientation AKE ...97

Figure 75: TS-11.2 distance and orientation AKE .. 98

Figure 76: TS-12 distance and orientation AKE .. 99

Figure 77: TS-13 distance and orientation AKE .. 100

Figure 78: TS-14 distance and orientation AKE .. 100

Figure 79: TS-15 distance and orientation AKE ... 101

Figure 80: MultiCamera test configuration .. 102

Figure 81: TM-01 position and orientation results ...106

Figure 82: TM-02 position and orientation results .. 107

Figure 83: TM-01 (above) and TM-02 (below) frames ... 108

Figure 84: TM-03 position and orientation results ..109

Figure 85: TM-04 position and orientation results .. 110

Figure 86: TM-05 position and orientation results ... 111

Figure 87: TM-05 frames ... 111

vii

LIST OF TABLES

Table 1: CAST High-Level Requirements .. 4

Table 2: Extrinsic calibration tool corners .. 49

Table 3: Cameras list item description .. 64

Table 4: Tests requirements .. 78

Table 5: ChArUco calibration settings ... 80

Table 6: Camera intrinsic parameters during tests ... 80

Table 7: 3D calibration tool settings ... 81

Table 8: LocSys_OneCamera test settings ... 81

Table 9: OneCamera tests description ... 83

Table 10: TS-01 test conditions ... 85

Table 11: MultiCamera tests description .. 103

Table 12: Cameras parameters ... 104

Table 13: Cameras settings ... 105

Table 14: LocSys_MultiCamera test settings.. 105

viii

ABBREVIATIONS

AC Alternating Current

AKE Absolute Knowledge Error

ArUco Augmented Reality Universidad de Córdoba

CCC CAST Control Centre

CPU Central Processing Unit

CV Computer Vision

DOF Degrees of Freedom

FPS Frames Per Second

FOV Field of View

FTS Frictionless Table System

GNC Guidance, Navigation and Control

GSE Ground Support Equipment

HIL Hardware-In-the-Loop

I/O Input/Output

LocSys Localization System

MBS Main Board System

MEMS Micro Electro-Mechanical Systems

MKE Mean Knowledge Error

MPS Measures per second

MRS Master Reference System

NPS Naval Post graduate School

OBC On-Board Computer

PnP Perspective-n-Point

RKE Relative Knowledge Error

RS Reference System

SS Solar Simulator

TO Test Object

UWB Ultrawide Band

WPS Wi-Fi Positioning System

ix

x

ABSTRACT

CubeSats are an increasingly common reality, both in the academic and industrial

fields, thanks to their possibility of carrying out a wide variety of missions, with a “low

cost” and “fast delivery” approach. The verification and validation phase usually take

place after the assembly phase or on the individual subsystems, losing the possible

interactions between them. Therefore, arises the need of a platform capable of

reproducing simultaneously as many aspects as possible of the CubeSat operating

environment and capable of simulating the undeveloped subsystems through a virtual

model. This facility would allow to support the development of the satellite throughout

its life cycle, further reducing time and cost.

CAST (CubeSat Advanced Simulator and Testbench), a project born within the

CubeSat PoliTo Team, aims to improve and boost the verification process of a CubeSat,

providing an integrated environment. Thanks to a modular architecture and the in-the-

loop verification approach, CAST is composed of four main elements: 1) a Control Centre,

to simulate the desired modules; 2) a Main Board System, to manage other ground

support equipment and interfacing to the test object; 3) a Sun Simulator, to emulate the

sun radiation in different scenarios; 4) a Frictionless Table System, to simulate proximity

manoeuvres, thanks to a support structure, the TowerSat.

This thesis proposes the design of a localization system for the TowerSat, the LocSys.

The TowerSat is free to move in a limited environment, but it is necessary to monitor its

position and orientation, both for safety reasons and, possibly, to validate the results

elaborated from the test object. LocSys adopts optical cameras, as they do not interfere

in any way with the test object. To increase the efficiency and the accuracy of the system,

some binary fiducial markers have been adopted, called ArUco markers.

Two software have been developed adopting Python as programming language: the

first implements an architecture for a single camera, in order to test the performance of

a such kind of system; the second software implements a multi-camera architecture, to

cover a wider area, overcoming the limits of the field of view of a single camera and

increasing the LocSys accuracy. Each software implements the possibility to calibrate the

optical cameras, through a properly developed calibration tool. The calibration phase is

the most crucial, greatly influencing the results.

Finally, some tests were carried out to validate the system, obtaining an average error

less than 1.0 [cm] for the position and less than 1.0 [deg] for the orientation.

xi

1

1 INTRODUCTION

Testing a system level is one of the major expensive steps in a product life cycle,

especially for those systems which incorporate embedded computing, like the space ones.

In fact, increasing the levels of complexity in system hardware and software, makes the

verification process more severe. Additionally, any significant changes made to an

existing hardware or software products involve a regression in testing the system.

Clearly, the need of accelerating and automating the system level tests is becoming

increasingly evident. [1]

Nowadays, several techniques have been developed for this mandatory phase in a life

cycle of a product. These techniques aim to increase the validity of the test results, trying

to best simulate the final operating environment in which the system will live, and

interfering as little as possible with it.

One effective modelling and simulation method is the Hardware-In-the-Loop (HIL)

approach. This methodology consists in the combination of both computer simulation

and hardware in a single platform. It is a hybrid architecture that simulates both software

and hardware, in which the hardware part can vary from a few components to the fully

integrated system. HIL simulation requires the development of a real-time simulation

that models some parts of the embedded system under test and all significant

interactions with its operational environment. [1] The outputs of the test object (TO) are

used as inputs to the simulation, in turn the simulation generates outputs that became

inputs to the embedded system. An example of this kind of facility is shown in Figure 1.

Figure 1: HIL simulation example

HIL technique is particularly useful for the verification of those systems that operate

in special environments and conditions which are difficult to reproduce in a laboratory,

such as the satellites in the operational orbit environment.

2

The art state of simulator based on HIL technology present a wide range of options,

depending on the complexity level. An interesting example is the simulator of on-orbit

docking between two spacecraft at the Spacecraft Robotic Laboratory of the Naval Post

Graduate School (NPS) in Monterey, CA.[2] In this facility, the target and the chaser are

physically reproduced, while the rest of the system is simulated in a real-time by a

dedicated computer. This example perfectly shows an HIL simulation where the real

hardware is just one subsystem of the whole spacecraft.

Figure 2: Three generations of spacecraft simulator at the NPS ©[2]

The reliability and validity of the test results are closely linked to the fidelity with

which the operating environment is simulated and to the quantity of systems involved.

Furthermore, the verification process should be performed at any moment during the

entire product life cycle, to verify the feasibility, the capabilities and the performances of

a system. The Model Based System Engineering (MBSE) fits exactly in this context. The

verification phase is extended to the entire duration of the project through simulation

sessions, where different models are used to emulate the behaviour of the systems or the

environment, depending on the life cycle phase.

During the development of the project, the virtual models are replaced with the

constructed hardware parts. Therefore, the need to relate the physical components to the

models arises. For traditional spacecraft, tailor-made facilities are developed for the

verification and validation phase. Moreover, due to the great diversity of the spacecrafts,

these test benches cannot be reused without substantial changes, increasing the costs

and design times of the satellite itself.

CubeSats, on the other hand, are small standardized satellites, therefore the platforms

to test them could in turn be standardized, adopting a modular HIL approach. CAST was

conceived in this context and the following thesis concerns one of the subsystem

necessary for the monitoring and verification of the test bench.

3

2 THE CAST PROJECT

CAST, CubeSat Advanced Simulator and Test bench, is a project born inside the

CubeSat Team of Politecnico of Torino.

The main objective of CAST is to have an integrated environment to support the

development and verification of CubeSats along their life cycle, from preliminary design

to operations.

CubeSats are small spacecrafts that follow a well-defined standard, the CubeSat

Design Specification [3], created by California Polytechnic State University in 1999. This

standardization allows a “low cost” and “fast delivery” approach, and it keeps increasing

the interest for this specific platform by both universities and industries.

The “low cost” concept is due to the large quantity and variety of off-the-shelf

components (COTS) which are being developed since their creation.

Traditional spacecraft developments require a complex and expensive process

starting from the concept of operations to the delivery and operations phases, that might

go over decades. The CubeSat low-cost and fast-delivery paradigm requisites a smarter

approach for the spacecraft development, while maintaining the adequate level of

reliability and safety, with the purpose of reducing time and costs and keeping the quality

of the product.

For these reasons, the core concept of CAST is to develop a facility that adopts a

multiV-model, compared to the more classic and often still used V-model (see Figure 3),

so that the verification activities can be performed during all the project life cycle.

Figure 3: V-model and multiV-model comparison ©ESA

To achieve these goals CAST shall adapt his architecture to the phase and level of

verification. Therefore, the simulation in-the-loop approach is implemented using

4

different virtual model to emulate the behaviour of a component, an equipment or an

entire system, that it has not been developed yet. Hence, the CAST design is obtained

considering some key concepts:

• Reliability: it shall have the ability to avoid and/or manage failures, that

could compromise the integrity of the spacecraft system under testing

• Autonomy: it shall have the ability to manage expected events, reducing the

operator interventions and allowing the use by non-expert operators

• Connectivity: it shall have the capability to connect/host elements with

different types of interfaces, for both ground support equipment (GSE) or test

object

• Flexibility: it shall have the capability to adapt his configuration depending

on type of verification, thanks to its modular architecture

• Reusability: it shall have the capability to be adopted in different verification

phases of the same project and between different projects

From these drivers, it was possible to define the high-level requirements of the CAST

project, as shown in Table 1.

Table 1: CAST High-Level Requirements

High-Level Requirements

ID Description

HL10 CAST shall be an integrated environment

HL20 CAST shall support the development of small platforms

HL30 CAST shall support the verification of small platforms

HL40 CAST shall be used in different phase during the product life cycle

HL50 CAST elements shall be connected through logical and physical interfaces

HL60 CAST elements shall be adoptable between different projects

HL70 CAST shall cost less than 100K €

HL80 CubeSat Team PoliTo shall be the main user of CAST

HL90 Project shall be completed in the fourth quarter of 2020

HL100 CAST shall be defined by a modular design

HL110 Safety shall be considered TBD in relation to operators

HL120 Safety shall be considered TBD in relation to the physical system

HL130 Reliability shall be expressed according to redundancies and cryptic functions

HL140
CAST shall continue the simulation, despite a failure, without performance
drops

HL150
CAST shall continue the simulation, despite two failures, with performance
drops

5

HL160
CAST shall stop the simulation when the third failure occurs; human control
shall be required

HL170 CAST shall maximize number of interfaces

HL180
Autonomy shall be defined by the simulator, during the development, by rapid
prototyping and by auto generation of the code

HL190
Autonomy shall be defined during verification activities by reducing
intervention of Operators

HL200 CAST shall be used also by not-experts

2.1 CAST MAIN ELEMENTS

The modular architecture and flexibility concepts concern the availability to

implement new ground support equipment, without major changes to the entire facility.

This design philosophy allows CAST to be extended and improved, trying to simulate,

more and more accurately, the operative environment of the satellite.

Currently, CAST shall be composed by four main elements, connected as shown in

Figure 4:

• CAST Control Centre (CCC)

• Main Board System (MBS)

• Solar Simulator (SS)

• Frictionless Table System (FTS)

Figure 4: CAST functional architecture

6

PS GSE is the Power Supply Ground Support Equipment to power up the other CAST

elements.

The CCC aims at managing the entire facility during its operational phases,

coordinating the verification and simulation processes. It is the interface between the

facility and a non-expert operator. Through the Control Centre, it shall be available to

select the virtual models that simulate the missing hardware, according to the HIL

approach. This functionality is the key one in order to be able to use CAST at any stage

of the product life cycle. In fact, different levels of virtual model details can be

implemented, with respect to project phases and type of missions.

The MBS is what make CAST an innovative system. This ground support equipment

represents the link between who manage the correct functioning of the system (CCC), the

other GSE and the test object. It shall be composed of different interfaces types, in

furtherance of supporting a large variety of TO, without having to modify the facility. The

system communicates with all the CAST elements, and in case of anomalous operations

that were not managed by the CCC, implements some safety measures. Therefore, it

should represent a major security tool.

The Solar Simulator, as the name suggests, has the purpose to simulate the radiation

emitted by the Sun, in different flight conditions. It shall vary the light intensity by acting

directly on the power emitted by the lamp, or by moving relative to the test object.

Through this GSE it shall be possible to test an entire Electric Power System (EPS) of a

spacecraft, or only the solar panels, according to the design phase and the other elements

involved in the verification process.

The last main element of CAST will be described more in detail in the next section,

considering it is closely linked to the topic of this thesis.

2.2 FRICTIONLESS TABLE SYSTEM

The Frictionless Table System shall allow the simulation of proximity manoeuvres,

such as rendezvous and docking, performing movements with 3 degrees of freedom

(DOF). The movements allowed are two translational on the table and one rotational

around the perpendicular direction of the table surface. To test this type of in-orbit

operations in a laboratory, it is necessary to reproduce the absence of friction in space.

For these reasons, the system shall implement a technology already adopted for this kind

of verification in the space field, namely planar air bearing.

7

The concept is to reproduce the absence of friction by injecting a very high-pressure

gas between the main structure of the system and a specially designed surface (the table).

The structure can then float over the table, minimizing the friction. Indeed, the friction

is minimized, but is not eliminated. The pressurized gas can interact with the micro

roughness of the supporting surface, for the simple principle of action and reaction

(Newton’s third law of motion). Hence, these interactions create disturbances that shall

be compensated, both translationally and rotationally. It shall be autonomous both in

terms of energy and management, implementing an onboard computer for decision

making and appropriate corrections evaluation.

The FTS shall therefore perform many functions just for its self-operation., described

in the subsystem level functional tree shown in Figure 5.

Figure 5: FTS Functional Tree

8

2.2.1 FTS Main Systems

Therefore, the FTS is composed by two main elements: the table and the TowerSat.

The table shall be made of a material with the lowest roughness level, e.g. epoxy resin or

granite, to minimize the interactions. An excellent example of such a surface can be found

at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. [4]

TowerSat is the operational structure, which implements all the subsystems necessary

to create the environment without friction. Its design is based on some key concepts,

which reflect those of CAST. Some of these concepts are:

• Modularity: capability to add or remove functionalities to the system,

without having to design a new structure

• Accessibility: capability to facilitate maintenance (like the tank refuelling)

or implementation of the test object, without having to disassemble large parts

of the structure

• Flexibility: capability to adapt to different test objects in different phases of

the project, without major changes

• Simplicity: capability to have a simple approach even for a non-expert

operator

The Figure 6 shows a preliminary design of the TowerSat with the main elements of

which is composed. The modularity key driver led to the division of the structure into

floors.

In the first floor shall be the heavier components, to lower the centre of mass of the

system and increase its stability, compared to the disturbances. The green elements at

the bottom are the air bearing pads, which generate the thin layer of compressed gas with

the table. The quantity and pressure of the gas emitted depends on the force that the pads

must generate to support the weight of the structure. It is perceived the need to have a

light system.

9

Figure 6: FTS exploded view

The pads are connected to a compressed gas tank, the yellow element, which is the

heaviest element of the system and for this reason it influences the size and position of

the other subsystems. The tank will need to be filled, that is why it must be easily

accessible. These components allow the TowerSat to float on the table.

In addition, eight thrusters, two per side, are located on this floor, as they must be

powered by compressed gas, reducing the weight of the connection pipes as much as

possible. The thrusters are intended to compensate for translational disturbances and to

generate the force to move the TowerSat on the table. The Figure 7 shows a possible

functional configuration of the first floor of the TowerSat.

Concerning the other floors, they are still in development. The best configuration so

far hypothesized sees the remaining equipment in the second floor and the test object,

with its supporting interfaces, on the third floor (see Figure 8).

10

Figure 7: TowerSat 1st floor

11

Figure 8: TowerSat functional architecture

12

In the second floor shall be a reaction wheel (the blue element in Figure 6) to perform

corrections due to rotational disturbances and to intentionally rotate the structure. The

size of the wheel depends on the total inertia of the TowerSat, so once again the

minimization of dimensions and weights influences the components themselves,

increasing the complexity of the project.

Together with the reaction wheel, the electronic equipment should be mounted on the

side panels of the structure, always considering the accessibility desired by the system.

The electronic equipment consists of two calculation units, the GNC and the OBC,

analogous to a spacecraft system. The GNC includes an Inertial Measurement Unit

(IMU) and a microprocessor, to process the corrections and movements to be made with

the thrusters and the reaction wheel. Instead the OBC provides the necessary autonomy

to the system, reducing the communication to the CAST Control Centre. It checks the

correct functioning of the system, monitoring the pressures and temperatures, provided

by the appropriate sensors. It also receives commands from the CCC and sends all the

required data.

To add functionality to the system, the design shall allow the implementation of any

other floor. In any case, the latter floor should be dedicated to implementing a test object.

Therefore, it must have several mechanical and electrical supports. For this last reason,

one of CAST goals is to implement the Main Board System on the TowerSat, making it

an increasingly integrated environment.

Finally, the FTS needs a localization system, the LocSys. This system aims to monitor

the movements of the TowerSat, evaluating its position and orientation over the time. It

is the thesis topic and it will be introduced in the next section.

In conclusion, such a defined facility allows a great variety of test objects. Here are

some examples, but it must be remembered that the possibility of expanding its

functionality would allow other type of tests:

• Docking mechanism (main function)

• Solar panels: simulating the movement with respect to the Solar Simulator

• Optical payload for navigation

• Navigation algorithms, using the LocSys for validation

• CubeSat: whose movements are simulated by the TowerSat

13

2.2.2 FTS Localization System

The localization system aims to determine the position of the TowerSat with respect

to a reference system, like a corner of the table. This system has a dual purpose:

• to check that the TowerSat does not hit the edges of the table, to not interfere with

the test in progress, damaging or degrading it

• to check and, when required, validate the position and orientation that the test

object is evaluating during the test

Especially for the second objective, the system should have high performances and

must be able to cover the whole interested area of the table. Depending on the technology

chosen for localization, its implementation in the FTS may vary.

The indoor positioning systems, like the LocSys should be, use different technologies,

which can be grouped into two categories:

• Non-radio technologies

• Wireless technologies

The non-radio technologies can be used for positioning and can provide high accuracy

with expensive equipment and installations. This category includes magnetic systems,

inertial measurements and vision-based technologies (with both visual markers and

features).

For the LocSys application, a magnetic system is not suitable because it can interfere

with the electronic equipment, violating one of the system purposes. The inertial

measurement unit based on electronic components (MEMS) can provide high accuracy,

but they suffer from internal noise which result in growing position error with time. To

reduce the accumulation of errors, these sensors need an eternal reference to correct

them. Therefore, they could be used in combination with other localization systems.

The vision-based solutions can be adapted to many situations, thanks to the great

variety of hardware available, in terms of optic camera quality. Their operation can rely

on the recognition of fiducial markers or chosen features. The difference lies on the

calculation time required for detection. Once the object to be located, whose geometry is

known, is identified, its position can be assessed with respect to a reference system.

Concerning the wireless technologies, they include different solutions, here are some

of them: Wi-Fi positioning system (WPS), Ultrawide band (UWB) and various methods

for GPS indoor.

14

The WPS is a good solution where GPS is inadequate. It evaluates the position

measuring the intensity of the received signal. The accuracy is closely related to the

number of access points and signal fluctuations. In addition, it requires the

implementation of devices on the TowerSat, with consequent increases in weight and

consumption. It is a technology suitable for geolocation rather than for this application.

An UWB system is a low-power solution that does not interfere with other electronic

devices and it could be a good technology for LocSys. In such a system, different

transmitters are placed around the laboratory emulating the GPS satellites. A receiver is

then placed on the moving structure and it would receive the signals. The position is

evaluated using the triangulation equations. The disadvantages lie in the achievable

accuracy of the order of 10 [cm]. [5]

Finally, regarding the GPS indoor approaches, the one adopted by the facility of the

NPS is of particular interest. [4] In that application a laser GPS system was adopted. Each

transmitter fixed on the laboratory walls emits a laser beam. A receiver implemented on

the object receives the different signals, identifying the source of it. Knowing the nature

of the beam and the location of the transmitters, the on-board computer can triangulate

the receiver position. The system is very complex, and the on-board receiver requires a

lot of power.

Remembering the objectives of the system and, in addition, the fact that it must not

interfere with the simulated environment by the facility or with the test object, it was

chosen to develop a system based on optical cameras. This solution allows flexible and

completely customized development. Furthermore, it does not involve an addition of

weight and consumption to the TowerSat. In fact, the system , can be completed outside

the moving structure, except for markers, whose weight is negligible.

A system of this type allows to monitor the movements of the structure and to evaluate

its orientation, using special markers.

The following thesis proposes the development of a localization system based on

cameras, and aims to evaluate its performances, in terms of accuracy on position,

orientation and frequency measurements in which results can be obtained.

15

3 LOCSYS: PROBLEM FORMULATION

As a reminder, the localization system aims to determine the position and orientation

of the TowerSat with respect to a corner of the table.

Having chosen to use optical cameras to develop this system, is required to introduce

a simple model that well represents the relationship between an object in three-

dimensional space and its projection on the image plane of a camera. This chapter

introduces the localization system from the mathematical point of view and therefore all

the elements necessary for the development.

3.1 PINHOLE CAMERA MODEL

There are several models that describe how an optical camera works, which can be

found in any book about computer vision. In this paragraph will be described the so-

called “pinhole camera model”, that although it is one of the simplest models, provides

excellent results and it is implemented in the library used to develop the LocSys software.

In this model, a single ray of light enters the pinhole from any point in the scene. This

point is then “projected” onto an image plane (also called the projective plane) that is

always in focus, so the size of the image relative to the distant object is given by a single

parameter of the camera: its focal length [1].

Figure 9: Pinhole camera model. ©[1]

16

The distance between the pinhole camera aperture and the image plane is precisely

the focal length. This model is well represented in the Figure 9, where f is the focal length,

Z is the distance from the camera to the object, X is the length of the object and x is the

object image on the image plane. The figure shows by similar triangles the relationship

between X and x. The same reasoning can be done for the other dimension of the object,

which on the image plane is transformed into y. So, the equations for the projection of

object points into image points are the following:

{
𝑥 = −𝑓 ∙

𝑋

𝑍

𝑦 = −𝑓 ∙
𝑌

𝑍

Figure 10: Rearranged pinhole camera model. ©[1]

It is now possible to rearrange the pinhole camera model in an equivalent form that

is easier from the math point of view. In order to accomplish that, the pinhole and the

image plane have to be swapped, so that the object now appears right side up, as it can

be seen in the Figure 10. The old pinhole point is now represented by the centre of

projection. In this way of looking at things, each ray that starts from the object is directed

to the centre of projection and creates an intersection with the image plane. The point at

the intersection of the image plane and the optical axis is referred to as the principal

point. In this new form of the pinhole camera model, the image of the distant object is

the same size as it was on the image plane in the previous form. This makes the similar

triangles relationship 𝑥/𝑓 = 𝑋/𝑍 more evident than before. The negative sign is now

gone because the object image is no longer upside down.

17

It is necessary to add that the centre of the imager chip is not on the optical axis,

therefore two new parameters should be introduced, 𝑐𝑥 and 𝑐𝑦 , to model a possible

displacement (with respect to the optical axis) of the centre of coordinates on the image

plane. The result is that a relatively simple model in which a point 𝑄⃗ in the physical

world, whose coordinates are (𝑋, 𝑌, 𝑍), is projected onto the image plane at some pixel

location given by (𝑥, 𝑦) in accordance with the following equations:

{
𝑥 = 𝑓𝑥 ∙

𝑋

𝑍
+ 𝑐𝑥

𝑦 = 𝑓𝑦 ∙
𝑌

𝑍
+ 𝑐𝑦

It has to be noted that two different focal lengths have been introduced; in fact, the

individual pixels on a typical low-cost imager are rectangular rather than square, as the

one that has been adopted during the LocSys development. Furthermore, the focal length

𝑓𝑥 (the same goes for 𝑓𝑦) is actually the product of the physical focal length (usually in

millimetres units) of the lens, adopted by the camera, and the size 𝑠𝑥 of the individual

imager elements (usually in pixels per millimetre units), which means that 𝑓𝑥 is in the

required units of pixels. It is important to keep in mind that it is not possible to measured

directly via any camera calibration process the imager elements’ size and neither is the

physical focal length, so it is possible to derive only the combinations of them, without

actually dismantling the camera and measuring its components directly.

The relation that maps a set of points 𝑄𝑖
⃗⃗ ⃗ in the physical world with coordinates

(𝑋𝑖 , 𝑌𝑖, 𝑍𝑖) to the points projected on the image with coordinates (𝑥𝑖 , 𝑦𝑖) is called

projective transform. For this kind of transform, it is convenient to use the well-known

homogeneous coordinates. These coordinates associated with a point in a projective

space of dimension n are typically expressed as an (n+1)-dimensional vector, with the

additional restriction that any two points whose values are proportional are, in fact,

equivalent points. In this application, the projective space is the image plane, therefore

the image coordinates that has two dimensions are now represented by a three-

dimensional vector 𝑞 = (𝑞1, 𝑞2, 𝑞3) . Recalling the additional restriction, the pixel

coordinates can be recovered by dividing through by 𝑞3. The homogeneous coordinates

allow to rearrange the parameters that define our camera in a single 3 × 3 matrix (M),

which is commonly called camera intrinsic matrix. [1] The projection of the object points

in the physical world into the camera is now summarized by the following simple form:

𝑞 = 𝑀 ∙ 𝑄⃗

where:

18

𝑞 = [
𝑥
𝑦
𝑤

] , 𝑀 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] , 𝑄⃗ = [
𝑋
𝑌
𝑍
]

Multiplying this out, it easy to find that 𝑤 = 𝑍 and so, the pixel coordinate can be

found dividing by w (or Z).

3.1.1 Camera Intrinsic Parameters

The intrinsic parameters of the camera are those parameters closely related to its

physical nature. Some of them have already been introduced by the pinhole model, such

as the focal lengths (𝑓𝑥 and 𝑓𝑦) and the optic centre (𝑐𝑥 , 𝑐𝑦) which compose the camera

intrinsic matrix M. However, other parameters related to lens distortions must be

introduced.

In theory, it is possible to define a lens without any kind of distortion, but, in practice,

no lens is perfect mainly due to manufacturing reasons. There are mainly two types of

lens distortions: radial distortion arises as a result of the shape of lens, whereas the

tangential distortion arises from the assembly process of the camera. [1]

The lenses of real cameras often distort the location of pixels near the edges of the

image plane. This phenomenon is the source of the “fisheye” effect. Figure 11 shows why

this radial distortion occurs. Rays further from the centre of the lens are bent more than

those closer in. Barrel distortion is particularly noticeable in cheap web cameras but less

apparent in high-end cameras, where a lot of effort is put into fancy lens systems that

minimize radial distortion. [6]

Figure 11: Radial distortion. ©[6]

19

The distortion is almost nil at the optical centre of the imager and increases toward

the periphery. This kind of distortion can be characterized by the first few terms of a

Taylor series expansion and, for cheap web cameras (like those used in this application),

only the first two terms are used that are conventionally called 𝑘1 and 𝑘2. For highly

distorted cameras such as fisheye lenses, an additional term is used, 𝑘3.[6]

The tangential distortion is due to manufacturing defects resulting from the lens not

being exactly parallel to the image plane, as is shown in the Figure 12. This distortion is

minimally characterized by two additional parameters: 𝑝1 and 𝑝2.[6]

Figure 12: Tangential distortion. ©[6]

Thus, there are in total five parameters that correct lens distortion. These parameters

are usually collected into a distortion vector and allow to transform the raw pixel

coordinates 𝑄⃗ into correct coordinates that best correlate the 3D point with its projection

on the image plane 𝑃⃗ .

3.1.2 Camera Extrinsic Parameters

The extrinsic parameters concern the relationship between the camera reference

system and another arbitrary system. In fact, up to this point nothing has been said about

the object reference system in the physical world. As the previous relationship was

obtained, 𝑄⃗ = (𝑋, 𝑌, 𝑍) refers to the centre of projection. In general, points in space will

be expressed in terms of a different Euclidean coordinate frame, known as the world

20

coordinate reference system.[2] The two coordinate frames are related through a

rotation and a translation, as shown in the Figure 13.

Figure 13: Camera and object coordinate frame relationship. © [1]

The translation between the two systems leads the origin of the object coordinate

frame coinciding with that of the camera. It represents the offset between the two origins,

and, in this application, it is the real distance from the object point to the centre of

projection of the camera. The appropriate translation vector is simply:

𝑇⃗ = 𝑜𝑟𝑖𝑔𝑖𝑛𝑜𝑏𝑗𝑒𝑐𝑡 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑐𝑎𝑚𝑒𝑟𝑎

Regarding the rotation, it allows an equivalent description of a point location in a

different coordinate system. For these two systems a rotation in the three spatial

dimensions is required, which can be decomposed into three different two-dimensional

rotations, each around one of the x, y and z axes. In fact, a first rotation around the z-

axis, then around the new position of the y-axis, and finally around the new position of

the x-axis, with respectively rotation angles 𝜃, 𝜑 and 𝜓, will result in a total rotation

matrix R that is given by the product of the three matrices 𝑅𝑥(𝜓), 𝑅𝑦(𝜑) and 𝑅𝑧(𝜃) ,

where:

𝑅𝑥(𝜓) = [
1 0 0
0 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓
0 −𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

]

𝑅𝑦(𝜑) = [

𝑐𝑜𝑠𝜑 0 −𝑠𝑖𝑛𝜑
0 1 0

𝑠𝑖𝑛𝜑 0 𝑐𝑜𝑠𝜑
]

21

𝑅𝑧(𝜃) = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
]

thus:

𝑅 = 𝑅𝑥(𝜓) ∙ 𝑅𝑦(𝜑) ∙ 𝑅𝑧(𝜃)

The rotation matrix R is an orthogonal matrix, therefore has the property that its

inverse is its transpose, hence:

𝑅𝑇 ∙ 𝑅 = 𝑅 ∙ 𝑅𝑇 = 𝐼3

where I is the 3 × 3 identity matrix.

3.2 PROBLEM FORMULATION AND SOLUTION

It is now possible to relate a point in the object (or world) coordinate system 𝑃⃗ 𝑂 and

his projection in the camera coordinate system 𝑝 𝐶:

𝑝 𝐶 = 𝑅 ∙ (𝑃⃗ 𝑂 − 𝑇⃗)

R and T are the extrinsic parameters of the camera and together with the camera

intrinsic parameters allow correlating a defined point in three-dimensional space with

its projection on the image plane. This relationship is well-defined by the following

formula:

 𝑠 ∙ 𝑝 𝑐 = 𝑀(𝑅 ∙ 𝑃⃗ 𝑂 + 𝑇) (3. 1)

where a new parameter s has been introduced, which is an arbitrary scale factor

derived from the introduction of the homogeneous coordinates.[6] This formula can be

expressed in matrix form as follows:

𝑠 [
𝑢
𝑣
1
] = [

𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] ∙ ([

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] ∙ [
𝑋
𝑌
𝑍
] + [

𝑡1
𝑡2
𝑡3

])

It can be seen the point on the image plane 𝑝𝑐⃗⃗ ⃗ has been expressed as [𝑢 𝑣 1]𝑇; this

different notation is intended precisely to underline the difference between the raw pixel

coordinates obtained from the original image [𝑥 𝑦 1]𝑇 and the correct ones, by

applying the corrections to the distortions previously described. Remembering that the

22

goal of the system is to determine the position of the object in 3D space using its

projection on the image plane, it is possible to invert formula (3. 1) to get the 3D point

𝑃⃗ 𝑂 as follow (for greater clarity the points 𝑃𝑂
⃗⃗ ⃗⃗ and 𝑝 𝐶 are expressed in vector form):

[
𝑋
𝑌
𝑍
] = 𝑅−1 ∙ 𝑀−1 ∙ 𝑠 [

𝑢
𝑣
1
] − 𝑅−1 ∙ 𝑇

(3.2)

Therefore, the formula (3.2) represents a system of three equations in four unknown

variables. In fact, the camera intrinsic matrix M, the rotation matrix R, the translation

vector T and the 2D point projection 𝑝 𝐶 are information obtainable with methods that

will be described in the following paragraphs. Regarding the scale factor s, it is not

possible to determine it, because, as mentioned above, it is an arbitrary factor.

For this reason, it is impossible to solve this system and to determine the position of

an object in the three-dimensional space using only its projection on the image plane and

a single camera. In order to solve this system, it is necessary to use at least two cameras

or to introduce an assumption related to one of the three coordinates.

The object that the LocSys will have to determine is the TowerSat, which will move on

a plane (the frictionless table), hence the Z coordinate will be fixed in the world reference

system, that for this application will be a corner of the table. With this assumption and

renaming the Z as 𝑍𝑐𝑜𝑠𝑡, it is possible to solve the system (3.2). The third equation in the

𝑍𝑐𝑜𝑠𝑡 coordinate allows to evaluate the scale factor s and then solve the other two

equations to find the X and Y coordinates of the object.

In order to accomplish this task, all the other ingredients should be determined. The

following paragraph will describe how to obtain the camera intrinsic parameters

(camera calibration), the camera extrinsic parameters (pose estimation) and an easy

way to detect the object projection onto the image plane (through fiducial markers).

23

3.3 FIDUCIAL MARKER: ARUCO

The image of the object is captured by the camera and projects onto the image plane.

Since this system is built and used in a known environment, it would be impractical to

have to recognize a characteristic point of the TowerSat. In addition, LocSys should be

able to provide TowerSat position and orientation at least 5 times per second.

For these reasons, it has been chosen to adopt some fiducial markers. A fiducial

marker is a pattern placed in the field of view (FOV) of the camera, mounted onto the

object and it is more easily detectable than the object itself, thanks to its nature and the

application of some filters on the image.

For the LocSys purposes, the ArUco markers are the best solution.[8] ArUco is an

Open Source library for detecting squared fiducial markers in images and it is already

implemented in the OpenCV library. Additionally, if the camera is calibrated, that is the

intrinsic parameters are known, it is possible to estimate the camera pose, that means to

evaluate its position and orientation with respect to the markers.

These markers are comprised by an external black border and an inner region that

encodes a binary pattern, as it’s shown in Figure 14.[9]

Figure 14: Example of ArUco marker

There are several types of ArUco markers, each of them belonging to a dictionary. The

dictionaries differ in the number of markers they contain and the number of inner

squares that encode the binary pattern. For example, the ArUco in Figure 14 has a binary

pattern of 6x6 inner squares.

24

The advantages of these markers, in addition to their fast and robust detection [8], is

that each of them provides a 4-point vector (representing the corners in the image) and

an unique ID, which differentiates them according to their pattern and the dictionary to

which they belong. Moreover, the pixel coordinates of the corners, contained in the 4-

point vector, are sorted clockwise starting from the up-right corner. This fact gives to a

marker its relative reference system, as is shown in Figure 15.

Figure 15: ArUco relative coordinate system. ©[9]

These considerations enable to parse an image to easily recover one (or more) point

related to the 3D object.

25

3.4 CAMERA CALIBRATION

The camera calibration is a process aimed at estimating those parameters necessary

to correlate the points of the real world with the image points captured through the

camera. These parameters are already been introduced such as intrinsic parameters.

Once the camera is calibrated, it no longer needs to be calibrated again. The matrix M

does not depend on the scene viewed. So, it can be re-used if the focal length is fixed. For

this reason, zoom lens are not suggested.

Often, the accuracy of the camera calibration is strongly related to the total

performance of the system related to the camera itself.

There are several calibration methods, which implement algorithms with the aim of

solving the problem of minimizing a nonlinear error function to get accurate estimates

for parameters. However, each of these methods is based on parsing different views of

the same calibration pattern, in order to correlate some known points of the calibration

pattern with their projections on the image. Using different views, usually at least 10

views are suggested [6], allows to evaluate the camera intrinsic matrix e the distortion

vector. The OpenCV library implements two different algorithms that evaluate intrinsic

parameters and optimize them.[10] Those algorithms are based on the Zhang calibration

method [11] and the camera model proposed by Jean-Yves Bouguet [12]. Since these

methods are already implemented and well described by the above references, it is

worthwhile to pay more attention to the calibration patterns that can be adopted and the

one used during this thesis.

Finally, one of the calibration process outputs is the reprojection error, that

represents the quality of the calibration. The error metrics defined for estimation are

done from the image points. It is usually done by computing the Euclidian distance

between the projected image coordinate point, and the measured image coordinate

point. [7] In the estimation process, the total error function will be minimized in the least

squares fashion. The process is iterated where the reprojection error is computed during

the iterations, and the final target is to get the minimum reprojection error. An optimal

calibration quality is obtained when the reprojection error is less than 1 (pixel

measurement unit).

26

3.4.1 Calibration Pattern

In principle, any appropriately characterized object could be used as a calibration

object, but a more practical choice is a rectangular pattern on a flat surface, such as a

chessboard, an ArUco board or a ChArUco board. For all these calibration pattern, some

known points must be provided to the algorithm, so that it can find the corresponding

projections.

A chessboard is a calibration pattern composed by alternating black and white

squares. For this pattern, the object coordinates of the inner corners are known. In fact,

using a Cartesian reference, that is usually centred in the lower left corner of the board,

every inner corner is uniquely defined, as shown in the Figure 16. Since it is a flat surface,

all the points in the reference system on the object itself have 𝑍 = 0. Regarding the X and

Y coordinates, it is possible to number them simply by counting the number of inner

corners, starting from zero, or use their measured distance from the origin of the object

reference system. The output of the calibration process is the intrinsic parameters, which

are in the pixel measurement unit, as explained in 3.1 paragraph, therefore the two

formulations provide the same result.

Figure 16: Chessboard calibration pattern

The use of a pattern of alternating black and white squares ensures that there is no

bias toward one side or the other in measurement. Also, the resulting grid corners lend

27

themselves naturally to a subpixel refinement, increasing the accuracy of their

detection.[6] A chessboard provides a number of known points given by:

𝑛𝑢𝑚𝑝𝑜𝑖𝑛𝑡𝑠 = (𝑛𝑢𝑚𝑟𝑎𝑤 − 1) ∗ (𝑛𝑢𝑚𝑐𝑜𝑙𝑢𝑚𝑛 − 1)

Furthermore, for the image to be properly used during the calibration process, all

points must be visible and detectable. For this reason, it is recommended to use other

patterns, which, under certain conditions, can also provide more accurate results.

One solution is the ArUco Board (see Figure 17), a board composed of 𝑛 = 𝑛𝑢𝑚𝑥 ∗

𝑛𝑢𝑚𝑦 ArUco marker, where 𝑛𝑢𝑚𝑥 is the number of marker along the X axis and vice

versa for 𝑛𝑢𝑚𝑦 . This calibration pattern has two advantages over the more classic

chessboard:

• The whole board does not have to be in view to get labelled corners on which to

calibrate.

• Every marker gives four known points (corners), therefore if compared with a

chessboard with the same number of rows and columns, it provides 4 times the

number of object points

Figure 17: Example of ArUco Board

On the contrary, the corners of chessboard pattern can be refined more accurately

since each corner is surrounded by two black squares.[10] However, finding a chessboard

28

pattern is not as versatile as finding an ArUco board: it must be completely visible and

occlusions are not permitted.

Finally, the ChArUco Board has been created to combine the benefits carry out by the

previous pattern (see Figure 18). In this board, each corner is labelled with an ArUco (2D

barcode) pattern. This allows much of the calibration board to be occluded while allowing

for the higher positional accuracy of corner intersections. The ArUco part is used to

interpolate the position of the chessboard corners, so that it has the versatility of marker

boards, since it allows occlusions or partial views. Moreover, since the interpolated

corners belong to a chessboard, they are very accurate in terms of subpixel accuracy.

Figure 18: ChArUco Board creation concept

When high precision is necessary, such as in camera calibration, ChArUco boards are

a better option than standard ArUco boards. For all these reasons, it was chosen to adopt

the latter calibration tool.

29

3.5 CAMERA POSE ESTIMATION

To solve the equation (3.2), the translation vector T and the rotation matrix are still

to be defined. These last ingredients, as mentioned before, identify the relative position

and orientation between the camera coordinate frame, centred on its projection centre,

and the desired reference system. This system is the same in which the coordinates

(𝑋, 𝑌, 𝑍), that are to be determined, are expressed.

The reference system should be centred in a corner of the table, therefore fixed in

space. When the camera is also fixed in space, the relationship between the two reference

systems is defined.

In literature, the problem of finding the pose of a calibrated camera given a set of n

3D points is well known and is called Perspective-n-Point (PnP). [6], [7], [13]

Without going into detail on how this problem is formulated, there are several

methods and optimizations that solve it, depending on how many 3D-2D point

correspondences are provided and how the points are positioned between them. A

commonly used solution to the problem exists for 𝑛 = 3 called P3P, and many solutions

are available for the general case of 𝑛 ≥ 3, some of which, for example, are optimized if

the points are coplanar.

Figure 19: ArUco marker pose ambiguity. ©[9]

Since ArUco markers provide four detectable points, each marker could be used to

estimate the camera pose with a planar pose estimator. It is important to remark that the

estimation of the pose using only 4 coplanar points is subject to ambiguity. As shown in

Figure 19, an ArUco marker could project at the same pixels on two different locations.

Typically, the ambiguity can be solved if the camera is close to the marker. [9] At the

30

same time, as the distance between the camera and the marker increases, the marker

becomes smaller, consequently the errors in the corner estimation grows and the

ambiguity comes as a problem.

To overcome this problem, the external calibration can be done with a three-

dimensional object, thus providing the correct direction of the axis orthogonal to the

reference plane, removing the ambiguity. A non-planar calibration tool provides a better

accuracy, but it requires more attention and precision on its utilization. It must be

provided the exact 3D coordinates of the points that will be detected on the image (see

an example in the Figure 20).

Figure 20: 3D object points example

Since the camera is fixed in space, the external calibration is to be done every time the

camera intrinsic parameters change, or the camera is moved.

When the translation vector and the rotation matrix are determined, it is also possible

to project a two-dimensional point in pixel coordinate into space, having coordinates

centred in the same reference system adopted in the external calibration. This is the

concept developed in the LocSys.

31

3.6 MULTIPLE CAMERA ARCHITECTURE

The previous section explained the operation of a camera, the processes to be carried

out and the necessary tools. If one of the three object coordinates is known (usually the

z coordinate), it is possible to determine its position with a single camera.

An architecture consisting of a single camera has obvious restrictions:

• The camera FOV is limited and consequently the operational area of the

TowerSat which it can cover is limited. Increasing the distance between the

TowerSat and the camera would lead to a decrease in accuracy, as it will be

shown in the chapter 5. It is not even possible to tilt the plane of vision to see

a larger area in a perspective way, because a distant object would suffer from

major errors.

• The accuracy of the system is entrusted to a single camera, and in the presence

of noise in the image the measurements would also be affected, without

possibility of corrections.

• The edges of the image are more prone to distortion, as explained in section

3.1.1. Although the camera calibration and the image undistortion are carried

out, some errors are still occurred. For this reason, the area covered with

acceptable errors is reduced.

The first point would be enough to understand the need to use multiple cameras, to

cover a larger region, without losing accuracy. There are several ways to use multiple

cameras and overcome the limits just described. Two of them are explained below: the

first is interesting, especially for future developments, while the second is the one that

has been implemented in the LocSys.

3.6.1 Stereo Vision

The use of two cameras aimed at the same object is known as Stereo Vision. The

operation is analogous to human sight, allowing to know the depth at which an object is

located from the centre of the system composed by the cameras. With this methodology

it is possible to know all the point coordinates, without to resort to assumptions.

Therefore, the stereo vision allows to triangulate the position of a point. The

mathematics that describes this type of system is called Epipolar Geometry.

32

Figure 21: Epipolar Geometry

The Figure 21 shows a basic setup with two cameras taking the image of the same

scene. Using only the left camera , as described above, does not allow to find the 3D point

corresponding to the pixel point 𝑥𝐿 in the image, because every point on the line 𝑂𝐿𝑋 has

the same projection on the image plane. Considering the right image, the different points

on the line 𝑂𝐿𝑋 has different projection on the image plane. These projections on the

right image plane form a line (the red line in the figure above) that is called epiline

corresponding to the point X.

As the distance of the X point from the left camera changes, its projection on the right

image plane changes. Knowing the characteristics of this point, it is possible to reduce its

research only on the epiline (or in its surroundings). This is called Epipolar Constraint.

The points 𝑂𝐿 and 𝑂𝑅 are the camera centres. These two points together with the X

point form the Epipolar Plane. Furthermore, the projection of the right camera centre

𝑂𝑅 on the left image is called epipole (𝑒𝐿). An epipole is the point of intersection of line

through the camera centres and the image planes. If one camera does not see the other,

the epipole may be outside the image plane. The characteristic of the epipole is that each

epiline passes through it.

The position of the epipoles is determined only by the reciprocal position of the

cameras. Therefore, once the translation and rotation vector that lead to the right image

plane coincide with the left one (see Figure 22), it is possible to reconstruct the 3D

position of the X point.

33

Figure 22: Left and Right image planes relationship

This geometry has some advantages over using the one camera architecture, but it has

disadvantages too. These are resumed in the table below:

Advantages Disadvantages

Depth evaluation (z coordinate) More complex system

Higher accuracy Reduce the operating area

 More cameras required to cover a larger area

Although it allows the determination of all three spatial coordinates and provides

greater accuracy, the complexity of the system increases. The object must be seen

simultaneously by two cameras at every point in the area where it can move. In fact, the

field of action of a single camera is reduced, because in order to function properly the

object must be seen by both (see Figure 23). The number of cameras increases.

The stereo vision is an excellent solution for future development of the Frictionless

Table System, when knowledge of the Z coordinate will be required. In a first

configuration of the project, the main objective is to increase the working area provided

by a single camera.

Figure 23: FOVs intersection

34

3.6.2 LocSys Solution

In this application case, it is necessary to determine two coordinates on the table and

a rotation around the perpendicular direction to the table plane. As has been previously

described, one camera and one ArUco marker are able to provide this information.

The stereo vision does not solve the restrictions given by one camera, so the idea

implemented in LocSys is to use the concept adopted in the single architecture serval

times.

Each camera can determine the object position with respect to the reference system

(RS) adopted for that camera. If several cameras are used, each with its own reference

system, and the position of the RS relative to the main one is known, it would be possible

to cover a larger area.

When the marker enters a camera FOV, it evaluates its position with respect to its

reference system. Note the position and, if necessary, the orientation of this RS, a

translation and a rotation to the evaluated position are applied. The problem is

transformed into the creation of a precise geometry, where the reference systems play

the main role.

Figure 24: LocSys reference systems

35

The Figure 24 shows the relationships that are created between the position,

evaluated by each camera with respect to its own reference system, and the main

reference system (MRS). Since this is the developed architecture, it will be described in

more detail in the following chapters, especially when the software is described.

To completely cover an area for which a single camera would not be enough,

overlapping areas will be created, where the object can be seen by multiple cameras. Each

of them would evaluate the position independently. Subsequently, not being able to give

priority to one measure over another, it is necessary to average the evaluated positions,

to decrease the highest error made by one of the cameras.

The limits that arise with this architecture are related to the ability to create a precise

system, to synchronize the cameras and to the computing power. As the number of

cameras increases, the frames to be analysed increase, reducing the number of

evaluations per second. The need also arises to manage all the information concerning

the cameras and the position of their reference system.

Compared to stereo vision, this solution allows fewer cameras to cover the same

operating area. The overlapping area of the FOV is reduced to a minimum, while in the

other case it must be maximized.

In the case of overlapping, the number of measurements increases, providing greater

reliability to the system. Using more cameras could increase this area, increasing

accuracy and precision.

The following chapters describe the software developed, necessary to determine the

performance of a single camera and then the architecture with multiple cameras.

36

4 LOCSYS: SOFTWARE DEVELOPMENT

The goal of this thesis is to develop a baseline architecture to achieve the objectives

imposed on the system. The core of this architecture is the software that manages the

multiple cameras and thus evaluates the position and orientation of the TowerSat. In

order to develop the LocSys software, it has been chosen to use the Python programming

language, with the implementation of the OpenCV library. In this chapter, after a brief

description on the choice of Python and OpenCV, the developed software will be

explained. A first software has been adopted to perform performance tests with a single

camera, while another is able to manage multiple cameras, as the LocSys is supposed to

do.

4.1 SOFTWARE METHODOLOGY AND TOOLS

The following section describes the tools adopted for the thesis and the methodology

for developing the LocSys software. The tools include the programming language, the

cameras and the calibration pattern for intrinsic and extrinsic parameters.

4.1.1 Python

Python is a popular programming language, designed for readability and

functionality. It has a simple syntax like the English language, that makes most codes

easy to be understood even by a beginner. The Python language has a specific syntax and

semantics, which allow to express computations and data manipulation by a computer

with fewer lines than some other programming languages. It uses new lines to complete

a command, as opposed to other programming languages, which often use semicolons or

parentheses. It relies on indentation, using whitespace, to define scope (e.g. loops,

functions, classes) rather than curly brackets, like other programming adopt.

Python is an interpreted language. In fact, the host CPU does not execute directly any

Python program, but it needs an interpreter that execute it. The interpreter executes a

Python code as soon as it is written. This is one of the major distinctions with the C codes,

which are compiled to CPU machine code before the run time.

37

Another characteristic is that it is dynamically typed. The interpreter performs the

type checking at run-time, as opposed to at compile-time. The programmer does not have

to declare variable types himself. There are other dynamically typed languages, like

JavaScript, Ruby and Objective-C.

Python is also strongly typed, meaning that it will raise a run-time type error when

the programmers has violated the Python syntax rule. For all these reasons, the

prototyping can be very quick.

The last property is that Python is an object-oriented programming language. It is

based on object, which contain data (often known as attributes or properties) and code

(often known as methods).

The class object was widely used in LocSys. A class is an extensible template for

creating object, providing initial member variables and implementing member

functions. Once the class is created, it allows to create an instance of the class. Every

instance of the class owns the attributes and the methods of the class itself. To better

understand this programming-concept, will follow a short example.

Let’s think about a class called Car (usually a class name begins with a capital letter).

The class Car has as initial attributes the model of a car (car_model) and the percentage

of tank filling (tank_percentage). This class has also two methods (functions) called

drive and refill. When drive is called, it removes a 10% of tank filling, while refill assigns

a 100% of tank filling. Thus, the Car class has two initial attributes and two methods.

Figure 25: Example of class creation

38

Let’s create two different instances for two different cars. The first car is a Ford

Mustang with an initial 80% of tank filling. The second car is a Chevrolet Camaro with

an initial 50% of tank filling. Now, both the cars can be driven recalling the method drive.

After this command, the Ford Mustang has a 70% of tank filling, while the Chevrolet

Camaro has a 40%. Calling the refill method to the Chevrolet, it refills its tank to the

maximum value of 100%. The Figure 25 shows the Car class creation and the

implementation of two instances. The Figure 26 shows the terminal output of the code

in the previous figure.

Figure 26: Example of class execution

So, once a class has been created, it is possible to instantiate multiple objects that

share the same “nature”. It allows to recall its methods and attributes, without having to

declare variables and, in principle, without knowing how the class is made internally.

This is the concept adopted in many libraries implemented in Python (like OpenCV) and

in other programming languages.

A class object also makes a code easier to read. It can be created and modified in one

python (.py) file and then instantiated in another file, where its methods and attributes

are exploited. This allows to modify, for example, the main program file, without

interfere to the class and, vice versa, to modify the class without interfere to the main.

The thesis adopts this methodology for the development of the LocSys software.

4.1.2 Python Multithreading Approach

To develop a multi-camera architecture, it is necessary to introduce the concept of

multithreading, as the cameras should work synchronously.

In Python this is called concurrency and it is the occurrence of two or more events at

the same time or, in terms of programming language, it is the overlapping of two tasks

in execution. The performance of software systems can be improved because it can

39

concurrently deal with the requests rather than waiting for a previous one to be

completed.

A thread is a small unit of execution that can be performed in an operating system. It

is not itself a program, but it runs within a program, hence, threads are not independent

from one other. Each thread shares code section, data section, etc. with other threads.

Therefore, multithreading is the ability of the CPU to manage and control the use of

operating systems be executing multiple threads concurrently. The main concept of the

multithreading philosophy is to achieve parallelism by dividing a process into multiple

threads.[14] For this thesis, the cameras should get the frames at the same time and then

these frames should be analysed. With multiple cameras, if frames were taken in

sequence, synchrony would be lost. Taking them in parallel, the synchrony should be

maintained, always considering the limits of the CPU.

Typically, a thread can exist in five different states (see Figure 27):

• New Thread: a new thread begins its life cycle in the new state. At this stage

it is not started yet, and it has not been allocated any resources.

• Runnable: the thread is started, and it is waiting to run. It has all the

resources.

• Running: the thread executes its tasks. At this stage, the thread can go to

either the dead state or to the non-running/waiting state.

• Non-running/waiting: the thread is paused, and it is waiting for the

response of some I/O request.

• Dead: the thread enters the terminated state when it completes task.

Figure 27: Thread life cycle. ©[14]

40

A process is defined as an entity, which represents the basic unit of the code

implemented in the system. In other words, the programmer writes his program and

when he executes it, it becomes a process that performs all the tasks in the program.

For this thesis, the multithreading approach was used to synchronize the camera

frame acquisition. The main program will be executed by the main thread, instead each

camera video dataflow will be handled by an independent thread.

4.1.3 OpenCV

OpenCV is an open source cross-platform programming library aimed at computer

vision available from http://opencv.org.[10] This library was fundamental for the

development of the software, because it implements many functions useful to handle

cameras and to manage and parse images. All these functions can be easily found on its

online documentation.

It also includes functions able to intrinsic calibrate the cameras, giving as input some

parameters. One of these is calibrateCamera uses several views of a calibration pattern.

OpenCV provides the function solvePnP, that, as mentioned in section 3.5, allows to

evaluate the pose of the camera with respect to a calibration tool. This function uses the

3D-2D point correspondences and different methods for solving the PnP problem.

An extension of this library includes the module that allows the recognition of the

ArUco markers. This module provides the function to calibrate a camera using a

ChArUco board. The function takes as input the interpolated points of the board corners

and the information of the board used. The difficulty in using this function lies in

extrapolating this data from the frames and proving it correctly.

4.1.4 Software Requirements

The development of LocSys is made with Python 3.7.5. During the installation of

Python, available from https://www.python.org/downloads/, the pip is also provided.

Pip is a package manager system used to install and manage software packages written

in Python. The pip is used through the command-line interface, which makes installing

packages as easy as issuing a command:

pip install some-package-name

http://opencv.org/
https://www.python.org/downloads/

41

In order to make the LocSys software work, the following modules should be installed:

• NumPy: the fundamental package for scientific computing. It helps managing

N-dimensional array object

pip install numpy

• OpenCV: Open source Computer Vision and machine learning library. The

extended version implements many modules, like the mandatory ArUco module

pip install opencv-contrib-python

• TQDM: show a smart progress in loops

pip install tqdm

The other modules used are already implemented in Python, they are built-in

modules.

4.1.5 Software Directory Structure

To better understand the software, the Figure 28 shows the directory organisation in

which the software, the external .txt files for the configurations, the results and the data

of the cameras are contained.

All the Python files are contained in the main directory, where there are two folders:

Data and Results. Inside the Data folder, the configuration files are listed. These are

.json files and it is possible to open them with any text editor. There are also two other

sub folders, Cameras and Markers, in which, respectively, are saved the intrinsic and

extrinsic parameters of a specific camera, and the ArUco markers. It is possible to

generate the ArUco with the marker_generator.py program, placed in the main

directory, and save them in order to be printed and used for the tests. All the results

produced by the main program are saved in a .json file inside the Results folder.

In the following sections, the content of each program will be explained, starting from

the classes and then defining the main software.

42

Figure 28: LocSys Directory Structure

43

4.2 CAMERA CLASS

The classCamera.py is the first program to be described, because is the core of LocSys

software. It is widely used in both mono and multi-cameras architecture. This program

is a class object. It initializes and manage a camera with all the benefits of using a class

(see section 4.1.1). The classCamera is composed by the methods shown in Figure 29.

Figure 29: Camera class methods

4.2.1 Basic methods

When declaring this class, it must be initialized the camera reference ID and the name

to be attributed to it, and this is performed by the __init__ method. The camera ID is

44

the USB port in which the camera is plugged in. For further information and future

developments, see [10]. In this, the camera brand was used as camera name.

The open method allows to open the camera data flow, providing a desired resolution.

It would warn the user if something went wrong during any steps.

The frame method provides a single frame of the video data flow. This is simpler than

OpenCV built-in function.

The close method simply closes the video data flow of the camera.

The setResolution method allows to change the camera resolution, providing the

desired image width, height or both. The function will evaluate the proper camera

resolution if the camera itself does not support the desired one. Finally, it saves the frame

width and height as attribute of the camera class.

The imageUndistortion method provides the undistorted image given the original

one. It uses the camera parameters that are saved as camera attributes.

4.2.2 loadIntrinsicParamJSON and loadExtrinsicParamJSON methods

These two methods allow to load the respectively intrinsic and extrinsic camera

parameters from an external .json file. The external file name must be in the form

‘cameraName’ _ ‘width’ x ‘height’ .json (e.g. microsoft1_1280x720.json). The

parameters are then saved as attributes of the camera class.

4.2.3 calibChArUcoBoard method

This method implements one of the two most crucial steps for the correct functioning

of the LocSys, that is the calibration of intrinsic parameters (see 3.4). The logical flow

implemented in the function is shown in Figure 30:

45

Figure 30: calibChArUcoBoard method flowchart

First, it takes as input the configuration settings that are adopt for calibration. These

are contained in the config_ChArUco_calibration.json file (Figure 31).

Figure 31: ChArUco calibration configuration

They are:

46

• The calibration pattern geometry, understood as the number of rows, of

columns, the length of a square side in centimetres, the length of an ArUco

marker in centimetres (see Figure 32)

• The minimum number frames that are considered valid to be used for the

camera calibration process

For the correct operation of the software, the variable name between the quotation

marks must not be changed, but only the values placed after the colon. In addition, it is

advisable to print the pattern in the largest possible size and make the surface opaque.

Figure 32: ChArUco board geometry

If none frames (photos) are provided as input to the method, it opens the camera video

flow to take them, using the terminal interface to guide the user. After, it processes all

the photos, detecting the ArUco markers and then interpolating the inner corners of the

chessboard. If the number of valid frames meet the minimum requirement, it saves the

results in the external camera file and as attribute of the camera class. The external file

has the form explained in 4.2.2.

To perform a correct camera calibration, it is recommended to use at least 15 different

photos of the calibration pattern, the ChArUco board. The photos must contain the

pattern seen from different views, tilting it from different angles, from near and far the

47

camera. In this way, the built-in function of OpenCV can find the correct correlation

between the physical points of the board with their projection on the image. The

correlation is intended as the intrinsic parameters of the camera, according to what was

previously said in section 3.1.

4.2.4 calibExtrinsicParam method

To determine the position and orientation of the test object, the camera pose with

respect to a reference system must be known (the R matrix and the T vector described in

section 3.1.2). If the camera remains fixed in space, this process can be done only once

using this method.

In theory, any object could be used by providing the coordinates of the 3D points to

be recognized. In order to improve the accuracy of this process, a 3D calibration tool with

two tilted ArUco markers was created (see Figure 33).

Figure 33: 3D calibration tool with its reference system

As previously said, each marker provides 4 easily identifiable points, as shown in

Figure 34. Therefore, after calculating their position in the object reference frame, it is

possible to find the rotation and translation to be implemented to transform the

reference system of the camera into the desired one.

48

Figure 34: 3D calibration tool corners

The reference system of the calibration pattern does not have to coincide with that

desired for the specific camera. In fact, due to physical limits, the reference system can

be translated and rotated. This concept will be explained in next chapter, where the tests

conducted will be described.

The Figure 35 shows the variables that allow to evaluate the relative position between

the two ArUco markers, (𝑑, ℎ, φ) . By providing these information and the relative

position and orientation of the reference system (𝑥𝑟𝑒𝑙 , 𝑦𝑟𝑒𝑙 , 𝑧𝑟𝑒𝑙 , 𝜃), the object points in

the desired reference system are assessed by the formulas in Table 2.

Figure 35: 3D calibration tool sizes

49

Table 2: Extrinsic calibration tool corners

Corner Coordinate formula

1

X 𝐿 ∙ cos (
𝜋

2
+ 𝜃) + 𝑥𝑟𝑒𝑙

Y 𝐿 ∙ sin (
𝜋

2
+ 𝜃) + 𝑦𝑟𝑒𝑙

Z 0.0 + 𝑧𝑟𝑒𝑙

2

X 𝐿 ∙
cos (

𝜋
4

+ 𝜃)

cos (
𝜋
4
)

+ 𝑥𝑟𝑒𝑙

Y 𝐿 ∙
sin (

𝜋
4 + 𝜃)

sin (
𝜋
4
)

+ 𝑦𝑟𝑒𝑙

Z 0.0 + 𝑧𝑟𝑒𝑙

3

X 𝐿 ∙ cos(𝜃) + 𝑥𝑟𝑒𝑙

Y 𝐿 ∙ sin(𝜃) + 𝑦𝑟𝑒𝑙

Z 0.0 + 𝑧𝑟𝑒𝑙

4

X 0.0 + 𝑥𝑟𝑒𝑙

Y 0.0 + 𝑦𝑟𝑒𝑙

Z 0.0 + 𝑧𝑟𝑒𝑙

5

X (𝑑 + 𝐿 cos(𝜑)) ∙ cos (
𝜋

2
+ 𝜃) + 𝑥𝑟𝑒𝑙

Y (𝑑 + 𝐿 cos(𝜑)) ∙ sin (
𝜋

2
+ 𝜃) + 𝑦𝑟𝑒𝑙

Z ℎ + 𝐿 ∙ sin(𝜑) + 𝑧𝑟𝑒𝑙

6

X (𝑑 + 𝐿 ∙ cos(𝜑)) ∙ cos (
𝜋

2
+ 𝜃) + 𝐿 ∙ cos(𝜃) + 𝑥𝑟𝑒𝑙

Y (𝑑 + 𝐿 ∙ cos(𝜑)) ∙ sin (
𝜋

2
+ 𝜃) + 𝐿 ∙ sin(𝜃) + 𝑦𝑟𝑒𝑙

Z ℎ + 𝐿 ∙ sin(𝜑) + 𝑧𝑟𝑒𝑙

7

X 𝑑 ∙ cos (
𝜋

2
+ 𝜃) + 𝐿 ∙ cos(𝜃) + 𝑥𝑟𝑒𝑙

Y 𝑑 ∙ sin (
𝜋

2
+ 𝜃) + 𝐿 ∙ sin(𝜃) + 𝑦𝑟𝑒𝑙

Z ℎ + 𝑧𝑟𝑒𝑙

8 X 𝑑 ∙ cos (
𝜋

2
+ 𝜃) + 𝑥𝑟𝑒𝑙

50

Y 𝑑 ∙ sin (
𝜋

2
+ 𝜃) + 𝑦𝑟𝑒𝑙

Z ℎ + 𝑧𝑟𝑒𝑙

After this introduction on the calibration tool, the flowchart of the method is shown

in Figure 36.

Figure 36: calibExtrinsicParam method flowchart

51

The structure of the function is analogous to the previous one. It takes as input from

an external file the information on the calibration tool and its relative position. The first

information are inside the config_Extrinsic_calibration.json file (see Figure 37) and

they are fixed as long as the tool is the same.

Figure 37: 3D calibration tool configuration

They are:

• The ArUco ID used, with reference to Figure 34.

• The length of the marker side in centimetres.

• The vertical marker relative position, with respect to the lower left corner.

This information corresponds to d and h in Table 2.

• The vertical marker relative inclination expressed in degrees. It is the 𝜑

in Figure 35.

Its relative position with respect to the desired reference system is contained in the

software general configuration file. In this way the physical tool and its applications in

different cases are decoupled.

After processing the position of the ArUco marker corners of the calibration tool, it

opens the camera and then allows to take some photos to be processed. In each photo

the ArUco markers, whose IDs correspond to those entered in the initial configuration,

are searched. Once the markers are found, it is possible to extract the pixel coordinates

of the 8 corners. Then, since the real coordinates of the corners are known (evaluated at

the beginning of the method with the formulas in Table 2), the PnP problem can be solved

(see 3.5) to determine the camera pose with respect to the RS.

After the processing of all the photos, if the results are considered correct by the user,

it saves the rotation matrix and the translation vector evaluated in the external camera

file and as attribute of the camera class.

The accuracy, with which the camera poses is performed, is crucial for the results

obtained. For this reason, it is advisable to calibrate the camera several times, until the

values obtained can be considered truly satisfactory.

52

It is possible to evaluate R and T from a single frame. For greater accuracy it is

advisable to use at least 5 photos, so that the program makes an average, reducing any

evaluation errors.

4.3 ONECAMERA CLASS

The classOneCamera.py is a class object defined with to purpose to test one camera.

It is not the main program to execute, but it helps to manage all the functions of the

program, without interfering with the main architecture, that will be explained later. The

architecture of classOneCamera is shown in Figure 38:

Figure 38: OneCamera class methods

4.3.1 Initialization method

The class is initialized with the __init__ method. The use of the name “__init__” is

attributed to the Python syntax, and for simplicity has been reported the same in this

document. During the first step it loads the configuration options chosen for the test to

be performed on a single camera. The concept is to manage the program setting from an

external file, that is easy for a non-expert user to read. In this way, an operator shall not

open the software code to edit some parameters or to active/disable some functionality

53

(e.g. save the test video). The options are contained in an external configuration file

named config_init_OneCamera.json, as shown in Figure 39.

Figure 39: OneCamera initial configuration

The options are:

• Camera information: name, ID, and resolution (width and height)

• Object marker information: side length, ArUco ID, real centre of the

object. The “Z [cm]” and “OBJ Real Centre” allow to place the marker on the

object with a displacement with respect to the real point to be measured (i.e.

the mass centre). LocSys evaluates the position of corner number 3 (with

reference to Figure 15). The example above allows to evaluate the position of

the marker centre. Having the sides 5 [cm] long, the centre is translated by 2,5

[cm] along x and along y with respect to the corner. The Z coordinate allows

to consider the thickness of the real marker.

• True distance and orientation to compare with the ones evaluated by the

software. This information is needed for the user interface created for the tests.

• Relative position and orientation for the extrinsic calibration tool,

allowing to consider some physical limits for the process. The z relative

coordinate comprises the thickness of the tool. In this way the reference

system lies on the main surface.

54

• Number of measurements to save during the test and the elapsed time

between measurements. If the “Number of measurements” is null, it saves the

results until the user stops the test. If the “Seconds between results” is null, it

saves the results of each frame that is processed. This concept will be taken up

when software profiling is discussed.

• Flags: it is possible to set some parameters as true or false. It allows to

perform multiple test, to calibrate the camera or to save a video of the test.

After loading all these parameters, they are saved as attribute of the class, to be used

by the other methods. Finally, it initializes the camera class.

55

Figure 40: loadCalibParam OneCamera method flowchart

56

4.3.2 loadCalibParam method

The flowchart of the method is shown in the Figure 40. The function takes as input

the resolution chosen for the test. If the user chooses not to calibrate the camera, it loads

the intrinsic parameters from the external file relating to the camera, using the

previously descripted camera class method (see 4.2.2).

If the parameters are not found or the user chooses to calibrate the camera, it loads

the calibration options from the external file named config_ChArUco_calibration.json,

and it calls the camera class method for intrinsic calibration (see 4.2.3). The same

procedure is then repeated for the camera pose.

4.3.3 testInitialization and cameraPreview methods

The first method creates some useful variable to use during the test. It firstly askes to

the user the name of the test that is going to be performed, then it initializes the output

results file and finally opens the camera video flow. The output results file has the form

‘test name’ .dat (e.g. test_1.dat or test_2m_15deg.dat) and the Figure 41 shows the

information that it contains.

Figure 41: Output .dat file example

The cameraPreview method checks if the camera is opened correctly and then shows

on the screen what the camera sees. In this way, it is possible to check before the

beginning of the test the exact pointing of the camera and the reference system adopted,

which is drawn on the screen.

57

4.3.4 evaluatePosAndOrien method

The evaluatePosAndOrien is the main method of this class, as it is the function that

takes a frame as input and evaluates both position and orientation of the marker and

therefore of the object. The composition of this method is simple and linear, therefore a

flowchart will not be reported.

The first step is the image undistortion using the camera class method. After removing

the distortion, the program search for any ArUco marker in the image. If an ArUco

marker is found whose ID corresponds to that of the object chosen from the initial

configuration, then the code proceeds with the evaluations, otherwise it ends.

The marker bottom left corner (see 3.3) is projected into 3D space using the formula

(3.2). To check if the points is projected correctly, the only condition that is known a

priori is used. If the z coordinate of the 3D point is less than the true one plus a given

tolerance, the projection is correct, and then the orientation is evaluated. The true z

coordinate and the tolerance are taken from the initial configuration.

The orientation is evaluated using the corner number 2 and 3, using the following

formulas:

𝑑𝑥 = 𝑥𝑐𝑜𝑟𝑛𝑒𝑟2 − 𝑥𝑐𝑜𝑟𝑛𝑒𝑟3

𝑑𝑦 = 𝑦𝑐𝑜𝑟𝑛𝑒𝑟2 − 𝑦𝑐𝑜𝑟𝑛𝑒𝑟3

𝜃 = 𝑎𝑟𝑐𝑡𝑔 (
𝑑𝑦

𝑑𝑥
)

The orientation value is therefore between −𝜋 < 𝜃 < 𝜋.

Next, the relative position of the centre (𝑥𝑟𝑒𝑙 , 𝑦𝑟𝑒𝑙) of the object with respect to the

marker corner (𝑥𝑐𝑜𝑟𝑛𝑒𝑟 , 𝑦𝑐𝑜𝑟𝑛𝑒𝑟) is added, taking into account the orientation 𝜃 as follow:

𝑥𝑂𝐵𝐽 = 𝑥𝑐𝑜𝑟𝑛𝑒𝑟 + 𝑥𝑟𝑒𝑙 ∙
cos (

𝜋
4 + 𝜃)

cos (
𝜋
4)

𝑦𝑂𝐵𝐽 = 𝑦𝑐𝑜𝑟𝑛𝑒𝑟 + 𝑦𝑟𝑒𝑙 ∙
sin (

𝜋
4 + 𝜃)

sin (
𝜋
4)

The results are then saved, considering the time elapsed between the last measurement

and the maximum measurements desired.

58

4.3.5 testRun method

The testRun method is the method that make the software work. Its flowchart is

shown is Figure 42.

Figure 42: testRun method flowchart

When the method is called in the main program, it starts checking if the camera is

properly opened, otherwise it opens it. Next, it starts a loop in which at every step it takes

a frame from the video data flow, and it evaluates the position and the orientation of the

59

marker according to the method described in section 4.3.4. If the number of

measurements correctly taken is greater than the maximum chosen in the initial

configuration file or the user chooses to stop the test, the method closes the camera and

saves the results in the external .dat file. Finally, if in the initial configuration the “Save

test videos” flag is set to true, it saves a video of the test carried out, otherwise the method

ends.

Now, all the methods that allow the main program to work have been presented,

therefore in the next section the logical flow of the LocSys_OneCamera.py program for

a single camera will be described.

60

4.4 LOCSYS_ONECAMERA MAIN PROGRAM

The LocSys_OneCamera.py program is the main software to be run, in order to test

the performances of the localization system using one single camera. The flowchart of

the software is shown in Figure 43.

Figure 43: LocSys_OneCamera flowchart

61

When the program is launched, it firstly checks the existence of the folders necessary

for the correct execution of the program. In case they were deleted by mistake, it creates

them. The same process is done for the configuration files, including those for

calibrations. The created files will have default settings which must be changed before

performing a new test.

After this first step, it creates the camera class and then load its intrinsic and extrinsic

parameters if they already exist, otherwise it will execute the calibration (as said in

section 4.3.2).

The main program is now ready to launch the testInitialization method, the

cameraPreview method and subsequently the testRun method that will execute the test.

When the test ended in the manner described above, if the “Multiple tests” option is set

to true, the program asks the user if he wants to perform another test. Otherwise the

camera is closed, and the program ends.

As it can be notice, the LocSys_OneCamera program only implements the

classOneCamera methods. In this way, it is possible to modify some functions without

going to perturb the structure of the main program.

Hence, to run the program, simply enter the desired settings in the respective files and

execute the LocSys_OneCamera.py file.

62

4.5 MULTICAMERA CLASS

In section 3.6, the reasons why a multi-camera architecture is needed were

introduced. Therefore, it was necessary to create a different class with respect to

classOneCamera.py to handle more than one camera. Furthermore, it is necessary that

the measurements evaluated by the cameras correspond to the same time instant. The

cameras must be synchronized.

The classMultiCamera.py has a similar structure to the OneCamera class, but it

implements the multithreading approach, to synchronize the camera frame acquisition.

The class purpose is to test the multi-camera architecture in order to demonstrate the

feasibility of this kind of localization system, using low cost webcam with ArUco fiducial

marker. It is not the main program to execute, but it helps manage all the functions,

without interfering with the main software. The classMultiCamera methods are shown

in Figure 44:

Figure 44: MultiCamera class methods

63

4.5.1 Initialization method

The concept of the __init__ method is the same of the OneCamera class. The settings

contained in config_init_MultiCameras.json file are reported in Figure 45:

Figure 45: MultiCamera initial configuration

It is easily noted that the number of settings is less than the single camera

architecture. The cameras related options are contained in another file, so to not

complicate the readability of the individual files. The MultiCamera settings are:

• Number of cameras: the software is developed to manage an indefinite

number of cameras. Furthermore, this number allows a correct generation of

the video capture screen

• System resolution: set the same resolution to all the cameras. If a camera

does not support that resolution, it will set a similar one (e.g. 1280x720 is like

1280x960). For the software to work properly, all cameras must have the same

resolution.

• Object marker information: side length, ArUco ID and real centre of the

object. These options are the same as OneCamera architecture.

• Number of measurements to save during the test and the elapsed time

between measurements.

• Flags: allow to set some parameters as true or false.

All the settings loaded are then saved as attributes of the class.

64

4.5.2 cameraInitialization method

Unlike the single architecture, where only one class was created to manage the

camera, in this there are more the one camera. This method creates a list of class in which

every single element is one specific camera. The camera information is contained in the

config_cameras_list,json file. An example of the external file is shown in Figure 46

Figure 46: Cameras list configuration file example

The .json files do not allow the insertion of comments, therefore the order of the

information to be respected is shown in Table 3 (the item numbering refers to the indexes

of the vectors used in Python):

Table 3: Cameras list item description

Item number Description Example

0 Camera ID 2

1 Camera Name “microsoft_1”

2
Camera RS relative position [cm] –

𝑋𝑅𝑆
150.0

3
Camera RS relative position [cm] –

𝑌𝑅𝑆
0.0

4
Camera RS relative position [cm] -

𝑍𝑅𝑆
0.0

5
Extrinsic calibration tool relative

orientation [deg] - 𝜃
90.0

6
Extrinsic calibration tool relative

position [cm] – 𝑥𝑡𝑜𝑜𝑙
5.0

7
Extrinsic calibration tool relative

position [cm] – 𝑦𝑡𝑜𝑜𝑙
5.0

65

8
Extrinsic calibration tool relative

position [cm] - 𝑧𝑡𝑜𝑜𝑙
0.5

The first two item are well-explained in section 4.2.1. The goal of the system is to

evaluate the position with respect to a reference system, such as a corner of the table on

which the TowerSat moves. In multi-camera architecture, the operating region of the

system is expanded, therefore not all the cameras have the Master Reference System

(MRS) in their FOV. For this reason, in this architecture each camera has its own RS that

is related with the master reference system in term of relative position (item 2,3 and 4),

as shown in the left part of Figure 47.

Figure 47: MultiCamera reference systems relationship

A camera allows to evaluate the position 𝑟 = (𝑥, 𝑦, 𝑧) with respect to its RS. The

position of the RS in the master coordinate frame is represented by the vector 𝑡 =

(𝑋𝑅𝑆, 𝑌𝑅𝑆, 𝑍𝑅𝑆). So, the position of the object in the MRS, represented by the vector 𝑃⃗ =

(𝑋, 𝑌, 𝑍) is:

𝑃⃗ = 𝑡 + 𝑟

The items from 5 to 8 are the information related to the extrinsic calibration tool, as

explained in section 4.2.4 and shown in the right part of the Figure 47. In this

architecture, the need to have the tool rotated with respect to the desired reference

system is clearer. Think about the case in which the camera is located on the opposite

side of the laboratory, seeing the table, and therefore the calibration tool, from behind.

66

4.5.3 threadInitialization method

Concerning the cameras synchronization, the need for multiple threads has already

been described. The threadInitialization method creates all the necessary threads, one

for each camera, using the initial setting “Number of cameras”. It stores the thread object

addresses in a vector, to recall them in the next steps.

In each thread, frames are continuously acquired by the camera and saved as an

attribute of the thread. When a frame is requested from a thread, the last acquired is

provided. In this way the cameras continue to work, saving the last frame from their data

flow and the process of acquiring all the frames by all the threads is very fast because it

only goes to recall the already saved attributes.

4.5.4 loadCalibParam method

The method has the purpose of loading the parameters of all the connected cameras.

Its functioning is completely analogous to that implemented in classOneCamera.py. The

difference lies in cycling within the vector that contains the classes of the cameras. In

fact, the parameters of one camera at a time are loaded. The flowchart of the method is

shown in Figure 48.

4.5.5 testInitialization and cameraPreview methods

The testInitialization method checks the correct creation of the threads and the

capture opening of all the cameras. It also initializes the output results file, asking to the

user the “test name”.

The cameraPreview allows to control the correct pointing of al the cameras and

implements some elaborate steps for the management of the acquisition window,

considering the number N of the cameras used.

67

Figure 48: loadCalibParam MultiCamera method flowchart

68

4.5.6 eveluatePosAndOrien method

The method takes as input a single frame and the vector index of the reference camera

from which it comes. The frame is analysed in the same procedure as that implemented

in the OneCamera architecture. The complexity derives from the use of the indexes to

refer to the camera parameters.

4.5.7 programClosure method

The programClosure function stops all the threads and closes the video flow of the

cameras. It is executed only when the test is finished.

4.5.8 testRun method

This function implements all the other methods to make the software work. The

testRun flowchart is reported in Figure 49.

It starts checking again the opening of cameras and if the threads are alive, to make

sure the program can run properly. Then, the loop, that elaborate all the frames, starts.

The first step concerns the acquisition of all the frames taken almost simultaneously. It

has been repeated several times, but the synchronicity between the cameras is crucial to

the reliability of the results, especially if the test object is in an overlapping area of the

camera FOVs.

Subsequently, the frames are processed one at a time. This represents one limit of the

multi-camera software. As the number of cameras increase, this step taker more time,

decreasing the number of possible measures per second. One possible solution is to

redefine the threads, so that in addition to acquiring the frames, they can process them.

The difficulty of this solution is to maintain synchronism between the cameras.

Regarding the processed frames, if the object ArUco marker is found, a counter is

updated. The counter will be greater than one only if the marker is viewed from multiple

cameras. Then, the results are averaged, reducing the relative error.

The frames are then joined and shown on the screen, while the results obtained are

saved. The test ends for the same conditions adopted in the other architecture. So, the

programClosure is executed and the results are saved in the external .dat file.

69

Figure 49: testRun MultiCamera method flowchart

Similarly to the one camera software, all the methods presented in this section are

implemented in the LocSys_MultiCamera.py.

70

4.6 LOCSYS_MULTICAMERA MAIN PROGRAM

The LocSys_MultiCamera.py program is the main software to be run. It allows to test

the functionalities of a multiple camera architecture, using N cameras. In fact, the

software is not developed to handle a defined number of cameras, but it can manage as

many cameras as the user want to. The flowchart of the software is shown in Figure 50.

The program firstly checks if the necessary folders and initial configuration files exist.

In case it is impossible to find them, they are created, and the program is stopped. The

created files are in a default version, so before continuing with the test, the settings must

be changed.

Next, the MultiCamera class is defined and the external configurations are loaded by

the initialization method of the class. After the initialization of the cameras, where N

classCamera are created, the program loads the intrinsic and extrinsic parameters or

launches the relative calibration if the configuration is set to true. Only after performing

these steps, the threadInitialization method is called.

The central loop is the same as the one for LocSys_OneCamera.py, in fact it starts

with the test initialization and it ends asking to user to perform another test. At the end

of the program, the threads are killed, and the cameras are closed.

The LocSys_MultiCamera program implements the methods of its relative class.

After analysing all the classes and methods that allow the system to function, the

performance will be described in the next chapter, reporting all the tests carried out with

the relative results.

71

Figure 50: LocSys_MultiCamera flowchart

72

5 LOCSYS: TESTS AND RESULTS

The following chapter describes the tests carried out to determine the performance of

a localization system based on ArUco markers.

First, the performance of the software itself will be described, starting from debugging

and code profiling. Then, it will be described the tests carried out on architecture with a

single camera, used to determine the limits of the camera associated with the markers.

Finally, tests on multi-camera architecture and how it should be developed will be

described.

5.1 SOFTWARE PERFORMANCE

The localization system described so far is managed by a customized software. Before

testing the system performance, the software itself had to be tested.

5.1.1 Software Debugging

The first test takes place via the debugging process and it involves locating and fixing

the errors discovered in the code. The debugging occurs throughout the development of

the software, searching for syntax and sematic errors that create incorrect output or do

not allow the complete operation of the code.

The Figure 51 shows the usual steps of the debugging process:

Figure 51: Debugging process

73

During the software debugging it is necessary to formulate some hypotheses about the

program behaviour. After this step, it is possible to test these hypotheses to find the

errors in the code.

The length and complexity of this process depends on the skills of the programmer,

although the compiler suggests some of the errors, especially the syntax ones.

5.1.2 Software Profiling

After the physiological debugging phase, before testing the cameras architecture, the

test concerning the software performances must be carried out. The software profiling

means monitor the execution times of the various class methods and track the entire

software path to control the presence of errors.

In Python, all these characteristics can be evaluated using its profiler. A profiler is a

program that describes the run time performance of a code, using statistics and graphs.

It also provides some useful tools to examine the results of a profile operation. The

python profiler used is cProfile, that is a C extension suitable for profiling long running

programs.

In this application case, it is necessary to evaluate how long the evaluatePosAndOrien

method takes to extrapolate information from a frame. Knowing how many hundredths

of a second it takes allows to understand how many measures per second can be

obtained. The number of measures per second (MPS) is then compared with the FPS

(Frames per second) of the camera.

Figure 52: LocSys_OneCamera profiling output

If the MPS is greater than the FPS, it means that some frames are analysed more than

once, providing repetitive measurements. One the contrary, if the MPS are lower than

74

the FPS, a minimum requirement arises of how many measurements are wanted to be

obtained every second. The TowerSat will not have fast movements, in the order of

1 [𝑐𝑚/𝑠], therefore a minimum of 5 measures per second are required.

These performances were assessed by running the LocSys_OneCamera.py for about

one minute, by saving one measurement every 0,5 seconds. A camera resolution of 1280

x 720 was used. This information is important because if affects the time required to

parse each individual frame. The profiling output format is shown in Figure 52.

The first line indicates the number of calls monitored and the number of the primitive

ones. The term primitive mean that a function call is not induced via recursion. The

columns indicate:

• ncalls: function number of calls

• tottime: total time spent in the function (excluding the time made in call to

sub-functions)

• percall: the tottime divided by ncalls

• cumtime: total time spent in the function, including sub-functions (from

invocation till exit)

• filename:lineno(function): provide the respective data of each function

The Figure 53 shows the information relating to the methods of interest.

Figure 53: classOneCamera profiling

The calibration functions were not called, but methods for loading the parameters

from external files were called once. These functions take so little time to be around zero.

75

Concerning the calibration, both intrinsic and extrinsic, since there are no time

constrains during this process, no profiling was performed.

During the test, 2034 frames were used. This is the number of times the frame method

of the classCamera was called. Some of these frames refer to the cameraPreview phase,

which lasted 22.767 [𝑠].

The test carried out saved a total of 120 measures, but from the figure above it is

known that the evaluatePosAndOrien method was called 1482 times. Therefore, some of

the frames were analysed, but the results were not saved, or the marker was not

recognized and so they did not provide any measures. The duration of the function is

approximately 0.001 [𝑠] , but considering the sub-functions the duration rises to

0.026 [𝑠]. It means that this function, which takes a frame as input and gives the marker

position and orientation as output, can provide 38.46 [𝑀𝑃𝑆]. The camera used works at

30 [𝐹𝑃𝑆]. The sub-functions called by the method, which take most of the time, are those

assigned to manage the frame. They remove some noise and detect the ArUco marker.

Between the acquisition of a frame and the next, not only the evaluatePosAndOrien

method is performed, but other operations are also carried out, which decrease the

calculated MPS. For this reason, during the tests on the OneCamera architecture, it was

chosen to save a measurement every 0.5 [𝑠], to avoid the problem of MPS greater than

the FPS. This situation certainly does not occur in the multiCamera architecture, as will

be described later.

The total test duration, that is of the testRun method, is 63.658 [𝑠]. The 3.658 [𝑠] more

than the minute comprise the initialization and the closure of the method. Furthermore,

exactly 0.5 [𝑠] do not pass between one save and the next.

Concerning the multiCamera architecture, the software has some differences, namely

the presence of threads for the acquisition of frames from multiple cameras.

The time needed to analyse a frame is the same as in the previous test, as the function

is identical. It should be remembered that this time depends on the image size, therefore

on the camera resolution. For these reasons, it is necessary to evaluate how long it takes

the software to recover the frames from the cameras. This timing depends on the number

of cameras used and it is not affected by the resolution. In this case two cameras have

been used. In addition, cProfile does not provide this information, therefore timers have

been added within the software. The results are shown in Figure 54:

76

Figure 54: multiCamera frames acquisition timing

As mentioned in section 4.5.3, in each thread the frames are continuously acquired by

the cameras and saved as their attribute. Within the testRun method, frames are

retrieved from attributes. In this way, the acquisition process refers to the last frames

acquired by all the cameras and it is so fast that it cannot be evaluated even with 15

decimal places. Thanks to the use of threads, the acquisition of frames from the cameras

takes place simultaneously, ensuring synchronism.

Concerning the time to parse all the images, it confirms the one evaluated with a single

camera architecture. As the number of cameras increases, this time increases more and

more, significantly reducing the measures per second.

A solution to this problem is to adopt the multithreading approach also for the frames

parsing. This method has not been implemented yet, as it complicates the synchronism

between the cameras. It can certainly be a future development of the LocSys.

77

5.2 TEST REQUIREMENTS AND CONDITIONS

Before describing how the tests were conducted, it is necessary to explain the

parameters adopted to evaluate the results and those that must be reproduced in order

to replicate a test. In fact, for each test, requirements to be met and conditions that

influence the test results have been defined.

Some requirements concern the performances desired by the system and define the

success and failure of the test itself. In each test position and orientation are assessed

and their true measurements are compared. Therefore, the results are evaluated in terms

of precision and accuracy:

• Accuracy: it is expressed as the difference between the result and its true

value. At the end of the test it is used the absolute knowledge error (AKE) as a

parameter for passing the test. [15]

• Precision: it is expressed as the difference between the error of a

measurement and the average of the errors of the test. It represents the ability

to evaluate the same measure over time , despite the disturbances in the

assessments. Precision is expressed in terms of relative knowledge error

(RKE). [15]

Considering the accuracy obtained from other localization systems described above

(section 2.2.2), for the position an 𝐴𝐾𝐸 = 20 [𝑚𝑚] and an 𝑅𝐾𝐸 = 2 [𝑚𝑚] have been

chosen which determine the success of the test. As regards the orientation, a 𝐴𝐾𝐸 =

2 [𝑑𝑒𝑔] and an 𝑅𝐾𝐸 = 0.5 [𝑑𝑒𝑔] have been adopted.

Other requirements refer to what was used to perform the test, such as the ArUco

marker ID and side length used to represent the object, the number and frequency of

saving the results and the resolution adopted by the camera or cameras.

The Table 4 shows the requirements adopted for every test.

78

Table 4: Tests requirements

Test Requirements

Marker for OBJ: ArUco marker ID 0 from dict 6x6_250

MarkerLenght: 5.0 [cm]

N° of measurements: 120

Seconds between measurements 0.5 [s]

Camera resolution: 1280 x 720

Max Position AKE [mm]: 20.0

Max Position RKE [mm]: ±2.0

Max Orientation AKE [deg]: 2.0

Max Orientation RKE [deg]: ±0.5

In order to be able to replicate a test, it is not enough to comply with the requirements,

as there are conditions that influence the results. These conditions are not always

faithfully replicable, making a test unique.

In this application case, the conditions concern the computer used to run the LocSys

software, the cameras and the ambient light conditions, also linked to the day and time

the test is performed (for the contribution of light solar).

The computer performance influences the time spent in every method, especially the

evaluatePosAndOrien. For cameras, it is necessary to consider their internal calibration,

but above all their pose. In fact, as already mentioned, the extrinsic parameters

calibration is decisive on the results obtainable by the software and is a process that

requires a lot of precision from the operator. Although the operator may be able to place

the calibration tool perfectly, the software will still make mistakes, making it impossible

to replicate a test. For these reasons, the camera parameters can be considered as test

conditions. Furthermore, the camera may have the ability to automatically vary some of

its properties, such as the exposure, brightness and contrast of the frames acquired. Even

if it is possible to set these properties, it is desirable to consider them as conditions of the

test.

Concerning the multi-camera architecture, the conditions include the information of

all the cameras, comprising their location in space to cover the whole operative area. An

example will be reported in the next section, when the LocSyS_MultiCamera test will be

described.

79

5.3 LOCSYS_ONECAMERA TEST SESSIONS

The LocSys_OneCamera software has been developed specifically to test the

performance achievable by this type of system. Using a low-cost web camera, the tests

were conducted by varying the distance and angles, pointing the camera at the centre of

the scene and keeping the reference system in a corner of the FOV. Tests were also

performed by changing the light source in the environment, to understand the

performance provided by the binary fiducial markers.

The steps followed during each test are represented by the simple flowcharts in the

following figure:

Figure 55: Test evaluation flowchart

To simultaneously evaluate the performance on the position and orientation

determination, the ArUco marker representing the object was placed at 50 [𝑐𝑚] (40 [𝑐𝑚]

long x and 30 [𝑐𝑚] long y) from the point chosen as the reference system. It is also

rotated 30 degrees with respect to RS. The Figure 56 shows the OBJ marker at the top

right and the calibration tool at the bottom left with the desired reference system drawn.

Figure 56: OBJ marker and RS for OneCamera test

80

Before running any tests, the settings in the external configuration files must be set.

As anticipated in the previous sections, the camera calibration can be performed only

once, therefore during the first test the setting “Calibrate intrinsic parameters” has been

set to “true”.

For the intrinsic calibration, the pattern shown in Figure 32 was used, printed on forex

in A3 format and made opaque, to reduce light reflections and improve marker

recognition. The settings entered in config_ChArUco_calibration.json are:

Table 5: ChArUco calibration settings

squaresX 9

squaresY 7

squareLength 3.9

markerLength 2.4

min_valid_frame 10

Hence, the camera used and its calibration derived parameters are shown in Table 6,

together with the reprojection error, an indicator of the calibration accuracy.

Table 6: Camera intrinsic parameters during tests

Camera Model: Microsoft LifeCam HD-3000

Camera Matrix:
 1121.396 0.000 663.541

 0.000 1119.820 359.443

 0.000 0.000 1.000

Distortion coefficient: 0.260 -1.950 0.000 -0.003 4.178

Reprojection Error 0.578

Concerning the camera pose, having to test the operational limits of the system, the

camera is moved with each test, therefore the pose estimation must be carried out every

time with the external calibration tool. The physical characteristics of the developed tool

are shown in the following table:

81

Table 7: 3D calibration tool settings

Marker ID Horizontal 1

Marker ID Vertical 2

Marker Length 5.0

Marker Relative Position [6.7, 7.1]

Marker Relative Inclination 45.0

This information is then used in the calibExtrinsicParam method to evaluate the camera

pose.

Finally, for all the tests, the following settings were provided to the

LocSys_OneCamera software (to the OneCamera class).

Table 8: LocSys_OneCamera test settings

Camera Name microsoft_1

Camera ID 1

Camera Width 1280

Camera Height 720

Marker Length [cm] 5.0

Z [cm] 0.3

OBJ Marker ID 0

OBJ Real Center [2.5, 2.5]

True Distance [cm] 50.0

True Orientation [deg] 30.0

Tolerance 1e-6

Multiple tests true

Calibrate intrinsic parameters false

Calibrate extrinsic parameters true

Reference System Relative

Position [cm]

[5.0, 5.0, 0.56]

Reference System Relative

Orientation

180

82

Resize window true

Window Name Acquisition

Use undistortion true

Save test video false

Seconds between results 0.5

Number of measurements 120

Two considerations must be done from this table. The reference system provided by

the specific calibration tool is translated and rotated with regard to that shown in Figure

57, for two reasons: to demonstrate the ability to decouple the RS provided by the tool

and the position of the tool with respect to the desired reference system; the other reason

is linked to the camera FOV, in fact, in the configuration with 𝜃 = 0° the vertical marker

could not be seen. The second consideration concern the results saving. The software can

parse many frames every second, depending on the computer performances. However, it

was chosen to save the results every 0,5 seconds for a total of 120 measurements, so each

test has a duration of approximately 60 seconds.

Figure 57: 3D calibration tool RS and camera RS relationship

At the end of the configuration phase, the tests can be performed. The tests carried

out are summarized in the Table 9, where is reported the test reference code, a brief

description and if the test is successful or failed. The success of the test depends on the

satisfaction of the requirements that concern the AKE and RKE on both position and

83

orientation evaluations. The position of the camera is measured with respect to the

desired RS provided by the calibration tool, as shown in Figure 58.

Figure 58: Camera and Marker reference systems

Table 9: OneCamera tests description

Test ID Test Brief Description
Pass/Fail

(P/F)

TS-01
Front view at a distance z of 75 cm, target centred in the

image
P

TS-02
Front view at a distance z of 100 cm, target centred in the

image
P

TS-03
Front view at a distance z of 150 cm, target centred in the

image
P

TS-04
Front view at a distance z of 200 cm, target centred in the

image
F

TS-05
Angled view of -30° with respect to Y, target centred in the

image
P

TS-06
Angled view of -30° with respect to Y and -30° with respect

to X, target centred in the image
P

TS-07
Angled view of -30° with respect to Y and +30° with respect

to X, target centred in the image
P

84

TS-08
Angled view of -30° with respect to Y and +30° with respect

to X, RS in a corner of the image
F

TS-09
Front view at a distance z of 150 cm, RS in a corner of the

image
F

TS-10
Front view at a distance z of 150 cm, target centred in the

image, lights off
P

TS-11
Front view at a distance z of 150 cm, RS in a corner of the

image, lights off
F

TS-12
Angled view of -30° with respect to Y and -30° with respect

to X, target centred in the image, lights off
F

TS-13
Front view at a distance z of 150 cm, target centred in the

image, LED lights
P

TS-14
Front view at a distance z of 150 cm, RS in a corner of the

image, LED lights
F

TS-15
Angled view of -30° with respect to Y and -30° with respect

to X, target centred in the image, LED lights
P

In the following sections the results of each test will be reported, remembering that

they depend strongly on the camera pose estimation.

85

5.3.1 TS-01

The test conditions are reported only for the first test, as an example for the

information that must be considered in the results evaluation (see Table 10).

Table 10: TS-01 test conditions

Test Conditions

Test date and start time 30/01/2020 10:58

Computer characteristics:
Intel® Core™ i7-6500 CPU @2.50 GHz with 16 GB RAM.

OS: Windows 10 Home 64 bit

Camera Model: Microsoft LifeCam HD-3000

Camera Matrix:

 1121.396 0.000 663.541
 0.000 1119.820 359.443
 0.000 0.000 1.000

Distortion coefficient: 0.260 -1.950 0.000 -0.003 4.178

Camera properties:

Exposure: -6.0

Brightness: 110.0

Contrast: 10.0

Camera Relative Position (Tvec)
X-Y-Z [cm]

-24.867 14.879 72.072

Camera Relative Orientation (Rvec)
 Around X-Y-Z [deg]

176.538 1.890 0.587

Light source Neon lamp

In this test the camera is placed in front of the reference plane and centred with

respect to the scene. In fact, the X and Y coordinates of the T vector, evaluated in the

camera RS, are about half of the true coordinates of the OBJ marker. Just to remember,

the T vector is the translation of the camera RS to the desired RS. The camera is placed

at 75 [cm] from the plane where the object is placed, and the Z coordinate confirms it.

Regarding the angles, they are about zero according to the geometry just described,

except for the angle around the X axis. This angle is about 180° because it represents the

rotation between the two reference systems. Finally, these values are not precise because

of the various errors that occur during calibration and for the uncertainty about the

position of the camera optical centre.

86

Figure 59: TS-01 distance and orientation AKE

The Figure 59 shows the results for both position and orientation. The position is

evaluated by the software in coordinates, but to analyse the final error committed by the

system, it was chosen to represent the distance module. The Mean Knowledge Error

(MKE), or the average error committed during the whole test, is reported together with

the AKEs for each individual measurement. The RKE is then evaluated on the MKE,

simply by adding and subtracting the one required by the requirement.

The TS-01 was successful, demonstrating the functionality of the system with an MKE

of 4.68 [𝑚𝑚] on the position and 1.56 [𝑑𝑒𝑔] on the orientation. However, this

configuration is not practical due to the proximity between the object and the camera,

and consequently a restricted FOV.

The Figure 60 shows a frame acquired by the camera with various information

relating to the test in progress. Furthermore, it can be noted that the desired reference

system is saved and shown on the screen, even though the 3D calibration tool is covered.

This demonstrates that, if the camera is fixed in space, once its pose is evaluated, the

calibration tool would no longer be needed.

0,00

2,00

4,00

6,00

8,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-01 distance

AKE

MKE

+ RKE

- RKE

0,00

0,50

1,00

1,50

2,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-01 orientation

AKE

MKE

+ RKE

- RKE

87

Figure 60: TS-01 example frame

5.3.2 TS-02

The TS-02 has the same configuration as the previous test, but the distance between

the object and the camera is 100 [cm]. The MKE for the distance is 5.26 [𝑚𝑚] and for the

orientation is 1.08 [𝑑𝑒𝑔]. The accuracy on the position determination is slightly lower

than in the previous case. This may be due to the longer distance, but the calibration

process is decisive, so this conclusion may not be valid. Even so, all the requirements are

met, and the test can be considered passed.

0,00

2,00

4,00

6,00

8,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-02 distance

AKE

MKE

+ RKE

- RKE

88

Figure 61: TS-02 distance and orientation AKE

5.3.3 TS-03

The distance is augmented to 150 [cm]. As it can be seen, the average error for the

position increases to 11.16 [𝑚𝑚], but the measurements are very stable, they do not

oscillate. The same cannot be said for orientation, which instead fluctuates over time.

The cause can be attributed to various noises present in the images. The errors meet the

requirements, but only slightly, especially for the RKE.

Figure 62: TS-03 distance and orientation AKE

0,00

0,50

1,00

1,50

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-02 orientation

AKE

MKE

+ RKE

- RKE

0,00

5,00

10,00

15,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-03 distance

AKE

MKE

+ RKE

- RKE

0,00

0,50

1,00

1,50

2,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-03 orientation

AKE

MKE

+ RKE

- RKE

89

5.3.4 TS-04

The distance is augmented to 200 [cm]. The position MKE is better than the 150 [cm]

remote case, again confirming how much the calibration affects rather than the distance.

Regarding the orientation determination, it does not meet the requirements, both for the

maximum AKE that is 7.27 [deg] and for the RKE. In fact, there are peaks that make the

measurement unstable and therefore unreliable. For these reasons the test is failed.

Figure 63: TS-04 distance and orientation AKE

However, the test showed a limitation of the system. While the distance increases, the

accuracy decreases, especially for the orientation. To overcame this constrain, a higher

quality hardware can be used, increasing the resolution of the images, or the OBJ marker

can be enlarged, making it easier to be recognized. The second solution is less practical

as the encumbrance on the TowerSat would increase.

0,00

1,00

2,00

3,00

4,00

5,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-04 distance

AKE

MKE

+ RKE

- RKE

2,00

3,00

4,00

5,00

6,00

7,00

8,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-04 orientation

AKE

MKE

+ RKE

- RKE

90

5.3.5 TS-05

Having found an upper limit of the distance, it was necessary to test the performance

by adopting a tilted view. This configuration is needed as it would allow a greater view of

the operating area. In the TS-05 the camera was placed 150 [cm] away from the plane of

the object with respect to the z coordinate and shifted to the left to form an angle of -30

[deg] around the Y axis. The Figure 64 shows the test configuration and is represented

as the target is at the centre of the camera FOV.

Figure 64: TS-05 configuration

The results in Figure 65 once again show the accuracy obtainable on the position

determination, although it is lower. This could be linked to the calibration process. The

orientation undergoes high fluctuations in the measurements, once again due to the

noises present in the image, caused by the light source, the size of the marker or the

quality of the camera.

91

Figure 65: TS-05 distance and orientation AKE

5.3.6 TS-06

In this test the camera is doubly angled with respect to both the X and Y axis of the

reference plane. Both angles are -30 [deg]. The test passed and although the

configuration is more tilted than the previous test, better results were obtained. This is

due to the camera pose estimation, that influences seriously the results.

0,00

5,00

10,00

15,00

20,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-05 distance

AKE

MKE

+ RKE

- RKE

0,00

0,50

1,00

1,50

2,00

2,50

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-05 orientation

AKE

MKE

+ RKE

- RKE

2,00
3,00
4,00
5,00
6,00
7,00
8,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-06 distance

AKE

MKE

+ RKE

- RKE

92

Figure 66: TS-06 distance and orientation AKE

5.3.7 TS-07

The TS-07 is very similar to the TS-06, with the difference that the angle around the

x axis is +30 [deg]. In other words, if before the camera saw the scene from below, in this

test it sees the scene from above. The goal is to confirm the results obtained with the

previous test, showing that the system is not affected by angles in the view, but that the

most influencing elements are the external calibration and the hardware.

Figure 67: TS-07 distance and orientation AKE

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS -06 orientation

AKE

MKE

+ RKE

- RKE

10,00

12,00

14,00

16,00

18,00

20,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-07 distance

AKE

MKE

+ RKE

- RKE

-0,40
-0,20
0,00
0,20
0,40
0,60
0,80
1,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-07 orientation

AKE

MKE

+ RKE

- RKE

93

5.3.8 TS-08

In this test, the same position of the camera has been maintained with respect to the

RS of the scene, but the target is no longer centred in the FOV. In fact, the RS was placed

in a corner of the FOV, to cover a larger area. The goal is to evaluate the performance in

case the RS (created with the 3D calibration tool) is near the edges of the image, where

the distortions described in section 3.1.1 are greater. The Figure 68 shows the

configuration adopted. It can be noted that the bisector of the FOV no longer coincides

with the junction between the camera centre and the centre of the scene.

Figure 68: TS-08 configuration

The Figure 69 shows the test results. According to the desired requirements, it is to

be considered failed, due to the high AKE on the position.

45,00

47,00

49,00

51,00

53,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-08 distance

AKE

MKE

+ RKE

- RKE

94

Figure 69: TS-08 distance and orientation AKE

By carefully parsing the results, the cause of the high errors was found in the camera

pose estimation. In fact, the camera was placed at (−25, 30, 150)[𝑐𝑚] (in (x, y, z)

coordinates) from the desired RS, but the calibration process has provided a translation

vector of (65.782,−33.833,−145.959)[𝑐𝑚] . For this reason, the test was carried out

again, providing the results shown in Figure 70.

Figure 70: TS-08.2 distance and orientation AKE

0,00

1,00

2,00

3,00

4,00

5,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-08 orientation

AKE

MKE

+ RKE

- RKE

0,00

5,00

10,00

15,00

20,00

25,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-08.2 distance

AKE

MKE

+ RKE

- RKE

-0,40
-0,20
0,00
0,20
0,40
0,60
0,80
1,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-08.2 orientation

AKE

MKE

+ RKE

- RKE

95

The TS-08 has conclusively demonstrated the cruciality of the camera pose estimation

process.

5.3.9 TS-09

In this test the camera was placed in the same position as the TS-03, but with the RS

in a corner, as in the previous case. In this session the first test has failed due to the wrong

external calibration too, therefore the results of the test performed correctly are reported.

Figure 71: TS-09.2 distance and orientation AKE

5.3.10 TS-10

The previous tests have evaluated the performance of both the hardware and the

software. In this session, on the other hand, the system has been tested to assess its

behaviour by varying the light conditions. In fact, the tests have been conducted in a

laboratory where there are the neon lamps. The artificial light has a pulsing characteristic

that is caused by the 50 Hz or 60 Hz AC voltage used to power the lights.

0,00

5,00

10,00

15,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-09.2 distance

AKE

MKE

+ RKE

- RKE

0,00

0,50

1,00

1,50

2,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-09.2 orientation

AKE

MKE

+ RKE

- RKE

96

The camera shutter works with a certain frequency, depending on the amount of light

in the environment. The more light is in the scene, the faster the shutter will be set. For

this reason, it is very capable of detecting these high pulses frequencies in the light

intensity.

If the two frequency are similar, they can interfere, generating an effect on the image

called banding (or flickering). It appears as a series of dark and light bands horizontally

across the image, that could create some noise on the marker determination. The Figure

72 shows an example of this effect.

Figure 72: Flickering effect

The goal of this test is to determine an influence on the performance of the light

condition. The position of the camera is the same as that of the TS-03 test, i.e. frontal

view at 150 [cm] from the target. However, this test was performed with the lights off,

therefore with only sunlight entering from the laboratory windows, as shown in Figure

73.

Figure 73: TS-10 example frame

97

According to the results (see Figure 74) the test was successful, despite the absolute

error on the position is almost at the limit imposed by the requirement, but, once again,

it can be caused by the pose estimation.

Figure 74: TS-10 distance and orientation AKE

5.3.11 TS-11

In the TS-11 the configuration adopted is the same as the TS-09, but with the lights

off. The test was unsuccessful only for the stability on the orientation evaluation,

therefore on the RKE requirement. The motivation is closely linked to the light condition.

A variation in the light intensity generate a noise on the image, causing a different

measurement than in the previous frame

0,00

5,00

10,00

15,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-10 distance

AKE

MKE

+ RKE

- RKE

0,00

0,50

1,00

1,50

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-10 orientation

AKE

MKE

+ RKE

- RKE

98

Figure 75: TS-11.2 distance and orientation AKE

5.3.12 TS-12

With the same configuration as the TS-06, this test also failed. In this case, however,

it is the maximum AKE that exceeds that required.

0,00

1,00

2,00

3,00

4,00

5,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-11 distance

AKE

MKE

+ RKE

- RKE

-0,50

0,00

0,50

1,00

1,50

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-11 orientation

AKE

MKE

+ RKE

- RKE

0,00

5,00

10,00

15,00

20,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-12 distance

AKE

MKE

+ RKE

- RKE

99

Figure 76: TS-12 distance and orientation AKE

Obviously, using sunlight would never have been a viable option, but these three tests

served to understand the behaviour of the system.

5.3.13 TS-13, TS-14 and TS-15

To improve the lighting condition, it is possible to adopt LEDs, which provide a

continuous source and do not interfere with the camera shutter. The following three tests

were carried out with the same configurations as the TS-10, TS-11 and TS-12 respectively,

but with LED lamps as light source. The results are shown in the next three figures.

0,00

0,50

1,00

1,50

2,00

2,50

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-12 orientation

AKE

MKE

+ RKE

- RKE

0,00

5,00

10,00

15,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-13 distance

AKE

MKE

+ RKE

- RKE

100

Figure 77: TS-13 distance and orientation AKE

Figure 78: TS-14 distance and orientation AKE

0,00

0,50

1,00

1,50

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-13 orientation

AKE

MKE

+ RKE

- RKE

0,00

5,00

10,00

15,00

20,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-14 distance

AKE

MKE

+ RKE

- RKE

0,00

0,50

1,00

1,50

2,00

2,50

3,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-14 orientation

AKE

MKE

+ RKE

- RKE

0,00

5,00

10,00

15,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
K

E
D

is
ta

n
ce

 [
m

m
]

N° Measurement

TS-15 distance

AKE

MKE

+ RKE

- RKE

101

Figure 79: TS-15 distance and orientation AKE

The TS-14 test failed, again due to the orientation determination. The position instead

meets the requirements but with an MKE of 16.97 [mm], that is very high. The cause can

again be traced back to inaccuracies during the external calibration process.

The configuration of the TS-15 test is that assumed of the real application case. In fact,

the camera could be placed in the corners of the laboratory, to cover a wider area of the

frictionless table. The reference system to use will be near the edges of the camera FOV.

0,00

0,50

1,00

1,50

2,00

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6A
K

E
O

ri
en

ta
ti

o
n

 [
d

eg
]

N° Measurement

TS-15 orientation

AKE

MKE

+ RKE

- RKE

102

5.4 LOCSYS_MULTICAMERA TEST SESSIONS

The LocSys_MultiCamera software has the purpose to make multiple cameras work

together, to cover a larger area of the frictionless table. Tests were conducted using two

cameras of the same model, to demonstrate the functionality of the software and its

performance.

The test procedure for the multi-camera architecture is like the previous one. The

cameras intrinsic calibration is not necessary, because, as mentioned in section 3.4, the

intrinsic parameters does not change. The main problem with this architecture is the

accuracy required to evaluate the cameras pose. The calibration process is crucial and

must be done with the utmost attention. The results depend on it, as demonstrated in the

previous architecture. For this reason, this step has been repeated several times for each

test, to achieve high accuracy. In the final development of the system, the cameras shall

be fixed on the walls of the laboratory, therefore it will not be necessary to carry out this

procedure with each test.

Figure 80: MultiCamera test configuration

103

To carry out the tests, a 220𝑥80 [𝑐𝑚] rectangle was created to simulate the operating

area. Each camera perfectly covers half of the area but straddling the two areas the

camera FOVs overlap. The cameras are placed at 150 [cm] of height with respect to the

rectangle, to have the least inclined vision possible.

The Figure 80 shows the configuration adopted. The dotted blue squares represent

the cameras FOV. The overlapping area is highlighted by the thick blue rectangle. The

reference systems of the individual cameras and their position with respect to the Master

Reference System are also illustrated.

For this purpose, 5 different tests were performed, listed in Table 11:

Table 11: MultiCamera tests description

Test ID Test Brief Description
Pass/Fail

(P/F)

TM-01 The target in the field of view of the first camera P

TM-02 The target in the field of view of the second camera P

TM-03 The target in the overlapping area of the two cameras P

TM-04 Dynamic test with cameras on the same side P

TM-05 Dynamic test with cameras on opposite sides P

The first two tests aim to demonstrate the ability to operate the two cameras

individually and thus demonstrate the operability of the software. In the third test, the

target is placed in the FOV overlap zone to demonstrate the software management of this

situation. Finally, the last two tests are dynamic, with the target moving, to understand

how performance varies, using two opposite configurations.

Like the single camera architecture, the characteristics of the cameras and the

parameters used in the external configuration files are shown below. The Table 12

contains the intrinsic and extrinsic parameters for both the cameras used. In the first

four tests the cameras were fixed in the laboratory, therefore the translation and rotation

vectors do not change, there was no need the performed the extrinsic calibration. This

information together with the computer used, the date and start time of the test and the

light source, represent the test conditions.

104

Table 12: Cameras parameters

Camera 1

Camera Model Microsoft LifeCam HD-3000

Reference System

Relative X 50.00

Relative Y 50.00

Relative Z 0.00

Camera Name microsoft_1

Camera Matrix

1138.970 0.0 660.606

0.0 1138.185 359.034

0.0 0.0 1.0

Distortion coefficients

0.241 -1.711 -0.001 -0.003 3.519

Camera properties:

Exposure: -6.0

Brightness: 143.0

Contrast: 10.0

Camera Relative
Position (Tvec)

X-Y-Z [cm]
-6.945 -12.975 149.608

Camera Relative
Orientation (Rvec)

 Around X-Y-Z [deg]
153.690 -5.319 1.721

Camera 2

Camera Model Microsoft LifeCam HD-3000

Reference System

Relative X 160.00

Relative Y 50.00

Relative Z 0.00

Camera Name microsoft_1

Camera Matrix

1138.970 0.0 660.606

0.0 1138.185 359.034

0.0 0.0 1.0

Distortion coefficients

0.241 -1.711 -0.001 -0.003 3.519

Camera properties:

Exposure: -6.0

Brightness: 143.0

Contrast: 10.0

Camera Relative
Position (Tvec)

X-Y-Z [cm]
0.817 -11.245 149.053

Camera Relative
Orientation (Rvec)

 Around X-Y-Z [deg]
153.271 3.068 0.056

In the multiCamera architecture it is necessary to provide all the information related

to the cameras used, such as the position of the desired reference system for the camera

and the position and orientation of the calibration tool, as described in section 4.5.2. This

105

data is reported in the config_camera_list.json file and the following settings have been

used for these tests:

Table 13: Cameras settings

 Camera 1 Camera 2

Camera ID 1 2

Camera Name microsoft_1 microsoft_2

Camera RS position (50.0, 50.0, 0.0) [𝑐𝑚] (160.0, 50.0, 0.0) [𝑐𝑚]

Calibration tool

relative orientation

0.0 [𝑑𝑒𝑔] 180.0 [𝑑𝑒𝑔]

Calibration tool

relative position

(0.0, 0.0, 0.56) [𝑐𝑚] (0.0, 0.0, 0.56) [𝑐𝑚]

As it can be seen in the Table 13, the reference systems are in the centre of the

interested area of the cameras. The position and orientation are determined by detecting

the marker position in pixels and then projecting this point in 3D space, using the chosen

reference system. The further the point is from the RS the more errors increase.

For this reason, instead of placing the virtual RS in a corner of the area, it has been

positioned in the centre. In any case, the software is provided with information on the

position of the RS with respect to the origin of the reference plane, or the table corner.

In this way, errors are reduced, keeping the same reference system desired (see Figure

80).

Finally, for all the tests, the following settings have been adopted in the

config_init_MultiCamera.json file:

Table 14: LocSys_MultiCamera test settings

Number of cameras 2

System Width 1280

System Height 720

Marker Length [cm] 5.0

Z [cm] 0.3

OBJ Marker ID 0

OBJ Real Center [2.5, 2.5]

106

Tolerance 1e-6

Multiple tests true

Calibrate intrinsic parameters false

Calibrate extrinsic parameters false

Resize window true

Screen height resolution 1080

Window Name Acquisition

Use undistortion true

Save test video false

Seconds between results 0.5

Number of measurements 120

5.4.1 TM-01 and TM-02

In the first two tests, the OBJ marker is seen by the cameras individually. The goal is

to demonstrate the functionality of the software and that the performance achieved with

the single architecture is respected in this one. The results are shown in Figure 81 and

Figure 82.

Figure 81: TM-01 position and orientation results

49,00

50,00

51,00

49,00 49,50 50,00 50,50 51,00

R
el

-Y
 [

cm
]

Rel-X [cm]

TM-01 position coordinates

0,00

1,00

2,00

3,00

1 3 6 9

1
1

1
4

1
7

2
0

2
2

2
5

2
8

3
0

3
3

3
6

3
8

4
1

4
4

4
7

4
9

5
2

5
5

5
8

6
0

6
3

Th
et

a
[d

eg
]

Time [s]

TM-01 orientation

Theta

+ RKE

- RKE

107

Figure 82: TM-02 position and orientation results

In both cases, 120 measures were collected. Both position and orientation meet the

requirements on AKE and RKE. Two frames of both tests are also shown, where it can be

seen the position of the virtual reference system used and the position of the markers.

The Figure 83 shows the reference systems adopted by the cameras.

79,00

80,00

81,00

220,00 220,50 221,00 221,50 222,00

R
el

-Y
 [

cm
]

Rel-X [cm]

TM-02 position coordinates

-2,00

-1,00

0,00

1 3 6 9

1
1

1
4

1
7

2
0

2
2

2
5

2
8

3
1

3
3

3
6

3
9

4
1

4
4

4
7

4
9

5
2

5
5

5
8

6
0

6
3

Th
et

a
[d

eg
]

Time [s]

TM-02 orientation

Theta

+ RKE

- RKE

108

Figure 83: TM-01 (above) and TM-02 (below) frames

109

5.4.2 TM-03

The TM-03 aims to demonstrate the software ability to manage the situation in which

the OBJ marker is in the overlapping area. When two or more cameras see the same

marker, the software evaluates the coordinates separately and then averages them, to

improve the accuracy on the evaluation.

If one the measurements is wrong, it would seriously affect the average taken. For this

reason, the software needs improvement, for example by using knowledge of previous

measurements and the variation speed to make estimates. In the Figure 84 the position

coordinates are concentrated around the point (110, 81.5) . The position error is

concentrated on the y coordinate, but despite this the MKE resulting from the test is

8,89 [𝑚𝑚], so it respects the requirement. The orientation MKE instead is 0.068 [𝑑𝑒𝑔].

Figure 84: TM-03 position and orientation results

80,00

81,00

82,00

109,00 109,50 110,00 110,50 111,00

R
el

-Y
 [

cm
]

Rel-X [cm]

TM-03 position coordinates

-0,50

0,00

0,50

1,00

1 3 6 9

1
2

1
4

1
7

2
0

2
2

2
5

2
8

3
0

3
3

3
6

3
9

4
2

4
4

4
7

5
0

5
2

5
5

5
8

6
1

6
3

Th
et

a
[d

eg
]

Time [s]

TM-03 orientation

Theta

+ RKE

- RKE

110

5.4.3 TM-04 and TM-05

The two final tests were made in dynamics, that is, moving the OBJ marker. The

movement was simulated by dragging the marker along a line. Considering the human

error in dragging the object, not having a remote-controlled mechanism available, the

goal was to understand the ability to not skip measurements. In fact, with the object in

motion, the image may present more noise, making it more difficult to locate the exact

position of a marker corner. The Figure 85 and Figure 86 show the trend over time of the

orientation and the trajectory followed by the marker. This type of graph is the one

assumed in the CAST Control Centre, like an interface to the operator, who can monitor

the movements of the TowerSat.

Figure 85: TM-04 position and orientation results

0,0

20,0

40,0

60,0

80,0

0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0

R
el

-Y
 [

cm
]

Rel-X [cm]

TM-04 position coordinates

-20,00

-10,00

0,00

10,00

1 3 6 9

1
1

1
4

1
7

1
9

2
2

2
5

2
8

3
0

3
3

3
6

3
8

4
1

4
4

4
6

4
9

5
2

5
4

5
7

6
0

6
3

Th
et

a
[d

eg
]

Time [s]

TM-04 orientation

Theta

0,0

20,0

40,0

60,0

80,0

40,00 60,00 80,00 100,00 120,00 140,00 160,00 180,00

R
el

-Y
 [

cm
]

Rel-X [cm]

TM-05 position coordinates

111

Figure 86: TM-05 position and orientation results

In the TM-05 test another configuration was adopted, different from the one in the

first four tests. The “Camera 1” has not change position, while the “Camera 2” has been

placed on the opposite side of the area concerned. In this configuration (visible in Figure

87), it was necessary to estimate again the camera pose, by varying the position and

orientation of the calibration tool. Being on the opposite side, the tool must be rotated

180 [deg] in order to perform the calibration.

Whit this test, the software ability to calibrate the camera with respect to any position

has again been demonstrated, correctly entering the information in the external files and

using the operator’s utmost precision.

Figure 87: TM-05 frames

-20,0

0,0

20,0

40,0

1 3 6 9

1
1

1
4

1
7

2
0

2
2

2
5

2
8

3
0

3
3

3
6

3
8

4
1

4
4

4
6

4
9

5
2

5
5

5
7

6
2

7
0

Th
et

a
[d

eg
]

Time [s]

TM-05 orientation

The
ta

112

5.5 LOCSYS BASELINE

Following the tests results, it is possible to identify a baseline to obtain the best

performance from the localization system.

The tests were carried out with cheap web cameras, using a resolution of 1280 x 720.

The ideal features for this hardware are listed below:

• Maximum distance between camera and target of about 150 [cm]

• Camera centred and tilted with respect to the area to be covered, so to

obtaining a FOV like the one shown in Figure 80

• Side length of the ArUco marker to be placed on the object of 5 [cm]

• Use LED lamps as light source

Concerning the calibration tools, the larger their dimensions, the more the accuracy

increases. An A3 format ChArUco board was used during this thesis, obtaining excellent

results in terms of reprojection error. A larger board could further reduce this error. The

same reasoning can be done for the 3D external calibration tool.

It is necessary to remember the importance of the precision by the operator while

using the 3D calibration tool. LocSys works thanks to the reference systems. Translations

and rotations are carried out between the various RS. If errors occur during the

calibration, they propagate between one reference system and another.

As already illustrated during the tests on multi-camera architecture, the position of

the 3D object point is projected into space starting from the camera reference system. To

avoid high projections, that create high errors, it is advisable to position the camera RS

in the centre of its FOV, as shown in Figure 80. The master reference system can be

positioned anywhere in the entire operating area.

All markers used, including patterns for calibration, must have an opaque surface, to

reflect less light. In this way their recognition is easier, reducing the noise in the images.

Finally, with two cameras placed at 150 [cm] from the table, it is possible to cover an

area of 220 x 80 [cm]. This area obviously depends on the camera FOVs. Since a single

camera can cover a large area, it is possible to double the number of cameras, to increase

the number measurements and consequently the accuracy of the system. LocSys is

already set up to use an indefinite number of cameras.

113

6 CONCLUSIONS

The goal of this thesis was to develop a localization system (LocSys) to be integrated

into the CAST project. Among the various localization technologies, it was chosen to use

optical cameras together with some fiducial markers, in this case the ArUco markers.

During the thesis two software have been developed. The first was to test the

performance provided by a system so defined, using a single cheap web camera. The

second implements a multiple camera architecture, adopting the multithreading

programming concept, and it stands as the first version of the localization system

operating software.

The LocSys aims to determine the position and orientation of the TowerSat moving

on the Frictionless Table. These measures must meet accuracy and precision

requirements. During the tests, the requirements were set to:

• 20 [mm] of maximum absolute error and 2 [mm] of relative error (with respect

to the test mean error) for the position

• 2 [deg] of maximum absolute error and 0,5 [deg] of relative error for the

orientation

To understand its performance, a single camera was tested, varying the distance and

the angle to the target. In addition, different light sources were adopted determining the

behaviour of noise on images.

The results showed that the system provides better measurements for the position,

reaching an accuracy around 1 [cm] with the optimal set up. Concerning the orientation,

some tests led to the fulfilment of the requirements, but the performance can be

improved, especially for the measure stability.

Regarding the multiple camera architecture, different configurations have been

tested, demonstrating the software ability to adapt to N cameras and to manage the

measurements provided by more than one camera that simultaneously see the target.

The correct functioning of the software requires that the cameras are calibrated. For

this purpose, various calibration methods have been analysed, both for the intrinsic

parameters determination and for the camera pose estimation, with respect to the

reference system desired in the Frictionless table System.

A ChArUco board in A3 format printed on forex was adopted for the intrinsic

calibration. This pattern allowed to correctly calibrate the cameras using at least 10

photos taken from different angles.

114

A tool formed by two ArUco markers has been developed for the camera pose

estimation. This tool requires high precision by the operator in the extrinsic calibration

process. In fact, this phase crucially influences the performance of the entire localization

system. In the fourth chapter, all the necessary parameters and measures for its correct

use have been defined.

The LocSys described in this thesis has possibilities for improvement on several

fronts. Some future developments concern:

• The use of 4 ArUco corners, instead of one, to determinate the position and to

average then the results. In this way it is possible to increase both accuracy

and precision, at the expanse of few measures per second.

• The implementation of threads for image processing in multi-camera

architecture. This would also allow to recover the hundredths of a second

required by the previous point.

• An improvement on the orientation evaluation. For example, by taking

advantage of the marker pose with respect to the camera and comparing it with

the master reference system.

• The use of measurements made on previous frames. Knowing the change rate

of position and orientation, it is possible to predict the target behaviour ,

compare it with the assessments made and consequently improving them.

In conclusion, the thesis is a starting point for the development of a unique

localization system based on ArUco markers, capable of achieving high performance, as

demonstrated by the tests carried out.

115

REFERENCES

[1] J. A. Ledin, “Hardware-in-the-loop simulation,” Embed. Syst. Program., vol. 12, pp. 42–

62, 1999.

[2] M. Romano, D. A. Friedman, and T. J. Shay, “Laboratory experimentation of autonomous

spacecraft approach and docking to a collaborative target,” J. Spacecr. Rockets, vol. 44,

no. 1, pp. 164–173, 2007.

[3] A. Mehrparvar et al., “Cubesat design specification rev. 13,” CubeSat Program, Cal Poly

San Luis Obispo, US, vol. 1, no. 2, 2014.

[4] D. A. Friedman, “Laboratory experimentation of autonomous spacecraft docking using

cooperative vision navigation,” NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2005.

[5] Y. Zhou, C. L. Law, and J. Xia, “Ultra low-power UWB-RFID system for precise location-

aware applications,” in 2012 IEEE Wireless Communications and Networking Conference

Workshops (WCNCW), 2012, pp. 154–158.

[6] A. Kaehler and G. Bradski, Learning OpenCV 3: computer vision in C++ with the OpenCV

library. “ O’Reilly Media, Inc.,” 2016.

[7] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge

university press, 2003.

[8] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer, “Speeded up detection

of squared fiducial markers,” Image Vis. Comput., vol. 76, pp. 38–47, 2018.

[9] R. M. Salinas, “ArUco: An efficient library for detection of planar markers and camera

pose estimation.” 2019.

[10] “OpenCV Online Documentation.” [Online]. Available:

https://docs.opencv.org/4.1.1/index.html.

[11] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 22, no. 11, pp. 1330–1334, 2000.

[12] J.-Y. Bouguet, “Camera calibration toolbox for matlab,” http//www. vision. caltech.

edu/bouguetj/calib_doc/index. html, 2004.

[13] E. R. Davies, Computer vision: principles, algorithms, applications, learning. Academic

Press, 2017.

[14] L. Wall et al., “Concurrency in Python,” p. 2, 2015.

[15] ECSS, “ECSS-E-ST-60-10C - Space engineering - Control Performance.” 2008.

116

	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Abstract
	1 Introduction
	2 The CAST Project
	2.1 CAST Main Elements
	2.2 Frictionless Table System
	2.2.1 FTS Main Systems
	2.2.2 FTS Localization System

	3 LocSys: Problem Formulation
	3.1 Pinhole Camera Model
	3.1.1 Camera Intrinsic Parameters
	3.1.2 Camera Extrinsic Parameters

	3.2 Problem Formulation and Solution
	3.3 Fiducial Marker: ArUco
	3.4 Camera Calibration
	3.4.1 Calibration Pattern

	3.5 Camera Pose Estimation
	3.6 Multiple Camera Architecture
	3.6.1 Stereo Vision
	3.6.2 LocSys Solution

	4 LocSys: Software Development
	4.1 Software Methodology and Tools
	4.1.1 Python
	4.1.2 Python Multithreading Approach
	4.1.3 OpenCV
	4.1.4 Software Requirements
	4.1.5 Software Directory Structure

	4.2 Camera Class
	4.2.1 Basic methods
	4.2.2 loadIntrinsicParamJSON and loadExtrinsicParamJSON methods
	4.2.3 calibChArUcoBoard method
	4.2.4 calibExtrinsicParam method

	4.3 OneCamera Class
	4.3.1 Initialization method
	4.3.2 loadCalibParam method
	4.3.3 testInitialization and cameraPreview methods
	4.3.4 evaluatePosAndOrien method
	4.3.5 testRun method

	4.4 LocSys_OneCamera Main Program
	4.5 MultiCamera Class
	4.5.1 Initialization method
	4.5.2 cameraInitialization method
	4.5.3 threadInitialization method
	4.5.4 loadCalibParam method
	4.5.5 testInitialization and cameraPreview methods
	4.5.6 eveluatePosAndOrien method
	4.5.7 programClosure method
	4.5.8 testRun method

	4.6 LocSys_MultiCamera Main Program

	5 LocSys: Tests and Results
	5.1 Software Performance
	5.1.1 Software Debugging
	5.1.2 Software Profiling

	5.2 Test Requirements and Conditions
	5.3 LocSys_OneCamera Test Sessions
	5.3.1 TS-01
	5.3.2 TS-02
	5.3.3 TS-03
	5.3.4 TS-04
	5.3.5 TS-05
	5.3.6 TS-06
	5.3.7 TS-07
	5.3.8 TS-08
	5.3.9 TS-09
	5.3.10 TS-10
	5.3.11 TS-11
	5.3.12 TS-12
	5.3.13 TS-13, TS-14 and TS-15

	5.4 LocSys_MultiCamera Test Sessions
	5.4.1 TM-01 and TM-02
	5.4.2 TM-03
	5.4.3 TM-04 and TM-05

	5.5 LocSys Baseline

	6 Conclusions
	References

