Master’s Degree Thesis

Master’s Degree
in MECHATRONIC ENGINEERING

Development toolchain for Vehicle Electrification

POLITECNICO DI TORINO

/8

& PO

Advisor: Candidates:
Prof. Stefano CARABELLI Ylber HOXHA
Muaaz TARIQ

Academic year

2019-2020

Summary

ACKNOWIEAZEMENLSoiiiiiiiiieiiecie ettt ettt e s e e b e e ssaesabaessbeenseessseenseas 11
ADSITACE ...ttt h et a bt et h e bt et sh e e bt et e bt e bt ennesaeen 12
INEEOAUCTION ...ttt ettt e et e be e et e et e st e e bt e enbeesneeenneas 14
What WeE are dOINE.....cccuviieiiiieiiie ettt eee et ste et e e e saeeesaeeesaeesssaeeessaeessseeeesseeensseeensnes 15
Why We are dOINE 167oeieiiiiciieeeee ettt e e sae e e ae e e taeestaeeessaeessseeesssaeesnseeennnes 15
HOW We A1€ dOINE?...ccciiiiiiiieciieece ettt e et e e e e taeeeta e e e ssaeeessaeesssaeesnseeennns 15
Chapter 1, PArt 1 ..ooc.oiiiiiiieieee ettt ettt ettt e et e e e e seesabaesabeenseessneenseas 16
Lo ISOZ60202 ...ttt ettt et nae et 16
[SO26262 series of Standards:cceevieriiriiienieeeeeeee e 16
FUNCHONAL SATELY ...ovviiiiiciieee ettt eebe et eesbeesaseensaas 17
Process defINItIONccueiiiiiiiiiiiee ettt sttt 20
20 VYL e ettt ettt naeeeareas 22
German V-MOdelL..........cooiiiiiii et e 22
Objectives Of V-MOdEll.....c.ooiiiiiiiiiiiice e 23
Basic V-Cycle COMPONENLSccueeriiiriieiiieeieeiieeieeieeeteesieesveesieeeseesseessseessnessseesseesnseas 23
SYSLEMS CNZINEEIINGcvvieiieeeiieiieeiieeiteeeteeteeeteesteeereesseessaeeseessseeseessseeseesssesseessseenseensns 23
3. Model BaSed DESIZN ...c..cecviiiiiiiiieiiieieeiiie et eeite et estteeteesteeebeessaesbeesteaesseessaesnsaensnaans 25
3.1 MAAB GUIARINES. ¢ ettt ettt ettt e 27
4. HyDIIA VoCYCL.nnniiiiiiieeeee ettt sttt e 30
ISO26262 L0 V-CYCLC.....ueiiiiiiiieii ettt ettt ettt e e sneeeneeas 30
Hybrid V-Functional safety COnceptcocueviriiiiiiiiiiiicnicccececesece e 30
Steps for the Hybrid V-Functional safety cycle........cocoeiiiiiiiiiiiiiieieeee 31
Explanation for the steps of Hybrid V- cycle.......ccoooioiiiiniiiiiiiiiceeeeee 32
I. CUStOMETr TEQUITEIMENLSeeeuvieeiiieeiieeeieeeeiteeesteeestreesteeessseeessseeasreessneessseeesseesnns 32

2. Technical and production Mmodel............cccueeriiiieiiiieiiieeieeceeee e 32

3. Rapid cONtrol ProtOtyPe.....ccccuieeiuiiiriiiieiiie ettt erreeete e e re e e e e aee e saeeesareeenes 33

4. Testing of Production model on dSpaceccceeevveeeiiiieiiiieeieeceeee e 33
MINOT CRANEESouveiiiiiiieieeeeeee ettt ettt et st be et i 33

5. Vehicle Management Unit SEleCtioncccevuieiiieriieiiieniieiiesieeieeeee e 33

6. Vehicle Management UNIt...........ccecvuieiuieriieriieeie ettt saee b 33

7. Integration and tESTINGceeeuierieiiieeiieeie ettt ettt ettt ettt es 33
IMINOT CRANZES ... eeiivieeiiieeiiee ettt e et e et e e et e e e te e e steeestaeessaaeesssaeeesseeenssaeessseeensseennns 34
IMJOT CRANEESeeeiiiieiiie ettt et e e e e e e e e ssbaeeesseeessseeessseeensseeenns 34

8. Final producCt reqUITEMENTS.c.ueeeiuiieiiiieeiie et ciee e e sveeete e e e e e aee e aeeeseseeeenes 34

L. ENVIFONMENLiiiiiiiiiiee ettt ettt 35

2 PLANL ittt st e st e et eeneenteenteenean 35

K TR 070} 112 (o) TSROSO US SO OTRUPR 36

4. Human maching interface..........ccceevuiriiiirienieieniesteieeeeee et 36

TR 00 1C) 110 (R USRS 36

0. INEETTACE ..c.eeiiiiiiieiiete et 36

S0 INEETTACES .ottt ettt et et 36
5.2. Concept of reusability and modularity in Hybrid V-cycle..........ccccocevviriiiiniinnnnnn. 37
SOFEWATE DIOCK ... e 37
Hardware BLOCK.........ooiiiiii et 37
Rapid Control Prototype BIOCKcccuiiiiiiiiiiiiiiie et 38
Vehicle Management UNit..........c.oooiiiiiiriieeiiieriieeieeiieereeseeeveesieeereeseeesseessaeesseessnesnneas 38
5.3. Architecture impact in integration and teStingcceevveeriieriieeiienieerieenieeieeneens 38
SOFtWATE 1N the LOOPieieiieiieiieeieeee ettt et eba et e eebeees 39
Hardware in the loop containing Rapid control prototypecoeceeeveenieeiieenieeniienne 39
COAE GENETALION.eieuiieiiietie ettt ettt ettt et e et e bt e et e e sbeeeabeesatesabeesbeeenbeesneeenseenaeeans 40
FTAIME .ottt ettt et 40
Rapid Control Prototype Loop (4™ & 5 SteP) ..cvovvveveveeeeeeeeeeieceeeeeeeeeeee e 41
Hardware in the loop for vehicle management Unitcceecvveriveeciienieeiiienieeieesre e 42
VMU 100D (75 SEEP) ..ottt 43
Flexibility in MOdelooiiiiieiiiee e e 43
Different combinations of software in the 100D,c..oeevveeeriiiieiiiiiiieeeeeeee s 43
Proposed Combinations of Hardware in the Loop Containing Rapid Control Prototype
... 45
Proposed Combinations of Hardware in the Loop for Vehicle Management Unit....... 46

1. CUStOMET TEQUITEIMENLSevvriurieuieriteieeiteettente et st st et et e st ete st e sbeesbeeseesbeenresanenaeens 47

2. Technical and production model..........cc.cocueriiiiriiniiiiiiiieeee e 47
3. Rapid control PrototyPe......ccoceevuerierieiiriiriieieee ettt 48
4. Testing of Production model on dSpaceccceevveeeeiiiiiiiieeieeeeeee e 48
5. Vehicle Management Unit SEIECHIONeeervieiiiieeiiieeiiee et eiee e e e 48
6. Vehicle Management UNit.........cccveeriieeriireniieesiee et e ertee e e e e e eaeeesaeeesaeeesaseeenns 48
7. Integration and tESTINEZcccvieeiieieiieeecie e eetee et e e ste e e e e e ereeeaaeesaeeeseaeeennseeenns 48
8. Final product reqUIr€mMeNts...........ccceeriieriieeiieiie ettt et 48
5.4. Standards and guidelines check............ccoociiiiiiiiiiiiiii e 49

6. DOCUIMEINTATION ettt e e e e et e e e e e e e ee e e aeeeeeeeeeaeaaaeeeeeeeenannnas 50

PART 1, CHAPTER 2 ...ttt st nae et esne e e snnens 53
1. Customer REqUITEMENLSc.ceeiiuiiiiiieeiiieecieeeiee et e e e e seaeestaeestaeesteeesaseeessseeessseeenns 54
TteM AEFINIEION ...ttt ettt et sae et 54
Hazard analysis and riSk @SSESSIMENLSc.eeeiieriieriiieiieiiieiie ettt beeseaeeneees 58
1.1. Functional Safety CONCEPT......ccceeriieiiieiiieiieeie ettt ettt et erae e e 60
CONCEPE MOACL......oeiieiieeiieieee ettt ettt et e st e e b e e stbeeabeesaeeesbeesssesnsaensseens 60
ATChItECUTE & DIESIZN ..vviiiiiieiiie ettt ettt e e rre e et e e e sbeeeeaeeesaeesssaeessneeessseeenns 62
INEETTACES ...vveeeeieeeee ettt ettt e st e et e e e tbeeesaeeebaaeentaeeenaeeenreeennraenn 63
2. Technical MOdElccc.ooiuiiiiiiie et ettt e 64
LI 11021 OO P ST PPUUUSUPRRPRRRRONt 64
Software architecture and specification of safety requirements.............ccoeeveeeveecieenieenenne. 65
MOAEl-DASEA DIESIZN.......eieiiiiiieiieciie ettt ettt e e e be e e e esbeessaesebeesaessseensseensees 67
Task 1 - SUPEIVISOTY CONIIOLuiiiuiiiiiiiiieiieriie et eete et ettt et e eaeesaeeebeesteeesbeessaeenseenanaens 68
Task 2 - DIgital FIlter......c.oovuiiiiiiiiieii ettt ettt e e b e e saeesaesene e 69
Validation OF TASK 2......oeiiiiieiiiieeee ettt e e e tb e e e ta e e eabeeesabeeesaraeenns 70
Task 3 - Fast Fourier TranSformcccciiiiiiiiiiieciieecee e 71
Validation OF TaSK 3......oiieeiiicieee ettt e e e b e e e ebe e e sareeenns 72
EMergency Task........ooii oottt sttt 73
SCREAUIING ..ottt ettt ettt et te e et e esbeessbeeabeessseesseessaeenseensneenseensns 74
IECTTUPLS oottt ettt e et e et e et eeesbeeensaeeensaeeensaeeensaeeanseeennseeennses 76
Validation Of Task ©......cooiiiiiiiie et 78
CONLTOL fTAIMNE ...ttt ettt ettt e bt e et e b e sateenbeeeas 78
Human-Machine-Interfacec.coooiiiiiiiiiiiiie e 80
TSI ..ottt ettt ettt ettt e et e bt e et e e bt e et e e ate e bt e bt e e b e e neeeateenaeeens 83
SOftWAre 1N the LOOP ...eeiiiiiieiie ettt 83
Standards ChECKocuiiiiiiie e 85
PART 2, BAT-MAN PROJECTooiiiieieieeteseee ettt sse e aessaenaesnnens 87
1. Customer REQUITEMENTS.cccueiiiiiieiiieeiiieeiee et e eireeeiveeeteeesaeeesaeeeseseeesnaeeennseeennes 88
TEEM AETINTEION ...ttt sttt 88
Estimation of State 0f Chargecoooviiviiiiiiieeeee et e 89
Estimation of State of Health ..o 90
Lead-ACId DAtEIYieiiieiieiie ettt et ettt sttt e be e enneas 91
Requirements SPECITICALIONc.eeevieiiieiiieiieeie ettt ettt ettt e e e seaeenneas 91

Hazard analysis and risk asseSSMENt...........cocoevuiiiiiiiiiiiiiniieeeeteeeeeee e 93

L0107 101 o1 A s 4 0T (S SRS 95

ATChItECtUIE & DESIZN ..oeeeeviiiiiiieciiee ettt e e e e ae e et e e e e e e esaeeesbaeessseeensseeennnes 98
ENVITONIMENL ..ottt ettt st e sht e et e bt e st e sbeeeabeeee 100
PLANT. ettt et h et s a ettt et be e 101
Control - Hardware architeCture........uevueeiirieniieieiieriteteee ettt 103
Control - Software architeCtureovueeruiiiirieiiriereeee e 105
APPLication arChitECTUIEccuviiiieiieeiieie ettt et e e e e saesbeesaaeenseees 105
INERITACES ...ttt ettt ettt e s eaeeas 107
REQUITEMENT 3-2 ...ttt ettt e et e e e taeeesaeessaeesasaeesssaeessseeesnseeenns 107
Housing and LIN CONNECHION........c.cceiiiieiiiieiiieeiiieesreeesiieeeeeeeesieeesreeesseeesneeeseseeennes 110
Production development — Software 1eVelcccvveiiiieiiiiciiieceeeeee e 111
2. Technical MOloouiiiiiiiiiiiie et 112
LO0) 113 0] B 311 OSSP RUPRRPRR 115
N | SO RUS TR PURRRSRIPRI 116
Production MOdEL..........coouiiiiiiiiiieeee e e 120
Standards and guidelines Check..........coueviriiniiiiiiiiiiii e 121
5 017 L SRS 124
SUPPIIETS ...ttt ettt et e st e et e et e e bt e st e e bt e enbeesaeeearean 127
T4\, L SRS 127
CC2640R2F-Q1 MCU characteristics and Safetyccceeecvreviieeieeniienieeieeeeeeieesve e 127
IINA 226 ettt ettt et h et et e h ettt e ne e bt et e e neenteenee 128
4. Integration & TESHINZ.....ccccuiiiiiieiiiieeie et ertee e e sae e e e e e treeeteeesnbeeesnseeennseeenns 131
COMNCIUSION. ..ttt ettt e sat e et e nbt e st e s bt e e abeesaeesareas 135
F N 00157 116 D USSP 136
Technical model Digital Filter load file 22 11 19ccociiiiiiiiiiiiiiiieeeeeee, 136
Concept_model Digital Filter load file.........ccocoeiiiiiiiiiiiiiie e, 138
Technical model BatmanApp — ert Main.C.......ccoeceeriieriienieeiieeieeieeeee e 138
Project_zero.c — Initialization in Main function............cccceceeeiieeiiiiiiiinieeieeeeee e 143

BIDIIOGIATT ..ottt 146

Table of Figures:

Figure 1. GO to MArket STAtISTICS ...ccveeveruiertieieriierieeieeitet ettt 14
Figure 2. Functional safety cascade (cadence, 2019)cccoevieviieiiieniieniecieeeeeee e 18
Figure 3. Safety lifecycle for software product development (Iso.org, 2018).......ccccoeeeennns 18
FIGUIE 4. ATTETACES ..cueeiiiiiieiieieeee ettt ettt st b e et sbe e saeens 20
Figure 5. V-Cycle fOr SOTtWATEcc.coiiiiiiiiiieiieeeeeee et 22
Figure 6. SyStems @NZINEETINGccueiuirietieieriierieeieettete ettt ettt sttt et st e bt eateebeenbeeneesanens 24
Figure 7. V-Model for System Development and types of Simulation (MathWorks, n.d.).....25
Figure 8. Model based design model floW..........coeeiiriiniiiiiniiniiieeeeeeeeeeeee s 26
Figure 9. MAAB guideline for Simulink modelling example (MathWorks, n.d.) 28
Figure 10. Prohibited blocks inside controllers (MathWorks, n.d.).......cccceeeviieniieeniieininnns 28
Figure 11. MAAB for filenames (MathWorks, n.d.)ccceeviiieiiiieiiieeieeceeee e 28
Figure 12. 15026262 Enforced on V-CYCle......ccooiviiiiiiiiiiiiiieieeeeeee e 30
Figure 13. Hybrid V-functional safety CONCeptcooieiiiiiiiiiiiiiienieeee e 31
Figure 14. Steps for hybrid V-CyCle.........coceeiiiriiniiiiiiiiitceeee e 31
Figure 15. Reusability and modularity COnCept..........coveeriieiiiiieiiienieeeee e 35
Figure 16. Interface analysis (R0OSS, 2016).....ccc.coiiiriiiiiiiiieieecee e 36
Figure 17. Software blocks definition.............coceiviiiiiiiniiiiiic e 37
Figure 18. Hardware blocks definitionccoocieiiiiiiiiiiiiieieeee e 37
Figure 19. RCP representation of hardware blocK............cccevieiiriiniiniiiiieieeceeeees 38
Figure 20. VMU representation of hardware blockccoooveriiiiniiniiienienieiceeeeeens 38
Figure 21. Software in the 100P........coouiriiiiieieeeee e 39
Figure 22. Hardware in the loop containg rapid control prototype.........ccceeeveevrvenieerreennennnen. 40
Figure 23. Code geNeratio......co.uerueeiirieiieieeiiesiteie ettt sttt ettt st e bt et e e sbeennesanens 40
Figure 24. Defining frame.cocuoiiiiiiiiiieeeeceee ettt 41
FIgure 25. RCP 100D w.evviiieiieieeieeeee ettt ettt sttt sbe e sanens 41
Figure 26. Hardware in the 100p for VIMUcoiiiiiiiiiiceeeeeee e 42
FIgUIE 27. VIMIU 100D ...ttt ettt sttt e 43
Figure 28. Combinations of software in the 100pccccoeiiiiiiniiiiiinice, 44
Figure 29. Combinations of software in the 100pccccooieiiiiniiiiiiniice, 44
Figure 30. Combinations of software in the 100pcccceeviriiiiiiiniiniicececee 45
Figure 31. Proposed combinations of hardware in 100p fOr repcoceoeevieriininiinicnenncnens 46
Figure 32. Proposed combination of hardware in the loop for VMUccccooiiiniininncnnns 47
Figure 34. Meeting NOtes SNAPSHOLc.eovuiiiiriiiiiiiieicreeeeet e 51
Figure 35. Documentation archit@Cture...........c.cceoeevieriiriiiiiirienieeieet et 51
Figure 36. Digital filter and FFT block scheme............ccocooviniiiiiiiiiiniiiecccccs 54
FIGUIE 37, LAYOUL...cotiiiiiiiiieeicritee ettt sttt st sb e et sbe e saeens 55
Figure 38. ASIL Selection table...........cocuiviiiiiiiiiiiiieeeceeeeee e 59
Figure 39. Concept model in SIMUIINKcocoviiiiiiiiiiiieeeeee e 61
Figure 40. Results of Concept Modelcccuoviiiiiiiiiiniiiienieecieeeee e 61
Figure 41. Ttem ATCRITECTUIE.....c..eiiuiiiiiiiiiieieete ettt 62
Figure 42. Modelling and coding guidelinescooeiiiiiiiiiiiiiiinieeceeeee e 64
Figure 43. Notations for software architectural design..........cccooceeiiiiniiiiiiniiiiiiieeeee, 65
Figure 44. Error detection at the sw architectural level...........cc.ccoooiiiiiiiiie, 65
Figure 45. Methods for the verification of the software architectural design............c.ccceenneee. 66

file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015436
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015463
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015464
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015469

Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure §3.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.

[Mustration of HW INteITupt.......ccceeeeiiieiiiieeiieceeeeeee e 66
[Mustration of model hierarchycccceciiieiiiieiiieceeee e 67
Notations for software unit deSi@ncccvveeeiiieeiiieeiee e 67
Design principles for sw unit design and implementationccccceeveuveeeveeenee. 68
Methods for software Unit teStING.........ceecvveeriiieeeiie e e 68
StatefloOW ChaTt....c..eiieie e 69
TaSK CONMIOL ...ttt st 69
Digital Filter MOdellingcoeoviiiiiiriieiieeiieieeeee e 70
Results 1 of Digital Filter and FFT.........ccccooiiiiiiiiiiiieieeeeeeee e 70
Results 2 of Digital Filter and FFT.........cccooiiiiiiiiiieieeeeeeeee e 71
TaSK CONMIOL ...ttt st 72
FET MOAEIINGvieiiieiiieiie ettt ettt ettt e e snaesnseesnne e 72
FET TESUIL ...ttt et st 72
FET RESUIL ...ttt sttt et s 73
Interrupt RANAIINGoooiiiiiiiiiieieee ettt e ees 73
SCREAUIING ...ttt ettt s be et e e b e e sseesnsaessseenseenens 74
Hardware interrupt block and its parameters...........cccuveevveeerveeeceieeeciieeeieeeevee e 76
Hardware interrupt flOWChartcoeeeiiiiiiiiiciie e 77
Control content with Interrupt sSImulationooceeviiieiiinieiiiecee e, 77
CRhAart MOAEeveeeeiieeee et e e et e e tae e e bae e e saeessaeeesnsaeenenes 78
QUANLIZET ...t e e ettt e e e ettt e e e et e e e e e taeeeeeeaaeeeeeeasaeeeeeensseeeeenneas 78
FFT Output with 4 bit qUANTIZATIONcc.eeeieiiiiieiie e 79
PWIM DESIZI ..ttt sttt ettt sttt ettt 79
PWIM RESUILScoiviiiiiieeiiee ettt ettt e tae e e tae e s aae e saaeeeenneeenens 80
HIMI DESIZI ..ttt et ettt ettt e bt e et e sbeeeabeesaeeens 81
HMI FEedbaCKviiiiiiieiiieeeeee ettt et e e s 81
Simulink model architeCture VIEWc.ccecviieiiiieeiiiecieeeie e 82
STL SEELINES ..vveeeevieeeiieeeiieeeieeerieeesieeestee et eeereaeeeeaeeeeaeeesaeesnseeesnseeesssaeensseeensseens 83
Simulink model to run SILcooiiiiiiiii e 84
ST TESUIES ...ttt ettt st 84
ISO 26262 check TeSUILScuviiiiiiiiiiieeiee e 85
MISRA C:2012 check reSults......ccceeiiiiiiiiiiiiiieiiieeeeeeeee e 85
MAAB guidelines check r€SUlts..........ccoeiiiieiiieiiiiecieeceeceece e 86
Code generation advisor check resultscccoeviiveiiieeniieeeeeeeeeeeee e 86
Ttem defINITION ..ot 88
Ttem defINITION ..o 89
ASIL SEIECTION ...ttt st 95
Concept model from CUSTOMETeevuiiiiieriiieiieiie ettt e 96
Inputs (left) and Outputs (TIght)oooveeeiiieiiiei e 97
Inputs (left) and Outputs (TIZht)oooveeeiiiiiiieiiee e 97
Inputs (left) and Outputs (TIght)cooeeeiiiiiiiiiieiee e 98
Concept model MOdifiedcceeeuiiiiiiiiieiiieiiee e 98
Architecture 11TUSTrationcooueiiiiiiiieiieeee e 99
Relation between Cn and TeMPEraturecceevveeeieerieeiieenieeieesie e 100
Battery typical operating points (bluebox.co.uk, n.d.)cccceveriiniininiinnnenne. 101
Ageing in different temperatures (bluebox.co.uk, n.d.)c.ccooevviiniininiinnnene. 101

file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015474
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015475
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015491
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015508

Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.

Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.

Battery location in the trank of the car..........cccoooviieiiieiiiece e, 102
Thevenin MOdel........coouiiiiiiii s 102
Hardware archit@CtUrecoouiiiiiiiiiiiieeiee e 104
Power supply archit@Cturecueeecuiiiiiiieeeiie e 104
Software arChiteCtUIC.........cccuiiieiiicciie et e s 105
Application archit@CtUIEccvvieiciieeciie e 105
Kalman filter working prinCiplecoecveerieieiieniieiiierie e 106
Error management flowchart............ccoocuiiiiiiiiieiieiiiccee e 106
EMOC COUPIING....viiiiiiiiiiiieiieeie ettt ettt ettt e saeesbe e seeenbeesnaesnseesanaens 108
Housing and LIN CONNECHION..........cccieriieriierieeiieeieeieeste et eee e sveeeeesaeeens 110
Temperature in Environment module............ccceeviiiriieiiieniiniieieeieecie e 112
Plant MOAUIEcvieiieiiieiece e et ens 112
HMIMOAUIL ...ttt ettt etaesaae e 113
Parameters of BAT-MAN ApPlicationccccoevieeiieniieniieiieeieeieesie e 113
CONIOl MOAUIE ...ttt ettt e eaaesaee e 113
Architecture in SIMUINKc.oooiiiiiiiiiiiiceee e 114
16 bit ADC Output of Voltage (left), 16bit ADC Output of Current (right)......115
SoC with 12 bit quantization (left), SoH with 12 bit quantization (right)......... 115
SoC with 16 bit quantization (left), SoH with 16 bit quantization (right)......... 115
SIL Model for BATMANoiiiiieeeeee ettt vee e e e 116
Data set 1: Simulation (left) vs SIL (tight).......ccooeeiiiiiiiiiiiiiieeeeeee 116
Data set 2: Simulation (left) vs SIL (tright).......ccooeeiiiiiiiniiiiiieeeeee, 117
Data set 3: Simulation (left) vs SIL (right).......ccooeeiiiiiiiniiiieieeeeee, 117
Data set 1: Difference between SoH in simulation and from SIL 117
Data set 1: SoC difference between Simulation and SILccccceevvveevveenneen. 118
Data set 2: SoH difference between Simulation and SILccccceevvveenieenenn. 118
Data set 2: SoC difference between Simulation and SILcccccecvvveevieennenn. 118
Data set 3: SoH difference between Simulation and SILcccoeevvieennennnee. 119
Data set 3: SoC difference between Simulation and SILcccceevieinennnee. 119
Profiled sections 0f COAEccuiiiiiiiiiiieiieeeeeee e 120
Traceability TEPOTT ...cccuveeiiiieeiiie e et eenenee s 121
Static COAE MEIIICSuviiruiiieeiieeeiieeeieeeeieeertee et e e reeeteeeeereeeaeeesaeeeenseeennseeenns 121
ISO 26262 Check T@POTT......eeeuieeeiiieeiie e e s 122
TEC 61508 ChecCk Te€POTt......cccuieeiiiieeiie ettt et e s 122
MISRA C CheCK T€POTT....cuviieiieeiie ettt et 123
MAAB Guidelines check report.........ccceveiiiieiiiieiiieeiieeeeeeeeee e 123
Code generation advisor check sSUMMAryccceeviiieiiieeiieeeieecee e 124
BAT-MAN Mobile app first page (Fazio & Fazi, 2019)......cccceceviinenienicnncnne 125
BATMAN ADPD SECONA PAZE ..ottt ettt 125
Updated BATMAN APD .eeeeiieiieeieeieee ettt ettt ettt et s e e ens 126
Android studio code MOdificationc.eevuieriieiiieniieiieeie e 126
Hardware architecture with chosen components (Fazio & Fazi, 2019) 127
INA226 Layout example (t1.com, N.d.) ...ooocvierieiiiieiiieiieie e 129
BAT-MAN PCBi....ooioteeeeeeeee ettt ettt et e b e s ae et e e ens 129
Generated code flOWChart.........c.oociiiiiiiiiiiiee e 131
‘ert_ main’ SoUrce fle.......cooviiiiiiiiiee e 132

file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015522
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015523
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015524
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015525
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015527
file:///C:/Users/hoxha/Desktop/Ylber-HOXHA%20-%20Copy.docx%23_Toc35015564

Figure 138. CCS workspaceccceeeueeenne

Figure 139. Memory occupation of firmware architecture...........cccceeeveeevveeecieescieeeee e,

Figure 140. Memory occupation integrated

Acknowledgements

Firstly, I would like to thank my advisor Professor Stefano Carabelli for giving me this
opportunity to work on such an important topic of today’s industry. I would like to thank him
for our long discussions, sharing his new ideas and his availability throughout these last six
months and his patience with me.

Secondly, I would like to thank my supervisor Engineer Giovanni Guida for his continuous
support and motivation given to me every single day. I thank him for his patience since |
certainly know that it was not easy for him to break through my stubborn character and teach
me the industrial environment ant its mentality.

I sincerely thank my family for supporting me in any possible ways and in the same time always
letting me a free man, making my own decisions and live by them. Thanks to that [have become
the person I am today.

Abstract

The biggest challenge of the automotive industry today is the increasing complexity of it.
Today, a high-end car software has approximately 100 million lines of code, that makes it one
of the most complex machines. This comes with a drawback, increasing the probability of
software defects which can cause system failures, thus increasing the risk of damage to a
human. Moreover, this complexity has increased the cost of the production. Both of these
mentioned topics created the objective of finding more efficient ways for developing a
structural toolchain and reusable software, which indeed are the key words of this thesis. The
main reference for this thesis is the international standard for automotive industry 1SO26262
titled as “Road Vehicles — Functional Safety” that provides us with the requirements for
Electrical and/or Electronic systems.

[SO26262 is strictly defined for requirements that must be fulfilled, not tools or ways to satisfy
those requirements, thus the need and necessity to develop toolchains to satisfy these
requirements. Our goal was creating a development toolchain integrating or combining
[SO26262, V-Cycle and Systems Engineering in one, that is what we called Hybrid-V-Cycle.
In our quest to integrate all the methods into one, we started with the V-Cycle which is a
standard in the development of any component of vehicle and then enforced this cycle upon
the 1SO26262 standards. By this way, we developed a Hybrid-V-Cycle with feedback loops
for continuous improvement which will be our first chapter. Each step of it is further improved
by pointing the safety requirements we must fulfill in that step. Furthermore, we will explain
our innovative approach for the Architecture of the system that focuses in two main things —
Modularity and Reusability. In the last part of the chapter there will be an example on how we
apply our Hybrid development chain with a simple project — Digital Filter. This part is done as
a group of to people, by me and my colleague Muaaz Tarigq.

In the second part I will jump to a real automotive project — a battery manager for Lead-Acid
batteries called BAT-MAN, developed by ‘Brain Technologies s.r.l.” that is going to be our
Customer. This part is done by me. The project is focused on innovative estimation algorithm
to estimate State of Charge and State of Health of a battery. On our several interactions with
the customer we set up the requirements and they provide us with Concept model. After that
we proceed as in the first chapter. It is important to mention that there are several parts of this
project that we were not able to share because the BAT-MAN project is in the process of the
patent application. The ascending branch of the V-Cycle will be the future of this project, where
the software of BAT-MAN must be integrated, tested and after all be certified by 1SO26262
and release on the market.

The newly developed Hybrid-V-Cycle caters the needs for automotive component
development considering all the safety standards now in place. With the example we showed
the effectiveness of this development toolchain and applying it to the real-world BAT-MAN
project showed that how it can be helpful in tackling real world complex problems. This
Hybrid-V-cycle makes sure that we are compliant with the functional safety standards and
makes the work easier to handle, thus increasing the efficiency. Also, adding here the modular
architecture developed in this thesis makes it usable for several other fields, especially complex
Control Engineering projects.

Introduction

Automotive sector is very competitive and challenging nowadays. There are many
companies which are trying hard to increase there share of the market. This competition is
forcing companies to use innovative methods to reduce the time of production (time to market)
of any product. A research conducted by Jabil [2] shows that in 2017, 68% of the automotive
manufactures told that there time to market is less than 2 years. While it steadily increased to
71% in 2018. Shortening the time to market is a good trend but it raises some problems of
functional safety. If we are reducing the time to market, we must cut down our time for the
whole process chain. The major time-consuming factors which are delaying process are;

RESEARCH AND DEVELOPMENT COSTS ARE THE BIGGEST
REASON FOR LONGER GO-TO-MARKET

High research and S ~ Meeting government and
development costs = safety regulations

/" REASONS
Long test cycles (0} || FO R LO N G E R : (o] Proctgement cycle/supplier
@ CYC L ES selection

Dramatically different o ” Lack of expertise in
competitive landscape o consumer electronics

FROM THE 2017 SURVEY JABIL

Figure 1. Go to market statistics
2]
We are considering the major problems which are;

e High research and development costs

e Meeting government and safety regulation
e Long test cycles

e Procurement/supplier selection

e Meeting Government and safety regulations

In order to reduce the time required for getting your product to pass through all the safety
regulations, the automotive sector has developed some safety rules which are proving to be less
time consuming and since most of them follow the same standards so it is easy for the
government to pass the product in less time. The safety standards which are being followed are
ISO 26262. While in order to reduce the time to market the automotive manufactures are
starting to use new approaches for the product development which is model based designing.
Apart from the need to reduce time to market, companies are also focusing on streamlining the
projects. They are trying to develop certain systematic principles to follow by which they can
create a new product. A set of basic rules which will be followed in every project and can be

adapted to different kinds of project. The basic purpose is to develop a systematic way to find
the solution of the problem.

What we are doing
Developing new Hybrid V-cycle considering, ISO 26262 (safety standard for electric
components in vehicles) with model-based engineering, systems engineering and V-cycle to
streamline the process for product development while keeping in mind the functional safety
concepts of the model.

Why we are doing it?
We are doing it to reduce the time to develop a software or hardware for our vehicles so that
we can reduce time to market for both parts.

How we are doing?

We are taking a simple example, whose requirements are provided by the customer and trying
to pass it through all the phases of our process so that we can establish the whole procedure for
simple process and then we can move forward and apply the same process to real world
projects.

Chapter 1, Part 1

1. 15026262

ISO 26262 is the safety standard which is specific for automotive industry. It applies to safety-
related road vehicle electronic and electrical systems, and addresses hazards due to
malfunctions. It provides the whole lifecycle of the E/E system (including H/w and S/w
components). Important thing about this standard is the documentation. We must produce
documents and know which steps to follow to produce these documents. The standard defines
everything, and we follow the whole procedure to get results. The description of the standard

as given by the official website is as follows.

ISO26262 series of standards:

o Provides a reference for the automotive safety lifecycle and supports the tailoring of
the activities to be performed during the lifecycle phases, i.e., development, production,

operation, service and decommissioning

e Provides an automotive-specific risk-based approach to determine integrity levels
[Automotive Safety Integrity Levels (ASILs)]

e Uses ASILs to specify which of the requirements of ISO 26262 are applicable to avoid
unreasonable residual risk

e Provides requirements for functional safety management, design, implementation,
verification, validation and confirmation measures and

e Provides requirements for relations between customers and suppliers.

(3]

Severity level Title Description

SO Low No injury

S1 Moderate Light or moderate non life-threatening
injuries to the driver or passengers or people
around the vehicle

S2 Serious Severe and life-threatening to the driver or
passenger or people around the vehicle or in
other surrounding vehicles

S3 Severe Life-threatening injuries life-threatening to
the driver or passenger or people around the
vehicle or in other surrounding vehicles

Table 1. Severity levels [3]

Exposure Title Description
level
EO Incredible Situations that are extremely unusual
El Rare Very low probability
E2 Sometimes Low probability
E3 Quite often Medium probability
E4 Often-Always High probability
Table 2. Exposure levels [3]
Controllability Title Description
Co Controllable in general Controllable in general by all drivers
Cl Simply Controllable Less than 1% of the drivers or other traffic
participants are usually unable to control the
damage
C2 Normally Controllable Less than 10% of the drivers or other traffic
participants are usually unable to control the
damage
C3 Difficult to Control The average driver or other traffic
participant is usually unable, or barely able
to control the damage

Table 3. Controllability levels [3]

The Draft International Standard (DIS) of ISO 26262 was published in June 2009. Since the
publication of the draft, ISO 26262 has gained traction in the automotive industry. Because a
public draft standard is available, lawyers treat ISO 26262 as the technical state of the art. The
technical state of the art is the highest level of development of a device or process at a time.
According to German law, car producers are generally liable for damage to a person caused by
the malfunction of a product. If the malfunction could not have been detected by the technical
state of the art, the liability is excluded [German law on product liability (§ 823 Abs. 1 BGB,
§ 1 ProdHaftG).

(4]

Functional safety
According to ISO 26262, functional safety is defined as the “absence of unreasonable
risk due to hazards caused by malfunctioning behavior of electrical/electronic systems”.

Required Risk

. Reduction
Risk based on acceptable
1 of harm/damage level of rick
: or unintended
Malfunction cituation

of E/E component

Figure 2. Functional safety cascade [5]

Requirements Phases

o
. I / _
aw satary i .
Pl | e -t
4 Raquromoets) domgn Iamcion @ Raquromorts. Sk and et fom

Figure 3. Safety lifecycle for software product development [3]

This standard is relatively new in the automotive industry. It is entirely based on concept of
functional safety. It was developed to enforce functional safety measures in a robust manner.
With the fast-changing technology, every company wants to reduce the time required for
testing the model. But this must be done in a safe way, hence, ISO 26262 enforces safety
standards to already existing development models to produce the same safety functions. ISO
26262 is divided in following parts 10 portions;

1. Vocabulary

2. Management of Functional Safety

3. Concept Phase

4. Product Development: System Level

5. Product Development: Hardware Level

6. Product Development: Software Level

7. Production and Operation

8. Supporting Processes

9. ASIL-oriented and Safety-oriented Analyses
10. Guidelines on ISO 26262

Concept phase — This is the first development phase that ISO 26262 defines. It includes:

e Item definition - using layouts, illustrations, definitions to define the project clearly

e Hazard analysis and risk assessment — using FMEA, Situational analysis etc. we define
the hazards and analyze their risks

e Functional safety — after Hazard analysis and risk assessment is done, we define the
ASIL, a Safe state and the Functional safety concepts

Furthermore, while we are in the first steps of development of V-Cycle we also have to handle:

e Customer requirements — meetings with customer must be arranged and a table of
requirements must be created

e Concept model — the Concept model can be given by the Customer, if not, we shall do.
The definition of Concept model will be explained in Model based design part.

Here we can see that immediately our development toolchain has to melt V-Cycle, ISO 26262
and requirement engineering into one Hybrid V-Cycle.

Product Development: System Level — Here we define our systems architecture and interfaces.
1.e. system level product development. In this thesis we will introduce an innovative
architecture where the keywords of it are Modularity and Reusability. This architecture will be
very helpful especially in the integration and testing part where the Modules can be very easily
handled. Indeed, the integration and testing is defined in ISO 26262 in ‘4-7 System and item
integration and testing’. Furthermore, the technical safety aspects will be defined, taken by
ISO 26262.

Product Development: Software Level — In this thesis we will be dealing with Model based
design, thus the software produced by us will be automatically generated. In this chapter ISO
26262 defines:

e General topics for software development, i.e. with a level of abstraction
e Specification of software safety requirement

e Define safety aspects

e Software architecture design

e Integration and Testing

We need to add also:

e Technical model

e Simulation

e Verification with Concept model
e Production model

e (Code generation

Again, we see that we need a development that makes these work altogether.

Process definition

According to ISO 26262, every process must be defined clearly before it starts, i.e. we must
define:

e Methodologies
e Tool aspects

e Safety aspects
e Techniques

e Artefact
Tool Aspects Techniques
Process
Safety Aspects l Methodologies
Artefacts

Figure 4. Artefacts [6]

Methodologies — This means that we need to define what kind of methodology we are using in
that process. For example, Model-based Design is the Methodology in the process of
‘Technical Model’. Another example for the process of ‘Hazard Analysis and Risk
Assessment’ the methodology can be a type of FMEA, Situational Analysis etc.

Tool aspects — What tools are we using for getting the process done. For example, MATLAB
is one of the tools used for design, Embedded Coder for code generation etc.

Safety aspects — This must define the aspects of the process that have to do with safety or
functional safety.

Techniques — Here we must define which techniques are we using for fulfilling the Functional
Safety requirements. They will be chosen from the tables provided by ISO 26262 for the
specified ASIL.

Artefact — Artefacts are basically the outputs of the process. Here we must define what will be
achieved in the end of the process. For example, in every project, the Concept phase artefacts
will be:

e Defined item

e Customer requirements

e Safety goal

e Functional safety concept
e Concept model

2. V-cycle

Z'I;_.-'_ rﬁ;” s - T T T e
Vehicle
calibration
Vehicle

w test

wl o e e T e S

1B}

|

=

]

o

)

a

i3]

i |

o

i

(i

X-engineer.org
High ¥ =

Time
Figure 5. V-cycle for software [6]
[7]

As mentioned in the beginning, every company is trying to develop a systematic procedure to
approach a problem. The standard software development process used in the automotive
industry is the V-cycle. V-cycle is divided in 3 major categories which are;

e German V-Modell
e US government V-cycle
e General testing V-model

In our thesis, we will only discuss German V-cycle and use it to develop our own method.

German V-Modell

The V-Modell is a model for planning and realizing Projects. The V-Modell improves project
transparency, project management and the probability of success by specifying concrete
approaches with the respective results and responsible roles. It describes ’Who’’ has to do
““What’’ and “°When’’ within the project. The V-modell was first introduced in 1997 [8] for
civil and military agencies. Since, then due to the rapid advancement of automation, this model
was updated to adapt to the new technological developments. The V-Modell introduced in 1997
was updated in 2004. Following things were incorporated in that model;

e Project-specific and organization-specific adaptability, applicability within the
scope of the project, scalability to different project sizes and changeability and
growth potential of the V-Modell itself.

e Consideration of the state-of-the-art of technology and adaptation to current
regulations and standards

e Extension of the application to the entire system life cycle already during the
development

e Introduction of an organization-specific process for improving process models

Objectives of V-Modell
The objectives of V-Modell are described as follows;

e Minimization of project risks

e Improvement and guarantee of quality

e Reduction of total cost over project and system life cycle
e Improvement of communication between stake holders

Basic V-Cycle components

The V model splits the software development process into two main phases. The left
side of the V is the part of requirement analysis, function/software design and change
management. The right side of the V concentrates the main verification and validation
activities. The left side of the model can also be termed as validation while the right side can
be termed as verification.

Validation; The assurance that product, service or system meets the need of the
customer and other identified stake holders. It often involves acceptance and suitability with
external service.

Verification; Evaluation of whether a product, service or system complies with
regulation requirement specification or imposed condition. It is often an internal process.

Specification Stream Testing Stream

e User requirement specification
e Functional requirement specification

e Installation qualification
e Operation qualification

e Design requirement specification e Performance qualification

Systems engineering

This approach can be traced back to 1940. It has many definitions depending on its uses
but the classical one is;

’An interdisciplinary approach to translating users' needs into the definition of a system, its
architecture and design through an iterative process that results in an effective operational
system. Systems engineering applies over the entire life cycle, from concept development to
final disposal”’.

The definition used in our project can be represented by the following figure;

Transition
Operation &
Maintenance

Concept
Development

Requirements Test &
Engineering Evaluation
System System
Architecture Integration

System Design
& Development

Figure 6. Systems engineering

This is a common graphical representation of the system engineering life cycle. The left
side of the V represents concept development and the decomposition of requirements into
functions and physical entities that can be architected, designed, and developed. The right side
of the V represents integration of these entities (including appropriate testing to verify that they
satisfy the requirements) and their ultimate transition into the field, where they are operated
and maintained.

But this systematic approach does not enforce or mentions any safety checks, or it does
not incorporate functional safety concept inside the development process. There are tests
available which are specific for each V-cycle, but they are not standards.

3. Model Based Design
[10]

Model-Based Software Development is an embedded software initiative where a two-sided
model is used to verify control requirements and that the code runs on target electronic
hardware. One side is the Control Model, representing the embedded software of the system.
The architecture of the embedded software is modeled with blocks containing algorithms,
functions and logic components. Compiled software is auto generated from this model. The
other side is the Plant Model, representing the physical aspects of the system. Each block
contains mathematics that allows it to emulate the behavior of that physical item.

Verification and validation

Simulation Hardware-in-the-loop

B S :
[HIL) simulation

Rapid simulation

System Integration
System Specification System [ntegral

: alibration
Systemn simulation {export)
Rapd prototyping

Processor-in-the-loop
(PIL} simulation

Software-in-the-loop

Rapid protofyping on target hardware {5IL) simulation

Ceding

Production code generation

Model encryplion (export)
Figure 7. V-Model for System Development and types of Simulation [11]
In the left part of the V-Model we have different types of Simulation and Prototyping that are:

Simulation

Rapid Simulation

Rapid Prototyping

Rapid Prototyping on Target Hardware

On the other hand, in the right side of the V-Model we have In-the-Loop testing that are:

e Software-in-the-loop
e Processor-in-the-loop
e Hardware-in-the-loop

Depending on what we want to simulate or test, we must choose the right target environment
that can be:

e Development computer
e Real-time simulator
e Embedded microprocessor

SIL testing is done to verify the automatically generated source code and runs on development
computer and it is not in real-time.

PIL testing is needed to verify the object code and can be run either on embedded hardware or
development computer with Simulink and an IDE. It is also not real-time.

HIL in the other hand is done to verify overall system functionality. It executes on the target
hardware and it is real-time.

These all stages will be described further when we are describing how our method works and
where we are using it in our system.

The most important reason of using this type of approach is the ability to get it standardized.
Since, all the code is autogenerated and the blocks used are Simulink with no self-defined
function, hence, it’s easy to get it standardized by regulatory bodies.

Concept Model — should grasp and show the behavior of the main tasks either separately or
together. The technology is still not defined, except for analog/digital.

Technical Model — should exhibit the main technical aspects, i.e. the sampling rate and the
quantization levels, the saturation levels as well as other non-linearities. In addition, it must
define the overall logic, i.e. states, transitions between states, tasks associated with states.

Production Model - is an adaptation of the Technical model with the blocksets provided by the
VMU and/or RCP manufacturers in order to generate and download code for their hardware.

Concept | Technical Production
Model - Model Model

Figure 8. Model based design model flow

Concept Model simulation results allow to proceed to the assembly of the Technical Model
whose simulation results (compared to the Concept Model) allows to issue hardware and
software requirements to procure a suitable VMU and/or RCP platform. Once procured it is
possible to proceed with the “code production” according to the specific platform.

If simulation results of Technical model are wrong, or something done in Concept Model is
not possible in Technical Model, we must go back to Concept Model and do the needed
modifications. In more serious problems, the Customer requirements might be also modified
and Customer must be notified.

If results of Production Model are wrong, or something done in Technical Model is facing
problems to be implemented for a certain VMU or RCP, we must go back to Technical Model
and make the required changes.

3.1. MAAB Guidelines!

The Mathworks Automotive Advisory Board (MAAB) developed certain guidelines for using
MATLAB, Simulink, Stateflow and Embedded coder to meet the requests from its key
automotive industry customers such as Ford, Daimler Benz and Toyota and now involves the
major part of automotive industry. MAAB Guidelines can be:

e Global MAAB
e JMAAB (Japan)

Since we are not specifically targeting the Japan automotive industry we will be using Global
MAAB version 3.0. The objective of MAAB Guidelines are:

e System integration without problems
o Well-defined interfaces

e Reusable models

e Readable models

e Professional documentation

e Fast software changes

e Easy exchange of models

e Understandable documentation

The guidelines given by MAAB can be rated as three different priorities:

e Mandatory
e Strongly recommended
e Recommended

Mandatory guidelines are those guidelines that all companies agree that are absolutely
essential.

Strongly recommended guidelines are those guidelines that are agreed upon to be a good
practice. Models should conform to these guidelines to the greatest extent.

Recommended guidelines are those guidelines that are recommended to improve the
appearance of the model diagram but are not critical.

Since our tools that we will use on this work are from MATLAB, Simulink, Stateflow and
Embedded coder we must strictly apply the Mandatory guidelines and as most as possible two
other priority rates. In the following, we will show some examples of MAAB Guidelines.

A Strongly recommended requirement is the position of the block names. They must be located
below the block, as in figure shown below:

I Mathworks.com

Correct

0.05z
(- EngRPMRaw "l oes EngRPMFIt D

EngSignal_LowPass

Incorrect

TransSignal_LowPass

= | o005z oz
&y " o TrarerrnEn P

Figure 9. MAAB guideline for Simulink modelling example [11]

A Mandatory requirement that we shall apply is the block that are not allowed to be inside
controllers as the figure below shows:

|ID:Ti‘tIe im_0001: Prohibited Si i tandard blocks inside controllers
|Priority mandatory

Scope MAAB

MATLAB Al

Version

Prerequisites

« Control algorithm models must be designed from discrete blocks.
o The MathWorks “Simulink Block Data Type Support” table provides
a list of blocks that support production code generation.
o Use blocks that are listed as “Code Generation Support”.
Description o Do not use blocks that are listed as “Not recommended for
production code” — see footnote 4 in the table.
« In addition to the blocks defined by the above rule, do not use the
following blocks

Figure 10. Prohibited blocks inside controllers [11]

Also, naming the files is very important and Mandatory according to MAAB, and they should
be names as shown in the figure below:

1D: Title ar_0001: Filenames

Priority Mandatory
Scope MAAB
MATLAB

Version Al

Prerequisites

A filename conforms to the following constraints:

FORM filename = name.extension
name: no leading digits, no blanks
extension: no blanks

UNIQUENESS O all filenames within the parent project directory
O cannot conflict with C / C++ or MATLAB
keywords
ALLOWED name
CHARACTERS |abcdefghijkimnopgretuvwxyzABCDEFG
Description HIJKLMNOPQRSTUVWXYZ0123456789_
iextension:

lmabcdefghijklmnopgrstuvwxyzABCDEFG
HIJKLMNOPQRSTUVWXYZ0123456789

UNDERSCORES [name

* can use underscores to separate parts

* cannot have more than one consecutive underscore
* cannot start with an underscore

* cannot end with an underscore

lextension:
* should not use underscores

& Readability O Verification and Validation
& Workflow Code Generation

Rationale - "
& Simulation

lLast Change |\/3.00

Figure 11. MAAB for filenames [11]

For signal naming with a priority Strongly recommended, a signal name [11]:

should not start with a number

should not have blank spaces

should not have any control characters

should not return carriage returns

underscores can be used to separate parts

cannot have more than one consecutive underscore
cannot start with an underscore

cannot end with an underscore

4. Hybrid V-Cycle

The purpose of creating a Hybrid V-Cycle comes from the need of integrating ISO 26262,
Model based design flow in V-Cycle.

1ISO26262 into V-cycle

In our project we are mapping these points on the V-cycle for automotive safety in order
to make V-cycle coherent with functional safety rules of ISO 26262. The following picture
shows our concept,

Concept Phase System testing & production
15026262 points covered in o onts covered Y
Lms::; these steps;
2. Management of functional :- ;Tpﬁlm
safety 8 es
3. Concept phase 4 _\.9- Asil & Safety analysis y

Architecture \ , Integration &

», testing of S & H
15026262 points covered 15026262 points covered

in these steps; — in these steps 5.10 & 6.10;
4. Product development; at Integration and testing of
| system level | | Software & Hardware

5. Product develooment; Software Level

1S026262 points covered in these steps; | ,
6. Product develooment, Hardware Level

Design Hardware & Software

Figure 12. 15026262 Enforced on V-cycle

Hybrid V-Functional safety concept

As can be seen from the figure 5 that we have mapped iso safety points on the V-Cycle.
Now, we will mention our own V-cycle which shows the functional safety concepts already
incorporated inside the model-based design.

%
Concept Phase ‘\\

N\
Hazard Selection N) |t9n_‘l Safety
Analysis of ASIL 5, '"‘ige’s‘:i‘r']"" & validation
Define Define \\
Safe Functional Functional safety
Aate AT LY Validation assessment Lioiotvpe
. @ H
Architecture & i .
Design 5 : Integration & testing H&S
Specification of Select 15026262 ol e e Evaluation of violation of
technical safety techniques for ! v Teatti safety goal due to
requirements selected ASIL random HW failure
Select 15026262
Software & Hardware ;shniques ot
5 / integration and testing
/ : selected ASIL
Procurement
3)
Specification of Specification of Select 15026262
safety requirements: safety requirements: techniques for
Software level Harware level selected ASIL

Figure 13. Hybrid V-functional safety concept

Steps for the Hybrid V-Functional safety cycle

The figure 6 can be further defined in order to give us in-depth information about the
whole process. We will divide the process mainly in three different categories which includes
company, customer and supplier. The following diagram shows the interaction between them,

Hybrid V-Cycle

CUSTOMER
REQUIREMENTS

Major changes PROTOTYPE

CUSTOMER

COMPANY Minor changes Minor changes
TECHNICAL &
PRODUCTION INTEGRATION
MODEL & TESTING
PRODUCTION PRODUCTION
MODEL FOR MODEL
VMU TESTING
RAPID
CONTROL
PROTOTYPIN
SUPPLIERS

Figure 14. Steps for hybrid V-cycle

All the numbers on the diagram shows the points we follow to reach result. Two lines
dividing the customer, company and supplier. The keyword’s we want to cover in this concept
are following,

e Functional safety

e V-Cycle process

e Model based design
e Modularity

e Reusability

The first three keywords were incorporated when we were talking about the figure 6. We
included all the concepts related to first three topics. In order to make code easy and reusable
we are using the architecture which is divided by certain defined interfaces which helps us to
make our code modular. We know all types of inputs and outputs so we can easily replace the
block between the interfaces to get the required function from the model.

Explanation for the steps of Hybrid V- cycle

No. Of Point Models in the Nodes

1 Customer Requirements
2 Technical & production model
2.1 Rapid Control Prototype (RCP)
2.2 Testing of production model on dspace
2.3 Production model for VMU (vehicle management unit)
3 Vehicle Management Unit
4 Integration and testing
5 Prototype

- Major changes

- Minor changes

Table 4. Steps for Hybrid V-cycle
Now, we will explain the steps we mentioned in figure 7.
1. Customer requirements

Customer can provide us with the requirements or some model which we follow when
developing technical models inside the company. This step is important because we understand
all the requirements set up by the customer. After understanding the requirements, we interpret
it and work on them to find out the best possible solution for the problem within the limits set
by the customer.

2. Technical and production model

After specifying all the customer requirements, in technical model step, we focus on the
making of simplest model as possible according to our understanding of the requirements laid

down by our customer. After making the basic technical model we need a production to set all
the parameters in order to run it on our rapid control prototype platform to quickly lay out the
specifications for our vehicle management unit.

3. Rapid control prototype

Rapid control prototyping is a very efficient method to develop, optimize, and test new
control strategies in a real environment quickly without manual programming [12]. After
developing the model based on the requirements put down by the customer, we should run our
model on this rapid control prototype in order to fine tune requirements and see how the
program is working in this environment.

4. Testing of Production model on dSpace

Production model has a lot of flexibility and room for improvement. We need to optimize
the model for code production and see how many bits are required to give us satisfactory
results. We need optimization in order to reduce the memory of our code, hence, the cost of
our vehicle management unit. So, the production model and rapid control prototype gives us
the requirement for our vehicle management unit.

Minor changes

While testing the model on our rapid prototyping platform we are unable to reach a
conclusion or if the model is not producing the results desired by the customer, we have to go
back again to the second step which is “’technical and production model’’. We change the
model so that we can make it function as desired by the customer.

Moving from the fourth step to second one, costs nothing. Since we haven’t purchased
anything and everything up-till now is on the software. So, we can iterate it as many times as
we like considering the requirements from the customer. The main advantage of introducing
rapid control prototype is to see whether the chosen equipment is suitable for this application
or we need further improvements to reduce cost while maintain the same functionality.

5. Vehicle Management Unit selection

After the specifications laid down by Dspace we will order the VMU from our vendors.
We will move to this step after finalizing the model. If we need certain changes in the technical
and production model, we will move straight to second point.

6. Vehicle management unit

This step will be performed outside the company. We will set up the requirements we need
for our VMU. These requirements will be passed on to our vendors and vendor will be chosen
accordingly.

7. Integration and testing

After getting the VMU from our supplier we will integrate our code with hardware and test
it in different environments. The most important test is of fault injection in which we
deliberately inject a fault in the system and see how robust our code is. After testing of our
system if everything goes well then, we can move on to the next stage which is laying down
the final product requirements. But if we are not able to produce the desired results, we have
to go back to fourth step or all the way back to second step.

Minor changes

At the seventh step, we are testing on the real board and we have already bought this
from the vendor. So, if we change it then we have to pay some damages but since we haven’t
mass produced the system we still can go back to testing our model on rapid control prototype
to change interfacing between the VMU and sensors to make it more efficient. It’s not
recommended to change after you have bought the VMU from the vendor but if the system
fails under fault injection system and it could be easily replaced by small changes then it is still
feasible.

Major changes

If at the seventh step while testing on the real hardware we have problem which is
related to the understanding of basic requirements, then we must go back the second step which
is technical and production model. This loop costs the same as the minor change after the
seventh step but it means that we have not understood the requirements well enough and have
to revise those or to come up with new model to satisfy customer needs. The hybrid V-Cycle
helps us to standardize the procedure and it makes management of the project easy. Even if we
have gone to the second step, to move forward we can not skip any step in between, and we
must follow the procedure again.

8. Final product requirements

After integration and testing is successful, we will set out the product details for the
customer.

5. Innovative Modular Architecture

The concept of modularity and reusability can be explained by the following diagram. Figure
from the notes of the prof:

l Interface T

L Interface T

l Interface T

l Interface T

Figure 15. Reusability and modularity concept

Figure 15 shows dotted lines which helps us to divide blocks in different sections. When we
are talking about the modularity, we mean that we can replace the block and then test it for
some other project. The process remains the same but whatever is in the blocks, by changing it
we can change our target.

1. Environment

This block represents the external environment for our model. For example, if we are
discussing about electronic circuits then we should consider the electromagnetic interference
in our circuits from the external environments. We can simulate all the external influences in
software (Simulink). This block is used to simulate the actual environment as close as possible
to the real environment but only on the software. Every software has some restrictions, so we
try to be as close as to the real environment. For example, if we are generating signal, we add
noise in the signal to reproduce the external affects. It affects the plant hence we have drawn
signs in interference from this block to plant.

2. Plant

This block represents inputs we provide to control in order to make the decisions. This
block is also simulated in the software.
3. Control

It is the main block in our scheme. It takes inputs from the plant and issues output to execute
actions based on inputs. It also contains inputs from human machine interface. Our whole
algorithm to control system is executed in this control block.

4. Human machine interface

This block in software represents interaction between human and machines. Each software
gives us some controls which can reproduce actual human machine interaction. In software, it
is represented by buttons and switches which are in the software only and they don’t have any
physical presence. You can choose the type of button and set some parameters to mimic actual
behavior.

5. Operator

The programmer performs function of the operator. In real world, operator will input
commands while here since everything is on the computer, hence the person controlling
computer will be considered as operator.

6. Interface

These things define the connection between two blocks. In the above method we are connecting
software with software, so interfaces are represented by just connections in the software.

5.1. Interfaces

Vehicle
Logical element S

intemal
logical element

intemal Themaj_
logical element logical alement
Nt E
P: physically E: Enengy

I: Information M: Material .'/- = \.
\!?Eical alamerﬂ/'

—

Fig. 3.9 Muli-dimensional boundary and interface analysis (Sowrce Derived from
Ford-FMEA-Handbook)

Figure 16. Interface analysis [13]

According to the Ford-FMEA-handbook there are four kinds of interfaces. [13]

Physical interface

Energy interfaces

Material transfer (interface)
Information interfaces

5.2. Concept of reusability and modularity in Hybrid V-cycle

In order to introduce this concept, we introduce the blocks. As shown in figure 8, we have
divided the procedure in some blocks. We are going to define each block in order to understand
the whole procedure.

Software block

Software

Figure 17. Software blocks definition

This block represents the software portion of our Hybrid V-cycle. software will include
anything which is not present physically, but it is designed and tested on computer. There is no
interaction between physical parts. We design our systems and satisfy all the requirements
virtually on a computer.

Hardware block

Figure 18. Hardware blocks definition

This block represents the hardware portion of our Hybrid V-cycle. In this part, we have
a physical equipment. We are no more working on the software which is all inside computer.
This hardware block can include VMU, RCP, input from environment and all the sensors.
VMU and RCP are included in the hardware block but in order to define the process in a better
way we are going to highlight them separately just to identify the steps where we are
introducing VMU and RCP.

Rapid Control Prototype Block

Figure 19. RCP representation of hardware block

Rapid control prototype is a part of hardware block. We have represented it in a
different way just to clarify the steps where we are using RCP.

Vehicle Management Unit

Figure 20. VMU representation of hardware block

Vehicle management unit is also a part of hardware block. We have represented it in a
different way in order to clearly identify the steps where we are using VMU.

5.3. Architecture impact in integration and testing

As mentioned earlier that our procedure contains 5 important points which are as follows:

¢ Functional safety

e V-Cycle process

e Model based design
e Modularity

e Reusability

Now, we will link the modularity and reusability concepts with other concepts of functional
safety, V-cycle process and model-based design. To explain it we have divided it in 3 parts.
The first one is

e Software in the loop
e Hardware in the loop containing Rapid control prototype
e Hardware in the loop containing VMU in the loop

Software in the loop

Environment

| "
Interface
v |

Plant

|
Interface
v |

Control

|
Interface
v |

HMI

| N
Interface
v |

Operator

——

Software in loop

Figure 21. Software in the loop

This step is covered by 2nd step of our Hybrid V-functional safety cycle. In this step, we are
going to develop our technical and production model based on the requirements demanded by
our customer. This is the general scheme of our methodology in which we are going to divide
our model into 5 main blocks. All these blocks are simulated in the software and at this stage
no hardware is involved. The blocks are:

e Environment

e Plant

e Control

e Human machine interface
e Operator

e Interface

Hardware in the loop containing Rapid control prototype

Simulink (2° step)
Environment
! Interface t

Plant
.
Interfoce
Control
Interface t
HMI
&
. Interface
Operator
SiL

RCP loop (4" & 5° step)

" .
Interfoce Interfoce
v v
%

Frame

.
Interface interface
)

¢ (@~ (@

.

! Intedface Interface

[x]
2
2

-
-

.
Interface Interface
v

=

HilL Test bench

1 |

- - .

Figure 22. Hardware in the loop containg rapid control prototype

This step is covered by 4™ and 5™ step of our Hybrid V-functional safety cycle. As shown by
the above diagram, after software in the loop we are doing code generation for our control

block.

Code generation

We have the control block in software. In order to run it on our rapid control platform we
convert it to a code. This process of code generation is handled automatically by software which
produces C or C++. This automatic code is not optimized and in the following steps we will
first try to run code on our rapid control prototype which can handle a large code size and is
only introduced to check our control block performance and robustness. This equipment helps

us to fine tune our control block and check for any potential errors.

Frame

Every RCP requires some timers and assignment of ports which will help other blocks to
communicate with it. We develop the frame in the next step to make sure that interfaces interact

smoothly with RCP.

Figure 23. Code generatioin

Frame

Figure 24. Defining frame

Rapid Control Prototype Loop (4" & 51 step)
RCP loop (4° & 5° step)

i -
AREPr o Aarerfoee
* .
L]
rderface Inderface
T L

'y L 3
: Irpeface Jﬂll,‘flfqifr

f.rlr-ﬂ',fwr

Cparator
H—I—I'
HiL Test bench

Figure 25. RCP loop

After constructing frame and placing code inside our rapid control prototype we replace the
control block (referring to the left column) with rapid control prototype. After testing this
configuration, we will observe how our control block is performing. We should make a
distinction here, the yellow blocks on the left column with names, environment, plant, HMI
and operator are all in the software. They are still controlled by computer which is connected
to RCP which is a physical equipment with generated code running inside it.

The right column has different sets of blocks. In this step, we have replaced all the software
with hardware blocks. In the previous step, we were controlling everything from the computer.
All the blocks except from RCP were not physically present. In this step, which is shown by
column on right side of the diagram, we are going to replace all the software blocks with the
hardware. All the inputs will be from hardware blocks. The operator will be a real person
operating system with the HMI. While plant will be our sensors which will monitor the values

and give it as an input to RCP. The environment will be everything surrounding equipment,
which is affecting the system.

Hardware in the loop for vehicle management unit

RCP loop (4° & 5° step) VMU loop (7° step)

n & N
Interface Interface | Interface | Interface
L v w

VMU supplied by the

c-.

-
-

I Interfoce 1 | Interface t supplier (6° step) L Interfoce 1 | Interface
| Interface i | Interface | ilf A ' Interfoce t | Interface
o 4p
HMI Specification I:// HMI
for the VMU

; Interface h ‘ interface ll 1 Interfoce ‘ ' [
1]
HiL Test bench HiL Test bench

Figure 26. Hardware in the loop for VMU

This step is covered by 7™ step of our Hybrid V-functional safety cycle. As shown by the above
diagram, the RCP gives us the specification of the VMU. It tells us the specifications of
memory and other aspects of VMU. We need these aspects in order to select the vendor which
will give us the best product at reasonable rates. The RCP also tells about the performance. So,
instead of buying different VMU we will set the requirements set by RCP by running the code
at various bit rates, to meet the performance requirements set by the customer, keeping in mind
the safety aspects of our operation. If we can reduce the power requirements of the VMU we
will be able to reduce the cost of purchase. VMU is supplied by the supplier which is
represented by step 6™ in our Hybrid V-functional safety cycle.

VMU loop (7t step)
VMU loop (7° step)

L]

&
1 Interfoce | Interfoce

e -
! & &
l Interfoce Interfoce

*
% .
Interface Interfoce
v vr

'Y

&
Interface Interface
v v
-

HiL Test bench

Figure 27. VMU loop

As seen before, we will apply the same procedure as applied before in the RCP loop. We have
2 columns which are included in step 7" of our Hybrid V-Functional safety cycle. Column on
the left side shows the integration of software in VMU and then testing it on a test bench. In
this test bench, we have all the blocks in software except from the VMU which we got from
the supplier. We will run the code first with this configuration to check the performance of the
VMU and to make sure everything is in order and after that we will replace all the software
blocks with hardware to do the final tests before finalizing the solution provided to the
customer.

Flexibility in model

The procedure explained above is one of the many combinations that could be adopted in order
to obtain the desired results. Now, we will explain some of the other combinations of the same
procedure. For example, if we are considering the software in the loop we can have many
different combinations of it.

Different combinations of software in the loop,

We will discuss some of the combinations here in order to show the flexibility of our Hybrid
V-Cycle.

Simulink (2° step)

l Interface T

! Interface ‘T

Control

l Interface T

HMI

l Interface T

Operator

Figure 28. Combinations of software in the loop

Here we can see that two software blocks are replaced by two hardware blocks. The
environment is an actual environment while the plant is also considered as a hardware block.
In some cases, we are using sensors to take input from the outside and then in order to process
and control it we are using software. We can replace any block with hardware except from the
control block since it’s an early to invest on a controller. Some other combinations of the
software in the loop model can be seen below.

Simulink (2° step)

Environment

L Interface T

Plant

l Interface T

Control

l Interface T

l Interface T

Figure 29. Combinations of software in the loop

In figure 21, we have replaced the human machine interface with actual buttons and a human
is controlling that panel to produce the results.

Simulink (2° step)

Environment

| [)
Interface
, Interface |

A
! Interface ‘

Control

A
L Interface ‘

HMI

'y
L Interface |

Operator

Figure 30. Combinations of software in the loop

In the figure 22, we replaced plant with a hardware block while other blocks are still in
software.

Proposed Combinations of Hardware in the Loop Containing Rapid Control Prototype
One of the combinations is explained in figure 17. We can consider other combinations also
which are:

Environment

l Interface

n
|

Interface

RCP Loop

|+ Interface T

| Interface |

|+ Interface T

Plant

L Interface T

4
»
|

|+ Interface L Interface T i Interface T
HMI HMI
| 4 | 4 | 4
Interface ‘ Interface | Interface |
v v v
Operator Operator

Figure 31. Proposed combinations of hardware in loop for rcp

Comparing figure 17 with 23 shows that even in the 5 step we can have a software block. This
strategy makes our Hybrid V-cycle more flexible and it could be easily adapted to different
conditions depending upon our requirements.

In figure 23, the RCP is also considered as a hardware block, but we have mentioned it with
different color to clearly identify this step. We must clearly define the interfaces when we are
moving from software block to hardware block. We should keep in mind what are the
requirements of hardware and software block. If the interfaces are not properly defines then it
is impossible for the blocks to interact with each other.

Proposed Combinations of Hardware in the Loop for Vehicle Management Unit

As explained in the figure 19, about hardware in the loop for vehicle management unit, we can
thing of other combinations also and make a hybrid model to satisfy our requirements. We will
see an example to understand how it might work.

VMU Loop

Environment

-b.
-b.

! Interface | i Interface T i Interface |

Plant

-
> >

ifnterface | | Interface | Interface |

-~

i Interface T L Interface | L Interface |
o - -

| 4 I 4 | 4

! Interface | ! Interface | ! Interface |

Operator

Figure 32. Proposed combination of hardware in the loop for VMU

We will give the brief overview of whole process again and in following chapters we will take
few examples for better understanding how the whole method works by considering actual
examples, starting from a simple digital filter leading to the more complex problem.

1. Customer requirements

As described in the start, these are the requirements set by customer. It can be in the shape of
requirements or a model. We completely understand it before starting to develop the model.

2. Technical and production model

After specifying all the customer requirements, in technical model step, we focus on the making
of simplest model as possible according to our understanding of the requirements laid down by
our customer. After making the basic technical model we need a production to set all the
parameters in order to run it on our rapid control prototype platform to quickly lay out the
specifications for our vehicle management unit.

In this step, we develop the model following ‘software in the loop’ and ‘model in the loop’
based on model-based engineering. We have nothing in hardware, every program is in
software, for example Simulink. We modify the model according to requirements of customer.
We also try to find out innovative solutions for satisfying requirements set out by our customer.
There might be some requirements which cannot be incorporated in our model or even if they
are incorporated, we pay a higher price for getting slightly better performance. At this point

everything is in the software, hence, it costs nothing to make any changes in the model. We
can simply do it by a click of the button.

As described in figure 20-22, we can adopt different combinations of the software and hardware
parts for making our system.

3. Rapid control prototype

Rapid control prototyping is a very efficient method to develop, optimize, and test new control
strategies in a real environment quickly without manual programming [12]. After developing
the model based on the requirements put down by the customer, we should run our model on
this rapid control prototype in order to fine tune requirements and see how the program is
working in this environment.

4. Testing of Production model on dSpace

Production model has a lot of flexibility and room for improvement. We need to optimize the
model for code production and see how many bits are required to give us satisfactory results.
We need optimization in order to reduce the memory of our code, hence, the cost of our vehicle
management unit. So, the production model and rapid control prototype gives us the
requirement for our vehicle management unit.

As mentioned above, if our model is not satistfying the customer requirements then we must go
the second step again and follow the procedure again.

At the fourth step, we can have different combinations of software and hardware blocks. We
can adopt the suitable combination of both of these.

5. Vehicle Management Unit selection
After the specifications laid down by Dspace we will order the VMU from our vendors.
6. Vehicle management unit

This step will be performed outside the company. We will set up the requirements we need for
our VMU. These requirements will be passed on to our vendors and vendor will be chosen
accordingly.

7. Integration and testing

After getting the VMU from our supplier we will integrate our code with hardware and test it
in different environments. The most important test is of fault injection in which we deliberately
inject a fault in the system and see how robust our code is.

As can be seen from the figure 26, if the integrations and testing is not successful then we again
move either to step 4 or step 2 depending upon the changes we have to make. If we have to
make minor changes we have to move from step 7 to step 4 while if we have to make a major
change we have to move straight from 7™ step to 2" one and again we have to follow all the
points leading up to 7" step again.

8. Final product requirements

After finalizing the testing and code we will set out the product details for the customer.

5.4. Standards and guidelines check

Our product has certification goals, thus through all the development we have put our effort to
comply with them. Simulink gives us the tools to check if our model and generated code
complies with the standards and guidelines we set before:

e IS0O26262
e MISRA C
¢ MAAB Guidelines

This can be done in Simulink via Model Advisor:
e Simulink -> Analysis tab -> Model Advisor

For MISRA-C Model Advisor can run the check immediately, but for ISO26262 and MAAB
Guidelines we must download the add-in Simulink Check™ that includes:

e SO 26262
e [EC 61508
e [EC 62304
e DO-178

e MAAB Guidelines

For additional checks, we decided to run also IEC 61508 since it is the parent standard of ISO
26262, allowing us to target different fields in the future.

Also, an important thing to do for MISRA C certification is preparation of a compliance
statement that is something we will not do in this thesis.

When using MISRA C:2012 coding guidelines to evaluate the quality of your generated C
code, you are required per section 5.3 of the MISRA C:2012 Guidelines for the Use of C
Language in Critical Systems document to prepare a compliance statement for the project being
evaluated. To assist you in the development of this compliance statement,
MathWorks® evaluates the MISRA C:2012 guidelines against C code generated by using
Embedded Coder. The results of the evaluation are published as: [11]

e Compliance summary tables
e Deviations

An extra check for more robustness, we will use also ‘Code Generation Advisor’ that helps us
to check:

e RAM Efficiency

e Traceability

e Safety precaution

e Debugging

e ROM Efficiency

e Execution efficiency

6. Documentation

Professional and reliable documentation is a must in every process on any field but especially
in Automotive industry where the ever-increasing complexity of its processes demands an
increase in documentation quality as well. There are several different and software and tools
for doing it but they come with a very high cost. Thus, we have come up with our very low-
cost but efficient and clean approach using Dropbox and Dropbox Paper. The Dropbox account
called “VMU Project” is divided on 4 different main sections that are:

e Development

e Documentation

e References

e Meeting Notes (Dropbox paper)

Development contains everything that concerns technical side of the project such as Simulink
modelling. It also has 3 different folders:

e Concept model
¢ Technical model
¢ Production model

Documentation folder contains documentation of the development such as:

e Requirements

e Methodologies

e Safety lifecycle according to 1ISO26262

e Presentations to be presented in the meetings with the customer
e Results of every development step

References folder contains every reference that is used in the documentation and development.

Meeting Notes in the other hand plays a key role in keeping track of the work that has to be
done, creates a very collaborative environment allowing every participant to comment on notes,
sharing ideas, references, alerting everyone that a report, model or documentation is ready and
can be found on one of the folders that we already explained. A snapshot from the Meeting
Notes below shows it very clearly how we used it:

Meeting Notes # % m N "
<O ProgettoVPE VMU - #2 Shared with 4 others r Publish doc

Digital Filter project
Enhaneed—>TechnieatModet
o Preliminary models for multitasking operation in:
https://www.dropbox.com/sh/40008sihlvd8diu/AAAVNMWU-Daqqg-caiZXIZWwza?
di=0
o Draw the Simulink model template with Enviroment-Plant-Kontrol-HMI-User blocks
with signal buses including their interfaces.
o Important: Report comparisons of Concept vs. Technical models simulations
demonstrating that the latter complies with the former
Enquire-the-imptementation-of- Supervisorwith-respect-to-texternall-hardware
asynec-interrupts:

Software-in-the-loop on dSpace
https://www.dspace.com/en/ltd/home/applicationfields/stories/strategicuseofhilandsil.cf
m

Simulink SIL and code report uploaded: https://www.dropbox.com/home/DAUIN%20-
%20Vehicle%20Management%20Unit/Documentation/technical_model code 12 11 19_ert_

rew

Methodology documentation for VMU project

Figure 33. Meeting Notes snapshot

The illustration below sums up the architecture of Dropbox:

Project documentation

&

Q@ o+

—

References

Meeting Notes Development Documentation
Traceability Store models Developmept
documentation
Collaborative Keep track on
versions Customer
Share ideas requirements

Share references

Comment and
discuss

Keep track on
changes

Readme file for
summary

Safety
Requirements

Code generation
report

Safety lifecycle
documentation

References used
in Development

References used
in
Documentation

Figure 34. Documentation

PART 1, CHAPTER 2
AN EXAMPLE

1. Customer Requirements

Artefacts of this process are:

e Defined item

e Customer requirements

e Safety goal

e Functional safety concept
e Concept model

ltem definition

Objective:

Perform a Fast Fourier transform on the input signal and design a low-pass digital filter
with certain requirements given by the customer. The system shall be designed in such a way
that it must be easy to test and validate.

Digital filter

Sampling frequency 1000 Hz

\4

»

Signall (-10,10)

Signal2

FFT

Signal Generator Oscilloscope

Sampling frequency 100 Hz

Figure 35. Digital filter and FFT block
scheme

What is a Fast Fourier Transform?

When we want to decompose a signal that is composed by different signals with different
frequencies into pure frequencies that they are made of, we apply a Fourier transform on it. A
Fast Fourier Transform, in the other hand, is an efficient algorithm that makes us implement
the Fourier transform in much faster way.

What is a Low-pass Digital Filter?

An analog low pass filter is a filter that passes analog signals with frequency below cut-off
frequency. A digital low-pass filter is the same except that it acts on discrete-time signals. It is
programmable, doesn’t age and provides way higher performance than analog filter. Method,
type and implementation of the low-pass digital filter will be discussed on the Analysis and
Architecture phase. Layout of the item to be developed:

Digital filter

Sampling frequency 1000 Hz

Sampling frequency 100 Hz

Figure 36. Layout

Emer§ency

ON push button

Signal Name Symbol | Function | Unit Value
range
switch_on SO Tum —on A% Binary
system
emergency_stop SE Emergency A% Binary
stop
. Input
Signall u . v +- 10
signal
Fourier analysis F(u) Output \Y Undefined
Filtered signal y Output v +- 10
On_button bo Input A% Binary
Emergency_switch | bg Input v Binary
Table 5. Signals
Expected results:
Input Expected Output for FFT

140,
1
120,
08 100,
gos o
2 2
=3 =
£
Soe <
an
0.2
20
|
45 1 4& - 2 283 a5 4 0 40 om0 4w 0 0 @0 w0 &0
Time (secs) Frequency [Hz]
10
8 600/ |
Ly 500,
af
s00)
2}
8 £ ‘
% of = 300 ¥ t
£
< . <
h 200 ‘l
" J,
|
100,
o
I\
8 o
e 0a s oo oos oams W w0 0w w0 W m
Time (secs) requency [Hz]
I I
1 | n
B IR
v
08 N
o)
4]
o6 N [
g < |
S04 o }
|
02 o jf
L T T T T T Y BT R T T
Time (secs)

0.5 1 15 2 25 3 35 4
Time (secs)

Arplitude

0242 0244 0246 a2a8 025 0252
Time (secs)

Requirements specification:

Amglitude

ER N A T

52 sz 53 53 54
Tima (sacands)

Function 1

Digital filter

Requirement 1-1

Sampling frequency must be f; = 1000 Hz

Requirement 1-2

Input signal voltage shall be in the range of + 10 [V]

Requirement 1-3

Output signal voltage shall be in the range of + 10 [V]

Function 2

Fast Fourier Transform

Requirement 2-1

Sampling frequency must be fs = 100 Hz

Function 3

Supervisory Control

Requirement 3-1

External Start/Stop push button must be added

Requirement 3-2

System is turned by the Start/Stop push button

Requirement 3-3

System is stopped by the Start/Stop push button

Requirement 3-4

An external emergency switch must be added

Requirement 3-5

When emergency switch is turned on, output must go to 0

Table 6. Requirements specification

Hazard analysis and risk assessments

Hazard identification:

Component ‘ Failure Mode

Signal
generator

FM1: Wrong input signal

FM2: Not grounded

FM3: Signal voltage beyond limits

Effect on the item ‘

Hazard 1: Item gives wrong
output

Hazard 2: Possibility of damage

Hazard 3: Possible damage on
electrical components

Microprocessor

FM4: Microprocessor fails in executing
instructions

Hazard 4: Item does not give any
output

On/Off switch FM5: Switch does not turn on Hazard 5: Item does not turn on
FM6: Switch does not turn off Hazard 6: Item does not turn off
Emergency FM7: Emergency button does not send the | Hazard 7: High possibility of
button signal damage
FM8: Oscilloscope does not show any | Hazard 8: ltem does not give any
Oscilloscope output output

FM9: Not grounded

FM10: Oscilloscope shows wrong output

Hazard 9: Possibility of damage

Hazard 10: Item gives a wrong
output

Table 7. Hazard analysis

Hazard analysis and assessment:

Hazard Effect Comment

Hazard

1: Severity: 1 Wrong output can lead on wrong conclusions
Exposure: 4 Signal generator is always on when item is on
Controllability: 1 Simply controllable

Hazard

2: Severity: 1 Possible damage
Exposure: 4 Signal generator is always on when item is on
Controllability: 1 Simply controllable

Hazard High voltage can cause electrical damage, causing damage to

3: Severity: 1 operator
Exposure: 4 Signal generator is always on when item is on
Controllability: 1 Simply controllable

Hazard

4: Severity: 0 No damage possible when there is no output

Exposure: 3
Controllability: 1

Hazard

5: Severity: 0
Exposure: 4
Controllability: 1

Hazard

6: Severity: 1
Exposure: 4
Controllability: 1

Hazard

7: Severity: 3
Exposure: 1
Controllability: 3

Hazard

8: Severity: 0
Exposure: 4
Controllability: 1

Hazard

9: Severity: 0
Exposure: 4
Controllability: 1

Hazard

10: Severity: 1

Exposure: 4
Controllability: 1

Microprocessor often is working when item is working
Simply controllable

No voltage when item is not turned on
On switch is always needed when item must be turned on
Simply controllable

Low happening possibility of undesired actions

On/Off switch is always needed when item must be turned on
Simply controllable

Undesired actions can cause damage on electrical
components, causing damage to the operator

Emergency button is used rarely

Can be difficult to control

No damage possible when there is no output
Oscilloscope is always on when item is on
Simply controllable

No damage can be caused
Oscilloscope is always on when item is on
Simply controllable

Possible damage
Oscilloscope is always on when item is on
Simply controllable

ASIL Selection:

From the table:

S1

S2

S3

Table 8. Risk assessment

| a | o | a |

El am am am
E2 am am am
E3 am am A
E4 am A B
E1l am am am
E2 am am A
E3 am A B
E4 A B

E1l am am A
E2 am A B
E3 A B

Figure 37. ASIL Selection table

e ASIL A for Hazard 7
e QM for all other Hazards

Safety Goal:

Safety goal 1: Item shall stop immediately when the Emergency button is pushed and enter to
the safe state

Safe state: The item shall to the OFF state, where the output goes to zero and the user is
informed.

1.1. Functional safety concept

Functional safety:

Because the required ASIL is ASIL A, functional safety action is necessary, but it must be low-
cost since the hazardous situation is very unlikely.

Proposed functional safety action:

Functional Safety 1: Transition to emergency must be highest priority

Concept model

As already explained in the first chapter, concept Model should grasp and show the behavior
of the main tasks either separately or together.

Digital Filter
Concept Model

DDDDDD + | num(z) > D
ks den(z) S
X cope
Signal Discrete Filter
Generator Ts_1 Sampling Frequency

] Ji

Power Spectral Density (FFT)

Random
Ts_2 Sampling Frequency

Number

Main specs:

-+/- 10 V input

- filter sampling frequency 1 kHz
- fft (spectrum) update 1 Hz

- ON/OFF & Emergency buttons
- live filter update

Figure 38. Concept model in Simulink

& 4 Digital_Filter_ConceptMedel * - Simulink academic use - [m] b
. Time history File Edit View Display Diagram Simulation Analysis Code Tools Model Port Blocks ConfigurationDesk — »
S o - -
-3 ~[5] @ =) L}
ab
& Digital_Filter_ConceptModel o
V 3 s
Ak A A A A = A - 2
1.8 62 262.2 %624 %26 262.8 263 5| © |EmDigtal_Fiker_Concspthodel 3
- Power §56¢f5T Bensity - g
2 0.06] = @ Digital Filter E
Toos +v | Concept Model g
=]
o002
s
g -
g ol . P W . . . t
50 100 150 200 250 00
, PoweF SHERSY BERSHF(Bhase) = GEoa] cont_—~ Cont [oumiz |0t O
00 - >
o LY - {
g T s [iy | =
5 -6000 Signal Discrele Filter
a Generator Ts_1 Sampling Frequency
-1000!
50 00 150 200 250 00
Eranuancu: fradsiss N -
| Al
File Tools View Simulation Help ¥ R "ower Spociral Dor
@-4OPE - Q- T FA-
&= Main specs
- +-10 V input

- filter sampling frequency 1 kHz
- fft (spectrum) update 1 Hz

- ONIOFF & Emergency buttons
- live filter update

-
« | ¢ >
Sample based Offset=259 |T=260.461 | Running 115% T=262.380 auto(VariableStepDiscrete)

Ruming

Figure 39. Results of Concept Model

Architecture & Design

Modular architecture and the components with interfaces must be defined:

m Environment

_____l ________ P __ Interface — EM
Plant
R i _______ T ______ Interface —
Cables
Control

Figure 40. Item Architecture

Interface —

Cables

Interface —

Manual

The following characteristic or features specified should be seen as requirements: [13]

e The environment: The item will be placed in a Lab
e There are no permitted ways of use

¢ Only one mode of operation specified
e Both our functions, Digital filtering and DFT are function call subsytems
e Input signal is analog with range +10 V, with a certain high frequency noise
¢ Output signal is analog with range =10 V
Interfaces
Physical interface

e The item will be placed in a typical Lab desk
e Room temperature
e Signal range 20V peak-to-peak

Energy interfaces
e Electric energy only
e 20V peak-to-peak voltage transfer
e Energy provision via cables

Material transfer (interface)
e No material transfer

Information interfaces
e Signal processing
e Analog input to ADC to RCP Platform to DAC to Oscilloscopes
e Bus or communication systems CAN or Ethernet

2. Technical Model

Technical Model should exhibit the main technical aspects, i.e. the sampling rate and the
quantization levels, the saturation levels as well as other non-linearities. In addition, it must
define the overall logic, i.e. states, transitions between states, tasks associated with states.

Tool — MATLAB Simulink

Techniques — Will be specified and chosen in each stage
Methodologies — Model-based Design, MAAB Guidelines
Artefacts — Software code

Safety aspect — Techniques recommended by 1SO26262 for ASIL

[Initiation

Guidelines to perform modelling that are required by 1SO26262:

Topics AL

A B C D
1a |Enforcement of low complexity® - - - ++
1b |Use of language subsets® ++ ++ e ++
ic | Enforcement of strong typing® ++ -+ -+ ++
1d |Use of defensive implementation techniques o + ++ ++
1e |Use of established design principles + + + ++
11 |Use of unambiguous graphical representation - - ++ -+
1g |Use of style guides + ++ ++ 4+
1h |Use of naming conventions ++ ++ ++ ++

2 Anappropriate compromise of this topic with other methods in ISO 26262-6 may be required

The objectives of method 1b are

OExclusion of ambiguously defined language constructs which may be interpreted differently by different modellers,
programmers, code generalors of compilers.

DExciusion of language constructs which from expenence easily lead to mistakes, for example assignments in conditions or
identical naming of local and global variables

DExclusion of language constructs which could result in unhandled run-time errors

€ The obiective of method 1c is 1o impose principles of strong typing where these are not inherent in the language

Figure 41. Modelling and coding guidelines

Since we have ASIL A, we must choose an appropriate combination of some requirements
since they are alternative entries. A good appropriate combination for our item will be:

1. Enforcement of low complexity
2. Use of unambiguous graphical representation
3. Use of naming conventions

Specification of software safety requirement:
Recalling the functional safety defined in the previous phase:

Functional Safety I: Transition to emergency must be highest priority.

According to ISO26262 we must define the components of the item that are responsible to
achieve or maintain the safe state, which are:

1. Emergency switch
2. Microcontroller

Functions related to safety requirement:

1. Supervisory control/Stateflow

Software architecture and specification of safety requirements

Methods for notation that are given by 1SO26262, for ASIL A Informal notations is highly
recommended, so we decide for 1a.

ASIL
Methods
A|(B|C|D
1a |Informal notations |4+ o+ +
1b [Semi-formal notations PO PR PR
1c |Formal notations I

Figure 42. Notations for software architectural design

For error handling we decide for Range checks of input and output data since it is highly
recommended and can give us good desired results.

Methods AsiL

A B Cc D
1a |Range checks of input and output data ++ L ++ .-
1b |Plausibility check® + + + ++
¢ |Detection of data errors® + + + +
1d |External monitoring facility® 0 + + ++
1e |Control flow monitoring o i + &
1f |Diverse software design o o + ++
@ Plausibility checks can include using a reference model of the desired behaviour, assertion checks, or comparing
signals from different sources.
b Types of methods that may be used to detect data errors include error detecting codes and multiple data storage.
€ An extenal monitoring facility can be for example an ASIC or another software element performing a watchdog function

Figure 43. Error detection at the sw architectural level

For verification [SO26262 gives us several methods. An appropriate and robust combinations
would be:

1. Walk-through of the design
2. Inspection of the design
3. Control flow analysis

Methods ASIL

A B
1a |Walk-through of the design® ++ + o o
1b | Inspection of the design® + ++ Fe s RS
1¢ | Simulation of dynamic parts of the design® + + + ++
1d |Prototype generation [+] o ++
1e |Formal verification o 0 ¥
1t |Control flow analysis® + + ++ -
1g |Data flow analysis® + + - -
2 Inthe case of model-based development these methods can be applied to the model
P Method 1c requires the usage of executable models for the dynamic parts of the software architecture.
€ Control and data flow analysis may be limited to safety-related components and their interfaces.

Figure 44. Methods for the verification of the software architectural design

The following elements shall be verified:
e Compliance with the software safety requirements

e Compatibility with the target hardware
e Adherence to design guidelines

Unambiguous illustration of architectural design that realizes the software safety requirements:

Emergency

. HW Interrupt
Switch

We have three states: Figure 45. lllustration of HW Interrupt

e OFF State — which is set by default
e ON State — where the actions required are performed and infrom the User via HMI
e Emergency State — Where we set the output to zero and inform the User via HMI

OFF

State
Conditions
Supervisory
Control ON Digital
State Filter

Fs =10000Hz

Emergency

State

Figure 46. lllustration of model hierarchy

Model-based Design

Notations to be followed for ASIL A:

e Natural language
e [nformal notations

Methods ASIL
A|lB|C|D
1a [Natural language o[| oH | H
1b (Informal notations o M|+ |+
1c |Semi-formal notations oM | | o
1d [Formal notations T T A

Figure 47. Notations for sofiware unit design

Design principles for software unit design and implementation to be followed for each unit:

e No hidden data flow or control flow
e No recursions
o [nitialization of variables

Methods ABR

A B [D
1a |One entry and one exit point in subprograms and functions® ++ ++ ++ ++
1b |No dynamic objects or variables, or else online test during their creation®. ® + * ++ ++
1c |Initialization of variables s 4 -+ -+
1d |No muitiple use of variable names® + ++ ++ ++
1e |Avoid global variables or else justify their usage® + L ++ ++
11 |Limited use of pointers® o + + ++
19 |No implicit type conversions® - ++ ++ ++
1h |No hidden data flow or control flow® + ++ ++ ++
1i |No unconditional jumps3. b. ++ - ++ ++
1 No recursions + + -+ ++
8 Metnods 1a, 1b, 1d, 1e, 11, 1g and 1i may not be applicable for graphical modelling notations used in model-based
development.
b Methods 1g and 1i are not applicable in assembler programming
€ Methods 1hand 1i reduce the potential for modeliing data flow and control flow through jumps or global variables

Figure 48. Design principles for sw unit design and implementation

Methods for software unit testing:

ASIL
Methods

A B [+ D
1a |Requirements-based test® ++ 4 ++ ++
ib [Interface test ++ ++ ++ ++
1c |Fault injection test® + + + ++
1d |Resource usage test® + + + ++
1e |Back-to-back comparison test between model and code, if applicabled ¥ + ++ ++
8 The software requirements at the unit level are the basis for this requirements-based test
b This includes injection of arbitrary faults (e.g. by g values of , by code , or by
corrupting values of CPU registers)
¢ Some aspects of the resource usage test can only be evaluated properly when the software unit tests are executed on
the target hardware or if the emulator for the target processor Supports resource usage tests.
d This method requires a model that can simulate the functionality of the software units. Here, the model and code are
stimulated in the same way and results compared with each other

Figure 49. Methods for software unit testing

Requirement-based test is highly recommended and it is enough for our model.

Task 1 - Supervisory control

Concerning the discrete control, we must have 3 states:

e OFF state, which is set by default
e ON state
e Emergency state

Transition conditions from OFF to ON: On pushbutton must be pushed for 2 seconds. Color of
the led will be yellow during the transition.

Transition from ON to OFF: On pushbutton must be pushed for 2 seconds. Color of the led will

be yellow during the transition.

Transition from ON to Emergency: Emergency switch is turned on. Color of the led will be

yellow during the transition.

Transition from ON to Emergency: Emergency switch is turned off.

Transition from Emergency to ON is not possible for safety reasons.

flagi = 0;

[duration{On_bution == true) > debounceDuration Kled_en = ledOn_Transition}

‘ON

led_on = ledOn_TumOff;
led_emergency= ledEmarg_TumOfT;

[duration(Cn_button == true) > debounceDuration|{led_on = ladOn_Transition}

\ [Emergency_button == 0}fled_emergency= ledEmerg_Transi

tion}

Emergency

entry:
led_an = ledOn,
led_emergency

L TumOf,

= ledEmerg_TumOn;

Task 2 - Digital Filter

Figure 50. Stateflow chart

entry:

flagl = 1;

led_on = ledOn_TumOn;
led_emergency= ledEmerg_TumOf,

1

[Mag1 == O}{led_emergency= ledEmerg_Transkion} /

on every(filterTicks,tick): Filtered_output= filtering(Signal1_V);

OFF w _ ON
during: [flag == 1] | during:
Filtered_output = zero_Filtering;

[~flag1 == 1]

Design characteristics:

Sampling frequency: fs =

Figure 51. Task control

Frequency response: Lowpass

1000 Hz

o Cutting frequency: f, = 100 Hz
o Simulink block used: FIR Filter

o Filter order: 2

Simulink block used:

num(z)
1 — 1

Q Signal1_V > 1 FilteredSignal_V .
Signall_V FilteredOutput_V

FIR Filter

Figure 52. Digital Filter modelling

Validation of Task 2

Results with a given input of 100Hz and amplitude 10:

File Tools View Simulation Help
@-Wre -q- Q@K
T T T T T T T

10

B

Amplitude
wooa o
T T

| I I I I I I I
-50 -40 -30 -20 -10 0 10 20 30 40
Frequency [Hz]

Running T=196 600

-
File Tools View Simulation Help

- 6OP @ - Q- - Fld-

15, FiteradSignal Vv [
UrfitaredSignal_V

|0 -
g5
g || I il | | il 1 I 1
3 Of i | | ! | | | !
£
<5

«10]

-5}

| | I |
0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Running Samplebased Offset=190 T=192815

Figure 53. Results 1 of Digital Filter and FFT

Results with a given input composed by two signals with 10Hz amplitude 10V and 40Hz
amplitude 5V:

-
File Tools View Simulation Help

- 0r® - a-CldxH-

10

8

@

Amplitude
-

Y}

I I I | | | | |
50 -40 -30 20 -10 0 10 20 30 40
Frequency [Hz]

Ready

-« Osdilloscopel
File Tools Wiew Simulation Help

Q- 0OP® - Q- K- F@A-

T
FilleredSignal_v
UnfilteredSignal_V [

Amplitude
o

&

50 1 1 I T 1
153 154 15.5 15.6 168.7 15.8

Time (seconds)

Figure 54. Results 2 of Digital Filter and FFT

From these results we can say that we satisfy the results of Concept Model. Furthermore, we
added:

e state machine
e quantization
e sampling

e holding

e HMI design

Now to start the process of transitioning from Technical to Production model shall start we
must implement:

e Scheduling of the tasks
e Interrupt handling

Task 3 - Fast Fourier Transform

OFF w _ (ON
during: L 1 ~{ during:
spectrum = zero_Spectrum; on every(fftTicks,tick): spectrum = fft(Signal1_V);
[~flag1 == 1]
o
Figure 55. Task control

Performs FFT in the incoming signal
Complex to Magnitude-Angle:

Converts the complex values to magnitude. By default it has 2 outputs, magnitude and angle,
but in our case only the Magnitude is selected.

FFT Shift Matlab function:

Shifts zero-frequency component to center of spectrum. It is useful for visualizing the Fourier
transform with the zero-frequency component in the middle of the spectrum.

FFT in Simulink:

1 > FFT
g] PN (D)
Signal1_V fen

FFT Complex to - Gain Spectrum_V
Buffer Magnitude-Angle FFT Shift

Figure 56. FFT modelling

Validation of Task 3
Result for a given input with 100Hz frequency and amplitude 10:

600
5001

400

100 1 k 1 4
__J
N N R B
oF .
L L I i L I 1 L L
-500 -400 -300 -200 -100 0 100 200 300 400
Frequency [HZ]

Amplitude
w
S

Figure 57. FFT result

Result for a given input with 300Hz frequency and amplitude 10:

B o =3

=} =] <t

=} =] S
T

Amplitude
w
8

200

1001 j .
\

1 | I | L i | L i
-500 -400 -300 -200 -100 0 100 200 300 400
Frequency [Hz]

Figure 58. FFT Result

Emergency Task

Emergency Task as specified in Functional Safety requirement must be the highest priority, i.e.
this will translated as the task will be triggered by a Hardware Interrupt with highest priority
and cannot be pre-empted by any other task. The task will be managed with Stateflow with
following flow:

1. Hardware interrupt is ON

2. Emergency task starts running

3. Set an emergency global variable to ‘True’
4. Emergency Task finishes

Now, depending on which task is next in queue:

5. Supervisory Control goes to Emergency State
6. Task controls go to OFF

All of the tasks are controlled by the emergency global variable because we do not know which
task was pre-empted by the Hardware Interrupt, thus which task will run after the Emergency
Task. Doing this, we make sure that everything goes to OFF after Emergency task runs.

Emergency function-call task Stateflow:

[]
@mergDefault I mlterruptOn)
entry: __ entry:
%DoNothing calliflagt ==1] flag1 = 0;
call
=
\§ v - /

Figure 59. Interrupt handling

How can we manage Scheduling and Interrupts together with Validation of the task will be
analyzed in the following.

Scheduling

Scheduling of the tasks is very important in Real-time applications such as ours. In this
subchapter we will analyze how can we use Simulink to do so and implement it in our example.
Simulink offers two types of scheduling:

e Time-Based Scheduling
e Event-Based Scheduling

Firstly, as seen in Customer Requirements table, in our application we have 3 Synchronous
tasks that have to be executed as Time-Based Scheduling:

e Supervisory Task
e Digital Filter Task
e FFT Task

Secondly, we have another task that must be executed Asynchronously, i.e. only when the
Emergency switch is turned on, thus this task must be scheduled as Event-Based Scheduling.
The illustration below shows the scheduling principle without taking to account the execution
times of the tasks:

H HW Interrupt

Emergency Task * Time

Supervisory Task l ry » Time

Digital Filter Task l_l >

l Time

FFT Task - - > Time

Figure 60. Scheduling

A

Simulink offers several ways to handle the scheduling of tasks(subsystems). Here we will use
‘Temporal logic scheduler’ that is implemented via Stateflow. This technique allows us two
different ways to use it:

e Event-based Temporal logic
e Absolute-time Temporal logic

For Absolute-time Temporal logic the operators that can be used are:

o after(x,time)

e Dbefore(x,time)

e cvery(x,time)

e temporalCount(time)
e clapsed(time)

Time can be set as seconds(sec), milliseconds(msec), microseconds(usec), and “x’ is the time
value.

But, for RTOS applications using Absolute-time is not recommended from Simulink. Thus we
will use Event-based Temporal logic to execute Synchronous tasks. The operators are the same
as Absolute-time, but they are used in a different way. The syntax is as follows:

o cvery(n,tick)

The example is given for the operator ‘every’ but it is the same for every operator. The
important thing is that the variable ‘tick’ has to be linked in a Timer, Clock or to the base rate.
Here, we decide to not put anything more and complicate the model and use the base rate. In
this case, the base-rate and sub-rate tasks will be managed by the OS itself and not by timer
interrupts. The logic goes like this:

e Execute Supervisory Control Task in a base rate that is 10Khz
e Execute Digital Filter Task every 10 base rates, thus frequency is 1KHz
e Execute FFT Task every 100 base rates, thus frequency 100Hz.

Interrupts

A more complex process to be managed in Simulink is handling Interrupt Service
Routine(ISR). The block that creates an ISR and it also is supported from Embedded Coder,
i.e. its code can be automatically generated is the block called ‘Hardware Interrupt’ block.
This block can be used only in subsystems that are set as a ‘Function-call subsystems’ and it is
different for every type of hardware. In this case we will analyze the most common one:

e ARM Cortex-M processors

ARM Cortex-Mx
1 o)
NmilSR

Hardware Interrupt

[*al Block Parameters: Hardwiare Interrupt ®
ARM Cortex-M Interrupt Block
Trigger the downstream function-call subsystem from an interrupt service routine.

The black output triggers the downstream connected function-call subsystem when the
selected Interrupt occurs,

Select the interrupt service routine with the ‘Interrupt group' and the ‘Interrupt name'
parameters.

The 'Interrupt number' displays the corresponding ARM Cortex-M interrupt vector table
entry.

Use the ‘Simulink task priority’ parameter to set the priority of the downstream function-
call subsystem. The default model base sample rate priority s set to 40 with a lower
priority value indicating a higher priority task. These settings can be adjusted In the
*Solver’ pane of the ‘Configuration Parameters’, The Simulink task priority of the selected
interrupt Is relative to the model base rate priority.

Check ‘Disable Interrupt pre-emption’ to block all other interrupts while executing the
selected interrupt service routine.

Check "Add simulation input port’ to enable the 'SIMIRQ' block input. In simulation, the
block triggers the downstream function-call subsystem if 'SImIRQ' is TRUE. 'SImIRQ' is
ignored in the generated code.

Parameters

Interrupt group: Cortex-M Exceptions
Interrupt name: NmilSR

Interrupt number: -14

(] Disable interrupt pre-emption

[Add simulation input port

[k | cacel Help Apply

Figure 61. Hardware interrupt block and its parameters

(Another example is ‘External Interrupt’ block for Arduino Hardware.)
To use the ‘Hardware Interrupt’ block we must set its parameters:

e Set interrupt group, in this case Cortex-M

e Set interrupt name, it will correspond to the specific entry of the processors interrupt
vector table. A good option is to leave it as it is and then check if that is available in the
processors vector table

e Interrupt number, corresponds to the position of interrupt in the processor vector table

e Check the ‘Disable interrupt pre-emption’ because we do not want other interrupts to
preempt the ‘Emergency Task’

Of course, when the code will be generated and integrated with the firmware, the GPIO
input of the board that the hardware interrupt is connected (in our case the Emergency
Switch), must be linked to the ISR via hand-written code.

VAN

Emergency Boards input Hand- ISR (Generated by
switch i pin written code ["| Embedded coder)
HARDWARE SOFTWARE

Figure 62. Hardware interrupt flowchart

All this procedure must be done when we set which hardware we will going to use. For now,
we will use the Interrupt simulation block. Note that This block cannot be used for code

generation.

FFT

Figure 63. Control content with Interrupt simulation

Validation of Task 1

Monitoring the Supervisory Control via Chart Mode we see that every input of us given through
HMI Module is working, as can be seen in the following picture:

{4\ Chart Modes - O X

File Tools View Simulation Help k]

@-eRP® 2-q-C-F&-

Figure 64. Chart mode

Control frame

Control frame input must take the Analog input signal and give a digital output to the Control
content. Here, we have done it via Quantizer block in Simulink.

D Signal1Vv > ;‘JI Signal1V

Signal1C_V Signal1D_V

Quantizer

Figure 65. Quantizer

Several tests have been done to see the number of bits needed to have a good result, of course
keeping in mind that we are in a simulation environment. We have concluded that until 6 bits,
the results with our range of frequency and amplitude is enough. The results with 4 bits give
us a wrong result about signal spectrum, since the algorithm does not have enough information
to give us the good result. The output with 4 bit quantization is shown below:

@
o
2
S
g
<C

Figure 66. FFT Output with 4 bit quantization

The control frame output must take the calculated digital output from the Control content and
transform it to Analog. Here we have done it via PWM and a Lowpass filter. The parameters

to be set are:

e Saturation levels

e Period of Repeating sequence
e Value of Repeating sequence
e Relay switch on and off values
e Output when off and on

e LPF characteristics

: Signa1Vv _/
Signal1V -
Saturation
I
L
j SignallPWM d owpass Signal1AnalogV -
e AnalogSignal1V
é elay Lowpass Filter
Repeating
Sequence

Figure 67. PWM Design

Results after reconstruction of the Signall:

Signal1V, FilteredSignalV
T T T

Filter/Signal1PWM | J
FilteredSignalV

Figure 68. PWM Results

Human-Machine-Interface

Components:

e Start/Stop push button
e Emergency switch

e Oscilloscope

e OnLED

e Emergency LED

M EmergencyV M OnV

H\Hm HWM |\

} i WHW H

I
ol

-9

- doutle

. doutle

Emergehc

Emergency_button1
on

Figure 69. HMI Design

Plant Song
—
double
e oo 3

‘ControltoHM| ouble
Er G
e S

HMI feedback:
While transitioning:
OnLED o .
— @

LED

After transition:

LED

Figure 70. HMI Feedback

Emergency @ .

HMIOutput

TR []

-

USER

Figure 71. Simulink model architecture view

Testing

For this example we only had a chance to perform SIL and not PIL or HIL since we did not go
further for VMU selection. We focused on Model Based design and code generation thus SIL
was necessary.

Besides this, here we also perform the checks for the standards and guidelines via Simulink to
see if our work satisfied ISO 26262, MISRA C, MAAB Guidelines.

Tools — Simulink, Simulink Check™

Safety Aspect — SIL Testing, Standards check
Techniques — SIL

Artefacts — SIL results, passed or failed Standard check

Software in the Loop

“Software-in-the-loop simulation mode denotes simulations in which the software of the real
control system is embedded in the simulation loop. The simulation contains part of the real
system, i.e. the control software, together with simulated parts, i.e. the device hardware and the
environment. The executable code of the real control system is directly embedded in the
simulation. In SIL, the software of the real control system is deployed on simulated devices
that reside within a simulated environment with simulated sources of dynamism. SIL
simulation is typically used during the late stages of application development. SIL simulation
enables experimenting with the control system on simulated devices before deployment.” [14]

In our case we will carry this task in Simulink. Certainly, SIL model contains only CONTROL
module and nothing else.

Block Parameters: SIL Model X
Model Reference
Reference the specified model.

Main Instance parameters

Model name:

SilmodelFilter.slx ‘ Browse... | Open Model

Simulation mode: Software-in-the-loop (SIL)

Code interface: Top model

Model events simulation:

[] show model initialize port
Show model terminate port

[[] Schedule rates

® oK Cancel Help Apply

Figure 72. SIL Settings

1
*\o_ LedEmergV
II’_l—b—o onv LedEmergV
2
LedOnV
ﬂ LedOnV
el
- - »{ 3
FilteredSignalV -
FilteredSignalV
oooo
00
Signal1V
_ o »(4)
Signal DftV
Generator

SIL Model

Figure 73. Simulink model to run SIL

Because this example is computationally simple with very few variables, we see that the results
are the same as Model-in-the-Loop. In the contrary, we will see that differences will be rather
bigger when we deal with a real application.

[=-|a-E1 | o0&

W FilteredSignalV:1 (NormalMode2) ® FilteredSignalV:1 (SILModel2) ® Tolerance

W Difference M Tolerance

21 22 23 24 25 28 27 28 28 30 a1 32

Figure 74. SIL results

Standards check

The results of modelling were satisfactory and failed none of the standards or guidelines. But,
there is room to improve the Warnings given. All the reports of each check are generated and

stored in documentation. In the following figures we can see the summary of results for each
of the ran checks:

Filter checks Model Advisor Report - technical_model_digitalfilter_22_11_19.slx

@ @ passed Simulink version: 9.3 Model version: 1.24
System: Current run: 04-Mar-2020

* O Faik technical_model_digitalfilter_22_11_19/CONTROL 17:09:58

& warning Treat as Referenced Model: off

LI NotRun

Run Summary
Pass Fail Warning Not Run Total

@53 Qo Aagr Do 90
Navigation
Modeling Standards for " B Modeling Standards for ISO 26262
1S0 26262)
1 High-Integrity Systems R) B
1.1 Simulink @ Display configuration management data
1:2 Statefiow Display model! configuration and checksum information
1.3 MATLAB NOTE: These checks were performed on a sub-system, but are based on root-level
1.4 Configuration settings.
1.5 Naming B
View Model configuration and checksum information
= Scroll to 1op Attribute ___|Valte |
Hide check details Model Version 1.24
Author hoxha
Nata Qat lan N4 14-35-33 2N20
Figure 75. ISO 26262 check results
Filter checks Model Advisor Report - technical_meodel_digitalfilter_22_11_19.slx
Simulink version: 9.3 Model version: 1.24
¥ @ Passed s . .
O Fai ystem: Current run: 04-Mar-2020
. Failed technical_model_digitalfilter_22_11_19/CONTROL 17:06:46
@ & waring Treat as Referenced Model: off
I Not Run
Run Summary
Keywords Pass Fail Warning Not Run Total
Qo Qo A4 Do 13
Navigation
Modeling Standards for = Modeling Standards for MISRA C:2012
MISRA C:2012

A Check configuration parameters for MISRA C:2012

Identify configuration parameters that might impact MISRA C:2012 compliant code
generation.

Figure 76. MISRA C:2012 check results

Filter checks

Model Advisor Report - technical_model_digitalfilter_22_11_19.slx

Simulink version: 9.3

Model version: 1.24

‘ gpa_s““ System: Current run: 04-Mar-2020
2 Failed technical_model_digitalfilter_22_11_19/CONTROL 17:11:04
¥ & waming Treat as Referenced Model: off
@ [INotRun
Run Summary
Keywards Pass Fail Warning Not Run Total
@s0 Qo A2 Lo 72
Navigation
Modeling Standards for ~ = Modeling Standards for MAAB
MAAB "
1 Naming Conventions
2 Model Architecture # 1 Naming Conventions @3 Qo A4 o
3 Model Configuration
o # 2 Model Architecture @4 @0 4o Lo
ptions
Simulink = 3 Model Configuration Options @1 @0 &1 o
5 Stateflow i
T ® 4simulink @18 @o A12 Lo
= Soroll to top = 5 Stateflow @19 Do A3 Lo
Hide check details
= 6 MATLAB Functions @5 @0 42 "o

Figure 77. MAAB guidelines check results

In addition of the standards, we run also Code Generation Advisor with no failures:

(@ Code Generation Advisor - technical_model digital_filter - u} X
File Edit Run Settings Help
Find: b 4
Code Generation Advisor
v @ code Generation Advisor
4 Check model canfiguration settings against code generation obje Code Generation Advisar =
A\ Hdentify unconnected lines, input ports, and output ports Analysis
@ Creck for optimal bus virtuality Code Generation Objectives (System target file: ert.tic)
A\ Check Data Store Memory blocks for multitasking, strong typing, Avallable ob <l objectives - prioritized
° “Identify black output signals with continuous sample time and ¢ e i
N ecution efficiency
@ Identify questionable blacks within the specified system ROM efficency
Check the hardware implementation RAM efficiency t
lentify questionable software environment specifications raceabil
Id ble softw i Traceabi
@ 1dentify questionable code instrumentation (data 1/0) gl::tv precaution T
; ugging
~Check h:
g Ac eck for biocks that have constaints on tunabie parameters WMISRA C012 qukdelnes
Tdentify questionable subsystem settings. Polyspace
@ ~ldentify blocks that generate expensive rounding code
& ~ldentify questionable fixed-point operations
@ 1dentify blocks using cne-based indexing — -
@ check for blocks not recommended for MISRA C:2012
Q Identify lookup table blocks that generate expensive out-of-rangs [C] show report after run
& Check cutput types of logic blacks
@ Check if Read/Write diagnostics are enabled for Data Store block Report
@ ~Check structure narameter usane with bus sianals e Report: .report Lhtml Save As...
< >
Date/Time: 04-Mar-2020 19:19:23
() Model Advisor summary: @@ Pass: 27 @ Fail0 A\ Waming: 6 [] Mot Run: 0
(@ Upgrade Advisor Ties

(£ Performance Advisor

To process all enabled items in this folder and generate a new report, dlick "Run Selected Checks". v

Figure 78. Code generation advisor check results

Help

PART 2, BAT-MAN PROJECT

1. Customer Requirements

[tem definition

“The proposal of BAT-MAN is to make significant technologic innovations (especially relative
to the techniques of estimation and diagnostics), realizing at the same time a product idea
(realizing a prototype) that, on the one hand it can offer immediate and large-scale feedback on
the solutions developed, and on the other can act as a forerunner to a series of applications
based on the same technologies, either in areas closely related to accumulation systems, or in
areas where advanced diagnostic and estimation techniques can bring a significant added
value”. [1]

In other words, BAT-MAN project is an innovative approach to estimate the State of Charge
(SoC) and State of Health (SoH) of a Lead-Acid battery. This project comes to life to fulfill the
great demand of the Automotive Industry which is going in the way of full vehicle
electrification, where BAT-MAN becomes a necessity.

The BAT-MAN estimation algorithm has four inputs and two outputs. The inputs are:

e Terminal Voltage (measured)

e Current (measured)

e Temperature (measured)

e Nominal Capacity (Characteristic data of the battery)

The outputs in the other hand as we already mentioned are:

e SoC (State of Charge of the battery)
e SoH (State of Health of the battery)

Figure 79. Item definition

Voltage [V]

Current [A] SoC [%]
Temperature [°C] BAT-MAN
. . » Algorithm -
Nominal Capacity SoH [%]

[Ah]

OUTPUT

INPUT

Bluetooth

Lead-Acid BAT-MAN BAT-MAN Mobile

Figure 80. Item definition

What is State of Charge?
The amount of charge in the battery that can be extracted from it, in percentage. The formula:

“I(t)d
S 1z T)

SoC = (SoCy +
Cn

Nominal Capacity C,, is the energy storage capacity of a battery in theory, that is given by the
producer of the battery. The formula?
Cp = G+ Ciost

where (¢ 1s the amount of energy that is no more available or extractable from the battery
due to its health.

What is State of Health of a battery?
The amount of charge extractable from the battery in its fully charged state, relative to the

amount when the battery was new. i.e. its Nominal Capacity given by the producer.

Cr
SoH = — -100
Cn
where C, is the Real Capacity, i.e. the amount of charge that is extractable from the battery.
The formula:

Cr = Creleased + Crelesable

Estimation of State of Charge

There are several methods to estimate the batteries state of charge. From most of the literature
they are categorized in :

1. Direct measurement, uses physical battery characteristic and it can be categorized in:
a. Open circuit voltage method
b. Impedence method

c. Terminal voltage method

2. Book-keeping estimation, uses discharging current integration over time, and it can be
categorized as:
a. Coulomb counting method
b. Modified coulomb counting method

3. Adaptive systems, estimation algorithms that adapt to different conditions, such as:
a. Kalman Filters
b. Deep learning
c. Machine learning

4. Hybrid methods, use a combination of methods:
a. Coulomb counting and Kalman filter
b. Coulomb counting and EMF combination
c. Per-unit system and Extended Kalman Filter combination

Estimation of State of Health

SoH estimation methods can be categorized as:

1. Capacity estimation techniques
2. Internal Resistance estimation techniques

While for the first method we already have talked about, the Internal resistance estimation
technique formula is:

Reol - Rcurrent

SoH = 100

Reol - Rnominal

where R,,; 1s the internal resistance of the battery in its end of life, and in the other hand
R yrrent 18 the current internal resistance of the battery and R, omina; 1S the nominal internal
resistance.

To further continue defining our items properties we must understand what are the factors that
SoH depends on. We must define them in this phase, but will furthermore study the effect in
the Architecture section, where we modularize the whole system and indeed understand the
interactions between them. Factors can be categorized as follows:

a. Temperature

b. Overcharging, can damage the electrolytes of the lead-acid battery. It can decrease the
capacity of the battery and increase its internal resistance

c. Cycles of Charge/Discharge
Amplitude of the current extracted, if it goes beyond the factory limits

e. Ageing, chemical components age due time which decreases the capacitance of the
battery

Lead-Acid battery

Today, Lead-Acid battery is the main energy source for starting the automotive engines. Of
course, we are not responsible for the lead-acid battery safety itself because that was certainly
taken care of by the producer of the battery. Instead, what we are interested in is the range of
the output it can deliver, which will be our boards input.

Ignition 2-9A
Radio 0.5-5A
Windshield Wipers 7.5A
Headlamps (Low Beam, Dim) 17-18A
Headlamps (High Beam, Bright) 19-20A
Parking lights 4-10A
Brake lights 6-11A
Interior lights 2-4A
Bonnet Light 0.5-1A
Horn 4A
Power Window (One window) 5A

ABS Brakes (Max) 14A

Boot Light 1A
Blower (Heater, Air Conditioner) 14A
Heated Rear Window Defogger 13-28A
Heated Seat 5A
Power Seat Motor 10-13A
Summer Starting (Petrol) 150-200A
Summer Starting (Diesel) 450-550A
Winter Starting (Petrol) 250-350A
Winter Starting (Diesel) 700-800A

Table 9. Typical current loads of passenger cars [15]

The above table, taken by the customer shows us that the current can go until 800 Amps, while
the voltage is always 13 Volts. The current depends on the temperature, lower temperatures
indicates higher current, thus temperature sensor will become very handy for further analysis
of the input data.

Requirements specification

After several meetings with the company, we have ended up with this table of requirements:

Function 1

BAT-MAN Application

Requirement 1-1

Sampling frequency must be fs= 10 Hz

Requirement 1-2

Input signal voltage shall be in the range of + 13 [V]

Requirement 1-3

Must calculate SoC, highest priority

Requirement 1-4

Must calculate SoH, highest priority

Requirement 1-5

Must calculate Reliability of the result, lower priority

Function 2

HMI

Requirement 2-1

A mobile app must be created as HMI

Requirement 2-2

Communication between HW and App must be Bluetooth

Requirement 2-3

Must consist two windows, one for inputs of the user (to insert
the data of the car, battery of the car, Nomical capacity of the
battery). The second is for Outputs.

Requirement 2-4

Start push button must be added (Mobile App) to start
communication

Requirement 2-5

Graphs to monitor the output must be added

Requirement 2-6

Graphs to monitor the inputs must be added

Requirement 2-7

Data must be saved on certain files for further use

Function 3

Bluetooth transmission

Requirement 3-1

Outputs must be transmitted every time we have a result

Requirement 3-2

Housing must be designed for EMC standards

Table 10. Requirements

We can see that these requirements demanded by the company are very similar with our
example in previous chapter. This shows us that our example was very much on point, thus
giving us more confidence to keep going further.

Hazard analysis and risk assessment

“In Part 3 of ISO/DIS 26262 [ISO/DIS 26262-3 2009] the process of hazard and risk
assessment is described. Potential hazards are identified following an analysis of the
operational situations of the system. The system may be a vehicle, a vehicle system, or a vehicle
function. For purposes of our analysis, we will assume the H&RA process is being applied to
a vehicle. The identified potential hazards are then categorized based on the following factors:
severity, probability of exposure and controllability. The categorization results in the
determination of an ASIL to the potential hazard. The ASIL is also assigned to the safety
goal(s) formulated to prevent or mitigate the potential hazard, in order to avoid unreasonable
risk. Risk reduction (safety) requirements are then derived from these safety goals and inherit
their ASIL” [16].

Through brainstorming and consulting with several groups of people, we have ended up with
the following hazards. It is important to say that this is only for Lead-Acid battery. Because the
company aspires to adapt this project for Lithium-lon batteries in the future, that would be
significantly different and possibly would have ended with different ASIL determination.

Component Failure Mode Effect on the item

Microcontroller FM1: Sensors are damaged input

FM2: Not grounded Hazard 2: Possibility of damage

damaged output

FM4: Microprocessor fails in ~ |Hazard 4: No results available
executing instructions

FMS5: Input signal beyond limits |components

Hazard 1: Electronic board gets wrong or no|

FM3: Bluetooth transmitter is |Hazard 3: Electronic board does not send an|

Hazard 5: Possible damage on electrical

Interfaces/Cables | FM6: Cables not well-isolated [Hazard 6: Noisy input

FM7 : Bluetooth connection failure{Hazard 7: User cannot be informed

HMI/Mobile App

FMS: Connection failure/error in

the application Hazard 8: User cannot be informed

FMO: App fails to store or show

the data Hazard 9: No serious damage

Table 11. Hazard analysis

Hazard Effect Comment

Hazard 1:

Hazard 2:

Hazard 3:

Hazard 4:

Hazard 5:

Hazard 6:

Hazard 7:

Severity: 0

Exposure: 4

Controllability:

Severity: 1

Exposure: 4

Controllability:

Severity: 0

Exposure: 2

Controllability:

Severity: 0

Exposure: 3

Controllability:

Severity: 1

Exposure: 3

Controllability:

Severity: 0

Exposure: 3

Controllability:

Severity: 0

Exposure: 2

Controllability:

Wrong information possibility without any serious

damage
Sensors are always on when the item is on
1 Simply controllable
Possible damage

Electronic board is always on when the item is on
1 Simply controllable
No possible damage

Bluetooth is not always working, only time to time
1 Simply controllable

No damage possible when there is no output
Microprocessor often is working when item is working
1 Simply controllable
Possible damage on electronic board

Electronic board often is taking input from sensors
1 Simply controllable
No possible damage

Cables are often transmiting electrical energy

1 Simply controllable
No possible damage

Bluetooth is not always working, only time to time

2 Can be difficult to control

Hazard 8: Severity: 0 No possible damage
Exposure: 3 Item often is working
Controllability: 2 Can be difficult to control
Hazard 9: Severity: 0 No possible damage
Exposure: 2 App is not always connected
Controllability: 2 Can be difficult to control

Table 12. Risk assessment

In addition, the situational analysis, i.e. analyzing different situations would not be needed
because in this application clearly the main and by far most important and dangerous situation
is the cranking phase, i.e. engine start. In our case we see that the highest level of risk is given
by Hazard 2: Controllability(1) + Severity(l) + Exposure(4) = 6. From the table we can
determine that this projects ASIL is QM(Quality Management).

El am am am

£2 am am am
S1

E3 am am A

E4 am A B

£l am am am

E2 am am A
52

E3 am A B

£4 A B

El am am A

E2 am A B
S3

£3 A B

Figure 81. ASIL Selection

Quality Management leaves us with no requirements from [ISO26262. This conclusion will
make a significant difference from the previous chapter where we determined the example as
ASIL A. Now, we will have way more tolerance on doing things but keeping in mind that if
something is possible which might give us more robustness in safety point of view, we will set
that as something to be done. Also durability, quality and reliability must be taken into account.

Concept model

Brain Technologies has provided us with their — what we call ‘Concept model’. In this
subchapter we will explain the model, i.e. the work that has been already done, in which way
it is done and then modify the model as it should be done with respect to MAAB guidelines.
After that we set our objectives and see the results to be compared with the ‘Technical Model’.

The algorithm is divided in two modules:

1. Series of extended Kalman Filters
2. Error management and selection of the best estimate

Inputs of the first module, thus the inputs of the whole algorithm are:

e Voltage

e Current

e Temperature

e Sampling time

e Initial SoC in first time algorithm runs, after that the input is the previous SoC
e [Initial Voltage

e Nominal capacity

while the outputs of it, thus the inputs of the second module:

e Estimation of SoCs from different Kalman filters
e FEstimated error absolute value
o Current

And the outputs of the second module, thus the whole algorithms:

1. SoH

2. SoC

3. Reliability, which is the value in percentage of how much we trust the results given to
the user.

It is important to see the following figure, which is exactly what was given to us. It is very clear
that firstly we must apply the MAAB design guidelines and then proceed further. Also, a lot of
the work has been done on Matlab, which is not preferable but still we can fix it when we are
in the code generation point, converting that code into MISRA standard code.

BATTERIA DI EKF LOGICA DI GESTIONE ERRORI E DECISIONE STIME

-] imes
I_meas e T
:
B Ve

EKF_dyn Vi_err [V]
(5) »|soCiniz
G- une

Vi_est

Cn

Figure 82. Concept model from customer

The inputs of the BAT-MAN algorithm in this case are given from the real data taken by the
real batteries. Certainly, the team before has also run the algorithm with the battery model. The

illustration below shows the architecture of the algorithm:

T ———
- = oo my | o0
200 :
. 1 i ——
L . 1 g T
. |
b i Mo ‘ s)
L[w / ; PR VAU oF B NGV Wy
/ v 1 | N
) 11 /\/N ‘ |y A
/ / | | /
100 i /7 1 N
’ ol ‘ I
/ LA
al” \
{ \
Y \ -~
. ﬁ /
o] /
o
| ﬂ/
|
a0 0 /'1///
| L
I I e e o B B A S B
Figure 83. Inputs (left) and Outputs (right)
mSoH mSol mSoC
mGurrent[A] W Temp[*C] ® Nominal Gapacity [Ah] W Voltage profile [v]
o 100 [y
@ T
o H] M I H“
5
” il ‘ f uL
»
0
T e e T e e e e m w e e 1 W W W A wm e e e @ me wn we e

Figure 84. Inputs (left) and Outputs (right)

W Current (4] Temp{'C] = Nominal Gapaciy [An] W voltage profie [V]

mSoH mSoU S0

o

<VioltageMeasuredV>

<CurrentMeasuredV>

<TempMeasuredC>

350 “an sm 5000) 5500

Figure 85. Inputs (left) and Outputs (right)

INPUTS

InputBus

<SampleTimeS>

<SoClnitv'>

<Voltagelnitv>

SoCEst

Te Vi_err_abs
EKF_dyn
SoCiniz
| Vtiniz
Vi_est]
cn
KALMAN FILTER

ViErrorAbsVal

SoC_est_i

ERROR MANAGEMENT

Figure 86. Concept model modified

Architecture & Design

Techniques — System is defined as QM

Methodologies — Modular and reusable architecture

Artefacts — Architecture components definition and interfaces

Safety aspect —

SoHOut

SoUout

SoCout

Some techniques recommended by [SO26262 for ASIL A, even though the system is

QM

As we understood in the example tutorial, there are features that must be specified. For BAT-
MAN they are as follows:

e The environment: The item will be placed in a vehicle

e There are no permitted ways of use

e Only one mode of operation specified

Neither of the functions are function-call

Input voltage is in the range of +15 V.

Input current is in the range of + 900 A

Input temperature is not specified. It is considered as environment effect.

Environment

_____ } _______{_____‘_ Interface — EM

Plant

Interface —
----.1------“?----“ Cables
Control
-1 T) Interface = Bluetooth
HMI

interface — Mobile HMI

Figure 87. Architecture illustration

BAT-MAN has two operation modes:

e Device is connected to the Mobile app
e Device is not connected to the Mobile App

Environment

Lead-Acid batteries are deeply affected by the environment temperature, thus it is necessary
to design our model including temperature input as disturbance in the Environment module
of our architecture. Due to a lot of electro-chemical interaction that happen in this kind of
battery the temperature will affect the aging of it. This effect can be described as the
Arrhenius equation.

“Svante Arrhenius was a Swedish scientist who discovered the life of lead-acid batteries is
affected by variations in temperature. He established that for every 10°C increase in
temperature the battery life would be halved. Therefore, as an example, it follows that if the
life is 30 years at 152C then at 252C the life will be 15 years. The equation also suggests that
at 52C the life will be 60 years but unfortunately other things come into play when batteries
are very old, typically over 30 years, and the Arrhenius equation is only really valid between
about 152C and 409C for operational batteries”. [17]

The data sheet of ‘Hawker Cyclon’ battery shows this following graph:

140
120

100 f"’/——/—_
80 —

60O
40
20

% of nominal capacity

D T T T T T T T 1

-20 -10] 10 20 30 40 20 60
Temperature

Figure 88. Relation between Cn and Temperature [17]

Nominal operating temperature is 20°C. Thus, we must know that when we talk about
different characteristics of the battery, it is given that the operating temperature is 20°C.

To understand better we might take an example. Let us suppose that a battery operates in
different temperatures in different months. Then, we compute the aging of that battery in one
year. The following figure shows a typical operating temperature of a battery designed
according to IEC 60896 that has a life of 12 years:

27
26
25
24
23
22
21
20
19
18
17
16
15

O EAPOP~CAu~TCTI0o

Figure 89. Battery typical operating points [17]

6 8
Time Months

10

12 14

Taking to account the Arrhenius equation the following table was formed:

Month Average % of Nominal Calculation Aging Aged days in
Temperature Life (100% / Temp %) | Effect the Month

1 20.5 95 100/95 1.05 31.58
2 21 92 100/92 1.09 32.61
3 22 87 100/87 1.15 34.48
4 23.2 80 100/80 1.25 37.50
5 25.3 70 100/70 143 42.86
6 26 65 100/65 1.54 46.15
7 25.2 70 100/70 1.43 42.86
8 23.8 i 100/77 1.30 38.96
9 225 85 100/85 1.18 35.29
10 215 90 100/90 111 33.33
11 20.5 95 100/95 1.05 31.58
12 20 100 100/100 1.00 30.00

TOTAL AGED DAYS PER CALENDAR YEAR 437.21

Figure 90. Ageing in different temperatures [17]

We see that the battery does not age the same in different temperatures. With the typical
operating temperatures, we can conclude that in 365 days the battery ages about 437 days.
Thus, if the life expectancy in theory is 12 years as this considered battery, in the reality it
would be approximately 10 years. This simple example makes it very clear to us the effect of
temperature cannot be neglected and certainly must be taken care of.

Plant

In this phase we shall define the plant (Lead-Acid battery) in more specific and technical detail.
The location of the plant in the vehicle can vary from the producer of the vehicle. Usually, in
most of the cars Lead-Acid battery is located in the cars hood. But nevertheless, there are cars
that have the battery located inside cars trunk. Thus, both cases have to be considered if needed
in the future of the development.

Figure 91. Battery location in the trank of the car

Firstly, the customer that has already done the concept model mostly has been using the real
data that were collected from different kind of batteries. But surely that is not enough and a
model must be defined. Certainly, there are a lot of different ways to do it, such as:

1) Electrochemical modelling
a) Shepherd model
b) Nernst model
¢) Unnewehr universal model

2) Equivalent circuit model
a) Rint model
b) Thevenin model
c) DP model

Electrochemical modelling needs a lot of memory, time consuming, computationally
expensive, thus it is out of question immediately. The customer, for now has chosen to use
Thevenin model. A simple Thevenin model is shown in the figure below:

CP
Il
I
AWy AW 3
R R,
U — u,
I
%

Figure 92. Thevenin model

Data flow from the Plant to Control:

e Voltage
e Current
e Temperature

Data flow from Control to Plant:

e None

Control - Hardware architecture

“Architecture is often seen as the spine of each product. ISO 26262, part 1, chapter 1.3
describes architecture as the representation of a vehicle system, of functions, systems or
elements, which are identifiable through components, their distinctions, intersections and
allocation to electric hardware and software. The functional concept (ISO 26262, part 1,
chapter 1.50) is mentioned as the basis for the definition of vehicle systems. According to the
glossary the functional concept is compiled from specifications of intended functions and their
interactions in order to achieve the desired behavior. Therefore, it is evident that architecture
needs to fulfill two requirements. It provides the product structure and its intersections as well
as the foundation for the description of the technical behavior. Each component or element and
their intersections ask for certain requirements. The intended behavior as well as the behavior
in case of a failure has to be specified. This forces us to plan and define all levels of abstraction,
perspectives, intersections as well as their desired technical behavior in advance.” [13]

As we already know, our system takes as input the current, voltage and temperature thus the
need to have a way to acquire those data becomes necessary. As a first hardware component
we must think of components that are able to:

e Measure Voltage in the terminals of the plant
e Current flowing
e Temperature

Secondly, as a requirement from the customer we know that the output data must be sent by
Bluetooth to HMI. Thus, concerning the microcontroller we shall choose a:

e Wireless microcontroller

Thirdly, again from the customer we know that the output data must be saved even if there is
no connection between User HMI and control. Thus, as a component we must add:

e Flash Memory

Current and >
Voltage .
SENSOR Wireless
Microcontroller
Flash
Temperature > » memory
SENSOR

Figure 93. Hardware
architecture

In addition of all this, for safety reasons as mentioned, another component that must be added
is:

e Protection circuit

Concerning the power supply of the hardware, a clever choice is to use the power of the Plant,
not only acquiring the data of it.. This of course would require another component, a Converter.

Voltage measure

Current measure

Lead Acid
battery

Power supply

\4

L Converter

Figure 94. Power supply architecture

“Each electric component creates heat, which has to be directed outside. The thermos
conductivity of the housing plays an important role here. Overheating is a major cause for fire
in control units. This is explicitly mentioned in ISO 26262 since this could be a failure function
of the electronic.” [13]

Starting from the information that above mentioned phenomena is explicitly mentioned in ISO
26262:

e A compatible housing must be designed to avoid thermos conductivity

Control - Software architecture

The software architecture for BAT-MAN project can be divided into 3 main modules:

1. Acquire the data
2. Process the data
3. Transmit the data through Bluetooth

Acquire data module and transmit the data module will be hand-written code. Process the data,
i.e. BAT-MAN algorithm will be obtained through automatic code-generation via Simulink.
All of the modules will be part of one block of code without function calls or interrupts to
execute the tasks.

Process the Transmit the data

Data acquisition :
a » acquired data - via Bluetooth

Hand-written Code- Hand-written

generation

code code

Figure 95. Software architecture

Concerning the module of transmitting the data via Bluetooth, there are several choices given
by different companies such as Texas Instruments with CC26xx wireless MCUs or Renesas
Synergy with SK-S7G2 Synergy MCUs or the PK-S5D9 Synergy MCUs. Thus, the quality and
safety of the code are guaranteed by these companies that have already done the tests and
fulfilled their requirements.

Application architecture

Figure 96. Application architecture

Voltage
SoC
Current A number of L 0
Statistical
— Kalman > > SoH
Temperature filters method
Reliability
Nom.
Capacitance
Inputs Estimation Error Outputs

management

Kalman filtering estimation flowchart:

Prediction step

Pricr knowledge Py 1 Bacad
i of state — & : —s Based an .0
‘ " F physical made
— . &
Miexk tirmestep
k41 K|
Py Update step Messurameants

Ry|p =—Campane prediction =—
* b mEasurements L]
4 Dukput mstimate
| B ofstate

Figure 97. Kalman filter working principle

Error management flowchart:

_ 5| Estimated
Choose the SoH
. Error
Estimated integration > retsﬁl ltbfrotm >
© bes Estimated
voltage error
: Kalman y—’ SoH
Initial or
previous
Figure 98. Error estimated
management
flowchart SoC

Even though our system is defined as QM, we can, as a safety culture, set the following
requirements for the software development:

e Compiled code size must be shown

e Memory consumption, i.e. will the allocated memory in the hardware is enough, robust
or not enough must be checked and tested

e Interrupts, Function calls, Periodic, overall Scheduling

e Operating system will be preemptive or non-preemptive

e Application flow, number of tasks, number of variables

e No recursive loops

e Code in MISRA-C, Optimized

Interfaces

Again, we must define all the interfaces of the system according to the 4 different types of
them.

Physical interface
e The item will be placed in a vehicle
e Environment temperature
e Voltage range from 13V
e Current range +- 900A

Energy interfaces
e Electric energy
e Thermal energy
e Voltage measurement
e Current measurement
e Energy provision via cables

Material transfer (interface)
e No material transfer

Information interfaces
e Signal processing
e Analog input to ADC to Bluetooth antenna to Mobile phone
e Bus or communication systems CAN or Ethernet

Environment - Plant interface:
e Energy interface, i.e. thermal energy/temperature
Plant — Control interface:

e Energy interface, i.e. Electric energy via cables
e Information interfaces, i.e. Signal processing/Measurement, Analog to AD Converter

Control — HMI:

Information interfaces, i.e. Bluetooth communication

Requirement 3-2

“The housing has to be constructed in a way that it fits in the vehicle, provides protection
against humidity and dirt ensures that cables can be fixed, fulfills the EMC requirements
and allows the arising heat dissipates.” [13]

Electromagnetic Compatibility known as EMC is a test for electronic devices to make sure that
they do not emit radiated and conducted emissions above a certain level set by regulators. EMC
takes care of 3 different categories of issues:

e Emissions
e Susceptibility
e Coupling

Emissions include electromagnetic energy generation by certain sources. EMC takes care of
the unwanted emissions and how we must tackle them. Susceptibility, studies the “victim”
electronic component, i.e. the vulnerability of the component to be affected by certain
unwanted electromagnetic emissions. And lastly, coupling is the phenomena where the
unwanted emissions release by a source and reaches the sinc or the “victim”.

Radiative Coupling
EMC Source EMC Sinc

Device 1 —») _> Device 2

Conductive Coupling

Figure 99. EMC Coupling

To be able to tackle these problems, first we must understand different kinds of interferences
and sources of them, and then see which on of those we have in our board. There are two types
of interferences, continuous and transient interferences. Following table has been created to
manage it easier:

Continuous interference Sources BAT-MAN PCB

Audio frequency Power supply units PCB is supplied directly by
the plant

Audio processing equipment

Does not contain

FM radio transmission type

Does not contain

Radio frequency

Radio frequency
transmissions

Does not contain

TV or radio receivers

Does not contain

Microcontrollers

Contains

Broadband noise

Solar activity

Does not contain

Arc welders

Does not contain

Spread-spectrum mobile

telephony

Does not contain

Table 13. EMC Analysis I

Transient interference

Sources

BAT-MAN PCB

Electromagnetic pulse

Switching the circuit, or
other components

Contains

Power line pulses

Does not contain

Electrostatic discharge

Possible

Lightning electromagnetic | Does not contain
pulse
Nuclear electromagnetic | Does not contain
pulse

Repetitive
pulse

Electromagnetic

Electrical motors

Does not contain

Ignition systems

Does not contain

Continual switching actions
of digital circuit

Contains

Table 14. EMC Analysis 11

The countermeasures that we can take for reducing the emissions are:

e Grounding
e Quality cables

Housing

Decoupling in critical points

Avoid as much as possible the unnecessary switching of the circuit or other components
Design to operate at lower levels of signals

Furthermore, we can increase the measures of the second category, susceptibility of
components. Such a measures can be:

Protection circuit
Fuses

Housing and LIN Connection

Housing, as required from EMC requirements is built in a 3D Printer. The following figure
shows the case implemented in the hardware and LIN connection:

Figure 100. Housing and LIN Connection

Modern cars use different type of networks such as:

CAN (Controller Area Network)

MOST (Media Oriented Systems Transport)
FlexRay

Ethernet

LIN (Local Interconnect Network)

Why LIN?

LIN connection we are using in BAT-MAN is the most common network used in Automotive
industry because of its simplicity and low cost. It is a 1-wire bus and it is mostly used in the
applications where high speed is not needed, such as: [www.electronicdesign.com
REFERENCE]

e Power door locks

e Power windows

e Power seats

e Power mirrors

e Heating and air conditioning control
e Interior lights

e Seat heaters

That is why LIN connection is very suitable for our application. Considering safety, LIN is
standardized by:

e [SO17897

This International Standard specifies the requirements for setting up the interchange of
digital information between onboard Electronic Control Units (ECUs) of road vehicles and
suitable diagnostic testers. This communication is established in order to facilitate
inspection, test diagnosis and adjustment of vehicles, systems and ECUs. [3]

e ISO9141

ISO 17987-1:2016 gives an overview of the structure and the partitioning of ISO 17987 (all
parts). In addition, it outlines the use case where the ISO 17987 (all parts) will be used. The
terminology defined in ISO 17987-1:2016 is common for all LIN communication systems
and is used throughout ISO 17987 (all parts). It has been established in order to define the
use cases for LIN. [3]

Production development — Software level

According to 1SO26262 we shall define the tools, Techniques, Methodologies, Artefacts and
Safety aspect:

Tool — MATLAB Simulink, Simulink embedded coder
Techniques — System is defined as QM

Methodologies — Model-based Design, MAAB Guidelines
Artefacts —

e Application code
e SIL testing

e Compare MIL to SIL
Safety aspect —

e Some techniques recommended by 1SO26262 for ASIL A, even though the system is
QM
e Generated code will be compliant with MISRA-C

2. Technical model

We shall start from the first module that is Environment which contains the temperature input
that we already defined in the Architecture. In Simulink, we define the block as a Constant
block that will get the value from the Matlab data file. What concerns scheduling of the model,
we do not have any interrupts. The application is run as a whole and its timing will be done in
the firmware that will be given by the supplier together with the hardware.

Temp TemperatureC

EtoP

Temperature

Figure 101. Temperature in Environment module

VoltageV "
Voltage
. - 1
CurrentA d PtoCBus 'C)
PtoC
Current
D >
TemperatureC
EtoPBus

Figure 102. Plant module

Figure 103. HMI module

Block Parameters: BAT-MAN Application
Subsystem

X

Select the settings for the subsystem block. To enable parameters for code

generation, select "Treat as atomic unit'.
Main Code Generation

Show port labels FromPortlcon

Read/Write permissions: ReadWrite
Name of error callback function:

Permit hierarchical lution: [NI

|| Treat as atomic unit
[_] Minimize algebraic loop occurrences
pample time (-1 for inherited):

sampleTimes Ji]
Treat as grouped when propagating variant conditions
Q oK Cancel | Help Apply

Figure 104. Parameters of BAT-MAN Application

Wininy

Figure 105. Control Module

CaoHMiBus

CraHMI

CONTROL

HMI

USER

Figure 106. Architecture in Simulink

Control frame

As we already know, the Control frame contains the A/D Conversion. In Simulink model we
must test different number of bits to see the results and thus setting how many bits we need.

The following figures show the results with 12 and 16 bits. Obviously, there was no need to go
lower then 12 bits since the results are not satisfying.

® ADC Duipul W VollageMeasuredy WADC Oulpit ® Curentyeasire:

P T TR T TR TR TR TR TR TR TR T

W20 WT2s MR W3S 0 s W0 WSS WSe0 TGs 7O WeiE W0 RS WGD@ \7Ees @00 17O

Figure 107. 16 bit ADC Output of Voltage (left), 16bit ADC Output of Current (right)

M S0G (Run NORMAL MODE) M SoC (Run 38; ConcepiModeBATMAN) M Tojerance

' SoH (Run NORMAL MODE) B SoH (Run 38: ConcepliodelBATMAN) Tolerance

[Compare To: SoH (Run 35: ConceptModeBATMAN) ="
® B
; Ay “ —
P

00 500 00 000 00 L TR 1.1} 2600 0 oo 000
S — [T —
i ST~
d .
\ r)U)W"“‘ A e SN | PV R] s —
oy ‘ 1 wW‘r [’ | /
| fﬂ ﬁ J |
¥ M V \ ’/
5 ll l“ /
| z V/
Figure 108. SoC with 12 bit quantization (left), SoH with 12 bit quantization (right)
P S = o (o NORHAL D) 5t 30 ConcaplodaoATAN) B o
Baseline: SoC (Run NORMAL MODE) S e =
A VWA o e
. AN Wiy W M;‘ " -
® /
o M S/
. I
R e e e S W W
[T—

\——f \
‘J W N N

o \—

E3) oo ama aed s aed s 400 esco st sEo e esco 7aoe 1500 2000 250 0000 SSM0 4000 460 5000 S0 ecod @) 7600

Figure 109. SoC with 16 bit quantization (left), SoH with 16 bit quantization (right)

As we can see from the figures, 12 bits are not enough, thus 16 bits ADC must be implemented.

SIL

SIL Model has been done in a same way as in the example. SIL model for BATMAN
Application is shown below:

VoltageMeasuredV
VOLTAGE_F'_RD;ILE ~ D
_ SoH
CurrentMeasuredV
CURRENT PROFILE
Temp |—
TempMeasuredC
dt ¢ DI
SampleTimeS SoU
SoCiniz[%)]
ol
SoClnity
Vii_k ¢ =
- Voltage!nity _ D
Viiniz[V] o :I
Cnom|j—
CapacityNemAh

BAT-MAN Application

Figure 110. SIL Model for BATMAN

o , - -
WSoH W Reliabiity W SoC W Output:!_m Cutput:1_ W Ouiput2:1

" ﬂ B s = S S IS s s
“ //
® W\/J\/\/\.I
/ weve {/\MA
" !f’/\ﬂ“\r L\ | "
ol | v
o

W0 W0 om wmw o em 2w w0 am aw om0 0 mm e s s

Figure 111. Data set 1. Simulation (left) vs SIL (right)

mSoH mSoU mSoC mSoH WSoU mSoC

1 | A A
A Iy A NYN™
FaAl \ wu N [1\’1I'#€' Vo

o » ’j“f '\/w'f\f'ﬁ\\." :\'J.r' \";{,f‘:‘rr'f-b.ﬁ;v ~. f

A,M ‘\f fwl‘r
W

A "JA J"\:
W

s i

. B =

-

b w0 wm mw mw mn ww mw #w 6w sw so o sw ne - © 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Figure 112. Data set 2: Simulation (left) vs SIL (right)

WS mSoU WS

mScH mSoU mSoC

w0
"‘ 100 | SoH (Run 4: SiLmodel)

ED 1000, 150 2000 ®m o £ o o s s mw 50) B00 1000 1500 2000 2500 3000 3500 4000 4500 6000 5500 6000 6500 7000

Figure 113. Data set 3. Simulation (left) vs SIL (vight)

W SoH (Run 8: Data set 1 (SIL)) M SoH (Run : Data set 1 (MIL)) ® Tolerance
100
80
60
0
2
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 4800

@ Difference ® Tolerance

o 300 600 800 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 4800

Figure 114. Data set 1: Difference between SoH in simulation and from SIL

® SoC (Run &: Data set 1 (SIL)) ™ SoC (Run : Data set 1 (MIL)) ® Tolerance

80

80

40

20

]
) 300 600 w00 1200 1500 1800 2100 2400 2700 3000 3300 3800 3900 4200 4500 4800
W Difference W Tolerance

3

2

1

U LU

-1
] 300 600 500 1200 1500 1800 2100 2400 2700 3000 3300 3800 3900 4200 4500 4800

Figure 115. Data set 1: SoC difference between Simulation and SIL

W SoH (Run : Data set 2 (SIL)) ® SoH (Run : Data set 2 (MIL)) ® Tolerance

80
80
40
20
500 1000 1500 2000 2500 3000 3500 4000

4500 5000 5500 6000 6500 7000

W Difference M Tolerance

]

-2

4

| w
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 8500 7000

Figure 116. Data set 2: SoH difference between Simulation and SIL

W SoC (Run : Data set 2 (SIL)) ™ SoC (Run : Data set 2 (MIL)) W Tolerance

/

[500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

| Difference W Tolerance

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Figure 117. Data set 2: SoC difference between Simulation and SIL

W SoH (Run : Data set 3 (SIL)) ® SoH (Run : Data set 3 (MIL)) m Tolerance

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 8500 7000

m Difference m Tolerance

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Figure 118. Data set 3: SoH difference between Simulation and SIL

™ SoC (Run : Data set 3 (SIL)) ™ SoC (Run : Data set 3 (MIL)) ® Tolerance

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

m Difference ™ Tolerance

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Figure 119. Data set 3: SoC difference between Simulation and SIL

Use code execution profiling to: [11]

Determine whether the generated code meets execution time requirements for real-time
deployment on your target hardware.

Identify code sections that require execution speed improvements.

2. Profiled Sections of Code

Section Maximum Execution Average Execution Maximum Self Time Average Self Time in Calls
Time in ns Time in ns inns ns
Initialize 18320 18320 18320 18320 1 [4
step [0.1 0] 1867719 18836 1867719 18836 72711 @] 4
terminate 371 371 371 371 1 [4

Figure 120. Profiled sections of code

Production Model

The purpose of the Production Model is adapting our Control Module to the target hardware
and then initiate the code generation specific to it. The signal names are very important, as
mentioned a lot of times, because we will be dealing with them in Code Composer Studio
where we have to integrate this generated code to the firmware architecture. Firstly, I have
taken the Control Module from the Technical model and export it into a blank model that will
be our Production Model. The screenshot of the model is shown below:

Vol W
VeltageV

VoltageV
Currenta SoHOut
Currenta

CurrentA
TempC
GO e
TempC
dt
| SampleTimeS
e

d Waltagalnity'
VaoltagelnitV

0

- CapacityMomah
CapacityMom#Ah

Our target is ARM Cortex M MCU, thus we must go on according to this characteristic. In
‘Configuration Parameters’ in Simulink we set the device to ARM Cortex, and the tool chosen
is Embedded Coder, as shown below:

Solver “ | Hardware board. Mone =z Data Import/Export *| Target selection
Dana ImpanfExpon Cade Generation system target file: SLic Math and Data Types System target file: lertilc Browse.
Math and Data Types | » Diagnostics
» Diagnastics Device vendor: ARM Compatible i Devics type: [ARM Cortax x Hardware Implemsntation Language: & >
Hardware Implementation * Davice details Model Referencing Description: Embedded Coder
Model Referencing Simulation Target
Simulation Target Number of bits Largest atomic size | » Code Generation Build process
Code Generation char int 3 integer. Long |x Optimization ¥l Generate code only
Optimization \ ; — i e Report .
Report ong. ong. S oal - IOV SR Comments Package code and artifacts Zip file name:
Comments Soutis: (8 PonieG 5 Symbols Toolchain settings
Symbols size 1 32 plrdiff_1: 32 Custom Cade
st Cods aa Tealchaln: Automatically locate an installed toolchain -
Interface Byte ardering: Little Endian x| Signed integer division rounds to: |Zero - Code Style MinGW64 | gmake (B4-bil Windows)
Code Style Verfication Build configuration; |Faster Builds -

#| Shift right on signed integer as arithmetic shift
Verification Templates

o
Templates Supetiong losg Code Placement
Coda Placamant it ¥ Piata Tuna Daniaramant

» Tooichain detalls

All the other parameters are set as default except:

e Code interface packaging: Reusable function

e File packaging format: Compact

e Optimization level: Maximum, and as Priority: Minimize RAM
e Static code metrics ON

Furthermore, concerning ISO26262 the code traceability and Static code metrics are required.
Both of these are provided by Simulink Embedded Coder.

Traceability Report:

Contents
Object Name Code Location
Summary <53>/Choose_Best Madel BATMANApp.c:932, 934, 935

Subsystem Report

BATMANApp.c:925, 953, 1170
BATMANAPP.h:110, 111, 112, 113

Code Interface Report <$3>/Frrors_Integral BATMANApp.c:877, 884, 894, 895, 905, 906
Traceability Report = 926, 1164, 1183
e BATMANApp.h:94, 95, 106, 107, 108, 109
Static Code Metrics

<53>/Moving Average BATMANApp.c:1088, 1089, 1102, 1103, 1144, 1145,

1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154,
Code Replacements 1155, 1195, 1196, 1197, 1198, 1210
Report BATMANApp.c:1087, 1100, 1143, 1154, 1201, 1209
r ion BATMANApp.h:90, 91, 100, 118

Generated Code

<83>/Occurence_SoH_Reliability_est

BATMANARPR.c:956, 964, 981, 983, 987, 991, 993,
1045, 1051, 1058, 1059, 1074, 1077, 1082, 1177, 1192
BATMANApp.c:951, 1067, 1072, 1176, 1187

(-1 Main file BATMANApp.h:93, 101, 102, 103, 104, 105, 117
ert_main.c <53>/Reset_Occurrence BATMANApp.c:956, 964
BATMANApp.c:952
11 Model fil
. <§3>/Saturation BATMANARp.c:1074, 1076, 1077, 1079, 1082
BATMANApp.c BATMANApp.c:1071, 1085
BATMANApD.h <s3>/60C est BATMANARD.c:1085
11 Utility files (1) St

Static code metrics:

Figure 121. Traceability report

PRRRTIET s0 13
Contents

3. Function Information [hide]
Summary
Subsystem Report View function metrics in a call tree format or table format. Accumulated stack numbers include
c i R the estimated stack size of the function plus the maximum of the accumulated stack size of the

subroutines that the function calls.

Traceability Report View:Call Tree | Table

Static Code Metrics Report Function Name Accumulated Self Stack Lines of Lines Complexity

Stack Size Size Code
Code Replacements Report
(bytes) (bytes)

Coder Assumptions +1 ProductionModel_step 601 371 377 477 68

1+1 ProductionModel_initialize 32 8 59 99 2
Generated Code) .

+1 ProductionModel_terminate 8 4 3 9 1
(-1 Main file

) rtisinff 0 0 1 4 2
ert_main.c - e

Figure 122. Static code metrics

Standards and guidelines check

As conclusion, results were very good and satisfactory, passing all the checks. Furthermore,
the reports have been generated for each check as documentation of the process. The results

figures are shown below:

Filter checks
¢ @ Passed
v) Failed
¥ /A Waming
¥ [INotRun
Keywords
Navigation

Modeling Standards for -
1SO 26262

1 High-Integrity Systems

1.1 Simulink

1.2 Stateflow
12 MATI AR T

View

A Seroll to top
Hide check details

Filter checks

<

@& Passed
Q Failed

A& Warning
[Not Run

R R

®

Navigation

Modeling Standards for
IEC 61508

1 High-Integrity Systems

1.1 Simulink

1.2 Stateflow

12 MATI AR e

View

A Scroll to top
Hide check details

Model Advisor Report - ProductionModel.sIx
Simulink version: 9.3

System: ProductionModel
Treat as Referenced Model: off

Model version: 1.4
Current run: 04-Mar-2020 18:29:13

Run Summary
Pass Fail
@s8 Qo

Warning

A 32

Not Run Total
Eo 90

= Modeling Standards for ISO 26262

@ Display configuration management data
Display model configuration and checksum information

Model configuration and checksum information

Aftribute — Value |
Model Version 14
Author hoxha

Figure 123. ISO 26262 check report

Model Advisor Report - ProductionModel.six =
Simulink version: 9.3

System: ProductionModel
Treat as Referenced Model: off

Model version: 1.4
Current run: 04-Mar-2020 16:58:12

Run Summary
Pass Fail Warning NotRun
@58 @0 A32 10

Total
90

= Modeling Standards for IEC 61508

@ Display configuration management data
Display model configuration and checksum information

Model configuration and checksum information

Attribute ___Valee |
Model Version 1.4

Author hoxha

Date

Sun Mar 01 17:39:07 2020
Model Checksum 1193202098 807879095 2926298801 972307842

Figure 124. IEC 61508 check report

Filter checks

¥ @ Passed
¥ @ Failed
¥ A\ Warning
@ []NotRun
Keywords
Navigation

Modeling Standards for

MISRA C:2012

View

a Scroll to top
Hide check details

Filter checks
«# @ Passed
v € Failed
¥ /& Warning
#¥ [_]NotRun
Keywords
Navigation

Modeling Standards for

MAAB

1 Naming Conventions

2 Model Architecture

3 Model Configuration

Ointinne

View

« Scroll to top
Hide check details

Model Advisor Report - ProductionModel.slx
Simulink version: 9.3 Model version: 1.4
System: ProductionModel Current run: 04-Mar-2020 18:18:05
Treat as Referenced Model: off

Run Summary
Pass Fail Warning Not Run Total
@12 Qo0 A1 @o 13

= Modeling Standards for MISRA C:2012

& Check configuration parameters for MISRA C:2012
Identify configuration parameters that might impact MISRA C:2012 compliant code
generation.

The model configuration parameters are not set to the recommended values
specified in the data file.

Warnina Medel Verification block enabling Usel.ocalSettings DisableAll .

Figure 125. MISRA C check report

Model Advisor Report - ProductionModel.slx
Simulink version: 9.3 Model version: 1.4

System: ProductionModel Current run: 04-Mar-2020 17:00:31
Treat as Referenced Model: off

Run Summary
Pass Fail Warning Not Run Total
@54 @0 418 o 72

= Modeling Standards for MAAB

1 Naming Conventions @3 @0 &4 o

2 Model Architecture @3 @0 A1 Lo

3 Model Configuration Options @1 @0 A1 Lo
4 simulink @20 @0 A0 Lo

“ 5 stateflow @22 @0 Ao Lo

= 6 MATLAB Functions @5 Qo A2 Lo

Figure 126. MAAB Guidelines check report

In addition of the standards, we run also Code Generation Advisor for:

e RAM Efficiency

e Traceability

e Safety precaution

e Debugging

e ROM Efficiency
e Execution efficiency

e MISRA C: 2012 Guidelines

The result is shown in the figure below:

(@ Code Generation Advisor - ProductionModel - O X

File Edit Run Settings Help

e

= Code fon Advisor
v L@ Code Generation Advisor ~
/& Check model configuration settings against code generation objectives Code Generation Advisor A
@ Identify unconnected lines, input ports, and output ports Analysis
Q Check for optimal bus virtuality Code Generation Objectives (System target file: ert.tic)
A .
Q\, Check Data Store Memory blocks for multitasking, strong typing, and shadowing issues Avallable objectives Selected objectives - prioritize
Q ~Identify block output signals with continuous sample time and non-floating point data B RAM effic
. lyspace efficiency
Q Identify questionable blocks within the specified system Traceability
Q Check the hardware implementation T3 Safety precaution
Q Identify questionable code instrumentation (data I/0) Debugging
Q ~Check for blocks that have constraints on tunable parameters « ROM efficiency
. Execution efficiency
A
o Identffy questionable subsystem settings MISRA C:2012 guidelines
o Aldentify questionable fixed-point operations
Q Identify blocks using one-based indexing

Q Check for blocks not recommended for MISRA C:2012

Q Identify lookup table blocks that generate expensive out-of-range checking code

Q Check output types of logic blocks

Q Check if Read/Write diagnostics are enabled for Data Store blocks D Show report after run

Q ~Check structure parameter usage with bus signals

Q ~Check data store block sample times for modeling errors

Q ~Check for potential ordering issues involving data store access Report: . \report_1.html Save As...

L!\, ~dentify blocks that generate expensive fixed-point and saturation code

Q Check for blocks not recommended for C/C++ production code deployment

Q Check for unsupported block names v
< > Tips

Run Selected Checks

Report

Date/Time: 04-Mar-2020 16:31:24
Summary: o Pass: 28 0 Fail: 0 & Warning: 3 [] Not Run: (

Figure 127. Code generation advisor check summary

HMI

In BAT-MAN project there is an Android app done previously by the customer ‘Brain
technologies s.r.I’. It takes the data via Bluetooth from the microcontroller of BAT-MAN. The
inputs that the User can give to the app are:

Car Data:

e Brand of the car (optional)

e Model of the car (optional)

e Year it was produced (optional)
e Engine type (optional):

Battery Data:
e Brand of the battery (optional)
e SN (optional)

e Age (optional)
e Capacity in Ah (necessary)

Device Found!

BATMAN 1.0

A4:DA:32:42:67:DD

Car Data OK

Brand

Model

Year

Engine

Battery Data oK

Brand

SN

Age

Capacity ah
Save as: PATH 20191128_183749

START!

Figure 128. BAT-MAN Mobile app first page [15]
The outpus for now are only the sensors readings:

e Temperature of the board and the hood
e Humidity of the board and the hood

e Battery Voltage

e Current

e Shunt Voltage

Board Hood
Temp RH Temp RH

29,8°C (26,4°C (

Battery Voltage 12,499V
16
14

12
0

o N e

4,000 4200

Current -5,000A (-0,250mV)
800

600
400
200

200
-400
-600

B 4000 4200

Figure 129. BATMAN App second page

The customer requirement was to replace the Temperature places with SoC and SoH, while the
Temperature data must be shown in the Gauges of Humidity. Thus, the Humidity does not have

to be shown in the app. For this reason, we had to jump to Android Studio, given the source
files by the customer make the needed changes.

A
Board Hood
SoC Temp SoH Temp

90.0% (100.0% (

= BatManBLE ¥ No devices ¥ | P =3 h

€ O | Ol ma9v » Q2% @ @ | A
e [0

Battery Voltage 12.523V

Board Hood NNNNNNNNNTET NN
10 soC Temp SoH Temp [NETENNSNNEUREN NETIN EEETI

27% () 27 % (| = a7]

Bus Voltage

0 200
Current 0.000A (0.000mV)

Current

-20

0 200 A
Figure 130. Updated BATMAN App
private wvoid updateTH() {

doubkle SoH = vHoodT.value;
double temp = (vHoodH.value*165)/Math.pow(2,16) —-40;.//- 40

X

dded by m

1]

HoodHGauge.setValue((int) temp);
HoodT_ tw.setText (String.format ("%.1£", SoH)+"%");

SoC = vBoardT.value;
temp = (vBocardT.wvalue*165)/Math.pow(2,16) + 40;
BoardHGauge.setValue((int) temp);

BoardT_ tw.setText (String.format("%.1£", SoC)+"%");

Figure 131. Android studio code modification

Suppliers

3. VMU

Supplier:
e Politecnico di Torino

The engineering of BAT-MAN PCB has been done by two students as given in our references
section in collaboration with ‘Brain technologies srl’. All the documentation and testing of it
can be found in that thesis [15].

Protection Ciruil T] TGHITIOR
{Transzorb/Diodes) - LMRIE006¥-01
Buck Conwerler

HDCZ010
Baard TH

LOAD ’_JL_'
+

I 2 P T42
5 o L | e =N =~
o = INAZZE-C11 — — 9
] ::_.. Current and Yoltage [Sei} n |
Tl = = Sensor
; =7 [525FL256L P £l ocose
Flash Memaory w Mi

HDC1080 (==
Hood TH | 5=

12
BATTERY

Figure 132. Hardware architecture with chosen components [15]

The previous figure shows the hardware architecture in more details. As we already said, the
microcontroller as we can see is an wireless microcontroller produced by Texas Instruments.
Components already chosen by the customer are:

e CC2640R2F-Q1 Microcontroller

o INA226-Q1: Amplify the input to be transmitted to CC2640R2F MCU

e [MRI16006Y-Q1: Buck Converter to regulate the voltage to 3.3V to supply the
hardware

e WSBMS8518 Shunt resistor: Since the customer has decided to measure the current via
Shunt resistor method

e Protection circuit

CC2640R2F-Q1 MCU characteristics and safety

The CC2640R2F device is a 2.4 GHz wireless microcontroller supporting Bluetooth® 5.1 Low
Energy and Proprietary 2.4 GHz applications. The device is optimized for low-power wireless
communication and advanced sensing in building security systems, HVAC, asset tracking,
and medical markets, and applications where industrial performance is required. [18]

Some of the important features of the MCU that we must mention are:

e Arm Cortex-M3

e Up to 48-MHz clock speed

e 275KB of nonvolatile memory
e Up to 28KB system SRAM

e 8KB SRAM for chache

e JTAG Debugging

e 12bit ADC

Concerning safety this MCU has all GPIOs compliant with RoHS (Restriction of Hazardous
Substances Directive), those packages are:

e 2.7-mmx 2.7-mm YFV DSBGA34 (14 GPIOs)
¢ 4-mm x 4-mm YFV DSBGA34 (10 GPIOs)
e 5-mm x 5-mm YFV DSBGA34 (15 GPIOs)
e 7-mm x 7-mm YFV DSBGA34 (31 GPIOs)

Furthermore, considering EMC, this MCU is compliant with RF (Radio frequency) regulations
such as:

e ETSI EN 300 328 (Europe)

e EN 300 440 Class 2 (Europe)
e FCC CFR47 Part 15 (US)

e ARIB STD-T66 (Japan)

INA226

The INA226 is a digital current sense amplifier with an I 2C- and SMBus-compatible interface.
It provides digital current, voltage, and power readings necessary for accurate decision-making
in precisely-controlled systems. Programmable registers allow flexible configuration for
measurement resolution as well as continuous-versus triggered operation. Detailed register
information appears at the end of this data sheet, beginning with Table 4. See the Functional
Block Diagram section for a block diagram of the INA226 device. [18]

http://www.ti.com/wireless-connectivity/simplelink-solutions/bluetooth-low-energy/overview/overview.html
http://www.ti.com/wireless-connectivity/simplelink-solutions/bluetooth-low-energy/overview/overview.html
http://www.ti.com/wireless-connectivity/simplelink-solutions/applications.html
http://www.ti.com/wireless-connectivity/simplelink-solutions/applications.html#hvac
http://www.ti.com/solution/sensor-modules-for-asset-tracking
http://www.ti.com/wireless-connectivity/simplelink-solutions/applications.html#medical

A1l IN+

Sense/Shunt
Resistor

i

A0 IN—

(1

Alert VBUS
Alert output
(Can be left floating if unused)

SDA GND

7

I’C/SMBUS
interface

Supply bypass

ScL Vs capacitor

T

b

Figure 133. INA226 Layout example [18]

It is important to say that INA226-Q1 is not compliant to ISO26262 standards. But since our
item is defined as a QM and does not dictate any safety requirement we can continue.

Some features of the device:

e Device is qualified by AEC-Q100

e Temperature Grade 1: -40 °C to 125 °C

e Sensing voltages from 0 to 36 V

e High accuracy, 0.1% max Gain error, 10 pV Offset

e [2C communication

e Typical for HEV/EV Battery management application

For further information about the components chosen by the customer can be found in the
documentation that they have done in the reference [15].

Figure 134. BAT-MAN PCB

Together with the hardware the supplier gives us also the firmware architecture done in CSS
and Sensor Controller Studio. We shall integrate our application into that firmware. The
firmware is based on the Texas instruments open source project called ‘project zero’. The main
file has been chosen by the supplier to be ‘project zero.c’. Thus, now the job is to integrate
BAT-MAN inside ‘project_zero.c’.

4. Integration & Testing

Tools — Code Composer Studio
Techniques — Automatic code generation

Artefacts — SW/HW Integration

Generated code results and architecture:
3 files must be uploaded/integrated to the firmware architecture:

e ProductionModel.c
e ProductionModel.h
e rtwtypes.h

where ‘ModelName.c’, that in our case is ‘ProductionModel.c’ is the source code of the model.
‘ProductionModel.h’ is the header file that represents model-specific data types. And
‘rtwtypes.h’ is the file with hardware specific data types. There are 3 functions that we must
integrate: Function for initialization, Step and function for Terminating. Function for
initialization must be integrated in the first part of the main where every other function is
initialized. The step function must be called in the main loop, and terminate function in the end
if it is needed (usually never goes there).

1. Initialize
the model
2. Step the
model

3. Terminate

Figure 135. Generated code flowchart

Firstly, we shall upload the files ‘ProductionModel.c’, ‘ProductionModel.h’, ‘rtwtypes.h’ into
the folder named ‘Applications’ which is part of the project file ‘BATMAN’. In this folder we
can find all the other firmware applications such as Bluetooth module.

Secondly, in generated code we also have a file called ‘ert main’. This file is an example main
file automatically generated by Embedded coder which shows us how the main file must look
like.

Generated

v

Simulink [_—» Code

Integration in CCS

architecture

7y

i CCS Firmware

ed arg
argc) ;

120 /* Pack model
121 BATMANApp M->blockI0 = &BATMANApp B;
BATMANApp_M->dwork = &BATMANApp DW;

4 /* Initialize model */

9 &BATMANApp_Y SoU, &BATMANApp_Y_SoC);

g ££1ush ((NULL)) ; : -
Bl while (rtmGetErrorsStatus (BATI
r ap

/* Disable rt O

/* Terminate 2l */
BATMANApp_terminate (BATMANApp M) ;
return O;

rated code.

25 BATMANApp_initialize (BATMANApp_M, &BATMANApp_U VoltageV, &BATMANApp_U_CurrentA,
£ &BATMANApp U_TempC, &BATMANApp U_SampleTimeS,

7 &BATMANApp_U_SoCInit, &BATMANApp U_VoltageInitV,
&BATMANApp_U_CapacityNomAh, &BATMANApp_Y_SoH,

C source file

Figure 137. ‘ert_main’ Source file

Code integration in CCS:

i “project_zero.

SR s aversewup)

876

B77 [FHHREA RS RS RS S EATMANAPP INITIALTZATION *+ %% bk bbbdbd b dbbbbdok kb d E bbb bbb

878 RT_MODEL_BATMANAPP_T *const BATMANAPP_M = BATMANAPP_MPtr;

879

88@ // Unused arguments

881 //(void)(argc);

882 //(void)(argv);

883

884// Pack model data into RTM

885

886 BATMANAPP_M->blockIO = &BATMANAPP_B;

887 BATMANAPP_M->dwork = &BATMANAPP_DW;

888

889]

898// Initialize model

891 |

SQZBATMANADF _initialize(BATMANAPP_M, &BATMAMAPP_U_VoltageV, S&BATMANAPP_U_CurrentA,
RBATMANAPP_U_TempC, SBATMANAPP _U_SampleTimeT,

394 &BATMANAPP_U_SoCinit, &BATMANAPP_U_VoltageInitv,
895 &BATMANAPP_U_NomCapacityah, &BATMANAPP_Y_SoHOut,
896 ZBATMANAPP_Y Reliabilityout, S&BATMANAPP_Y_SoCOut);
897 v
< >
Problems ©* & Advice =Progress Iz Type Hierarchy @ Advice *--a

N arrrs @ waminns 0 thars

Figure 138. CCS workspace

After building, we see that it is impossible to run this software in the existing firmware and
target hardware because memory occupation exceeds the resources, as the picture below shows
the memory allocation before and after the integration of the code:

*‘i‘mesé’émﬁ s‘"ﬂm}‘;’iﬂﬂ

Figure 140. Memory occupation integrated

From above results we can say that there are 31kB of data that cannot be allocated in SRAM,
i.e. the generated code needs more RAM than it is available. The project has failed in step 4
Integration & Testing, thus the next step is to go back to step 2 and re-design Technical Model
to fit the Memory Size of the Hardware.

CUSTOMER
REQUIREMENTS

Major changes
CUSTOMER

COMPANY

TECHNICAL &
PRODUCTION
MODEL

INTEGRATION
& TESTING

PRODUCTION
MODEL
TESTING

MODEL FOR
VMU

RAPID
CONTROL
PROTOTYPIN

SUPPLIERS

Conclusion

In the first part of this thesis, from doing a lot of research and taking inputs and references from
industries, International Standard Organization and Academia, we have achieved to develop a
toolchain, a path or a workflow that is so much needed in todays world and especially in
Automotive industry. This work can be also seen as literature for students that are interested in
project development and take Model-based design classes. It is not possible to find such a work
as open source and for free, it is kept inside the companies and most of the advanced tools that
we tried to substitute such as Documentation are too expensive even for middle sized
companies.

In the second part of this work, I have applied the work done in the first part into a real project
that have given us very good results such SIL results and a green light to continue the project
and made sure that there is place for this project in embedded Automotive environment. Here,
I dig deeper into the development toolchain since the project was real and the problems indeed
were real. As good results were achieved such as passing the tests of MAAB, ISO 26262, IEC
61504 and MISRA-C were achieved, also results that made us go back into the development
flow such as memory allocation insufficiency cannot be seen as bad results since this always
happens in the real projects, and that is exactly why the development toolchain of the first part
is crucial and absolutely necessary.

As a conclusion, we can say that this thesis has built the groundwork for ‘Brain Technologies
srl’ to further continue its work in Automotive field with BAT-MAN project and others in the
future. We have achieved solid results and opened the gates for the company to standardize the
BAT-MAN project. Furthermore, this work can be used as a reference for students who are
dealing with V-Cycle or Functional Safety or project in Model-based design as a reference that
cannot be found otherwise in open source communities.

Appendix

Technical_model_Digital_Filter_load_file_22 11 19

%$Project Name: Digital Filter

$To start and stop running push the ON button

o°

For emergency stop switch the EMERGENCY switch

$Noise signal is defined as amplitude 5 with frequency 400Hz
$To try different environment noise, modify the Noise Generator
block

$Input signal (Signall)is defined as amplitude 10 with frequency
10Hz
%$To try different input signal, modify the Signal Generator block

$Digital filter is designed with sampling frequency 1000Hz

%Cutting frequency is 150Hz

%It is defined as function call subsystem inside Stateflow
%Designed with Simulink filter wizard with simple

blocks (gains,delays..)

$DFT 1s applied on the input signal (Plant) Signall
%It is defined as function call subsystem inside Stateflow

%Supervisory Control parameters
debounceDuration = 2;
ledOn TurnOff = 0;

ledOn _TurnOn = 1;
ledOn Transition = 2;

ledEmerg TurnOff = 0;
ledEmerg TurnOn = 1;
ledEmerg Transition = 2;

%$Sampling time

samplingTime supervisoryControl = 1/10000;
filteringTicks = 10;

fftTicks = 1;

SFFT Parameters
buffer Size = 200;
buffer Overlap = 199;
fft Gain = 0.01;

$Digital Filter block parameters
filterCoefficients = [0.5 0.5]
initial conditions = 0;
filterTicks = 1;

%$0utput in OFF and Emergency state
zero Spectrum = zeros (buffer Size,1l);
zero Filtering = 0;

%Control frame input

voltageRange = 25; %Voltage range
numBits = 12; Number of bits

%Control frame output design

$PWM
upperLimitSat = 10;
lowerLimitSat = -10;
carrierPeriod = [0 0.017];
carrierval = [-10 10];
onPoint = 0.1;
offPoint = -0.01;
onOutput= 10;
offOutput = -10;
$LPF
passbandFreq = 15;
stopbandFreq = 80;

maxPassRipple = 0.1;
minStopAtten = 80;

o\

%$To see the characteristics of signals above, open Simulation data
Inspector

o

$Run simulink file here
sim('technical model digitalfilter 22 11 19');

Concept_model_Digital_Filter load_file

o\°

Digital Filter
Concept Model: IIR & DFT

o\°

o°

Simulation parameters
% "Slow" sampling period

Ts 2 = 0.01; % s

[o)

% "Fast" sampling period

Ts 1 = 0.001; % s

Ws 1 = 2*pi/Ts 1 % rad/s

[o)

%5 Low-pass IIR

pl = -2*pi*100 % rad/s
K abs(pl) % unitary DC gain

H = zpk([], [pl],K)
figure, bode(H), grid

Hz = c2d(H,Ts 1, "tustin')
zpk (Hz)

figure, bode(H,Hz), grid

[Hz Num, Hz Den] = tfdata(Hz,'v')

Technical_model BatmanApp —ert_main.c

/*

* Academic License - for use in teaching, academic research, and meeting
* course requirements at degree granting institutions only. Not for

* government, commercial, or other organizational use.

*

* File: ert_main.c

*

* Code generated for Simulink model ' BATMANApp'.

*

* Model version 1 1.3

* Simulink Coder version : 9.1 (R2019a) 23-Nov-2018

* C/C++ source code generated on : Sun Mar 1 17:30:28 2020

*

* Target selection: ert.tlc

* Embedded hardware selection: ARM Compatible->ARM Cortex
* Code generation objectives: Unspecified

* Validation result: Not run

*/

#include <stddef.h>

#include <stdio.h> /* This ert_main.c example uses printf/fflush */
#include "BATMANApp.h" /* Model's header file */

#include "rtwtypes.h"

static RT MODEL_BATMANApp T BATMANApp M ;

static RT_ MODEL BATMANApp T *const BATMANApp MPtr = &BATMANApp M _;/* Real-
time model */

static B BATMANApp T BATMANApp B; /* Observable signals */
static DW_BATMANApp T BATMANApp DW; /* Observable states */

/* '<Root>/VoltageV' */

static real T BATMANApp U VoltageV;

/* '<Root>/CurrentA' */

static real T BATMANApp U _CurrentA;

/* '<Root>/TempC' */

static real T BATMANApp U TempC;

/* '<Root>/SampleTimeS' */

static real T BATMANApp U_SampleTimeS;

/* '<Root>/SoClnit' */

static real T BATMANApp U _SoClnit;

/* '<Root>/VoltagelnitV' */
static real T BATMANApp U _VoltagelnitV;

/* '<Root>/CapacityNomAh' */
static real T BATMANApp U_CapacityNomAh,;

/* '<Root>/SoH' */
static real T BATMANApp_Y_SoH;

/* '<Root>/SoU'" */
static real T BATMANApp Y SoU;

/* '<Root>/SoC' */

static real T BATMANApp Y SoC;

/%
* Associating rt_OneStep with a real-time clock or interrupt service routine
* is what makes the generated code "real-time". The function rt OneStep is
* always associated with the base rate of the model. Subrates are managed
* by the base rate from inside the generated code. Enabling/disabling
* interrupts and floating point context switches are target specific. This
* example code indicates where these should take place relative to executing
* the generated code step function. Overrun behavior should be tailored to
* your application needs. This example simply sets an error status in the
* real-time model and returns from rt_ OneStep.

*/

void rt_OneStep(RT_MODEL BATMANApp T *const BATMANApp M);

void rt_OneStep(RT_MODEL BATMANApp T *const BATMANApp M)
{

static boolean_T OverrunFlag = false;

/* Disable interrupts here */

/* Check for overrun */
if (OverrunFlag) {
rtmSetErrorStatus(BATMANApp_M, "Overrun");

return,;

H

OverrunFlag = true;

/* Save FPU context here (if necessary) */
/* Re-enable timer or interrupt here */

/* Set model inputs here */

/* Step the model */

BATMANApp step(BATMANApp M, BATMANApp U VoltageV, BATMANApp U CurrentA,
BATMANApp U TempC, BATMANApp U SampleTimeS, BATMANApp U SoClnit,
BATMANApp U_VoltagelnitV, BATMANApp_U_CapacityNomAbh,
&BATMANApp Y SoH, &BATMANApp Y SoU, &BATMANApp Y SoC);

/* Get model outputs here */

/* Indicate task complete */

OverrunFlag = false;

/* Disable interrupts here */

/* Restore FPU context here (if necessary) */

/* Enable interrupts here */

/*

* The example "main" function illustrates what is required by your
* application code to initialize, execute, and terminate the generated code.
* Attaching rt_OneStep to a real-time clock is target specific. This example
* illustrates how you do this relative to initializing the model.
*/
int_T main(int_T argc, const char *argv[])
{
RT MODEL BATMANApp T *const BATMANApp M = BATMANApp MPtr;

/* Unused arguments */
(void)(argc);
(void)(argv);

/* Pack model data into RTM */
BATMANApp M->blocklO = &BATMANApp_B;
BATMANApp M->dwork = &BATMANApp DW;

/* Initialize model */

BATMANApp_initialize BATMANApp M, &BATMANApp U VoltageV,
&BATMANApp U CurrentA,

&BATMANApp U TempC, & BATMANApp U_SampleTimeS,
&BATMANApp _U_SoClnit, « BATMANApp U VoltagelnitV,
&BATMANApp U CapacityNomAh, & BATMANApp Y SoH,
&BATMANApp Y _SoU, &BATMANApp Y SoC);

/* Attach rt_OneStep to a timer or interrupt service routine with
* period 0.1 seconds (the model's base sample time) here. The
* call syntax for rt_OneStep is
*

* rt_OneStep(BATMANApp M);
*/
printf("Warning: The simulation will run forever. "

"Generated ERT main won't simulate model step behavior. "

"To change this behavior select the M AT-file logging' option.\n");
fflush((NULL));
while (rtmGetErrorStatus(tBATMANApp M) == (NULL)) {

/* Perform other application tasks here */

}

/* Disable rt_OneStep() here */

/* Terminate model */
BATMANApp_terminate(BATMANApp M);

return 0;

/*
* File trailer for generated code.

*

* [EOF]
%/

Project_zero.c — Initialization in Main function

static void Projectzero_taskFxn(UArg a@, UArg al)//
{

// Initialize application

ProjectZero_init();

/* HDC2010 SENSOR CONTROLLER */

// Initialize the Sensor Controller

scifOsallnit();
scifOsalRegisterCtrlReadyCallback(scCtrlReadyCallback);
scifOsalRegisterTaskAlertCallback(scTaskAlertCallback);
scifInit(&scifDriverSetup);

//***********************BATMANAPP
TINITIALTIZAT TON? % ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ko sk sk ok sk ok skok skok ok ok sk ook

RT_MODEL_BATMANAPP_T *const BATMANAPP_M = BATMANAPP_MPtr;

// Unused arguments
(void)(argc);
(void) (argv);

// Pack model data into RTM

BATMANAPP_M->blockIO = &BATMANAPP_B;
BATMANAPP_M->dwork = &BATMANAPP_DW;

// Initialize model

BATMANAPP_initialize(BATMANAPP_M, &BATMANAPP_U VoltageV,
&BATMANAPP_U_CurrentA,
&BATMANAPP_U_TempC, &BATMANAPP_U_SampleTimeT,
&BATMANAPP_U_SoCinit, &BATMANAPP_U_VoltageInitV,
&BATMANAPP_U_NomCapacityAh, &BATMANAPP_Y_SoHOut,
&BATMANAPP_Y_ReliabilityOut, &BATMANAPP_Y_ SoCOut);

// Trial Values
BATMANAPP_U_SampleTimeT = 0.1;
BATMANAPP_U_SoCinit = 40;

BATMANAPP_U_VoltageInitV = 30;
BATMANAPP_U_NomCapacityAh = 50;

Bibliografi

[1] Brain Technologies, «Preliminary analysis of BATMAN project,» Torino.

[2] "Jabil," 2017. [Online]. Available: https://www .jabil.com/insights/blog-
main/automotive-industry-trends-point-to-shorter-product-development-cycles.html.

[3] Iso.org, "ISO online browsing platform," 2018. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:is0:26262:-1:ed-2:v1:en.

[4] N. Instruments, «white paper,» 5 3 2019. [Online]. Available: https://www.ni.com/it-
it/innovations/white-papers/11/what-is-the-iso-26262-functional-safety-standard-.html.

[5] cadence, «cadence,» 08 2019. [Online]. Available:
https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/solutions/automotive-functional-safety-wp.pdf.

[6] Feabhas ltd, «A quick guide to ISO 26262,» Hungerford.

[7] x-engineer.org, 2019. [Online]. Available: https://x-engineer.org/graduate-
engineering/modeling-simulation/model-based-design/essential-aspects-of-the-v-cycle-
software-development-process/.

[8] 2 Gennaio 2020. [Online]. Available: http://ftp.uni-kl.de/pub/v-modell-xt/Release-1.1-
eng/Dokumentation/pdf/V-Modell-XT-eng-Teil l.pdf.

[9] mitre.org, «mitre,» may 2014. [Online]. Available:
https://www.mitre.org/publications/systems-engineering-guide/systems-engineering-
guide/the-evolution-of-systems.

[10] C. Jackson, «lifecycle insights,» 2019. [Online]. Available:
https://www lifecycleinsights.com/tech-guide/model-based-development/.

[11] «MathWorks,» [Online]. Available: https://www.mathworks.com/help/ecoder/gs/v-
model-for-system-development.html#brufb98-7.

[12] dspace, 2019. [Online]. Available:
https://www.dspace.com/en/Itd/home/applicationfields/our_solutions for/bussimulatio
n/bussimulation_usecases/rapid_control prototyping.cfm.

[13] H.-L. Ross, Functional safety for road vehicles, Springer International Publishing, 2016.

[14] D. W. Adelinde M. Uhrmacher, Multi-Agent systems: Simulation and Applications,
2009.

[15] F.D.Fazio e D. Fazi, Current and Voltage Sensing Circuit for Automotive Batteries SoH
and SoC Determination, 2019.

[16] Rami Debouk, Jeff Joyce, «ISO26262 Hazard and Risk Assessment Methodology,»
2010.

[17] [Online]. Available: https://www.blueboxbatteries.co.uk/blog/how-does-temperature-
affect-lead-acid-batteries-30#. X1FeKGhK g2w].

[18] [Online]. Available: www.ti.com.

[19] M. Violante, «A quick guide to ISO26262».

[20] K. S. David Smith, Functional Safety, 2004.

[21] M. Colabella, Identification and Predictive Analysis of Storage Systems, 2019.
[22] G.L. M. R. M. S. D.-I. S. R. T. Jinhao Meng.

[23] J. Meng, L. Guangzhao , Ricco, Swierczynski, Stroe e Teodorescu, «Overview of
Lithium-Ion Battery Modeling Methods for State-of-Charge Estimation in Electrical
Vehicles,» MDPI.

[24] Mathworks, «Real-Time Workshop Embedded Coder User's Guide».

