
POLYTECHNIC OF TURIN

DEPARTMENT OF CONTROL AND COMPUTER
ENGINEERING (DAUIN)

Master degree course in Computer Engineering

Master Degree Thesis

Tele-operated car control
using Brain Computer

Interface

Academic advisor
Prof. Massimo Violante Candidates

Filippo Cupolo
Gianluca D’Alleo

Internship Tutor
Dott. Vincenzo Campanale

A.A. 2019/2020

Contents
Abstract . 6
Abstract - Italian version . 7

1 Introduction 9
1.1 State of art . 10

1.1.1 Real test cases 12
1.2 Background . 13

2 Starting point 15
2.1 Teleoperated car . 15
2.2 Brain Computer Interface 16
2.3 EmotivEpoc . 16
2.4 EmotivBCI . 20
2.5 CortexUI . 25
2.6 Cortex API . 28

2.6.1 login . 29
2.6.2 logout . 29
2.6.3 authorize . 30
2.6.4 setupProfile . 30
2.6.5 queryHeadsets . 30
2.6.6 createSession . 31
2.6.7 subscribe . 31
2.6.8 unsubscribe . 32
2.6.9 training . 32
2.6.10 mentalCommandGetSkillRating 33
2.6.11 mentalCommandActionSensitivity 33
2.6.12 facialExpressionThreshold 33

3

2.7 Cortex API 2.X . 34
2.8 Goal of the thesis . 34
2.9 First tests with EmotivBCI 35
2.10 First tests with CortexUI and Cortex API 35
2.11 Problems and first solutions 36

3 Development of Xavier and of the simulation 40
3.1 Simulation . 40

3.1.1 ROS Robot Operating System 40
3.1.2 Gazebo . 44
3.1.3 CarDemo . 45
3.1.4 Developing of simulation 45

3.2 Qt . 47
3.2.1 Advantages of using Qt app development platform 48
3.2.2 Signals and Slots 49
3.2.3 MOC vs. template 50

3.3 Xavier . 52
3.3.1 GUI . 52
3.3.2 Code structure 54

3.4 Test with simulation . 59
3.5 Test with teleoperated car 60

4 Mental commands and Xavier update 63
4.1 Training patterns . 63

4.1.1 Focus on the actions 63
4.1.2 Focus on the colours 64
4.1.3 Focus on the Math/Logic/Memory 66
4.1.4 Focus on mixed patterns 67
4.1.5 Various training patterns 69

4.2 Xavier v1.0 . 70
4.2.1 Mental commands 70
4.2.2 Frequency of the communication 71
4.2.3 GUI . 71
4.2.4 Improvements . 75
4.2.5 Steering functions 76

4.3 Code Structure . 79
4.3.1 GUI classes . 80
4.3.2 Binder . 81
4.3.3 Command . 81

4.4 Test with simulation . 82
4.5 Assisted Drive Studies 83
4.6 Test on track . 84

4

4.6.1 Issues . 85

5 Xavier update and final tests 87
5.1 Xavier v1.1 . 87

5.1.1 Profile and Session management 87
5.1.2 Assisted Drive . 89
5.1.3 GUI . 90
5.1.4 Improvements . 91
5.1.5 Test on track . 92
5.1.6 Statistical results 94

6 Conclusions 99
6.1 Future steps . 101

Bibliography 103

5

Abstract
In this paper, it is presented an approach to control a car remotely
with a Brain Computer Interface (BCI). To achieve this goal, it is used
a commercial BCI that needed to be connected to a teleoperated car.
The accelerator/brake pedals and the steering wheel of the teleoperated
car can be remotely controlled through a UDP/IP connection. The
BCI is composed by an Emotiv EPOC+ EEG headset that is able
to read the brainwaves of the user and train a statistical classifier to
classify mental states. Then, these mental states or facial expressions
can be translated into commands for the car. Brain-computer interfaces
represent a range of acknowledged technologies that translate brain
activity into computer commands. The brain is the main processor in
giving orders to the human body to perform physical activities. With
technological advances, today’s brain signals can be used as commands
to control electronic devices. For example, disabled people can use
their brain signals to give commands to move a wheelchair or operate
a mobile device or even to drive a car. This research aims to develop
and evaluate a BCI control application for certain assistive technologies
that can be used for remote telepresence or remote driving. It has been
implemented a scenario to test the usability of the BCI for controlling a
tele-operated car. In the scenario, the car is completely brain controlled,
using different brain patterns for steering and throttle/brake.

Main Phases

• Create a dataset of facial expressions/mental commands and train
the Brain-Computer Interface in order to get clearer and more sig-
nificant information.

• Use of Cortex API to communicate with the Emotiv SW and get
information about facial expressions/mental commands.

• Creation of a simulation scenario using ROS and some tools as
Autoware or CarDemo.

• Translate the mental commands into significant directives to create
the possibility to send/receive

• UDP packages for remote driving.

• Develop a SW application (C++, Qt framework) that receivs data
from the Emotiv SW, converts these data into commands for the
tele-operated car and sends the commands.

6

Abstract - Italian version
In questo documento, viene presentato un tentativo di controllo remoto
di un autoveicolo con un’interfaccia neurale (BCI). Per raggiungere
questo scopo, viene usata un’interfaccia neurale commerciale consid-
erata a basso costo da connettere al veicolo teleoperato. I commandi
di accelerazione, frenata, rotazione dello sterzo del veicolo possono es-
sere contrallati remotamente grazie all’utilizzo di una connessione UD-
P/IP. L’interfaccia neurale è composta dall’headset Emotiv EPOC+
EEG, capace di leggere e interpretare le onde cerebrali dell’utente e
allenare un classificatore statistico per classificare gli stati mentali. In-
oltre, questi stati mentali o queste espressioni facciali possono essere
tradotte in comandi reali per il veicolo. Le interfacce neurali rapp-
resentano una gamma di tecnologie conosciute per tradurre l’attività
cerebrale in commandi informatici. Il cervello è il processore principale
per il corpo umano nel dare ordini per compiere attività fisiche. Grazie
allo sviluppo tecnologico in continua crescita, oggi è possibile utilizzare
i segnali del cervello umano per controllare dispotivi elettronici. Per
esempio, le persone che soffrono di una disabilità posso stimolare le
loro onde cerebrali per impartire comandi al fine di muovere una sedie
a rotelle, utilizzare un telefonino o addirittura guidare un’auto.

Lo scopo della ricerca, di seguito presentata, è sviluppare e valutare
un’applicazione di controllo basata su un’interfaccia neurale per speci-
fiche tecnologie assistive che possono essere usate per una telepresenza
remota o per guida remota. Si andrà a realizzare uno scenario per
testare l’usabilità di un’interfaccia neurale nel controllo di un’autoveicolo
teleoperato; in questo scenario il veicolo è completamente controllato
dai segnali ricevuti dal cervello dell’utente con l’utilizzo di differenti
schemi per quelli che sono i comandi base di una comune guida di un
veicolo.

Fasi principali

• Creazione di un dataset di espressioni facciali e/o commandi men-
tali e allenare la BCI per ottenere un’informazione più pulita e più
significativa.

• Uso di Cortex API per comunicare con il software Emotiv e ottenere
le informazioni sulle espressioni facciali e sui comandi mentali.

• Creazione di uno scenario di simulazione basato su Ros e altri soft-
ware come Autoware o CarDemo.

7

• Traduzione di espressioni facciali e/o commandi mentali in istruzioni
significanti.

• Pacchetti UDP per la guida remota.

• Sviluppo di un’applicazione (C++, Qt framework) che riceve i dati
dal software Emotiv, li converte in comandi codificati adeguata-
mente e li invia al veicolo teleoperato.

8

Chapter 1

Introduction

Systems based on electroencephalogram (EEG) signals have been the
most widely used in the field of brain-computer interface (BCI) in the
last years. Several applications have been proposed in literature, in par-
ticular in the study of emotions, from games to rehabilitation systems,
in an attempt to address the new users’ needs. At the same time, it is
possible to record brain activity, in real time and to discover patterns to
connect it with emotional states. Until recently, devices for recording
EEG signals were too expensive for an end user, as there are currently
several low-cost alternatives on the market. The most sophisticated of
these low-cost devices is the Emotiv EPOC headset. Some studies have
reported that this device is suitable for customers in terms of perfor-
mance. Will drivers also be able to spark the ignition, turn left and
right, and accelerate or decelerate simply using their brain waves? This
is the goal of the thesis.

In this work, the introductive chapter presents a brief state of art of
BCI and few examples of real test cases. In the second chapter, it is
described the goal of the thesis and the first approach with the BCI and
with the system, understanding how they work. In the third chapter,
softwares used are described and the reasons why they are chosen; there
is also a description of the first concept of the application developed
mainly based on facial expressions. The fourth chapter concerns to the
real development of the application but also to the phases of training of
the BCI introducing the mental commands; tests on simulation and on
track are described. In the fifth chapter, it is described the last version
of the application with new user interface and new features introduced;
tests on simulation and on track of the last application are described.
In the sixth and last chapter, the conclusions and new ideas for future

9

Introduction

works are analysed.

1.1 State of art
Non-invasive brain-computer interfaces (BCI) have undergone enor-
mous development in less than two decades in terms of performance
and variety of applications. In reality, a non-invasive BCI can be de-
fined as a device that allows communication without movement: a di-
rect communication path between a human being (or an animal) and
an external device.

Given its portability, its relative low cost and its high temporal resolu-
tion, compared to other non-invasive methods (MEG, fMRI, fNIRS),
electroencephalography (EEG) is widely used for BCIs [1]. As re-
viewed by [2], since the beginning, a lot of applications have emerged
about BCI. They were used for communication and control, in par-
ticular they allowed to control a mouse or to use a web browser just
with the thought. Another goal was the study of motor replacement
or motor recovery whose main applications were grip activity [3] and
wheelchair control [4]. In addition, BCIs have also been used to increase
interactivity in games using the multi - mode between EEG signals
and standard controls [5]. Finally, as regards emotions, their study in
human-computer interaction has increased in recent years, due to the
growing need for IT applications able to detect the mood of users [7].
Motivated by the everyday interaction between human beings, much of
the research in this field has analyzed the detection of emotions from
facial and vocal information.

In controlled situations, today’s computer systems for sensing emotions
based on this information are able to classify emotions with consider-
able accuracy [8]. However, emotions do not always manifest themselves
through facial expressions or vocal information. Psychologists distin-
guish between physiological activation, behavioral expression and the
conscious experience of emotions. Facial and vocal information is re-
lated only to behavioral expression, which can be consciously controlled
and modified, and whose interpretation is often subjective. Thus, other
approaches have been proposed to identify emotions that focus on dif-
ferent physiological information such as heart rate, skin conductance
and pupil dilation [8][6]. A new field of research in the brain-computer
affective interaction attempts to detect emotions with electroencephalo-
grams (EEG) [9][10]. There have been several attempts to detect emo-
tions based on EEGs but there is still little human consensus about

10

Introduction

their validity. Undoubtedly, one of the most important fields for BCI
is the application related to rehabilitation. The systems to allow you
to grasp objects with your hand were among the first rehabilitation de-
vices. In 2006, a BCI commanded the activation and deactivation of the
intake [3]. This approach allows the patient to grab objects thanks to
the Electro Functional Stimulation (FES). From this first experiment,
the system has been improved to increase the accuracy of the socket
position based on the Evoked Potential in a Stationary State (SSVEP)
[12].

At the same time, great attention has been paid to controlling a wheelchair.
As described in [4], various strategies have been proposed: predefined
positions or direct control. In a predefined position strategy, the patient
chooses the place where he wants to go with a BCI. Then, thanks to the
sensors and the shared control [11], all the low level controls are per-
formed by the wheelchair control system to reach the desired position.
On the other hand, in direct control, the orientation of the wheelchair
and the choice to move forward is controlled directly and fairly contin-
uously by the patient. Obviously, the second approach leads to more
general problems being more flexible.

Recently, an original approach has been proposed regarding BCI based
on gait rehabilitation [18]. Since the non-invasive BCIs are able to
produce only high-level commands, the shared control is performed by
a Central Scheme Generator (CPG), which generates a perfectly peri-
odic step pattern whose speed-equivalent pace is controllable. In this
theoretical test, a P300 paradigm was used on a treadmill to include
an uncontrolled state detection, ie when the subject does not want to
change his state avoiding looking at the screen, and the results on four
subjects demonstrated the feasibility of this application.

In [18], a possible extension of the prosthesis / orthosis of the lower
limbs has been proposed using specific VUZIX glasses, emerging and
well designed, for augmented reality (Vuzix, Rochester, NY, USA). This
can circumvent the practical problems arising from the use of the P300
paradigm in terms of screen portability by displaying stimuli on a semi-
transparent module containing all the essential hardware elements.

Although all these aspects seem promising, one of the main drawbacks
of the EEG system is its high cost to customers. This is why sev-
eral commercial EEG devices are now available as NeuroSky, Mindflex,
Emotiv EPOC, etc. [14]. Based on usability [14], the best low-cost
EEG devices are the Emotiv EPOC headphones. However, a scientific

11

Introduction

study of their performance is rarely available. As far as is known, no
scientific comparison was made between this headset and a medical sys-
tem. In the Neurophone project [15], an Emotiv EPOC P300 system is
used on a PDA without showing comparative results. In [16], based on
mental activities (relaxation and imagination of two types of images),
it was reported that the ActiCap medical system was decidedly better
than the Emotiv EPOC cuff. However, the authors did not compare the
performance of both systems under the same experimental conditions.
For example, the number of electrodes and their position were signifi-
cantly different. Consequently, the conclusion of this study is possibly
spurious. In a qualitative study [17], the authors suggested that the
data provided by both systems are the same in general, but the signal
is cleaner and stronger in the medical system (BCI device of G-TEC).
Furthermore, none of those studies analyzed the impact of gait-related
movement artifacts.

In this study, it is described an approach to detecting emotions from
electroencephalogram signals measured with an Emotiv EPOC headset.

1.1.1 Real test cases
Man Drives F1 Car With the Power of His Mind: In 2017 in Brazil,
the CEO of a Brazilian non-profit has become the first person to drive
a Formula 1 racing car using only the power of one’s mind. Rodrigo
Hübner Mendes, Founder and the CEO of the Rodrigo Mendes Insti-
tute, used the brain interface technology, which was developed by fellow
Young Global Leader Tan Le, Founder of EMOTIV Inc, to pilot the ve-
hicle by thought alone. “The car, it doesn’t have pedals, it doesn’t have
a steering wheel, it doesn’t have anything – it’s just him and his mind,
driving it forward. It blew my mind,” Le explained. [22]

Human Mind Control of Rat Cyborg’s Continuous Locomotion with
Wireless Brain-to-Brain Interface. It is developed a BBI from the hu-
man brain to a rat implanted with microelectrodes (i.e., rat cyborg),
which integrated electroencephalogram-based motor imagery and brain
stimulation to realize human mind control of the rat’s continuous loco-
motion. Control instructions were transferred from continuous motor
imagery decoding results with the proposed control models and were
wirelessly sent to the rat cyborg through brain micro-electrical stimu-
lation. [23]

Emotiv, the company that has commercialised mind-controlled inter-
faces with its Epoc headset, has developed a road safety system that

12

Introduction

automatically slows acceleration when a driver exhibits signs of distrac-
tion. Complex is the information gathered to recognise neural patterns
of distraction as cognitive processing slides, and those that show if a
person is “task switching” i.e. going from focusing on the road and
driving your car, to sending a text. The goal was to recognise the dis-
traction and activate a safety mechanism to awake the driver or stop
the car. [24]

1.2 Background
The ignition of neurons in the brain triggers voltage variations. The
electrical activity measured by the electrodes in an EEG headset cor-
responds to the field potentials deriving from the combined activity of
many neuronal cells in the cerebral cortex. However, the measured cor-
tical activity is altered by the tissue and skull between the electrodes
and neurons. This introduces noise and reduces the intensity of the
recorded signals. Despite this, EEG measurements also provide impor-
tant information on the electrical activity of the cerebral cortex. The
frequency of EEG measurements varies from 1 to 80Hz, with amplitudes
of 10 to 100 microvolts. The signal frequencies have been divided into
different bands, since certain frequency waves are normally more promi-
nent in particular moods. The two most important frequency waves are
Alpha (8-12Hz) and Beta (12-30Hz). Alpha waves are predominantly
present during mental states of awake relaxation and are more visible
on the parietal and occipital lobes. Intense alpha wave activity has also
been related to the inactive brain. The activity of Beta waves, on the
other hand, concerns an active state of the mind, more prominent in
the frontal cortex during intense mental activities of concentration [20].

Alpha and Beta wave activities can be used in different ways to detect
emotional moods (activation and valence) in humans.

Choppin [10] proposes to use EEG signals for the classification of six
emotions using neural networks. Choppin’s approach is based on va-
lence and emotional activation characterizing valence, activation and
domain by EEG signals. Choppin characterizes positive emotions from
a high frontal coherence in Alfa and from a high right parietal power
Beta. A higher activation (excitation) is characterized by a higher beta
power, a consistency in the parietal lobe and a lower alpha activity,
while the domain (strength) of an emotion is characterized by an in-
crease in the beta / alpha ratio in the activity in the frontal lobe, plus
an increase in Beta activity in the parietal lobe

13

Introduction

Oude [21] describes an approach for the recognition of emotions from
EEG signals measured with the BraInquiry EEG PET device. Oude
uses a limited number of electrodes and trains a linear classifier based
on Fisher’s discriminant analysis. He considers audio, visual and audio-
visual stimuli and trains the classifier for positive / negative, activated
/ calm and audio / visual / audiovisual.

Takahashi [8] uses a band of three dry electrodes to classify five emo-
tions (joy, anger, sadness, fear and relaxation) based on multiple bio-
potential signals (EEG, pulse and skin conductance). Takahashi trains
the classifiers using machines with support vectors and reports the con-
sequent classification of accuracy both using the entire series of bio-
potential signals, and relying exclusively on EEG signals.

Lin [19] applies machine learning techniques to classify EEG signals
according to the subject’s emotional states referred to by him while lis-
tening to music. They propose a structure for the systematic search for
specific emotional characteristics of the EEG and examine the accuracy
of the classifiers. In particular, they apply machines to support vectors
to classify four emotional states: joy, anger, sadness and pleasure.

14

Chapter 2

Starting point

This work, thanks to the opportunity given by Luxoft, focuses on the
possibility to work with a car that can be controlled by UDP packets,
the specification of a protocol to govern the car, and a commercial BCI.

In the following chapters, are going to be described the characteristics
of the Brain-Computer Interface (short form: BCI) that is an EPOC+
produced by Emotiv, the Cortex API provided by Emotiv to control
the BCI and further Emotiv software that is used to analyze and un-
derstand the functioning of the BCI. The description of these programs
is indispensable as they build the basis of this work.

2.1 Teleoperated car
The car adopted is an electric vehicle that has been customized to be
controlled by using internet communication. It means that by sending
messages through UDP packets, the angle of the steering wheel and the
pressure on two pedals can be set: the gas pedal and the brake pedal.
At this point, it’s important to add that these messages follow a specific
protocol. With the first pedal, the gas pedal, the acceleration of the
vehicle can be controlled. It means with zero pressure on the pedal no
acceleration is given to the car. By putting the maximum pressure on
the pedal, the maximum acceleration is carried out by the car. The
second pedal, however, regulates and sets the braking process. In the
same way as the gas pedal, the brake pedal is controlled by the intensity
of pressure that is given to it.

It’s not possible to specify more detailed the characteristics of the car
and the protocol. It concerns the Intellectual Property of the Luxoft

15

Starting point

company.

2.2 Brain Computer Interface
The BCI device enables the connection between the human brain and a
computer. This device captures and analyses biological EEG signals to
use them for controlling external devices and measuring performance
metrics, but also to make rehabilitations much easier etc. At first,
the brain activity is measured using electrodes. Then, the measured
signal needs to get amplified (Figure 2.1). Although the BCI device is
not very known yet, it does have a future of helping people who deal
with poor health conditions. There are some other devices based on a
similar system, however, none of them are as simple to use as the BCI.
The other devices usually require physical movement, whereas the BCI
devices works with neural activity only, making it much easier for the
users [27][28].

Figure 2.1. The main principle of how the BCI device works.

2.3 EmotivEpoc
The BCI used is an Emotiv EPOC+ 2.4. The Emotiv Software De-
velopment Kit for research mainly includes 14 channels (plus CMS /
DRL references, in positions P3 / P4) each based on saline sensors.

16

Starting point

The Emotiv EPOC headset uses 14 different electrodes plus two refer-
ences and the available channels (also based on international positions
10-20) are illustrated in figure 2.2. The multiple independent sensors
that consist of felt pads with gold connections to increase the sensitiv-
ity of the pickups. These felt sensors need to be moist at all time to
reduce their impedance and to conduct the potential difference across
the skull, this is done by using a saline solution until the level required
by the software was reached. The headset is completely wireless and
has a great autonomy of 12 hours, as announced by the company. The
sampling rate can reach 128 Hz. In this experiment, all the standard
available electrodes of the Emotiv EPOC headset were used.

Figure 2.2. Emotiv EPOC headset: 14 different electrodes
plus two references.

17

Starting point

The Emotiv EPOC headset is an affordable easy to use marketed EEG
recording device. Targeted at the emerging BCI video games mar-
ket, Emotiv aims to enhance the gaming experience. Emotiv’s design
also has attracted the interest of neuroscientists due to the setups low
price, running inexpensive experiments from one’s own computer. The
Emotiv headset is the key to the entire project, being what obtains and
transmits the neuro-signals. The placement of the headset on ones scalp
is also an integral part to the acquisition of signals. As the headset is
carefully slipped on it is key that to place the sensors with the black
rubber insert on the bone just behind the ear lobe, as shown below in
figure 2.3.

Figure 2.3. Correct placement of the headset.

It should be noted that the two front sensors should be approximately
at the hairline or three fingers above the eyebrows. After the headset
is in position check to see that there is good contact by the reference
nodes, this is essential because a bad connection with these sensors
will not produce any readings. Once the headset is connected via the
wireless USB receiver the headset setup panel is displayed. The main
function of this panel is to display the contact quality feedback for the
neuroheadset’s EEG sensors.The EPOC headset has sixteen electrodes
to measure the potential difference across the skull. However there is
no official reference for the user wearing the headset so the electrodes
are actually paired up, and the difference between a pair is used as
the measured signal. So when the user is training a certain action to

18

Starting point

manipulate a 3D cube with the Cognitiv suite, it is comparing how
the values of a pair of electrodes change. Therefore whenever it sees a
similar change, the software recognizes that you are trying to perform
a specific action on the cube [25] [26].

In summary, the headset Emotiv EPOC+ 2.4 has 14 EEG channels, 2
reference channels, 256 EEG sampling per second, 16 bits EEG reso-
lution, an accelerometer and a magnetometer to detect motions. The
EEG sensors have to be soaked with saline solution instead with gel
to make the usage of the BCI more comfortable. It has a battery and
communicates the status of the brain via Bluetooth.

Figure 2.4. Headset Emotiv Epoc+

The headset offers a good tradeoff between price, ease of use and perfor-
mances. The setup time of this headset is quantified, by the company
that sells it, with 3 to 5 minutes. That is remarkable because other BCI
models of the same brand have a setup time that can be 30 minutes
or even more. It is defined later what is meant by setup. The ease of
usage, of course, reduces the performance of the device but after all,
this solution is considered the best for the purposes of this work.

To receive information from the brain by Emotiv EPOC+ it is necessary
to use one of following the software that are offered by Emotiv:

19

Starting point

• MyEmotiv provides a real time detection of cognitive states. These
can be for example stress, focus, interest, excitement and many oth-
ers.

• BrainViz provides a 3D model of the brain by showing the projec-
tions of frequency band information (alpha, beta, theta, gamma).

• EmotivBCI offers the possibility to train mental commands and
facial expressions and then to use them. In particular, once you
trained the “push” mental command you can try it pushing a cube.
The cube will be pushed every time the BCI recognize the “push”
command. You can also get information about the Performance
Metrics and the Motion sensors.

• EmotivPRO offers apart from slight improvements almost the
same features as EmotivBCI. The license of the software is not free
though.

• CortexUI is a tool for developers that provides API to train the
BCI and gets information about the state of the brain, the mental
commands and the facial expressions.

EmotivBCI is used to get familiar with the tools and the potentialities
of the BCI. It already has implemented all the functions and features
wanted and besides that, it is free, unlike EmotivPRO. Then, CortexUI
is used to develop our application. So, now the focus is on the descrip-
tion of these two software.

2.4 EmotivBCI
This suite detects and evaluates a user’s real time brainwave activity to
discern the user’s conscious intent to perform distinct physical actions
on a real or virtual object. The detection so designed to work with up
to 13 different actions including directional movements and rotational
movements and an extra action that exists only in the users imagina-
tion which is to make something disappear. The suite allows the user to
choose up to four actions that can be recognized at any given time. The
detection reports a single action or neutral, which would be no activity
at a time, along with an action power which represents the detections
certainty that the user has entered the cognitive state associated with
that action. The tricky part being that increasing the number of con-
current actions increases the difficulty in maintaining conscious control
over the Cognitiv detection results. This is where training would come

20

Starting point

into play. New users gain control over a single action quite quickly
but learning to control multiple actions requires practice and adding
more actions quickly increases the difficulty. The Cognitiv suite control
panel uses a virtual n-D cube to display an animated representation of
the detection output; this cube is used to assist the user in visualizing
the intendedaction during the training process. In order to enable the
detection, each chosen action, plus the neutral action, must be trained.
The suite enables the EmoEngine to analyze the uses brainwaves and
develop a personalized signature which corresponds to each particular
action as well as the background state of neutral. As the engine refines
the signatures for each of the actions, detections become more precise
and easier to perform.

The first thing to do, when the program opens, is to log in if an account
already has been created or to register if not. The second step is to
set up the headset, as shown in Figure 2.5. There is an interactive
image of a cranium in which are placed some dots that indicate the
sensors. In the picture there are sixteen normal dots that represent the
normal sensors and two dots with a black point inside that represent
the reference sensor. These dots can have different colors: grey, red,
orange or green.

If the dot, that represents each sensor, is grey that means that the
quality of the contact is very poor or absent. Probably the headset is
not in the correct position or the sensor is not touching the cutis.

If the dot is red there is a poor quality, the orange colour indicates
better quality and the green light very good contact quality.

21

Starting point

Figure 2.5. Graphic representation of the cranium and the sensors.
The color of the sensors depends on the contact quality.

To set up correctly the BCI, the first thing to do is place it in the correct
position. To do that, it is needed to check the reference sensors: when
they are green the position is correct, and it is enough to adjust the
other sensors. The hardest part of the operation is to set the correct
position. Afterwards, it is very easy and quick to obtain good contact
quality. When the setup is completed the main window of EmotivBCI
appears and it is divided in four sections:

• Motion sensors: is a section where the output of many motion
sensor is shown: four Quaternions, three Accelerometer and three
Magnetometer (one for each axis).

• Performance metrics: in this section, the emotional states of the
brain are described also thanks to graphics (Stress, Focus, Interest,
Relaxation, etc.).

• Facial expressions: in this section is to possible to train some
expressions like smile, smirk left/right, frown etc. By choosing the
live mode a face model reproduces the facial expressions done in
reality.

• Mental commands: the functions of this section are similar to

22

Starting point

those of the section facial expressions but instead of training expres-
sions is possible to train mental commands as push, pull, left/right,
rotate left/right etc. Even in this section there is a live mode that
moves a cube according to the commands given.

For the Mental command and Facial expression sections there are two
windows (Figure 2.6): one is for training, the other is for live mode.

Figure 2.6. the top left image shows the training window for the fa-
cial expression, the image below is the training window for the mental
command, the top left image is the live window of the facial (the sliders
change the sensibility for the recognition of an expression), finally the
image on the bottom right corner shows the live window for the mental
command. As in the facial expression the sliders increase or decrease
the sensibility for a certain command.

Therefore, a user should set up correctly the BCI and start training
an expression in the training window. As for the eye movement, the
expressions do not have to be trained. After the training, a user can
switch to the live mode window, where the model of a face is displayed.
It reproduces the same expression of the subject that wear the headset.
All the expressions are showed by the face model, not only the trained

23

Starting point

ones. It is also possible to set the sensitivity with which it recognizes
an expression.

The mental command section is very similar to the facial expression
one. There are the same two windows, with the first you can choose
a mental command and train it. The initial step in creating Mental
Commands is to train the system to recognize your background mental
state, the so-called NEUTRAL condition, by recording a brief period of
your brain patterns while you are not trying to execute any commands.
Training a new mental command is as simple as selecting the desired
command label in the training mode, then imagining the consequences
of the command for 8 seconds (for example, imagine the target object
floating up into the air for the LIFT command) while the system records
the mental patterns you want to associate the command. During the
training, is it possible to see a cube that executes the mental command
trained.

For example, if the training concerns the push command, the cube
moves away. If the left command is trained, instead, it will move to
the left. In this window, it is shown a semicircle (Figure 2.7) where
the centre is the neutral state. After the training of a new command,
a coloured dot appears in the semicircle. The goal is to train the com-
mands in a way that the dots are as far as possible from each other,
that means that the difference between the states is high enough so that
in live mode the BCI does not confuse one command with another.

After the training, it is possible to go into live mode where the cube
moves according to own mental command: if the right command is
trained and sent, the cube moves right. As for facial expressions even
here, it is possible to set the sensibility for each command. If the
sensibility for a command is high, it is more probable that the BCI will
recognize its state.

24

Starting point

Figure 2.7. the first image shows a bad training indeed the dots the
represent the commands are close. The second image shows a good
training with the dots distant from each other and from the center of
the semicircle (were the neutral is always placed).

In the Table 2.1, all the mental commands and the facial expressions
that can be trained are shown:

Table 2.1. Commands

Mental commands Facial expression
Neutral Neutral
Push Blink
Pull Wink Left
Lift Wink Right
Drop Hori Eye
Left Surprise
Right Frown
Rotate Left Smile
Rotate Right Clench
Rotate Clockwise Laugh
Rotate Counterclockwise Smirk Left
Rotate Forward Smirk Right
Rotate Reverse
Disappear

2.5 CortexUI
Cortex UI is a software released by Emotiv for developers who want
to use the potentiality of their BCI in an application. This software

25

Starting point

is very minimal. It only has four windows. One is for login, one is to
connect the BCI through Bluetooth, one is to check the contact quality,
and the last one is to set the account settings.

As in EmotivBCI after the connection of the headset, the model of a
skull with the sensors to setup the BCI is shown. The convention is the
same as before: if the sensor is green the contact quality is good. If it
is red, the quality of the connection is bad. (Figure 2.8).

Figure 2.8. Three Cortex UI windows. The first on the top-left is
to login, the second to connect/disconnect/setup the headset and the
third shows the contact quality (as in Emotiv BCI).

After the connection of the headset to Cortex UI and its setup, it is pos-
sible to use internet API to get information from BCI. To use these API
first, you have to log in to the Emotiv server, with the login method,
using the same Emotiv credential used to log in CortexUI. Later, it is
explained what is a method and in particular how the login method

26

Starting point

works.

Without a PRO license (subject to a fee), the access to API is limited.
Otherwise, it is possible to use more functions and features. For exam-
ple, with the PRO license, the raw EEG data are included but without
it, only a set of commands/expressions can be trained as in EmotivBCI
and then receive the current command/expression the headset gives.

Below, it is illustrated how the communication through these API (Fig-
ure 2.9), between a developed program, Cortex UI and Emotiv EPOC+
works. Note that the image refers to Cortex API 1.0 that was the most
recent version during the developing of the program. Since the end of
2019, there is a new update available (Cortex API 2.0).

An application with this API communicates actually with an Emo-
tiv server and not directly with the headset. The Emotiv server then
forwards the command to the CortexUI that communicates with the
Headset. As imagined, this architecture is not very efficient and Inter-
net latency is very important.

Unfortunately, due to the lack of good documentation, it is unknown
how effectively these APIs and architecture work, but a few examples
are presented to show how most likely the system works. First, it is
explained how the training works and then how to read and extract the
mental commands.

Training:

• Application asks Emotiv server to train mental command “push”.

• Emotiv server sends to application a message to notify that the
training is starting, in the meantime the server asks CortexUI for
the EEG.

• CortexUI asks EEG to headset and forwards it to EmotivServer.

• Emotiv server records EGG for a certain amount of time and trains
a neural net.

• Emotiv server notifies application that the train is complete.

Reading mental command:

• Application asks Emotiv server to read the mental commands.

• Emotiv server asks CortexUI to send itself the EEG.

27

Starting point

• CortexUI gets the EEG from headset and forwards it to Emo-
tivServer.

• Emotiv server reads EGG and sends a previous trained command
that has the most similar EEG pattern of the last EEG sampling.

Figure 2.9. This scheme shows the communication between our appli-
cation, the BCI, CortexUI and the Emotiv server.

2.6 Cortex API
The Cortex protocol is made of 3 building blocks: WebSockets, JSON,
and JSON-RPC. WebSockets provide a real-time connection to the un-
derlying Cortex service, designed to be easy to use in both desktop and
web-based applications. JSON is a widely supported format used by
Cortex to send and receive data, and JSON-RPC is a standard way of
using JSON to make requests and get back the results.

The Cortex service listens on port 54321. Depending on the Web-
Socket client used, this means is possible to connect by using the URL
wss://emotivcortex.com:54321. JSON-RPC builds on top of JSON by
adding a few standard keys to track requests. An example, of request
and response are shown in Figure 2.10. The ”jsonrpc” key is always 2.0,
indicating the protocol version. ”method” indicates which of the API
Methods is invoked and ”params” contains the wanted keys and values
to use for that method. To find the parameters for a given method,
look it up in the Method reference.

It is given a response with a ”result” or an ”error” if the request was
unsuccessful. “id” is a parameter used to track the association between
requests and responses. If it is sent 1, the response is 1. If it is sent
”hello”, the response is ”hello”.

Currently, the request in Cortex is synchronous. They are planning
to support also the asynchronous request in the next version. The
exception to this is streams of data that received from the headset,
which do not follow a request-response pattern and do not follow JSON-
RPC. They are described below, under Subscriptions. [29]

When it comes to explaining and understanding the communication

28

Starting point

between CortexUI, Emotiv Server and Cortex API an important aspect
to consider is the login to own account. The first things to do, when the
API are included, is to log in with the same credential used in Cortex
UI. In this way the server recognizes the account to which he forwards
the messages.

Figure 2.10. Example of request and responses wit JSON-RPC

Before presenting the most important API methods used for this project,
it is relevant to point out that the documentation of the application of
the API is very scarce. Therefore, empiric work is done to understand
how this API work. For that reason, the following description is a mix
between official documentation [29] and the assumptions done.

2.6.1 login
This method is used to provide the Emotiv credentials. As mentioned
earlier, the same credentials in CortexUI have to be used. Furthermore,
this method returns also the client id and the secret. To use Cortex
API in an application, it is requested to register the app on the Emotiv
website and create the pair of client id and secret.

2.6.2 logout
By providing the username the user can be logged out. Afterwards a
new login is possible.

29

Starting point

2.6.3 authorize
The function of this method is almost the same as the login method
and serves to authenticate and get an authentication token needed for
every further method that is called. It caused a lot of problems. In the
documentation is written: “Authenticates a user. You can authenticate
as an anonymous user, but to get access to Raw EEG data or high-
resolution performance metrics or both, you need to provide a username
and password of user from the Emotiv Cloud, and the client id/secret
for your application.”.

Since the Raw EEG data or high-resolution performance metrics are not
needed (it is not deemed to buy the license to access these information),
at the beginning the authentication is considered as an anonymous user.
Unfortunately, malfunctions in the API are found, for example, the
creation of a new profile did not work. After checking on the internet,
to solve the problems it is requested to authenticate with the credential
even if only the free API is needed.

2.6.4 setupProfile
This method takes as parameters a string that is the profile name and
another string that is the “status”. The status can be “create” to create
a new profile, “save” to save the profile and all the training on Emotiv
Server, “load” to load a profile and all the training previously saved,
“unload” to remove all the saved training of a profile, “rename” to
rename a profile and “delete” to delete it. So potentially a person can
train some mental commands one day and the day after loading the
profile and get all the trainings already done. However, this is not
suggested because the shapes of the brain can change from day to day
or even from hour to hour. This method is not mandatory and the
creation of a profile is not requested, but it is used because it is needed
to change the sensibility of facial expressions or mental commands.

2.6.5 queryHeadsets
This call returns an array of the connected headsets to CortexUI. In this
case, the array has always one element due to the possession of a single
headset then a connection of just one BCI. This method is necessary
because the headset is needed to get a session and a session-id (it is
explain later what a session is).

30

Starting point

2.6.6 createSession
A session is an object that creates the link between your application
and an EMOTIV headset. When the user wants to work with a headset,
the application should create a session first. Then you can:

• subscribe to the data stream of the headset

• create a record and add markers

• use BCI

The application can open only one session at a time with a given head-
set. But it can open multiple sessions with multiple headsets. A session
is created by “createSession”, closed by “updateSession” and linked to
an application. All the sessions of an application are automatically
closed when the application is disconnected from the Cortex service. A
session is also closed if the headset is disconnected. A session is a tem-
porary in-memory object; it is not persistent. After a session is closed,
it is destroyed by Cortex.

2.6.7 subscribe
After opening a session with a headset, it is possible to subscribe to one
or more data streams. Each data stream gives real-time access to data
from the headset (EEG, motion, etc.) or data calculated by Cortex
(band powers, mental command, etc.). After successfully subscribed
to a data stream, Cortex keeps sending data sample objects. A sub-
scription is linked to a session. All the subscriptions of a session are
automatically cancelled when the session is closed. Call unsubscribe
to cancel a subscription. The “subscribe” method uses as parameter a
string called “stream” that defines the type of subscription demanded.
For example, for the training, the stream field has to be set to “sys” to
subscribe to it. All the stream types are shown in the table 2.2.

31

Starting point

Table 2.2. Streams

Stream Description

mot Motion data from the accelerometer/gyro-
scope

eeg Raw EEG data
com Mental Command Event
fac Facial Expression Event
met Performance Metrics data

dev
Device data include battery level, signal
strength, and signal quality all of channel
headset

pow Band Power data
sys System event (for set up training)

2.6.8 unsubscribe
This method is used to cancel a subscription that was previously created
by the subscribe method.

2.6.9 training
This method is used to control the training of the mental commands
and facial expressions detections. Before start training, the subscription
is set to the ”sys” data stream. This call has three main parameters:

• “detection” is a string that can be “mentalCommand” if train men-
tal commands or “facialExpression” if train facial expressions.

• “action” is a string in which defines the wanted action to train. It
can be a mental command as “push” if the detection is “mental-
Command” or a facial expression as “smirkLeft” if the detection is
“facialExpression”. All the actions for both mental command and
facial expression can be found in table 2.1.

• “status” defines what to do with the train. The possible states are:

– “start” to start to train a certain action.

– “accept” to accept a training after completion and if the result
is satisfactory.

– “reject” to reject a training after it has already started and then
get a result that is not satisfactory.

32

Starting point

– “reset” to cancel the current training.

– “erase” to erase all the training data for the specified action.

A possible workflow could be the following: start the training of the
mental command “pull” [detection = “mentalCommand”, action =
“pull”, status = “start”], so for a few seconds the user has to give the
mental command, then a message is received to show that the training
has been successfully and afterwards accept the training [detection =
“mentalCommand”, action = “pull”, status = “accept”].

2.6.10 mentalCommandGetSkillRating
This method returns the skill rating of a mental command action if it
is specified as parameter, or the overall mental command skill rating if
not specified any. In other words, it returns a number from zero to five
that tells how good the training is. Zero is the worst training value and
five is the best rate.

2.6.11 mentalCommandActionSensitivity
This method gets or sets the sensitivity of the four active mental com-
mand actions. It gets one main parameter that is an array of four
elements that contains the sensitivity of each active action. The order
of the values must follow the order of the active actions, as returned by
the “mentalCommandActiveAction” method. The value can go from
one to ten: with one the relative mental command becomes insensitive
but with ten it gets very sensitive. This is a useful regulation to fix
the false positive and the true negative results. For example, a mental
command is read even if it is not given by the user or vice versa it is
not read even if it is given.

2.6.12 facialExpressionThreshold
This method can get or set the threshold of a facial expression action
for a specific profile. Actions with a low threshold are less likely to be
detected. Actions with a high threshold will be detected more often.
This method is similar to “mentalCommandActionSensitivity”, but in-
stead of sending an array it gets as parameters the name of the action
(whose threshold has to be change) and the threshold value that goes
from zero to one thousand.

33

Starting point

2.7 Cortex API 2.X
The main difference between Cortex API 1.0 and 2.0 is that in the first
version the communication has to be instantiated with a remote server
with the second version the communication is made with a local host.
With all probabilities, the second version will communicate directly
with CortexUI. Since in this work the new version is not tested, it is
not known if this improves the management of the headset but probably
it will improve the latency of the communication.

With this new version, the login is no more needed avoiding a bit of
redundancy and simplifying the communication with the server, since
with the old and current API there is login and authentication. Some
other methods change their names but their functionality stays the
same. The 2.0 version has been released on July 2019 and in October
2019 the current version is 2.2.1. Probably besides to have improved the
latency and simplified the communication these new APIs have brought
more efficiency in the management of the BCI.

2.8 Goal of the thesis
To sum up, there is a car that can be driven remotely with UDP packets,
a defined protocol and Emotiv EPOC+ that is a BCI. By using Cortex
API and a software called CortexUI, it is possible to develop a program
that can train the headset and then “read” mental commands or facial
expressions.

The final goal is to develop an application that can manage the training
of mental commands and then possibly drive the teleoperated car by
following the mental commands that are read from BCI. To be clear,
this application should train these mental commands and each of them
corresponds to a movement of the car. In this phase, it is not clear how
the commands work but for example when the user gives the mental
command “left” the car steers left. The process is similar for the ac-
celeration. When the “push” command is received, the gas pedal has
to be pressed. After the training phase the BCI “reads the brain” and
sends every 200 milliseconds the mental command that it thinks is the
most probable.

34

Starting point

2.9 First tests with EmotivBCI
At the beginning without any idea how a BCI in general works, and in
particular Emotiv EPOC+, the main focus is to start to “play” with it
by using EmotivBCI, the application described above. The connection
between the BCI and the program resulted very easy, much more com-
plex was the setup of the headset. In fact, the correct positioning of
the reference sensors was hard to find and after that the contact qual-
ity of the sensors where not so good (the colours on the cranium map
were grey or red). The instructions of the BCI did not help so much to
resolve these firsts problems.

Knowing that the training and then the recognising of the facial expres-
sions would have been easier than the training and the recognizing of
the mental commands so, it has been decided to start to this test with
the firsts. Without much success at the beginning, indeed just a few
times the application could really recognize the expressions that were
done. It has been worse during the training of the mental commands,
almost helpless and lost: How a mental command can be given? What
should be thought? Those are the first questions that went out.

It is really hard to give a command without actually doing something.
A command to lift the arm and lift an arm can be given to ourselves,
but without moving a body part it is pretty hard. It is indeed not rec-
ommended to move the body while giving a mental command, because
the movement has an effect on the command and it is hard to reproduce
the same physical movement and so the same mental command. Trying
to give those commands it makes a funny situation.

2.10 First tests with CortexUI and Cor-
tex API

CortexUI, as already explained, is a very minimal program in the sense
that it just has two main functions: find and connect the headset via
Bluetooth and check the connection quality. Even if there are few
functions, they do not work so well. In fact, it is really hard to establish
a connection to the headset and sometimes this connection is really
unstable. The window which shows the contact quality is not reloading
in real-time, and often it is helpful to go back to the previous windows
to see the changes of the connection.

Consulting the Cortex API documentation to see which functions are

35

Starting point

available for the goal of this work, but unfortunately the documentation
is not very clear. At least Emotive provides some example programs to
show the main services. A lot of time is spent to try many functions to
understand empirically how they really work.

2.11 Problems and first solutions
In this section, the problems faced with these first tests and the at-
tempts to solve them are summerized below.

The first problem is the connection (via Bluetooth): not so much could
be done about it since the problem seems to be in the software (Emo-
tivBCI, CortexUI) or in the hardware (Emotiv EPOC+). The only
aspect noted is that lower the battery of BCI more the connection prob-
lems are present. Therefore, the headset is always kept full charged.

Another issue found concerns the setup problem and the contact quality
of sensors. It is partially resolved by trying out different solutions:
learning the exact position of the reference sensors, and by reading
the setup tip on the Emotiv web site [30] it has found out that by
soaking the sensor with the saline solution the quality of the contact
will improve. At the beginning, only few drops are put on them.

EmotivBCI caused many problems with the training of both, facial
expressions and mental commands. By reading the instructions on
the internet, primarily on the Emotiv web site, has been understood
that it is needed to keep the facial expression for all the duration of
the whole training. However, in the beginning, the movement of the
facial expression is repeated various times. It can be clarified with an
example: training a clench expression, to keep clenching the teeth and
then to relax the face muscles during the whole training. By keeping
clenched the teeth for all the time the training, instead, improved a lot
the quality.

For what concerns mental commands the situation is more complicated.
Emotiv gives many advices but a mental training is mandatory as well.
The first step is to understand how the BCI recognizes a mental com-
mand. The first mental command that Emotiv suggests to train is the
neutral command, that is the state of rest of the brain when the subject
does not think about anything. The training is a record of the EEG for
a certain timeslot (few seconds). This record is filtered and then pro-
cessed with some machine learning techniques. Then the user can train
other mental commands. The important point is that every command

36

Starting point

must produce an EEG that is unique and easily distinguishable from
the others.

The second step is to decide what to think about. Emotiv gives the
following answer:

”The thought that you train on and use for your Mental Com-
mands can be anything. They can be literal (i.e. you can try and
focus on pushing the virtual box) or they can be as abstract as you
like (i.e. where push is associated with visualizing a scene or count-
ing backwards from 500 in steps of 7). The possibilities are endless.
Different strategies work best for different people, so try a few out.
If you are training a profile with one command, you want to make
that one command as strong and distinct as possible. One way to
achieve this is to use something that is multi-modal - i.e. something
that contains different sensory and kinematic (related to movements
of your muscles) components all together. If you have a strong dispo-
sition toward any of these modalities (e.g. you are a musician and so
can easily imagine auditory sounds), you may find focusing on this
single modality works best for you. Given the difficulty of train and
use mental commands, it has been decided that Xavier, the program
implemented in this work, had to works both with facial expressions
and mental commands because the firsts were much easier than the
latter. explain better maybe. If you are training a profile with mul-
tiple commands, you may find you get best results if each of your
commands uses a single and different sensory or kinematic modality
(e.g. one that is visual, one that is auditory and one that is kine-
matic). What is most important is that they are distinct from each
other and you are able to recreate them accurately in your mind re-
peatedly. You may also find that associating different hand gestures
or postures with a Command can help to better reproduce them.”
[31]

So, the starting point is to try to control the thoughts to train mental
commands. It is suggested to train well a command before introducing
a new one. It has been noticed immediately that it is essential to give
good knowledge and good tips to the user to train and be able to provide
these type of commands.

A developing problem found is how to test the software: it is not so easy
to use the teleoperated car because it can be dangerous, and it requires
to setup a safe environment which takes a lot of time and money. Then,
it has been decided to create a simulated environment with a car that
can be controlled in the same way as the real one, in order to test the
functioning of Xavier. Of course, the simulation could not replace the

37

Starting point

real car completely, indeed some real tests with the car are still needed,
but at least it is possible to save a lot of time by first using software
trials and different scenario.

Another problem is, as already anticipated, the poor value of the Cor-
tex API documentation, indeed there are just no satisfying examples.
Therefore, a lot a time is spent on trying these APIs and understand
what could really be done. This fact had a negative impact even on
the planning and on the design of Xavier since it is not known what
are the possibilities and which information is possible to get from the
headset. Most probably EmotivBCI uses the same APIs and this can be
helpful to understand how those really work. For example, very often
an error message occurred when trying to change the sensibility of the
eye movements. Only by checking EmotivBCI, it has been understood
that this function is not supported as well as for other movements.

The main idea of Xavier at the beginning was to train four commands
and each of them corresponds to a command which is sent to the
car. The command “push” presses the accelerator, the “pull” command
presses the brake of the car and “left” and “right” commands turn the
vehicle respectively left or right. After some tests with EmotivBCI, it
is clear how difficult it is to manage multiple mental commands, so the
“pull” command has been removed and replaced by the “neutral” one
which is mandatory for the training. When driving, not only a pedal
is pressed or the steering wheel is turned, it can also vary the intensity
of the push or the spin: it is possible to press the gas pedal slowly or
hardly and turn the steering wheel of 10 degrees or 90 or 180. So this is
another problem to think about because the given commands just ex-
pressed a movement (turn, accelerate or brake) and not the intensity of
it. It is decided to give a fixed value for the acceleration and the brak-
ing so every time a “neutral” or “push” command is received, a certain
level of pressure is sent to the corresponding pedal. Unfortunately, it
is not possible to apply the same for the steering. The system cannot
give a sudden 90 degrees turn command because that could create at
least three main problems:

• The car and the mechanical system, that turns the steering, can
break.

• Such sharp curves are not comfortable for the passenger.

• It is impossible to do a precise turn.

For these reasons, a linear function (Figure 2.11) has been introduced.

38

Starting point

On the x-axis there is the frequency of sending packets to the car and on
the y-axis there is degree values of the steering. The maximum steering
value is 440 and it is reached after about 5 seconds. If received a “left”
command, it starts to turn the steering of 17.6 degrees, if received the
same command for twenty times, it keeps increasing the steering of the
wheel of 17.6 degrees for 20 times. So, since the frequency is set to 5
Hz after 3 seconds, the car turns of 5 ∗ 3 ∗ 17.6 degrees that is 264.

Figure 2.11. Linear function: on the x axis the seconds and on the y
axis the angle of the steering wheel (max angle value is 440°)

This frequency has been chosen because is more or less the same fre-
quencies of the streaming of the headset in other words the frequency
in which the headset tells which is the facial expression or the mental
command the user is doing or thinking.

39

Chapter 3

Development of Xavier
and of the simulation

It has been decided to split the work in two parts:

1. The development of a software application that allows to drive the
car with the BCI that is called Xavier.

2. The creation of a simulation with a simulated car that can be con-
trolled by UDP packets to test Xavier before the final tests on the
real car.

3.1 Simulation

3.1.1 ROS Robot Operating System
The first question is which is the best tool to simulate a world and a
teleoperated car? It has been chosen ROS because is Open Source, thus
free, is largely used, there is a big community, many worlds and robots
(and cars) can be found on the internet (free license).

ROS is an open-source, meta-operating system for your robot. It pro-
vides the services you would expect from an operating system, includ-
ing hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and
package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers.

The ROS runtime ”graph” is a peer-to-peer network of processes (po-
tentially distributed across machines) that are loosely coupled using the

40

Development of Xavier and of the simulation

ROS communication infrastructure. ROS implements several different
styles of communication, including synchronous RPC-style communi-
cation over services, asynchronous streaming of data over topics, and
storage of data on a Parameter Server. ROS is not a realtime frame-
work, though it is possible to integrate ROS with realtime code.

ROS has two levels of concepts: the Filesystem level, the Computation
Graph level. The filesystem level concepts mainly cover ROS resources
that you encounter on disk, such as:

• Packages: Packages are the main unit for organizing software in
ROS. A package may contain ROS runtime processes (nodes), a
ROS-dependent library, datasets, configuration files, or anything
else that is usefully organized together. Packages are the most
atomic build item and release item in ROS. Meaning that the most
granular thing you can build and release is a package.

• Metapackages: Metapackages are specialized Packages which only
serve to represent a group of related other packages. Most com-
monly metapackages are used as a backwards compatible place
holder for converted rosbuild Stacks.

• Package Manifests: Manifests (package.xml) provide metadata
about a package, including its name, version, description, license in-
formation, dependencies, and other meta information like exported
packages. The package.xml package manifest is defined in REP-
0127.

• Repositories: A collection of packages which share a common
VCS system. Packages which share a VCS share the same version
and can be released together using the catkin release automation
tool bloom. Often these repositories will map to converted rosbuild
Stacks. Repositories can also contain only one package.

• Message (msg) types: Message descriptions define the data struc-
tures for messages sent in ROS.

• Service (srv) types: Service descriptions define the request and
response data structures for services in ROS.

The Computation Graph is the peer-to-peer network of ROS processes
that are processing data together. The basic Computation Graph con-
cepts of ROS are nodes, Master, Parameter Server, messages, services,
topics, and bags, all of which provide data to the Graph in different
ways.

41

Development of Xavier and of the simulation

These concepts are implemented in the ros comm repository.

• Nodes: Nodes are processes that perform computation. ROS is
designed to be modular at a fine-grained scale; a robot control sys-
tem usually comprises many nodes. For example, one node controls
a laser range-finder, one node controls the wheel motors, one node
performs localization, one node performs path planning, one Node
provides a graphical view of the system, and so on. A ROS node
is written with the use of a ROS client library, such as roscpp or
rospy.

• Master: The ROS Master provides name registration and lookup
to the rest of the Computation Graph. Without the Master, nodes
would not be able to find each other, exchange messages, or invoke
services.

• Parameter Server: The Parameter Server allows data to be stored
by key in a central location. It is currently part of the Master.

• Messages: Nodes communicate with each other by passing mes-
sages. A message is simply a data structure, comprising typed
fields. Standard primitive types (integer, floating point, boolean,
etc.) are supported, as are arrays of primitive types. Messages
can include arbitrarily nested structures and arrays (much like C
structs).

• Topics: Messages are routed via a transport system with publish
/ subscribe semantics. A node sends out a message by publishing
it to a given topic. The topic is a name that is used to identify
the content of the message. A node that is interested in a certain
kind of data will subscribe to the appropriate topic. There may be
multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics.
In general, publishers and subscribers are not aware of each other’s
existence. The idea is to decouple the production of information
from its consumption. Logically, one can think of a topic as a
strongly typed message bus. Each bus has a name, and anyone can
connect to the bus to send or receive messages as long as they are
the right type.

• Services: The publish / subscribe model is a very flexible com-
munication paradigm (Figure 3.1), but its many-to-many, one-way
transport is not appropriate for request / reply interactions, which
are often required in a distributed system. Request / reply is done

42

Development of Xavier and of the simulation

via services, which are defined by a pair of message structures: one
for the request and one for the reply. A providing node offers a
service under a name and a client uses the service by sending the
request message and awaiting the reply. ROS client libraries gen-
erally present this interaction to the programmer as if it were a
remote procedure call.

• Bags: Bags are a format for saving and playing back ROS message
data. Bags are an important mechanism for storing data, such as
sensor data, that can be difficult to collect but is necessary for
developing and testing algorithms.

The ROS Master acts as a nameservice in the ROS Computation Graph.
It stores topics and services registration information for ROS nodes.
Nodes communicate with the Master to report their registration infor-
mation. As these nodes communicate with the Master, they can receive
information about other registered nodes and make connections as ap-
propriate. The Master will also make callbacks to these nodes when
this registration information changes, which allows nodes to dynami-
cally create connections as new nodes are run.

Nodes connect to other nodes directly; the Master only provides lookup
information, much like a DNS server. Nodes that subscribe to a topic
will request connections from nodes that publish that topic and will es-
tablish that connection over an agreed upon connection protocol. The
most common protocol used in a ROS is called TCPROS, which uses
standard TCP/IP sockets. This architecture allows for decoupled op-
eration, where the names are the primary means by which larger and
more complex systems can be built. Names have a very important role
in ROS: nodes, topics, services, and parameters all have names. Every
ROS client library supports command-line remapping of names, which
means a compiled program can be reconfigured at runtime to operate
in a different Computation Graph topology.

For example, to control a Hokuyo laser range-finder, it has started
the hokuyo node driver, which talks to the laser and publishes sen-
sor msgs/LaserScan messages on the scan topic. To process that data,
it should be written a node using laser filters that subscribes to mes-
sages on the scan topic. After subscription, the filter would automati-
cally start receiving messages from the laser.

Note how the two sides are decoupled. All the hokuyo node node does
is publish scans, without knowledge of whether anyone is subscribed.
All the filter does is subscribe to scans, without knowledge of whether

43

Development of Xavier and of the simulation

anyone is publishing them. The two nodes can be started, killed, and
restarted, in any order, without inducing any error conditions.

Later it could be possible to add another laser to our robot, so it’s
needed to reconfigure the system. What is needed is remap the names
that are used. When the first hokuyo node starts, it is told instead to
remap scan to base scan, and do the same with the filter node. Now,
both of these nodes will communicate using the base scan topic instead
and not hear messages on the scan topic. Then just start another
hokuyo node for the new laser range finder. [36]

Figure 3.1. Publish/Subscribe paradigm.

3.1.2 Gazebo
Gazebo is a 3D dynamic simulator with the ability to accurately and
efficiently simulate populations of robots in complex indoor and outdoor
environments. While similar to game engines, Gazebo offers physics
simulation at a much higher degree of fidelity, a suite of sensors, and
interfaces for both users and programs. [37]

Typical uses of Gazebo include:

• testing robotics algorithms.

• designing robots.

• performing regression testing with realistic scenarios.

A few key features of Gazebo include:

• multiple physics engines.

• a rich library of robot models and environments.

• a wide variety of sensors.

• convenient programmatic and graphical interfaces.

44

Development of Xavier and of the simulation

3.1.3 CarDemo
On Open Source Robotics Foundation, it has been found a demo that
simulate a Prius in gazebo 9 with sensor data being published using
ROS kinetic (ROS distro). The car’s throttle, brake, steering, and gear
shifting are controlled by publishing a ROS message. A ROS node
allows driving with a gamepad or joystick. To run this demo, it is used
Linux Xenial (16.04), gazebo 9, and ROS kinetic. [38]

Figure 3.2. A screen shot from the car demo simulation.

3.1.4 Developing of simulation
In Car Demo, a simulated world and a simulated Prius is created. Fur-
thermore is present a node that get information from a joy-pad and
move according the car. To control the Prius a custom ROS message
id used. This ROS messages is called Control and has 4 parameters:

• throttle: it is a float64 type with a range that goes from 0 to 1
where 1 is the maximum pressure on gas pedal.

• brake: it is a float64 type with a range that goes from 0 to 1 where
1 is the maximum pressure on brake pedal.

• steer: it is a float64 type with a range that goes from -1 to 1 where
1 is the maximum turn on left, -1 is the maximum turn on right.

• shift gears: it is a uint8 type with a range that goes from 0 to

45

Development of Xavier and of the simulation

3. Zero gives no command, one puts the shift to neutral so if the
gear is in this position and the throttle is set to maximum the car
actually does not accelerate, two puts the shift to forward so if
accelerate the car goes forward, three puts the shift to reverse so if
accelerate the car goes backwards.

The goal of this work is not to control the car with a controller but
through UDP packets and a defined protocol. So, what is needed to
do is a ROS node which listens on an UDP socket, receives a packet
from the BCI with mentioned protocol, translates the command in the
Control ROS message and publishes it. The address and the port on
which the socket is listening are printed in order to know to which IP
the packets are sent. Since, in the real car, is not possible to control the
gears, the node always sends “shift gears = 2” which makes the car go
forward. This node is created with C++ because is a well-supported
programming language by ROS and due to the big experience with it.
In this way, it has been created a simulation that waits for commands
over UDP and moves the simulated Prius accordingly (Figure 3.3).

Once developed this node, to understand if it really works (Xavier,
the application had yet to be implemented), is created a really simple
Android application that sends an UDP packets every 300 milliseconds.
This application can drive the car with a couple of sliders: the first
slide adjusts the acceleration (on the left: no acceleration, on the right:
maximum acceleration), the second adjusts the steering (on the left:
maximum left turn, at centre: no turn, on the right: maximum right
turn). After some simulations has been understood that often, because
of wrong commands given from the BCI, the car gets stuck against walls
and side-walls. Then, a second node is create to move the car forward,
backward, left and right through the keyboard arrows to quickly reset
the position of the vehicle.

46

Development of Xavier and of the simulation

Figure 3.3. Simulation workflow. Able to control the simulated
car with UDP packets.

3.2 Qt
Qt is a modular cross-platform framework, written in C++ and release
in 1995, designed for developing applications for desktop and mobile
devices, as well as embedded systems. Qt combines a cross-platform
software development application, graphical user interface (GUI) frame-
work, and a toolkit for developing apps using C++ standard.

This object-oriented cross-platform framework comes with Qt Creator –
its own Integrated Development Environment (IDE) that runs on Linux,
Android, Windows, OS X, and other systems. It provides develop-
ers with all the functionality required to build cross-platform software.
Considering the fact that Qt uses C++, it is entirely object-oriented
and supports extensible and true component programming. GUIs can
be written directly in C++ using its Widgets module, as it comes with
Qt Designer – an interactive graphical tool that is integrated into Qt
Creator. Qt cross-platform software development network uses C++
(on a server side) along with QML (on the front-end side). Qt QML
is a specific programming language (Qt Meta Language) which is sim-
ilar to HTML. It is used to create cross-platform libraries and appli-
cations. Qt QML provides both QML and C++ Application Program
Interfaces (APIs), which enables app developers to integrate QML code

47

Development of Xavier and of the simulation

with JavaScript and C++.

Qt QML is designed to be simply extensible via C++ code. The classes
in this module make it possible for QML objects to be directed from
C++, meanwhile, the nature of QML engine’s integration enables C++
functionality directly from Qt QML. This supports the development of
hybrid apps implemented with a blend of C++, QML, and JavaScript
code. [32]

3.2.1 Advantages of using Qt app development plat-
form

• Qt app development allows porting an application to multiple plat-
forms through simple recompilation.

• It increases development productivity and decreases time to mar-
ket, making applications future-proof.

• Developing with Qt simplifies technology strategy and, ultimately,
reduces costs.

• Saves time, through one code deployed across all screens and plat-
forms.

• Coding in C++ gives developer a greater control and the possibility
to work with numerous existing libraries.

• The code is compiled to native binaries that run at full speed (no
need to use a virtual machine).

• Qt also has a very capable IDE in Qt Creator which works on all
platforms and gives the same development environment wherever
it’s used.

• Qt cross-platform software development makes it easy to create
intuitive experiences for all users, no matter what system is used.

However, there are two properties of Qt that has been the subjects of
discussions over the years. The first one is its usage of a pre-processing
step called the “Meta Object Compiler”. It has sometimes been de-
scribed as not standard C++, but this is a misunderstanding. What
MOC does is parsing the header files for some predefined macros and
generating C++ code to support features like signal/slots, introspec-
tion and property system. This makes Qt a strong candidate for new
projects of medium to large sizes and all variations, as demonstrated

48

Development of Xavier and of the simulation

by the examples from automotive, entertainment, automation, medical
and other industries. [33]

3.2.2 Signals and Slots
Signals and slots are used for communication between objects. The
signals and slots mechanism is a central feature of Qt and probably the
part that differs most from the features provided by other frameworks.
Signals and slots are made possible by Qt’s meta-object system. In Qt,
there is an alternative to the callback technique: using signals and slots.

A signal is emitted when a particular event occurs. Qt’s widgets have
many predefined signals, but it is possible always subclass widgets to
add own signals to them.

A slot is a function that is called in response to a particular signal.
Qt’s widgets have many pre-defined slots, but it is common practice to
subclass widgets and add own slots so that is possible to handle the
signals to be considered (Figure 3.4).

Figure 3.4. Qt - Signals and Slots mechanism

The signals and slots mechanism is type safe: The signature of a signal
must match the signature of the receiving slot. (In fact a slot may have

49

Development of Xavier and of the simulation

a shorter signature than the signal it receives because it can ignore
extra arguments.) Since the signatures are compatible, the compiler
can help to detect type mismatches when using the function pointer-
based syntax. The string-based SIGNAL and SLOT syntax will detect
type mismatches at runtime. Signals and slots are loosely coupled: a
class which emits a signal neither knows nor cares which slots receive
the signal. Qt’s signals and slots mechanism ensures that if a signal is
connected to a slot, the slot will be called with the signal’s parameters
at the right time. Signals and slots can take any number of arguments
of any type. They are completely type safe.

All classes that inherit from QObject or one of its subclasses (e.g.,
QWidget) can contain signals and slots. Signals are emitted by objects
when they change their state in a way that may be interesting to other
objects. This is all the object does to communicate. It does not know
or care whether anything is receiving the signals it emits. This is true
information encapsulation, and ensures that the object can be used as
a software component.

Slots can be used for receiving signals, but they are also normal member
functions. Just as an object does not know if anything receives its
signals, a slot does not know if it has any signals connected to it. This
ensures that truly independent components can be created with Qt.
It is possible to connect as many signals as required to a single slot,
and a signal can be connected to as many slots as needed. It is even
possible to connect a signal directly to another signal. (This will emit
the second signal immediately whenever the first is emitted.)

Together, signals and slots make up a powerful component program-
ming mechanism. [34]

3.2.3 MOC vs. template
Templates are a builtin mechanism in C++ that allows the compiler
to generate code on the fly, depending on the type of the arguments
passed. As such, templates are highly interesting to framework cre-
ators, and advanced templates are used in many places in Qt. How-
ever, there are limitations: There are things that you can easily express
with templates, and there are things that are impossible to express with
templates. A generic vector container class is easily expressible, even
with partial specialisation for pointer types, while a function that sets
up a graphical user interface based on an XML description given as a
string is not expressible as a template. And then there is a gray area in

50

Development of Xavier and of the simulation

between. Things that you can hack with templates at the cost of code
size, readability, portability, usability, extensability, robustness and ul-
timately design beauty. Both templates and the C preprocessor can
be stretched to do incredibility smart and mind boggling things. But
just because those things can be done, it does not necessarily mean do-
ing them is the right design choice. Code, unfortunately, is not meant
to be published in books, but compiled with real-world compilers on
real-world operating systems. [35]

• The syntax matters: The syntax used for Qt’s signals and slots is
intuitive, simple to use and easy to read.

• Code generators are good: Qt’s moc (Meta Object Compiler) pro-
vides a clean way to go beyond the compiled language’s facilities. It
does so by generating additional C++ code which can be compiled
by any standard C++ compiler. The moc reads C++ source files. If
it finds one or more class declarations that contain the Q OBJECT
macro, it produces another C++ source file which contains the
meta object code for those classes. The C++ source file generated
by the moc must be compiled and linked with the implementation
of the class. Typically moc is not called manually, but automati-
cally by the build system, so it requires no additional effort by the
programmer.

• GUIs are dynamic: C++ is a standarized, powerful and elaborate
general-purpose language. It’s the only language that is exploited
on such a wide range of software projects, spanning every kind
of application from entire operating systems, database servers and
high end graphics applications to common desktop applications.
One of the keys to C++’s success is its scalable language design
that focuses on maximum performance and minimal memory con-
sumption whilst still maintaining ANSI C compatibility.

• Performance: Qt’s signals and slots implementation is not as fast
as a template-based solution. While emitting a signal is approxi-
mately the cost of four ordinary function calls with common tem-
plate implementations, Qt requires effort comparable to about ten
function calls. This is not surprising since the Qt mechanism in-
cludes a generic marshaller, introspection, queued calls between
different threads, and ultimately scriptability. It does not rely on
excessive inlining and code expansion and it provides unmatched
runtime safety. Qt’s iterators are safe while those of faster template-
based systems are not. Even during the process of emitting a signal

51

Development of Xavier and of the simulation

to several receivers, those receivers can be deleted safely without
the program crashing. Without this safety, the applications would
eventually crash with a difficult to debug free’d memory read or
write error.

• Flexibility: C++ with the moc essentially gives us the flexibil-
ity. There are other useful aspects like dynamic qobject cast<T>()
mechanism that does not rely on the system’s RTTI and thus does
not share its limitations; dynamic meta objects. [35]

3.3 Xavier
As already mentioned, the goal of this thesis is a program that can drive
a car according to mental commands, which are given by a user through
a BCI. Since the tests with Emotiv BCI showed difficulties controlling
the mental commands, the first version of Xavier is created using only
the facial expression whose training is much easier.

This program had to provide an intuitive UI to manage the login (that
is mandatory to use cortex API and CortexUI, as already explained),
to manage the training for the facial expressions and have a live mode
where the facial expressions are read from BCI and send to the car
through UDP packets.

Emotiv provides a sample code without GUI that calls API to train
some mental commands and facial expressions. Actually, there are two
different codes, because this program is written in two programming
languages: one in C# and the other one in Qt C++. It is needed
a program that could work in Windows, Mac OS and Linux. The
cross-platform feature was essential in order to choose the programming
language. Given the good knowledge of C++ and the example program
in Qt C++, this is the final choice language, a cross-platform C++
framework.

3.3.1 GUI
The GUI of Xavier is very simple. There are just two windows: one for
the training and the other one for live mode that has the purpose of
reading info from BCI and send the commands to the teleoperated car.

The first window, called train, is divided in two parts: the first part
allows to start the training with a new or with an old profile and get

52

Development of Xavier and of the simulation

a connection with the BCI. The second part manages the training of
facial expressions.

To use this program, it is required to login in CortexUI, connect the
headset to the latter and set-up the BCI. Then open Xavier, add a
profile name, set a check-box and say if the profile was already existing
or if it was new (checking the box means that the profile is new) and
at the end press the “Connect to BCI” button to login with the Emo-
tiv server. Afterwards, looking for the connected BCI and set up the
new/old profile.

The lower part of the first window is to train the facial expressions. Ac-
tually, with this version for each command, there is a fixed expression.
There are four train buttons and each of them trains a specific facial
expression that corresponds with a command for the car:

• accelerate command: clench

• brake command: neutral

• left command: smirk left

• right command: smirk right

By pressing one of these buttons a label appears which communicates to
the user the state of the training like “Please, focus on the action”, “The
train is successfully completed” or “Train is failed”. At the bottom,
there is a button called “Test”. By pressing this button, the program
starts to “read” the facial expression from the BCI and shows the read
expression in a label. In this way, the user can evaluate the quality of
the training and eventually modify the sensibility for each expression
through four sliders. If the user moves the first slider to the right the
sensibility of the clench expression increases.

Once the training is completed successfully the user can switch to the
“Stream” window that is composed by four main objects: two line-
edits where the address and the port, on which the car is listening,
should be inserted and two buttons, one called “Stream” to start to
send commands to the car and the other one called “Stop” to stop the
sending. There is even a label that shows a message in case of error
(Figure 3.5).

53

Development of Xavier and of the simulation

Figure 3.5. GUI of Xavier. On the left the training window and on
the right the streaming one.

3.3.2 Code structure
The program is divided in two threads: the first contains the Main-
window, an object that handles the GUI and all the user iterations
and gives him feedbacks from the BCI. On the other hand, the second
thread contains all the login information of the program and connects
the user iterations that come from Mainwindow, the BCI and the car.
In the second thread operates the Binder, an object that contains two
main objects: CortexClient that handles the communication between
Xavier and the Emotiv Server and Command that handles the sending
of commands to the teleoperated car (Figure 3.6).

Figure 3.6. Scheme that shows the structure of Xavier, communication
between classes and communication with the Emotiv Server.

54

Development of Xavier and of the simulation

Mainwindow

This class is simple, inherits from QMainWindow. It contains, as pri-
vate member variable, just a pointer to UI::MainWindow, the class that
handles the UI elements and a Boolean which is needed for the closure
process.

Mainwindow contains many signals and slots, that can be divided in
two types: the ones that are triggered by the UI and the ones that are
called by Binder’s signals. The slots of the first type are called when for
example the “Stream” or “Training” buttons are pressed or the sensibil-
ity slider has been moved from a position to another. If necessary, these
slots get other information like in the case of the “Stream” button. The
relative slot reads the values of “IPaddress” and “Port” text forms and
then calls a signal to inform the Binder about the new iterations of the
user. The second type of slots is the ones which are transmitted by the
Binder and which inform the user that the connections with the BCI
and Emotiv cloud are ready or that the connection has been closed.
With these slots are also received error messages that are displayed in
the UI by MainWindow or the facial expression read from BCI that it
is displayed as well.

Since Xavier is a program with two threads, both threads need to
be closed and so free all the resources before completely closing the
program. In other words, it is needed to establish a communication
between the two threads where the master informs the slave that it
has to close itself and the slave has to say to the master when it is
closed. To do so, the MainWindow handle a closure process. When
“closeEvent” is received (the user clicked the red cross button to close
the program) MainWindow checks if “ closeMainWindow” Boolean is
“true” (this variable is initialized to “false”). If the value is true, it
closes the program. Otherwise it ignores the event (the program is not
closed) and sends the “closeBinder” signal to Binder that closes every-
thing and sends back a signal to inform MainWindow that it is closed.
When the “onBinderClosed” slot is called, triggered by “closeBinder”,
“ closeMainWindow” is set to “true” and “closeEvent” is called and will
finally close the program.

Binder

This class is the most complex. It handles the communications between
the user interactions, which are received by the signals of MainWindow
and Emotiv Server.

55

Development of Xavier and of the simulation

It has many private member variables. Indeed, this object must keep
in memory a lot of information such as headset id, Emotiv token au-
thentication, session id, profile name, an UDP socket, the port and the
IP address of the car (or of the simulation) the training status of the
four commands, a timer to send packets after a certain amount of time,
an instance of the Command class and pointers to other classes, like
CortexClient, HeadsetFinder, SessionCreator.

This class has many signals, some of them are connected with a thread
class to bind the life cycle of the Binder with the thread’s life cycle, oth-
ers are connected with the MainWindow to inform it about its status
and still others are connected to the CortexClient object that handles
the communication with Emotiv Server. Since it is required an efficient
communication within the three main classes that receive Binder’s sig-
nals, as already described above, this class has many slots that are
triggered by signals sent from MainWindow, Thread, or CortexClient.

The behaviour of the Binder can be split into three phases: the setup
phase, the training phase and the streaming phase.

The first phase starts when the user inserts the username and the pass-
word and presses the “Connect to BCI” button. Mainwindow then
checks the information provided from the user and sends the “start”
signal that triggers the “onStart” Binder’s slot. This callback saves the
profile information and starts the connection with the Emotiv cloud by
sending signals to the CortexClient. When the connection has been es-
tablished, CortexClient triggers a new Binder’s slot which searches with
the HeadsetFinder object for a connected BCI. HeadsetFinder is a class
which wraps inside itself a series of communications with CortexClient
to find the headset. When the headset has found another Binder’s slot,
it is called by the HeadsetFinder, the resources of the latter are freed
and a session has to be created. For that, it is used the SessionCreator
object that is similar to the HeadsetFinder and handles a set of com-
munications with CortexClient to establish a communication. After the
latter is set, a signal from SessionCreator is sent and another Binder’s
slot is triggered. This slot is called “onSessionCreated”. It saves just
received information as the authentication token and the ID of the ses-
sion and sets up a profile by sending a signal to the CortexClient. When
the profile has been set up on Emotiv server the “onLogged” Binder’s
slot is triggered that sends the “ready” signal to the MainWindow to
say that the BCI is ready to be trained. Of course, during this com-
munication many errors can happen and in this case, at first, an error
message is sent through Qt signal to the Binder and then forwarded

56

Development of Xavier and of the simulation

to MainWindow which displays it. With the “ready” signal the setup
phase is completed.

The second phase, the training phase, starts when the user presses the
train button of one of the four commands. The Binder receives through
a slot called by the MainWindow, which manages the iterations of the
user, the information that a command must be trained and which is the
specific command. The first task the Binder has to do is to subscribe,
if this has not already happened, to one of the data streams. In the
case of training this is the “sys” data streams. When the subscription
is completed, the Binder calls the training signal that triggers a slot of
the CortexClient. In this signal, some information about the type of
command (“mental command” or “facial expression”) and the command
itself are coded. The CortexClient forwards this request to the Emotiv
Server. After this request CortexClient receives some stream data about
the status of the training. These data are sent to the Binder and then
displayed in the UI by the MainWindow to show the user the status of
the training. The statuses are for example: “please focus on the action
for a few seconds”, “Training completed” or “Training is failed. Try
again”. After the end of the training, either it was successful or not,
the second phase is completed.

The third and the last phase is the so called “streaming phase” and
it starts when the user switches to the “Stream” tab and presses the
“Start Stream” button. In this case, a slot of Binder, triggered by the
MainWindow, is called and information, such as the port and the IP
address of the controlled car, are passed to the Binder. So, the Binder
calls the subscribe signal with the “facial expression” parameter to re-
ceive stream data from the headset about the type of facial expression
that the user is doing. Then the Binder sets a timer that every 200
milliseconds triggers a Binder slot called “onTimeout”. In this way, the
Binder will be awakened up cyclically by the “onStreamDataReceived”
and “onTimeout” slots. The first is called when a new data is avail-
able from the headset and the second one when the timer counted 200
milliseconds. With “onStreamDataReceived” the Binder reads which is
the current facial expression and saves it in the Command object. The
functionality of this class will be explain later. When the “onTimeout”
slot is called, the Binder calls a function of the Command to get a byte
array that contains the command, which is coded with the protocol
given by Luxoft, that will be send to the car. These bytes will be sent,
using a socket, with a UDP packet to the IP address of the car. This
phase keeps going on until the user presses the “Stop Stream” button.

57

Development of Xavier and of the simulation

Then the subscription is closed and the timer is stopped.

CortexClient

This class manages the communication between Xavier and the Emotiv
servers. The work of this class can be divided in two: the sending of re-
quests and the receiving of the answers from Emotiv. The initialization
of this class starts when in the first phase of the Binder the open slot
is called and CortexClient instantiates a Web Secure Socket connection
with the servers.

All the other slots of this class are slots which are used to send requests
to Emotiv such as “authorize”, “createSession”, “subscribe”, “training”,
etc. When one of these slots is called, CortexClient creates a JsonOb-
ject that is filled with the information which is required for the request.
CortexClient then adds information regarding the JSON-RPC protocol
and sends it to Emotiv. One important aspect of the JSON-RPC pro-
tocol is the ID of the request: the ID has to be increasing and for each
request and there will be a response with the same id. For example,
if it is sent an “authorize” request in the json file, there will be a key
called “id” with the value x. Then, a response will be received for that
request with the same id value (x). So, for every response received, it
will be known the corresponding request.

When CortexClient receives a response from the servers, it first checks
if an id is present or not. If it is not present, that means that there is no
JSON-RPC communication and that the message is a stream message.
Therefore, the signal “streamDataReceived” is called. These messages
are received when there is a subscription to train or to stream the
recognized facial expression. Otherwise, if there is an id, CortexClient
checks which is the corresponding request and acts accordingly.

For example, the json file received has “id 14”. Before a request of
authorization with the id 14 has been sent, this json file must have a key
called “ auth” whose value is the authentication token. CortexClient
so, sends a signal called “authorizeOk” and it informs the Binder that
the authorization is valid, and which is the authentication token. These
are the functions of this class which does the processing of the input
and the output lightening the work of the logic of the Binder.

58

Development of Xavier and of the simulation

Command

As already said, the Binder receives with the “onStreamDataReceived”
a facial expression, which is before “read” by the headset, it saves the
expression in the command object. This class has a public method
called “setCommand”, with which the Binder passes as parameter the
facial expression, and then checks if that expression corresponds to
a command for the car. If so, it sets a value for the corresponding
command. If the command is “accelerate”, it sets the gas pedal to a
value of half pressure of the pedal. If the command is “brake” the brake
pedal value is set to the max value (maximum pressure). However,
when the command is “left” or “right” a liner function is used. At the
beginning, the angle value is set to approximately 17 degrees. If the
same command is received a second time, the angle is set to 34 degrees
and so on. This increment follows a linear function (Figure 2.11), until
the maximum value, which is 440 degrees, is reached.

The second public method of Command is a function that receives
the value of the commands, previously set with the “setCommand”
method, and returns them coded with the protocol that is necessary to
communicate with the teleoperated car. Theses coded commands will
be sent by the Binder with a socket to the car (or to the simulation).

3.4 Test with simulation
This test is done with two computers. The first computer works with
Linux Xenial, runs ROS, launches Car Demo and the node that receives
the UDP packet to control the car. The second computer, with Mac
OS (in this case actually the OS is not relevant since Xavier has been
written with a cross-platform language), is connected via Bluetooth
with the headset and runs CortexUI and Xavier. To communicate,
these two PC must be in the same intranet and the second one (the one
which runs Xavier) must have access to Internet to communicate with
the Emotiv servers (Figure 3.7).

59

Development of Xavier and of the simulation

Figure 3.7. Architecture of the communications for the ROS simulation.

A lot of problems are discovered and encountered in the first test be-
cause of many bugs, but that is exactly the reason why a simulation has
been created and not used directly the real car. Some bugs are fixed
very quickly and then Xavier is re-launched.

The first conceptual error found was that in a normal driving, the pedal
to accelerate is pressed and, in the meantime, the steering wheel is
turned or straightened. It means two commands at the same time to
the car. With the BCI and then with Xavier, in this moment it is not
possible to give two commands simultaneously. For example, if from the
BCI is received that the user is smirking left, so can be sent to the car to
turn the steering wheel to the left. If is received the signal clenching so
can be sent the accelerate command, but the two information together
are never received. What happens is that the car turns the wheels but
without an acceleration, then it does not actually make a curve.

3.5 Test with teleoperated car
The first tests with the car are done in a park. The aim is just to
test if the program uses the communication protocol correctly and how
intense the gas pedal pressure should be kept to maintain the speed of
the car between ten and fifteen kilometres per hour.

60

Development of Xavier and of the simulation

A personal computer is connected with Xavier to the computer that
controls the car through an Ethernet cable and to a smartphone with
Wi-Fi, since CortexUI and Cortex, as already explained, need an inter-
net connection and a connection to the headset via Bluetooth.

Since it was not possible to get the speed value from the vehicle and
adjust the pressure on the pedal accordingly, it is empirically under-
stood which value of pressure has to be given to the gas pedal to keep
the car at the desired speed. To calculate this value, just the accelerate
command is trained with Xavier and the source code is changed man-
ually to set the pressure. After a few tries, the most appropriate value
is approximately ten percent of pressure on the pedal.

After this acceleration test, the test of the steering starts. For safety
reason, the “accelerate” command is disabled from the car side. The
left command is trained and the application starts to send commands
to the car.

The first small issues was the wrong direction of the commands: by
giving the command “left” the car turned right and vice versa by giving
the command “right” the car turned left. That was a very easy bug to
fix, fixed even during the simulation, indeed with the simulated car this
issue was solved, since both software were affected with the same bug.
A bigger problem was the setting of the steering angle: as explained
earlier, the sent steering value is based on a linear function (Figure
2.11). The first time a left or right command is received, it is sent to
the car to turn the steering wheel for 17.6 degrees, which is a too high
value. In fact, such a big delta on the angle value made the driving
uncomfortable and noisy. Furthermore, on could potentially break the
mechanic system that turns the steering. Therefore, it is needed to send
messages more frequently but with less delta angle (Figure 3.8).

61

Development of Xavier and of the simulation

Figure 3.8. Architecture of the communications for driving the
car with the headset.

62

Chapter 4

Mental commands and
Xavier update

In this chapter, it has presented the steps taken to create a new version
of Xavier that could drive a car also with mental commands. The
first part of the chapter explains all the studies and the attempts done
to master these type of commands and their training. In the second
part, it has described the functionalities and how to develop Xavier 1.0.
Besides, how to solve the problems encountered in the tests with the
previous version of the software.

4.1 Training patterns
It can be normal to not get success fastly and shortly; a lot of difficulties
have been recognized and for that in this experiment, several training
patterns have been analysed and tested in order to improve the per-
formance of the training and the quality of the commands. Below it
is showed which training patterns can be followed and what has to be
chosen to get better performances.

4.1.1 Focus on the actions
The first and immediate pattern for the user is to try to be focus on
the action that wants to achieve. It is the easier way but not always
the best one.

Key things about mental commands training are relax, so the algo-
rithms don’t have to cope with variable muscle signals from straining

63

Mental commands and Xavier update

and keep the visualisations as consistent and distinct as possible.

Novices tend to strain hard for all actions, which is a challenge for the
signal extraction systems, and they also tend to think “DO SOME-
THING pull” or “DO SOMETHING push”, which makes the signa-
tures difficult to distinguish. More experienced users tend to be more
comfortable and confident and can invoke the visualisations almost un-
consciously. An example could be to imagine a scenario in which your
action represents the command.

The graph below in the Figure 4.1, the results got are not very perfo-
mant. This is caused by the stimulation of identical zone of the human
brain and then, very often, it recognises different thougts as equals.

Figure 4.1. Output of data for trained commands based on actions.

4.1.2 Focus on the colours
Another surprising pattern is to try to be focus on colours. Colours
have a direct impact on the brain and our thought process. Different
colors are known to trigger different emotions in us and hence, they
are associated with different human attributes affecting brain waves.
Colours evoke a person’s emotional quotient in different ways. The
color is a kind of an energy that affects both the functions of human
body as well as the mind and the emotions.

64

Mental commands and Xavier update

During the training, thinking only about a command, the green colour
is set for push and it’s easy to notice how much is different and far from
the neutral state as showed in the Figure 4.2.

Figure 4.2. Output of data for a trained command based on colour.

Then, the full training have started adding more commands; the neutral
is still set for brake, the yellow is set for left and the orange for the right;
it has tried but avoided the red colour because very often it has been
associated to stop or danger situations.

After several trainings it has been noticed that two colours still can be
recognized in a pretty way but more colours start to homogenise all the
training. The dots on the map (Figure 4.3) become closer together, so
some relevant information about the different commands are lost. It is
relevant to underline that very often the strict link between thought of
colours and the the related emotions can influence the training patterns.

Figure 4.3. Output of data for trained commands based on colour.

65

Mental commands and Xavier update

4.1.3 Focus on the Math/Logic/Memory
Human people are born with the ability to count: Shortly after birth,
babies can estimate the number of events and even perform simple
calculations. But what exactly happens in the brain? Studies were able
to demonstrate that some brain cells fire mainly for quantities of three,
others for quantities of four and others for other quantities. A similar
effect can be observed for digits: In humans, the neurons activated in
response to a ”2” are for instance not the same as the neurons activated
for a ”5”.[39]

Results show activity in parietal and frontal cortices, core areas related
to mental-arithmetic and a very fast response of our brain to those
signals. (Figure 4.4)

Figure 4.4. Involved brain area for mathematical or logical inputs.

The first exercise is to set the first command (here the push one) as a
random number and consequently set the others commands as different
ones; the results of a single cycle training are good but several tests show

66

Mental commands and Xavier update

that they are only pretended because repeating this kind of training
brings to the same results, so to an unusable dataset.

The second exercise is to set the first command as a linear counting
operation from zero and the second command as a counting backwards
from one-hundred. This brings to a good improvement on the dataset
but it decreases as start to act mechanically using the right hemisphere
(responsible for the associative heuristic to cope fast with easy task
when there is a high level of familiarity) and not stimulating the arith-
metic area of the brain (the left hemisphere) used for problem solving.

In the third exercise, the experiment involves the multiplication tables,
in the first moment thought as a mnemonic operation and later as a
real mathematical calculation. In this case, two commands are very
good recognized, three are still keeping an usable rate but again for
four commands the signals become a bit messy (Figure 4.5).

Figure 4.5. Output of data for trained commands based on
mathematical concepts.

4.1.4 Focus on mixed patterns
Training for an action can take up to 8 hours of training before the
system recognizes your specific pattern. From a biological point of
view, it is relevant to highlight that even inputs from different zones of
the brain can be translated as the same signals. For this pattern, it has
been chosen the following commands: the green colour is set for push,
the neutral state is set for brake, the counting backwards is set for turn
left and a repetition of the chorus of a song. This is done to try to
stimulate several parts of the brain (Figure 4.6) and extracting signals

67

Mental commands and Xavier update

very far from each other and then get a clean and very productive
training.

Figure 4.6. Brain lobes of human brain.

In this case, the training took several hours and it was tested even in dif-
ferent days. It has been considered as the slowest and the most complex
training due to physical and mental fatigue. An alternation between
neutral training and the command training every time, it brings a big
improvement to the quality. In addition, as first step can be helpful to
check the daily normal state of the tester brain in a focused and relaxed
moments (Figure 4.7).

Figure 4.7. Daily normal state of the user brain.

In the Figure 4.8 it is showed the higher performances achieved with
this kind of strategy.

68

Mental commands and Xavier update

Figure 4.8. Output of data for trained commands based on mixed patterns.

4.1.5 Various training patterns
Use of movements: the use of physical movements to stimulate the
brain was used. In particular, movements of the hand were chosen, due
to its electrical activity. This kind of stimulus was applied in different
ways. Dynamic movements were used, on which the user kept moving
a limb following certain patterns or holding an item as a small ball in
the hands. Even if the results can be much higher, it has been decided
to not cover this pattern due to the eventual impossibility for disable
people.

Emotional pattern: the use of feelings as fear, rage, sadness, surprise,
etc. was used too. Also in this case, the translation from emotional
feelings, stimulating different areas of the human brain, to commands
brings to very good results but this pattern has been avoided because
prone to the environmental context in the meaning that the command
detected by the BCI is not the real intended one but it is due to external
sources.

Mental deftness is a skill that will improve over time. As you learn to
train distinct, reproducible mental states for each action, the detection
becomes increasingly precise. The best results after training each action
several times. It is important to not overstress the brain because can
only get worse the quality of the training. The decision of what is the
correct training pattern is strictly personal and it can take up to months
to become an expert but it is important to not give up and never be

69

Mental commands and Xavier update

discouraged.

4.2 Xavier v1.0
Version 1.0 is used as a major milestone, indicating that the software
is ”complete”, that it has all major features, and is considered reliable
enough for general release. The requested features start to be complete
and the problems of the initial version are partially or completely solved.
Small details are added and a completely revisited user interface has
been created. The major feature introduced is the possibility to train
and then to control the car with the mental commands.

4.2.1 Mental commands
Emotiv offers the opportunity for the user to create and execute several
mental commands; in order to provide consistency and a simple range
of possible actions, the Emotiv Cortex API offers up to 15 different
kinds of commands.

Training a mental command is not easy at all so, to help the user in his
training, in the application, right now, the Emotiv mental commands
are chosen by default and the in the GUI are not selectable; there are
four train buttons each of them trains a specific label that correspond
with a command for the car:

• brake command: neutral

• accelerate command: push

• left command: left

• right command: right

The initial step in creating mental commands is to train the system
to recognise your background mental state, the so-called NEUTRAL
condition, by recording a brief period of your brain patterns while you
are not trying to execute any commands.

Our brain changes frequently and the position of the headset could
change how its shape is read, so this step is mandatory in order to get
know the system how the brain patterns work in that time. To train a
new mental command is enough to click the button and then imagining
the consequences of the command given for 8 seconds (for example,
imagine to push far an object for the PUSH command or try to make

70

Mental commands and Xavier update

closer it for the PULL command) while the system records the mental
patterns you want to associate with the command.

The user cannot test and practise the commands in the live mode if
the neutral command and at least another command is trained. After
a few repeated trials and as many training updates as the user wishes,
the command is ready to be used and the training data summary is
stored in the user profile. It is suggested to master an action and have
good control before adding a the second action and so on.

Thanks to the graph below (Figure 4.9) is it possible to understand
visually the results of the training. Different coloured dots represent
the different commands and their distance to the center of the semicir-
cle; the center represents the neutral state and more distance there is
between the dots more accurate is the training.

Figure 4.9. Output of data for trained commands respect to neutral state.

4.2.2 Frequency of the communication
In the version 0.1, the BCI, after reading the brain, sends every 200
milliseconds (5 Hz) the commands recognised. As a consequence of
the real test on the track, it is considered appropriate to increase the
sending frequency of the packets to 50 milliseconds (20 Hz) in order to
decrease and minimise the latency and the delay of the communication
to the car system.

4.2.3 GUI
The GUI of the program remains pretty simple but it’s fully changed to
make nicer and more user-friendly. It is similar to both the kind of the
commands. So, also, for the mental commands, there are still only two
windows, one for the training and one for the live mode. In this case,
the training mode window has two tab widgets for Facial expressions

71

Mental commands and Xavier update

and Mental commands, respectively.

In the main screen of the first window, there are four rows with the com-
mand signals mapped into the BCI signals. Every row is a QWidget
that includes a QGroupBox of items containing the relevant informa-
tion about the training: the selection of the command, a progress label
showing what is happening (to keep focus on the training or if the op-
eration is still or not more available), a label for counting the times a
training is executed and successful, a label for the rate of the training
shows a value in percentage of the quality of the training, a button
allows to delete the training and discard all saved information. In the
top-right corner, it is introduced the button “Logout” to close the ses-
sion, delete the current profile and back to the login form. At the end
of the commands list, there is a single button to enter the live mode
and test the training done.

The selection of the command is one of the most important taken in
consideration. Now it is possible to choose the command from a QCom-
boBox among a range of available commands. The box becomes inactive
only when at least a training exists already. In this case, for the mental
commands the states by default are set up but not enabled for change
the value (Figure 4.10). For the facial commands, instead, you can pick
your favourite one from the list (Figure 4.11).

72

Mental commands and Xavier update

Figure 4.10. Xavier v1.0 - Mental commands: Training mode window.

Figure 4.11. Xavier v1.0 - Facial expression: Training mode window.

73

Mental commands and Xavier update

Also the live mode window has changed its aspect completely. The
screen is divided in two parts. On the left side, there is an area show-
ing the command read by the BCI (if any is detected or recognized it
remains empty), an area to set the configuration parameters, an area
to set the network parameters (IP address and port). At the bottom,
a label shows the status of the live mode (if the streaming is active or
not), two buttons to start and stop the live mode (Figure 4.12).

The parameters possible to set dynamically (but always before to start
the live mode) are: the maximum angle of the steering wheel possible
to reach, the steering and the brake duration in seconds, the accelera-
tion and the the steering acceleration intensity (value between 0.00 and
1.00), the max brake intensity (still as a bool value 0 or 1), the buffer
size is an integer value. On the right side, there is the list of QWidgets
for the sensitivity range, in order to help and to understand better the
training done and its quality.

As for the Facial expression commands, for the Mental commands,
thanks to “mentalCommandActionSensitivity” method, it is possible
to set the sensitivity of activated actions. In the GUI, this is done
with a slider on the right part in the Live Mode. The user can set
dynamically a value in percentage (0-100%) and it appears only related
to a trained command. If the slider is set to 0 the sensibility for that
mental command / facial expression will be null, in other words, it will
never be recognized by the BCI. Instead, if the slider is set to 100, the
probability it is identified increase a lot.

The main change of this new version of Xavier is to shift in live mode the
label that shows the current command sends and the sensibility slider.
In this way, the user during streaming, looking the last command sent,
can modify the sensibility to correct some wrong behaviour of the BCI.
Another feature introduced is the dynamic setting of parameters to
change the type of steering acceleration or braking.

In both windows, dynamic labels are shown in case of changes or if
errors are encountered.

74

Mental commands and Xavier update

Figure 4.12. Xavier v1.0 - Live mode window.

4.2.4 Improvements
During the test of the previous version, some problems had found and
they have to be fixed. In particular, a part of many bugs that have
been fixed, these problems are faced:

• Acceleration during the steering is needed.

• Packet frequency was not enough.

• Linear steering is not comfortable.

• Commands are often misinterpreted by the application.

• Hard to train mental commands.

In detail, the BCI observes one command at a time and in the first
version of Xavier, only the command received by the headset was sent.
So, if the BCI sent a command corresponding to left, only the turning
left command was sent to the car and happened that it turned the
wheel but without acceleration, then it does not move. The fix to this

75

Mental commands and Xavier update

problem is pretty simple: any time a turn command (left or right) is
sent, also the accelerate command is needed or at least a non-zero-value
of the acceleration.

The second and the third point are related and they cause malfunction
with the steering. What happened is that giving steering command the
car reacted turning brusquely and doing big delta of steering for each
command. For example, with the frequency of 5 Hz (frequency of the
previous version), to go from 0 to 440 degrees of steering in 3 seconds,
the steering wheel will turn fifteen times of almost 30 degrees. Such
high delta of steering could brake the car steering system.

As a consequence of the real test on the track, it is considered appropri-
ate to increase the sending frequency of the packets to 50 milliseconds
(20 Hz) in order to decrease and minimise the turning delta and the
delay of the communication to the car system. The solution for the first
point will be explained in the Steering function section. The solution
for fourth and the fifth was to learn how the training works find the
best training patters and practise. All the sets have been explained in
the previous section. Another improvement has been the addition of
section where is possible to change some parameters for the steering
and the acceleration.

4.2.5 Steering functions
Polynomial functions of the following kind can be considered:

q(t) = a0 + a1t+ a2t
2 + ...+ an ∗ tn

The higher the degree n of the polynomial, the larger the number of
boundary conditions that can be satisfied and the smoother the trajec-
tory will be. A polynomial function is very often used in the trajectory
planning for automatic machines and Robots.

In the initial version of the software, the values of the angle for the
steering wheel followed a mathematical linear function. After testing,
it has been noticed that the speed of the steering wheel returning back
should be slower and gradual in order to avoid breakages in the system.
It has been tested to double the previous value set but still the move-
ment is not enough acceptable. Then, it has been tried an exponential
function with the formula:

angle = multiplier ∗ (basetick)

and it is implement setSteeringAngleExponential() method;

76

Mental commands and Xavier update

Figure 4.13. Exponential function for steering.

Moreover, there is also a trigonometric function with the formula
angle = (maxAngle/(pi/2)) ∗ (Arcsin(tick/divisor))

implemented in the setSteeringAngleASin() method. Both solutions
give a slight improvement with respect to the previous linear function
but it is still not what is looked for.

Figure 4.14. Arcosine function for steering.

77

Mental commands and Xavier update

In the end, it is introduced a cubic polynomial function able to make
smoother the values of the angle sent to the car. This is implemented
in the setSteeringAngleCubic() method of the Command class.

In the case considered, the following restrictions exist: α(ti) = αi; (the
initial angle position) α(tf) = αf ; (the final angle position) ti = 0; (the
initial time) tf ; (the final time):

These restrictions can be considered by using of the third order poly-
nomial. The cubic polynomial is the third-order function. The basic
form can be expressed as:

α = f(t) = at3 + bt2 + ct+ d (4.1)

Considering the restrictions and equation (4.1), formulas for the calcu-
lation of coefficients a,b,c,d can be found:



d = αi

c = 0,
at3f + bt2f = αf − αi

3at2f + 2btf = 0 (1)

(1) derivative equals to zero in order to consider a constant angle during
fixed time.

Solving of the equation above gives the next values for coefficients
a,b,c,d: 

d = αi

c = 0,
b = 3

(
αf −αi

t2f

)
a = −2

(
αf −αi

t3f

)

78

Mental commands and Xavier update

Figure 4.15. Cubic function for steering.

Dynamic parameters

Adding a new function for steering introduced many variables to choose
and to set, for example, the maximum angle of the steering or the time
for the steering wheel to go from 0 degrees to the maximum value. This
variable could be hard-coded but since the best value it’s unknown,
it is preferred to put a section in the GUI where is possible to set
these parameters. Variable as acceleration and brake intensity are been
added to give the possibility to modify the pressure value during the
acceleration or the braking.

4.3 Code Structure
The architecture of Xavier in this new version did not change com-
pletely. Indeed, there are still two threads one that handles the GUI
and the user interaction and one that handles the communication with
the Headset and Emotiv Server through a SecureWebSocket and the
communication with the car. The main change is the new GUI that it
is not any more handle by a single class, MainWindow, but since the
complexity increased, four additional classes are needed (Figure ??).
The Binder, the Command and the CortexClient classes are been mod-
ified to add the new features already described.

79

Mental commands and Xavier update

Figure 4.16. UML of Xavier v1.0.

4.3.1 GUI classes
The MainWindow class now contains a QStackedWidget that provides
a stack of widgets where only one widget is visible at a time. This
QStackedWidget contains three widgets LoginForm, TrainingForm and
LivemodeForm.

The MainWindow so is the class that is responsible to show the right
view (Widget) according to the program workflow and with the User
interaction. It is also responsible for the communication between the
Binder and the Widget that is shown. Later a couple of examples are
presented.

LoginForm is a really simple widget that has two text edits and a button
that manages the login. TrainingForm is the widget that shows the
view for training (Figure 4.11) and it has a tabWidget that contains
two Widget one for mental command and one for facial expression.
The last Widget, LivemodeForm, manage the view of the live mode
(Figure 4.12).

80

Mental commands and Xavier update

Let’s make a couple of example of the communication between the GUI
classes and the Binder: the user wants to train a new mental command,
Xavier shows the last command that the BCI returned.

For the first example, the TrainingForm receives the information that
the User wants to train a certain command. So it emits a signal called
”trainHMI” that has two parameters: the command name and the ty-
pology of this command (mental command or facial expression). The
MainWindow which receive this signal does nothing, but forwards the
signal to the Binder. The latter will manage the communication with
the Emotiv Server to train the desired command.

For the second example instead, the Binder receives from CortexClient
the information about the command that the BCI thinks the user gives
and sends a signal with this info to the MainWindow. This class calls
a method of the LivemodeForm to set the last command that after all
it is shown to the GUI.

4.3.2 Binder
The Binder class did not change its task or its architecture from the
previous version. It is the core of Xavier and its job is to manage the
interaction of the user and the communication with the Emotiv server
and the car.

In this new version is added a slot to remove a training, added an
automatic request to Emotiv for the rating for a new trained command,
the profile is been hard coded so the user does not have to choose it
every time. The main work has been modified with many existing slots
to manage a request for both mental commands and facial expressions.
For example, the slots ”onTrain” wants the command to train and even
the command type (mental or facial) because according to it, a different
request to CortexClient has to be done.

Furthermore, it has been done a general improvement of stability and
it has been developed better management of errors.

4.3.3 Command
The task of this class did not change from the previous version of Xavier:
it has a setter where the Binder sets the last command read and then it
has a function that creates the message to send to the car and formats
it according to the protocol used.

81

Mental commands and Xavier update

The first change is that when the stream button is pressed all the pa-
rameters set by the user in the GUI are collected and sent to the com-
mand. With this parameter, this class calculate the type of function
for steering (max steering value, time to get the maximum value from 0
degrees) and the length of a buffer. Indeed, the command has a circular
buffer where puts the command passed by the Binder with a dimension
set by the User. After the variable called ” lastCommand” is set with
the command that has more occurrences in the circular buffer. In this
way, it is applied a sort of filter and the command is considered if has
been read for a certain amount of time (depends on the buffer length).
Usually, a size of 6 elements is set, so a command to be considered has
to be read for 0.5/1 second.

Another change is the type of function for the steering that is not a
linear function any more but is a cubic function as already explained.

4.4 Test with simulation
The test with the simulation showed immediately a problem not related
to Xavier but to the Simulation. Indeed, with the increment of the
frequencies in sending packets to control the car, the system results in
overload of work and its reaction are not in real-time. It accumulates
the received packets that are elaborated after a certain amount of time.
For this reason, all the graphical part has been reduced leaving only the
relevant components of the scenario considered, lightening its memory
usage while running.

It is been created, also, an easy bash script in order to launch automat-
ically all commands to run the simulation.

It has been noticed the difference between simulation and real tests in
the meaning of the value of the parameters chosen. For example, in the
simulation tests, the speed intensity considered can be enough between
0.04 and 0.07; values that become almost senseless in the real tests
where they have to be at least double. Besides, if there is a very small
value of the acceleration it is set to the minimum value.

With the facial expressions, it seems to work everything fine. Of course,
still are present difficulties to give some commands because sometimes
the BCI misunderstand some expressions, but in general, the test is
successful. The real problem happens when starting to control the car
with the mental commands because it is very hard to train up to four
different commands (neutral plus other three).

82

Mental commands and Xavier update

What happened is that sometimes a command can be given but just for
a small amount of time (live half or one second). In this way, the car
could not make a turn because the time it receives the command was
too small. So, it is needed a new system that could drive the car with
a small input. This system, receiving only a command to turn, could
make the car do a whole curve of 90 degrees. Receiving an accelerate
command, it could make, for example, the car accelerates for ten meters.

Thinking how to implement this system, called Assisted Drive, some
questions about that remain still open:

1. how much should the car turns to make a curve of 90 degrees?

2. for how long should the car turns to make a curve of 90 degrees?

3. during the turning how much should the car accelerates to make a
curve of 90 degrees?

4. how much should the car accelerates to make 10 meters with the
car?

To answer these questions, it is developed a program that sends to the
car a sequence of commands corresponding to a set of parameters that
can be inserted. So the system can set for how much, how long the car
should turn and with which acceleration value and the program sends
these sequence of massages. The next section explains more in detail
the program.

4.5 Assisted Drive Studies
The goal of these part was to find all the parameters to make a turn
with the car and a straight line of a couple of meters. It has been
developed a simple program with Swift eases the research. The GUI is
pretty simple (Figure 4.17): a section for the network settings (address
and port where the car is listening), a section with the parameters
for the acceleration (pressure intensity and duration) and a section for
steering. In this latter section there are six parameters:

1. the toward of the curve (left or right)

2. the type of the steering function (linear or cubic)

3. the acceleration intensity

4. the max angle

83

Mental commands and Xavier update

5. the time to go from 0 degrees of steering to the max value

6. the time the car remains with the steering wheel to the max value

Figure 4.17. GUI of the test program developed in Swift.

4.6 Test on track
The test took place in the Club Des Miles, a circuit based in Moncalieri
(TO). In this way, there is the possibility to try the software, controlling
the car in a safe environment for testers and the other people. It would
be very dangerous indeed to test the program driving the car in a normal
street.

Initially, some tests with the Assisted Drive software are done to see
which are the parameters to perform well a curve of 90 degrees. The
result is that with a max angle of 440°, a pressure of the 15% on the gas
pedal, a period of 2 seconds to go from 0 to 440 with a cubic function
and 5 seconds with the wheel at the maximum value, the car is able to
realise the desired turn. In the chart below (Figure 4.18), it is shown
the steering wheel position in relation to the time.

84

Mental commands and Xavier update

Figure 4.18. Steering wheel position during the Assisted Drive test
considering 5 seconds of constant time.

The Xavier test phase starts and the environment of the test is struc-
tured in this way: on the driver side a person who, in case of necessity,
would have taken the control of the car and, instead, in the passen-
ger side a person who would have controlled the car with the BCI.
The connectivity is similar to the previous test: a PC running Xavier
and CortexUI connected with the BCI with the Bluetooth, with the
car with an Ethernet cable and it had access to internet thanks to the
connectivity provided by a mobile hotspot.

At first, the facial commands are tested and the results are overall
successfully: the car was driven correctly in the circuit even if the speed
is very limited (10-15 Km/h). Sometimes, the BCI did not recognize the
command to turn and it was needed to wait or to resend the command,
or manually brake to avoid to go outside the circuit.

After these first tests, the control of the car switches to the mental
commands. As imagined, it has been really hard to train and have
control of four commands. It results almost impossible to drive the car
in the circuit.

4.6.1 Issues
During the test phase of this version some issues has been encountered.
For example, it is needed to go deeper on the connection between the
profile and the session when at the beginning the BCI connects to the

85

Mental commands and Xavier update

Emotiv server to handle the update of the session with all current data.
Another aspect is to manage the time out of the headset when it dis-
connects automatically. It could be relevant to modify the value of the
brake introducing also for it a more complex mathematical model.

It is important to still continue to modify the GUI and test if all the
configuration can be set dynamically. Another important aspect is the
connectivity because the internet connection is always needed in order
to get access to the profile and to get the results performed by the
Emotiv server and at the end to save all data into the selected profile.

86

Chapter 5

Xavier update and final
tests

In this chapter, it is presented an improved version of the software. The
first part of this chapter explains the updates and the new features to
increase the code quality and the stability of the existing functionalities.
The second part describes the results of the tests during the simulation
phase and on track.

5.1 Xavier v1.1
In the initial version of the software, the values for the brake followed
a true/false behaviour. In Xavier 1.0, the brake values are changed
according to a mathematical linear function. After testing, it has been
noticed that the speed of the braking was still glitchy and stiff. Then, as
done for the values of the steering wheel, it is introduced a mathematical
cubic function, with the same features explained in the previous chapter
(equation 4.1), to get a smoother behaviour.

5.1.1 Profile and Session management
The tests, above all in open environments and on track, showed diffi-
culties and implementation problems about connectivity and synchro-
nization among the software, the headset and the Emotiv server.

The headset, very often, loses the connection and after a default time,
the session is closed and never saved. It renders useless the training
because it is lost. An unexpected closure of the application stores the

87

Xavier update and final tests

profile but it closes the session and it doesn’t save the training done
into the profile.

A session represents a continuous period of data collection from a head-
set. To get data from a headset, start by creating a session, put it into
the appropriate state, then subscribe to receive the results in real-time.
The data available from the headset is split into various streams and to
receive data from a session, a subscription is required.

It has been analysed the complete workflow of session and profile and
the implementation done. It is faced is the exception error “(-32007) -
Session does not exist” got in the previous cases and when the session
is not more up.

The sessions and the profiles are created and saved on the local machine.
After the session is set to “active” successfully (Figure 5.1), the data
will be saved and uploaded on the Emotiv’s server.

Figure 5.1. CortexAPI - Session workflow diagram.

It has been implemented a new workflow like the following: it is invoked
the method queryProfile to get all training profiles of a specific user and
check if the profile inserted already exists. If it is not found, create the
profile and load an empty training data using the parameter “status”
of the method setupProfile; create a session with status “active” and
attach the profile to it. Otherwise, if the profile already exists on the
server, it is enough to call the setupProfile to load training data from
profile. It is very useful when the application crashes unexpectedly.

88

Xavier update and final tests

To be more consistent also the training and the live methods have
been improved. In the TrainMode window, after every training and its
rating, the application saves the profile updating all training data. In
the LiveMode window, instead, if the session is closed, a popup window
shows to wait in order to reopen the session or create a new one; then,
it loads the associated profile.

Other troubles with the Profile management methods, solved in this
new version, are: queryProfile: it returns an empty array while creat-
ing several profiles using EmotivBCI, setupProfile: trying to create a
profile, it returns an error ”code”:-32031, ”message”: ”Invalid profile
name.”.

The empty array is given because of the authorization with Cortex as
an anonymous user. So, queryProfile returns empty. The error ”Invalid
profile name.” usually means that the application tries to create a profile
”test” when another profile with the same name already exists. The
solution to these issues is to add working client id and client secret to
params when calling the method ”authorize” even without adding the
license.

5.1.2 Assisted Drive
After the previous testing, some difficulties to turn the car smoothly
in the curve has been noticed and the new idea of a different driving
mode called Assisted Drive starts to be implemented. In the previous
chapter, it has been explained that a swift application is implemented
to test this the new concept. In this version, Xavier is upgraded adding
this new type of driving.

The Assisted Drive mode borns based on a circular buffer to collect a
certain amount of signals and select the one according to the maximum
number of occurrences. It has been improved setting dynamically the
fixed size of the buffer and selecting the maximum with the minimum
value got from the field “Min number elements buffer”. The buffer has
an upper bound to not create too much delay during the analysis of the
signals and computation of the algorithm. If some commands are even,
the first frequent one is chosen and not any more the brake command
by default. Again, this upper bound value gives better performances
between five and ten elements. This mode introduces, also, a constant
value expressed in seconds to keep constant the angle of the steering.
It is designed, above all, for curves of 90 degrees. Changing this value

89

Xavier update and final tests

together with the other parameters like the brake duration or the steer-
ing acceleration intensity is possible to get better results and to shape
and to adapt for every context.

5.1.3 GUI
The graphic interface doesn’t receive big improvements but it includes
the new features implemented. The changes refer, above all, to the
LiveMode window. The LiveModeForm includes a tab widget to select
the driving mode between “Normal Drive” or “Assisted Drive” and to
set up the parameters useful for the configuration.

Normal Drive (Figure 5.2) introduces the following fields:

• Max brake intensity to set the maximum value of the pressure on
the brake pedal.

• Brake duration to configure the time to reach the maximum brake
intensity.

• Steering acceleration intensity to diversify the speed on the straight
away and the speed performing a curve. It is considered as a smaller
value than the straight one.

Figure 5.2. Xavier v1.1 - Normal Drive in LiveMode window.

90

Xavier update and final tests

Assisted Drive (Figure 5.3) adds the following fields:

• Constant steering duration, it’s the time in seconds to keep constant
the angle of steering.

• Acceleration duration, it’s the time in seconds to keep constant the
value of the speed.

• Min number elements buffer, it’s the minimum number of occur-
rences wanted in the buffer to select the desired command.

Figure 5.3. Xavier v1.1 - Assisted Drive in LiveMode window.

5.1.4 Improvements
The main problems about internet connectivity have been solved in-
troducing the management of the session in order to reload all current
profile in case of bluetooth disconnections of the headset or internet
disconnection.

Furthermore, several exceptions errors have been handled case by case
to allow correct flow of the application and to improve the stability of
the software reacting in the right way.

91

Xavier update and final tests

5.1.5 Test on track
The full test took place in the track described in the previous section.
After the setup of the car, the headset is connected and the application
is launched. The BCI driver sits on the passenger side and a “safety”
driver stays on the driver side. The setup configuration includes also
cameras to record the driving from inside and from an external point
of view. The speed of the car remains limited to 10-15 Km/h.

The first step is to test fully the facial expressions. Even if the Assisted
Drive, originally, has been thought to correct and to help the intensity
given by the mental commands above all during the curves, it was
useful to test also for the facial expressions to understand fully the
accurate parameters to assign. Then, three laps are done in Normal
Drive and one with the Assisted Drive. Above all the last two laps
allow driving correctly the car only with small defections. So these
tests give satisfactory outcomes and they are completely passed.

Figure 5.4. Test - Internal view of the car during driving with
Mental Commands.

More complex is the second step about testing the mental commands.
Initially, only push and brake command are trained and tested with
good results. Step by step, before the left and later the right commands,
are added to the test. In this case, due to strong difficulties in the
commands recognition, only two laps are executed.

The results, unluckily, are not satisfying like for the facial expressions.

92

Xavier update and final tests

Figure 5.5. Test - The car correctly curves with Facial Expressions.

Here, clearly, the training plays a more relevant role and it shows big
differences during the tests in live mode. It is not possible to complete
autonomously a full lap but some manual corrections are introduced by
the safety driver.

Figure 5.6. Test - The car shows difficulties to curve with
Mental Commands.

The optimal parameters in Normal Drive mode are the max angle of
440°, the pressure of the 22% on the gas pedal on the straightaway
and of the 17% on the curves, the pressure of 100% on the brake pedal
with intensity computed by the mathematical cubic model. To reach

93

Xavier update and final tests

the maximum angle, the period chosen is of 3 seconds with a cubic
function.

Besides, the optimal parameters in Assisted Drive mode are: 5 seconds
for the constant steering duration, a buffer size of 10 elements and the
minimum number of the most occurrences is set to 3. The thresholds
of sensitivity are set to 70% for the acceleration command, 50% for
the brake, 60% for the turning commands. Theoretically, this mode
should improve the smoothness of the curve adapting to any type of
it. Unluckily, it didn’t bring the expected results because, in order
to to have a real improvements, the parameters should be changed
and adjusted according to every kind of curve. Thought mainly for 90
degrees curve, it has good performances but when the curve is smaller,
the steering wheels too fast.

The headset works all day (at least 7-8 hours) and it shows good features
about battery performances. The stability still is not fully reliable but
the changes, introduced in the implementation of the code, helped to
get better results.

Driving with four mental commands and have full control of the car
remains still very hard and for sure not possible in normal driving sit-
uations.

5.1.6 Statistical results
The bar of Skill Rating (SR), present in the SDK, is used as indication
to evaluate all the stimuli applied when trying to improve the corre-
spondence between the intention of movement produced by the brain
and the action executed by the device. The SR bar provides a measure
of how consistently the user can mentally perform the intended action
[25]. The most relevant aspect is the percentage of errors done during
the drive. An error is defined as every time the safety driver had to
press the brake to avoid leaving the track. To generate a point of com-
parison between the different stimuli, relevant information about the
results of the user training is presented next.

Facial Expressions

Tables 5.1-5.4 show some statistics about the different indicators in
each trained action during the training phase. In the Table 5.5, are
shown the mistakes made during the live mode while driving the car on
the track using the trained facial expressions and the time, in minutes,

94

Xavier update and final tests

to complete a full lap. The results, with facial expressions, are very
performant. It’s possible to notice small difficulties in the training of
the fourth action and in the recognition of it, sometimes misunderstood
with push or turn left command. The attempt to test the Assisted
Drive, already for the facial expression, don’t give the expected results
because this mode, thought for 90 degree curves, is too much dependent
on parameters set.

Table 5.1. Training of first action: Accelerate

Action1 - Accelerate
Min. Trials to reach 75% SR 1
Max. Trials to reach 75% SR 4
Avg. Trials to reach 75% SR 2
Max. SR reached 100
Trials to reach Max. SR 2
Avg. Max. SR 96
Avg. Trials to reach Max. SR 3
Max. Trials to reach Max. SR 6

Table 5.2. Training of second action: Brake

Action2 - Brake
Min. Trials to reach 75% SR 1
Max. Trials to reach 75% SR 6
Avg. Trials to reach 75% SR 3
Max. SR reached 100
Trials to reach Max. SR 3
Avg. Max. SR 94
Avg. Trials to reach Max. SR 3
Max. Trials to reach Max. SR 6

95

Xavier update and final tests

Table 5.3. Training of third action: Turn left

Action3 - Turn left
Min. Trials to reach 75% SR 1
Max. Trials to reach 75% SR 6
Avg. Trials to reach 75% SR 3
Max. SR reached 100
Trials to reach Max. SR 3
Avg. Max. SR 94
Avg. Trials to reach Max. SR 3
Max. Trials to reach Max. SR 8

Table 5.4. Training of fourth action: Turn right

Action4 - Turn right
Min. Trials to reach 75% SR 2
Max. Trials to reach 75% SR 8
Avg. Trials to reach 75% SR 4
Max. SR reached 100
Trials to reach Max. SR 5
Avg. Max. SR 90
Avg. Trials to reach Max. SR 5
Max. Trials to reach Max. SR 10

Table 5.5. Facial Expression: tests executed on track.

Time #errors
Lap 1 - N.D. 33 min 16
Lap 2 - N.D. 25 min 9
Lap 3 - N.D. 20 min 3
Lap 4 - A.D. 27 min 12
N.D.: Normal Drive, A.D.:Assisted Drive

96

Xavier update and final tests

Mental Commands

Tables 5.6-5.9 show some statistics about the different indicators in each
trained action during the training phase. In the Table 5.10, are shown
the mistakes made during the live mode while driving the car on the
track using the trained mental commands and the time, in minutes, to
complete a full lap. The results with mental commands, despite the
facial expressions, are not performing so well. It’s possible to notice
difficulties already during the training of the third and fourth action
and in the recognition of them, too often not recognised or not reaching
the satisfactory threshold. The Assisted Drive is not tested due to all
the complications had in Normal Drive mode.

Table 5.6. Training of first action: Brake

Action1 - Brake
Min. Trials to reach 75% SR 1
Max. Trials to reach 75% SR 8
Avg. Trials to reach 75% SR 3
Max. SR reached 100
Trials to reach Max. SR 3
Avg. Max. SR 94
Avg. Trials to reach Max. SR 4
Max. Trials to reach Max. SR 10

Table 5.7. Training of second action: Accelerate

Action2 - Accelerate
Min. Trials to reach 75% SR 3
Max. Trials to reach 75% SR 10
Avg. Trials to reach 75% SR 5
Max. SR reached 100
Trials to reach Max. SR 10
Avg. Max. SR 90
Avg. Trials to reach Max. SR 8
Max. Trials to reach Max. SR 15

97

Xavier update and final tests

Table 5.8. Training of third action: Turn left

Action3 - Turn left
Min. Trials to reach 75% SR 8
Max. Trials to reach 75% SR 25
Avg. Trials to reach 75% SR 12
Max. SR reached 80
Trials to reach Max. SR 10
Avg. Max. SR 77
Avg. Trials to reach Max. SR 14
Max. Trials to reach Max. SR 35

Table 5.9. Training of fourth action: Turn right

Action4 - Turn right
Min. Trials to reach 75% SR N.R.
Max. Trials to reach 75% SR N.R.
Avg. Trials to reach 75% SR N.R.
Max. SR reached 64
Trials to reach Max. SR 14
Avg. Max. SR 60
Avg. Trials to reach Max. SR 18
Max. Trials to reach Max. SR 50

N.R.: not reached

Table 5.10. Mental Commands: tests executed on track.

Time #errors
Lap 1 - N.D. 58 min 37
Lap 2 - N.D. incomplete -

N.D.: Normal Drive

98

Chapter 6

Conclusions

From the beginning of this project, it was clear that the main result
to achieve would have been very complex and it could have required
big effort. The results indicate that the EEG data obtained with the
Emotiv EPOC device contain sufficient information to distinguish dif-
ferent states and that machine learning techniques are able to learn the
patterns that distinguish these states.

Some of the results achieved in this thesis project:

- It is clear how a simulation software is essential in the development
of a remote/brain-controlled driving process, thanks to the possi-
bility to perform and validate the softwares, the algorithms and the
new logics under different conditions and scenarios without wasting
of time and additional resources.

- The development of the application able to connect remotely to the
headset and to send signals, converted to driving commands, to the
car.

- The driving tests with facial expressions brought to very good re-
sults and on track several laps were fully completed. Instead, with
mental command, tests result still very hard and it is not possible
to complete autonomously a good real drive.

- The training phase for the mental commands remains very impor-
tant and an essential step to have clean data to be recognised during
driving.

In conclusion, the main advantages of Emotiv Epoc+ are the low cost,
compact, convenient and suitable for studies that do not require high
sampling frequency and the performance is above random and not due

99

Conclusions

to muscular or ocular artefacts. Robustness is a major concern about
the Emotiv headset. The hardware is basically made of plastics and low-
cost components, which results in a fragile headset. The plastic-based
screw thread can easily break up if a particular attention is not brought
during each experiment. In case makeshift repairs are not possible, a
new headset has to be bought. Moreover, the electrode metallic parts
are quickly oxidized even if cleaned at the end of each experiment as
shown in Figure 6.1. After a while, they appear to produce less good
signals (during this experiment, all the Emotiv headset electrodes were
non oxidized). Moreover, the moss part of all the electrodes is degrading
with time and has to be considered as a consumable.

Figure 6.1. Oxidation of the electrodes. The oxidation of the
electrode is clearly visible in green. On the back, the non-oxidized
electrode has a gold color.

All of that concludes only the first step of this ambitious and challeging
project started few months ago. Several aspects has to be taken into
consideration.

While a delayed response rate between the thinking and command ac-
tion currently seems to be the biggest flaw, there are other major issues
of concern such as: what about the drivers? Every group of people
can be factored into the system? What are they suppose to say if an
accident were to occur due to road rage for example? “I’m sorry officer;
I didn’t really mean to ram my front end of the car into the back of
that vehicle. I only ‘thought’ about accelerating.” On the other hand,
while surely there are still flaws that need to work on, this brain driven
car can do wonders for others—especially disabled people who many no

100

Conclusions

longer have the use of limbs and legs.

The control of real world apparatus with your thoughts is a talk of fan-
tasy and has been a science-fiction author’s favourite theme for decades.
But with the recent advancements in Brain–Computer Interfaces, such
technology is no longer absurd and their development is coming to a
prime time for applications. While, maybe, the concept of brain-driven
cars is currently under development, this work can be considered just
proof of a concept. The task here was to show free driving by detecting
brain patterns. There is still a long way to go until it could be possible
to take full control of the machines with human brains.

6.1 Future steps
Hopefully, the results obtained can be a starting point for the next
developers. About the software application developed, it can be im-
proved the stability, beautified the user interface making lighter and
aligned to new features. It could be laso convenient to integrate the
ROS simulation as part of the application.

As future projects in emotion research, it is interesting to systematically
consider the different feature extraction methods and learning methods
to improve the accuracy of classifiers. It could be worth to investigate
over the performance metrics (interest / affinity, excitement, frustra-
tion, engagement, relaxation, focus, stress, long term excitement) and
capturing these metrics in real life situations and other professional
fields to control or directing some actions (Figure 6.2).

101

Conclusions

Figure 6.2. Performance metrics graphs includes 6 metrics for
Insight and EPOC+ headsets.

Regarding the evaluation of the general quality of the Emotiv EPOC
device, three main axes can be explored: a larger number of subjects,
other BCI paradigms and the design of a new low-cost EEG headset.
First, some results are not strong enough to resolve the issue related
to Emotiv performance. Therefore, a much larger number of subjects
could be used to obtain even clearer results.

Secondly, given the need for greater reliability in critical applications
such as rehabilitation, orthosis / prosthesis control or driving a motor
vehicle, the design of a new low-cost EEG headset is required. Ideally,
this headset should be light, have great battery runtimes, and have
performance that is as close as possible to a medical system and should
be relatively inexpensive.

EEG is a complex signal and can require several years of training, as
well as advanced signal processing and feature extraction methodologies
to be correctly interpreted. Deep learning has shown great promise in
helping make sense of EEG signals due to its capacity to learn good
feature representations from raw data but this concept is still open.

102

Bibliography

[1] Picard,R.W.,Klein,J., “Toward computers that recognize and re-
spond to user emotion: Theoretical and practical implications”,
MIT Media Lab Tech Report 538, to appear in Interacting with
Computers 14(2),141–169 (2002),

[2] J. del R. Mill´an, R. Rupp, G. Mueller-Putz, R. Murray-Smith, C.
Giugliemma, M. Tangermann, C. Vidaurre, F. Cincotti, A. Kubler,
R. Leeb, C. Neuper, K. R. Mueller, and D. Mattia, “Combining
braincomputer interfaces and assistive technologies: Stateof-the-
art and challenges”, Frontiers in Neuroscience, vol. 4, no. 0, p. 12,
2010.

[3] G. Pfurtscheller, G. R. Muller, J. Pfurtscheller, H. J. Gerner, and
R. Rupp, “Thought’ - control of functional electrical stimulation
to restore hand grasp in a patient with tetraplegia”, Neuroscience
Letters, vol. 351, no. 1, pp. 33 – 36, 2003.

[4] B. Rebsamen, C. Guan, H. Zhang, C. Wang, C. Teo, M. Ang, and
E. Burdet, “A brain controlled wheelchair to navigate in famil-
iar environments”, Neural Systems and Rehabilitation Engineering,
IEEE Transactions on, vol. 18, no. 6, pp. 590–598, 2010.

[5] A. Nijholt, D. P.-O. Bos, and B. Reuderink, “Turning shortcom-
ings into challenges: Brain-computer interfaces for games” Enter-
tainment Computing, vol. 1, no. 2, pp. 85 – 94, 2009.

[6] Partala, T., Jokiniemi, M., Surakka, V., “Pupillary responses to
emotionally provocative stimuli”, In: ETRA 2000: Proceedings of
the 2000 Symposium on Eye Tracking Research and Applications,
pp. 123–129. ACM Press, New York (2000).

[7] Picard,R.W.,Klein,J., “Toward computers that recognize and re-
spond to user emotion: Theoretical and practical implications”,
Interacting with Computers 14(2), 141–169 (2002).

[8] Takahashi, K., “Remarks on emotion recognition from bio-
potential signals.”, In: 2nd International Conference on Au-
tonomous Robots and Agents, pp. 186–191 (2004).

103

Bibliography

[9] Chanel, G., Kronegg, J., Grandjean, D., Pun, T., “Emotion As-
sessment: Arousal Evaluation Using EEG’s and Peripheral Physi-
ological Signals”. In: Gunsel, B., Jain,A.K., Tekalp, A.M., Sankur,
B. (eds.) MRCS 2006. LNCS, vol. 4105, pp. 530–537. Springer,
Heidelberg (2006).

[10] Choppin, A., “Eeg-based human interface for disabled individuals:
Emotion expression with neural networks”. Masters thesis, Tokyo
Institute of Technology, Yokohama, Japan (2000).

[11] J. del R. Mill´an, R. Rupp, G. Mueller-Putz, R. Murray-Smith, C.
Giugliemma, M. Tangermann, C. Vidaurre, F. Cincotti, A. Kubler,
R. Leeb, C. Neuper, K. R. Mueller, and D. Mattia, “Combining
braincomputer interfaces and assistive technologies: Stateof-the-
art and challenges” Frontiers in Neuroscience, vol. 4, no. 0, p. 12,
2010.

[12] R. Ortner, B. Z. Allison, G. Korisek, H. Gaggl, and G.
Pfurtscheller, “An SSVEP BCI to control a hand orthosis for per-
sons with tetraplegia” IEEE Trans Neural Syst Rehabil Eng, vol.
19, no. 1, pp. 1–5, 2011.

[13] M. Duvinage, T. Castermans, R. Jimnez-Fabian, T. Hoellinger,
C. De Saedeleer, M. Petieau, K. Seetharaman, T. Dutoit, and G.
Cheron, “A fivestate P300-based foot lifter orthosis: Proof of con-
cept” in 5rd ISSNIP Biosignals and Biorobotics IEEE Conference,
2012.

[14] K. Stamps and Y. Hamam, “Towards inexpensive BCI control for
wheelchair navigation in the enabled environment - a hardware sur-
vey” in Proceedings of the 2010 international conference on Brain
informatics, ser. BI’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 336–345.

[15] A. Campbell, T. Choudhury, S. Hu, H. Lu, M. K. ukerjee, M.
Rabbi, and R. D. Raizada, “Neurophone: brain-mobile phone in-
terface using a wireless EEG headset” in Proceedings of the second
ACM SIGCOMM workshop on Networking, systems, and applica-
tions on mobile handhelds, MobiHeld ’10. New York, NY, USA:
ACM, 2010, pp. 3–8.

[16] P. Bobrov, A. Frolov, C. Cantor, I. Fedulova, M. Bakhnyan, and
A. Zhavoronkov, “Brain-computer interface based on generation of
visual images” PLoS ONE, vol. 6, no. 6, p. e20674, 06 2011.

[17] K. Stytsenko, E. Jablonskis, and C. Prahm, “Evaluation of con-
sumer EEG device emotiv epoc”, in MEi:CogSci Conference, 2011,
IEEE review, “IEEE Spectrum.” IEEE Press Piscataway, NJ, USA,
January 2009.

104

Bibliography

[18] 26. M. Duvinage, T. Castermans, R. Jimnez-Fabian, T. Hoellinger,
C. De Saedeleer, M. Petieau, K. Seetharaman, T. Dutoit, and G.
Cheron, “A fivestate P300-based foot lifter orthosis: Proof of con-
cept” in 5rd ISSNIP Biosignals and Biorobotics IEEE Conference,
2012.

[19] Lin, Y.-P., Wang, C.-H., Jung, T.-P., Wu, T.-L., Jeng, S.-K., Du-
ann, J.-R., Chen, J.-H., “EEG-Based Emotion Recognition in Mu-
sic Listening”. IEEE Transactions on Biomedical Engineering 57(7)
(2010).

[20] Kandel, E.R., Schwartz, J.H., Jessell, T.M., “Principles of Neural
Science”, Mc Graw Hill (2000).

[21] Ramirez, Rafael and Vamvakousis, Zacharias. (2012), “Detecting
Emotion from EEG Signals Using the Emotive Epoc Device”. 7670.
175-184. 10.1007/978-3-642-35139-6 17.

[22] https://www.eteknix.com/man-drives-f1-car-with-the-power-of-
his-mind/

[23] Zhang, S., Yuan, S., Huang, L. et al. Human Mind Control of Rat
Cyborg’s Continuous Locomotion with Wireless Brain-to-Brain In-
terface. Sci Rep 9, 1321 (2019). https://doi.org/10.1038/s41598-
018-36885-0

[24] https://www.emotiv.com/news/wired-emotivs-mind-powered-
road-safety-system-slows-the-car-when-a-drivers-distracted/

[25] Source: Emotiv. Emotiv Software Development Kit User Manual
for Release 1.0.0.5.

[26] http://www.eecs.ucf.edu/seniordesign/fa2012sp2013/g21/FinalPaperII.pdf
[27] H.S. Anupama, N.K. Cauvery, G.M. Lingaraju, International Jour-

nal of Advances in Engineering & Technology, 3, 739-745 (2012)
[28] B. He, Neural Engineering Second Edition, (New York, NY:

Springer Berlin Heidelberg, 2013), ISBN 9781489978875
[29] https://emotiv.github.io/cortex-docs
[30] https://www.emotiv.com/epoc/
[31] https://emotiv.gitbook.io/emotivbci/mental-commands/tips-and-

tricks
[32] https://www.upwork.com/hiring/for-clients/qt-cross-platform-

app-development/
[33] https://www.qt.io/built-with-qt/
[34] https://doc.qt.io/qt-5/signalsandslots.html
[35] https://doc-snapshots.qt.io/qt5-5.12/why-moc.html
[36] http://wiki.ros.org/ROS/Concepts
[37] http://gazebosim.org/tutorials?cat=guided b&tut=guided b1
[38] https://github.com/osrf/car demo

105

Bibliography

[39] Esther F. Kutter, Jan Bostroem, Christian E. Elger, Florian Mor-
mann, Andreas Nieder. Single Neurons in the Human Brain Encode
Numbers. Neuron, 2018; DOI: 10.1016/j.neuron.2018.08.036

106

Acknowledgements

We would like to thank firstly Marco Bottero, who, as representative of
Luxoft, gave us the possibility and the necessary financial support to
carry out this project.

We wish to express our sincere gratitude to our internship tutor Vin-
cenzo Campanale, who shared with us his immense knowledge and pas-
sion about brain computer interfaces and guided us with patience in
the development of our thesis. Without his help and motivation this
project would not have been possible.

We would like to thank also our thesis advisor Professor Massimo Vi-
olante of the Polytechnic of Turin for this great opportunity, his advices
and useful information.

Beside our advisors, our sincere thanks go to our colleagues Graham
Hili and Sebastiano Barrera for the continuous support with the tele-
operated car. Only with their help and knowledge the tests with the
real car were possible.

107

	Abstract
	Abstract - Italian version
	Introduction
	State of art
	Real test cases

	Background

	Starting point
	Teleoperated car
	Brain Computer Interface
	EmotivEpoc
	EmotivBCI
	CortexUI
	Cortex API
	login
	logout
	authorize
	setupProfile
	queryHeadsets
	createSession
	subscribe
	unsubscribe
	training
	mentalCommandGetSkillRating
	mentalCommandActionSensitivity
	facialExpressionThreshold

	Cortex API 2.X
	Goal of the thesis
	First tests with EmotivBCI
	First tests with CortexUI and Cortex API
	Problems and first solutions

	Development of Xavier and of the simulation
	Simulation
	ROS Robot Operating System
	Gazebo
	CarDemo
	Developing of simulation

	Qt
	Advantages of using Qt app development platform
	Signals and Slots
	MOC vs. template

	Xavier
	GUI
	Code structure

	Test with simulation
	Test with teleoperated car

	Mental commands and Xavier update
	Training patterns
	Focus on the actions
	Focus on the colours
	Focus on the Math/Logic/Memory
	Focus on mixed patterns
	Various training patterns

	Xavier v1.0
	Mental commands
	Frequency of the communication
	GUI
	Improvements
	Steering functions

	Code Structure
	GUI classes
	Binder
	Command

	Test with simulation
	Assisted Drive Studies
	Test on track
	Issues

	Xavier update and final tests
	Xavier v1.1
	Profile and Session management
	Assisted Drive
	GUI
	Improvements
	Test on track
	Statistical results

	Conclusions
	Future steps

	Bibliography

