POLITECNICO DI TORINO

MASTER DEGREE IN MECHATRONIC
ENGINEERING

MASTER THESIS
HiL for Power Systems and Smart Grids

A Resilient Information Architecture Platform for Smart
Grids based application to control a SMA solar inverter

SUPERVISORS CANDIDATE
Prof. Massimo Violante Giangabriele Castorina
Dr. Srdjan Lukic ID 254213

INTERNSHIP TUTOR AT
FREEDM SYSTEM CENTER
Dr. Srdjan Lukic

AcADEMIC YEAR 2019/2020

Abstract

Distributed energy sources are becoming a key component of many power systems.
Therefore, it is necessary to analyze the best solutions to manage the energy with
the dual intention of reducing waste and improving the quality of production. This
study aims to demonstrate the integration of a smart energy management system
into renewable energy resource systems in order to provide a list of benefits that is
not normally obtained with standard platforms. These benefits include: resilience to
faults, security access, plug and play features, a coordination system and distribute
intelligence through the network. A resilient information architecture platform for
smart grids, RIAPS, is implanted in order to control a solar inverter produced by
SMA company, with the future intention being to manage data and send commands
at different levels in a local sub-net.

To achieve this goal, a study is conducted which concludes the necessity of integrat-
ing the TCP /IP protocol into the platform to constitute the inverter data connection
request.

The approach utilizes the V-shape model in order accomplish tasks for implementa-
tion, test and validation of different steps related to the Model in the Loop, Software
in the loop and Hardware in the loop simulations. Different tools are used during
this process including hardware such as "OPAL-RT” and software simulators such
as ”Simulink”, "QModMaster”, concurrently with the ”Sunny Explorer” platform,
provided by SMA company, to validate the accuracy of the main test results related
to Power limitation and Shut-down operations.

In conclusion, the results from the different tests prove the effective integration of
the novel platform in commercial devices within a smart energy management envi-
ronment. This is the first application in this field which the authors are aware of.
Moreover, the project is designed to provide a solid foundation from which to de-
velop large-scale applications, using multiple interconnected devices to cooperate on
the same network and in general to provide benefits in the area of Smart Grids.

Declaration

This work was funded in part by the Advanced Research Projects Agency-Energy
(ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000666. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the US Government or any agency thereof.

11

Acknowledgements

I wish to express my sincere appreciation to my supervisor, Dr. Srdjan Lukic, who
guided and helped me professionally suggesting me always the right path to be taken.
I wish to express my deepest gratitude to PhD. Hao Tu, who assisted me during
the technical part in developing the earlier steps of the application with suggestions
and support in the most critical parts of the project.

I would like to recognize the invaluable assistance from the software developer team
of Vanderbilt University,Nashville, TN that guided me during the learning phase of
RIAPS platform. Above all, a distinguished thank addressed to the software devel-
oper Mary Metelko, supporting me continuously with detailed explanation of some
standard applications described in RIAPS basic applications.

Moreover i wish to express my sincere gratitude to the Erasmus+ program asso-
ciation, including Politecnico di Torino,IT and the hosting North Carolina State
University,Raleigh,NC institutions, both responsible for the program agreement,
supporting me either in bureaucracy and economic sides during this time-frame
abroad study.

I would like to pay my special regards to Dr. Igbal Husain to welcoming me in
FREEDM System Center, department of Electrical Engineering, that has all the
tools necessary for the development of highly innovative research activities.

A special regard goes also to Danny Crescimone, collegue and friend of mine, which
suggested me this amazing experience. I wish to thank all the people whose as-
sistance was a milestone in the completion of this project, in particular to PhD.
students Markus Miihlbauer, Alireza Dayerizadeh, Thomas Dotson, giving me bril-
liant suggestions for the drafting procedure of this thesis document and to Post-Doc
Menhaz Khan, PhD. students Rahul Chakraborty, Valliappan Muthukaruppan, Sid-
darth Rath, Likhita Ravuri and Oscar Montes for the help availability given during
this project development.

It is whole-heartedly appreciated the great support from the FREEDM system center
staff member’s, in particular lab manager Hulgize Kassa, secretaries Karen Autry,
Rebecca McLennan, Ken Dulaney and Terry Kallal, giving me professional support
accomplishing any possible request and contributing to make my experience every-
day more comfortable in this new environment.

A huge and special reward goes to my whole family members especially to my parents

111

Camillo Castorina, Giuseppa Farina and my sister Giada Castorina that remotely
assisted me basically in everything giving me moral support to overcome from the
simplest to the toughest obstacles encountered in the whole research period.

I would like to pay my special regards to all my Italian friends and also to my new
international friends, known in this abroad experience, that in general helped me to
feel at ease even though thousands kilometers away from home.

I would like to conclude by saying that without the persistent help from the people
mentioned above, the goal of this project would not have been partially or totally
achieved correctly.

v

Contents

[List of Figures|

[List of Tables|
(I__Introductionl

(1.1 Motivation and goall
(1.2 Method of working|
(1.3 State of the Art of the actual system|
(1.4 Prototype solution analysis[.
(1.4.1 'The need for a new energy management system|
[1.4.2 Requirements for the new system|

[2.1 Distributed energy resources|
2.1.1 PV solarpanels
1.2 Solarinverter]

B A Resii Taf : Nzon PIair for S God

[3.1 Challenges and expectation|
8.2 Whatis RIAPSI
[3.3 System architecture layout|o
[3.3.1 Architecture run-time system|
[3.3.2 Application model]o
[3.4 Component framework|
[3.5 Components interaction|
[3.5.1 Component execution engine|.

VIII

XI

[3.6.1 Discovery service| 42

[3.6.2 Deployment servicel Lo 45
[3.6.3 Time synchronization servicel. 47
[3.6.4 Distributed coordination servicel 47

[3.7 Design-time tools| 48
[3.7.1 Modelling language for the architecturel 49
[3.7.2 Software generators| 49
[3.7.3 Debug tool support| L 50

[3.8 Application deployment and control toolf 51
[3.9 Implementation| 53
[3.10 Conclusion of the description of the platform|. 55
[4 Background implementations of RIAPS| o7
[4.1 GPIO Device Toggle| 58
[4.1.1 Hardware configuration|. 58
[4.1.2 Software Configuration| 59
[4.1.3 Application architecture] o0 59
4.1.4 Simulation and outcomesfo oo 61

4.2 Distributed Estimatordo o 62
[4.2.1 Hardware configuration|. 62
[4.2.2 Software configuration| 62
[4.2.3 Application architecture] 63
424 Simulation and outcomes 65

[4.3 Distributed Estimator using GPIO| 66
[4.3.1 Hardware configuration|. 66
[4.3.2 Software configuration| 67
[4.3.3 Application architecture] 67
4.3.4 Simulation and outcomeso 70

44 UART A to UART B communicationl 71
[4.4.1 Hardware configuration|. 71
[4.4.2 Software configuration| L. 72
[4.4.3 Application architecture] 73
444 Simulation and outcomesdo oo 75

b _Methods and Tools| 78
[>.1 Algorithm requirements| 79
.2 Protocols and hardware tools 79
[5.2.1 TCP/IP communication protocol| 80
[5.2.2 Sunspec protocol| 82
[5.2.3 BeagleBone Blackl 84
[5.2.4 Opal-RT 5600 simulator{ 84
(.2.5 Inverter SMA STP 20000TL-US-10] 85

VI

(5.3 Model in the loop simulation|.
[>.4 Software in the loop simulation|
[>.5 Hardware in the loop testing and validation|
[>.6 Code examination and software tool support|
[>.6.1 Hardware configuration|.
[5.6.2 Software configuration|
[5.6.3 Application architecture]

6 Test-bench results|
[6.1 Earlier steps|
[6.2 Power Iimit simulation testl.

[A Code for Software in the loop simulation|

[B Code for Hardware in the loop simulation|

[Bibliography|

VII

104
107
110
113
115

118
118
120

122

128

138

List of Figures

1.1 Original configuration ot the system|. 3
(1.2 Prototype of the system as a possible solution| 4
[2.1 Sunlight effect on a photosensitive material 8
2.2 P-Njunctionfd3|l. 9
2.3 Solar cells arrangement (a)-(b) [8]-[9] 10
2.4 Characteristic I-V of solar panel [30] 11
2.5 Family of PV Power-Voltage characteristic[30]| 13
2.6 Flow chart constant voltage algorithm [30]| 13
2.7 Flow chart incremental conductance algorithm [30]] 14
2.8 Simple inverter circuits [11]| 16
2.9 Electrical circuit of a three phase inverter [10] 18
2.10 Fundamental output six-step inverter 120° conduction mode [17] . . . 18
3.1 Centralized structure [40f. oo 21
3.2 Distributed structure [40]. oL 22
3.3 Riaps as a distributed computing platform [24]|. 24
3.4 Software architecture [16]. 26
3.5 Riaps nodes@] 30
3.6 Component Framework [33] 30
3.7 Component execution [@] 32
3.8 Device interface Service [33]o oL 33
3.9 External device component execution 4. 35
3.10 Interactions between components 4] 36
3.11 CPU utilization example 26]|. 37
3.12 Memory utilization example [20]|. 38
3.13 Space Utilization example mﬂ 38
3.14 Network Utilization example [26]] 38
3.15 Resource Management application [26] 39
3.16 Fault management 2§| 40
3.17 Security Network [23|| 41
3.18 Discovery Service [33]]. 43

3.19 Deployment service [39]]. « .« « v o oo 45
3.20 File example ".depl” (a) [20] 46
3.21 File example ".depl” (b) 26 47
3.22 Time synchronization service [30] o oo 48
3.23 Riaps services 4], 49
3.24 Model-driven developmen‘@] 50
3.25 Executable block scheme@ 53
3.26 WLAN implementatio@ 54
3.27 LAN implementation [22]. 55
4.1 Beaglebone Black pin-out data-sheet 2]]. 58
4.2 File gpioExampleriaps R0[|., 60
[4.3 File ".dot” gpiokExample|.o 60
.4 File gpioExample.depl [20]] o L 61
[4.5 GPIO example during execution| 62
1.6 File "sample.riaps” [I8]|. oo 63
4.7 Distributed estimator ".dot”lo oo 64
4.8 Distributed Estimator ”.depl” file [I§][. 65
4.9 Distributed Estimator Simulationlo 0000 66
[4.10 File Distributed Estimator using GPIO ”.riaps” [19]| 68
[4.11 File ”.dot” Distributed Estimator using Gpio| 69
.12 File Distributed Estimator using GPIO ”.depl” [19] 70
[4.13 Distributed Estimator Using GPIO simulation| 70
4.14 UAR]T to UART connectionl 71
[4.15 File " .riaps” UART Device Testing 7] 73
[4.16 File ”.dot” UART Device Testing”| 74
[4.17 File ”.depl” UART Device Testing 7] 75
418 UART A to UART B communication simulationl 76
(.1 V-shape model entire system development| 79
52 OSIVS TCD 0] . - . .« o 80
5.3 Sunspec standard representation [38]|o 83
[>.4 Connection model during MIL simulation|. 86
(5.5 Opal-RT Simulator| 87
[>.6 Complete Simulink model| 87
(.7 SC Consolemodell. 88
H.8 OPAL RT modell 89
[5.9 Connection model during SIL simulation| 91
[5.10 Writing function in ”ComputationalComponent.py” 91
[>.11 Reading values from RIAPS| 92
[>.12 Reading values from Simulink{ 92
[5.13 Connection model during HIL, simulation| 93

IX

[5.14 Solar panels (a), Inverter SMA STP-20000TL-US-10 (b), Router and |

BBBs connections (¢)[. 94
[5.15 File "modbus_tcp_core.dot” |o 97
[6.1 Inconsistency on DC values from "QmodMaster” and "RIAPS” in |

different instanceso 106
[6.2 Step by step configuration| 107
[6.3 Double-check operation of register values 108
[6.4 Debug operation during the saving operation phasel 108
[6.5 Final implementation on RIAPS plattorm| 109
[6.6 Sunny Day from "Sunnybkxplorer” platform| 109
[6.7 Active power limit response from "Riaps”| 110
[6.8 Active power limit response from ”"Sunny Explorer” 111
[6.9 Active power limit from "SunnyExplorer” events/. 112
6.10 Graphical view from ”SunnyExplorer” Limit 300[W[”| 112
6.11 Graphical view from ”SunnyExplorer” limit 2000 [W["[. 113
[6.12 Shut-down from Riaps platform| 114
[6.13 Shut-down from "SunnyExplorer” events| 115
[6.14 Graphical view from ”SunnyExplorer” Shut-down |. 115
[A.1 File "modbus_tcp_core.riaps”™ 122
[A.2 ComputationalComponent.py| 123
[A.3 ModbusTcpReqRepDevice.pyl 124
[A.4 ModbusTcpReqRepDevicepy] 125
[A.5 tcpModbusComm.py| 126
[A.6 tcpModbusComm.py| 127
[A.7 File "modbus_tcp_core.depl”| 127
[B.1 File "modbus_tcp_core.riaps™ 128
[B.2 ComputationalComponent.py| 129
[B.3 ComputationalComponent.py| 130
[B.4 ComputationalComponent.py| 131
[B.5 Computational Component.py| 132
[B.6 Computational Component.py| 133
[B.7 ModbusTcpReqRepDevice.py] 134
[B.8 ModbusTcpReqRepDevice.pyl 135
(B.9 ModbusTCPLogger.pyl 135
(B.10 tcpModbusComm.py| 136
[B.11 tcpModbusComm.py| 137
[B.12 File "modbus_tcp_core.riaps”™o 137

List of Tables

2.1 Comparison among different MPPT algorithms [30]

[p.1 Functional values for Modbus TCP/IP block|
[5.27 Selected Modbus registers for SMA STP 20000TL-US-10]

XI

Chapter 1

Introduction

Nowadays real world applications related to the energy production and management
are becoming more popular even in relatively small system.

Regardless, technology progress, is pushing towards progressively powerful systems
in order to supply the increasing worldwide request of energy caused by multiple
factors. In fact with the technology diffusion, many devices are supplied by energy
and due to the raising of the population, this topic is becoming increasingly more
relevant. Limited amount of non-renewable energy coming from fossil fuels and high
harmful emissions of carbon dioxide, mostly related to the process of this type of
resource, generate the necessity to recover energy differently.

Every year new strict normative regulating the amount of C'O, emissions are issued
in order to reduce the pollution because it is the main reason of global warming that
slowly affect our planet with catastrophic consequences for the entire ecosystem.
Renewable energy generation coming from high power wind generator and photo-
voltaic power systems are the most used in the every day common scenario [1],
in order to supply to this problem. Renewable energy could also be generated by
hydro-plants systems or by geothermal, or by bio-mass systems.

Nevertheless, most of renewable energy resource are affected by non-predictable fac-
tors because of the fluctuation of the weather condition they strictly depend on and
for this purpose, many researches are faced in this context [4]. Renewable energy are
also classified in programmable or non-programmable energy resource depending if
the energy production could be provided right after a programmed request or not.
The problem of spreading the use of renewable energy resource, is as important as
the energy management, which is intended to reduce the excess of energy produced,
and this will provide new solutions constituting a topic of continuously updated
research.

1 — Introduction

1.1 Motivation and goal

The problem of emissions and all the issues related to it, give the necessity to think
about a new energy management concept able to control and monitor the variables
related to it in order to reduce the production of wasted energy. The increasingly
demand of energy is indirectly related to the use of new management concept able
to satisfy the standards and accommodate from the simpler to the complex requests.
Moreover the concept of a smart energy management system is not only intended to
be used as something able to push the actual system inside the generalized standards
adopted by the different nations, but it is above all, a valid reason to create a
connection between devices able to interact each others, exchanging information
and data necessary for the self-management system.

In order to establish this connection, a sort platform solution, able to operate in
this optimistic context and to generate some improvement on the basic production
plants, is needed. The final goal is to successfully demonstrate the integration
between a new energy management platform and the actual system, a simple solar
inverter, able to produce green energy.

1.2 Method of working

In order to reach the final destination goal, several steps have to be encountered
which are also important to subdivide the main big system into multiple smaller
ones. For this purpose, an accurate study of the theoretical part, concerning the in-
vestigation of the system basics and limits it presents, including some insights about
the working principle of the inverter and control strategy adopted, is necessary.
Afterwards, the comprehension of the theory of ”Riaps”, the revolutionary software
platform used, is fundamental. This is followed by a training for the correct usage
of this platform in different scenarios, through several basic applications directly
provided by the developers.

Here it comes the point, where all the previous nodes are converging, this, require
the necessity of the implementation of a communication protocol ”TCP/IP” never
implemented previously complementary with this revolutionary platform. A theory
basic is analyzed to understand how the communication layers are organized. The
utilization of new software able to interfere with the simulator and different simu-
lation tools is necessary to detect errors during the debugging steps, but especially
to generate the simulations performed accomplishing multiple requirements, mostly
related to the V-shape model. A moderate knowledge of python coding and basics of
C++ are necessary to face the lower level steps of the V-model and to be consistent
with the constrained rules of the ”Riaps” platform.

At the end, simulations on the real hardware, studying the behaviour during some

2

1 — Introduction

specific tests, are performed. Simulation results are pointed out leading to a con-
clusion that a new higher controller, able to operate above the existent one, with
multiple benefits, inherited from the revolutionary software platform, is established.

1.3 State of the Art of the actual system

The state of the art of the system in the original configuration is simple and it is
represented in Fig. |I.1l The inverter is able to exchange data through the router
to the "Sunny Explorer” standard platform by means of internet. The purpose of
”Sunny explorer” platform is to monitor and collect instantaneous and averaging
values and it is provided by the same manufacturing company of the inverter. From
this platform it is also possible to send commands on the basis of the user request,
but these has to be sent manually and singularly for each connected device.

SMA Inverter

| C_

Figure 1.1. Original configuration of the system

Sunny Explorer

Limits of the actual system

e Sunny explorer is a internet based system, so data have to circulate through
the cloud before to reach the user. This could affect time constraints due to
slow and long round trip.

e Sunny explorer platform is able to provide a max of 50 device connection
within one master on the network.

e There is no possibility to manage data autonomously according to the inter-
action among devices.

e The computing platform is centralized and each device refer to a single point
similarly to a central station of control.

3

1 — Introduction

1.4 Prototype solution analysis

The new model propose the use of a new software platform able to create a common
environment in which all the nodes are interconnected each other. This provides
a significant improvement on the management of the "DERs”, distributed energy
resources, because the new platform in general is able to constantly adapt to new
scenarios due to its software based flexibility. This new concept includes several
improvements over standard systems which lead it to become a ”smart system”. A
graphical prototype solution representing the main idea of this new energy system
is presented in Fig. (1.2

|DER «1» | | DER«2»| | DER «3» | | DER «n»

New software platform /Q\
Environment

=
New software platform |

—

Figure 1.2. Prototype of the system as a possible solution

1.4.1 The need for a new energy management system

The main reason that lead to think about a new energy management system is to
try to improve the actual system in better managing data and commands and even
the faults and to fill gaps of an standard one.

For this reason it is important to remark that the electric energy, is a pillar of today’s
society, where electric and electronic devices constantly depends on. Nevertheless,
nowadays the worldwide economy turns around the production, dispatching and
selling of the electric energy, so that it is currently impossible to think about a
world without it.

Once realized the importance of electricity today, the best ambition concern the
following question.

1 — Introduction

What would happen if all the energy in the world will be managed in the best way
avoiding harmful waste for our eco-system? In order to answer to this question it
is necessary to improve the current systems by providing an upgrade in therms of
management of important quantities.

1.4.2 Requirements for the new system

The requirements for the realization of the final goal are listed below as follows:

The new system interaction should be based on a local network and not based
on internet anymore, for data privacy and security reasons.

The communication should be performed using TCP/IP protocol and not on
Modbus RTU (remote terminal unit), because it is physically easier to install
and to configure.

The computing power of the data/command management, should be dis-
tributed among all the interconnected nodes inside the network.

The platform used should be able to host multi-connection with plug and play
accessibility.

The system should be resilient in general to faults, to avoid loss of important
data.

The algorithm should own the predisposition to self manage devices on the
basis of the information exchanged.

Finally the system must support the use of a new software platform to realize
the previous requirements.

1 — Introduction

1.5 Thesis structure

A summary of thesis presenting a short introduction for each chapter and its main
contribution is presented as follows.

Chapterl: Introduction is providing an introduction to the part of the world studied,
followed by the motivation and the final goal. Then, a state of the art including
some limits of the actual system and the purpose of research are provided, conclud-
ing with a list of requirements for the new system.

Chapter 2: Theoretical basics is intended to introduce to the theory of the basic
working principle of the systems considered related to the PV plant comprising PV
panels and inverter explanation.

Chapter 3: Resilient Information Architecture Platform for Smart Grid is the theo-
retical focus of this work, intended to provide all the information that the platform
is able to provide in a smart grid environment and how single components works
inside.

Chapter 4: Background implementation of RIAPS is intended to give an idea of the
working principle of the platform in different scenario, with basic applications useful
to learn how does it work in a real context.

Chapter 5: Methods and Tools is providing all the information related to the meth-
ods used to reach the final goal. A detailed documentation of the steps during the
simulations followed is given relating to the V-model, with the inclusion of some
theory aspects considered. It include also the description of the file developed to
run inside the platform.

Chapter 6: Test-bench results Simulations and outcomes are provided starting from
step by step implementation and for the two major important tests related to ” Ac-
tive power limitation” and ”Shut-down simulation” to let space for a final critical
review where some aspects not covered or doubt solutions are pointed out.
Chapter 7: Conclusion and Future work is the last step providing a conclusion
based on the certainties acquired from the study of the problem. This is followed
by a section exploiting an introduction of possible topics to be investigated in order
to further improve the already implemented system.

Chapter 2

Theoretical basics

This chapter is intended to provide basic explanation of the theory related to the
topics covered in the next chapters. Starting with a description of Distributed
energy resources regarding insights about PV plant to and some particular control
strategy adopted, continuing with a basic explanation of the structure and the work-
ing principle of solar inverters and concluding with the differentiation of different
implementation in the from the smaller to the bigger application.

2.1 Distributed energy resources

Distributed energy resources (DERs), are resource able to produce electricity that
due to the technology development and environment protection are merged within
a local distribution system. These DERs, are contributing significantly in the world
change of electricity systems. Examples representing this category of DERs are: PV
power plants, internal combustion (IC) engines, gas turbines, micro-turbines, fuel-
cells and wind-power [31]. It is difficult to highlight which is the most powerful one
in a global way, because this strictly depends on the major benefits the geographical
area can exploit, where these DERs are installed.

A photovoltaic (PV) power plant is the composition of solar panels for the acquisition
of the sunlight energy and the conversion to the electrical energy. A PV power plant
is also including the conversion stage, performed by the inverter able to convert the
electric energy on the basis of the end user for the requested application. Although
the conversion is performed following the basics of electrochemistry, the content
hereby is summarized in order to get an overview of the concept.

2.1.1 PV solar panels

A PV panel is composed by a single or multiple solar cells, providing different char-
acteristics depending on the configuration they are mounted. Different configuration

7

2 — Theoretical basics

are present, these includes series or parallel connections that provide different volt-
ages or powers. Since every standard single cells is able to produce less than 1V it is
necessary to be combined together with the others to provide the required output.

Working principle basics

The working principle is based on the electrochemistry concept. A beam of light
coming from the sun, hit a photosensitive material which release electrons through
the absorption of photons and ionization of crystal atoms as shown in Fig. [2.1]

A
v ~7
< Q B> Electron emission
= vV Q

e ©
/)]
Sun light //
e ©/e e

S e
© e e e @

Semiconductor

Figure 2.1. Sunlight effect on a photosensitive material

This create negatively charged electrons and positively charged ions, exclusively
generated by the basic crystal atoms. Ions transfer its positive status to their neigh-
bor atom, so that this generate "holes” that have the same property of an ”electron”
but with opposite charge. Every time a hole is generated, an electron is present in
order to balance the total charge. In order to establish electric potential, a P-N
junction is necessary using the P and the N doped material, presenting respectively
an excess of electrons and an excess of holes. It should be emphasized that the
material result to be globally neutral, because the doping is carried out with neutral
atoms (not ions), on the one hand, and the holes of the same on the other and the
only thing that changes is the excess of electrons in a covalent bonds. So, when a
material of P type and a material of N type are joined together to create a P-N
junction, a balance of charge is established by migration of electrons from N zone
to P zone and a "built-in” electric field is created in the zone in the middle of the
P-N junction called ”depletion region” as highlighted in Fig. [2.2

8

2 — Theoretical basics

space
charge
region

neutral region neutral region

N

A holes j i
3 k ee ® @ electrons
-E | =]
[1 E '
= e]
EQ p-doped i ce o | n-doped
o
°g ‘e g &
a_. 1
£ 'jé &
o 1
= Ve e e @ |
1 [} -
] [-
| - £I
| E-field
X |
Q Charge ' @
T
e

E T Electric field

'.'T Voltage ! / [AV built-in
. L voltage

4 '] T

Figure 2.2. P-N junction[43]

Afterwards, once the beam of sunlight hit the photosensitive material, as a con-
sequence of the electrons release, a current flow is established, through the action of
the electrical field that pushes the just created electrons in excess in one side and
the holes in the other side. The electric field is also able to avoid the charges going
back to the previous configuration, and a voltage is generated from N to P material.
These flow of electrons is generating a current that is captured by a wiring system
inside the cell and connected to the other cells in order to create a panel. The entire
process is repeated until the energy of the photon hitting the solar cell is at least
equivalent to the energy of the band transition of the photosensitive material [7].
Different type of photosensitive material could be used to accomplish this task such
as silicon, gallium arsenide, indium phosphide, cadmium telluride, copper indium
diselenide, and cuprous sulfide [6], but the mostly used is the silicon present in:
amorphous, multi-crystalline and crystalline stage.

The efficiency is depending on the purity of the material and for the previously
mentioned stage and for a constant irradiance provided approximately it range from
10% to 25%. Nevertheless the efficiency of a solar cell is dictated also by the angles
the sun incise on the panel. These angles are referring to the zenith, to the azimuth

9

2 — Theoretical basics

and to the horizon. Many studies are carried out trying to find out the value of
these angles that maximize the efficiency.

Moreover solar cells are arranged together to create a module configuration and this
last one in turn is associated with other modules to create a panel in Fig. [2.3 (a).
As consequence, multiple panels together form an array. Finally different arrays can
be arranged together in order to generate a so called field as shown in Fig. [2.3] (b).

Photovoltaic (PV) Module
Cell

L R]
[R RN
L SN S8 5 SR A O 4
e PP ree
e

IR R R R
SEP PP E L E LS
L S S S B
R A]
LI IR B R R R N R

Figure 2.3. Solar cells arrangement (a)-(b) [8]-[9]

Maximum power point of tracking

The "MPPT”, maximum power point tracking, is one specific device running a
particular power control algorithms followed by PV plants to maximize the power

10

2 — Theoretical basics

extractable from the solar cells. It is responsible for providing also minimization of
the overall system costs and maximize the array efficiency. The solar cells have a
theory apart that describe the conversion of energy depending on multiple factors
such as: solar irradiation, temperature and total resistance producing a non-linear I-
V characteristic as shown in Fig. The location of the MPPT is highly dependent
on the previously mentioned factors and it has to be tracked continuously during
the working operation. In fact, due to the mismatch between the load line and the
operating characteristic of the solar cell, the power available from the solar cells is
not always fully extracted [39).

The purpose of the MPPT control technique is to adjust the the terminal voltage of
PV panels so that maximum possible power can be extracted. The MPPT control

I axinmam Power Pomt (MPP) 4
35 H - i i i
o §f T TSR, _L sennn o L]
p)] SEREPRR oo foeeemeeeee O T o
E Directly Coupled '
= dprecomnsnss e e ':"""""': """"""""
et ' - i
] oeeeeene oo foess
DC Load Line (No Battery)—y 4
| e~ S L R~
1] IR ="« i - — RTRTTTE: SETEEEPRRS 4
3 : : ; ;
0 20 40 B0 80 100
Voltane

Figure 2.4. Characteristic I-V of solar panel [30]

strategy is responsible for determine the value of resistance identified as a load to
their output in order to reach the maximum amount of power for any environment
conditions. The concept of the MPPT is related to the fill factor (FF), which is a
parameter determining the maximum power from a solar cell.

It is defined by 2.1}
Pmam

(‘/:)cjsc)

where the "V,.” and the " I,.” are respectively the open circuit voltage and the short
circuit current values. Different kind of MPPT algorithms exists they are:

FF =

(2.1)

11

2 — Theoretical basics

e Perturb and observe "PEO” that is the most widely used and easiest to im-
plement control algorithm even if it is defined in literature the less efficient
one.

e (Constant voltage that is also easy to implement, but have also drawbacks in
the evaluation of parameters.

e Incremental conductance which is one of best algorithm for evaluating the
MPPT.

Perturb and observe technique

In the "perturb and observe technique” [30] the voltage at the terminals of the solar
cells is continuously perturbed, and it is calculated the correspondent output power
difference. In Fig[2.5]is represented a family of PV array power curves as a function
of voltage (P-V curves), at different irradiance "G” levels, for uniform irradiance
and constant temperature. Considering the power array operating at point A, in
order to reach the final MPPT point in the curve, the voltage is perturbed to change
in a small amount, and after that the power difference is calculated. If the power
difference is positive, in this case, the perturbation of the operating point of the
PV array is moved towards the MPPT. Instead, if the difference of power measured
is negative, in this case , the operating point is moved away from the MPPT[30].
The drawback on this algorithm is that, whenever the sunlight decrease, the P-V
curve flatten, and the MPPT is difficult to be identified. Since this algorithm is
not so accurate because it perturb the voltage every single power measurement, the
tendency is always to oscillate around the MPPT especially in cloudy days when
the MPTT is changing rapidly. So it is really common that the algorithm continue
perturbing the voltage moving the characteristic to a certain direction trying to
approach the MPPT while this last one is moving rapidly to a different point. This
lead to a loss of power that potentially could have been transformed.

Constant voltage

The constant voltage technique [30] regards the study of the ratio between the
maximum amount of power voltage obtainable in the PV array "V ppr” and the
open circuit voltage ”"Vpe”. This is defined as a constant:

Vivppr
Voc

—K<1 (2.2)

The value of " Vp"is computed disconnecting temporarily the array from the " MPPT”
controller. The correct operating point is evaluated through the equation (2.2)) , es-
tablishing the constant parameter ”K” in order to reach the maximum power voltage

12

2 — Theoretical basics

Maxmom Power Pomt #
G = [lumination (W/m?)
200
G = 1000
;:..ﬁ: 1680 A
% /G-—m
w100
]
50
G =400 \\\
G =200
U 1 _* —— i
0 20 40 60 80 100
Voltage (Volts)

Figure 2.5. Family of PV Power-Voltage characteristic[30]

"Vuppr adjusting the array voltage until this last value is reached. This opera-
tion is repeated continuously to evaluate the correct position of the MPPT. This
algorithm can also be described using a flowchart represented in Fig. 2.6 Although

Record Open Circuit | |Calculate Vygpp from
Array Voltage petcentage of Voo
¥
. Vary Arnray Operating Voltage
Weit XSeconds 7 (st Vo, is Reached

Isolate Array
from MFPPT

Figure 2.6. Flow chart constant voltage algorithm [30]

constant voltage algorithm is really easy to be implemented, using analogue hard-
ware, this could be affected by errors in evaluating the K factor due to multiple
approximations. Furthermore the value of "K” could also be dynamically adjusted,
but this will lead to use a searching algorithm leading again to the P&O technique.

13

2 — Theoretical basics

Incremental conductance

The incremental conductance technique [30] is the more accurate with respect to
the previously described technique but requires more computations. It is obtained
through differentiating the PV array power with respect to voltage and setting the
result equal to zero at MPPT as shown in ([2.3)).

dP d(VI) dl

The following equation becomes:

L dr (2.4)

Vo dv
The represent: on the left side the negative conductance and on the right hand
side the incremental conductance. This two quantities must be equal in magnitude
but opposite in sign. If the MPPT moves towards another point, an unbalanced
situation from the right hand side of the equation happen. The magnitude and
the sign of the variation is used by the algorithm to determine which direction to be
undertaken for the perturbation in the voltage, which is repeated until a balanced
situation is encountered. As shown in Fig. when the irradiance increase, the
MPPT moves towards the right side and to compensate this, the voltage must be
increased. Since the irradiance is directly correlated to the current, a change on the
amount of sunlight means a change on the ”dI”. A representation of the algorithm

followed by this procedure is shown in Fig. 2.7]

Record Load Voltage
and Current

Caleulate
dl and d¥

Increase Atray Decrease Atray Decrease Array Increase Armray
Operating Voltage Operating Voltage| |Operating Voltage Operating Voltage
T T

Figure 2.7. Flow chart incremental conductance algorithm [30]

14

2 — Theoretical basics

The main advantage on this algorithm is that it can detect the direction of
perturbation and also determine when it has reached the MPPT, waiting for any
change before perturb again the voltage.

Comparison MPPT algorithms

However the better performance of the MPPT algorithm is defined by the MPPT
efficiency evaluated in these different cases. It is computed the efficiency with the
equation ([2.5)), where ” Prga”is the actual power measured at the terminals of the
PV array under the control of the MPPT algorithm and ” Py;4x” is the max power
reachable. The table provide comparative values for the algorithms analyzed.

J§ Preardt
= J0° RRALT 2.5
eer Jo Proaxdt (25)
MPPT algorithm Efficiency reported [%]
P&O 81,5-85
Constant Voltage 73-85
Incremental Conductance 88-89.9

Table 2.1. Comparison among different MPPT algorithms [30]

2.1.2 Solar inverter

A solar inverter is essentially an electronic power converter which is responsible for
transforming the direct current ”DC”, coming from the photovoltaic panels "PV” |
into alternate current " AC” at a specific frequency (typically 50-60 Hz).

The AC current produced, is then connected to the electrical grid or directly used
as a off-grid network [44].

Different topology of solar inverter

Depending on the configuration, there are different type of inverters [12]:

e Stand alone which are isolated systems, draining DC energy from the batteries,
charged by photovoltaic arrays or other resources such as: engine generators,
hydro turbines and wind turbines. They are not connected with any grid so
that they are not required to have anti-islanding protections.

e ('rid-tie that are connected back the the main utility grid and they require
to match their phase with the phase already present in the electric grid with
the same frequency rate. Moreover these last ones may also feeds electricity

15

2 — Theoretical basics

directly to the electrical loads such as appliances, tools, HVAC, etc.. They
are typically designed, for safety reason, to rapidly disconnect from the grid
in case of utility outage following the concept of anti-islanding protection. In
particular they provide an internal circuitry that detect the magnitude and
the phase of the voltage and the current of the grid to be matched.

e Battery backup that mainly drain energy from a battery and they provide
the energy during fallback situations where it is missing the AC power. The
system include also an internal battery management system in order to restore
the battery charge level when it drops down a certain amount of voltage.

o [Intelligent hybrid which provide management of PV arrays, battery storage
and utility grid and directly connected to the unit. This configuration include
the all previously described typologies, so they are re-configurable depending
on the situation.

Structure of an inverter and working principle basics

The working basic working principle of an inverter is based on the use of high
frequency switch able to let flow the DC current back and forth in a circuit con-
nected with a primary winding. The earliest versions were provided with a electro-
mechanical switch, now turned into electronic only based on the transistor behaviour
as shown respectively on the left and on the right side of Fig. As soon as elec-
tronic components are becoming more and more available to support also high power
ratings systems, and due to their relatively small size, they became included into
the inverter circuit design.

The alternation of the direction of the current in the primary winding is producing
an alternate current AC on the secondary circuit which is present in a square wave
form. In order to get the ideal sinusoidal shape, many electronic circuits are de-

Vcc VCC

| Output Output

Figure 2.8. Simple inverter circuits [11]

16

2 — Theoretical basics

signed to filter the waveform including capacitors and inductors depending on the
real application. In order to be compared to the desired sinusoidal shape the Fourier
analysis is encountered including the study of the harmonics and the coefficient of
total harmonic distortion (THD) which is defined by the square root of the sum of
the harmonic’s voltage square divided by the fundamental one [45].

\/1/22+1@,2+w2+...+v7§
Vi

Basically the more the THD coefficient is low, the more the shape of the generated
wave resemble the one of a sinusoidal one. Although the square waves presents
harmonics that are required to be eliminated, different techniques are presented
[34]. In a single phase inverter configurations such as half bridge and full wave
bridge are involved as electronic circuit in order to provide the output waveform.
One of the best solution to improve the quality of the waveform in output is using
the pulse width modulated control (PWM). In order to eliminate as many harmonics
as possible, the switching frequency of the PWM is required to be high.

THD =

(2.6)

Three phase inverters

Basically three phase inverters consist of the grouping three single phase inverters
each one connected to the load terminal. They are mostly used in motor drive
applications or in high voltage transmission lines. The operation of the switches
present in an inverter circuit, in Fig. [2.9] is designated in a way that they are
switching at every 60° of the fundamental output waveform. Depending on the
applications there are 120° and 180° degrees working mode operation. In 120° mode
of conduction, only two switches are operating at the same time at each time step and
each one of them remains active for 120° consecutively (2 steps) in a complete cycle.
Conversely in 180° mode of conduction three switches remains active at the same
time at the each time step and and this time each one of them remains active for 180°
consecutively (3 steps) in a complete cycle. Finally the output waveform is provided
in a total of (2" — 2) steps, where n corresponds to the number of terminals (that
for a three phase load corresponds to 3). In this way the output is generating a six-
step output waveform in Fig. . Each line voltage (Vag, Ve, Voa), is recovered
by performing the difference of voltage magnitude at the terminals (Vao, Vo, Voo)
of the equivalent circuit for the combination of the active switches at each single
step. Using two six-step circuit in series or in parallel increasing respectively the
voltage and the current of the productive capacity of the inverter it is obtained also
a correspondent 12 step output waveform, where phases are shifted of 30° each step.
Furthermore, by increasing the number of steps in the output waveform, the output
waveform is more defined and accurate to resemble the sinusoidal one providing a
smaller THD. An inverter is able to work as voltage (VSI) or current source (CSI)
to supply the load on the base of the configuration and on the request.

17

2 — Theoretical basics

1 3 s/jS A
N “,ng “haJ | Load
e SRt
4 6/ 2/ B
o WA AN A c
]]

Figure 2.9. Electrical circuit of a three phase inverter [10]

Steps | 1l N OV VI
ON Switch 61 [12 | 34 45 56

Vas : ' gl

!' :I 5 :_'wLeo
Line I I ;

Voltage “* ——>t

Veal 60 120°

180° 240° 300°

Figure 2.10. Fundamental output six-step inverter 120° conduction mode [17]

18

Chapter 3

A Resilient Information
Architecture Platform for Smart

Grid

The emerging trends on the field of computing platform shows the necessity of an
additional computation layer based on distributed computation and communication
resources able to monitor and control physical phenomena at the high levels where
the commands and main data are managed. Example of these computation plat-
forms are ”Scale”[5] and ”Paradrop” [46] used to collect fine-grained data and to
filter data before sending to a cloud service.

In the Smart Grid domain, in a society made of increasing companies, communities
and costumers, eventually ”prosumers” able to provide themselves the energy con-
sumed, the main idea is to distribute the computational effort in a way to create a
net gap between centralized and decentralized structure. This assumption requires
to monitor, control and manage software application at all levels.

Centralized structure VS Distributed structure

Nowadays in most applications, the computing power is centered in one point and
managed by a single control room which receive and sends data to the local loads.
The computing effort is all concentrated in a single or multi devices that lead to a
single component at the end shown in Fig[3.1]

The centralized structure is currently becoming old structure and it is not fitting
anymore with modern applications because of :

e Sustainability since nowadays applications require its own dedicated control
room.

e Scalability since a centralized structure cannot expand in significantly way.

20

3 — A Resilient Information Architecture Platform for Smart Grid

Central Location

— . .
——) — _l_l_
| e— —) J I

Figure 3.1. Centralized structure [40]

Multiple nodes to be managed so the chaotic interconnection could slow down
the speed of communication due to multiple link creating loss of efficiency.

Slow time for sending and receiving data due to long round trips of data.
Reliability directly linked to fault and accessibility.

Resilience since if the fault is affecting the source, it is propagating to the
peripherals in a non controlled situation.

Accessibility since after the fault is issued any peripheral can be accessed
during fault.

Security since accessibility to all peripheral is established if access to central
node.

21

3 — A Resilient Information Architecture Platform for Smart Grid

Conversely a distributed paradigm structure is necessary in order to communicate
with all devices across the network solving problems collaboratively and exchanging
easily data among nodes facilitating the communication.

It is responsible to spread the ”intelligence” throughout all connected nodes and to
rely on a multi platform implementation rather than a single one Fig. |3.2]

The advantages of the distributed computing in the context of the micro-grid appli-
cation include [I3]:

e Improved cyber security by distributing the control point in multiple ones.

e Improved physical reliability by removing a single point susceptible to failures
or damage.

e Faster decision making avoiding network penalties due to round trip to the
cloud.

e Improved scalability to the new applications to operate with different number
of load, sensors, actuators, relay and in general grids.

e Provide a better integration with hierarchical control systems.

e Modularity reducing the big system in a smaller one allowing the interaction
among multiple small systems.

e Capability to distribute the center of command in a wider geographical area.

— - — —
— - — - - e— -

-|=l= === L

Sy S = .]
= — - — -

Sy S S S H

Figure 3.2. Distributed structure [40]

22

3 — A Resilient Information Architecture Platform for Smart Grid

3.1 Challenges and expectation

The main role of these computing platforms is to provide a stable environment ap-
plication development and deployment, that has resilience to the to heterogeneity
of different applications, to the dynamism of the occurrences that may happen and
to potential failure of computing resources. All these knots lead to a solution, that
expect a computing platform able to provide the primitives for the service core,
necessary for the safely deployment, mitigating at maximum the risk of failure. On
this purpose, a very powerful innovation algorithms has to be considered includ-
ing time synchronization, distributed data management and service discovery and
deployment mechanism for remotely manage distributed applications[16].

3.2 What is RIAPS

Resilient Information Architecture Platform for Smart Grid, better known as RI-
APS, is a computing platform for prototyping real-time embedded applications using
a component-oriented approach [25].

This software platform has been edited by Vanderbilt University and the applications
developed by North Carolina State University and Washington State University.
Riaps is also defined as a "middleware” which is a multipurpose software that pro-
vides services and functionalities to applications outside of what is offered by the
operating system itself. A middleware could be considered in general as a software
layer that stays between the kernel and the user applications [29].

In this context, RIAPS is also responsible to provide a way for a bidirectional com-
munication between the operating system and the developed application, that yields
to a platform easily accessible and manageable from the user side.

Usage of RIAPS

The main role of Riaps is to serve as a software platform, for the implementation of
various functions. Typically it is used in the Smart Grids field for distributing the
"intelligence” in different local points. In this occasion RIAPS is able to spread the
computing power in multi command centers called "nodes” in a way to decentralize
the original and unique center of command that was widely used before. Each node
has its own independence and intelligence acting as well as the centralized one but

with high efficiency Fig.

Characteristics and main features of RIAPS

Despite many software platform, Riaps provides a diverse number of services related
to the domain specific logic, this include [13]:

23

3 — A Resilient Information Architecture Platform for Smart Grid

L ——— N = . S—
L= >
5_—_‘_"—-=—1-—._D - g _.—-"‘"—.—'__}-_ 1
WE—

Control Room
- Sy

(@ GENERATORS
E) STHLCHRONOUS RIAPS Network
s b ¢ Computing Platform F
Sensors Actuators

Figure 3.3. Riaps as a distributed computing platform [24]

Time synchronization to improve control performances.
Messaging middleware through which it exchange data to all user application.
Coordination system and consensus to synchronize all the mechanisms inside.

Discovery and deployment system mechanism able to deploy simultaneously
multiple applications for multi-tasking operation.

Fault-detection and recovery mechanism provided as prove of resilience by
significantly reducing dependencies for each node.

Distributed security mechanism in order to distribute the capability of reason
to local end-points that prevent from cyber attacks and mitigate the risk of
failure.

Fast decision making, avoiding latency during data exchanging due to direct
linking to the local end-points.

Security by improving the access authentication through using secure keys files
and codes, creating a reserved access.

24

3 — A Resilient Information Architecture Platform for Smart Grid

e Progress, due to the updates of the platform which is able to provide always
last functionalities in a world of continuous evolution.

e Interoperability between relatively small systems, able to communicate each
other, exchange information and data, necessary for the success of the opera-
tions.

e Reliability of the system studied in minimal details to always fit with a number
of different of application.

e Reusability due to multiple reuse of the platform in multi implementation, this
include also small modification for slight different application.

e Easy implementation due to e-learning and the on-line data provided by the
developers.

e Support from the developers for any kind of problem related to the software
platform (settings, connections, clarifications and debugging)

3.3 System architecture layout

Riaps software platform has a complex structure inside which is able to coordinate
everything together. The layout of its architecture is describing in details every
single part which is fundamental for the correct execution of the platform and gives
an important contribution to each component.

3.3.1 Architecture run-time system

In order to produce a reliable system on which distributed applications can be built,
Riaps relies on a open source operating system.

Riaps includes two main group that includes packages that works together to perform
their work inside the platform. They are the Component Framework and Platform
managers. The structure of the software architecture is shown in Fig. [3.4]

Component framework

The Component Framework includes a set of software libraries that are dynamically
linked with the application components, it is close to the OS kernel interactions.
The Component Framework layer is responsible for providing a higher level abstrac-
tions for building distributed applications on the platform that present the resilient
and complex but reliable characteristics.

The middleware libraries includes the [16]:

25

3 — A Resilient Information Architecture Platform for Smart Grid

Remedial Action Mi
Scheme Man

Applications

State
Estimation

crogrid
agement

Component Framework

Component Interactions

Component Messaging

Component Scheduling
Event/Time-triggered

Resource Management

Resource Management Service

Lifecycle Management

Initialize, Start, Stop,
Checkpoint, Destroy

Language Run-time
C/C++, etc.

Security

Access Control

Data
Analytics

Energy
Management

Distributed
SCADA

Platform Managers

Application Manager
Application Management and
Deployment Service

Coordination Manager

Distributed Coordination Service

Time Manager

Time Synchronization Service

Discovery Manager
Broker Service

Resource Manager

Resource Management Service

Device Manager

Device Interface Service

Secure Communications
Secure Information Flows

Security Manager

Security Management Service

Persistence Manager

Persistence Service

Fault Manager

Fault Management Service

Log Manager

Logging Service

Fault Management

Fault Management Service

Logging

Logging Service

0S Kernel

Hardware Platform

Persistence
Persistence Service

Device Interfaces
(Sensors/Actuators/Communications/GPS/...)

Network Interface(s)

Storage

Figure 3.4. Software architecture [16]

e Component Scheduler that is responsible for managing the handler functions
every certain period or once an event appear through implementing the com-
ponent execution semantic.

Component Interaction that enables the communication and the remote meth-
ods of invocation on the same node or in the network.

Resource Management that provide support on the monitoring of the comput-
ing platform utilization and availability.

Fault Management that provide support on detecting and mitigating some
anomalies in the software components.

Logging that provide support on recording components events such as messag-
ing and errors track in a log-terminal or a log-file.

Life-cycle Management that enable the remote managing of the software com-
ponents.

Language Run-Time that enable communications and interaction between the
languages supported by the platform.

Security that is able to guarantee private and selective access through key
access.

26

3 — A Resilient Information Architecture Platform for Smart Grid

e Persistence that provide functionality on containing and storing data.

Platform managers

On the other side the Platform managers are specialized operating system processes,
implemented as host in Linux systems responsible for implementing the system-level
management capabilities. The platform managers incorporate the elements of the
application framework, this include [16]:

Application Manager that provide the ability to install and remotely manage
the applications.

Discovery Manager that provide support by proving the connection availability
on the different nodes.

Resource Manager that is able to provide functionality on monitoring the
computing resources ensuring that Platform manager and components are able
to run at the same time.

Fault Manager that give support on detecting fault situations at node level.

Log Manager that serves as a entry point to all activities on the node.

Coordination Manager that provide fault-tolerant distributed services as well
as coordination service.

Time Manager that is able to give high precision time synchronization service.

Device Manager that provide support on enabling input/output devices to
have access to the messaging framework of the platform.

Security Manager that handles the authentication through keys secured by
digital signatures.

Persistence Manager that enable to store data in a persistent manner.

Applications

The applications are located in the top layer according to the Fig. and obviously
they rely on the services provided by both Platform Managers and Component
Framework to perform their operation.

27

3 — A Resilient Information Architecture Platform for Smart Grid

3.3.2 Application model

One of the most important thing in using this software platform is the study of
the application. An application consist of a set of files. Omne of this file, with
the extension ”.riaps”, includes all the information for the other files inside the
application, such as message pattern, interactions and deadlines. It is written in
C++ and it is giving the very first information of what concept is trying to exploit
the system developed.

An application shortly called ”app” in mainly composed by:

e Components
e Actors
e Message topics

e Ports

Components

As it was previously said, the application model is composed also by components.
Components are objects and play an important role in the application development,
because the are able to interact with other components trough sending and receiving
messages.

The components could be single-threaded, that means they can afford just one op-
eration at a time or multi-threaded that means the manage many operation at a
time. A component run its own execution thread and the component execution en-
gine release a thread, i.e when a message arrives that the component was expecting,
Components have ports that are used as arguments to send and receive operations
[24] as explained below. The responsible for the exchanging of information through
the use of message topics is the message framework and it is explained better in a
dedicate section.

Devices

Devices are special type of components that are able to interact with external threads
and provide a correct operation during execution able to handle situations in which
external sources or threads interact with the system.

Actors

Actors are 7OS” processes and run on a host of a Riaps network [24]. They groups
all components present in the application. There could be the possibility to find
one or more actors in the same application, grouping different components inside.

28

3 — A Resilient Information Architecture Platform for Smart Grid

Actors could be deployed in different target nodes, or simply replicate them in the
same nodes. The reason why the components are grouped into actors is that the
communication between components inside a single actor is way cheaper than the
communication between actors running on the same node or in the worst case com-
munication between actors running on different nodes.The actor is also responsible
for loading a component, setting up its configuration and initializing its state.[16].

Message Topics

The message topics are really important due to the capability to carry on informa-
tions from one side to the other and so they represent the means of transport for
the communication among components. There are different message topics depend-
ing on the purpose they serve, they are differentiated and analyzed better in the
messaging framework section.

Ports

Ports are the elements through which components interface with other components.
There are special kind of ports that are the "timer” ports, that acts as a pro-
grammable one-shot or periodic source of messages that provide the current times-
tamp for the component [24].

3.4 Component framework

As soon as the Application model is describing various components inside an appli-
cation, this section is analyzing the way this pieces are grouped all together into a
single process to be run.

Components are grouped into actors and run in applications. Once the link is estab-
lished it is created a node, inside where components can communicate and interact
using well defined patterns. In Fig. is shown an example of nodes creation inside
the Riaps platform. The advantage of having a component framework based on a
software is that allows the platform to have reusable building blocks of applications
due to the grouping of all the actors into a single process as previously said.

More advantages other than reusable components are that the concurrency among
them is managed inside the framework and not in a logic condition as well as the
triggering logic is encapsulated in a function that can handle complex decision, fi-
nally the timing analysis is performed inside the platform itself and not handled
externally.

In Fig. the basic functions and interactions of a single component are better
explained.

29

3 — A Resilient Information Architecture Platform for Smart Grid

RIAPS Node 1 RIAPS Node 2 RIAPS Node 3

Figure 3.5. Riaps nodes [33]

00000

Operations

-9

Current Operation

DO — P

Figure 3.6. Component Framework [33]

Components have state and interact via ports that allows the components to
send /receive messages and to be server/client in a broker network.

The study of this platform demonstrates that the expected scale of node creations
could push up to 10 nodes [33].

30

3 — A Resilient Information Architecture Platform for Smart Grid

3.5 Components interaction

The components interaction could be understood better if the message type are
clear. Different message type are present through which the components partici-
pate in a various interaction. All the components must implemented using these
message patterns. The supported interaction pattern are described later in section
" Messaging Framework” .

3.5.1 Component execution engine

A component in its execution can be time or event-triggered. When a component
is triggered, either because of a message arrived or because a timer expires or even
when an operation is completed, there is an associated handler method which is
responsible for calling a component object. Components in the same actor run in
separate threads, so an actor which contains single or many components is multi-
threaded [24]. This means that the handler that is called have to deal with many
thread that can produce different triggering message to be read. The handler act like
a normal function, so it is responsible to read this message, execute some operations
and return the value to the output ports. The picture in Fig. [3.7] is depicting the
basic operations deployed by a component during its execution.

In the configuration in Fig. [3.7, the component is running in a "undisturbed”
situation, in which any other external source is not affecting the basic operations.

External device management

Different situation happens whenever an external device is interfacing with the com-
ponent. The basic operation can be interrupted and the handler function may loop
in unbounded manner.

To handle this problem, Riaps platform makes use of the device component, which
behave such as a normal component, but has also the capability to interact with
threads coming from external sources i.e. I/O requests from external devices.

A device component can launch one or more threads that runs parallel to the main
thread communicating through inside ports. Inside ports are special type of ports
where internal threads can exchange data to the outer threads, improving the system
of communication between external device and components avoiding also blocking
processes that can end up with failure in the whole system.

A typical implementation that shows an I/O external device interaction in a normal
operation of a device component is shown in Fig. [3.9

31

3 — A Resilient Information Architecture Platform for Smart Grid

params

S] [XD
* activate/deactivate

state : .

* passivate/reactivate
* checkpoint
* destroy

-
=
el
el
=
a8
o

Operations
T T 11 « handle_sub...) <M>
— message queue exec Fi* handle_resp(...)
I . | ** handle_time(...)
sched o
_ Actions in ops:
s -~ | * send|...)
management * recv(...) request »
{ server > \ J
subscribe port _
timer port publish port
reply port client port
server port request port

Figure 3.7. Component execution [24]

3.5.2 Device interface service

Since Riaps nodes are continuously varying on number and type, depending also
on the hardware devices used, the configuration, to allow interactions basing on
available utilization of the node, is also changing rapidly to meet certain necessary
requirements. After all, depending on this configuration, the device interactions also
change over time and may be added and removed depending on the necessity.
Naturally, Riaps platform is designated to run as a software, so it could never directly
interact within power systems, but it only interact with them through the device
interface service with small power signals.

There are specific ports and interfaces implemented by the "DIOC” (Device 1/O
components) related to the connected power system device, the lower-level protocol
and the physical link.

The advantage of using this "DIOC” is that the /O devices are included and for
this purpose the application component is able to [14]:

1. Access them using a unified interface.
2. The timing interaction between the devices is highly accurate.

32

3 — A Resilient Information Architecture Platform for Smart Grid

To reach these goals, the device components are provided within drivers, resource
methods and real-time scheduler in order to externally interact within different ap-
plications.

In fact, every single match between I/O connection and software protocol, labeled
as industrial standard such as RS-232, RS-485, TCP/IP on Ethernet, 12C, GPIO, is
a device connection point. Other low level protocols are: Modbus, DNP3 and IEEE
61850.

Reference to the Device interface service describing the previous structure is illus-
trated in Fig. |3.8

Device
Comemunication

Application Actors “ Device Interface Service

Device I Device Device Device [Device
Connection Connection | Connection Connection | Connection
Point 1 Point 2 Point 3 Point 4 Point §

Sensors/Actuators

Softwarae Protocol

MODBUS ‘ [MODBUS

B

I [[1 _—
Ethemnet (TCP/IP) ‘ GMOD
— [

Ethernet
I/O Devices ‘ Ethernet [TCR/IP) ‘ [ree®)
Loag
Shedding

I [|
Relay |

UART

Power System
Devices

Circuit
Breakers

Weather

PMUS
Sensors

DFR Inverters Generators BTU

RTU - Remate Terminal Unit
DFR - Digital Fault Recorder
PMU - Phasor Measurement Units

Figure 3.8. Device interface Service [33]

Definitions and working principle

e The Device Management Actor called ”DMA” is responsible to provide services
to the device connection request from the actor inside the application and it
is also called to start and stop monitoring the status of the connected devices.

e The Device Communication Actors called "DCA” instead is the means of
communication between the devices and the Riaps node.

e The Device Configuration Metadata which is also labeled as "DCM” is to
describe how specific node hardware are configured.

e The Dewvice Interface Metadata called ”DIM” which is the one configuring
and identifying the specific power system devices that the application will use
during its run-time.

The working principle is hereby shown: the "DCM” register the "DCA” to the
"DMA” informing which power system device is available through the connection

33

3 — A Resilient Information Architecture Platform for Smart Grid

point.

Each one "DCA” is initialized on demand, once this latter one is registered to the
service.

The application actor is deployed together with the "DIM” since it is part of the
configuration files of an application. Instead the implementation of the "DIOCs”
describes above is not part of the application, because they only take part of the
"DCA” and the application component is linked to the "DIOC” only during the
execution.

The actors inside an application send a connection request whenever a power system
device is registered to the service, in this way the ”"DMA” send information so that
it can initialize its communication with the "DCA”.

Moreover the communication between ”DIOC” and "DCA” is allowed also through
the use of the Riaps Broker Service that provide communication between the phys-
ical devices i.e. power system and the platform abstractions.

The "DMA” is also monitoring the status of connections in case a power system
abruptly disconnect from the service, it immediately send notifications such as er-
rors and the "DCA” remove it from the working node connections.

Once the connection has been established, the application actor and the ”"DMA” are
in communication, and they can exchange informations in order to manage real-time
access data.

Furthermore, there is also the presence of the ” API” that are defined in a way to
provide all the functionalities needed to access all the power system facilities.

The "DCA” is also able to intermediate between the physical and the software
protocol providing in case of necessity also notifications based on the current time
managed by the time-synch service.

The overall structure, can only support the interaction patterns intended as bounds
between the physical power system device and the application actor listed below
[14] [33]:

e Sporadic input: this is the interactions when the sensor is reading at an arbi-
trary time, that means the 1/O sensory is generating a new timed sample and
this is sent through publishing messages to the interested applications.

e Periodic input: the interaction related to the continuously reading from the
sensor which is also called ”stream” due to uninterrupted operations. This
in operation could be associated as a pumping data to the Device interface
service that then is distributed along the interested applications.

e Sporadic output: Is the interaction that could be described as the command
emitted to an actuator at an arbitrary time. An application is responsible to
generate the output as fast as possible, the request is done asynchronously
due to the fact that the application does not explicitly wait for the actuator
to receive the notification of successfully done operation.

34

3 — A Resilient Information Architecture Platform for Smart Grid

e Periodic output: this interaction is when the application command the service
to provide a periodic actuator output. The service as a result, launch a thread
that read the value, then send the value to the actuator and the operation
repeats in loop within a specific frequency.

e Scheduled output: is the interaction describing the situation when an applica-
tion need the execution of actuation commands at a specified time or basically
at a certain operation point. This "schedule” is obtaining through explicit re-
quest from the service and executed in the exact meeting point. The operation
could also be rescheduled to be executed multiple times.

params

state

|
messagd queue
L1l 111

\

" sched
| management]

l
|

Lifecycle:

= activate/deactivate
* passivate/reactivate
* checkpoint

* destroy

Operations

« handle_sub...)

™ handle_resp(...)
[** handle_time(...)

1/0 Thread operations

LL%

* handle_io(...)
= send_iof...)

* recv_iol..)

‘:"\r

pub

K=

subscribe port
timer port
reply port
server port

Figure 3.9.

3.5.3 Messaging framework

iz

[I/O Device]

External device component execution [24]

The supported interactions [24] are the following:

publish port
client port
request port

In Fig. [3.10] is represented the communication between components including a
legend exploiting the basic operations.

e Publish/subscribe pattern: publishers produce messages of specific topics that
are delivered by the framework to subscribers to that topic. Publishers and

35

3 — A Resilient Information Architecture Platform for Smart Grid

hoit (mode) I
sctor [process)
= = F)

publish/subscribe

callfretuin

o (BT o request/response
l 2 ———————

Componant

Figure 3.10. Interactions between components [24]

subscribers are anonymous, and the interconnections are many-to-many and
interaction is asynchronous. Subscriber ports can specify a deadline for the
completion of the message by adding a deadline period value to the port
description[26].

Request /reply pattern: a component send a request message and expect a
reply message from another component. The interaction is asynchronous: the
sender does not explicitly wait for a reply and when the reply arrive, the sender
component is triggered again. The new request cannot be sent until the reply
to a previous request has been received. In other words, request sends and
reply receives must progress in lockstep.

Client/server pattern: similar to the request/reply pattern, except the interac-
tion is synchronous, so the sender component must explicitly wait for a reply
message. The same lockstep rule applies.

Query/answer pattern: similar to the request/reply pattern, except the lock-
step rule is not enforced so arbitrary number of requests can be sent even if a
reply is not received.

36

3 — A Resilient Information Architecture Platform for Smart Grid

3.5.4 Resource and fault tolerance framework

The resource and fault tolerance framework is one of the most important services
in the Riaps platform because include the ability to manage the system in the best
conditions.

Resource Management Specifications

In order to avoid having completely busy the physical resources, it is used the re-
source management tool. During the code creation phase, the developer can specify
a certain amount of system resource usage as a limit to be reached by the software
platform. This lead to limit the computation effort or the memory usage and even
more that could be useful for other processes running in background.

When the actor attempts to exceed the limits, it will receive a special message from
the deployment service and the application component can react to this message
[24]. The limitation is specified at the actor level through the "uses..” clauses for
the following resources:

o CPU utilization where the usage value is an integer representing the percentage
of the CPU that the actor is allowed to use added after "cpu” keyword. This
could be either hard constraint if the keyword "max” is added or soft constraint
if no keyword is present.

The limitation could be done for a specific amount of time if specified by the
keyword ”over” before the number indicating the time in "ms” (milliseconds)
as default or ”sec” (seconds) or "min” (minutes).

An example is shown in Fig

cpu max 10 % over 1;

Figure 3.11. CPU utilization example [20]

o Memory utilization where the memory usage limit is also specified by an integer
value added after ”mem” keyword representing an amount of memory available
to the actor expressed as an integer value .The unit of measure supported are
"kb” (kilobyte),”mb” (megabyte),”gh” (gigabyte).

An example is shown in Fig. [3.12]

37

3 — A Resilient Information Architecture Platform for Smart Grid

mem 200 mb;

Figure 3.12. Memory utilization example [20]

e File space utilization where the space usage limit is also specified as an in-
teger value added after "space” representing the amount of disk usage to be
consumed by the specified actor. It is expressed in "mb” (megabyte) or ”gh”
(gigabyte). An example is shown in Fig. [3.13]

space 10 mb;

Figure 3.13. Space Utilization example [26]

e Network bandwidth utilization where the bandwidth limit is always specified
by an integer number added after "net” defining the limit rate value that an
actor is allowed to use. It could be expressed in either "kbps” (kilobytes per
second) or "mbps” (megabyte per second). New features are added that are
ceiling value as ”ceil” that is the maximum amount of bandwidth that an
actor can borrow by allowing an extra bandwidth available and the ”burst”
rate value that specify the amount of data to be sent at maximum speed before
another actor use the very same network, only expressed in "k” (kilobytes).
An example is shown in Fig. |3.14]

net rate 10 kbps ceil 12 kbps burst 1.2 k;

Figure 3.14. Network Utilization example [20]

A complete example [20] including all these feature in execution is shown in Fig.
2. 1D

38

3 — A Resilient Information Architecture Platform for Smart Grid

actor ActorNamel {

local aRequestMesssage, aReplyMessage; // Local message types
uses {

cpu max 1@ % over 1; // CPU limit

mem 200 mb; // Memory limit

space 10 mb; // File space limit

net rate 1@ kbps ceil 12 kbps burst 1.2 k; // Network bandwidth limits
h
{

componentInstanceNamel : RequestComponent;

componentInstanceMame2 : ReplyComponent;
¥

Figure 3.15. Resource Management application [20]

Fault Tolerance management

As a matter of fact, faults could happen at different levels. This includes faults in
components, actors, system services or network. The software platform is responsible
to detect such faults reacting to them either to [24]:

1. Automatically restarting the application interested in the actors.

2. Informing the application components through a special message in a way to
allow this last one to react immediately.

The fault tolerance management in Fig. [3.16| is also located in the section Run-
time services which incorporates it during the explanation of the ”Fault manage-
ment” applied to the ”Discovery service”. The developer should create applications
in a respectively manner such that the Fault management tool, which include the
fault tolerance feature, could run without any problem.

In Fig. |3.16] is represented faults at different levels and the boundary within which
these could expand inside the platform. Some faulty situation are analyzed such as

[23]:
1. Reported application process termination.
2. Unreported application process termination.

Application resource limit violation.

- W

Application component operation deadline violation.

o

Unexpected service termination.

6. Operating system crash.

39

3 — A Resilient Information Architecture Platform for Smart Grid

/Applications

Component Component Component

Deployment Discovery Device

F(0) s Mer 40 Component

Figure 3.16. Fault management [23]

7. Network link failure.
8. Network node failure.
9. Application deployment failure.
10. Loss of connectivity to control station.

Countermeasures are taken for each level in order to restore the initial balance such

as [23]:
e Detection which is the recognition of an anomalous situation.

e [solation - regards the discovery of the root causing the problem.

e Mitigation - which is handled by application developers and describe the action
taken to mitigate the consequences of the faults.

40

3 — A Resilient Information Architecture Platform for Smart Grid

3.5.5 Security framework

The security is granted by the following steps [23]:

e Confidentiality of communication by encrypting all communications network
and ensuring that the messages were not tampered with.

e Availability of resources by providing facilities for strict access control to re-
sources and moderating processing activities to mitigate "DDoS” (distributed
denial of service) attacks.

e Confidentiality of data by ensuring strict access control of data owned by an
application to protect against malicious or faulty application code.

e Applications will be remotely deployed and controlled through the use of cryp-
tographic signatures on the application binaries to be installed.

Secure Communication

B —
contro' Ier Secure Deployment
i

l l

$ ¢
Discovery Discovery

Node 1 Node 2

Application 1

: In Future

— Application 2 t

Figure 3.17. Security Network [23]

41

3 — A Resilient Information Architecture Platform for Smart Grid

3.6 Run-time services

RIAPS as a resilient platform include many support services that manage different
application functions to make them works in the best conditions.

3.6.1 Discovery service

The Discovery service is one of the most important services in Riaps platform be-
cause it plays an important role on the execution of this revolutionary software
platform. Moreover, the discovery service is needed for a robust decentralized plat-
form and is also envisioned as a critical service for the resilience of the platform
itself.

The main role of the Discovery service is to keep track of all the links between
the message producer ports such as publish, request, query, client and the con-
sumer ports such as subscriber, reply , answer, server [24]. The matching between
the producer ports and the consumer ports is established automatically based on
the underneath framework hidden to the developer. The discovery service has two
implementation[24]:

1. Distributed hash table "DHT” where a hash table contains the registration,
and then this last one is distributes across the network. It is used ”OpenDHT”
which is a fast and lightweight platform able to store, query and disseminate
the service detail through the network. The usage of DHT is not distinguishing
the nodes as a client or server, because they are all peers and are applied to
all the same rules[16].

2. Centralized database where a centralized database keep track of all registration
nodes. It is used "Redis” (Remote dictionary service).

Obviously in a Riaps installation only one of this two methods presented before can
be used for all nodes.

Working principle of the Discovery service

During the matching phase the message producer register with the discovery service
and in the meanwhile, the message consumer look for the service that can produce
messaging for itself. The linking operation is done asynchronously such that it may
happen in any order at any time. In fact, if the matching is not succeed because of
any reason at the first attempt, the component send an asynchronous notification
and the matching is established afterwards.

The discovery service runs on each node as an independent process and listen for
the message nodes either coming from the Riaps application or data coming through
the network to system connected to the same service. In Fig. it is possible

42

3 — A Resilient Information Architecture Platform for Smart Grid

to analyze the main features of the Discovery service, which includes: receiving
data from the application service such as message type, communication protocol,
IP addresses and ports related. Moreover it is also responsible for storing the app
service details and send new info to the local nodes[I6]. The Discovery service

RIAPS Node RIAPS Node
[d——Register service=———
Broker Service (e — Broker Service |
[Server mode | Respons: 5 | Client mode |
: RIAPS Node | | Broker Se
1
Maintain [- 4 = |
consistency™ » Broker Service _4~4i |
| Server mode |—- .

Figure 3.18. Discovery Service [33]

operate in two different instances:

e To find the nodes on the same sub-net of the network through the use of UDP-
beacons which implements peer to peer communication. In fact each Discovery
service periodically announce its network address and wait for incoming bea-
cons. If no message is received from a node in two listening steps, the ”silent”
node is removed by the list of the known nodes. It is automatically added a

new node which respond to the beaconing message storing its own address in
OpenDHT.

e To find the nodes on different sub-net of the network, where the remote ad-
dresses are passed by the designated gateways running the Discovery service
with different IP addresses on different sub-nets assumed reachable each oth-
ers.

Requirement to the Discovery Service

The discovery service is needed to keep track whenever an application is entering or
exiting the network.
It useful to know in a network of communicating entities when :

e Two nodes join together in a group.

e A node leave a group (exit for any reason).

43

3 — A Resilient Information Architecture Platform for Smart Grid

Another feature of the Discovery service is to check the status of the application
service and the message types. The Discovery service has to be widespread in all
the nodes such that it can access and share the information of everyone of them
across the network.

When a Riaps application require an app service, it queries the local Discovery
service and the result is asynchronously sent back to the Riaps application [16].

If a node join to a group the Discovery service is able to access and share data also
to that node because of the data stored in the network, the same apply if a node
leave a group so the Discovery service is able to communicate with the nodes still
"alive”.

Managing the ingress and egress scenarios

OpenDHT is a service able to store the registered values and locally send them to a
maximum of eight neighbours, forming a eight node cluster, in order to share them
inside an application service registration data. Nevertheless, it is necessary to use
this data stored across the network.

As already described, when a Riaps application start, it automatically register its
services in the Discovery Service, then this last one store the data in the DHT that
propagate the information through the group. During the registration phase of a
Riaps node, it also subscribe to the needed service. If a compatible service is already
in DHT, the discovery service send back a notification to the request from the Riaps
application and so the application could connect to the service. If the desired service
is not available, the Discovery service will call a function to request the application
when this last one is available [16].

Fault tolerance of the Discovery service

As previously said, the Discovery Service is also responsible for renewing the reg-
istration of application service inside the DHT. Before renewing, the service need
to consolidate whether the application is still running and reachable or it left the
group. The Discovery service alert the application services that abruptly leave the
cluster without forewarning and have to manage also this situation.

Another important feature of the Discovery service in terms of fault tolerance, is that
it is designated in a way to leave and restart the communication with components,
in case this last one suddenly stop working. The components are not independent,
and their communication to the Discovery Service is maintained through the actors.
If the Discovery service fails, actors with components inside, continue to run silently
without interfering with new services. Obviously new actors cannot be started until
the whole Discovery service is not restarted. Moreover the Discovery service im-
plement a secure coupling between each service data and the unique actor process
identity (PID). Each time an actor register its data to the Discovery service, it looks

44

3 — A Resilient Information Architecture Platform for Smart Grid

for the "PID” which identify the unique one to share data. Every time the discovery
service checks if the couple "PID” /service established are valid by checking if the
actor within its associated "PID” is still running. If the "PID” of the Discovery
service is not on the list of the running process, the actor restart its registration
possibly finding a new Discovery service. The fault tolerance is here explained:
whenever a Discovery service stops working, it send notifications so that the actors
can register to another one avoiding faulty situations. Briefly the Discovery service
could be seen as a matchmaker of components/actor of an app find each other in a
network.

3.6.2 Deployment service

The main role of the deployment service is to remotely install and manage the ap-
plications reachable in the network. The deployment services is also responsible for
securing the setup, starting and stopping the application actors and it is a service
associated to the control app. For the secure setup, the application actor taken as
example run under a user-ID in a specific folder different from the other application
actors. The Deployment service is shown in a sketch in Fig. [3.19, The deployment
service as previously said is responsible for starting all Riaps processes that includes
the application actors and the Discovery service analyzed in the previous section.
In order to enhance the fact that the fault tolerance is present, it is possible to de-

Vil N\
Communication Network — |

I e . RIAPS II
- Control

r: o Broker = 3 RIAPS Control Node
J‘ - .[{ == Control R
Actors ontrol Room
App Mgr. \ /
-[_ah Actors ||}
RIAPS Node —t o . Mer
, A A0 Mer.] RIAPS Node
RIAPS Node

Figure 3.19. Deployment service [33]

scribe the failure situation in which a centralized implementation could be seriously
dangerous for the whole system.

Fault tolerance is also supported by the discovery services which take into account
the fact that if there is a single point of failure, the whole system cannot crash,

45

3 — A Resilient Information Architecture Platform for Smart Grid

but only the single application running on the specific actor, that is able to be
re-launched autonomously through the discovery service process.

Working principle of the Deployment service

When the deployment service starts its process, the first step that is trying to do
is to connect to the Riaps control App. Whenever the connection is established,
it automatically launch the Discovery service and listen to the Control App for
commands. After received the commands, the Deployment service is also responsible
for downloading the application inside the actor on the network. Then it is also able
to launch the actor’s applications and execute two main operations listed below:

1. Setting a communication channel in order to send and receive data such as
exceptions in component code execution or the availability of a new actor in
the network.

2. Constantly monitor the status of the actor which, if suddenly terminated, send
notifications and it will automatically be restarted.

The Deployment service is represented by the ” Application Deployment File” which
is nothing but the ”.depl” file. In fact this file is responsible for allocating the actors
to the physical devices [20].

The keyword "on” is used to inform which actor has to be installed in the respectively
hardware device Figf3.20]

app TestApp {
onh (192.168.1.101) ActorNamel;
on (bbb-1234.Tocal) ActorName?2;

Figure 3.20. File example ”.depl” (a) [26]

It can also be used the "all” keyword followed by the actor names as shown in the

Fig[3.21]

Control app

Previously it has been announced the presence of the ”control app” which is not a
service but acts as it is, because provide important features such as:

e Prepare the download package of the Riaps application.

46

3 — A Resilient Information Architecture Platform for Smart Grid

app TestApp {
on all ActorNamel, ActorName2;

Figure 3.21. File example ”.depl” (b) [26]

e Download the package to the target nodes thanks to the deployment service.

e Provide commands to the deployment service such as start/stop or deploy/remove

the application through the control app " GUI” (graphical user interface) man-
ageable directly by the end user.

The control app, represented by a ” GUI” (graphical user interface), is started by the
"riaps_ctr]” executable better explained in the subsection ” Application deployment
and control tool”.

3.6.3 Time synchronization service

The Time synchronization service is responsible for keeping the precision of the sys-
tem clock on the Riaps target node synchronized on the network.

It is based on the IEEE-1588 "PTP” (precision time protocol) for clock distribution.
Whathever is the source for the accurate clock, ”PTP” ensures that other clocks in
the network start to follow the main source of clock [24].

Furthermore the time-synchronization service allows to maintain a group synchro-
nized on the same local time and provide high accuracy on the timing.

The application involved can [33]:

e Query the global time.
e Sleep until a specified point in time.
e Query the status of the service.

The accurate timing clock could come from a GPS signal which is attached to a
target node through "NTP” (network time protocol).
It is shown a sketch of the working principle of the Time synchronization service on

Fig.

3.6.4 Distributed coordination service

The Distributed coordination service is responsible for coordinating the applications
distributed on the network. Since each node on the network can join or leave the

47

3 — A Resilient Information Architecture Platform for Smart Grid

CEMNONE | | P
. AT ln- o [ITT4] 1L
W]| e CHAONT.NTPD =
LY »
L) TN
MASTER [0 .1 W
»
M [

Figure 3.22. Time synchronization service [33]

group independently, the Distributed coordination service has to develop a leader
election service over a group membership and a distributed consensus service with
time coordinated action.

In this way a leader is elected for centralized functions and if it suddenly become
unavailable, it automatically elect the next one in the pending list of the nodes.
Furthermore the nodes on the group agree on a value on the base of consensus and
finally it execute control action on multiple nodes simultaneously [33]. The main
services till now mentioned could be also displayed in the Fig. |3.23]

3.7 Design-time tools

The design time tool section is a preview to better visualize the tools used to analyze
what is described in the subsections below regarding the implementation details.
However, Riaps platform is based on a model-driven development which means that
the code is generated by the model itself. In this way the developer is more proficient
in developing complex applications because is concentrates himself only on the code
structure and not on the configuration of the model. The model is representing the
component and the the composition of multiple components become an application
where the developer provide the business logic in the ”.riaps” file to be respected.

48

3 — A Resilient Information Architecture Platform for Smart Grid

Communication Network
DEPLOYMENT/EXECUTION CONTROL
DISCOVERY/REGISTRATION
| it | 1
COMPONENT COMMUNICATION/INTERACTION

[ovcomo
=

|
=

Figure 3.23. Riaps services [24]

3.7.1 Modelling language for the architecture

The modelling languages used for this platform are mainly Python and C++. Ei-
ther programming languages are valid, but there is a difference in the applications
developed. In particular the python language is mostly used for soft real-time con-
straints, i.e. applications that don’t require any particular timing deadline or better
the missing deadline could not degenerate in such as harmful situations.

On the other hand, C++ programming language it is more used for hard real-time
constraints.

Riaps platform is using a combinations of this two programming languages to provide
flexibility to the end user and easy application development for rapid prototyping
due to higher level programming.

3.7.2 Software generators

As it has been previously described, Riaps platform supports python programming
language. This could be compiled and tested by an eclipse based platform which is
responsible to compile and also provide services such as debugging analyzed better
in the Debug tool support section.

Moreover the Code based on IDE ‘Eclipse’ is responsible to : acquire the models,
generate code, glue it with all necessary files and configure it and to leave it ready
to run as shown in Fig.

49

3 — A Resilient Information Architecture Platform for Smart Grid

Developer

Code Generator

Business Logi
v gic Glue code, config., etc.

i
i
1
|
|
i

'TT1

EELEEEEEEEE
B i t
1

Figure 3.24. Model-driven development [33]

3.7.3 Debug tool support

Riaps components have to be debugged before being committed to the final appli-
cation execution. This is done by the "PyDev toolkit” that run on Eclipse under
the name of "PyDev” and is used to debug components running on the actors of
the Riaps target nodes while the graphical front end of the debugger is running on
the development machine. The debugger uses the python source code of the com-

ponent located on the development host [21]. The python debugger tools has to be
configured in three main steps analyzed below:

e (Code preparation for Debugging where "PyDev” library must be imported in

the code and a tracepoint must be included to include the IP host node with
the respective host port.

50

3 — A Resilient Information Architecture Platform for Smart Grid

e Riaps debugging configuration done at file level precisely in a configuration file
”.conf” which is responsible for acquiring also debug info modes.

e Debugging process which is exploiting the real debugging phase and it is done
using breakpoints on the Eclipse environment, launching a deployment process
by selecting the ”Debug” perspective. Afterwards the application need to be
launched from the development host to the target nodes and the respectively
actor or device is automatically linked to the debugger.

3.8 Application deployment and control tool

This section analyze in detail the operation services offered by Riaps platform able
to provide facilities on the implementation algorithm. In the field of application de-
ployment it is analyzed in detail one of the most important services of the platform:
the ” Deployment service”. Aside from this services marked as executable such as
"riaps_actor” , "riaps_device”, "riaps_deplo”, "riaps_disco”, ”timesyncd & timesync-
ctl” and "riaps_ctrl” are used to exploit some performances.

In particular [22]:

e riaps_actor is the executable responsible to load the components using the
dynamic loader implemented either in python or C++.
Each 7riaps_actor” process run a single application actor, so multiple "ri-
aps_actor” runs on multiple processes.

e riaps_device is the executable responsible for dynamically loading and running
the device components. It differs from the "riaps_actor”, because it holds
only one device component at a time, moreover it activate the communication
within components inside the same host so that they cannot be accessed by
the network.

e riaps_deplo is the executable responsible for implementing the deployment
manager service, resource management and the fault management services.
The main role of this executable is to receive instruction from the ”riaps_ctrl”
executable and implement the functions such as: ”deploy, start, stop, remove”
for the applications.

It maintains also the communications between the actors in fact it sends and
receives messages and fault notifications.

e riaps_disco is the executable responsible to host the discovery service, which is
as previously described the fundamental service of the platform. The service
is automatically started because of the "riaps_deplo” process and exploit the
very same functionalities of the Discovery service connecting the actors to the
service and enabling the communications.

51

3 — A Resilient Information Architecture Platform for Smart Grid

o timesyncd & timesyncctl where ”timesyncd” is the service that tunes the con-
figurations of the components for the time synchronization service based on
the GPS reference clock and the control host reference time.

The ”timesyncct]l” is the tool command responsible to configure the time-
synchronizaion services according to predefined roles it is used.

This service is not much related to the other so that it could be considered
independent because it can provides functionalities based on external factors.

e riaps_ctrl is the executable which runs on the control node responsible to
download the code.
This process is started manually with respect to the others and it is the first
process that start a deployment of an applications as soon as it is the one that
triggers the activation of all the others.

Each of this process analyzed above, it is not intended to work alone, they interact
and communicate each others as well as the developer run the "riaps_ctrl” on the host
and the target nodes runs the "riaps_deplo” that will launch the "riaps_disco”, the
"riaps_actor” and the "riaps_device”. An exception is the ”time-synchronization”
service as explained in its appropriate section.

An example showing the application and all the services linked each others could be
the one depicted on Fig. [3.25

52

3 — A Resilient Information Architecture Platform for Smart Grid

Control node

regizter i
- rpyc_registry

[

riaps_ctrl | il S db
{rEdIS’ discoyver
-
callback: laumeh
RIAPS node
ke RIAPS node (y
r timesync*
shart
| riaps_deplo - + riaps_disco
laurch
)) L]
riaps_actor riaps_device

Figure 3.25. Executable block scheme [22]

3.9 Implementation

For the implementation of the Riaps platform is designated to be run on Linux ma-
chine and on the host development machine it is provided an already pre-configured
disk with extension ”.vmdk” with the main features including the software IDE and
the platform itself created with ”Oracle Virtualbox”, even if this not excludes the
use of other Virtual machines emulators.

On the other hand, for the development host nodes it is also provided a pre-
configured lightweight SD-card image containing only the basic features and the
tree folder architecture needed to implement the platform. In particular while disk
”.vimdk” is provided for an architecture based on AMD class of microprocessors,
the image to be stored in to the SD-card is configured to run in a ARM-cortex mi-
croprocessor for embedded system. In the implementation about the ARM-cortex
micro-processor it is used the "BBB” (Beaglebone Black) hardware, retained a valid
hardware able to support all the requirement of the platform itself.

Beside this, since the development host and the target nodes must be on the same
sub-net [22], the hardware configuration can be represented in two different struc-
tures.

e The first one represented in Fig. that depict the situation in which the

53

3 — A Resilient Information Architecture Platform for Smart Grid

development machine has two different "NICs” (Network interface controller)
where one "NIC (WLAN)” is used for the internet connectivity and the other
one "NIC (B)” is used for connecting with the local target nodes. In this
case that the host has multiple physical ?NICs” the "riaps_deplo” executable
has to know which one is used to find the local nodes, that is specified in the
/usr/local /riaps/etc/riaps.conf file [22].

Internet

Router
(DHCP)
' Y
NIC NIC| RIAPS Node
/ (WLAN) » J
t ’ ‘
- NIC NIC| RIAPS Node
Development Guest | st :)
| ' N
Virtual Machine [NIC(B}+— «—[NIC| RIAPS Node
J \ /
Development Host ()
_ —[NIC| RIAPS Node
. A
' N
NIC| RIAPS Node
. .

Figure 3.26. WLAN implementation [22]

e The second one represented in Fig. provides that all nodes are connected
to a router that runs the "DHCP” (Dynamic host configuration protocol)
service where all nodes can have access to the internet network if needed.

54

3 — A Resilient Information Architecture Platform for Smart Grid

Router
(DHCP)

NIC| RIAPS Node

RIAPS Node

N

Development Guest

Virtual Machine RIAPS Node

A
\ Development Host

Yy

RIAPS Node

NIC] RIAPS Node

Figure 3.27. LAN implementation [22]

3.10 Conclusion of the description of the platform

The component frameworks are increasing drastically and there is a daily request to
collapse the cyber and physical features of nowadays infrastructures, especially when
this last one is distributed along a wide geographical area. The aim of this platform
is to serve as a sort of a smart operating system distributing the ”intelligence”
to different attached and controllable location [14]. In this way the progress goes
further and beyond the simple concept of a ”SCADA” (Supervisory control and data
acquisition), because it provide a big list of valid reasons that lead to become benefit
in a future modern society.

55

Chapter 4

Background implementations of
RIAPS

In this chapter as a proof of the platform’s potential and its effectiveness in appli-
cations a set of examples are shown, that has been case of study in the past.
However the examples in questions are of considerable importance because they
have the role of better explaining the correct usage and to understand the field of
application where RIAPS platform works or could be involved in the next future.
Nevertheless, these examples take also the position of being excellent tutorials for
the self learning and since Riaps is an open source platform, all of the sample project
and basic implementations are loaded into the Github repositories.

As a matter of clearance the projects described are shown from the simpler to the
complex one.

Importance of Github for RIAPS

Github is an open source and online platform which is defined as the home to an
interconnected community of developers from all over the world [2§].

Github provides also a list of benefits which are reflecting the actual world and sup-
port on diversity for allowing people with different cultures and level of instructions
to push the innovation through the boundaries of the software developing.

In Github the developers are able to upload, share and collaborate at the same
projects to develope and finally test the applications collecting opinions by the all
the connected users.

Github is easy to use, effective to the purpose of group developing and finally it is
easy to access, due to the free accessibility from any device connected to the world
wide web.

57

4 — Background implementations of RIAPS

4.1 GPIO Device Toggle

As the first example of application [20)], it is shown the behaviour of the platform
integrating the functionality to toggle the GPIO of the device.

In particular the example propose to create a communication between the component
and the device. The component is ”Toggle Gpio Component” while the device is
”GPIO Device” and they are both written in python and implemented in the same
actor deployed in the same target node. The component in this example is the
responsible to toggle the GPIO value, while the device is the one responsible to
interface with the hardware in order to send its signal. In order to simplify the
description, only relevant code snippets are shown.

4.1.1 Hardware configuration

The hardware configuration is really intuitive because it provides the installation
of a LED on the GPIO pin of the "BBB” (Beaglebone Black). According to the
Beaglebone black in equipment, the data-sheet of the hardware configuration suggest
the position of the GPIO pins. The data-sheet that shows the pin series represented
in Fig. The pin used for the GPIO implementation and testing is the ” GPIO _68”

s
&
s
&
@
@
o

: v 2 I
3 4 I 3 4 | MMCI_DAT7
s ¢ I 5 6 [MMCILDATSN
7 v eYsIeVITl GPIO 66 7 8 GPIO 67
o 1o NN GPIO 69 9 10 GFIO_68

UART4_RXD
UART4_TXD 13
GPIO 48 1S
SPIO_CSO 17 18 SPIO_D1

12 GPIO_60 GPIO_45 11 12 GPIO_44

GPIO_26
GPIO_47 15 16 GPIO_46
GPIO_27 17 18 GPIO_65

SR o 0
| MMCICLK 21 22 MMCIDATS
| MMC1_DAT4 25 24 MMCIDATI
“ 25 26 GPIO_61
LLCOWVSYNG| 27 20 JECHIFCERIN
: 3 [LED_HSYNC 25 30 |LCD.AC_BIAS
Loy R (LCD_DATA14 51 32 LCD DATAIS

-
W
19

20 ECESOAIN
oo vemme
GPIO 495 23 24 UARTI_TXD
GPIO_117 25 26 UARTI_RXD

Grio 115 27 2¢ [SEIECSONNN
BINSFIEE] 20 so Grio_i12
_sPi1_scLk 51

a3

N

LEGEND JLCDDATATS! 33 34 [LCDLDATARN
= | LCD.DATAB 37 33 LCDDATA®

EL]
GPIO_20 41
a3
as

| LCDDATAS 35 40 LCDDATA7
| LCDDATA4 41 42 LCD DATAS
| LCDDATA2 3 i LCDDATAS

Figure 4.1. Beaglebone Black pin-out data-sheet [2]

58

4 — Background implementations of RIAPS

corresponding to the P8 series on the right side of the Figld.1] The ground has
multiple attachments so that it is possible to choose the nearest one, which in this
case correspond to the pin 1. The LED need to be directed in the right position to
work correctly i.e. the longer wire goes to the GPIO pin and the shorter one to the
ground.

4.1.2 Software Configuration

First of all it is necessary to install the python library for the GPIO interactions
on both Virtual machine and BBB (after logged by ”ssh xxx.xxx.xx.xx” command)
with the command:

$ sudo pip3 install Adafruit_BBIO

configuration and verify that the "riaps” user is in the ”"gpio” group with the com-
mand:

$ groups riaps

4.1.3 Application architecture
gpioExample.riaps

Here it is shown the main application file Fig. [.2] that describe the connection
logic decided by the developer between the component and device through message
topics. In particular there is a req/rep relation between the device ”GpioDevice”
and the component ”ToggleGpioComponent” that on the base of this communication
pattern are able to carry on information on both directions.

59

4 — Background implementations of RIAPS

1 |// GPIO Example Model File
app GpioToggleExample {

message CltRed;
message SrvRep;

R T TSRS Y

// GPIO Device - pin name (P8_pin# or P9 pin#), direction (IN or OUT) and pull up down (PUD_OFF, PUD UP or PUD_DOWN)
g /L the device setup defaults are defined here

i /1
1 // Both read and write requests will return the current value of the GPIO as a published DatavValue
T2 device GpioDevice (bbb _pin name='P8_11', direction='0UT', pull up_down='PUD OFF', setup_delay=60) {
13 // Inside port for forwarding messages coming from an internal thread.

14 // The 'default' is optional, it implies a 1 sec timer/ticker thread.

15 inside trigger;

17 timer clock 100; // Connect to GPIC on first clock
18 rep gpioRepPort : (CltReq, SrvRep);
18 }
2
21 // Toggle GPIO component
22 component ToggleGpioComponent () {
23 req gpioRegPort : (CltReq, SrvRep);
24 timer toggle 5000; // Toggle GPIO value
25 timer readvalue 7000; // Read current GPIC value
26 }
27
28 // TestGpioToggle actor
29 actor TestGpioToggleActor() {
local CltReq, SrvRep; // Local message types
34 {
32 gpioDevice : GpioDevice (bbb pin name='P8_11', direction='0UT', setup delay=100); // application specific setup options

33 gploTester : ToggleGpioComponent();

Figure 4.2. File gpioExample.riaps [20]

The structure already described corresponds to the ”.dot file” where some steps
are numerated to clarify the comprehensions in Fig.

192.168.10.90

stGpioToggleActor \)

»

gpioTester:ToggleGpioComponent gpioDevice:GpioDevice

Trigger(inside port)

/
\
t t @),
& S &

Timer «Toggle» Timer «read value» Timer «clock»
Every 5s Every 7s Every 0,1s

Figure 4.3. File ”.dot” gpioExample

60

4 — Background implementations of RIAPS

ToggleGpioComponent.py

The "ToggleGpioComponent” has two timer according to the ”.riaps” file. The
first one which name is "toggle” is responsible to switch the value from 0 to 1
and viceversa every 5 seconds and to send the value to the "GpioDevice” on the
”gpioReqgport” (1a).

The second timer which name is "read value”, wakes up every 7 seconds a request
to read that is always sent on ”gpioReqPort” (1b).

The ”ToggleGpioComponent” at the end receive the value on ”gpioRepPort” and
print it out (6).

GpioDevice.py

The ”GpioDevice” is responsible for acquiring both requests (1a) to write and (1b)
to read and reply to the request on ”gpioRepPort”(2). The request is formatted in
"msgType” (read or write) and "msgValue” (0 or 1) and analyzed, then sent to the
inside port "trigger” (3). On "trigger” inside port the message is sent to a plug port
(4) which is the one used to interface with the hardware on the BBB. Then the value
either just written or just read, is successively sent to the ”ToggleGpioComponent”
on "gpioRepPort” (5).

gpioExample.depl

The actor TestGpioToggleActor that include both the ”GpioDevice” and the ”Tog-
gleGpioComponent” is totally deployed on a single target node as shown in Fig. [£.4]

1 app GpioToggleExample {
Z on (192.168.10.90) TestGpioTogglehActor;
}

Figure 4.4. File gpioExample.depl [20]

4.1.4 Simulation and outcomes

The code is successfully running on the target node and it is tested and demon-
strated as shown in Fig. [4.5] In order to see the ”log” files it is used on the BBB
the command "sudo journalctl -u riaps-deplo.service -f”. The LED is toggled by the
"GpioDevice” every time there is a write request that comes from the ”ToggleGpi-
oComponent” every 5 seconds and the status is read every 7 seconds according to
the previous outline on the two timers.

61

4 — Background implementations of RIAPS

Figure 4.5. GPIO example during execution

4.2 Distributed Estimator

The Distributed Estimator example is often used as a starting point to the deve-
lope complex structure applications. The purpose of the ”Distributed Estimator”
application is to demonstrate the ability of RIAPS platform to handle two different
message patterns: "pub/sub” and "req/rep” [I8]. In this example, according with
the timer, every second, data are exchanged between the Riaps nodes and the local
"sensor”. A7 Global Estimator” is used to gather data from the ” Local Estimator”
and running an averaging algorithm.

4.2.1 Hardware configuration

There is no specific hardware configuration in this example because it is for demon-
stratively purpose only. The benefit of this application is that it could run in as many
nodes as it is preferred, since it does not imply any complex hardware attachment.

4.2.2 Software configuration

For the currently implementation in python, the requirement of software are min-
imal, and they are all included by the platform itself. Differently for C++ imple-
mentation, this could involve the possibility to install libraries through commands
on the command line, which are not discussed hereby.

62

4 — Background implementations of RIAPS

4.2.3 Application architecture
sample.riaps

The ”.riaps” file is describing the interactions between components. In particular
there is one "req/rep” and also one "pub/sub” interaction between the ”sensor”
and the ” Local Estimator” components. Moreover it is present one more interaction
of type "pub/sub” between the ” Local Estimator” and the ” Global Estimator” com-
ponent to send data necessary for the averaging step. The ” Global Estimator” also
receive the values to be written in the actor level coming from the ”.depl” file as a
sort of high hierarchy assignation of variables that later are going to overwrite the
component variables as shown in Fig. [4.6] This strategy is used in more applica-
tions and an example is present in the section ”Distributed Estimator GPIO”. The

1)/ rimPs sample

app DistributedEstimator {
// Message types used in the app
message SensorReady;
message SensorQuery,;
message SensorValue;
message Estimate;

// Sensor component
component Sensor {

timer clock 1000; // Periodic timer trigger to trigger sensor every 1 sec
pub ready : SensorReady // Publish port for SensorReady messages
14 mp rep request : (SensorQuery , SensorValue) ; // Reply port to query the sensor and retrieve its value

// Local estimator component
component LocalEstimator (iArg, fArg, sArg,bArg) {

sub ready : SensorReady : // Subscriber port to trigger component with SensorReady messages
req query : (SensorQuery , Sensorvalue) ; // Request port to guery the sensor and retrieve its value
pub estimate : Estimate ; // Publish port to publish estimated value messages

22 }
// Global estimator
component GlobalEstimator (iArg=123,fArg=4.56,sArg="string",bArg=true) {
sub estimate : Estimate ; // Subscriber port to receive the local estimates
timer waksup 3000; // Periodic timer to wake up estimator every 3 sec
}

// Estimator actor
31 actor Estimator {

local SensorReady, SensorQuery, SensorValue ; // Local message types
{ // Sensor component

34 Sensor : Sensor;
// Local estimator, publishes global message 'Estimate'
filter : LocalEstimator (iArg=789, fArg=0.12, sArg="text", bArg=false);

: actor Aggregator (posArg,optArg="optString") {
4 { // Global estimator, subscribes to 'Estimate' messages
aggr : GlobalEstimator (1Arg=posArg, SArg=optArg,bArg=true);

Figure 4.6. File "sample.riaps” [I§]

”.dot” file is shown in Fig. where the main steps are enumerated for enhancing
the comprehension.

63

4 — Background implementations of RIAPS

192.168.10.91

Aggregator

aggr:GlobalEstimator

S~ l

Timer «wakeup» every 3s 192.168.10.90

SensorQuery
SensorValue

[(\E{l;lj‘t*mamr %

filter:LocalEstimator ‘ sensor:Sensor

Timer «clock» every 1s

Figure 4.7. Distributed estimator ”.dot”

Sensor.py

The ”sensor” component has timer called ”clock” wich wakes up every second trig-
gering on the "pub” port sending the message ”data_ready” (1). Then it wait for
the operation on the ” Local Estimator” receiving the message on "request” port (4)
and send back a response ”sensor_reply” again on ”query” port (5).

LocalEstimator.py

The ” Local Estimator” receive the message ”data_ready” from the ”sensor” (2)
and subsequently trigger the "query” port to send the message ”sensor_query” as a
request (3), increasing a pending request variable. Afterwards, it receive the message
on "query port” decreasing the pending request variable (6) and, as a final step, the

” Local Estimator” send a message to the "pub” port ”estimate” (7)

GlobalEstimator.py

The ” Global Estimator” receive the message from the ” Local Estimator” on ”esti-
mate” port and print it out as a very last step (8).

64

4 — Background implementations of RIAPS

sample.depl

In this section it is possible to analyze the file where the actors are deployed. As
reference to Fig. [4.8] it is possible to see that the actors are deployed on two dif-
ferent nodes that are the ones connected and found by the "riaps_ctrl” execution
command through the discovery service. Some values inside the ” Aggregator” ac-
tor, correspondent to the ” Global Estimator”, are defined. These values, overwrite
the already existent ones in the correspondent actor and component of the ”.riaps”
file. The values shown in Fig. and passed through the variables "posArg” and

1 // Eclipse-based execution (no deployment manager, just disco and direct start of actors”
app DistributedEstimator {

3 on (1%2.168.10.90) Estimator;

4 on (192.168.10.91) Aggregator (poshrg=12,optArg="fromDeployment"™) ;

Figure 4.8. Distributed Estimator ”.depl” file [18]

"optArg” are not used in this application, but they are really useful as described
before in the Distributed Estimator Gpio example.

4.2.4 Simulation and outcomes

The simulation, shows that the application is able to manage correctly the data
coming from the three previously mentioned components using the two different
message patterns. In order to better visualize the updated lines, there are highlighted

in a red box in Fig. 1.9

65

4 — Background implementations of RIAPS

Figure 4.9. Distributed Estimator Simulation

4.3 Distributed Estimator using GPIO

The ”Distributed Estimator Gpio” is the practical implementation of the general
" Distributed FEstimator” previously described. The importance of this example, is
to demonstrate that from an high level structure, certain parameters are passed, in
this way the blinking LED are executed at different frequency rate. The outline is
on the base of the previous implementation, the Riaps nodes gather different local
sensor data at different rates (0.5 Hz, 1Hz,2Hz) toggling an on-board LED when the
estimate is published. Moreover one Riaps node provides a running average of the
estimates at 4 Hz rate (0.25s) toggling also another on-board LED.[19)]

4.3.1 Hardware configuration

There is no specific Hardware configuration outside the simple connection between
BBB and the local router as well as the toggling is happening on the on-board
LED. The hardware configuration therefore reflects the one of the basic example

66

4 — Background implementations of RIAPS

” Distributed Estimator” in which three nodes are used as local estimator and one is
the global estimator of the system.

4.3.2 Software configuration

For the software configuration, it is used the Adafruit BBIO library installed through
the command line:
$ sudo pip3 install "Adafruit_BBIO==1.1.1"

4.3.3 Application architecture
DistributedEstimatorGpio.riaps

This section’s duty is to describe the interaction between components and devices.
As described in the ”Distributed Estimator” example, the interactions pattern are
of type "pub/sub” and "req/rep” between the ”Sensor component” and the ”Lo-
cal estimator component” then a "pub/sub” relation between the ”Local estimator
component” and the "Global estimator component” is established. One more inter-
action is provided in this example, with respect to the basic implementation, which
is the one between the ”Local estimator component” and the "GPIODevice” in a
pub/sub relation that is responsible for sending the message of toggling the LED.
There are two actors, so that the run-time application could be deployed either in

one or multiple nodes.
The whole interactions are shown in Fig.

67

4 — Background implementations of RIAPS

lapp DistributedEatimatorGpio {
// Message types used in the app
message SensorReady;
message SensorQuery:
5 message SensorValue;
(] message Estimate;
7 message Blink;

// GPIODevice
10 device GPIODevice() {
sub blink : Blink:

// Sensor component
component Sensor (value=1.0) (

timsx clock 500 // Periodic timer trigger to trigger sensor every 2 Hz (0.5 sec)
19 pub ready : SensorReady // Publish port for SensorReady messages
rep request : (SensorQuery, SensorValue): // Reply port to guery the sensor and retrieve its value

// Local estimator component

22 component LocalEstimator (frghArg=2) { // fArg = frequency when estimate produced
sub ready : SensorReady : // Subscriber port to trigger component with SensorReady messages
24 req query : (SensorQuery, SensorValue); // Requesat port to query the sensor and retrieve its value

pub estimate : Estimate ; // Publish port to publish estimated value messages
pub blink : Blink:

// Global estimator

component GlobalEstimator () {

sub estimate : Estimate; // Subscriber port to receive the local estimates

timer wakeup 250; // Periodic timer to wake up estimator every 4 Hz (.25 sec)

}

// Estimator actor
actor Estimator (freghrg,value=0.0) {
local SensorReady, SensorQuery, SensorValue, Blink; // Local message types
{ // Sensor component
35 sensor : Sensor(valus=value);
40 // Local estimator, publishes global message 'Estimate’
41 filter : LocalEstimator (frghrg=freghrg):
42 // GPIO component to blink
43 gpio : GPIODevice();

45 }

4 // Global Estimator actor

48 actor hggregator ()} [

45 { // Global estimator, subscribes to ‘Estimate’ messages
54 aggr : GlobalEstimator():

}

Figure 4.10. File Distributed Estimator using GPIO ”.riaps” [19]

Sensor.py

The 7Sensor component” is responsible for sending a message to the ”Local Estima-
tor component” containing ”data_ready” to the "ready” ”pub/sub” port (1). Then
it wait for the operation in the ”Local Estimator component” receiving the message
on "request” port (4). Afterwards always on the same port, it send the value number
(5) that corresponds to the number passed on the ”.depl” file.

LocalEstimator.py

The ”Local Estimator component” receive the ”data_ready” coming from the ”Sensor
component” (2) and send a request ”sensor_query” on ”"query” port (3) increasing a
counting request variable. Then it receive the ”value” on ”query” port (6), decrease

68

4 — Background implementations of RIAPS

(8a)

v
J i aor/ \ I
quloGF\OD eeeee |Imm. LLLLL Estimator E ssssssssssss
S
|

oty N
Igpm:GPIODevl(e |I filter:LocalEstimator | [sensor:Sensor

T | ©

$
T
BBB GPIO BBB GPIO
Timer «clock» every 0,55 Timer «clock» every 0,55 Timer «clock» every 0,5s

Figure 4.11. File ”.dot” Distributed Estimator using Gpio

the counting request variable and classify the message. The ”Local Estimator com-
ponent” is also responsible to receive the frequency rate from an high hierarchy level
assignation and use it for printing only operation. Afterwards it send back the value
on estimate port to the ”"Global Estimator component” (7a) and also a ”"BLINK”
text message to the pub/sub port "blink” to the "GPIO device component” (7b).

GlobalEstimator.py

The ”Global Estimator component” duty is to receive the message coming from the
”Local Estimator component” on the ”estimate” port (8a) and run its own averaging
algorithm.

GPIODevice.py

The task of the "GPIO Device component” is really simple, because it receive the
"BLINK” message from the Local Estimator component on "blink” port and activate
the procedure to establish a connection to the hardware to toggle the on-board LED.

DistributedEstimatorGpio.depl

Hereby are shown the details of the nodes where each actor is deployed in Fig. [4.12]
The ”Estimator” actor is deployed in three different target nodes with different
parameters ”freqArg” and ”value” defining the rate frequency and the number of
the node taken into consideration. These parameters are passed through the ”FEs-
timator” actor in the ”DistributedEstimatorGpio.riaps” respectively to the ”Local
Estimator component” and to the 7Sensor component”, that are overwriting the

69

4 — Background implementations of RIAPS

standard ones. In this way it is created a differentiation with the same structure
of application for different nodes, where this last one is deployed. Nevertheless, the
developers are able to reuse components that provide different configurability [26],
so that, the functionalities they expect during the run-time meet the requirements
of the plan studied.

1 // mpplication Deployment Configuratiod
2 app DistributedEstimatorGpio {

3 on (192.168.10.91) Estimator (freqarg=0.5,value=1.0); // 0.5 Hz update rate
4 on (192.165.10.92) Estimator(freghrg=1.0,value=2.0); // 1 Hz update rate
5 on (192.168.10.90) Estimator(freghrg=2.0,value=3.0); // 2 Hz update rate

(

on (192.168.10.93) Aggregator():

Figure 4.12. File Distributed Estimator using GPIO ”.depl” [19]

4.3.4 Simulation and outcomes

As it is shown in Figid.13] the simulation is running as expected. For sake of
simplicity the algorithm shown is running only in three target nodes demonstrating
the values are correctly exchanged as well as the estimation is successfully performed.

Figure 4.13. Distributed Estimator Using GPIO simulation

70

4 — Background implementations of RIAPS

4.4 UART A to UART B communication

This example is used to demonstrate the effectiveness of the data transmission be-
tween "UART” ports of two different BBBs. In particular there are two components,
"TestUartComponentA” and ”TestUartComponentB”, respectively inside two actors
"TestUartActorA” and ”TestUartActorB”. The Actor ”A” is responsible for writing
in the UART port an incremental count, that the Actor ”B” is reading and posting
to screen to check the consistence [27].

4.4.1 Hardware configuration

In order to run this example is necessary to configure the physical connections
between the chosen "UART” port of one BBB to the chosen "UART” port of the
second BBB. In order to accomplish to this requirement, it is used the "UART?2”
port located between ”Pin21” and ”Pin22” of the P9 series expansion referring to
the pin-out table in Fig[d.1 The connection need to be carried out in this way:

e BBB1 UART2 TX (P9,pin 21) ==> BBB2 UART2 RX (P9,pin 22)
e BBB1 UART2 RX (P9,pin 22) ==> BBB2 UART2 TX (P9,pin 21)
e BBB1 Ground (P9,pin 1) ==> BBB2 (P9,pin 1)

The wiring connection is also represented in Fig.

Figure 4.14. UART to UART connection

71

4 — Background implementations of RIAPS

4.4.2 Software configuration

In order to enable the UART2 on the BBB, it is necessary to open and modify the
” /boot/uEnv.txt” file with the command:

$ sudo nano /boot/uEnv.txt

adding the following lines:

##H#Master Enable
enable_uboot_overlays=1

##4# Additional custom capes
uboot_overlay_addrd=/lib/firmware/BB-UART2-00A

then reboot as follow:
§ sudo nano /boot/uEnv.txt

To verify the UART port is really activated check with the command :
$ s -l/dev/ttyO*

It should appear that:

Irwxrwxrwx 1 root root (date) 6 (time) /dev/ttyO0 -> ttyS0O
Irwxrwxrwx 1 root root (date) 6 (time) /dev/ttyO2 -> ttyS2

Then install the GPIO python Library on both VM and BBB with:
$ sudo pip3 install Adafruit_BBIO
and verify that the user account in the BBB is in ”dialout group” with:

$ groups riaps

72

4 — Background implementations of RIAPS

4.4.3 Application architecture
uartExample.riaps

The ”.riaps” file is always intended for giving the connection logic between the
components and the devices. In this case, the requests coming from both ”TestU-
artComponentA” and ”TestUartComponentB” to "UARTDeviceComponent” on the
UART port could be either to "write” or to "read” as represented in Fig. [1.15 A
timer on both components is responsible for sending and receiving commands and
data to the device which is interfere with the physical port.

yf Uart example model file
f// To run this test, connect UART2 between two beaglebones

[

app UartExample {

5

5

(3 message CltReqg;

T message SrvRep;

B message BytesRead;

L)
10 device UartDeviceComponent(uart_port name='UART2',baud rate = 9600) {
11 inside data;
12 inside command;
13
14 timer clock 100;

15 rep uartRepPort : (CltReg, SrvRep);
1le pub uartReadPub : BytesRead;
17 }

component TestUartComponentA() {

req uartRegPort : (CltReg, SrvRep);

[

23 timer activity 1000;
24 }
25
26 component TestUartComponentB() {
28 req uartRegPort : (CltReq, SrvRep);
29 sub uartReadSub : BytesRead;
30 timer activity 5000;
31 1
33 actor TestUartActorA() {
34 local CltReq, SrvRep, BytesRead; // Local message types
35 {
36 uartDevice : UartDeviceCompDnent{uart_port_namﬁ = 'UART2', baud rate = 5600);
37 uartTester : TestUartComponentZ();
38 }
}
11 actor TestUartActorB() {
42 local CltReq, SrvRep, BytesRead;
43 {
44 uartDevice : UartDeviceCompDnent(uart_port_name = '"UART2', baud_rate = 9600);
45 uartTester : TestUartComponentE();
(] }
47 }
48 |}

Figure 4.15. File ”.riaps” UART Device Testing [27]

73

4 — Background implementations of RIAPS

The steps are hereby enumerated in order to enhance the comprehension as shown

in Fig.

192.168.10.91 192.168.10.92

CltRe
BytesRead
4
L
(11b
/ 14123) (11aN\, (22) (10b)

() |

/ ' / TestUartActorB\;\‘\

I uartTester:TestUartComponentB

TestUartActorA
/ / \«\‘

I uartTester:TestUartComponentA

I uartDevice:UartDeviceComponent

I uartDevice:UartDeviceComponent

ol fiao) 6ol Jizo) s Yoo Jese

(5a) Inside port Inside port
« and» @ «command» «data»

. .ﬂ g Timer «activity» every 5s @ i
Timer «activity» every 1s e s

Timer «clock» every 0,1s Timer «clock» every 0,1s

W

Figure 4.16. File ”.dot” UART Device Testing”

TestUartComponentA.py

The "TestUartComponentA” send the request to "write” and the "msgValue” (an
incremental counter encoded in ASCII) in the "uartReqPort” (1a), then it wait for
all the operation in the "UartDeviceComponent”, finally it receive always in the
"uartReqPort” the value of successfully executed write operation printing out ”Got
reply” (12a).

TestUartComponentB.py

The "TestUartComponentB” send the request to "read” in the "uartReqPort” to-
gether with the "msgValue” containing the size of reading (1b), then it wait for
all the operation in the ”UartDeviceComponent” receiving always in the ”uartRe-
qPort” the value of successfully executed read operation, printing out ”Got reply”
(12b). Finally, it subscribes to the "uartReadSub” to get and decode (from ASCII)
the value read, previously sent by the "UartDeviceComponent” in the inside port
"data” (13b).

UartDeviceComponent.py

The ”"UartDeviceComponent” is responsible for acquiring both the two requests com-
ing from "uartRepPort” (2a)-(2b), and classify it (if ”Message.read” corresponds
to number 727 if "Message.write” corresponds to number ”3”). Then it send the

74

4 — Background implementations of RIAPS

”Message.type” either ”2” or ”3” and ”MsgValue” (encoded msg to be written for
"write” or number of bits to be read for "read”) to the inside port ”command”
(3a)-(3b). Afterwards, it receive from ”plug” (command inside port) the ”msg”
(4a)-(4b) and operates in way to run a write function to write UART2 (5a) that
return that number of bits written 710" in "returnValue” or to run a read function
to read UART?2 (5b). After that, it re-send to ”plug” (inside command port) the
"msg.Type,msgValue” containing either the "write=3" or "read=2" operation type
and "returnValue” (number of bits written) for write or "msgValue” (convention-
ally set to 71”) for read operation respectively (6a)-(6b). The read function, in the
meanwhile, send the bits read to the ”data_plug” inside port (7b) and receive it suc-
cessively ”on_data” inside port (9b). Afterwards, ”on_data” port, it send the "msg”
of read with the encoded value to the "UartReadpub” port (10b). At the very
end the "UartDeviceComponent” read the inside ”command” port (8a)-(8b) and
send the values of the previous operations (6a-6b) as reply in the "uartRepPort”
(11a)-(11Db) for both requests.

uartExample.depl

This file shows in which nodes the two actors ”"TestUartActorA” and ”TestUartAc-
torB” deployed, and so the communication is tested as shown in Fig. [£.17]

1 bpp UartExample {

2 on (192.168.10.91) TestUarthctord;
3 on (192.168.10.92) TestUarthActorB;
4 }

Figure 4.17. File ”.depl” UART Device Testing [27]

4.4.4 Simulation and outcomes

As shown in Fig. the simulation is running and the effectiveness is demon-
strated by checking the correct exchanging of values inside the variables and that
the reading and the writing operation inside the "UART” ports is done thanks to
the 7"UartDeviceComponent”. The writing operation is performed according with
the timer, every second, writing 10 bits (7 Data:000”), while the reading operation
is done every 5 seconds with a buffer size of 50 bits in order to recover the previ-
ous values, so that at second 5 it display:” Data:000 Data:001 Data:002 Data:003
Data:004”.

Obviously the choice of reading length and update time has been thought before
matching the exactly bits of the Data word, the space, the symbol and the three
digits. The counter variable is updated uninterruptedly but the algorithm is studied

75

4 — Background implementations of RIAPS

to visualize only a restart from ”000” in case the counter exceed the maximum value
of three digits (100).

. viceThr ut
RIAPS-DEPLO[671] : 9 147.5771: : mponent . UartDeviceC rtbeviceThread: Attempting to
RIAPS-DEPLO[671]: [inf 0 iceComponent..UartDes ceThread: DONE READING
RIAPS-DEPLO[671] : . t UartDe
RIAPS-DEPLO[67 s[11-1: 9 18:24:47.588]: :TestUartActorB.uartTester:on_uartReads
RIAPS-DEPLO[67 : 124:50 : : rtActors.uartTest
RIAPS-DEPLO[671] : : 5 : :Ua mponent . UartDe:

AP, ctorB.uartTester:on uartReqPort()[1238]: got repl
mponent . Uarti mponent : UartD hr Attempting to re
bbb-8cbl : 2 0 iceComponent . UartDeviceComponent : UartDeviceThread timeout

RIA 8 0]: . A t 000 ')

RIAPS-DEPLO[683]: [info]: 143, : omponent . UartD t : 000 ')

RIAPS-DEPLO[6 : ceComponent . UartDev pon: Writing on -
-DEPLO[rtTe E

Select View Help

/homefriaps/riaps-library/UARTDeviceTesti

6
e -DEPLO[6: : 2 124:44, : ti
RIAPS-DEPLO[683] : 2 nent. uartRepPort()[1192]
RIAPS-DEPLO[68 : 5 : :Uartd: n e t hread - . App\Node 192.168.10. 68.10.92
got reply Hessa
to write: (‘write', b
mponent..UartD nent:on_uartRepPort()[1192]: (‘write', b'Da

Model Depl

Uartexample

tTester:on_uartRegPort () [11
orA.uartTester:on_activity()[1180]: requested to
ceComponent:on_uartRepPort () [11
D B

! . rtD nponent
RIAPS-DEPLO[683] nfo]: 146. estUartActorA.uartTester:on_uartReqPort() [111
RIAPS-DEPLO[683] : :TestUartActorA.uartTester:on activity()[1180]:
RIAPS-DEPLO[6 1 . Uartbe mponent.UartD omponent :on L
RIAPS-DEPLO[683]: : :24:47. :UartDeviceComponent . UartDe rtD:

bbb RIAPS-DEPLO[683]: 489) estUartActorA.uartTester:on u

bbb

bbb

bbb

bbb

bbb

bbb

bbb

bbb

bbb

bbb s : [info]: 019 18:24:45. : ceComponent . UartDeviceComponent :UartDeviceThread - Writing on UART2
bbb-7 orA
bbb

bbb

bbb

bbb

bbb

bbb

bbb

Figure 4.18. UART A to UART B communication simulation

76

Chapter 5

Methods and Tools

In this chapter, all methods and tools are analyzed in details in order to reach the
correctness of the experiment results and to figure out how the work project has
been carried out during the entire study time at FREEDM System Center, belong-
ing to North Carolina State University, USA.

Starting with the analysis of the requirements for each step, moving to the descrip-
tion of the protocols and hardware tools used, proceeding to some insights about
these steps development, concluding with an examination of the algorithm developed
with the technical support from some software tools for the purpose application.
Moreover, the analyzed steps are somewhat referring to the V-shape algorithm in
Fig. with particular focus on the lower level steps. These includes, the algorithm
requirements together with a basic explanation of communication protocols used,
the model testing in a Model in the loop simulation "MilL”, the software testing per-
forming a Software in the loop simulation ”"Sil.” and finally some tests performed on
the real hardware generating a complete system testing in a Hardware in the loop
simulation ”Hil.,”.

78

5 — Methods and Tools

Requirement Analysis P
System Integration & Testing

Architecture Partitioning
System Testing

3
.
L Algorithm Development
% W
03%) MiL

Figure 5.1. V-shape model entire system development

5.1 Algorithm requirements

The algorithm requirements depends on the tools and protocols used in order to
reach the real and effective final configuration. In this section are analyzed the tech-
nical requirements to be accomplished by each simulation step and an advance of
the main protocol an tools used.

For the "MiL” simulation, the TCP/IP protocol should be implemented in Simulink.
Then a simulation should demonstrate the correctness of the running block connec-
tions. Moreover the model should run in interconnection with the OPAL-RT simu-
lator to demonstrate the correct reading operation through modification of different
parameters in the console of the model.

For the ”SiL.” simulation, the Riaps platform should be included in the loop running
on a BBB and the model should be perform the read and write operations.

For the "HiL,” simulation, the entire system should be tested in the real hardware, in
this case an inverter, and this last one should interact with the platform to exchange
data and commands.

5.2 Protocols and hardware tools

In this section are analyzed the main protocol used and the hardware tools necessary
for running the software applications.

The main protocol used is the TCP/IP protocol, fundamental for the development
of this project while the developed codes are launched in RIAPS environment based
itself on Linux environment, which depicts the first fundamental tool on which all
the others features are laid. The operating system itself, is able to host the RIAPS

79

5 — Methods and Tools

software platform and due to the fact that is open source, it is possible to include
libraries necessary for the code developing. The coding of the developed application
is based on the use of Python 3.7 and C++ languages supported by RIAPS and by
the GNU Compiler Collection 7 (GCC 7). All these feature are running on BBB,
simulated with the Opal-RT 5600 simulator and validated in the real SMA STP
20000TL-US-10 inverter hardware.

5.2.1 TCP/IP communication protocol

TCP (Transmission control protocol) is is a standard that define the way the applica-
tion program establish a connection and exchange packets of data on a network and
Internet Engineering Task Force (IETF) defines TCP in the Request for Comment
(RFC) standards document number 793. TCP is a connection-oriented protocol,
which means a connection is established and maintained until the application pro-
grams have finished exchanging messages in appropriate sequence. It determines
how to break application data into packets, that the networks can deliver, sends
and accepts packets through the network layer, manages flow control and, since it is
designed in order to provide error-free data transmission, it handles re-transmission
of dropped packets as well as acknowledgement of all packets that arrive [42]. In
the Open Systems Interconnection (OSI) communication model, TCP cover part of
Layer 4, the transport layer, and part of Layer 5, the session layer, so in total it cover
only four layers as highlighted in Fig. [5.2] OSI (Open Systems Interconnection), is

o5l TCRIP
Application
Presentation Application
Session
Transport Transport
MNetwork MNetwork
Data link
Physical
Physical

Figure 5.2. OSI VS TCP [42]

a reference model to explain how applications communicate over a network, and it
is an abstraction of the functionality the protocol can provide, and provides a total
of 7 layers [41]. The TCP protocol moreover can be seen as a black box that take
in input a flow of packets, de-multiplex it and then sorts them in the order they

80

5 — Methods and Tools

arrive, so that the application could see the right sequence of operations when those
packets are sent to them [I5]. Even if the data are sent asynchronously into the
network, they are queued into the TCP stack and not removed until the receiver
has acknowledged the reception of the data, and if no acknowledgment is received
within a specific time frame, the data is re-transmitted back. The TCP protocol pro-
duce latency during the reorganization of the packets before re-transmission creating
sometimes jitters. A class very similar to TCP protocol is the UDP (User datagram
protocol) that does not provide the acknowledgments for dropping wasted packets
during the transmission, but this is compensated by an higher speed transmission
of the packets.

The TCP/IP protocol suite, is a very known protocol and it was widely used in the
past and still used nowadays for the benefits it provide with respect to other com-
munication protocols. The TCP/IP protocol was developed under the sponsorship
of the Department of Defence for security reason, even if it is affected by some flaws
on the security topic [3]. Nowadays, TCP/IP protocol is still used in the market
mainly for the communication with commercial devices, because it provide the abil-
ity to connect different physical hardware basing on the Ethernet protocol standard
cable connection. For this reason, many companies uses the TCP/IP protocol in
order to interface with their devices due to the use of Ethernet cables that support
the benefit to be plug and play and easy to install on their standard products.

In order to recall the previous means of communication, we refer to the serial com-
munication that was used for example on diagnosis and testing a new system or
configuring a firmware on a new motherboard, or in general to allow interaction
between two computing systems. In order to accomplish to this task, serial ports
were widely installed in the past on both local computing systems under testing and
the remote computing systems.

The need of this communication arises when data are redirected by the remote com-
puting system under test to the local computing system. A problem arises when
doing this at the BIOS (basic input output system) or DOS (disk operating system)
program level, because, when communicating with the firmware, the complexity and
resulting implementation code size dictates the use of the UDP protocol or better
the TCP/IP protocol [35].

Nevertheless, the TCP/IP protocol plays an important role for the development
of this project work because it is the main communication protocol supported by
the development hardware taken in consideration. Another communication protocol
supported by the RIAPS platform is ZeroMQ), that is a pre-configured communi-
cation architecture in order to run inside the basic platform that allow the routing
communication between all the nodes connected to it.

81

5 — Methods and Tools

5.2.2 Sunspec protocol

Sunspec is a protocol which is provided by the Sunspec Alliance among over a hun-
dred of companies producing distributed energy resources (DER) and solar and stor-
age products. The purpose of this alliance is to provide a standardized information
in order to enable the ”plug and play interoperability among the resources. Sunspec
is pointing on the application of this standard throughout the operational aspects
of solar PV power and energy storage plants in the smart grids. Moreover this stan-
dard is approaching to residential, commercial and utility scale systems, promoting
the industry innovation and growths and reducing costs [37]. Nevertheless, Sunspec
information models are described and discussed in a open communication program,
so that they could be accessed by multiple industries and in this way a common
standard is defined that try to accommodate the requests from different field con-
verging into one channel. Sunspec models are therefore used by Sunspec modbus,
a communication interface defined by IEEE 1547-2018, the U.S. national standard,
and by a Sunspec Web Service interface.

The innovation that this protocol provide benefits regards different aspects such as
[38]:

e TCP/IP based which is exploiting the Modbus TCP communication protocol.

e SunSpec information models are semantically identical to those incorporated
in the IEEE 2030.5 and IEEE 1815 communication standards.

e Utilizes the HTTPS protocol which is used by most major internet applications
and by the IEEE 2030.5.

e Supports the same security standard employed by IEEE 2030.5.
e Simple data transfer, very high speed, and low latency.

e Ideal for gateway applications incorporating IEEE 2030.5, IEEE 1815, or IEC
61850-7-420 standards.

The Fig. exploits better the functionality offered by this protocol, among this,
the ability to gather of all the information coming from different resources and
to create a gateway to interconnect throughout internet to a Data center, where
information are collected and analyzed and eventual commands are sent. This makes
a huge step forward towards a futuristic agreement among different companies in
the Electric and Electronic sector. Moreover the SunSpec Certified program release
certifications to the Sunspec member products by establishing objective criteria
(regarding testing, security, communication result and quality controls) in verifying
compliance to communication interface, in order to transparently interoperate with
different "DER” system components.

82

5 — Methods and Tools

. R 8)
Inverter
S
stem
PV r==Monitoring
Module and Contro
-e

R —

Operations
-and
Maintenance

1
Meter E | Internet ___| Data W
[Sunspec Modous B — - 4 - - VPN Center

_.Custom
Applications

i

13

16

2

5

43

£

1]

1]

o

DER SYSTEM ity] APPLICATIONS

Figure 5.3. Sunspec standard representation [38]

Discussion about the Sunspec protocol

Despite all the benefits that this great protocol and also standard can provide to the
society of all over the world, it still present a point of continuous research. From the
point of view of the real applications, some devices need to be continuously updated
with new firmware until they meet the same requirements.

This protocol is mostly used when standard application or platforms are involved.
Most of the time the tables and the information provided by this protocol are useful
to make easy the computation and reduce the efforts, spending less time on analyz-
ing modbus values.

In this real application Sunspec protocol is analyzed but not involved in deep. Since
the ”SMA STP-20000US-10" inverter supports the Sunspec specifications, it is also
possible to use it in order to be conform with all the standards listed by the same.
What is providing in the real application this standard, is a mapping of some previ-
ously selected registers, defined the most important, with a specified nomenclature
and position organized in and clearly accessible common tables. Nevertheless in
the application developed a "low-level” approach is used in order to deliver similar
requirements. Thus, the selection and the conversion of values is manually done
basing on the "Modbus” protocol profile. One of the reason this standard is not
applied to the application developed, is that it does not properly fit with the plat-
form requirements. In fact, some registers are accessible under the Slave 1D=3,

83

5 — Methods and Tools

classified in the " SMA_Modbus-TI-en-15" manual, while the mapping from Sunspec
parameters is provided with access though Slave ID=126 in ” SunSpec_Modbus-T1I-
en-157 manual. Regardless, in the custom application using RIAPS, the Slave 1D,
require to be taken as initialization input, so, this could not be modified during the
simulation. The choice is therefore exclusive and since the SunSpec refers also to
Slave ID=3 for the injection of the Grid Guard Code, necessary for enabling the
writing capability in some registers, the choice to avoid it is made. This not comply
any restriction in the future application as soon as Modbus registers numbers are
modified with SunSpec ones and the injection of Grid Guard Code will be provided
with Slave ID=126.

5.2.3 BeagleBone Black

The BeagleBone Black (BBB) Rev. C is an embedded computer system which run
Linux as operating system. The BBB is fundamental for running the application
because it provides the ability to run RIAPS platform as a layer over Linux. The use
of this hardware has been defined by RIAPS developers, that designed the software
to be fully integrated with the hardware functionalities. The hardware provide a
list of connection ports such as: USB, Ethernet, UART, GPIO through which the
BBB is able to interface with the external devices. Most of those connection require
a minimum of knowledge of the hardware basic or at least the presence of a table
classifying the ports, that might be activated through software, e.g. UART ports.
Since the project’s aim is to rely on plug and play capability and easy cabling,
it is not used anyone of this ports, but the Ethernet one which is exploiting a
double functionality. The first one regards the connection to router, that enable the
communication through ZeroMQ protocol to the other nodes of the same type on
the same sub-net. The other one is that commands and data are exchanged through
TCP/IP also to other nodes of different types (external devices), and this provide
the innovation from the RIAPS point of view.

5.2.4 Opal-RT 5600 simulator

OPAL-RT simulator is a product of OPAL-RT Technologies Incorporation, which is
intended to develope and integrate a cost-effective rapid prototyping and real-time
simulation systems. Opal-RT 5600 is optimized and fully integrated to execute the
Mathworks products such as Simulink and Stateflow models.

OPAL-RT offers extremely scalable simulators, from single-processor rapid control
prototyping systems to RT-LAB Distributed Real-Time hardware-in-the-loop Sim-
ulators containing up to 64 processors.

One of the benefits is the scalability because this simulator can be applied in many
fields with the use of high-end multi-core processors that provides high performance
results and real-time simulation data. It can also provide simulations at different

84

5 — Methods and Tools

rates depending on the application, running inside power electronics components. It
is also possible to run open-loop and closed-loop testing of embedded control units
(ECUs) used in automotive, electrical systems, and aerospace applications [32].
The OPAL-RT used for this project lab for the model in the loop simulation, in-
cludes also the OPAL-RT OP5607 1/O expansion unit which provide additional
input/output offering an high speed communication.

5.2.5 Inverter SMA STP 20000TL-US-10

The SMA STP-20000TL-US-10 is belonging to the class of solar inverters and pro-
vide, as well as all the inverters, the functionality to convert power from a DC source
to AC which aim in this case is to supply the main grid attached to the commercial
power line.

This specific inverter is designed in order to meet the American requirements, and
is able to host a mid-large scale PV system. The DC input is rated between 600
and 1000 [V] offering large flexibility in the use of the PV power plants providing a
maximum AC active power of 20[kW]. This solar inverter is equipped with two in-
dependent MPPT tracker and an arc fault detection system and an optimum shade
management to provide a total efficiency around 98 %.

Other nominal parameter for the inverter in consideration are present in the manual
of the vendor company [36].

The data connections and the real commissioned inverter is shown in Fig. (b).

85

5 — Methods and Tools

5.3 Model in the loop simulation

In this section are shown some logic aspects regarding the model creation finalized
to establish a TCP/IP communication within the local computer and an OPAL-RT
simulator. Since each step of the V-shape model need to be tested before proceed-
ing forward to a next step, a model in the loop simulation is performed as first and
testing results are pointed out. A connection model of the OPAL-RT device for the
experiment is shown in Fig. [5.4]

OPAL-RT simulator

[Matlab-Simulink]

1P=192.168.10.90

|
MATLAB 4 < TCP/IP TCP/IP >
SIMULINK ID=31

Port=1504
1P=192.168.10.101

———

i

Router

Figure 5.4. Connection model during MIL simulation

Opal-RT simulator played an important role on testing of the communication pro-
tocol that has been developed due to high performance exchanging rate data.

A simulation including blocks provided by OPAL-RT technologies has been run on
Simulink platform and connections to the OPAL-RT simulator is shown in Fig[5.5
To better understand, the simulation of the closed loop simulink model is shown in
Fig[5.6] The ?SM_MG_PBG” block in Fig. [5.§]is responsible for taking the output
values from the Opal-RT and sending to the ”SC_Console” block. Successively,
it is possible to modify the input values of the system and sending back to the
OPAL-RT simulator. The parameter taken as input in the right hand side of the
Fig. by the multiplex are referring to the modbus block. The block variables
are defined in a Excel file that gives the definition values represented in the table
(.1l The numbers in the console model are tunable during the simulation process,
in this way it is possible to check the correctness though reading the just written
ones. The sequence of the values type inserted is defined in the block definition,
that take as input:

1. Coil inputs used to read either 0 or 1 values.

2. Discrete inputs used to either read or write 0 or 1 values.

86

5 — Methods and Tools

Figure 5.5. Opal-RT Simulator

s =2e-05s

powergui

Coil » coil

» sm_in slave_data

SM_MG_PBC SC_Console

Figure 5.6. Complete Simulink model

87

5 — Methods and Tools

Coil inputs

il i 0 1 0 1 0 1 0
cof ‘OpMonitor1 | k]

Discrete Inputs

i 0 1 0 1 0 1 0
OpComm | L L status_bits

Holding register inputs

ﬁ | [12345678910 11 66]
Registers inputs

ig1

slave_data

registers

@ .

register

Y VY

[0 1 2 3]
status registers

OpComm1

Figure 5.7. SC_Console model

3. Holding register input used to read whatever values of holding type.
4. Register input used to read only whatever value.

However in this simulation it is only important to demonstrate the point number
”3.”, because it is the one used in the real application at the end. So referring again
to the table which is possible to modify, it is visible that there is a set of twelve
input holding registers. For this purpose, twelve values are given as input to the
block, as it is shown on the third row of the multiplexer in Fig. 5.7 After all, the
four values type are packed and sent to the "slave_data” variable which is connected
to the "sm_in” variable of the SM_MG_PBC block as shown in Fig5.8

Frequency rate change blocks are applied every time the values are crossing the
Opal-RT simulator boundaries because of the frequency rate difference.

88

5 — Methods and Tools

OpCtrl Error —p
Board index: 0 -
Board type: VC707 Terminatort
Board mode: Master IDs »
Terminator3
QpCtrl
D —CD
I?spfzo[;r:atrég’ Modbus Coil
sm_in 5
Register
Modbus device
Il
OpComm1

Figure 5.8. OPAL RT model

Regardless, in this simulation step it is demonstrated the effectiveness of running
blocks correctly. Moreover, after the modification of the input holding register in
the SC_Console block it is accomplished the initial requirement of reading correctly
through the modbus-TCP communication, while in the next section thanks to the
external software it possible to see how to deploy also the writing of the holding
registers.

89

5 — Methods and Tools

Device name modbus_slv_tcp

Device type Slave

Protocol TCP

Network interface ethl

IP Address 192.168.10.101

Slave 1D 31

Port 1504

CPU 0

Verbose 1

Addresses of coil inputs 0,1,2,3,4,5,6,7
Addresses of coil outputs 16, 17

Addresses of discrete inputs 01234567
Addresses of holding register inputs 0;1;2;3;4;,5,6; 7, 8;,9; 10; 11
Addresses of holding register outputs | 20 - 21 - 22 - 23 - 24 - 25
Addresses of input register 0-1-2-3

Polling frequency(ms) 100

Table 5.1. Functional values for Modbus TCP /IP block

The functional table is hosting predefined values taken from the modbus
block as a configuration file. The Network interface indicate the Ethernet port
which is interfaced the OPAL-RT, then the IP address assigned from the router to
the OPAL-RT, the slave ID address and the port used for the TCP protocol, then
it is shown a CPU value corresponding to the CPU number of the OPAL-RT used
to run the simulation, finally quantity of all registers considered in the list and last
but not the least the polling frequency the simulation run.

5.4 Software in the loop simulation

This section’s aim is to provide an overview of the work developed during the simu-
lation phase of the software. In particular the software responsible for running the
reading and writing operation and the simulation inside multiple devices. The first
part is related to the analysis of the BBB (Beaglebone black), then a part related
to the preparation of the software developed and tested on both the hardware.

A connection model of the OPAL-RT device for the experiment is shown in Fig.
F.9 In order to demonstrate the capability to read and write under the TCP/IP
protocol, a software in the loop simulation is performed. The algorithm presented
in this section is really row and voluntarily left uncured, because it only points to
demonstrate the possibility to communicate under the protocol constraints. In this
occasion for this test, one BBB is connected to a router, which is able to see on the

90

5 — Methods and Tools

(OPAL-RT simulator |

[Computational

Component][TCPReqgRepDevice]

IP=192.168.10.111
TCP/IP

TCP/IP =
[Matlab-Simulink]
MATLAB 4\ :‘l

TCP/IP >

ID=31
Port=1504
1P=192.168.10.101

IP=192.168.10.90

SIMULINK®

Figure 5.9. Connection model during SIL simulation

same sub-net the OPAL-RT simulator. The results exploits that the reading and
writing operations under the TCP/IP protocol is performed correctly, but, since it
is only a simulation, numbers read and written are meaningless.

Regardless the full code implementation is presented on the Appendix [A] while a
code snippets in Fig. belonging to the”ComputationalComponent.py” file is
presented to show where the values presented in Fig. [5.12 are coming from. With

self.values = [4000, 3000, 3276, 1000, 2000, 0]
self.command = ormat (ModbusC .WRITEMULTI_HOLDINGREGS, self.defaultInitalReg, self.defaultNumOfRegs,self.values, self.signedDefault)

Figure 5.10. Writing function in ”ComputationalComponent.py”

this simulation it is also possible to demonstrate the capability to write the holding
registers and to visualize both the reading and the writing of the holding registers,
that is preformed correctly.

In Fig. [5.11}it is possible to see the values that previously was injected, during the
simulation, inside the third row of the console model in Fig. 5.7 read from the
RIAPS platform. Instead in Fig. [5.12] it is possible to visualize the values injected
from the RIAPS platform in the ”ComputationalComponent.py” file and read by
the simulink platform in the plot block named "Igl” corresponding to the registers

in Fig. (.7}

91

5 — Methods and Tools

/home/riaps/riaps_apps/modbus_tcp_core

ModbusExampleActo

home/riaps/ria
ent: /home/ria

/modbus_tcp_core/modbus_tcp_core.riaps
friaps_apps/modbus_tcp_core/modbus_tcp_core.depl

+1192.168.10.111 RIAPSModbusTCP
-1 192.168.10.111 RIAPSModbusTCP ModbusExampleActor ['-Ts', '0.05', '—ipArg’, '111']
+H 192.168.10.111 RIAPSModbusTCP ModbusExampleActor

3
3
3
3
E
3
3
3
E
3
3
E
3
3
3
E
3
3
E
3
3
3
E

B N O N S N N N N~ S N N N N N N NN
UmumuUuuUuunuUuyuunuuuouurmumuuur e e
(== N W N N . N N N N N N .)
0 0O 00 O 03 00 00 00 00 00 00 0O 00 00 GO 0 00 (O 03 00 00 00 00
LOLYLLEUOOLYYOLLOLOOYLE OO OO

p_core/modbus_tcp_core.riaps
'modbus tcp core/modbus tcp core.depl

Figure 5.11. Reading values from RIAPS

Figure 5.12. Reading values from Simulink

In order to introduce to the next step a real implementation is considered and run-
ning the simulation on a commercial device.

92

5 — Methods and Tools

5.5 Hardware in the loop testing and validation

In this section, that reflects the integration and testing step of the V-shape model, it
is demonstrated that the communication is performed correctly in a real hardware.
The SMA company provide a lot of devices which communication protocol is based
on a TCP/IP because it is the easiest and reliable way to communicate with. In par-
ticular the device analyzed is a solar inverter SMA STP-20000TL-US-10, where it is
tested, for the first time, the ability to integrate the RIAPS platform. A connection
model of the inverter for the experiment is shown in Fig. [5.13. The connections
shows the router connected with two Beaglebone, representing the control and the
logging operations. Moreover the router is connected to the commercial inverter
and to the local computer from where Riaps platform is deployed. Real tests are
performed within this structure with the final objective to control data and opera-
tions from the SMA device. The real connection, showing the harness within solar

[Computational

Component][Jiineqicprevic J Port=502 SMA Inverter

ID=3
1 1P=192.168.10.110

TCP/IP

IP=192.168.10.91

| < TCP/IP

1P=192.168.10.93

o M

tomger)

1P=192.168.10.90

Figure 5.13. Connection model during HIL simulation

panels providing a 10kW max DC power is shown in Fig. |5.14] (a). The real inverter
configuration is shown in Fig. [5.14] (b), instead the router connections in Fig. |5.14

().

93

5 — Methods and Tools

[RANSTERED ON WOLFTECH.AD NCHREOl |
=]
" "i d
T

Figure 5.14. Solar panels (a), Inverter SMA STP-20000TL-US-10 (b),
Router and BBBs connections (c)

5.6 Code examination and software tool support

In this section it is presented the summary requirement, the software tool used
and its related support given during the developing phase, concluding with specific
description about the code structure.

The general requirement is to demonstrate the full integration of the RIAPS platform

94

5 — Methods and Tools

through the development of an hardware specific application, which therefore is able
to interface with the inverter in consideration to continuously monitor data and
autonomously send commands, exploiting all the benefits that the platform is able
to offer. Ome of the tools used for the development is ”Sunny explorer” platform,
that allow to monitor continuously the values during the simulation and verifying the
correctness of the execution of the operations. Since Sunny explorer is the platform
provided by the "SMA” company, it is fully integrated to host all data and send
commands to the inverter. The software is presented with a GUI (graphical user
interface) so that the user is able to read and write values in a easier way. Moreover
Sunny explorer” platform plays an important role on the development of this project,
because, since the platform has been calibrated during the commissioning phase of
the inverter, it provide true values such as continuous monitoring through external
measurements. Since the flow of data travel on the same Ethernet interface, through
a special device, called ” speed-wire /web-connect” | the platform provide also charts
of data. One of the most important graph, is the one used mainly for analyzing
the daily energy acquired by the solar inverter, that in this project is useful during
some tests on power limitation, explained better in the next chapter. Another tool
that is used, this last one third party software, is ” QmodMaster” which is providing
information regarding the values associated with the register numbers in real time.
All of them constitutes a real help to the development and calibration of the code
proposed, as it possible to see in the simulation and outcomes during several tests.

5.6.1 Hardware configuration

This section’ aim is to provide a basic knowledge of the hardware connection for the
developing if this project. From the point of view of hardware connections, there
are two class:

1. The first one is related to the power line connection divided in turn into:

e DC side, where the inverter acquire power from the the solar PV array.

e AC side, where the inverter release the converted AC power to the main
grid called also "Public electricity” side.

2. The second one is related to the data line connection, which is the part ana-
lyzed in deep in this project.

As it is possible to see in Fig. [5.13] representing only the data line, the wiring
connection is minimal, as accomplishment of the task requiring the use of only
TCP/IP protocol. All the devices are hard-wired connected through only Ethernet
cables to a router, which is the one, though which the software platform distribute
the application, responsible for managing the flow of data and commands.

95

5 — Methods and Tools

5.6.2 Software configuration

The multiple software parameters involved in this project are modified and tuned in
order to accomplish the final task. First of all from the ” Sunny-FExplorer platform,
the procedure able to enable the external communication is performed. Moreover,
following the guide from ” Technical information”, the following steps are:

e Start the sunny explorer platform previously installed on a computer, creating
a Speed-wire system.

e Log-in as "installer” in the Speed-wire system inserting the related password.

e Select the inverter to be configured in the system tree, because the platform
can host management of multiple ones.

e Select the tab ”Settings” and go inside the parameter group ”External com-
munication”.

e Select edit to modify parameters enabling the communication " TCP Server”
under the category ”Modbus” and save the modifications.

Some constraints about response time of the controller are modified, always from
the platform, in order to provide a faster behaviour, especially during the shut-down
phase.

Instead ”QmodMaster” is configured to communicate in a TCP mode to the same
address assigned from the router to the inverter.

Finally the RTAPS platform is configured in order to use some custom libraries able
to interface directly to the inverter in a TCP mode. The libraries used are installed
sending the following command from both the host development computer and from
the BBBs after logging as "SSH”:

$ sudo pip3 install umodbus

Then a new library is configured, the ”tcpModbusComm?”, that is used to interfere
directly with the ” umodbus” previously installed. The ” tcpModbusComm” is created
on purpose for this project, but it constitutes a starting point to enable communi-
cation with all devices that supports TCP protocol, so that the Riaps platform can
extend its applications on a wider field.

5.6.3 Application architecture
modbus_tcp_core.riaps

The "modbus_tcp_core.riaps” file is intended to resume all the interactions between
components and the component-device in turn able to interact with the hardware
and to establish a communication pattern by using predefined message topics. In

96

5 — Methods and Tools

Appendix [B] is represented a full code implementation with particular focus high-
lighting bounds created by the publisher/subscriber and request/reply patterns on
Fig. B.1}

In particular as previously described the interactions pattern are of type "req/rep”
and ”pub/sub” respectively between the ”ComputationalComponent” and the ”Mod-
busTcpReqRepDevice” and between the ”ComputationalComponent” and the ”Mod-
busTCPLogger” is established.

One more interaction is provided in this example with respect to the basic imple-
mentation used for ”SIL” simulation that is the one between the ”Computational-
Component” and the "ModbusTCPLogger” in order to separate the data information
coming from the inverter and logging of single operations performed.

There are two actors, in particular the "ModbusEzxampleActor” hosting the ”Com-
putationalComponent” component and the ”ModbusTcpReqRepDevice” component-
device and the "ModbusTCPlogger” actor hosting the "ModbusTCPLogger” com-
ponent. In this way is possible to deploy the run-time application in two different
nodes deployed in two different BBBs.

A simplified version representing the whole interactions is represented in Fig. [5.15]
where some steps are enumerated to enhance the comprehension and the facilitate
the explanation on the following steps. Three timers are used in this application,
their timing constraint and the necessity is different for each one of them.

ModbusTCPData

(6)

192.168.1083

ModbusTCPlegger

logger:ModbusTCPLogger

O .
-~
= 192.168.10.91

Timer «clockp every 8s
ModbusResponse
- » \
(1) - 2)
4) (3
L4
‘ModbusE xampleActor \ M
I(ummIn\tiatcr'Cumputal\onalCnmponsnt |I modbus:ModbusTcpReqRepDevice

O O

Timer «clock» every 8s Timer «clock» every 2s

Figure 5.15. File "modbus_tcp_core.dot”

97

5 — Methods and Tools

Computational Component.py

The ”ComputationalComponent” is one of the most important file, because it is re-
sponsible to interface with the device-component ”ModbusTcpReqRepDevice”. In the
”?ComputationalComponent” are executed multiple tasks, such as opening requests
and receiving data as reply, the classification of some registers, the conversion step
for each one of them, finally also developing the logic of execution of some opera-
tions.

In particular for the choice of the registers to read, a certain important amount of
them are selected and sent in chucks in order to reduce the number of request to be
made. Since this application is developed in order to read from a starting register
for a certain amount of them, and since the some particular modbus registers for
the inverter are distant, a smart solution is adopted. The solution is to create an
array containing inside the values of the same type for a certain length of read and
in turn rotate to require the same values every cycle.

In this way two issues are solved, the first one is the classification of some values of
the same type, the other is to override the distance between themselves, so that the
limit of 7125” read holding registers is never reached.

On the other hand, for the writing part, the same structure is adopted, but the
function is different, and the returning value which is used by the algorithm to un-
derstand whether the writing is ”successfully” or ”failed”.

Moreover the writing operation is performed in order to previously read from the
register, then compare the value with the one desired to write, and if results from the
comparison shows that they are not the same, the writing operation is performed,
otherwise it is skipped raising an information that says ” value already written”. This
functionality implemented is not trivial, because, cyclical writing operation of R/W
(read and write) or WO (write only) registers could lead to destruction of the flash
memory of the device, as soon as, the values are intended for long-term storage of
device settings. Only few of them regarding the limitation power from PV system
control are an exception and it could be cyclically modified.

The most important registers are selected and represented in a table

98

5 — Methods and Tools

Description Address Type | Format | Unit Access
Total Energy yeld 30529 Wh U32 FIX0 RO
Daily Energy yeld 30535 Wh U32 FIXO0 RO
Operating Time 30541 s U32 FIXO0 RO
Feed-in time 30543 s U32 FIXO0 RO
DC current input 30769 A S32 FIX3 RO
DC voltage input 30771 \Y S32 FIX2 RO
DC power input 30773 W S32 FIXO0 RO
AC power output 30775 W S32 FIX0 RO
AC power phase L1 30777 W S32 FIXO0 RO
AC power phase L2 30779 W S32 FIXO0 RO
AC power phase L3 30781 W S32 FIX0 RO
AC grid voltage phase L1 | 30783 \Y% U32 FIX2 RO
Grid voltage phase L2 30785 \Y U32 FIX2 RO
Grid voltage phase L3 30787 \Y U32 FIX2 RO
AC grid current 30795 A U32 FIX3 RO
AC grid Frequency 30803 Hz U32 FIX2 RO
AC Reactive power 30805 VAr | S32 FIXO0 RO
AC Reactive power L3 30807 VAr | S32 FIXO0 RO
AC Reactive power L2 30809 VAr S32 FIXO0 RO
AC Reactive power L3 30811 VAr S32 FIXO0 RO
AC Apparent power 30813 VA S32 FIXO0 RO
AC Apparent power L3 | 30815 VA S32 FIXO0 RO
AC Apparent power L2 | 30817 VA S32 FIXO0 RO
AC Apparent power L3 | 30819 VA S32 FIX0 RO
Plant main connection 30881 U32 ENUM | RO
Language of UI 40013 U32 ENUM | RW
Mode of multifunc. relay | 40575 U32 ENUM | RW
Active power limit 40915 W U32 FIXO0 RW
Fast shut-down 41253 U32 ENUM | RW
Grid Guard-Code 43090 U32 FIXO0 RW

Table 5.2. Selected Modbus registers for SMA STP 20000TL-US-10

The chunks of reading registers are in this way organized:

e PLANT MAIN CONNECTION containing one type values starting from reg-
ister 730881” and reading for a length of two 16 bits registers.

e D(containing three DC values starting from register ”730769” and reading for
a length of six 16 bits registers.

99

5 — Methods and Tools

e A(C1 containing seventeen AC values starting from register ”30775” and read-
ing for a length of thirty four 16 bits registers.

e AC?2 containing three AC values starting from register 730977” and reading
for a length of six 16 bits registers.

e KENERGY containing two energy values starting from register ”730529” and
reading for a length of four 16 bits registers.

e TIMFE containing also two time values starting from register ”30541” and
reading for a length of four 16 bits registers.

Instead the chunks of reading/writing register are in this way organized:

e GRID GUARD-CODE containing one type values starting from register ”43090”
and operating either to read and to write for a length of two 16 bits registers.

e LANGUAGE containing one type value starting from register 740013” and
operating either to read and to write for a length of two 16 bits registers.

e OPERATING MODE OF MULTI-FUNCTIONAL RELAY containing one
type values starting from register 740575” and operating either to read and to
write for a length of two 16 bits registers.

e POWER LIMIT containing one type starting from register 740915” and op-
erating either to read and to write for a length of two 16 bits registers.

e ON-OFF containing one type starting from register 741253” and operating
either to read and to write for a length of two 16 bits registers.

Moreover either the read and write values are saved inside a combination of two
"nametuple”. In particular there is RegSet(RegNum,value) where "RegNum” is
the number of the register and ”value” is the value contained in the same regis-
ter. Then there is ”inputholdingRegisters” ”nametuple” containing all the desired
values to write and "holdingRegisters” " nametuple” containing all the desired read
values. The combination is done in such a way that both ”inputholdingRegisters”
and "holdingRegisters” " nametuples” contains inside the "RegSet” "nametuple”.
This implementation allow to save variables replacing every cycle only values that
changed through comparisons. This feature is designed for possible future applica-
tions where values could come from different devices and different values are required
to be compared. During the reading function, since most of the register listed and
taken in consideration are 32 bits long, it is necessary to identify the higher level
bit and the lower level bit of the two 16 bits composing a single register value and
doing the right conversion, taking into account also the type, format and unit of
the value. The unit "FIXn” indicate with "n” the quantity of decimals to consider

100

5 — Methods and Tools

while the format indicate whether the first bit of the value in question need to be
interpreted as a signed or unsigned.

The application is designated to call the same function ”sendModbusRequest” for
either read and write and then inside it is performed a sorting depending on the
real request. Basing on the reply,it is called another function ”exitandcheckvalue”
used just to exit from the request, check whether the value is consistent, and then
send to a "registertable” function able to classify the value depending on the unit,
type and format. Conversion is applied to every value read and consecutively to
every one desired to be written. The reply is sent back to the upper level function
"exitandcheckvalue” responsible for sending that to the logger.

In order to resume the operation done are basing on the 8 second timer, the ”Com-
putationalComponent” send a request to the ”ModbusTcpReqRepDevice” (1), then
it wait for the operations, receive the value (4) and send it back to the "ModbusTC-
PLogger” (5) on "tx_ModbusTCPData”.

ModbusTcpReqRepDevice.py

The "ModbusTcpReqRepDevice” is also essential for the correct execution of the op-
erations. It is responsible to interface with the ” ModbusTcpComm” library which
is using "umodbus” library installed externally. Moreover, the duty of the ”"Mod-
busTepReqRepDevice” is to interface with the inverter, specifying parameters such
as: slave ID, IP address and port number. The functionality are clocked by a timer,
which is calling the loop every 2 seconds, in order to capture in a more accurate
way any request coming from the “ComputationalComponent” that is operating
slower for this purpose. The basic operation are resumed as follow: Receive the
request from the ”ComputationalComponent” on "ModbusRepPort” (2) ;| call the
"unpackCommand” function and sort the request to send over the inverter through
the library. Then receive the response value from the inverter, and send it back to
the ”"ComputationalComponent” on ”"ModbusRepPort” again (3).

ModbusTCPLogger.py

The "ModbusTCPLogger” is a secondary file, but this does not mean that its role
is useless during the run-time application. Its duty is to receive the values sent by
the ”ComputationalComponent” on the "rx_ModbusTCPData” port (6) and sort it
listing correctly in order to facilitate the visualization. This data are the one not
containing the information of the requests but the values of the register, so data
cleaning, play an important role here. The timer, establishing a periodic call, in
this file, is only used for printing a value separator between a block of old data and
the new one, as soon as, the data logging happen through an event triggered port.
Regardless, in order to match the two events, event and time triggered, the time
frame of 8 seconds for the ”ComputationalComponent” timer need to coincide with

101

5 — Methods and Tools

the one of the "ModbusTCPLogger” timer.

Values on "rx_ModbusTCPData” port are received with the same block structure
they are sent from the ”ComputationalComponent”, listed in a description array
containing the name of the register and the value associated or the description in
case of some particular registers. The "ModbusTCPLogger” component in this way
act as a buffer acquiring the data, sorting, listing in columns associating to each
register the correct value and finally printing these to the terminal for visualization.

modbus_tcp_core.depl

The "modbus_tcp_core.depl” is the concluding file of the application, it constitutes
together with the "modbus_tcp_core.riaps” the main files used for deploy the applica-
tion to the designated target nodes. In particular the "modbus_tcp_core.depl” deploy
the two actors ”ModbusFExampleActor” and ”ModbusTCPlogger”, each one of them
containing the components specified in the "modbus_tcp_core.riaps”, in two target
nodes respectively 7192.168.10.91” and 7192.168.10.93”. In this way it is possible
to separate the logging of operation accomplishments from real data value logging.

102

Chapter 6

Test-bench results

Until this moment, all the components, methods and tools used to accomplish the
final objective of this thesis work have been analyzed stepping inside the whole
project explanation, preparation and execution. In this section are taken in con-
sideration some simulations about the developed code and a briefly introduction of
the conclusion for each one of them. As remark, it is necessary point out that real
measurements are taken by already implemented and calibrated sensors inside the
inverter, that are able to self monitor and control itself during the normal operations.
So far, the use of some software able to interfere with the hardware in consideration
are used to read data and eventually also to write. This is useful during the devel-
opment of the application, because it allow to establish confirms on the procedure of
the interpretation of the single values. In particular ”QmodMaster” is interesting to
interface with the single registers, but it require a minimum of configuration even if
for this procedure is necessary to operate manually through a simple GUI (graphical
user interface). Several tests have been performed during the development phase,
but, for simplicity they are briefly described to give space to the most important
ones, that relates to the Active power limitation and to the Shut-down test, analyzed
in the following sections. Furthermore to point out some imperfections that come
out from the properly executed work some hints are provided in order to conclude
with a critical review.

Main obstacles to overcome

One of the most important obstacle to overcome is the interpretation of the read
value. After a research on the ”SMA” paper works, a solution is pulled out. The
registers representing 32 bits are interpreted as follows:

e If it is a U32 (unsigned 32 bit) value, this is the case for most of the register
taken in consideration, since it is a composition of two smaller 16 bits value, it
is necessary to take into account the first data value as higher bit value (x[1])

104

6 — Test-bench results

and latter one as the low bit value (x[2]). This lead to the use of the simple
formula [6.7k
212[1] + 2[2] (6.1)

o If it is S32 (signed 32 bits) value, only few registers taken in consideration
with this feature, there is always to take in consideration the subdivision of
16 bits values, but then a different conversion must be applied. Since the
sign is included in the data value, one solution is to consider the first bit
from the left of the first 16 bits block, as the sign. In particular considering
70" positive value and ”1” negative value and then considering the rest as a
normal unsigned value as previously analyzed. The other possible solution,
is to subtract the value to the highest value of representation as considered
in the equation [6.2l This is the case analyzed in the values for the reactive
power and subsequently also in the apparent power as effect on the reactive
power. The sign of the data read is really important in the case of the reactive
power, because it determine whether it is inductive reactive power (positive)
or capacitive one (negative), so the sign cannot be neglected.

219 (x[1] — 219) + z[2] — 2 (6.2)

Another issue to overcome is the validation of all the interesting registers proposed
in the inverter data-sheet. Due to the short description in the data-sheet, the op-
eration of some of them is ambiguous, because of repetition in different registers
numbers declared to work with the same behaviour.

One of this example is related to the register of active power, several registers de-
clare to operate the same functionality but only one is working fine.

Another example represent the one for the shutting-down test where a similar prob-
lem is presented. This problem is overcome by doing several tests of different regis-
ters, polling requests either to read and to write, obviously only if the accessibility
allow this last one operation. In order to perform the shutting-down test, some pa-
rameters have been modified through the sunny explorer platform, that mainly are
related to the timing constraints in order to make faster the response of the inverter
during the simulations.

One more problem to overcome is the inconsistency of some data value, in fact when
the inverter is turned off, the controller send initialized data values, because the sen-
sors are not triggered and no updated value is assigned. In the particular case of the
left side of Fig. [6.1] it is shown that the DC input voltage and power are initialized
to the maximum value (view from ”QmodMaster” simulator). The solution is based
on experimental data, whenever some particular values are pointed out, in most of
the registers, a "zeroing” operation of this values is performed by the new software
platform, allowing to correctly read the data values also when the operating mode
of the inverter is ”Off”. Another simulation inconsistency is shown in the right hand

105

6 — Test-bench results

side of Fig. during the developing phase of reading only registers in a different
instance of the previously seen on the left hand side. One more obstacle is repre-

Function Code | Read Holding Registers (0x03) ¥ | Start Address 30771 '+

Number of Coils [4 2| Dsta Format | Dec ¥ | Signed []

x 327680 327680 X x x x x

Figure 6.1. Inconsistency on DC values from ”QmodMaster” and ”RI-
APS” in different instances

sented by the ”Grid Guard-Code”, which is a special code provided by the same
vendor company of the inverter on request, that is responsible for enabling the pos-
sibility to access the writing operation of the R/W (read and write) registers. The
particular register is hosting this special code, unique for each product associated
with a serial number of the commercial product. The register analyzed is ”43090”
and it is U32 type, hosting in the first 16 bits the first five digits and in the latter
16 bits the last five digits of the code. Moreover this is the only register that is
allowed to be written without any other code, and once written the right code, it
should return the ”1” value only if this is correct and the user is logged in or 707 if
this last one is not correct and the user is logged out without any permissions.
Although the idea of the working principle is great, this continues to be 70" even
if the ”Grid Guard-Code” inserted is correct and the access is allowed. In order
to supply to this problem, during the development of the code, several test have
been made, using a generic non-functional register, where it is possible to change
the language of the device interface. Following the experimental data, it is demon-
strated that, if the language is correctly changed, after sending the correct code, the
writing capability is unlocked allowing access to all registers type. Since this is a
easy feature to be fixed, and since the company is continuously releasing update of
the firmware, the problem could be solved soon, and consequently the RIAPS code
developed could be adapted easily to the new situation.

One of the problem that luckily it is not presented is that the inverter data are ac-
cessible by multiple modbus master simulator, avoiding to point it out the problem
of concurrency of operation. Since this is not a problem, data value inside the, read
or write by RIAPS application during the developing phase, where double-checked
by the other two platforms, previously mentioned polling the same registers at the
very same time.

106

6 — Test-bench results

6.1 Earlier steps

During the development phase, some preliminary tests are performed in some specific
registers, in order to demonstrate the basic working principle, such as ”Language”
and ”Operating mode of multi-functional relay”. They are previously tested because
retained less important to be continuously accessed with respect to some others
"critical” registers during the execution phase.

In fact, in one of the first steps of the development phase, only five group of registers
were read and no writing operation is performed.

Those as shown in Fig6.2| corresponds to:

e PLANT MAINS CONNECTION
e DC

o AC1

o TIME

e INERGY

As it is possible to see in this phase the Logger is not sorting operations in any
value, so that it only receive and print data in a different terminal and this is the
reason why the printing stage appear such as a description.

Figure 6.2. Step by step configuration

During this phase many registers where double-checked using ”QmodMaster”
simulator and ”Sunny explorer” platform as shown in Fig. [6.3]

107

6 — Test-bench results

= N

File Options Tools Help

SUNNY EXPLORER %

Overview Instantaneous values Settings Events | &
"Q rRecoMsmasTP20000n | | TR | QModMaster
= File Options Commands View Help
=] sunny Explorer
= Phase L3 45 var e N
| “f: 101253752 #E 2 C =D X H
~ Power per phase
Phase L1 357 W Modbus Mode | TCP ~ Slave Addr [3 (%] ScanRate (ms) [1000 [+
phase L2 £ =

Function Code |Read Holding Registers (0x03) ¥ | Start Address (30529
Phase L3 358 W

~ Measured values Number of Coiis [50__[+| Data Format |Dec v | Signed []

Day yield @
X X x X x x X X x 19
Feed-in time
2D o @ o o meo G

Operating tine 553.27 h
— 24802 Y5535 65535 65535 65535 65535

Total yield 1,252.86 kwh
65535 65535 65535 65535 65535 65535 65335 65535 65535 0

 Grid measurements
1583 0 3% 0 42 65535 65535 65535 65535 65535

Totalyed e
65535 65535 65535 65535 65535 65535 65535 65535 65535 X

~ Operation

Mains connection Public electricity mains|

Figure 6.3. Double-check operation of register values

Also the debug phase is performed through reading the values saved in the ”in-
putholdingRegister” and in the "holdingRegister” as shown in Fig.

Terminal - riaps@bbb-71ce: ~

File Edit View Terminal Tabs Help

Figure 6.4. Debug operation during the saving operation phase

Finally, the goal is reached fully implementing through reading a total of 6
chunks of registers (adding AC?2 parameters to the previous list) as shown in Fig
demonstrating also the anti-repeat function in the writing operations in order to

avoid the cyclical write as previously mentioned.

108

6 — Test-bench results

= b-71ce: ~ Ny T

File Edit View Terminal Tabs Help

Figure 6.5. Final implementation on RIAPS platform

It is also shown in Fig6.6] the typical output from ”SunnyExplorer” of a sunny
day shape on a chart where experiments are performed.

Daily Performance

5 kW
4 kW
I kW
2 kW ==
1kw =
e
12:00 AM 4:00 &M 12:00 PM 4:00 PM E:00 PM
< 12/12/2019 »

Figure 6.6. Sunny Day from ”SunnyExplorer” platform

109

6 — Test-bench results

6.2 Power limit simulation test

The Power limitation test is considered together with the Shut-down test one of most
the critical test manually performed. Several test have been performed in order to
be sure the power limitation was performed correctly.

The first test shown is related to a power limitation of "300[W]”. In Fig. is
possible to see that, from the RIAPS platform, the limit is set and the DC values and
AC values are approaching that limit. The important values shown are highlighted
with red arrows to enhance the comprehension. On the upper part it is shown the
logging of the operation performed, while in the bottom part, the logger shows only
the logging of the data value inside the registers. The same response, is shown in

.
- Terminal - riaps@hbh-71ce: - u =

File Edit Vview Terminal Tabs Help

Figure 6.7. Active power limit response from ”Riaps”

Fig. from ”Sunny Explorer” platform. The values are not perfectly coinciding
with the the one shown previously in Fig. because the screenshots are taken in

110

6 — Test-bench results

g FREEDM SMA STP20000TL - Sunny Explorer

- X
File Options Tools Help
N
SUNNY EXPLORER %
@ eEoN SHAA'STR20000TH | Overview | Instantaneousvalues | Settings Events |
; s“ FREEDM SMA STP20000TL » SN: 191253732
» F status
» g Device
v il DC Side
v DC measurements
Current [1] 850 mA
Current [2] 0.000 A
Current [A] 850 mA
Current [B] 0.000 A
Voltage [A] 421,56 V
Voltage [B] 0.00 v
el = -
Poner [B] ow
 Insulation monitoring
2% FREEDM SMA STP20000TL - Sunny Explorer = X
File Options Tools Help N
SUNNY EXPLORER %

" Overview Instantaneous values Settings Events
C’Q FREEDM SMA STP20000TL o | | |

T Sunny Explorer

. FREEDM SMA STP20000TL » SN: 191253732
| 9]

» § status
» [Device

» iij DCSide

~ T Acside
 Grid measurements
Grid frequency 59.98 Hz

Reactive power -171 var

= = -

Figure 6.8. Active power limit response from ”Sunny Explorer”

different instances and the values are updating fast. In Fig. [6.9] are shown some
events regarding the power limitation test, the limit is set and reset at a certain time
of the day in order to reach a picture as clear as possible explaining the effectiveness
of the test. Actually the time values referring to the Fig. are those reflecting
the graph on Fig. analyzed below.

111

6 — Test-bench results

SUNNY EXPLORER g

FREEDM 5MA STP20000TL » SN: 191253732

ﬁ EINETEERER -
- From 15132019 untd 15132019
[Asformation [warnings [F]Eerees
[oepiay s events
Type Event Group Date Time
W % 58 Gd Guard code mvald (002) Device 15{12/201% 1E41PM
L] Parameter “Sat active pover bmit” set sucoessfully (10500) _ Device 15/12/301% 1B31PM
+ 0 S Grid Guard code imvald (3002) Device 15/12/2019 1131PM
W % 5MA Grid Guand code imvald (2002) Device 15122015 1120 AM
L) Parameter “Set active power bmit” set successfully (10200) _ Device BAYHE 12104
LA) SMA Grid Gusrd code imvald (2002) Device 15122019 11:10 AM

Figure 6.9. Active power limit from ” SunnyExplorer” events

In Fig. [6.10]it is possible to see the graph representing the power limitation of
7300[W]” from ”SunnyExplorer” platform. This limitation test has been performed
during a not perfectly sunny day so that the oscillation of the energy acquired is not
perfect. The graph intention is only to show the functionality of the test simulation
even in a cloudy day, where it is shown at least two hours of power limitation.

Daily Performance
k]

2.5 kw

2kw |-

1.5 kW -

1kw

0.5 kw |-

okw
12:00 AM 4:00 AM 5:00 AM 12:00 PM 4:00 PM 500 PM

< 14/12/2019 >

Figure 6.10. Graphical view from ”SunnyExplorer” Limit 300[W]”

Several tests has been made, in particular the exact test type is repeated in order
to limit to an higher value of 72000 [W]” shown in Fig. |6.11] This graph is a little
different with respect to the previous one, because the experiment has been done
in a different day, so the energy acquired is different, and consequently also the
shape. In particular in this graph, the limitation of power is more clear because it
is performed during a sunny day, where in the slot of time from 11:10 am to 12:30

112

6 — Test-bench results

am, the power has been limited to the previous mentioned value of ”2000 [W]”.

Daily Performance

5 kW

4 kw

Ikw

kW

1kw

okw
12:00 AM 4:00 AM 5:0D AM 12:00 PM 400 PM 5:00 PM

< 15/12/2019 > e

Figure 6.11. Graphical view from ”SunnyExplorer” limit 72000 [W]”

6.3 Shut-down simulation test

The shut-down operation test is also performed and as previously defined, constitutes
together with the 7 Active power limitation”, one of the critical test. Nevertheless,
this is considered the most critical, because usually this operation is not repeated
cyclically during its normal operating conditions, and it is automatically handled
by the main controller. Part of the simulation results, from RIAPS side, are shown

in Fig. B12

113

6 — Test-bench results

N Terminal - riaps@bbb-8cb1: ~ v

File Edit View Terminal Tabs Help

File Edit View Terminal Tabs Help

Figure 6.12. Shut-down from Riaps platform

In Fig. it is possible to see that the previous operation is correctly performed
and the command is received and posted through the ” SunnyExplorer platform” that
shows a quick shut-down operation received first and then a quick Start intended as
restart of the AC+DC side connections to the lines.

Moreover from ”SunnyExplorer” is possible also to see that the operation has taken
really effect demonstrating with a graph in Fig. the response from the inverter
side during a normal day of sun. Nevertheless, several shut-down tests have been
performed during the development phase, but in order to show the correct execu-
tion is taken a sample where in one day only one shut-down is performed, with the
intention to demonstrate the command execution from a simple point of view by

RIAPS platform.

114

6 — Test-bench results

SUNNY EXPLORER %

> Overview Instantameous vahses Settings Events
.lﬁ FREEDM SMA STR0000TL

i FREEDM SMA STP20000TL » SN: 191253732
ﬁm
Prom 17122015 Ungl 17122015
[informason] Warnngs [o] Brors
[Jospiay sl everns
Type Ewent Group Date Time
0 oA Grd Guard code invald (3003) Dewvice 5/12/2019 151PM
o S quick sto: through Stavt i exscuted (10819 - Device Wi abaem
- @ MA Grig Guard god invabd (B003) Device 16/12/2019 1241 PM
O & 54 Gnd Guard code invald (3002 Device WH2/2019 1L AM
o NS aaick 3tp; throngh Ful stop s ewecuted (10513) — Device WYV LA
+ 9 A Grid Guard code invabd (3002) Dewice 16/12/201% 1127 MM
:) 9
Figure 6.13. Shut-down from ”SunnyExplorer” events
Daily Performance
Skw
4 W [
Fhw [—
2w —
1kw
ok
12:00 AM 4:00 AM B:DD AM 12:00 PM 00 P B:0D PM

< 16/12/2019

Figure 6.14. Graphical view from ”SunnyExplorer” Shut-down

6.4 Critical review

Although, the register related to the ”Operating mode of multi-functional relay”
has been tested at the software level, there is no prove of effective operating. This
is mainly because no real hardware has been connected physically to the inverter
during this this test, since it was not the main topic of this research. Since it is
already implemented and ready to be tested, further investigations could be done
in order to understand the different hardware that is possible to interconnect and
how do they interfere with the main controller of the inverter.

The power is not limited perfectly to the designated value. An example is provided
in the power limitation test when it is set a limit of "300[W]”. The actual limit

115

6 — Test-bench results

from ”Sunny Explorer” platform shows that the AC and DC power limit are around
the value of ”330[W]”. This is not clear, but maybe the limitation is performed in
different parameters that influences the power at the end. For the future projects,
this conclusion might be not sufficient for individual applications, and in order to
reach better results, this require further investigations.

According with the code developed, data logging is performed at terminal level, this
means that any data is available after the lines of the terminal scrolls down and
overwriting operation is performed. This is also possible to be done through the
use of some tools on the platform in order to produce a file able to retain the data
collected during the simulation. This require possible study on this very specific
topic that could be fundamental in some future applications, where for example
data monitoring is performed in a second moment or in general to have a record of
past values for a different purpose.

One more critical review should be done to the fact that the connected device are
restricted to only one inverter. In this way, not all the benefits related to the use
of the "Riaps” platform could be exploited. For this reason, the self-management
on the basis of multiple data coming from different inverters are not performed.
Furthermore possible problems related to the implementation of the developed code
running on different devices and connecting each other were not faced.

In this context, although this project research led to important results from simu-
lations and data analysis, this might be not the final configuration and at the end
it will require an overall step further to be implemented basically in the real world
applications.

116

Chapter 7

Conclusion and Future work

In this chapter, it is also important to evaluate the outcomes of the simulations
consequences in order to conclude with a discussion of some acquired certainties
obtained for the study of future world applications. Last step is related to the
analysis of the possible future works and different implementations with some small
modifications.

7.1 Conclusion

As a witness of the implementation in the real world application, could be said that
this project represent the development of one of the first application developed using
the revolutionary RIAPS software platform. This is almost ready to be used in a
Smart Grid environment to provide a significantly step forward for the worldwide
appliance, so that it constitutes a project not only related to the university field but
also for the power institutions dealing with this products.

As previously announced, all the tests performed, are intended to demonstrate the
effectiveness of the platform management with the intended code developed. All the
tests and results accomplish their task and after decoding hardly some meticulous
details, important data results demonstrate that every single component match with
the other. The important registers selected are included in the code and the knowl-
edge of the operations they perform has been acquired during the simulation phases.
This project aim is also to demonstrate the effectiveness of the RIAPS platform to
interface with external device, in particular with a commercial device, developing
an application respecting the TCP/IP standards and accomplishing some tasks re-
lated to the communication itself. Moreover the custom application developed act
as higher level controller that is operating in a way to manage operations, receiving
data and sending commands from/to the embedded standard controller. In this oc-
casion, RIAPS, provide not only a customized control structure but also offer all the
benefit of the included in this revolutionary software platform such as: reliability,

118

7 — Conclusion and Future work

security, simplicity on control and monitoring system, hosting multitasking opera-
tions, looking for time synchronization with simple communications and leading to
the distribution of intelligence for "IoT” application. The importance of plug and
play operation is also not trivial as soon as a device is connected and the application
deployed works correctly, providing a scalable solution in the real world applications.
Another important feature analyzed and here highlighted is the failure detection of
the devices connected, that the platform is able to handle without letting crash the
entire system.

The application developed, moreover, is intended to be used as a basis on which to
develop other smart applications where some hints are shown in the next section.
Only few modification are needed in order to reach a different configuration, because
the application is already configured to be flexible in order to accommodate multiple
tasks.

In conclusion the application is providing security and privacy of data, because it
rely on local network area able to share information exclusively with all the nodes
connected to the same access point. This connection is not relying anymore on the
NCSU (North Carolina State University) network as it was previously implemented
with the standard ”SunnyExplorer” software platform solution.

119

7 — Conclusion and Future work

7.2 Future work

A brief analysis of the future work that could lead to a bigger implementation of
the application is discussed hereby. Regardless, multiple small modification could
be done either on the hardware part and in the software part.

Starting from the hardware re-configuration, multiple inverter could connected to
the data transmission, deploying the same application gathering data from different
nodes.

Moreover, a wireless implementation could be taken in consideration, using a smart
WiFi modules attached to the BBBs. This could prevent from hard wiring harnesses
and could be a solution to distribute the communication in a strategical geographical
area, embedding the smart system inside the same device box and possibly powered
by the same. A possibility is to use basic a step-down converter properly designed
in order to convert to 5V - 500 mA to feed the controller.

One more step that is possible to implement is the one regarding the communication
with other devices of different vendors type, this is important as soon as the inverter
is able to supply different loads and send receive data with this last one even if they
are not coming from the same production line. Some other small modification could
be done in order to communicate with the GEH” (Green Energy Hub) test-bed,
present in the lab of FREEDM system center, that already host a RIAPS based
implemented application where its working principle similarly reflect the one of a
real Smart Grid System.

On the other hand, the software modification could lead to implement the func-
tionality to host multiple devices as a consequence of the hardware modification.
Another simple modification, could be to interact with a bigger quantity of register
involved either to read and to write. As a consequence of the multiple devices imple-
mentation, it is possible to integrate it with the rest of the communication pattern
already configured, in order to possibly host a big green hub smart energy system
management.

120

Appendix A

Code for Software in the
simulation

// RIAPS Modbus (TCP) Device Testing

app RIAPSModbusTCP {
message ModbusCommand; // send Modbus action Request
message ModbusResponse; // get response from Modbus action
message NodeData:

library tcpModbusLib;

// Modbus (TCP) device interface
/ considered the server for the request/response interaction
device ModbusTcpReqRepDevice (slaveaddress=31,ipaddress = '192.168.10.101",port=1504, serialTimeouts=
rep modbusRepPort : (ModbusCommand,ModbusResponse):
timer clock 1000; //life signal
)

// Example Component to show Modbus I/F usage
component ComputationalComponent (Ts = 0.1, ip = 111) {
timer clock 500;
= sub nodeReady : NodeData:
L, pup thisready : Nodebata;
req modbusRegPort : (ModbusCommand,ModbusResponse); // Port used to communicate with the ModbusUartDevice
}

// Modbus Communication Example actor
actor ModbusExampleActor (TsArg, ipArg) {
local MedbusCommand, ModbusResponse: // Local message types

modbus : ModbusTcpReqRepDevice (slaveaddress=31, ipaddress = '192.168.10.101',port=1504, serialTimeout
commInitiator : ComputationalComponent(Ts = TsArg, ip = ipArg);

20 5

loop

// slave Address is in decimal

Figure A.1. File "modbus_tcp_core.riaps”

122

A — Code for Software in the loop simulation

import zmg
from riaps.run.comp impert Component

from riaps.run.exc import PortError

import uuid

import os

import time

from collections import namedtuple

f£rom ModbusT Device import C mat , ModbusCommands
import pydevd

import logging

debugMode = False

RegSet = namedtuple (' €
InputRegs = namedtuple (' InputRegs’,

class ComputationalComponent (Component) :
def _init_ (self, Ts, ip):
super()._ init_ ()
pydevd. settrace (host="192.168.1.103",port=5678)
self.uuid = uuid.uuidd () .int
self.pid = os.getpid()
self.inputRegs = InputRegs (RegSet(0,0),RegSet(1,0) RegSet(2,0) RegSet(3,0))
self.holdingRegs = HoldingRegs (RegSet (0,0) RegSet (1,0) ,RegSet (2,0) ,RegsSet(3,0))

self.ip = ip

self.readOririte = 0
self.defaultInitalReg = 20
self.defaultNumOfRegs = 5
self.dummyvalue = [0]

self.defaultNumOfDecimals
self.signedDefault = False

1g" % str(self.pid))

self.logger. info("Computation

on_clock_start = time.time()
now = self.clock.recv_pyobj ()

if debugMode:

self.logger.info(" lock() [#s]: 3s",str(self.pid),str(now))

#self.command = CommandFormat (ModbusCommands.READMULTI INPUTREGS, 0, numRegsToRead, self .dummyValue)
self.command = CommandFormat (ModbusCommands.READMULTI HOLDINGREGS, 0 , 12 ,self.dummyValue, self.signedDefault)
msg = self.command

repMsg = self. (self.
Check if the Modbus Response is val
#if repMsg != -1 and repMsg != 999 and repMsg != -9999:

if repMsg != None:
on_clock_modbus_measurement_end_and algorithm start = time.time()
print (repMsg)

else:
self.logger. info ("Mod)

self.values = [4000, 3000, 3276, 1000, 2000]
self.command = CommandFormat (ModbusCommands.WRITEMULTI_HOLDINGREGS, self.defaultInitalReg, self.defaultNumOfRegs,self.values, self.signedDefault)

repMsg = self. (self.

Check if the Modbus Response is valid

#if repMsg = -1 or repMsg == -9999:

if repMsg None:
self.logger.info("Modbus

ither not

def sendModbusRequest (self, requestMsg):
Init to invalid response value
rep = None
try:
self.modbusReqPort . send_pyobj (requestMsg)
rep = self.modbusReqPort.recv_pyobj ()
except PortError as e:
self.logger.info("on_clock:send e ion = 3d" % e.errno)
if e.errno in (PortError.EAGAIN,PortError.EPROTO)
self.logger.info(

ceptiol

t e

ed")

n_ P
#self.logger.info(' [%d] recv rep: %s' % (self.pid,rep))

return rep

def _ destroy (self):
self.logger.info (" [2d

yed" % self.pid)

Figure A.2. Computational Component.py

123

A — Code for Software in the loop simulation

from riaps.run.comp impert Component
import logging

import os

from collections import namedtuple

from enum import Enum

import time

from t ib.t mm import T mm, PortConfig

debugMode = False
class ModbusCommands (Enum) :
READ BIT 1

READ_INPUTREG

WRITE_HOLDINGREG = 7
WRITEMULTI_HOLDINGREGS = 8

CommandFormat = namedtuple (' Comman.

mat', ['

class ModbusTcpReqRepDevice (Component) :
def _init (self,slaveaddress=31,ipaddress =
super().__init_ ()

4, serialTimeout=0.05) : # defaults for Modbus spec

self.pid = os.getpid()

self.port_config = PortConfig(ipaddress, port, serialTimeout)

self.modbus = TcpModbusComm(self,slaveaddress,self.port_config)

self.modbusInit = False

if debugMode:
self.logger.info("

2d [2d]", self.slaveaddress,self.port_config.ip, self.port config.port, self.port config.timeout, self.pid)

def on_ (self) :
now = self.clock.recv_pyobj() #
self.logger.info("on_clock()

ve time (as float)
" % (str(self.pid),now))

if debugMode:
t0 = time.perf_counter()
self.logger.debug("on

rt at $f",str(self.pid),t0)

est Modbus

ock ()

if self.modbusInit == False:
self.modbusInit = True;
self.modbus.startModbus ()
pydevd. settrace (host="'192.168.1.102",port=5678)

if debugMode:
tl = time.perf_counter()
self.logger.debug ("o

is %f ms",str(self.pid),tl, (t1-t0)*1

: Modbus

self.clock.halt ()

def _ destroy (self):
Self.logger.info("_des
self.modbus. stopModbus ()

.recv_pyobj ()

if debugMode:
self.modbusReqRxTime = time.perf counter ()
self.logger.debug ("on_modk: ® r

dbusRe 013s ved at 3f",str(self.pid), ,self. Time)

self.unpackCommand (commandRequest)

responsevalue = # invalid response
if self.modbus.isModbusAvailable() == True:
resp lue = self. mmand ()

if debugMode:
tl = time.perf_counter ()
self.logger.debug("on mo

at f",str(self.pid) responsevalue,tl)

Figure A.3. ModbusTcpReqRepDevice.py

124

A — Code for Software in the loop simulation

pydevd. settrace (host="192.168.1.102", port=5678)
else:
self.logger.debug("Modbus is not ava

.send_pyobj (resp: lue)

unpackCommand (self, rxCommand) :
self.commmandRequested = rxCommand.commandType
self.registerhddress = rxCommand.registeraddress
self.numberofRegs = rxCommand.numberofRegs
self.values = rxCommand.values

self.signedvalue = rxCommand.signedvalue

sendModbusCommand (self) :
value = 999 # large invalid value

if debugMode:
t0 = time.perf_counter()
self.logger.debug ("sendModbusCommand () (%5

ing command to Modbus library at %f",str(self.pid),t0)

if self.commmandRequested == ModbusCommands.READMULTI_INPUTREGS:
value = self.modbus.readMultiInputRegvalues(self.registerAddress, self.numberofRegs, self.signedvalue)

#self.logger.info ("ModbusUartDevice: sent command %: d", ModbusCommands.READMULTI_INPUTREGS.name, self.registeraddress, self.numberofRegs)

gger.info ("ModbusUartDevice: sent command %s, register=3d, numOfRegs=3d", ModbusCommands.READMULTI_HOLDINGREGS.name,self.registerAddress, self.numberOfRegs)
elif self.commmandRequested == ModbusCommands.WRITEMULTI_HOLDINGREGS:
self.modbus.writeHoldingRegisters (self.registeraddress, self.values, self.signedvalue)
nfo ("ModbusUartDevice: sent command %s, register=3d",ModbusCommands.WRITEMULTI_HOLDINGREGS.name,self.registeraddress)
ogger.info ("ModbusUartDevice: Values - 3s", str(self.values).strip(

if debugMode:
tl = time.perf_counter()
self.logger.debug ("sendModbusCommand () [¥s]: Modbus 1

th Modbus library %f ms",str(self.pid),tl, (£1-t0)*1000)

return value

Figure A.4. ModbusTcpReqRepDevice.py

125

A — Code for Software in the loop simulation

#1/usr/bin/env python
import socket

from umodbus impert conf
from umodbus.client impert tcp

from collections import namedtuple
import sys
from enum import Enum, unique

#import pydevd

, 'timeout'l)

class FunctionCodes (Enum) :

READ_COIL = 1
READ BIT = 2
READ_HOLDINGREG = 3
READ_INPUTREG = 4
WRITE_BIT = 5
WRITE_HOLDINGREG = 6
WRITEMULTI_COILS = 15
WRITEMULTI_HOLDINGREGS = 16

class TcpModbusComm(object) :

self.port_config = portConfig
self.slaveAddress = slaveAddress
self.portopen = False

def isModbusAvailable (self):
return self.portopen

def startModbus (self):

try: there 'sock' only works for one connection
self.sock = socket.socket (socket.AF_INET, socket.SOCK STREAM)
self.sock.connect ((self.port_config.ip, self.port_config.port))
self.portOpen = True
print ("TcpModbusConm — open startModbus: " + self.port config.ip + ", " + str(self.port_config.port))
#self.modbusInstrument.debug = True

except serial.SerialException: # change this to proper exception, about TCP
print ("TcpModbusConm — unable to startModbus: " + self.port config.portname + ", " + str(self.port config.port))

self.sock.close()
sys.exit(-1)

#self.modbusInstrument.serial.timeout = self.port_config.serialTimeout

def stopModbus (self) :
self.sock.close ()
self.portOpen = False

Figure A.5. tcpModbusComm.py

126

A — Code for Software in the loop simulation

def readMultiInputRegValues(self,registerhddress,numberOfRegs, signed):
value = -9999

try:
conf.SIGNED_VALUES = signed

message = tcp.read input_registers(slave_id=self.slaveAddress, starting_address=registeriddress, quantity=numberofRegs)
value = tcp.send message (message, self.sock)

except IOError: #change errors to TCP specific

led to read input r:

- address=" + str(registerAddress) + ", numberOfRegs=" + Str(numberOfRegs))

Failed to read input registers - ad

+ str(registerAddress) + ", numberOfRegs=" + Str(numberOfRegs))

def readMultiHoldingRegValues (self,registerAddress,numberofRegs, signed):
value = -9999
try:
conf.SIGNED_VALUES = signed
tep.read_holding_registers(slave_id=self.slaveAddress, starting_address=registerhAddress, quantity=numberofRegs)
value = tcp.send message (message, self.sock)
except IOError:

print ("TcpModbusComm IOE + str(registerAddress) + ", numberOfRegs=" + Str(numberOfRegs))
except TypeError:
print ("TcpModbusComm Type! " + str(registerAddress) + ", numb: + str(numberofRegs))

return value

def writeHol,
try:
conf.SIGNED_VALUES = signed
message = tcp.write multiple registers(self.slaveAddress, registeraddress, values)
value = tcp.send message (message, self.sock)
except IOError:
print ("TcpModbusComm IOEr
except TypeError:
print ("TcpModbusComm TypeEr

ngRegisters (self,registerAddress,values, signed):

registers - address=" + str(registerAddress)) #MM TODO: add number of values

g registers - address=" + str(registerAddress)) #MM TODO: add number of values

Figure A.6. tcpModbusComm.py

bpp RIAPSModbusTCP {

}

on (192.168.10.111) ModbusExampleActor(Ts = 0.05, ipArg=111);

Figure A.7. File "modbus_tcp_core.depl”

127

Appendix B

Code for Hardware in the loop
simulation

// RIAPS Modbus (ICP) Device Testing

app RIAPSModbusTCP {
message ModbusCommand; // send Modbus action Request
message ModbusResponse; // get response from Modbus action
message ModbusTCPData;
library tcpModbusLib;

// Modbus (TCP) device interface

/7 considered the server for the request/response interaction

device ModbusTcpReqRepDevice (slaveaddress=3, ipaddress = '192.168.10.110", por 1Timecut=1.0) {
rep modbusRepPort : (ModbusCommand,ModbusResponse);
timer clock 2000; //1ife signal

// Example Component to show Modbus I/F usage
component ComputationalComponent (Ts = 0.1, ip = 91) {
timer clock 8000;

pub tx_modbusTCPData : ModbusTCPD:
req modbusRegPor

(ModbusConmand, ModbusResponse) ; // Port used to communicate with the ModbusUartDevice

/7 Logging

cemponent ModbusTCPLogger() {

timer clock 8000;

sub rx_modbusTCPData : ModbusTCPData;

}

// Modbus Communication Example actor
actor ModbusExamplehctor (TsArg, iphArg) {
local ModbusCommand,ModbusResponse; // Local message types
t
modbus : ModbusTcpRegRepDevice (slaveaddress=3,ipaddress = '192.168.10.110',port=502, serialTimeout=1.0) ; // Slave Address is in decimal
commInitiator : ComputationalComponent(Ts = Tskrg, ip = ipArg);

}
actor ModbusTCPlogger () {
{

logger : ModbusTCPLogger():

Figure B.1. File "modbus_tcp_core.riaps”

128

B — Code for Hardware in the loop simulation

£rom riaps.run.comp import Componenl
from riaps.run.exc import Portkrror
import uuid

import os

£rom colleclions import namedluple

f£rom ModbusTepReqRepbevice import Commandkormat,ModbusCommands

*'' Enable debugging to gather timing information on the

debugMode = False

cade execu

er number / val

['ReqNum', 'value'l)

InputHoldingRegs = namedtuple (' Inputholdingkegs', ['Grid_Guard_Code','lLanquage

Operating_mode_relay',

_Limit','on_OFF'])

Fo ter READ'''
HoldingRegs = namedluple ('ToldingRegs' /,'AC Aclive Po
TAC ive_Power_phase_I1','AC

aling Time','Feed ir

'(VS'?f\PU mode_relay', ve_Power_| ,ton_OFF'])

~class ComputationalComponent (Component) :
def inil (sell, Ts, ip):

super ().__init__()
#pydevd. selLrace (hosl='192.168.1.103", port=5678
self.uuid = uuid.uuidd().int
sell.pid = os.gelpid()
self.ip = ip
sell.inpullloldingRegs = InpullloldingRegs (RegSel (43090, [11830, 629611),RegSel (40013,0) RegSel (410575,0) ,RegSel (40915,0) ,RegSel (41253,0))
self.holdingReqs = HoldingReqs (RegSet (30881,0) ,Reqset (30773,0) ,Reqset (30771,0) ,ReqSet (30769,0) ,RegSet (30803, 0) ,RegSet (30775,0) ,
RegSel (30777,0) ,RegSel (30779,0) ,RegSel (30781, 0) ,RegSel (30805, 0) ,RegSel (30807, 0) ,RegSel (30809, 0) ,RegSel (30811, 0) ,RegSel (30813,0) ,
RegSet (30815,0) ,Regset (30817,0) ,Reqset (30819,0) ,Reqset (30783,0) ,RegSet (30785, 0) ,Regset (30787,0) ,Regset (30795,0) ,Reqset (30977,0) ,
RegSel (30979, 0) ,RegSel (30981, 0) ,RegSel (30541, 0) ,RegSel (30543, 0) ,RegSel (30535, 0) ,RegSel (30529, 0) ,RegSel (43090, 0) ,RegSel (40013,0) ,
RegSet (40575,0) ,RegSet (40915 ,0) ,Reqset (41253,0)

i

‘' 'Setup Commands for madb o v dinitialization values
sell.readorWrile = 1 t 1 Lo will enable also wrile
self.defaultInitalReq
self.defaultNumOfRegs
self.dummyValue = [0]
self.defaultNumOfDecimals = 0

self.signedDefault = False

self.count=1

self.logger.info("ComputationalComponent : - starting” % str(self.pid))

0

(self):
nou =:galf. slock;renvipychi(
self.logger.info(" k()

" % (str(self.pid), str(now)))

RegtypeR=["' pe','DCY, 'ACLY, 'AC2Y, ! I -

¢ for i in range (len(ReqtypeR)) #Cycle for how many starting registers to read
e 1£(kegtyp eR[
elf. defaultInltalReq self.holdingRegs.Total_yeld.RegNum Energy yeld values
self defaultNumOfRegs = 8
self.logger.info("Req <45>" $str(RegtypeR[il)

self.command = CommandFormat(Modbuscommands READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,
self.dummyvalue, self.signedDefault

repMsg = self. (self. d)

self.exitandcheckvalue (repMsg

elif(ReqtypeR[i]——‘ i #0C input values
elf.defaultInitalReg = self.holdingRegs.DC_Current.RegNum
self. defaultNumOfRegs = 6
self.logger.info(" >" %str(RegtypeR[i])
self.command = rommandFormat(Modbusrommands READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,
self.dummyValue, self.signedDefault
repMsg = self. (self. d
self.exitandcheckvalue (repMsg!

elif (RegtypeR[i]=='Time'): #Time values
self.defaultInitalReg = self.holdingRegs.Operating_Time.RegNum
self.defaultNumOfRegs = 4
self.logger.info(" " $str(RegtypeR[i])
self.command = CommandFormat(Modbuscommands READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,
self.dummyvalue, self.signedDefault
repMsg = self. (self. d
self.exitandcheckvalue (repMsg

[elif (RegtypeR[i]==" n: #AC1 output values
self.defaultInitalReg = self.holdingRegs.AC_Active Power.RegNum
self.defaultNumOfRegs = 46

Figure B.2. ComputationalComponent.py

129

B — Code for Hardware in the loop simulation

self.logger.info("Request to Read type <%s>" $str(RegtypeR[1])

self.command = CommandFormat (ModbusCommands.READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,
self.dummyvalue, self.signedDefault

repMsg = self.sendModbusRequest (self.command)

self.exitandcheckvalue (repMsg

elif (RegtypeR[i]l=='AC2'): #AC2 output values
self.defaultInitalReg = self.holdingRegs.AC_Grid Current phase L1.RegNum
self.defaul tNumOfRegs = 6

self.logger.info("Request to Read type <%s>" $str(RegtypeR[il))

self.command = CommandFormat (ModbusCommands .READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,

self.dummyValue, self.signedDefault

repMsg = self.sendModbusRequest (self.command:

self.exitandcheckvalue (repMsg:

m

elif (RegtypeR[i] onnection type'): #Connection types values
self.defaultInitalReg = self.holdingRegs.Plant_mains_connection.RegNum
self.defaultNumOfRegs = 2
self.logger.info("Request to Read type <%s>" #str(RegtypeR[11)
self.command = CommandFormat (ModbusCommands.READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,
self.dummyValue, self.signedDefault
repMsg = self.sendModbusRequest (self.command)
self.exitandcheckvalue (repMsg:

"''Write multiple holding registers'''

»de', 'Language' , 'Operating mode of multi-function relay','Active power Limit','On/Off']
fCycle for how many starting registers to read
if (RegtypeW[i]= “ode")
self.defaultInitalReg = self.inputHoldingRegs.Grid Guard Code.RegNum fRegister for Grid Guard Code
self.defaul tNumOfRegs = 2
'Read before Write'
self.logger.info("Request to Read type < #str (RegtypeW[i])
self.command = CommandFormat (ModbusCommands .READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,
self.dummyValue, self.signedDefault
repMsg = self.sendModbusRequest (self.command)
self.exitandcheckvalue (repMsq.
"Write'
self.values = self.inputHoldingRegs.Grid Guard Code.value #6rid Guard Code (fixed
if (self.holdingRegs.Grid_Guard Code.value==0 and self.count==1): furite only if it is not already written
self.count=0
self.logger.info("Request to Write type " %str(RegtypeW[i])) #Remove self.count if running for long time/SMA updt the firm
self.command = CommandFormat (ModbusCommands .WRITEMULTI_HOLDINGREGS, self.defaultInitalReg, self.defaultNumOfRegs,
self.values, self.signedDefault
repMsg = self.sendModbusRequest (self.command:
self.exitandcheckvalue (repMsg:
else:
self.logger.info("Requested to Write type <¥s> -Value alrea

tten-" %str(RegtypeW([i]))

elif (RegtypeW[i]=='language'):
self.defaultInitalReg = self.inputHoldingRegs.Language.RegNum
self.defaultNumOfRegs = 2
'Read before Write'
self.logger.info("Request to Read type <%s>" %str(RegtypeW[il)
self.command = CommandFormat (ModbusCommands .READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,
self.dummyvalue, self.signedDefault)

#Register for Changing Language

repMsg = self. (self.

self.exitandcheckvalue (repMsg)

'Write'

msgval = [0, 778] #Language: 777=German 778=English 779=Italian 780=Spanish
(msgval [0]%65536+msgval [1]) #Converted to 1 value for comparison reason

'Storing writing values for later usage'

self.inputHoldingRegs = self.inputHoldingRegs. replace (L 13,val

g0))
if (self.inputHoldingRegs.Language.value != self.holdingRegs.Language.value): #Write only if is not yet written
self.values = msqgval
self.logger.info("Request to Write type <%s>" %str(RegtypeW[il)
self.command = CommandFormat (ModbusCommands.WRITEMULTI_HOLDINGREGS, self.defaultInitalReg, self.defaultNumOfRegs,
self.values, self.signedDefault)

repMsg = self. (self.
self.exitandcheckvalue (repMsg)
else:
self.logger.info("Requested to Write type <%s> -Value already written-" $str(RegtypeW[il)
elif (RegtypeW[i]=='Operating mode of multi-function relay')
self.defaultInitalReg = self.inputHoldingRegs.Operating_mode_relay.RegNum #Reg. for Op. mode of multi-func relay
self.defaultNumOfRegs = 2
'Read before Write'
self.logger.info("Request to Read type <%s>" %str(RegtypeW[il)

self.command = CommandFormat (ModbusCommands.READMULTI_HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,
self.dummyValue, self.signedDefault)

repMsg = self. (self.
self.exitandcheckvalue (repMsg)
'Write'
msgval = [0, 1349] #operationg_mode : Switching status grid relay= 258 Fault indication=1341
#Fan control-1342 Self-consumption=1343 Control via communication=1349 Battery bank-1359

nsg0= (msgval [0]*65536+msgval [11) #Converted to 1 value for comparison reason
'Storing writing values for ater usage'
self.inputholdingRegs = self.inputholdingRegs. replace (Operating_mode_relay 75, val!
if (self.inputHoldingRegs.Operating mode_relay.value != self.holdingRegs.Operating mode_relay.value

self.logger.info("Request to Write type <4s>" %str(RegtypeW[il)

self.values=msgval

self.command = CommandFormat (ModbusCommands .WRITEMULTI_HOLDINGREGS, self.defaultInitalReg, self.defaultNumOfRegs,
self.values, self.signedDefault)

repMsg = self. (self.

Figure B.3. Computational Component.py

130

B — Code for Hardware in the loop simulation

def

elif (RegtypeW[i]

elif (RegtypeW[il=='0n/0ft

self.exitandcheckvalue (repMsg)
else:
self.logger. info("Requested to

'Active
self.defaultInitalReq
self.defanl tNumOfRegs = 2
"Read before Write'
self.logger. info("Request o
self.command =
self.dunmyvalue, self.signedDefanlt)
repMsg
self.exitandcheckvalue (repMsq
‘Write!

msgval = [0,20000]

msg0=(msgval [0]1*65536+msgvalll])
toring writing values
self.inputHoldingRegs
if (self

power Limit'):

Read

1g FoE

self.values=msgval

self.command = CommandFormat (ModbusCommands .WRITEMULTI HOLDINGREGS, self.defaultInitalReg, self.defaultNumOfRegs,

self.values, self.signedDefault)
repMsg =
self.exitandcheckvalne (repMsg
else:
self.logger.info("Requested T

self.defaultinitalReq
self.defaultNumOfRegs

Write type <%s>

type
CommandFormat (ModbusCommands . READMULTI HOLDINGREGS, self.defaultInitalReg , self.defaultNumOfRegs ,

Write type <%s>

self.inputholdingRegs.on_Off.RegNum
2

~value already w

#Register for Active power Limit

self.inputHoldingRegs.Active Power Limit.RegNum

<4557 $atr(RegtypeW[i1))

self.sendModbusRequest (sell.command)

#active power limit in
#Converted to 1

w)

ater usage'
self.inputHoldingReg:

<%5>" %str(RegtypeW[il))

self.sendModbusRequest (self.command)

~value already w

'Read before Write'
self.logger.info("Request to Read type <3s>" %str(RegtypeW[il))
self.command = CommandFormat (ModbusCommands

self.dummyValue, self.signedDefault)

repMsg = self.sendModbusRequest (self.command)

self.exitandcheckvalue (repMsg)
TWrite!

#if(==):

msgval = [0, 1467]

msg0=(msgval [0]1*655364+msgval[l])
"Storing writing values for late

self.inputHoldingRegs

self.logger.info("Request to W

self.values=msgval

self.command = CommandFormat (ModbusCommands.WRITEMULTI_HOLDINGREGS, self.defaultInitalReg, self.defaultNumOfRegs,

self.values,

repMsg =

self.exitandcheckvalue (repMsg
else:

self.signedDefault)

Reason why start or stop the inverter
#start AC+DC

ite

side=1467 Stop DC side=381

usage’
self.inputHoldingReg:
if (self.inputHoldingRegs.on_Off.value

self.holdingRegs.On_Off.value)
<%5>" %str(RegtypeW[il))

self.sendModbusRequest (self.command)

Full

#Register for On/Off Fast

value for comparison reason

-READMULTI_HOLDINGREGS, self.defaultinitalReq ,

(to be implemented)

Stop ACHDC

self.logger.info ("Requ

sendModbusRequest (self, requestMsg) :
None

self.modbusReqPort

rep = self.modbusReqPort.recv_pyobj (
except PortError as e:

self.logger.info("on clock:send

send_pyob] (requestisg

if e.errno in (PortError.EAGAIN,PortError.EPROTO) :

self.logger.info("on clock: port

return rep

def exitandcheckvalue (self,repmsq)

def

if (repmsg

1= None) :
Cmsg=self.registertable (repmsg!
self.logger.info("Converted va

self.tx_modbusTCPData.send_pyobj (Cmsg
-1y

if (repmsg)
self.logger.info(
if (repmsg ==999):
self.logger.info(
(repmsg 9999) :
self.logger.info ("Modt
(repmsg 9990) :
self.logger.info ("Mod

elif

elif

else:

regis

if (self.defaultInitalReg

self.logger.info("Modbus either

tertable (self, Msgval):

msg0= (Msgval [0]*65535+Msgval [1]
'Storing valus for
self.holdingRegs
if (nsg0==1779) :

text='Separated’
elif (nsg0==1780):

text='Public electricity mains'
elif (msg0==1781):

text='Island mains'

1= #str(RegtypeW[i

#Init to invalid response value
i" % e.errno)
r received")
fCheck in both READ/WRITE case
fTake input repMsg and receive d in Cmsg or return
ADIN the logger”
send Log data values to the logger

#Function

self.holdingRegs.Plant_mains_connection.RegNum and self.defaultNumOfReg:

30881 and

ldingRegisters (Librar

ibrary)
recognize

the register

)

30882 Connection type

ritten-" %$str(RegtypeWl[il))

replace (Active Power Limit=RegSet (RegNum=10915,value=msg0)
inputHoldingReqs.Active Power_Limit.value 1= self.holdingRegs.Active Power_Limit.value)
self.logger.info("Request Lo Wrl

ritten-" %$str(RegtypeWl[il))

shut-down

self.defanl tNumOfRegs

side=1749

replace (On_Off=RegSet (RegNum=41253,value=msg0))

m

MsgVal again

")

")

and correct the values

: READ part Connection

self.holdingRegs. replace (Plant_mains_connection=RegSet (RegNum=30881,value=msg0)

Figure B.4. ComputationalComponent.py

131

type

B — Code for Hardware in the loop simulation

T nnect n ":text}
elif (self.defaultInitalReg==self.holdingRegs.DC_Current.RegNum and self.defaultNumOfRegs==6): #READ part DC values
round ((Msgval [0]#*6553G+Msgval [11)*0.001,2) #30769 and 30770 DC input Current
=round ((Msqval[2]*65536+Msqgval [3])*0.01,2) #30771 and 30772 DC input Voltage
msg2=Msgval [4]*65536+Msgval [5] #30773 and 30774 DC input Power
if (msg2==2147483648): #Correction values hen inverter turned off

nsgl=nsg2=nsg3=0

ng value ter usage'
self.holdingRegs = self.holdingRegs. replace (DC_Current=RegSet (RegNu
self.holdingRegs = self.holdingRegs. replace(DC_Voltage=RegSet (RegNu
self.holdingRegs = self.holdingRegs. replace (DC_Power=RegSet (RegNum=
d= {"D (W)

30769, value=msg0))
=30771,value=msg1))
0773, value=msg2))

elif (self.defaultInitalReg==self.holdingRegs.AC_Active Power.RegNum and self.defaultNumOfRegs==46): #READ part ACl values

(Msgval[01*65535+Msgval[1]) #30775 and 30776 AC Active Power
(Msgvall[2]*65535+Msgval[3]) #30777 and 30778 Active Power L1
(Msgval[4]#*65535+Msqval[5]) #30779 and 30780 Active Power L2

msg3=(Msgval [6]*65535+Msgval([7]) #30781 and 30782 Active Power L3
round ((Msgval [8]*65535+4Msgval [91) *0.01,2) #30783 and 30784 Grid Voltage L1
=round ((Msgval[10]*655354Msgval [11])*0.01,2) #30785 and 30786 Grid Voltage L2

35+Msgval[13]) *0.01,2) #30787 and 30788 Grid Voltage L3
5+Msgval[21]) *0.001,2) #30795 and 30796 Tot Grid Current
S+Msgval[29])*0.01,2) #30803 and 30804 Grid Frequency
35-(65535-Msgval[31]) #30805 and 30806 Tot Reactive pow
msg10=(Msgval [32]-65535) *65535- (65535-Msgval [33]) #30807 and 30808 Reactive Power L1
535- (65535-Msgval [35]) $30809 and 30810 Reactive Power L2
535-(65535-Msgval[371) #30811 and 30812 Reactive Power L3
Msgval[38]%655364Msgval [39]) $30813 and 30814 Tot Apparent Power
Msgval[40]*65536+Msgval [41]) #30815 and 30816 Apparent Power L1
msg15=(Msgval [42]*655364Msgval [43]) #30817 and 30818 Apparent Power L2
Msgval [44]%655364Msgval [45]) #30819 and 30820 Apparent Power L3

' urr
if (msg0==0 or msg0==2147483648 or msg

2147450880 and msgl==2147450880 or msgl0==-4294901760)
10=msg11=msg12=msg13=msgl4=msgl5=msgl6=0

ng ue ter usage'

self.holdingRegs = self.holdingRegs. replace(AC_Active Power=RegSet (RegNum=30775,value=msg0))
self.holdingRegs = self.holdingRegs. replace (AC_Active Power phase_Ll=RegSet (RegNum=30777,value=msg1))
self.holdingRegs = self.holdingRegs. replace(AC_Active Power phase L2=RegSet (RegNum=30779,value=msg2))
self.holdingRegs = self.holdingRegs. replace (AC_Active Power phase_ L3=RegSet (RegNum=30781,value=msg3))
self.holdingRegs = self.holdingRegs. replace(AC_Voltage phase_ L1=RegSet (RegNum=30783,value=msg4))
self.holdingRegs = self.holdingRegs. replace (AC_Voltage phase_ L2=RegSet (RegNum=30785,value=msg5))
sell.holdingRegs = sell.holdingRegs. replace(AC Vollage phase Li=RegSel (RegNum=30787,valuc=msgé))
self.holdingRegs = self.holdingReqs._replace (AC_Grid_Cnrrent=Reqgset (ReqNum=30795, valne=msq7))
sell.holdingRegs = sell.holdingRegs. replace (AC Grid Frequency=RegSel (RegNug
self.holdingRegs = self.holdingReqs. replace (AC_Reactive_Power=Reqgset (RegNum
sell.holdingRegs = sell.holdingRegs. replace (AC Reaclive Power phase L
e1f.holdingReqs = self.holdingReqs. _replace (AC_Reactive_Power_pha
sell.holdingRegs = sell.holdingRegs. replace (AC Reaclive Power phase L 9
&1 f.holdingRegs = self.holdingRegs. _replace (AC_Apparent_Power=Reqser (Regh

sell.holdingRegs = sell.holdingRegs. replace (AC Apparcnl Power phase Ll=RegSel (RegNum=3081%,valuc=msgld))
self.holdingRegs = self.holdingReqs. replace (AC_Apparent_Power_phase_|2=Reqset (Regh
sell.holdingRegs = sell.holdingRegs. replace (AC Apparent Power phase Li=RegSel (RegNug
d = {"AC Grid Frequency [Hz]"

gSel (RegNur

ive

> Reaclive
Reactive

[var]"msgl2,

tmsgld,

[val"msqld,

NC Dpparenl Power phasc [VA] " msglh,
Apparent Power ph 13 [val":msql6,

"AC Volla L1 LV]":imsgd,

"AC Volt 12, [V]"imsq5,

"AC Volla V1" imsg6,

"AC Grid Curvent [A]":imsq7)

"AC Appare
MAC Apparent

elif (self.defanltinitalReg==self.holdingReqs.AC_Grid_tnrrent_phase_|1.ReqNum and self.defanltNnmOfReqs==6): #READ part AC2 valnes
round ((Msgval [0]1%65535+Msgval [11) *0.001,2) 130977 and 30978 Grid Currenl phase L1

535+Msqval [31) *0.001,2) #30979 and 30980 Grid Cnrrent ph

130981 and 30982 Grid Currenl phase L3

if (nsgO==2117150,880) :
meg0=magl=mag2=0
"Storing value
self.holdingReqs = self.holdingReqs. replace (AC_Grid_Current_phase_ll=Reqsen (ReqNum=30977,valne=nsq0))
sell.holdingRegs = sell.holdingRegs. replace (AC Grid Currenl phase L2=RegSel (RegNum=30979,valuc=msgl))
self.holdingReqs = self.holdingReqs. replace (AC_Grid_Current_phase_l3=Reqsen (ReqNum=30931,valne=nsq2))
d = {"AC Current Ll LA]":imsg0,
"AC Current 12, [A]"msql,
AC Current L3 A]":imsg2)

fCorrection values when lnverler is Lurned ofl

elif (scll.defaullInilalRe 1L holdingRegs.Operaling Time.RegNum and sell.delaul (NumOLReq.) fREAD part Time valucs
msqO=ronnd ((Msqval [01*65536+Maqual [11) /3600,2) #30541 and 30542 Operating Time
msgl=round ((Msgval [21*65536+Msgval [31) /3600,2) 130543 and 30544 Feed in Lime

Figure B.5. ComputationalComponent.py

132

B — Code for Hardware in the loop simulation

'Storing values for later usage'
self.holdingRegs = self.holdingRegs. replace (Operating_Time=RegSet (RegNum=30541,value=msg0))
self.holdingRegs = self.holdingRegs. replace(Feed in_time=RegSet (RegNum=30543,value=msgl))
d = {"Operating Time [h]":msgO,

"Feed in time [h]":msgl}

elif (self.defaultInitalReg==self.holdingRegs.Total yeld.RegNum and self.defaultNumOfReg: #READ part Energy values
msg0=round ((Msgval [0]*65536+Msgval [11)*0.000001,6) #30529 and 30530 Total Yeld

msgl=round ((Msgval [6]1%65536+Msgval[71) ,2) #30535 and 30536 Daily Yeld

'Storing values for later usage’

self.holdingRegs = self.holdingRegs
self.holdingRegs = self.holdingRegs
d = {"Daily yeld [Wh]":msgl,

tal yeld [MWh]":msgO}

_replace (Total_yel
“replace (Daily_yel

egSet (Reghu
egset (Reghu

30529, value=msg0))
30535, value=msgl))

elif (self.defaultInitalReg==self.holdingRegs.Grid Guard Code.RegNum and self.defaultNumOfRegs==2): #WRITE/READ part GridGuardCode
try: For Read format values

nsg0=(Msgval [0]+Msgval[11)

'Storing values for later usage'

self.holdingRegs = self.holdingRegs. replace (Grid _Guard_Code=RegSet (RegNum=43090,value=msg0))

if (msg0==0):

text='valid' #To be changed to 'INVALID' when the Firmware by SMA is updated
else:
text='valid'
d = {"Grid Guard Code ":text}
except : #For Write format values
msg0=Msgval
if (msg0==2)
text='suc 11y
else:
text='Failed'
d = {"Grid Guard Code just sent "itext}
elif (self.defaultInitalReg==self.holdingRegs.Language.RegNum and self.defaultNumOfRegs==2) : #WRITE/READ part Language
3 ead format values
msg0=(Msgval [0]#65536+Msgval [1]1) $40013 and 40014 Language (777-German), (778=English), (779-Ttalian)
'Storing values for later usage'
self.holdingRegs = self.holdingRegs. replace (Language=RegSet (RegNum=40013,value=msg0))

if (msg0==777):
text='Deutsch'

text="'UNKNOWN"

d = {"Language ":text}
tFor Write format values
msg0=Msgval
if (msg0==2):
text='Successfully’
else:
text='Failed'
d = {"Change Language Command just sent ":text}

elif (self.defaultInitalRe
: #For Read format values

msg0=(Msgval [0]#65536+Msgval [11)
'Storing values for later usage'
self.holdingRegs = self.holdingRegs. replace (Operating mode relay=RegSet (RegNum=40575,value=msg0))

nsumption’

Xt ~ommunication
elif (msg0==1359):
t

Batt bank'

else:
text="UNKNOWN'
d = {"Multi-function r
except #For Write format values
msg0=Msqval
)

Command just sent ":text})
elif (self.defaultInitalReg==self.holdingRegs.Active Power Limit.RegNum and self.defaultNumOfRegs==2): #WRITE/READ part Active power Limit
try: #For Read format values
msg0=(Msgval [0] *65536+Msgval [1]1) #Converted to 1 value for comparison reason
'Storing values for later usage'
self.holdingRegs = self.holdingRegs. replace(Active Power_ Limit=RegSet (RegNum=40915,value=msgo0))
d = {"Ac power limitation in [W] ":msg0}
except: tFor Write format values
msg0=Msgval
if (msg
text='s fully'
else:
text='Fail
d = {"Chang; e Power Limit Command just sent":text}
elif (self.defaultInitalReg==self.holdingRegs.On_Off.RegNum and self.defaultNumOfRegs==2): #WRITE/READ part On/Off
try: #For Read format values
nsg

Msgval [01*655364Msgval [11) $41253 (381-Stop), (1749-Full-stop) (1467=Start)
self.holdingRegs = self.holdingRegs. replace (On_Off=RegSet (RegNum=41253,value=msg0))
381) :

elif (msg0==1749):
tex! 111-st

#For Write format values

Shut-down Command j ent ":text)

X elf.defaultInitalReg
d= {"...UNKN N 5" S|
#print (self.holdingRegs)
fprint (self.inputHoldingRegs)
return d

WN

def _ destroy _
self.logger.info(" [%d] destroyed” % self.pid)

Figure B.6. ComputationalComponent.py

133

self.holdingRegs.Operating_mode_relay.RegNum and self.defaultNumOfRegs==2): #WRITE/READ part Op. mode multi-func.

relay

B — Code for Hardware in the loop simulation

from riaps.run.comp impert Component
import logging

import os

from collections import namedtuple

from enum import Enum

import time

from t ib.t mm import T mm, PortConfig

debugMode = False
class ModbusCommands (Enum) :
READ BIT 1

READ_INPUTREG

WRITE_HOLDINGREG = 7
WRITEMULTI_HOLDINGREGS = 8

CommandFormat = namedtuple (' Comman.

mat', ['

class ModbusTcpReqRepDevice (Component) :
def _init (self,slaveaddress=31,ipaddress =
super().__init_ ()

4, serialTimeout=0.05) : # defaults for Modbus spec

self.pid = os.getpid()

self.port_config = PortConfig(ipaddress, port, serialTimeout)

self.modbus = TcpModbusComm(self,slaveaddress,self.port_config)

self.modbusInit = False

if debugMode:
self.logger.info("

2d [2d]", self.slaveaddress,self.port_config.ip, self.port config.port, self.port config.timeout, self.pid)

def on_ (self) :
now = self.clock.recv_pyobj() #
self.logger.info("on_clock()

ve time (as float)
" % (str(self.pid),now))

if debugMode:
t0 = time.perf_counter()
self.logger.debug("on

rt at $f",str(self.pid),t0)

est Modbus

ock ()

if self.modbusInit == False:
self.modbusInit = True;
self.modbus.startModbus ()
pydevd. settrace (host="'192.168.1.102",port=5678)

if debugMode:
tl = time.perf_counter()
self.logger.debug ("o

is %f ms",str(self.pid),tl, (t1-t0)*1

: Modbus

self.clock.halt ()

def _ destroy (self):
Self.logger.info("_des
self.modbus. stopModbus ()

.recv_pyobj ()

if debugMode:
self.modbusReqRxTime = time.perf counter ()
self.logger.debug ("on_modk: ® r

dbusRe 013s ved at 3f",str(self.pid), ,self. Time)

self.unpackCommand (commandRequest)

responsevalue = # invalid response
if self.modbus.isModbusAvailable() == True:
resp lue = self. mmand ()

if debugMode:
tl = time.perf_counter ()
self.logger.debug("on mo

at f",str(self.pid) responsevalue,tl)

Figure B.7. ModbusTcpReqRepDevice.py

134

B — Code for Hardware in the loop simulation

pydevd. settrace (host="192.168.1.102", port=5678)
else:
self.logger.debug("Modbus is not ava

.send_pyobj (resp: lue)

def unpackCommand (self, rxCommand) :
self.commmandRequested = rxCommand.commandType
self.registerhddress = rxCommand.registeraddress
self.numberofRegs = rxCommand.numberofRegs
self.values = rxCommand.values
self.signedvalue = rxCommand.signedvalue

def sendModbusCommand (self) :
value = 999 # large invalid value

if debugMode:
t0 = time.perf_counter()
self.logger.debug ("sendModbusCommand ()

ry at %f",str(self.pid),t0)

if self.commmandRequested == ModbusCommands.READMULTI_INPUTREGS:

value = self.modbus.readMultiInputRegvalues(self.registerAddress, self.numberofRegs, self.signedvalue)

#self.logger. info ("ModbusUartDevice: sent command %5, register=%d, numOfRegs=4d", ModbusCommands.READMULTI INPUTREGS.name,self.registerAddress,self.numberOfRegs)
elif self.commmandRequested == ModbusCommands.READMULTI_HOLDINGREGS:

value = self.modbus.readMultifoldingRegValues(self.registeraddress, self.numberofRegs, self.signedvalue)
#self.logger.info("ModbusUartDevice: sent command %s, register=%d, numOfRegs=%d", ModbusCommands.READMULTI_HOLDINGREGS.name,self.registeraddress, self.numberofRegs)

elif self.commmandRequested == ModbusCommands.WRITEMULTI_HOLDINGREGS:
self.modbus.writeHoldingRegisters (self.registerAddress, self.values, self.signedvalue)
#self.logger. info ("ModbusUartDevice: sent command %5, register=%d",ModbusCommands.WRITEMULTI_ HOLDINGREGS.name,self.registeraddress)
#self.logger. info("ModbusUartDevice: Values - %s", str(self.values).strip('[1'))

if debugMode:
tl = time.perf_counter()
self.logger.debug ("sendModbusCommand ()

: Modbus 1 ", str(self.pid),tl, (t1-t0) ¥1000)

return value

Figure B.8. ModbusTcpReqRepDevice.py

from riaps.run.comp impert Component
import os

class ModbusTCPLogger (Component) :
def _init_ (self):
Super()._ init_ ()
self.pid = os.getpid()
self.logger.info("ss - S

def on_clock(self):
now = self.clock.recv_pyobj ()
self.logger.info ("Or s

" % (str(self.pid), str(now)))

def on_rx_modbusTCPData(self):

msg = self.rx modbusTCPData.recv_pyobj ()

##self.logger.info("on_rx_modbusTCPData() [%s]: %s" % (str(self.pid), repr(msg)))

Item=msg.items ()

#self.logger.info ("

for k in (Item):
##print ('VARIABLE :' ,k[0], 'VALUE :' , k[1]) #Variable , Value
self.logger.info("Received on_rx_modbu a()[2 25" & (str(self.pid), repr(k[0]), repr(k[11)))

Last Updated values

Figure B.9. ModbusTCPLogger.py

135

B — Code for Hardware in the loop simulation

#1/usr/bin/env python
import socket

from umodbus impert conf
from umodbus.client impert tcp

from collections import namedtuple
import sys
from enum import Enum, unique

#import pydevd

, 'timeout'l)

class FunctionCodes (Enum) :

READ_COIL = 1
READ BIT = 2
READ_HOLDINGREG = 3
READ_INPUTREG = 4
WRITE_BIT = 5
WRITE_HOLDINGREG = 6
WRITEMULTI_COILS = 15
WRITEMULTI_HOLDINGREGS = 16

class TcpModbusComm(object) :

self.port_config = portConfig
self.slaveAddress = slaveAddress
self.portopen = False

def isModbusAvailable (self):
return self.portopen

def startModbus (self):

try: there 'sock' only works for one connection
self.sock = socket.socket (socket.AF_INET, socket.SOCK STREAM)
self.sock.connect ((self.port_config.ip, self.port_config.port))
self.portOpen = True
print ("TcpModbusConm — open startModbus: " + self.port config.ip + ", " + str(self.port_config.port))
#self.modbusInstrument.debug = True

except serial.SerialException: # change this to proper exception, about TCP
print ("TcpModbusConm — unable to startModbus: " + self.port config.portname + ", " + str(self.port config.port))

self.sock.close()
sys.exit(-1)

#self.modbusInstrument.serial.timeout = self.port_config.serialTimeout

def stopModbus (self) :
self.sock.close ()
self.portOpen = False

Figure B.10. tcpModbusComm.py

136

B — Code for Hardware in the loop simulation

def readMultiInputRegValues(self,registerhddress,numberOfRegs, signed):
value = -9999
try:
conf.SIGNED_VALUES = signed
message = tcp.read_input_registers(slave_id=self.slaveAddress, starting address=registerAddress, quantity=numberOfRegs)
value = tcp.send message (nessage, self.sock)
except IOEr #change errors to TCP speci:

fRegs=" + ST (numberOfRegs))

- address=" + str(registerAddress) + ", numb:

ess=" + str(registerAddress) + ", numberOfRegs=" + str(numberOfRegs))

Failed to read input registers —

def readMultiHoldingRegValues (self,registerAddress,numberofRegs, signed):

value = -9999
try:

conf.SIGNED_VALUES = signed

message = tcp.read_holding_registers(slave_id=self.slaveAddress, starting address=registerhddress, quantity=numberofRegs)

value = tcp.send message (message, self.sock)
except IOError:

" + str(registerAddress) + ", numberOfRegs=" + str(numberOfRegs))

OfRe:

" + str(registerAddress) + ", numb: + str(numberOfRegs))

return value

ngRegisters (self,registerAddress,values, signed):

conf.SIGNED_VALUES = signed
message = tcp.write multiple registers(self.slaveAddress, registeraddress, values)
value = tcp.send message (message, self.sock)
except IOError:
print ("TcpModbu:
except TypeError:
print ("TcpModbusComm Type!

g registers - address=" + str(registerAddress)) #MM TODO: add number of values

ss=" + str(registerAddress)) #MM TODO: add number of values

Figure B.11. tcpModbusComm.py

oD RIABSModbusTCP {
on (192.168.10.91) ModbusExampleActor(Ts = 0.05, ipArg=91);
on (192.168.10.93) ModbusTCPlogger();

Figure B.12. File "modbus_tcp_core.riaps”

137

Bibliography

[1]

[10]

S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Gago, D. Gonzalez, and J. Bal-
cells. Interfacing renewable energy sources to the utility grid using a three-level
inverter. [EEE Transactions on Industrial Electronics, 53(5):1504-1511, Oct
2006.

"Beaglebone”. "beagleboneblack-pin-out”. https://beagleboard.org/
Support/bone101. [Online; accessed 15-January-2020).

S. M. Bellovin. Security problems in the tcp/ip protocol suite. SIGCOMM
Comput. Commun. Rev., 19(2):32-48, April 1989.

H. Beltran, E. Bilbao, E. Belenguer, I. Etxeberria-Otadui, and P. Rodriguez.
Evaluation of storage energy requirements for constant production in pv power
plants. IEEE Transactions on Industrial Electronics, 60(3):1225-1234, March
2013.

Kyle Benson, Charles Fracchia, Guoxi Wang, Qiuxi Zhu, Serene Almomen,
John Cohn, Luke D’arcy, Daniel Hoffman, Matthew Makai, Julien Stamatakis,
et al. Scale: Safe community awareness and alerting leveraging the internet of
things. IEEE Communications Magazine, 53(12):27-34, 2015.

R H Bube. Photovoltaic materials, Aug 1998. [Online; accessed 15-January-
2020].

Karl W Béer. Survey of semiconductor physics. Dordrecht : Springer, v.2 :
Barriers, junctions, surfaces, and devices, 1992. [Online; accessed 15-January-
2020].

T. F. S. E. Center. The florida solar energy center (fsec). https:
//www.fsec.ucf.edu/en/consumer/solar_electricity/basics/cells_
modules_arrays.htm, 2018. [Online; accessed 15-January-2020].

Wikimedia Commons. File:photovoltaik dachanlage hannover - schwarze
heide - 1 mw.jpg — wikimedia commons, the free media repository. https:
//commons.wikimedia.org/w/index.php?title=File:Photovoltaik_
Dachanlage_Hannover_-_Schwarze_Heide_-_1_MW. jpg&oldid=365803574,
2019. [Online; accessed 15-January-2020].

7C.J. Cowie”. ”3-phase inverter circuit with wye connected load, drawn by c
j cowie using micrografx designer”. https://commons.wikimedia.org/wiki/

138

https://beagleboard.org/Support/bone101
https://beagleboard.org/Support/bone101
https://www.fsec.ucf.edu/en/consumer/solar_electricity/basics/cells_modules_arrays.htm
https://www.fsec.ucf.edu/en/consumer/solar_electricity/basics/cells_modules_arrays.htm
https://www.fsec.ucf.edu/en/consumer/solar_electricity/basics/cells_modules_arrays.htm
https://commons.wikimedia.org/w/index.php?title=File:Photovoltaik_Dachanlage_Hannover_-_Schwarze_Heide_-_1_MW.jpg&oldid=365803574
https://commons.wikimedia.org/w/index.php?title=File:Photovoltaik_Dachanlage_Hannover_-_Schwarze_Heide_-_1_MW.jpg&oldid=365803574
https://commons.wikimedia.org/w/index.php?title=File:Photovoltaik_Dachanlage_Hannover_-_Schwarze_Heide_-_1_MW.jpg&oldid=365803574
https://commons.wikimedia.org/wiki/File:3-phase_inverter_cjc.png
https://commons.wikimedia.org/wiki/File:3-phase_inverter_cjc.png
https://commons.wikimedia.org/wiki/File:3-phase_inverter_cjc.png

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[21]
[22]

23]

File:3-phase_inverter_cjc.png, Nov 2006. [Online; accessed 15-January-
2020].

7C.J. Cowie”. "simple inverter configuration”. https://commons.wikimedia.
org/wiki/File:Inverter_ckt_Olcjc.png, March 2006. [Online; accessed 15-
January-2020].

DIY. Types of solar inverter explained — DIY. https://www.doityourself.
com/stry/3-types-of-solar-inverters-explained, 2019. [Online; ac-
cessed 25-November-2019].

Y. Du, H. Tu, S. Lukic, D. Lubkeman, A. Dubey, and G. Karsai. Implemen-
tation of a distributed microgrid controller on the resilient information archi-
tecture platform for smart systems (riaps). In 2017 North American Power
Symposium (NAPS), pages 1-6, Sep. 2017.

Abhishek Dubey, Gabor Karsai, Peter Volgyesi, Mary Metelko, Istvan Madari,
Hao Tu, Yuhua Du, and Srdjan Lukic. Device access abstractions for resilient
information architecture platform for smart grid. IEEFE Embedded Systems
Letters, 6 2018.

Adam Dunkels. Full tcp/ip for 8-bit architectures. In Proceedings of the 1st In-
ternational Conference on Mobile Systems, Applications and Services, MobiSys
‘03, pages 85-98, New York, NY, USA, 2003. ACM.

S. Eisele, I. Mardari, A. Dubey, and G. Karsai. Riaps: Resilient information
architecture platform for decentralized smart systems. In 2017 IEEE 20th In-
ternational Symposium on Real-Time Distributed Computing (ISORC), pages
125-132, May 2017.

"FElectricaldU”. 7"power inverters: What are they & how do they work?”.
https://www.electricaldu.com/power-inverter/, Dec 2019. [Ounline; ac-
cessed 15-January-2020].

" Github”. "ditributedestimator”. https://github.com/RIAPS/riaps-apps/

tree/master/apps-vu/DistributedEstimator/Python. [Online; accessed
15-January-2020].
7 Github”. "ditributedestimatorgpio”. https://github.com/RIAPS/

riaps-apps/tree/master/apps-vu/DistributedEstimatorGPI0/Python.
[Online; accessed 15-January-2020].

" Github”. "gpiodeviceexample”. https://github.com/RIAPS/
riaps-library/tree/master/GpioDeviceTesting/GpioDeviceAppExample.
[Online; accessed 15-January-2020].

”Github”. "python-tutorial-debug”. https://riaps.github.io/tutorials/
debug.html. [Online; accessed 15-January-2020].

"Github”. 7riaps-implementation”. https://riaps.github.io/impl.html.
[Online; accessed 15-January-2020].

"Github”. 7riaps-index”. https://riaps.isis.vanderbilt.edu/index.
html. [Online; accessed 15-January-2020].

139

https://commons.wikimedia.org/wiki/File:3-phase_inverter_cjc.png
https://commons.wikimedia.org/wiki/File:3-phase_inverter_cjc.png
https://commons.wikimedia.org/wiki/File:3-phase_inverter_cjc.png
https://commons.wikimedia.org/wiki/File:Inverter_ckt_01cjc.png
https://commons.wikimedia.org/wiki/File:Inverter_ckt_01cjc.png
https://www.doityourself.com/stry/3-types-of-solar-inverters-explained
https://www.doityourself.com/stry/3-types-of-solar-inverters-explained
https://www.electrical4u.com/power-inverter/
https://github.com/RIAPS/riaps-apps/tree/master/apps-vu/DistributedEstimator/Python
https://github.com/RIAPS/riaps-apps/tree/master/apps-vu/DistributedEstimator/Python
https://github.com/RIAPS/riaps-apps/tree/master/apps-vu/DistributedEstimatorGPIO/Python
https://github.com/RIAPS/riaps-apps/tree/master/apps-vu/DistributedEstimatorGPIO/Python
https://github.com/RIAPS/riaps-library/tree/master/GpioDeviceTesting/GpioDeviceAppExample
https://github.com/RIAPS/riaps-library/tree/master/GpioDeviceTesting/GpioDeviceAppExample
https://riaps.github.io/tutorials/debug.html
https://riaps.github.io/tutorials/debug.html
https://riaps.github.io/impl.html
https://riaps.isis.vanderbilt.edu/index.html
https://riaps.isis.vanderbilt.edu/index.html

Bibliography

[24] 7 Github”. "riaps resilient information architecture platform for smart grid-
architecture”. https://riaps.github.io/arch.html. [Online; accessed 15-
January-2020].

[25] ”Github”. riaps resilient information architecture platform for smart grid-
what is riaps”. https://riaps.github.io/. [Online; accessed 15-January-
2020].

[26] ”Github”. “riaps-tutorial-model”. https://riaps.github.io/tutorials/
models.html. [Online; accessed 15-January-2020].

[27] 7 Github”. "uartdevicetesting”. https://github.com/RIAPS/
riaps-library/tree/master/UARTDeviceTesting. [Online; accessed
15-January-2020].

[28] ”Github”. ”what is github”. https://github.com/about/diversity. [On-
line; accessed 15-January-2020).

[29] "Red Hat”. ”what is a middleware”. https://www.redhat.com/en/topics/
middleware/what-is-middleware/. [Online; accessed 20-November-2019].

[30] D. P. Hohm and M. E. Ropp. Comparative study of maximum power point
tracking algorithms. Progress in Photovoltaics: Research and Applications,
11(1):47-62, 2003.

[31] Huang Jiayi, Jiang Chuanwen, and Xu Rong. A review on distributed energy re-
sources and microgrid. Renewable and Sustainable Energy Reviews, 12(9):2472
— 2483, 2008.

[32] ”OPAL-RT Technologies Inc System Integration Services Mathworks”. ”opal-rt
simulator”. https://www.mathworks.com/products/connections/product_
detail/opal-rt-system-integration.html. [Online; accessed 15-January-
2020].

[33] "Institute of software integrated system Vanderbilt university”. ”towards a
resilient information architecture platform for the smart grids: Riaps”. https:
//riaps.isis.vanderbilt.edu/pdfs/SGC17-RIAPS-Overview.pdf. [Online;
accessed 15-January-2020).

[34] "MIT OpenCourseWare”. 76.334 power electronics”. https://ocw.
mit.edu/courses/electrical-engineering-and-computer-science/
6-334-power-electronics-spring-2007/lecture-notes/ch9.pdf/, Feb
2017. [Online; accessed 15-January-2020].

[35] Eswar KonduruJerry Petree. Udp to tcp bridge. United States Patent, March
2007.

[36] "SMA”. ”sunny tripower 12000tl-us / 15000tl-us / 20000tl-us / 24000tl-us /
30000tl-us”. https://www.sma-america.com/products/solarinverters/
sunny-tripower—-12000t1-us-15000t1-us-20000t1-us-24000t1-us-30000t1-us.
html. [Online; accessed 15-January-2020].

[37] ”Sunspec-Alliance”. ”sunspec-protocol”. https://sunspec.org/. [Ounline;
accessed 15-January-2020].

140

https://riaps.github.io/arch.html
https://riaps.github.io/
https://riaps.github.io/tutorials/models.html
https://riaps.github.io/tutorials/models.html
https://github.com/RIAPS/riaps-library/tree/master/UARTDeviceTesting
https://github.com/RIAPS/riaps-library/tree/master/UARTDeviceTesting
https://github.com/about/diversity
https://www.redhat.com/en/topics/middleware/what-is-middleware/
https://www.redhat.com/en/topics/middleware/what-is-middleware/
https://www.mathworks.com/products/connections/product_detail/opal-rt-system-integration.html
https://www.mathworks.com/products/connections/product_detail/opal-rt-system-integration.html
https://riaps.isis.vanderbilt.edu/pdfs/SGC17-RIAPS-Overview.pdf
https://riaps.isis.vanderbilt.edu/pdfs/SGC17-RIAPS-Overview.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-power-electronics-spring-2007/lecture-notes/ch9.pdf/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-power-electronics-spring-2007/lecture-notes/ch9.pdf/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-power-electronics-spring-2007/lecture-notes/ch9.pdf/
https://www.sma-america.com/products/solarinverters/sunny-tripower-12000tl-us-15000tl-us-20000tl-us-24000tl-us-30000tl-us.html
https://www.sma-america.com/products/solarinverters/sunny-tripower-12000tl-us-15000tl-us-20000tl-us-24000tl-us-30000tl-us.html
https://www.sma-america.com/products/solarinverters/sunny-tripower-12000tl-us-15000tl-us-20000tl-us-24000tl-us-30000tl-us.html
https://sunspec.org/

Bibliography

[38]

[41]

[42]

”Sunspec-Alliance-Model”. ”sunspec-model”. https://sunspec.org/
sunspec-information-model-reference/. [Online; accessed 15-January-
2020].

W R Swiegers and Johan H. R. Enslin. An integrated maximum power point

tracker for photovoltaic panels. IEEFE International Symposium on Industrial
FElectronics. Proceedings. ISIE’98 (Cat. No.98TH8357), 1:40-44 vol.1, 1998.

Andrew Tar. Database distribuiti e decentralizzati, cosa
sono? https://it.cointelegraph.com/explained/
decentralized-and-distributed-databases-explained, Jan 2018.

"Techtarget”. ”osi model (open systems interconnection)”. https://

searchnetworking.techtarget.com/definition/0SI. [Online; accessed 15-
January-2020].

"Techtarget”. "tcp (transmission control protocol)”. https:
//searchnetworking.techtarget.com/definition/TCP. [Online; accessed
15-January-2020].

Wikipedia. Giunzione p-n — wikipedia, I’enciclopedia libera. https://en.
wikipedia.org/wiki/P%E2%80%93n_junction, 2019. [Online; accessed 15-
January-2020].

Wikipedia contributors. Solar inverter — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Solar_inverter&
01did=917932310, 2019. [Online; accessed 24-November-2019].

"David Williams”. "understanding, calculating, and measuring to-
tal harmonic distortion (thd)”. https://www.allaboutcircuits.com/
technical-articles/the-importance-of-total-harmonic-distortion/|,
Feb 2017. [Online; accessed 15-January-2020].

Dale Willis, Arkodeb Dasgupta, and Suman Banerjee. Paradrop: a multi-
tenant platform to dynamically install third party services on wireless gateways.
In Proceedings of the 9th ACM workshop on Mobility in the evolving internet
architecture, pages 43—-48. ACM, 2014.

141

https://sunspec.org/sunspec-information-model-reference/
https://sunspec.org/sunspec-information-model-reference/
https://it.cointelegraph.com/explained/decentralized-and-distributed-databases-explained
https://it.cointelegraph.com/explained/decentralized-and-distributed-databases-explained
https://searchnetworking.techtarget.com/definition/OSI
https://searchnetworking.techtarget.com/definition/OSI
https://searchnetworking.techtarget.com/definition/TCP
https://searchnetworking.techtarget.com/definition/TCP
https://en.wikipedia.org/wiki/P%E2%80%93n_junction
https://en.wikipedia.org/wiki/P%E2%80%93n_junction
https://en.wikipedia.org/w/index.php?title=Solar_inverter&oldid=917932310
https://en.wikipedia.org/w/index.php?title=Solar_inverter&oldid=917932310
https://www.allaboutcircuits.com/technical-articles/the-importance-of-total-harmonic-distortion/
https://www.allaboutcircuits.com/technical-articles/the-importance-of-total-harmonic-distortion/

	List of Figures
	List of Tables
	Introduction
	Motivation and goal
	Method of working
	State of the Art of the actual system
	Prototype solution analysis
	The need for a new energy management system
	Requirements for the new system

	Thesis structure

	Theoretical basics
	Distributed energy resources
	PV solar panels
	Solar inverter

	A Resilient Information Architecture Platform for Smart Grid
	Challenges and expectation
	What is RIAPS
	System architecture layout
	Architecture run-time system
	Application model

	Component framework
	Components interaction
	Component execution engine
	Device interface service
	Messaging framework
	Resource and fault tolerance framework
	Security framework

	Run-time services
	Discovery service
	Deployment service
	Time synchronization service
	Distributed coordination service

	Design-time tools
	Modelling language for the architecture
	Software generators
	Debug tool support

	Application deployment and control tool
	Implementation
	Conclusion of the description of the platform

	Background implementations of RIAPS
	GPIO Device Toggle
	Hardware configuration
	Software Configuration
	Application architecture
	Simulation and outcomes

	Distributed Estimator
	Hardware configuration
	Software configuration
	Application architecture
	Simulation and outcomes

	Distributed Estimator using GPIO
	Hardware configuration
	Software configuration
	Application architecture
	Simulation and outcomes

	UART A to UART B communication
	Hardware configuration
	Software configuration
	Application architecture
	Simulation and outcomes

	Methods and Tools
	Algorithm requirements
	Protocols and hardware tools
	TCP/IP communication protocol
	Sunspec protocol
	BeagleBone Black
	Opal-RT 5600 simulator
	Inverter SMA STP 20000TL-US-10

	Model in the loop simulation
	Software in the loop simulation
	Hardware in the loop testing and validation
	Code examination and software tool support
	Hardware configuration
	Software configuration
	Application architecture

	Test-bench results
	Earlier steps
	Power limit simulation test
	Shut-down simulation test
	Critical review

	Conclusion and Future work
	Conclusion
	Future work

	Code for Software in the loop simulation
	Code for Hardware in the loop simulation
	Bibliography

