
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Kotlin and Android applications:
diffusion and adoption of characteristic

constructs

Supervisors

Prof. LUCA ARDITO

Prof. MARCO TORCHIANO

Candidate Hussein ZAYAT

MARCH 2020

Abstract

Context: In October 2017, Google introduced Kotlin as a first class program-
ming language for android applications. Kotlin is an Object oriented programming
compatible with java, with the addition of some practices that helps to reduce
number of code lines, exceptions and other issues that face developers. Many
mobile applications started a transition by changing the base code from java to
Kotlin.

Goal: The main objective of the article is to study the impact of Kotlin on
open source android applications on GitHub. To analyze the impact the paper
were divided into three parts. Firstly, it aims to study the interactions with Kotlin
applications on GitHub(Issues,Contributors,Stars). Secondly, the usage of Kotlin
practices inside applications. Finally, It aims to study the code quality on a sample
set of releases.

Method: First we started by fetching GitHub API’s to clean and collect data
about applications and then download only repositories that represent applications.
We defined a method that measures the percentage of adoption of Kotlin on all
applications to compute the metrics needed to answer diffusion research question.
Then on a set of tagged releases of the applications we measured metrics needed for
the evolution research question. After that we parsed the source code of the last
version of applications(Master branch on GitHub), searching Kotlin development
practices using regular expression to study the usage of Kotlin features after the
transition. Finally, we defined a set of code smells that are common between Kotlin
and Java, and using the Lint static analysis tool provided by android studio, we
calculated the Code Quality of applications on two different releases.

Results: On the data-set of 33,267 open source applications, we found that
33,212 (99.9%) applications featured at least one Kotlin file, while 32,877 (98.8%)
applications had a majority of Kotlin files with respect to java. 96.5% of the lines
of code of all applications was written in Kotlin and 94.8% of files are ".kt" files. We
found using Code Inspection that 5,022 applications (15%) are not using any of the
Kotlin development practices. We considered 458 applications with tagged releases
before and after October 2017 to answer the evolution research question. We
found that only 19/458 featured a minority of Kotlin, While 252 releases featured
majority of Kotlin with the existence of java in the production code. While the
rest of releases(187) are fully converted to Kotlin. After inspecting the source
code of applications searching for Kotlin development practices, we found that
unsafe casting is used in 71% of applications, while safe casting is used only in 11%.
Null Assertion Operator(!!) is used in 56% of the applications and safe calls are
used in 70.4% of applications. Data classes and long argument lists were found

respectively in 49% and 15% of the applications. Finally 54% of the applications
declared variables that accept null as a value.

Conclusion: A big set of apps is still in the phase of transition since Java is still
used in the production code of the last release and the percentage of applications
with majority of Kotlin locs over the production code is increasing. Comparing
these results with the usage of Kotlin development practices, we concluded that
applications made a huge transition without taking advantage of development
practices that may be because of using some tools to convert the base-code.

ii

Acknowledgements

“Surround yourself with those conducive to you being your highest self.” by Posey
is a quote that I follow in every step of my life. Writing this thesis has been
fascinating and extremely rewarding. I would like to thank everyone who in a one
way or another contributed in the completion of this thesis. This accomplishment
was harder to achieve without them.

I would first like to thank my thesis advisor Prof. Riccardo Coppola at Politecnico
di Torino. The door to Prof. Coppola office was always open whenever I had a
question about my research or writing. Without your supervision, I would not have
completed this thesis.

I would also like to thank Prof. Luca Ardito and Prof. Marco Torchiano. I
respectfully thank you for the trust and for giving me the chance to study under
your supervision.

Some special words of gratitude go to my friends Mohamad, Hassan and Abess.
Who have always been a major source of support when things would get a bit
discouraging. Thank you guys.

I would like very much to mention Walter Gamba, Danielle Barbaro, Piergiorgio
Barra and all my colleagues in Iakta. Thank you for the support and time you
gave me during working on my thesis.

Finally, I must express my very profound gratitude to my parents, my brothers
and my sister for providing me with unfailing support and continuous encouragement
throughout my years of study and through the process of researching and writing
this thesis. This accomplishment would not have been possible without them. This
thesis is dedicated to them.

Thanks to my uncles, cousins, friends and university colleagues, for all the help
and support.

i

Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction 1
1.1 Android Operating System . 1

1.1.1 Overview . 1
1.1.2 Statistics and Facts . 2

1.2 Android Mobile Applications . 3
1.2.1 Innovation and New Experiences 3
1.2.2 Android Open-Source Applications 4
1.2.3 Development Tools . 4
1.2.4 F-Droid . 4

1.3 Applications Development Languages 4
1.3.1 Java . 5
1.3.2 Kotlin . 6

1.4 Github Platform . 7
1.4.1 Overview . 7
1.4.2 Github API . 7
1.4.3 API Rate Limiting . 8

2 Mining of Kotlin Android projects From Github 10
2.1 Search Kotlin Android Projects . 11
2.2 Inclusion and Exclusion Criteria . 12

2.2.1 AndroidManifest.xml . 13
2.2.2 SetContentView . 14

2.3 Statistics Search . 14
2.3.1 Repositories Releases . 14
2.3.2 Issues . 15

ii

2.3.3 Stars . 16
2.3.4 Contributors . 16

2.4 Results and Observations . 17

3 Kotlin Development Practices 23
3.1 Data Classes . 25
3.2 Nullability . 26
3.3 Mandatory Casts . 27
3.4 Argument Lists . 28
3.5 Code Inspection . 29

3.5.1 Inspection Tools . 30
3.6 Research Questions and Metrics . 31

3.6.1 Diffusion . 31
3.6.2 Evolution . 32
3.6.3 Popularity . 33

3.7 Related Work . 33
3.8 Results . 34

3.8.1 Diffusion . 34
3.8.2 Evolution . 35
3.8.3 Popularity . 36
3.8.4 Code Inspection . 37

4 Code Quality analysis 42
4.1 Code Quality Overview . 42
4.2 Code Quality Metrics . 44

4.2.1 Complexity metrics . 44
4.2.2 Dimensional Metrics . 45

4.3 Code Quality Popular Tools . 46
4.3.1 SonarSource . 46
4.3.2 UNDERSTAND . 46
4.3.3 Codacy . 47
4.3.4 Paprika . 47

4.4 Experiment Setup . 49
4.4.1 Building Dataset of Android Application releases 49
4.4.2 Analyzing Code Quality metrics 52

4.5 Experiment Results . 54

5 Conclusion 58

iii

6 Threats To Validity 60
6.1 Construct Validity . 60
6.2 Internal Validity . 60
6.3 External Validity . 61

7 Future Work 62

iv

List of Tables

2.1 Distribution of releases over applications 15
2.2 Applications sets according to number of issues 20
2.3 Number of stars with respect to number of releases 20
2.4 Contributors sets according to number of issues 22

3.1 Null Safety in Kotlin programming language 27
3.2 Regular expressions represent the Kotlin practices patterns 30
3.3 KRL and KRF on Sample Set of Application 34
3.4 Distribution of Contributors,Issues and Stars with respect to per-

centage of Kotlin . 36

4.1 Object Oriented Code Smells . 49
4.2 Android Code Smells . 49
4.3 Metrics on Applications releases with the majority of Java 55
4.4 Metrics on Applications releases with the majority of Kotlin 56

v

List of Figures

1.1 World Wide Smartphone Sales . 2
1.2 Number of available applications in the Google Play Store Between

Dec ’09 and Dec ’19 . 3
1.3 Comparison of Java and Kotlin Android Apps as of 2018-2019 . . . 5
1.4 Distribution of applications according their percentage of Kotlin

code. 53% of Kotlin applications have more than 80% of source code
written in Kotlin. 7

1.5 Github rate Limit Documentation 8
1.6 Unauthenticated rate Limit response 8
1.7 Authenticated rate Limit response 9

2.1 Database table structure for GitHub Projects information 10
2.2 Data mining procedure . 11
2.3 Number of GitHub repositories after each step of filtering 18
2.4 Number of Releases With Respect to date before the official an-

nouncement of Kotlin as alternative to the standard Java compiler . 19
2.5 Number of Releases With Respect to date after the official announce-

ment of Kotlin as alternative to the standard Java compiler 19
2.6 Sum of stars with respect to last release date 21
2.7 SubwayTooter Commits by contributors with respect to time 21
2.8 susi_Android Commits by contributors with respect to time 22

3.1 Procedure to Answer Research Questions 24
3.2 Database table of Cloc Statistics 24
3.3 Database table of Ripgrep Statistics 29
3.4 Distribution of Kotlin practices usage on the full set of applications 38
3.5 Usage of Kotlin practices on applications with %Kotlin < 25 39
3.6 Usage of Kotlin practices on applications with Kotlin LOCs between

25 and 50% . 40
3.7 Usage of Kotlin practices on applications with Kotlin LOCs between

50 and 75% . 40

vi

3.8 Usage of Kotlin practices on applications with more than 75% of
Kotlin LOCs . 41

4.1 Applications selection for the study 50
4.2 Database table of popular applications 51
4.3 CC metric applied on an application methods 52
4.4 Java vs Kotlin metrics results . 57

5.1 Java vs Kotlin: Number of improved applications 59

vii

Acronyms

OS
Operating System

IDE
Integrated Development Environment

ML
Micro Edition

JVM
Java Virtual Machine

API
Application Programming Interface

NPE
Null Pointer Exception

KRL
Kotlin Relative Lines of code

KRF
Kotlin Relative Files

KFPR
Kotlin Featuring Projects Ratio

KMPR
Kotlin-Majority Projects Ratio

ix

KAR
Kotlin Adoption Relative Releases

KMR
Kotlin Majority Relative Releases

KOR
Only Kotlin Relative releases

CC
McCabe’s Cyclomatic Complexity

WMC
Weighted Method Count

RLOC
Relative number Lines Of Code

STAT
Count of Statements inside a method

x

Chapter 1

Introduction

Kotlin is a new programming language that represents an alternative to Java, it
was introduced in October 2017 as a first class programming language for Android
applications. Almost all Kotlin developers (92%) were using Java before they
started using Kotlin. Most of them (86% of all Kotlin users) still continue to use
Java.[1]

The study aims to evaluate the transition to Kotlin programming language of
a large list of open-source Android applications over their lifespan and show the
impact of this transaction on the success of Android applications.

1.1 Android Operating System

1.1.1 Overview

Mobile phones were considered as the fastest growing man-made phenomenon ever.
While the number of mobile phones is surpassing the number of people in the world
and the big impact of the smartphone evolution on the users.

The Android Operating system was found in October 2003. Few months later
android gears decided to use the operating system inside mobile phones, and in 2005
Android was acquired by Google. Then in November 2008, the first android beta
was released and it was followed by the first commercial mobile operating system
version release (Android 1.0) in September 2008. Since that release , Android had
seen several updates to its operating system. Android used code names starting
from version number 1.5 in April 2009 (Cupcake) until August 2019 when Google
announced that the numerical ordering will be used for future versions staring from
Android 10 (Api 29).[2]

1

1 – Introduction

1.1.2 Statistics and Facts

Android is the most used operating system around the world and according to
the announcement in May 2019, Android operating system was installed on 2.5
billion active devices, those devices were produced by more than 180 hardware
manufacturers[3]. According to market share analysis during the final quarter
of 2019, we have discovered that Android mobile phones are better than other
operating system phones. Android has more than 75 percent of the market share
and is the most famous smartphone OS on the planet today.[4]

Figure 1.1: World Wide Smartphone Sales
[4]

Upon the accomplishment over smartphones and expanding fame of Android
devices directly affects the app store Google Play, which was first presented under
the name of Android Market. It is presently the greatest application store on the
planet, and had 3.6 million applications accessible to download in March 2018.[5]

2

1 – Introduction

1.2 Android Mobile Applications

Figure 1.2: Number of available applications in the Google Play Store Between
Dec ’09 and Dec ’19

[6]

1.2.1 Innovation and New Experiences
With Android 10 developers can exploit the most recent programming innovations
to build new applications features with an amazing user experience:[7]

• Foldables: Android 10 extends multitasking across app windows and provides
screen continuity to maintain your app state as the device folds or unfolds.

• Smart Reply in notifications: Android 10 uses on-device ML to suggest
contextual actions in notifications

• Dark Theme: Developers can build now a custom dark theme for applications
or opt-in to a new Force Dark feature that lets the system dynamically create
a dark version for an existing theme.

• 5G Networks:For a faster speed and lower latency, Android 10 adds platform
support for 5G. Now developers using connectivity API’s , can take advantage
of these improvements that provides a faster and immersive experiences to
application users.

3

1 – Introduction

1.2.2 Android Open-Source Applications
Android is an open source working framework, clients can install third party
applications easily from markets(even from an untrusted source). Because of this,
it has some constraints which lead to malware attacks and viruses. Several app
markets are available for Android developers to release or sell their apps, such as
the official Google Play store, the Amazon AppStore, F-Droid, GetJar, itch.io .
F-Droid2 is a repository of free and open-source apps for Android devices, of which
both the APK with the compiled code and a source tarball are provided.

1.2.3 Development Tools
Android studio as the official integrated development environment appears to top
the list of favored tools for Android developers. Back in 2013, Google created
Android Studio, it replaced Eclipse Android Development Tools as the essential
IDE for native Android applications development.[8]

Android Studio is a free download IDE and its supported by the community of
Android developers. It provides a list of useful and easy to use tools for developers
such as code editing, debugging and testing tools. However, Android developers
can produce applications much faster and can freely choose between integrated
development environments.

Some of the favored tools for android developers:

• Android Debug Bridge(ADB)

• Android Virtual Device (AVD) Manager

• Eclipse

• IntelliJ IDEA

1.2.4 F-Droid
F-Droid is an installable catalogue of FOSS (Free and Open Source Software)
applications for the Android platform. The client makes it simpler to browse,
install, and monitor of updates on your device.[9]

1.3 Applications Development Languages
Mobile applications may seem easy to be developed. However, The choice of the
best programming language to a develop mobile applications is not that easy, as it
characterises the general user experience, application response time and ease of use
of the application to the purchasers. This is the reason why some programming

4

1 – Introduction

languages consistently come first from others in competition of the best coding
language for mobile applications.

Figure 1.3: Comparison of Java and Kotlin Android Apps as of 2018-2019
[10]

1.3.1 Java
Java is a programming language first released by Sun Micro-systems back in
1995. It can be found on many different types of devices from smart-phones, to
mainframe computers. Java depends on a "Virtual machine" which comprehends
an intermediate design called java byte-code [11]. Java is one of the preferred
languages for Android development:

• It’s a well known language amongst the developers with a large number of
development tools.

• It’s not required to recompile the code for every device the code it used in
because it runs in a virtual machine

• Speed is an issue for JAVA, yet its popularity and advantages overweight’s
over the speed.

• Several mobile phones already used Java ME, so Java was known in the
industry.

5

1 – Introduction

1.3.2 Kotlin

Overview

Kotlin was introduced with a main objective "Android applications development".
In May 2019, Google announced that the Kotlin programming language is now
its preferred language for Android app developers.[12] Kotlin attracted many
developers because of it’s simple syntax and main focus on mobile development
and mainly because of it’s compatibility with Java. The ease of transition from
Java to Kotlin was the key of success with mobile development.

Kotlin Main Features

Kotlin features were interesting to many mobile developers. However, the main
features used to advertise the conversion to Kotlin are:[13]

• Concise: Drastically reduce the amount of boilerplate code.

• Safe: Avoid entire classes of errors such as null pointer exceptions.

• Interoperable: Leverage existing libraries for the JVM, Android, and the
browser.

• Tool-friendly: Choose any Java IDE or build from the command line.

Kotlin Statistics

We can see in figure 1.4 the distribution of Kotlin applications. According to a
study done by researchers at the University of Valenciennes, 58 out of 109 (53.21%)
applications have at least 80% of Kotlin code. Moreover, 21 out of 925 (19.27%)
applications, have less than 10% of Kotlin code.[14]

6

1 – Introduction

Figure 1.4: Distribution of applications according their percentage of Kotlin code.
53% of Kotlin applications have more than 80% of source code written in Kotlin.

[15]

1.4 Github Platform
1.4.1 Overview
GitHub offers free accounts that are commonly used to host open source projects.
As of January 2020, GitHub reports having over 38 million users[16] and more than
100 million repositories[17] (including at least 30 million public repositories)[18],
making it the largest host of source code in the world.[github:largest-host]

1.4.2 Github API
GitHub offers an API for developers that want to develop applications targeting
their interface. It provides a clear documentation for developers to access public
repositories Api’s easily. JSON is used to send and recieve data, and all API access
is over HTTPS and accessed from https://api.github.com[17].

7

1 – Introduction

1.4.3 API Rate Limiting

Figure 1.5: Github rate Limit Documentation
[19]

Unauthenticated requests

Unauthenticated requests are not associated with the user making the request, but
to the originated IP address, so a rate limit allows up to 60 requests per hour which
might not be enough for developers using the Api with applications. [19]

Figure 1.6: Unauthenticated rate Limit response
[19]

Authenticated requests

For API requests using Basic Authentication or OAuth, Users can benefit from the
higher rate limit up to 5000 requests per hour, creating an application and then
passing your app’s client ID and secret as part of the query string on each request
of the GitHub API. [19]

8

1 – Introduction

Figure 1.7: Authenticated rate Limit response
[19]

Abuse rate limits

In order to provide quality service on GitHub, Some actions may result in abuse
rate limiting as to provide quality service on GitHub.[19]

• Using the API to rapidly create content.

• Poll aggressively instead of using webhooks.

• Make multiple concurrent requests.

• Repeatedly request data that is computationally expensive.

9

Chapter 2

Mining of Kotlin Android
projects From Github

Our study aims to compare the projects before and after the transition to Kotlin and
the impact on the success of Android applications. The first step of the procedure
was to mine all GitHub repositories that belong to Android with the language
specified as "Kotlin". Then we collect all the necessary information related to our
study. Choosing GitHub repositories as a reference was because of the big number
of projects that may help to have more accurate results. To start with the data
mining, We developed a set of Java classes that requests data from GitHub APIs,
and in order to improve the quality of the statistics and to reduce the percentage of
error, We collected all the data related to the number of releases, issues, stars and
the number of contributors for each application related to our study. Figure 2.1
shows the structure of the database table were the information about applications
was stored.

Figure 2.1: Database table structure for GitHub Projects information

10

2 – Mining of Kotlin Android projects From Github

Figure 2.2: Data mining procedure

In Figure 2.2, we see the steps of our mining procedure, starting from the
GitHub API, all Kotlin Android repositories were collected then filtered according
to Android applications characteristics, where every application should include at
least one manifest file and one call to the function setContentView(). After filtering
the applications and excluding repositories that are out of our interest, we form
a list of all applications and then started to collect the information about each
application in the list.

2.1 Search Kotlin Android Projects
The GitHub API limits searches to 1000 results, this slows the speed of data mining.
To overcome this issue we divided the requests according to a data range. A list of
data range values was provided inside an input text file passed to the program we are

11

2 – Mining of Kotlin Android projects From Github

using to request the API. Looking into all repositories created before January 2020
using Android and Kotlin as parameters with the API request. Choosing October
2017 as a reference for the last update, which is the release date of Android Studio
3.0, when Kotlin was included as an alternative to the standard Java compiler.
Storing all the application updated after the threshold date and discarding the
repositories that are not updated. Having a big set of repositories that will be used
as input while filtering mobile applications and discarding applications tools. In
the next section we will see the inclusion and exclusion criteria that we followed.

The bellow script is used to look for repositories and then comparing the last
update with the threshold date before saving repository name:

1 u r l _ a l l= St r ing . format (baseUrl , dateRange , page , consumerKey ,
consumerSecret) ;

2 JSONObject json_page_object=Json_Read_Tools . readJsonObjectFromUrl (
u r l _ a l l) ;

3 // items Contains a JSON array o f r e p o s i t o r i e s d e t a i l s
4 JSONArray json_page_array= json_page_object . getJSONArray (" i tems ") ;
5 f o r (i n t i =0; i<json_page_array . l ength () ; i++) {
6 JSONObject myobject=(JSONObject) json_page_array . get (i) ;
7 St r ing repos_name=myobject . g e tS t r i ng (" full_name ") ;
8 // Extract the YEAR and MONTH of updated_at s t r i n g
9 St r ing update_date=myobject . g e tS t r i ng (" updated_at ") ;

10 Date date2=format . parse (update_date) ;
11

12 i f (date1 . compareTo (date2) <= 0) {
13 num2017++;
14 i f (repos_name!= n u l l) {
15 bw. wr i t e (repos_name) ; // Write us ing Buf ferWriter
16 bw. newLine () ;
17 bw. f l u s h () ;
18 }
19 }

In the first step, repository Id with the account and project name that are
updated after October 2017 are set inside the table with repository Id as unique Id
so we avoided duplication of repositories that could happen because of forking a
repository.

2.2 Inclusion and Exclusion Criteria
As a result the data mining of repositories using Kotlin as a language, a list of
more than 46,000 repositories was obtained. And for the fact that our study is
based only on mobile application, a set of filters is applied on the output list of
repositories collected.

12

2 – Mining of Kotlin Android projects From Github

The list of repositories obtained in the previous part included libraries,utilities
and applications. In order to differentiate between these repositories and exclude
all repositories that are out of our interest , we specified some characteristics that
should be presented in every Android Application and we started searching inside
the content of each repository using Java classes that fetch the API of GitHub and
exclude the repositories that don’t have the minimum characteristics of an Android
application discussed in this section.

An example script shows the procedure for looking into repository files content:

1 St r ing ur l_mani fest=St r ing . format (ur l , r epos i to ry_ur i , consumerKey
, consumerSecret) ;

2 JSONObject j son = Json_Read_Tools . readJsonObjectFromUrl (u r l) ;
3

4 i n t count=j son . g e t In t (" tota l_count ") ;
5 i f (count >=1) {
6 bw. wr i t e (r epo s i t o ry_ur i) ;
7 bw. newLine () ;
8 bw. f l u s h () ;
9 }

2.2.1 AndroidManifest.xml
Manifest file is the key file for every Android application, the "AndroidManifest.xml"
contains all essential information required by the operating system concerning the
application,it works as a bridge between Android developers and the Android
platform.[Android:manifest]

Since it’s mandatory for each Android mobile application to have a manifest
file,we developed a Java class that search for the number of "AndroidManifest.xml"
for each repository inside the list of all repositories. As a result we saved the list
of filtered repositories that contain at least one manifest file, while discarding the
applications that returned empty result from the GitHub API. The number of
manifest files was obtained by searching in the content of each repository for a file
name "AndroidManifest.xml" using the following url:

api.github.com/search/code?q=manifest+filename:AndroidManifest.xml+
repo:<repository-name>

Because of the big number of projects to filter and the issue of rate limiting of
using GitHub api we were able to do only 60 request per minute,so a 2 seconds
sleep was the solution of this issue while the only disadvantage was that it took
around 26 hours to search into the contents of all repositories.

Timeminutes = Numberprojects/Request/minute (2.1)

13

api.github.com/search/code?q=manifest+filename:AndroidManifest.xml+repo:<repository-name>
api.github.com/search/code?q=manifest+filename:AndroidManifest.xml+repo:<repository-name>

2 – Mining of Kotlin Android projects From Github

After fetching the content of 46,558 repositories, we found that 44,916(96%) reposi-
tories contain at least one manifest file, so that around 4% of the repositories were
deleted from the database and excluded in the future analysis.

2.2.2 SetContentView
SetContentView() is one of the main functions for developers working with Android
applications. it’s used to display the layout created through XML on the screen. It
is a part of Android.app.Activity class, and it’s used when an activity starts inside
the OnCreate() function and it need to know what user interface XML to display
to user. This XML file is passed as a parameter. As a second step of filtering
repositories, deleting all the repositories that are out of our interest, we fetched the
content of repositories that contains at least one manifest, which was the output of
the previous filtering criteria. So that after this step we assumed that the new list
of repositories represents mobile applications.

As a conclusion we used the function setContentView() to complete our in-
clusion and exclusion criteria to include only applications that had an actual
GUI, and as a result we saved the repositories that contains at least one call of
the function SetContentView(). The following url is used to search the number
of SetContentView inside a specific repository passing repository name as parameter:

api.github.com/search/code?q=setContentView+repo:<repository-name>
We found that after this step, that out of 44,916 repository that contains at

least one manifest file, there’s 42,931 application with more than one call to the
function "setContentView()" (around 95% of files containing manifest file and 92%
of projects updated after October 2017).

2.3 Statistics Search
After getting the repositories that represents Android application on GitHub, we
started fetching statistics for each repository. All the information needed about
repositories are saved into a database2.1.

2.3.1 Repositories Releases
The output list of Android applications was divided into different sets where each
set has different characteristics related to the number and date of releases.

The example script bellow was used to fetch the number of releases and infor-
mation about each release from GitHub the set of Android applications we have as
an output after the inclusion and exclusion filters.

14

api.github.com/search/code?q=setContentView+repo:<repository-name>

2 – Mining of Kotlin Android projects From Github

1 JSONObject myobject=(JSONObject) j son . get (i) ;
2 St r ing [] publ ished_at=myobject . get (" publ ished_at ") . t oS t r i ng () .

s p l i t (" −") ;
3 St r ing year= publ ished_at [0] ;
4 St r ing month= publ ished_at [1] ;
5 i n t date = In t eg e r . pa r s e In t (year+month) ;
6 St r ing node_id = myobject . g e tS t r i ng (" node_id ") ;
7 St r ing tag = myobject . g e tS t r i ng (" tag_name ") ;
8 Dbhelper . i n s e r t R e l e a s e (node_id , owner , repo , tag , date) ;

All the information was fetched from the GitHub API using the url bellow:
https://api.github.com/repos/<repository-name>/releases
A part of our analysis is based on the comparison of different releases of Android

open source mobile applications. Starting from this definition we applied a set of
filters to divide repositories. The number of releases with the tag of each release of
the applications is saved into Sqlite database, with the date of publication of each
release. On the other hand, all projects with zero or one tagged releases are used
to compute the diffusion matrices explained in the third chapter using the master
branch as a point of reference.

We found that out of 42,931 projects that represents mobile applications, only
3,894 applications had at least one tagged release(9% of total number of Kotlin
Android open source applications on GitHub), while 39,037 projects are with zero
number of releases(91%).

Applications Set Count
Total number of Android applications 42,931

Number of application with at least one release 3,894
Total number of tagged releases ∼27,610

Tagged releases before October 2017 ∼6760
Tagged releases after October 2017 ∼20850

Table 2.1: Distribution of releases over applications

2.3.2 Issues
GitHub uses a tracker called issues to keep track of tasks, improvements, and bugs
for projects. Issues for open source projects are shared and discussed in public where
developers can collect user feedback and report software bugs. Issues make it easier
to report software bugs but also to include more in-depth documentation. As part of
the code analysis we collected from GitHub API for each repository, the number of

15

https://api.github.com/repos/<repository-name>/releases

2 – Mining of Kotlin Android projects From Github

issues and then we collected for each month the sum of issues. All the data collected
are saved into a database table for future use. The Information was collected using
the url: https://api.github.com/repos/<repository-name>/Issues

The Issues API contains information about project owner, the assignees of issue,
date of creation, last update and if the issue is closed with the date of closure.
besides that information we can find links to other APIs that contains more details
about the issue and the users collaborating with the issue.

2.3.3 Stars

Stars on GitHub can be used by logged-in users for different reasons. A user can
follow a project updates by adding it to the list of starred repositories, other people
use stars to indicate that they liked the project. GitHub stars can also be used to
measure the popularity of applications,with the assumption that repositories with
more stars might be known to many people and projects with only a few stars may
be relatively unknown. However, we faced some limitation while fetching stars of
repositories from GitHub API. GitHub did not mention inside the API the date
when the user added the star , for this reason we collected the number of stars
for each repository and then joining number of stars with the last release for each
application.

2.3.4 Contributors

Contributors on GitHub are developers from outside the core development team
of the project that contribute some changes to a project, it’s one of the GitHub
features that help sharing and collaboration in developing a project.

GitHub provides an API that represents the contributors of each open source
applications, so using this API we were able to collect the number of contributors,
saving the value in the database table of projects information. The number of
contributors can be one of the vectors to calculate popularity of an application
by referring to the number of developers that are interested in the contribution in
Kotlin mobile applications . Information about contributors can be fetched using
the url:

api.github.com/repos/<repository-name>/contributors
However requesting the above API returns as a response the list of contributors

that contributed in the project with a set of references to information related to
the contribution. Our interest in this study is to collect the number of contributors
that was calculated by getting the size of the response array where each object
represents different user.

16

https://api.github.com/repos/<repository-name>/Issues
api.github.com/repos/<repository-name>/contributors

2 – Mining of Kotlin Android projects From Github

2.4 Results and Observations

Our main focus is to study the transition of Android applications from Java to
Kotlin, so we started fetching for projects that have "Kotlin" as a language on
GitHub Android repositories. We included only Android applications that are
updated by adding the language Kotlin or applications created recently and using
Kotlin.

For this reason we can see in the results provided in this section that the numbers
increased in a rapid way with respect to the statistics of the same set of applications.

While fetching and filtering the data about repositories, we saved the number
of projects that passed successfully the filters in a local text file and in figure 2.3,
we see the number of projects included in our study after each step of filtering
procedure.

After collecting all the needed information, we developed a Java class that
downloads the list of Kotlin mobile applications that will be used to calculate the
matrices containing more specific details about the existence of Kotlin programming
patterns inside the applications, and to study the usage of the new Kotlin features.
For applications that are without any tagged release, we downloaded the branch
master, assuming that it represents the last release of the application. Repositories
from GitHub were cloned using the Curl command bellow:

1 c u r l −L −o <f i l e −name>. z ip http :// github . com/<current_repos >/z i p b a l l /
master /

17

2 – Mining of Kotlin Android projects From Github

Figure 2.3: Number of GitHub repositories after each step of filtering

Applications Releases

In this section we defined two different sets of releases depending on release date.
Figure 2.4 shows the number of releases before October 2017, which represents a
smaller set of releases with respect to the set of releases after October 2017 :

18

2 – Mining of Kotlin Android projects From Github

Figure 2.4: Number of Releases With Respect to date before the official announce-
ment of Kotlin as alternative to the standard Java compiler

Figure 2.5: Number of Releases With Respect to date after the official announce-
ment of Kotlin as alternative to the standard Java compiler

We can see from the two figures(2.4 and 2.5) that the number of tagged releases
of Android mobile applications is increasing so fast with respect to the number of
applications that are released in the same period. The number of tagged releases
between October and December 2019 was around 1000 release per month, while in
the same period in 2016, the average was around 200 release per month.

19

2 – Mining of Kotlin Android projects From Github

Applications Set Num Apps Average stars
ZERO Issues 35,875 3

Num Issues <= 10 3,546 63
10 < Num Issues <100 451 675
Num Issues >= 100 30 3147

Table 2.2: Applications sets according to number of issues

In table 2.2, we see four different sets of applications while to total number
of stars for all applications is 713,171 and the total number of issues found on
GitHub API was 29,296 we see that only 4,027 applications used issues as a way
to track tasks and share bugs on GitHub interface. And as we can see that most
applications has less than ten issues. on the other hand, the percentage of stars was
calculated with respect to the number of applications in the set, We can notice that
the increase in the number of issues reflects a remarkable increase in the average
of stars of repositories. The average of stars on the set of applications with more
than 100 issues(3,147) is 4 times greater than the average of stars on the set of
repositories with issues between 10 and 100(675).

Applications Set Num Apps Average stars
ZERO Releases 36,027 7

Number Releases <= 10 3,173 69
Number Releases >10 561 450

Table 2.3: Number of stars with respect to number of releases

We divided the list of mobile applications into three different sets. One set with
applications without any released tag, while for released applications we a set for
applications with less than 10 releases and a another for all other projects with
number of releases > 10. as we can see in table 2.3, we can see the number of
applications on three sets with respect to the number of releases. Using the data
collected from GitHub API we calculated the average number of stars with respect
to the number of applications in each set as we can see in the second column.

20

2 – Mining of Kotlin Android projects From Github

Figure 2.6: Sum of stars with respect to last release date

In figure 2.6, we divided applications according to the month of the last release,
and then calculated the sum of starts for application released in the same month,
as a way to show number of stars according to last release date.

The increase in the number of contributors of an application using ’Kotlin’
language shows that the language is more known between developers. GitHub
provided a tool to show the history of contributions in a project using a graph that
shows the number of contributors to master branch excluding merge and empty
commits. Graphs ?? and 2.8, show for a sample applications the contributions
with respect to the date for some sample applications with high number of releases
as for applications with high number of contributors.

"SubwayTooter"[20] is the application with highest number of tagged releases(399
releases) in the filtered list we have as output after the inclusion and exclusion
criteria we followed. Graph 2.7 , we see the number of commits done by 25
contributors between April 2017 and February 2020.

Figure 2.7: SubwayTooter Commits by contributors with respect to time

On the other hand,"susi_Android" is the application with the highest number of

21

2 – Mining of Kotlin Android projects From Github

contributors(142) in our filtered list with nine tagged releases. we see in graph 2.8,
the change in the number of commits by all the project contributors with respect
to time.

Figure 2.8: susi_Android Commits by contributors with respect to time

Git repository hosting service GitHub represents to developers, in an analogical
manner, what social media platform Instagram does to its target audience,like
photographers. A developer on GitHub follows issues searching for solution for bugs
as for solving the bugs in other projects. Using the same sets of applications used in
table 2.2, divided according to the number of issues, we calculated the percentage
of contributors and the percentage with respect to the number of contributors on
all projects.

Applications Set Num Contributors % Contributors
ZERO Issues 41,235 ∼77.5%

Num Issues <= 10 6,396 ∼12%
10 <Num Issues <100 4,147 ∼7.8%
Num Issues >= 100 1,454 ∼2.7%

Table 2.4: Contributors sets according to number of issues

As a result from the database data, we can see in table 2.4 that the increase
in the percentage of contributors in mobile applications reflects a decrease in the
number of issues and vice versa.

22

Chapter 3

Kotlin Development
Practices

In this chapter, we are going to calculate for each project in the output list of Kotlin
Android mobile applications of chapter 2, the percentage of Kotlin code and the
usage of Kotlin development practices. Kotlin introduced some additional features
so that fewer lines of code can have the same functionality of Java functions. Some
of these features are data classes, nullability, mandatory casts and long argument
lists. Using the line oriented search tool ripgrep [21], we developed a python class
that recursively searches directories for a regular expression pattern. Parsing the
list of all downloaded applications, we defined a list of regex, to search the existence
of operators that represent the new features of Kotlin. We defined a set of rules to
study the usage of the new featues by Kotlin developers. In figure 3.1, we can see
the steps of parsing applications data using the tools (cloc and ripgrep), Starting
from the list of downloaded applications from github.

23

3 – Kotlin Development Practices

Figure 3.1: Procedure to Answer Research Questions

Using CLOC tool[22], we are going to divide applications into 4 different sets
according to the percentage of Kotlin code. In figure 3.2, we can see the structure of
the database table used to save collected data. In this table we assigned application
name as Id so no Duplication of applications with same name may happen.

Figure 3.2: Database table of Cloc Statistics

24

3 – Kotlin Development Practices

3.1 Data Classes
Data classes are containers of data, same as classes in Java with the reduction of a
lot of boilerplate that Java forces developers to generate. Developers end up with
a code that is easier to understand and to maintain. Developing a simple Java
application may need some classes to be involved, where for each class developers
must define class fields, then for each property we need getters and setters with
some additional methods to be employed like ’equals’ and ’hashCode’. Kotlin
replaces classes by a more simple feature called ’Data class’, where properties
are declared in the constructor and the compiler is able to auto generate all the
boilerplate code.

Java vs Kotlin classes

Bellow we can see the comparison between Java classes with all the boilerplate
code and a simple Kotlin data class that have exactly the same functionality but
with the reduction in lines of code.

1 pub l i c c l a s s Person {
2 pr i va t e S t r ing name ;
3

4 pub l i c S t r ing getName () {
5 re turn name ;
6 }
7 pub l i c void setName (St r ing name) {
8 t h i s . name = name ;
9 }

10

11 @Override pub l i c boolean equa l s (Object o) { . . . }
12

13 @Override pub l i c i n t hashCode () { . . . }
14

15 @Override pub l i c S t r ing toS t r i ng () {
16 re turn " Person {" name= " + name + " } " ;
17 }
18 }

In Kotlin all the declared functions in the example are generated automatically
by the compiler, bellow we can see the a sample of a Kotlin data class, where in
one line we can have the same functionality as a long Java class:

1 data c l a s s Person (var name : S t r ing)

25

3 – Kotlin Development Practices

The compiler in Kotlin automatically generate functions of the properties that
are defined inside the constructor, while properties outside the constructor are
excluded from the generated implementation. In the example bellow we can see a
data class generation with as the above example adding a new parameter outside the
constructor. So property ’age’ is excluded from the automatic generated functions,
while ’name’ can be used inside the toString(), equals(), hashCode(), and copy()
implementations.

1 data c l a s s Person (va l name : S t r ing) {
2 var age : Int = 0
3 }

3.2 Nullability

Null values in Java programming context used to represent the absence of a result,
and it is different from 0 or blank. The ability to accept null values is referred by
Nullability. Null values may lead to NullPointerException in case of lack of null
checks. Instead of checking null values for every value,Java 8 introduced a new
class, "Optional" class is a container object used to represent null with absent value.
This class added a new way to handle null values using ’available’ or ’not available’.

Kotlin aimed to eliminate NPE’s from our code. The type system recognizes
nullable references for non-null references. Kotlin introduced a way to deal with
null values, developers can decide to allow null values by declaring variables as we
can see in table 3.1 [23].

26

3 – Kotlin Development Practices

Declaration Notes
var b: String? = "abc"
b = null
val l = b.length

Variable ’b’ can be null
when "?" is used

var a: String = "abc"
a = null

assigning null to variable ’a’
leads to compilation error

val a = "Kotlin"
println(a?.length)

Unnecessary safe call (a?.length)
a cannot be null

val b: String? = null
println(b?.length)

Safe calls is used when variable accepts null as a value.
They are useful with chains

val l = b?.length ?: -1 Elvis Operator "?:"
set default value if the variable is null value

val l = b!!.length Operator (!!) converts any value to a non-null
type and throws an exception if the value is null.

val a: Int? = a as? Int safe casts "as?" :
return null if the attempt was not successful

Table 3.1: Null Safety in Kotlin programming language

3.3 Mandatory Casts
Type safety is a method provided by programming languages to guarantee that a
type mismatch between a variable and a value that is stored may not lead to an
issue. To enforce type safety in Java, the class tag of the object must be controlled
before every operation on the object. This will help make sure the object’s class
allows the operation. Valid values are verified at run-time before being stored in
variables. Kotlin introduced new ways to perform type checks and casts, to ensure
type safety of operations by involving generics at compile time. While at run time
generic types hold no information about their actual type. Casting is necessary
in programming world, Kotlin accepts the challenge by introducing nicer ways
for type checks and to cast variables facing the issue of the wrong casts could be
accepted by the compiler and result an exception in runtime as in Java.

’is’ and ’!is’ Operators

A developer can check if an object accepts a given type at run-time by using the ’is’
operator or its negated form ’!is’. This operators can be used as smart cast where
it automatically casts the object in runtime.

In the example bellow we can see that after checking if the variable x is a String
using ’is’ operator, the variable is automatically cast to string on the right side of
the ’&&’ operator.

27

3 – Kotlin Development Practices

1 i f (x i s S t r ing && x . l ength > 0)
2 pr in t (x . l ength)

Cast operator

Different ways to cast operators are provided in Kotlin, they mentioned a "Safe"
and "Unsafe" cast operators. Since the cast operator throws and exception if the
cast is not possible, Kotlin defined the casting using ’as’ operator as unsafe cast.
In the casting example bellow, the code throws an exception if y is NULL.

1 va l x : S t r ing = y as St r ing

On the other hand, Kotlin programming language provided safe casting using
’as?’ that returns null in case of casting failure. Using this feature, programmers
can avoid casting exceptions. In the example bellow we see the usage of the safe
cast operator, However if y has a non null type, the result of the cast is nullable.

1 va l x : S t r ing ? = y as ? St r ing

3.4 Argument Lists
One of the challenges that face every programming is dealing with functions that
should have a variable number of parameters, some cases in Android applications, for
example the execute(Params... params) function from AsyncTask or the function
printf(String format, Obj... args). Kotlin provides defining a parameter of a
function as vararg. Vararg can take n number of parameters where the value of n
can be decided at run-time.

1 fun format (format : Str ing , vararg args : Any)

However, Kotlin adopts different solutions to deal with functions with long
argument list, these features make the code more readable and flexible. First,
Default arguments, so that function parameters can have default values to avoid
null or empty parameters value during run-time. In the function bellow the value
of the Int ’bar’ is set by default to 0, on the other hand, no default value for the
variable ’baz’.[24]

28

3 – Kotlin Development Practices

1 fun foo (bar : Int = 0 , baz : Int) { / ∗ . . . ∗ / }

Named arguments is another way to deal with long argument lists, so that function
parameters can be named when calling functions. This is very convenient when a
function has a high number of parameters or default ones.[24]

1 fun re format (s t r : Str ing ,
2 normal izeCase : Boolean = true ,
3 upperCaseF i r s tLet te r : Boolean = true ,
4 divideByCamelHumps : Boolean = f a l s e ,
5 wordSeparator : Char = ’ ’) { / ∗ . . . ∗ / }

In the above function we can see a function with named parameters provided with
default value, while the only parameter without a default value is str.

3.5 Code Inspection

In this section we are going to inspect the list of downloaded projects, searching
for code patterns related to Kotlin programming language and saving all the
information in the database table 3.3.

Figure 3.3: Database table of Ripgrep Statistics

29

3 – Kotlin Development Practices

3.5.1 Inspection Tools
To Inspect the list of projects we developed a python script that path into list of
directories, then using the following tools we were able to calculate the data needed
in our study.

Regular Expressions

A regular expression is a sequence of characters that define a search pattern. We
used regex to inspect Kotlin programming patterns that were introduced in this
chapter. We defined for each of the practices a Regular Expression according to
the programming syntax.

Practices Regular Expression
Data Classes data\sclass
Safe Calls \?\.

Safe Casting \sas\?\s
Unsafe Casting \sas\s
Default Values
(accepts null) .+\s?:\s?.+\?\s=\s?.+

Operator(!!) !!
Argument Lists vararg

Table 3.2: Regular expressions represent the Kotlin practices patterns

In table 3.2, for each practice we defined the syntax pattern of the operators, for
mandatory casts we will search the ’safe’(as?) and ’unsafe’(as) casting as defined
by Kotlin documentation. In Kotlin variable initialization, developer can decide
if the variable can accept null value or not. We used the pattern(<declaration>
: [Type]? = <value>) , to search the number of declarations of variables that
accepts null. The not-null assertion operator (!!) converts any value to a non-null
type and throws an exception if the value is null. Functions with Kotlin can accept
variable number of parameters, using the new feature ’vararg’, where the number
of parameters is decided at run-time. Data classes is one of the most important
practices with the advantages of reducing the number of lines and complexity of
the code. We search the occurrences of all patterns inside all the downloaded
applications to see how frequently developers are using the new practices of Kotlin.

Count Lines of code

’CLOC’[22] is a tool used to count blank lines, comment lines, and physical lines of
source code inside a directory tree of a project in many programming languages.

30

3 – Kotlin Development Practices

Using cloc, starting from the list of downlaoded application, we calculated the
number of Kotlin code and files as for Java files and line of code with the average
of Kotlin code. Bellow is the of cloc with a ’JSON’ formatted output :

1 > c l o c <dir −name> −−j s on −−out="<output− f i l e >. j son "
2 > Json output sample :
3 "<language >" : {
4 " n F i l e s " : number ,
5 " blank " : number ,
6 " comment " : number ,
7 " code " : number } ,

ripgrep

’ripgrep’[21] is a line-oriented search tool used to search for regular expression
pattern inside a directory, and all hidden files and files listed in .gitignore are
skipped. We used rigrep to search the regular expressions of Kotlin operators and
study the usage of these operators with the mobile applications.

3.6 Research Questions and Metrics
In this section, we will define the three Research Questions to pursue the goal of
our study. After inspecting and collecting all the information about lines of code
of each of the mobile applications in our data set, we calculated the metrics of the
research questions:

3.6.1 Diffusion
Diffusion is used to calculate the adoption of Kotlin on Android applications on
GitHub. For all the Kotlin applications in our data set, we supposed that master
branch is the last release of the application to make the study on a stable branch.
To calculate the diffusion of Kotlin applications we defined the metrics bellow:

Kotlin Relative Lines of code

KRL is the number of Kotlin lines code over the total amount of production LOCs
of the project(*.Java + *.kt).

KRL = CountKotlinLOCs/TotalNumberOfLOCsKotlin+Java (3.1)

31

3 – Kotlin Development Practices

Kotlin Relative Files

KRF is the average of Kotlin files in all mobile applications with respect to the
total number of production code files.

KRF = CountKotlinF iles/TotalNumberOfFilesKotlin+Java (3.2)

Kotlin Featuring Projects Ratio

KFPR is the ratio of production projects of a set featuring at least a Kotlin file. In
our list of applications, we fetched only Kotlin Android applications updated after
October 2017, so we expected that almost all applications contains at least one
Kotlin file.

KFPR = ProjectsCountKotlinF iles>=1/TotalNumberOfApplications (3.3)

Kotlin-Majority Projects Ratio

KMPR calculated the ratio of applications with majority of Kotlin LOCs over the
total count of applications. The Kotlin-Majority Projects are the projects with
number of Kotlin LOCs greater than number of Java LOCs.

3.6.2 Evolution
To study the evolution of mobile applications, we defined a list of metrics that
depends on the different releases of the applications. This section of our study will
use only applications with more than two releases to calculate the statistics, so that
only 1,793 applications out of 33,267 will be involved. We calculated for different
releases of each application the number of LOCs and files of both Kotlin and Java
programming languages.

Kotlin Adoption Relative Releases

KAR is the ratio of tagged releases that featured less than 50% of Kotlin code.

NumberofReleases = ReleasesKotlinCode/T otalNumberOfproductioncode < 0.5 (3.4)

KAR = NumberOfReleases3.4/TotalNumberOfReleases (3.5)

first we calculate the ratio of usage of Kotlin code over the total number of
production code as in diffusion metric KRL. then using the number of releases3.4
over the total number of releases we can obtain the KAR.

32

3 – Kotlin Development Practices

Kotlin Majority Relative Releases

KMR is the number of tagged releases with majority of Kotlin code over total
number of production code lines (Java + Kotlin). First using the percentage of
Kotlin code, we selected releases with Kotlin percentage greater than 50%.

NumberofReleases = ReleasesKotlinCode/T otalNumberOfproductioncode > 0.5 (3.6)

KMR = NumberOfReleases??/TotalNumberOfReleases (3.7)

Only Kotlin Relative Releases

KOR are the releases with 100% of Kotlin code, without any line of code. For
application releases created after October 2017 with an initial language as Kotlin
are expected to be Java free. To calculate the result of KOR, we searched the
number of pure Kotlin applications then divided the result over the total number
of releases.

KOR = NumberOfReleases%Kotlin=100/TotalNumberOfReleases (3.8)

3.6.3 Popularity
Popularity of applications is calculated by number of users, while popularity
of programming language in our study is measured using the relation between
the collected information about repositories and the percentage of Kotlin code in
Android applications using Kotlin at least once. To solve the third research question
if development with Kotlin have an influence on the success of released applications
we sought a combination between results of mining and parsing repositories.

3.7 Related Work
With the revolution of Android mobile applications, many studies were done to
study and characterize the transition to Kotlin of Android Apps.

Coppola et al.[article:KotlinToJava], Analyzed a set of open-source Android
applications on F-Droid, Play Store, and GitHub. The objective of the study was
to evaluate the transition of this applications to Kotlin throughout their lifespan.
They started by mining projects from F-Droid and connecting the results with
Google Play Store. On a set of 1,232 projects, researchers collaborating in the cited
study, defined a set of eight metrics based on the diffusion, evolution and popularity
of applications. Coppola stated that near 20% of applications adopted Kotlin, and
12% with a majority of Kotlin over Java code. Most applications adopted Kotlin,

33

3 – Kotlin Development Practices

had a quick transition to Kotlin and projects featuring the new language had a
higher average of popularity metrics according to the occurrence of Kotlin and
number of stars on GitHub repositories.

Kotlin seems able to guarantee a seamless migration from Java for Android
developers. Coppola et al.[article:KotlinToJava] concluded with "the adoption of
the Kotlin language is rapid (when compared to the average lifespan of an Android
project) and seems to come at no cost in terms of popularity among the users and
other developers"

3.8 Results
In this section we answer the research questions of this chapter, with the combination
with the results of data mining.

3.8.1 RQ1: Diffusion
To calculate the diffusion metrics, we measured the percentage of Kotlin for all
downloaded applications(33,267), taking into consideration that the list of empty
repositories and duplicated applications was excluded. As a result we were able to
do the study on around 33,267 application according to the version of code base
collected in the end of December 2019. Starting from the data in the database table
in Figure 3.2, we were able using a set of queries to calculate the diffusion metric.
In Table ?? we can see an example of some applications with Kotlin Relative lines
of code and Kotlin Relative Files, In addition to the number of issues,contributors
and stars of the application.

Application KRL KRF Issues Contributors Stars
gobAndroid 0.88 0.79 62 9 171
and-bible 0.78 0.41 136 10 210

DroidPersianCalendar 0.69 0.74 50 25 376
Put.io 0.76 0.66 15 10 133
libaums 0.5 0.69 24 10 592

Heimdall.droid 0.46 0.52 2 9 242
plaid 0.62 0.8 72 63 14953
Tusky 0.53 0.72 154 111 814

OpenLinkWith 0.55 0.68 10 2 127
SurvivalManual 1 1 35 4 436

Table 3.3: KRL and KRF on Sample Set of Application

34

3 – Kotlin Development Practices

Kotlin-featuring Projects Ratio

For the list of projects mined from github, it was expected that most of projects
feature at least one Kotlin file, since the filter of Kotlin language was used during
the study.

We find that 33,212 out of 33,267 applications(99.8%) of applications in our
data set feature at least on Kotlin file in the master branch on GitHub. While the
existence of this applications that without any Kotlin file while fetching data from
GitHub could be either because Kotlin was used in previous releases or it will be
integrated in future release.

Kotlin-Majority Projects Ratio

To measure the ratio of applications with the majority of Kotlin with respect
to production files, we used as input the result of KRF, then selecting only the
applications with KRF>=0.5, so that the percentage of Kotlin files inside the
application is greater than 50%. On the same set of applications mined from github,
using a query we found that 32,877(98.83%) applications out of 33,267 are featuring
majority of Kotlin files with respect to production files (Java + Kotlin).

3.8.2 Evolution
To measure the evolution of Android releases, and because of the time needed to
calculate LOCs of all releases, we used a sample of 488 applications with a tagged
release before October 2017 as a reference that the initial language of the project
was Java.

Kotlin Adoption relative releases: We found that 19/458(4%) tagged release
featured less than 50% of Kotlin code including releases with only Java. This means
that these applications changed a small part of the base code from Java to Kotlin
during the period between October 2017 and release date.

Kotlin Majority relative releases: To calculate KMR, we searched the
releases with a majority of Kotlin code with respect to the production code, we got
as an output that 207 releases used a majority of Kotlin with the existence of some
Java LOCs. Based on the result over the total number of release included in the
study we found that KMR = 252/458 (55%). Which means more than half the
applications are still using Java in applications after more than two years of the
official release of Kotlin.

Only Kotlin Relative releases Converting all source files from Java to Kotlin
is a tool supported by google and can be used on Android studio. This tool may lead
to some bugs, and must be checked after conversation. Many Android applications
converts the base code from Java to Kotlin with the removal of all Java lines of
code from the production code of the applications. We searched the releases with

35

3 – Kotlin Development Practices

100% of Kotlin lines code, and we found that 186 releases are featuring only Kotlin.
So that KOR = 186/458 (41%).

3.8.3 Popularity
To measure the popularity of applications, we defined three parameters that
indicates the usage and followers of a GitHub open-source application. First, The
increase in the number of contributors of an application indicates that developers
are contributing more with the applications featuring Kotlin which is a sign of
popularity between programmers. Second parameter is the number of stars, which
is the number of users that liked the repository on github platform. The third
parameter is the number of issues, that is an important feature of popularity of
an application, so that the increase in the number of issues indicates that the
application developers team is tracking tasks, improvements and bugs continuously.

Kotlin Perctage 0-25% 25-50% 50-75% 75-100% Total
Number of Applications 34 121 1,820 31,292 33,267

AVG Contributors 1.7 1.6 1.9 1.3 1.6
AVG Issues 34.8 0.8 2 0.6 9.5
AVG Stars 36.7 30 61.3 15.8 36

Table 3.4: Distribution of Contributors,Issues and Stars with respect to percentage
of Kotlin

In table 3.4, the average of Contributors,Issues and Stars is calculated with
respect to the number of applications of the set, while the last column represents
the average number of applications,Contributors,Issues and Stars that is used as a
threshold to measure popularity. The percentage was calculated using the following
formula.

AV G(Contributors) = SUM(Contributors)/NumberOfApplications (3.9)

AV G(Issues) = SUM(Issues)/NumberOfApplications (3.10)

AV G(Stars) = SUM(Stars)/NumberOfApplications (3.11)
we concluded that for applications with percentage of Kotlin greater than 75%

, the parameters of popularity we used in this section are under the threshold,
due to the high number of applications, where around 95% of application in our
list belong to this set of applications. On the other hand, surprisingly we found
that for applications with percentage of Kotlin below 25% have the average of
Contributors,Issues and Stars is so high with respect to the threshold value.

36

3 – Kotlin Development Practices

3.8.4 Code Inspection
In this section we solve the main question of the chapter about the usage of Kotlin
development practices in Android applications that are featuring at least one Kotlin
file. To solve this question we used ripgrep [21] tool in a python script 3.8.4,
that was able to fetch Kotlin files of all the applications searching for the regular
expressions defined in table 3.2. All the data collected was saved in a database
table 3.3. Then Querying the dataset we were able to calculate the statistics with
respect to the percentage of Kotlin used in applications.

1 cmd = " rg −−count \ ’ " + s t r (regex) + "\ ’ −z " + os . path . j o i n (
apps_path , d)

2 proc = await async io . c r ea te_subproce s s_she l l (
3 cmd ,
4 stdout=async io . subproces s . PIPE ,
5 s t d e r r=async io . subproces s . PIPE)
6

7 stdout , s t d e r r = await proc . communicate ()

We calculated the average usage of Kotlin practices over the full set of applica-
tions. We found that 17,029 out of 33,267 applications(51%) are not using data
classes, while for the other 16238 applications, measuring the sum of data classes
over the number of applications with at least one declaration of the "data class"
resulted a 6.8 data class per application.

While fetching for mandatory casting, we fetched projects to find safe and unsafe
casts, to see how often developers are using safe casting. We found that Android
Kotlin developers are not using the recommended safe casting as expected which
returns null in case of failure, 29,693 of the applications (89%) are not using safe
casting (as?) which is a very high percentage with respect to the importance of the
feature. On the other hand, unsafe casts "as" were used in 23,617 (71%) so that in
case of failure , the cast operator throws an exception.

As Defined in section 3.5.1, (!!) operator returns NPE in case the value to be
converted has a null value, We fetched all the applications source code searching
for the (!!) operator. We found that 14457 applications (43.5%) out of the all the
set of applications are not using Null assertion operator.

Kotlin solved to long argument lists issues by introducing "vararg" to deal with
functions with variable number of arguments. The usage of vararg was not as
expected taking into consideration the importance of this feature. We Found that
85% of the applications (28,302) are not integrating "vararg" into applications.

For the feature of nullability we considered two types of code practice. First,
Variables with default values when declared with the "?" operator after the type

37

3 – Kotlin Development Practices

of the variable, means that the variable accepts null as a value, we fetched using
the regular expression that represents the declaration of a variable with default
value(e.g. var b:String? ="abc"). 18,206 (54.7%) of the applications initialized
variables using the format given in the first row in table 3.1.

Second type of declaration is the safe calls (e.g. b?.length), which is useful with
chains when some variables accepts null as a value. On the other hand, safe calls
might be unnecessary for variables that cannot be null. The usage of safe calls
in applications was interesting, where 70.4% of the applications used safe calls at
least once in applications.

To finish the part of the study on the full set of application, we searched the
applications that are not using any of the Kotlin features in the source code. We
found that 5,022 (15%) applications are missing all the features discussed in this
chapter, which is an interesting percentage on a set of applications that is using
Kotlin as a main language for Android mobile applications development. In figure
3.4, we can see the distribution of the usage of Kotlin features on the full set of
applications. Where the y-axis represents the number of applications using the
practice over the total number of applications.

Figure 3.4: Distribution of Kotlin practices usage on the full set of applications

We concluded that practices like vararg and safe casts are present in a small set
of applications, where practices like Unsafe casts are used in most applications. We

38

3 – Kotlin Development Practices

were expecting higher percentage of usage of the practices due to the advantages of
each of them.

To measure the usage of the practices with respect to the percentage of Kotlin
within the production code, using a list of queries to join the datasets of Lines of
code and code pattern usage. We can see in the figure 3.5 ?? the results on four
different sets of applications according to the percentage of Kotlin calculated in
previous section.

In figure 3.5, On a set of 32 applications we can see the average of applications
using Kotlin feature, 12 applications used data class at least one time in the base
code of application, 18 application used safe calls,9 applications used vararg for a
variable number of arguments of a function, 19 applications used Null assertion
operator. Indeed, variables with default values were declared in 21 applications
and Unsafe casts in 23 applications, while safe casting was found only in two of
the applications in the same set. Both variables accepting null and unsafe casting
may lead to a null result which may be as ignoring nullability feature provided
by Kotlin. 8 out of 32 applications (25%) are not using any of the defined Kotlin
practices.

Figure 3.5: Usage of Kotlin practices on applications with %Kotlin < 25

In figure 3.6, Out of 112 applications, 47 applications used data class at least one
time in the base code of application,22 applications used vararg, 65 applications
used Null assertion operator which may return NPE, 90 applications used safe calls.
Indeed, variables with default values were declared in 89 different applications and
Unsafe casts in 82 applications, while safe casting was found only in 12 of the
applications. 10.7% of the applications(12/112) are not using any of the defined
Kotlin practices.

39

3 – Kotlin Development Practices

Figure 3.6: Usage of Kotlin practices on applications with Kotlin LOCs between
25 and 50%

In figure 3.7, Out of 1,448 applications, we found the usage of unsafe casting
and variables accepting null in around 75% of the applications in this set. While
the usage of safe calls was found in 1050 applications, and Null assertion operator
in 974 applications. On the other hand we can still see than less than 50% of the
applications are using the other practices. Data Class(622), Argument lists (333)
and safe cast(210).

Figure 3.7: Usage of Kotlin practices on applications with Kotlin LOCs between
50 and 75%

40

3 – Kotlin Development Practices

The last set of applications is presented in Figure 3.8. It the set with the highest
number of applications, 24,701 out of 30,852 has 100% of Kotlin code in the last
release of the application. 15,017 used data classes, 21529 used safe calls and 17091
of the applications used null assertion operator at least once inside the application.
However, Variables accepting null and unsafe casting were found in 20,265 and
21,695 respectively. Safe casts(3186) and argument lists(4358) having the lowest
percentage of usage as in all the other sets.

Figure 3.8: Usage of Kotlin practices on applications with more than 75% of
Kotlin LOCs

Nullability was introduced to reduce Null Pointer Exceptions while the null
assertion operator throws an exception if the value is null. The usage of (!!)
operator occurred in more than half of the applications, which is a high percentage
for an operator that might throw an exception. Safe casts were provided to reduce
exceptions when variables have a null value. From the results we concluded that
developers are declaring variables that accepts null values without using safe casting
(as?) to reduce the exceptions. As the higher percentage of casting was done using
the unsafe method(as).

41

Chapter 4

Code Quality analysis

4.1 Code Quality Overview
The Quality of a software is important for development teams as for individual
developers. It reduces the cost of production by saving time and resources. Improv-
ing the quality of applications, makes it easier to collaborate between developers,
fix bugs, re-use same functions in different applications so a better productivity is
achieved. No single definition of code quality exists. It is all subjective, so that
different developers and tools may have different definitions related to good/bad
code based on the context. I.e. High quality code for a front end developer may be
different with back end developer perspective.

For open source applications, quality of the code may be analyzed depending on
code complexity. High quality code should be easy to read and modify by different
contributors. However, every individual of the development team is responsible of
the software quality. Improving the quality of applications can be done by following
a consistent style, with a well documentation. According to a Richard Bellairs[25]
,the key aspects to follow for a higher quality code are:

Reliability

Reliable code means something is dependable and that it will give the same outcome
every time.

Reliability testing checks whether the software can perform without failure over
a specific operation for a specified period of time,so that software availability is
calculated using the average time between failures.

To measure the probability of failure the formula bellow is used:

Probability = NumberOfFailingCases/TotalNumberOfCases (4.1)

42

4 – Code Quality analysis

Maintainability

Maintainability measures how easily software can be maintained, it depends on
the readability and consistency of the code base. It is inversely proportional to
the amount of time to upgrade a code and the risk of errors after the update.
However, maintainability is proportional to the testability and understandability
of applications.

Mathematically, to measure maintainability of a code the following formula is
used

Maintainability = TIMEImplementation/RISK (4.2)

Testability

Testability in code quality analysis depends on the effort and effectiveness of the
software. It is fully depending on numerous factors, it relies on how developers can
control, observe, isolate and automate testing among various list of factors such as.

• Test cases.

• Software requirements

• Software properties (size, complexity ..)

Portability

Portability is the main key for development cost reduction, so that the same
software can be used with different environments. There is no specific measure
of portability. However, to ensure that a software is portable, developers have to
regularly test the code on different platforms, rather than waiting software release.
Using high compiler warning level with the enforcement of coding standard may
help to have a portable software.

Reusability

Reusability is the usage of the same code to build new software applications. It is
measured by the number of interdependencies, that can be identified using a static
analyzer. In terms of development cost, code reusabulity can help developing teams
to save time by using the same functions with some updates if needed. Reusing
code often proves to be difficult, so that developers may prefer starting building
software from scratch or only reuse a small fraction of existing code in new projects.
This is because of code complexity and low quality software available.

43

4 – Code Quality analysis

4.2 Code Quality Metrics
To ensure the high quality of a software, developers might use various code quality
metrics. In this section we discuss popular code quality metrics that can be used
for the maintainability of the source code throughout the entire development life
cycle.

4.2.1 Complexity metrics
The increase in the possibilities of paths of execution results a more complex
program, so full tests, maintenance and understanding of software code becomes
harder. So that the metrics defined in this section helps to estimate the complexity
of applications

CC - McCabe’s Cyclomatic Complexity

A software metric developed by T.J MaCabe[26] , used to measure the complexity
of a program. It is based on independent paths in the code of a program. McCabe’s
CC can be measured in terms of functions, modules, methods or classes within a
program. The code complexity is calculated by counting the number of execution
paths based on the flow graph. Flow graph is composed of nodes and edges, so that
a node represents a code block and edges represent the control flow between nodes.

Mathematically, the Cyclomatic complexity of the program can be defined
using the formula where E,N and P are the number of edges, nodes and predicate
nodes(nodes with conditions) respectively.

V (G) = E − N + 2 (4.3)

V (G) = P + 1 (4.4)

NOM - Number Of Methods

Number Of Methods metric is used to measure the complexity of a class by
counting the number of methods in that class. The number of metrics is inversely
proportional to the maintainability of a code, so that the higher the value of the
metric, the lower the maintainability of the code. As sub metrics of NOM, we can
discuss some special cases like: NPM - the number of public methods which is the
count of public methods inside a given class so it can be used to measure the size
of an API provided by a package. STAT - the count of statements inside a method.

44

4 – Code Quality analysis

NOC - Number Of Classes

Number of classes metrics measures the number immediate descendants of the class
inside application package by computing the occurrences of classes.

WMC - Weighted Method Count

In 1994, Chidamber and Kemerer introduced the Weighted Method Count metric.
that summation of the complexity of all class methods implemented in the analyze
code. WMC metric depends on number of methods over the number of classes with
the number of independent paths. To compute the average of weighted method
count, the following formula is used:

WMC = (NOM/NOC) ∗ #paths (4.5)

4.2.2 Dimensional Metrics
The purpose of dimensional metrics in code quality analysis is to measure the
quality of software in terms of code sizes. Applications with large code base size
may provide different features. On the other hand, the probability of complexity
and bugs might be higher. dimensional metrics is based on the following metrics:

CHANGE - Number of lines changed in the class

CHANGE metric measures how many LOCs changes between two different versions
of the same class of code. So it is not possible to compute this type of metrics
on a single version of an application. CHANGE metric is usually used to analyze
the evolution of applications. Classes with continuous modifications between
versions may be a sign that the class is hardly maintainable. Change in a class
includes addition, deletion and modification of LOCs. However, the computation
of CHANGE in a evolution study usually excludes comments and blanks.

IPM - Instructions per Method

This metric is computed by the proportion between the total number of instructions
(i.e., NBI) and the total number of methods (i.e., NOM) where NBI is a metric
that counts the total number of byte-code instructions, ignoring comment lines
and blank lines, and NOM is the number of methods metric defined before. The
following formula is used to compute IPM metric:

IPM = NBI/NOM (4.6)

45

4 – Code Quality analysis

4.3 Code Quality Popular Tools
Kotlin is a new programming language with respect to other languages like Java.
Tools to measure the code quality metrics can be found easily for the popularity
and fame of Java. On the other hand, code quality of Kotlin applications may be
harder to find. However, the existence of tools for Object Oriented programming
languages made it easier. In this section we discuss different popular tools used to
measure the quality of both Kotlin and Java. Some special cases for popular tool
that is used to measure the quality of Kotlin applications is also defined.

4.3.1 SonarSource
SonarQube

SonarQube empowers all developers to write cleaner and safer code. It is a tool
that covers more than 25 different programming languages(Java, Kotlin,swift,js ,
etc.). SonarQube is an open source tool, produced by SonarSource so that using
static analysis, a developer can measure Reliability, Security and Maintainability
of all the languages used in the application. SonarQube provides hundreds of static
code analysis rules with a consistent set of metrics.[27] Main features of SonarQube
can be summarized by the following:

• Detect Tricky Issues: such as bugs, code smells, security venerability as
for all execution paths.

• Release Quality Code: Quality Gates tell you at every analysis whether
your code is ready to release.

• Enhance Your Workflow: Non-disruptive code quality checks overlay your
workflow and intelligently promote clean builds.

Code Analyzers

SonarSouce provided a set of code analyzers for different programming languages,
with these code analyzers, its possible to measure deep code metrics by finding
the trickiest and nastiest bugs and quality issues using static code analysis tech-
niques. SonarKotlin and SonarJava provide a static code analyzers that has a great
coverage of well-established quality standards according to the official website of
SonarSource.[28].

4.3.2 UNDERSTAND
UNDERSTAND is a closed source tool used to collect metrics about the code
analysis, without a result the the code is ’good’ or ’bad’. This will leave the choice

46

4 – Code Quality analysis

to developers to decide using the data report that helps the team to interpret what
they think the best for the software. Using command line, graphical interface, or
the API, the result metrics can be extracted. Different metric categories can be
measured using UNDERSTAND code analysis tool:

• Complexity Metrics i.e. CC - McCabe’s Cyclomatic Complexity and
WMC - Weighted Method Count

• Dimensional Metrics : i.e. LOCs - Lines of Code and other metrics
explained in the previous section.

• Object Oriented Metrics : i.e. NOCH - Number of Children , DIT - Depth
of Inheritance Tree.

4.3.3 Codacy
Codacy is a tool that can be used to automate the code quality, it identifies issues
through static code analysis. Codacy is a free tool for open source software, it
notifies users on security issues, code coverage, code duplication and code complexity
on every commit and pull requests. Codacy is a closed source tool that helps to
speed up productivity, so that the focus during development time will be on
programming by keeping technical dept under control. It is a flexible tool and can
be integrated into workflow so it adapts to code review process[29].
As for our study interest was to find tools that supports both Kotlin and Java,
so same standards are followed during code quality analysis. Codacy supports
more than 30 programming languages including Java and Kotlin by providing the
following features:

• High-security standards : Prevent critical issues from affecting applications
by identifying vulnerabilities.

• Code standardization : Ensure that code quality is standardized by apply-
ing code patterns and getting notified on new issues.

• Tailored to developer needs : Save time by highlighting the broken stan-
dards and getting insights on how to solve them.

• Integrated in your workflow : Speed up the process by receiving notifica-
tions as pull request comments or on Slack.

4.3.4 Paprika
Paprika is a code analysis tool that detects different code smells in analysed Android
applications. Paprika supports Object oriented and Android code smells for both

47

4 – Code Quality analysis

Kotlin and Java programming languages. Using the APK, SHA256 of the apk
and without any need to use the source code of the application, Paprika is able
to analyze mobile applications returning as output a csv file for each code smells.
Paprika supports a list of 4 Object Oriented code smells and 13 Android code
smells: [30]

• Object-Oriented code smells:

1. Blob Class (BLOB)
2. Swiss Army Knife (SAK)
3. Long Method (LM)
4. Complex Class (CC)

• Android code smells:

1. Internal Getter/Setter (IGS)
2. Member Ignoring Method (MIM)
3. No Low Memory Resolver (NLMR)
4. Leaking Inner Class (LIC)
5. UI Overdraw (UIO)
6. Invalidate Without Rect (IWR)
7. Heavy AsyncTask (HAS)
8. Heavy Service Start (HSS)
9. Heavy Broadcast Receiver (HBR)
10. Init OnDraw (IOD)
11. Hashmap Usage (HMU)
12. Unsupported Hardware Acceleration (UHA)
13. Bitmap Format Usage (BFU)

However, analysis on Android applications must carefully keep a mix of smells
related to complex/large code components (e.g., BLOB,SAK,LM and CC) as well
as smells related Android application(e.g., NLMR,HAS,HSS,HBR,IOD and UOI).
Kotlin and Java are both Object Oriented languages, we discuss some interesting
object oriented code smells supported by paprika toolkit. In tables 4.1 and 4.2,
we can see some object oriented and Android code smells respectively, with a
short description for each one, the short description represents the reason of the
occurrence of the code smell inside our application.

48

4 – Code Quality analysis

Code Smell Description
BLOB Class(BLOB) A Class with a large number of attributes and/or methods.

Swiss Army Knife(SAK) An Interface with a large number of methods

Long Method(LM) A Method which the number of
instructions is higher to a given threshold.

Complex Class(CC) A Class containing complex methods

Table 4.1: Object Oriented Code Smells

Code Smell Description
No Low Memory Resolver (NLMR) Activities missing onLowMemory() method.

Heavy AsyncTask (HAS) Heavy operations are executed
at the main thread in Async Task.

Heavy Service Start (HSS) Heavy operations are executed
at the main thread in Service.

Heavy Broadcast Receiver (HBR) Presence of heavy or blocking operations
in a broadcast receive.

Init OnDraw (IOD) Allocations are made inside onDraw() routines.
UI Overdraw (UIO) UI design consists of unneeded overlapping layers.

Table 4.2: Android Code Smells

4.4 Experiment Setup

In this section we show the setup of our experiment on a set of applications with
more than two releases, to study the evolution of Android applications from Java
to Kotlin. Using this experiment we will be able to answer the research question
of what is the impact in terms of Quality of Android applications that made the
transition from Java to Kotlin programming language.

4.4.1 Building Dataset of Android Application releases

The first challenge of this experiment was building the set of popular applications
that had the transition from releases using only Java as production code to a release
that is entirely using Kotlin.

49

4 – Code Quality analysis

Figure 4.1: Applications selection for the study

Popular Applications on github

According to data mining in the second chapter, using the number of issues, stars
and contributors of application as a measurement of popularity of an application
so that we calculated a score using the equation bellow for all applications.

Popularity = (Issues + Contributors + Stars)/3 (4.7)

In the equation above, we assumed that the three parameters have the same weight
with respect to popularity and interactions with the repository on GitHub.

We can see in figure 4.2 a sample of the obtained dataset where we can notice
that the number of stars was the key of high score applications:

50

4 – Code Quality analysis

(a) Fig1

(b) Fig2

Figure 4.2: Database table of popular applications

Applications with Transition from Java to Kotlin

The objective of this part of the study is to analyze the transition from Java to
Kotlin applications in terms of code quality, so the study is done on different
releases of applications.

Using CLOC tool, we counted the number of Kotlin and Java lines of code
of all the set of releases of the popular applications mentioned before, so as an
output of we obtained statistics about LOCs, then calculating the percentage of
Kotlin and Java code for each release with respect to the production code helps
to choose different releases of each application. One of the releases should be
with the majority of Java as for the other selection should be with the majority

51

4 – Code Quality analysis

of Kotlin to study the code quality of applications during the two phases. As a
point to start comparing releases, we supposed that tagged releases before October
2017 contains only Java code while new releases are mostly written in Kotlin
programming language.

4.4.2 Analyzing Code Quality metrics
To perform our code quality analysis across Kotlin and Java application releases,
the challenge of this section is to find a tool that is able to compute metrics of
code quality for both languages(Java and Kotlin).

Starting from the set of releases of popular applications, to answer the research
question of this chapter, we measured the quality metrics on every release in the
new dataset that is composed of two releases of each application.

Selection of detecting tool

On a set of 15 applications we used an IntelliJ IDEA and IntelliJ Platform IDEs
plugin called "MetricsReloaded" to calculate and measure code complexity metrics
in Android applications It is applied on the source code of applications and it
covers languages supported by the used IDE.

Our analysis was based on open source applications on GitHub, for this reason we
selected Metrics Reloaded tool for static code analysis. However, the selected tool
might take some time due to the manual work needed to analyze each application
release. In table 4.3, we show an example of the output of McCabe’s Cyclomatic
Complexity metric on a sample application.

Figure 4.3: CC metric applied on an application methods

Metrics Reloaded automates code metrics and offers more than 250 metrics that
can be used by developers for static analysis. In section 4.2 we discussed popular
code quality metrics that are used to maintain the source code during development.

52

4 – Code Quality analysis

For this reason, we measured the code quality of applications of the source code
based on complexity metrics 4.2.1

Data Analysis

To answer the research question of this chapter we measured the code quality
metrics on two different releases of the application. One release with the majority
of Java and the other release with the majority of Kotlin. The comparison between
both releases was necessary to measure the impact of the transition on the code
quality of applications. We applied our analysis on 15 different applications chosen
according to their popularity. We limited our study to 15 applications since, as
it will be shown later, the analysis we carried out is not only computationally
expensive, but also requires manual work on each application release separated.

Firstly, on project level, we measured the average McCabe’s Cyclomatic Com-
plexity(CC) metric. Secondly, on methods level we calculated the total number of
statements in each method(STAT) and the ratio of lines of code for a method to
the lines of code for it’s containing class(RLOC). Finally, based on class level, we
measured weighted Method Count(WMC).

To compare between the code quality of applications, we saved the results of the
calculated metrics of each application as a ".csv" files, then using some queries we
were able to measure the average with respect to all the dataset of applications, and
to compare separately between applications releases before and after the transition
to Kotlin.

Cyclomatic Complexity levels differs between Low Risk Program and Most
complex and highly unstable method according to [website:sourceforge], Where
they considered the value 10 as a threshold between acceptable code(low risk) and
too complex code(higher risk). Other sources considered 15 as a threshold. In our
study, Cyclomatic Complexity scores are categorized into the following levels:

• 1-10 = Low risk program

• 11-20 = Moderate risk

• 21-50 = High risk

• >50 = Most complex and highly unstable method

The Weighted Method Count metric is used as an indicator to how hard is it
to maintain and develop a distinct class. The high value of WMC might be used
as an indicator that the class is application specific and is responsible for more
than one job. While lower WMC indicates a good abstraction. which is the main
objective to handle complexity by hiding unnecessary details from the users. The
threshold of the lower limit is 1, since each class must contain at least one method.

53

4 – Code Quality analysis

While no specific definition for the upper threshold, since it may differ between
applications. We assumed that applications with higher WMC are more complex
and harder to maintain as a reference.

Relative number lines of code (RLOC) measure the ratio of LOCs for a method
over the LOCs of it’s containing class. Higher value of RLOC indicates poor
abstraction. It is expected that recent releases will have higher RLOC because of
the new features added to applications.

Methods with large number of statements indicates that the code is harder to
maintain. From developers point of view it is better to break down large methods
into multiple small and focused methods.

4.5 Experiment Results
In this section we discus the observations as a result of static code analysis on
different releases of applications and the impact of Kotlin on code quality of the
applications.

To study the impact of Kotlin on the dataset of applications, first we started by
comparing the collected metrics for each application release.

Analysis on Java Applications Releases

We started by collecting metrics on Android applications releases using Java as a
main language of production code.

Our results shows that the average of the Cyclomatic Complexity in the set of
applications included in our study is 2.36. While the upper limit of the average of
CC in a single applications was 3.87. Using this results we concluded that based
on the sample application, applications using Java where considered as low risk
programs.

The maintainability of an application is proportional to the average Weighted
Methods Count, so that an applications with high WMC is considered as hard to
maintain. According to our results, the average summation of the complexity of all
class methods implemented in our set of applications was 15.15. While the highest
bound was 33.39 in "App 12". The number of statements in applications methods is
another factor of maintainability. In our analysis we measured the average number
of statements over all methods in each application. We found that over all the set
of Java releases, the average of STAT metric is 5.34 and with an average below 10
in all applications included in our static code analysis.

The average percentage of RLOC over all the set of applications is 4.74%, which
is considered an indicator of the level of abstraction. Low RLOC percentage
represents good abstraction in our set of applications.

54

4 – Code Quality analysis

In table 4.3 we show the detailed results of each application included in our
study based on the releases with the majority of Java over Kotlin code.

Avg(CC) WMC RLOC STAT
App 1 1.83 10.67 5.88 4.53
App 2 1.61 9.99 4.86 2.91
App 3 2.01 13.67 3.59 6.26
App 4 2.12 12.26 4.72 4.25
App 5 2.09 13.77 3.04 4.99
App 6 2.07 12.08 4.8 4.33
App 7 2.15 15.6 4.02 4.05
App 8 2.19 16.7 4.18 5.94
App 9 2.3 19.95 4.29 6.01
App 10 1.85 10.55 5.87 4.08
App 11 3.37 13.83 12.6 6.7
App 12 3.87 33.39 1.19 9.59
App 13 2.37 15.42 5.55 6.61
App 14 3.8 12.3 4.3 6.1
App 15 1.83 16.98 2.35 3.76
Avg 2.36 15.15 4.74 5.34

Table 4.3: Metrics on Applications releases with the majority of Java

Analysis on Kotlin Applications Releases

We applied the same code analysis on the source code of releases with the majority
of Kotlin over Java. We found that the average of Cyclomatic Complexity over
all applications is below 2.0, with 1.25 and 3.3 as lowest and highest limit of the
average CC respectively, which in all cases indicates a low risk programs.

Our results shows that the average of WMC and STAT are 12.04 and 4.85
respectively. This factors will be used later to compare between maintainability of
applications before and after using Kotlin. Finally, the result of RLOC metric is
6.41% , which represents a good abstraction.

In table 4.4, we can see the detailed results of each application included in our
study on the releases using Kotlin as a majority with respect to the production
code. We selected the last release expecting to find the best code quality due to
the modifications after each release.

55

4 – Code Quality analysis

Avg(CC) WMC RLOC(%) STAT
App 1 1.8 8.39 7.83 3.59
App 2 1.66 10.07 4.8 2.98
App 3 2.09 20.14 2.83 7.15
App 4 1.28 4.8 2.53 2.56
App 5 1.25 6.77 7.74 3.01
App 6 1.73 8.71 12.54 4.23
App 7 1.35 7.44 9.63 3.91
App 8 2.3 20.4 2.7 6.8
App 9 2.45 22 2.83 7.09
App 10 2.1 10.55 2.93 3.1
App 11 3.17 10.46 5.1 6.82
App 12 1.38 9.25 10.44 2.85
App 13 1.75 23.69 1.7 3.37
App 14 3.3 12.3 3.1 4.6
App 15 2.02 8.06 19.55 5.73
Avg 1.97 12.04 6.41 4.58

Table 4.4: Metrics on Applications releases with the majority of Kotlin

Conclusion

To study the impact of Kotlin on Android applications, we compared the results
of metrics calculated on applications releases before and after the deployment
of Kotlin. Our findings showed that applications was characterized as low risk
programs based on the results of the Cyclomatic Complexity. The average CC
decreased by 16.52%, which is a good impact on the complexity of application after
the transition to Kotlin.

56

4 – Code Quality analysis

Figure 4.4: Java vs Kotlin metrics results

In terms of maintainability, the average WMC decline by 20.52% in application
with the majority of Kotlin code. Same for the average of statements with respect
to applications methods, that had decreased by 14.23% in the last release of applica-
tions. According to the results, Kotlin had a positive impact on the maintainability
of applications, so that the decrease in the average of WMC and STAT indicates
a less complex and easier to maintain applications. Knowing that the average of
the factors used to indicate the maintainability of applications applied on Java
majority releases showed acceptable results with a low average.

As expected, the only negative metric was RLOC, which had a slight increase
in the percentage. This indicates that Kotlin majority releases included in our
analysis had a poorer abstraction compared to Java majority. This can be justified
by the addition of new features into the apps, which affects the relative number
lines of code.

57

Chapter 5

Conclusion

In this section we discus the observations of our study. the study was based on
inspecting open source Android application on GitHub, and then search the integra-
tion of Kotlin code in Android applications and the usage of Kotlin Development
Practices in all the set of application. Finally, calculate the static analysis metrics
on a sample set of applications to study the impact of Kotlin on the quality of
applications converted the base code of releases from majority of Java to majority
of Kotlin.

We found that most applications changed the majority of the base code into
Kotlin, while a small ratio of applications are still using Java as a major language
inside applications. From the evolution metrics, our results shows that the highest
ratio of applications are still in the phase of transition since Java is still used in the
production code of the applications. On the other hand, from the diffusion metrics,
we found that the percentage of applications with majority of Kotlin lines of code
over the production code is very high due to the filtering criteria of including
only applications using Kotlin and measuring the metrics on the last release of
applications. The results shows that applications developing teams are convinced
by the benefit of transitioning to Kotlin, that was expected due to the features,
safety and flexibility provided by Kotlin programming language.

We inspected applications source code searching for the usage of Kotlin develop-
ment practices using regular expressions that represent each practice. Our results
showed that practices like argument lists and safe casting are used rarely in appli-
cations with an average bellow 20%. While the average usage of unsafe casts with
respect to applications exceeded the 70%. Comparing these results of the usage of
Kotlin Dev. Practices and the transition of base code of applications, we concluded
that applications made a huge transition but without the expected usage of the
best development practices. The transition from Java to Kotlin without taking
advantage of development practices, may be because of automatically converting
the codebase. These tools reduce the cost of development while a human-based

58

5 – Conclusion

tweaks are needed after the conversion. The lack in checks after conversion leads
to a misuse of the Kotlin programming language.

Using "MetricsReloaded" plugin provided for IntelliJ IDEA and IntelliJ Plat-
form IDEs, we were able to analyse code quality metrics on different releases of
applications. Applications code quality is subjective, different tools might use
different metrics to identify the quality of applications. In our analysis we measured
metrics related to the complexity of applications. Our calculations showed that the
transition to Kotlin improved the quality of applications in terms of complexity
and maintainability.

Figure 5.1: Java vs Kotlin: Number of improved applications

We found that 9/15 applications had a positive change in the average of Cyclo-
matic Complexity. 10 out of 15 applications showed an improvement in the WMC
metric. and 8 of 15 shows lower number of statements per method. According to
our results, more than half of the applications had an improvement in terms of
maintainability of applications.

Another factor on code quality is the relative number lines of code which indicates
the level of abstraction. applications in our set showed a higher result of RLOC
after the transition to Kotlin. However, 9/15 applications improved the ratio of
LOCs for a method over the LOCs of it’s containing class.

59

Chapter 6

Threats To Validity

6.1 Construct Validity
Threats concern the relation between theory and observations. Our goal was to
analyze the usage and impact of the transition to Kotlin on open source Android
application on GitHub.

6.2 Internal Validity
Filtering and Cloning Android Mobile Applications

In section 2.2, we discussed the inclusion and exclusion criteria to filter Android
applications from the full list of the repositories that featured Kotlin on GitHub.
Due to the high number of applications, we were not able to check manually the
repositories to exclude the tools and empty projects. We started by the procedure
of Deleting all repositories that doesn’t have a manifest file and a at least one
call to the function SetContentView() and we supposed the rest of repositories
are Android applications. this procedure may miss some exclusion of tools that
includes any sample of "AndroidManifest.xml".

Applications Popularity

One of our objectives was to trace the popularity of applications. We used parame-
ters like contributors, issued and stars to measure the popularity. Our data was
collected using GitHub API’s that doesn’t provide the date of the assignment of
the star on the repositories. We assumed that the assigned parameters are the
indication of popularity and interactions with the repository on github.

60

6 – Threats To Validity

Kotlin Dev. Practices

In our analysis, we calculated the average according to the occurrence and usage of
development practices in applications. We measured the percentage of applications
with at least one occurrence of every regular expression over the total number of
applications. Some applications might have a high percentage of usage of practices.
This approach may be affected by the high percentage of applications that are
ignoring the Kotlin practices.

Code Quality metrics

The quality of application can be measured using different metrics in different
domains. In our study, we focused on the code complexity, analyzing the source
code of applications. Other metrics could result to a different definition of the
quality of applications. Our study was done on a sample data set of applications.
The results may differ in case we study a bigger set of applications.

6.3 External Validity
Validity of Inspection Tools

To compare the percentage of Kotlin and Java in applications and inspect the
Kotlin practices, we used "CLOC" and "rg" tools. Our results are fully dependent
on the efficiency of the used tools. Any bug in one of the tools could affect the
analysis of diffusion and evolution metrics, as for the usage of Kotlin dev. practices
in the applications.

Validity of MetricsReloaded Tool

MetricsReloaded is an automated code metrics for IntelliJ IDEA and IntelliJ
Platform IDEs. It’s computes metrics depending on the source code of applications.
The results of our code analysis are dependent on the correctness of the tool.

61

Chapter 7

Future Work

In this section we show some work that can be done in the future. Due to the time
limitation (fetching real data is usually time consuming), Some experiments have
been left. Deeper analysis on different dataset of applications using different tools
to have more details about applications state before and after the transition.

I would have liked to try some experiments about commits and watch APIs
during development of the functions in Chapter 2, but for the lack of time(i.e.
it might take days to finish fetching APIs due to GitHub rate limit and the big
number of applications). In chapter 3 we focused on the main features. However,
Investigating about other Kotlin practices may help to show better percentage
about the usage of Kotlin new features. In chapter 4, Increasing the number of
analyzed projects and including closed source applications may be interesting. Due
to manual work needed to analyze each application release, and the time needed to
finish the statistics we were not able to try this work. With respect to code quality
smells inspected, there are various code smells that can be included to obtain more
accurate results about the quality of applications. We chose on two releases to
solve evolution metrics.

This thesis has been mainly focused on the popularity of Kotlin applications
with respect to the percentage of Kotlin LOCs and development practices. Future
research on closed source applications with matching applications with the popu-
larity on Play Store might extend the explanations of the impact of the transition
of Kotlin from users side.

Future research could examine different code analysis tools on applications
APKs, to answer questions about code quality with respect to different code smells.

It is a question of future research to investigate about the cost of the transition
from Java to Kotlin, and using the results of this study we can conclude the impact
with respect to the cost of the transition. Base on that we can answer the question
if changing the language of the codebase of android applications from Java to
Kotlin worth the cost?

62

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Android Operating System
	Overview
	Statistics and Facts

	Android Mobile Applications
	Innovation and New Experiences
	Android Open-Source Applications
	Development Tools
	F-Droid

	Applications Development Languages
	Java
	Kotlin

	Github Platform
	Overview
	Github API
	API Rate Limiting

	Mining of Kotlin Android projects From Github
	Search Kotlin Android Projects
	Inclusion and Exclusion Criteria
	AndroidManifest.xml
	SetContentView

	Statistics Search
	Repositories Releases
	Issues
	Stars
	Contributors

	Results and Observations

	Kotlin Development Practices
	Data Classes
	Nullability
	Mandatory Casts
	Argument Lists
	Code Inspection
	Inspection Tools

	Research Questions and Metrics
	Diffusion
	Evolution
	Popularity

	Related Work
	Results
	Diffusion
	Evolution
	Popularity
	Code Inspection

	Code Quality analysis
	Code Quality Overview
	Code Quality Metrics
	Complexity metrics
	Dimensional Metrics

	Code Quality Popular Tools
	SonarSource
	UNDERSTAND
	Codacy
	Paprika

	Experiment Setup
	Building Dataset of Android Application releases
	Analyzing Code Quality metrics

	Experiment Results

	Conclusion
	Threats To Validity
	Construct Validity
	Internal Validity
	External Validity

	Future Work

