
Implementation and evaluation of a tool for translating Visual to
Layout-based android tests

Simona Saitta

Master Degree in
Computer Engineering

Politecnico di Torino
Academic Year: A.Y. 2019-2020

Supervisors:
Morisio Maurizio
Ardito Luca
Torchiano Marco

Contents

1 Introduction 7
1.1 Software testing . 7

1.1.1 Software Development Life Cycle 7
1.1.2 System testing and End-to-End testing 9

1.2 Android . 9
1.2.1 Android Applications types 10
1.2.2 Android testing . 11

1.3 Motivation . 14
1.3.1 Example . 15
1.3.2 The project . 16

1.4 From Visual GUI to Layout-based tests 17
1.4.1 Initialization . 17
1.4.2 Log generation . 17
1.4.3 Object creation . 18
1.4.4 Second generation test script generation 18
1.4.5 Input and Output . 18

2 Tool preparation 19
2.1 Main class and translation automation 20
2.2 Attempts . 20
2.3 Emulator . 20
2.4 Adb, Gradle and Eyeautomate 20

3 Initialization 22
3.1 Instruments . 23

3.1.1 Support Libraries and gradle file 23
3.1.2 Javaparser . 23

3.2 Layout . 24
3.2.1 Layout folders . 24
3.2.2 Identifiers and Layout-based tests 24
3.2.3 Dynamic generated layout 24

1

3.2.4 Programmatically added views 24
3.3 Normalization . 25
3.4 Application logger . 25

3.4.1 MyWindowCallback 25
3.4.2 AdapterView and RecyclerView 27
3.4.3 Dialog and DialogFragment 27
3.4.4 Other cases . 28

3.5 Issues with logger implementation 29
3.5.1 Logger placing . 29
3.5.2 Logger in custom activity 30
3.5.3 Logger in Dialogs . 30

3.6 Extended methods . 31
3.6.1 onAttachFragment . 31
3.6.2 onStart . 31

3.7 Tool custom classes and modules 32

4 Log Generation 33
4.1 Initialization . 33
4.2 Application logs . 34

4.2.1 Structure of the log string 34
4.2.2 Not logged cases . 36

4.3 Script log . 36
4.4 Screen dump . 37

4.4.1 When to dump . 37

5 Object creation 38
5.1 Initialization . 39
5.2 Parsing of the script log . 39
5.3 Parsing of the application log 41
5.4 Object information filling . 41

5.4.1 Mouse interaction objects 41
5.4.2 Check objects . 42

6 Translation 43
6.1 Script directory . 44
6.2 Initialization . 45

6.2.1 Custom methods . 45
6.3 ViewMatcher and id . 46
6.4 Object translation . 47

6.4.1 WriteObject . 47
6.4.2 CheckObject . 47

2

6.4.3 ClickObject . 47
6.4.4 MouseInteractionObject 48
6.4.5 Sleep . 49

6.5 Translation completed and testing the scripts 49
6.6 Issues and improvements . 49

7 Experimental Validation 51
7.1 Experiment subjects . 51
7.2 Procedure and materials . 51
7.3 Experimental results . 52
7.4 Threats to validity . 56

7.4.1 Threats to Construction Validity 56
7.4.2 Threats to Conclusion Validity 56
7.4.3 Threats to External Validity 56

8 Conclusion 58
8.1 Discussion and open issue . 58
8.2 Conclusion and future works 59

3

List of Figures

1.1 V-Model . 8
1.2 Mobile Operating System Market Share Worldwide - Septem-

ber 2019 [27] . 10
1.3 EyeStudio . 13
1.4 Application screen . 15
1.5 Visual test on button . 15
1.6 Layout test on button . 16
1.7 Process steps . 17

2.1 Main and executor steps . 19
2.2 Main and executor classes . 21

3.1 Initializer . 22
3.2 Initializer and logger classes 23

4.1 Log Generation steps . 33
4.2 Application log . 34
4.3 Log generation and script executing classes 35
4.4 Script log . 36

5.1 Object creations steps . 38
5.2 Object creation classes . 40

6.1 Translation steps . 43
6.2 Translation classes . 44
6.3 An example of testing output 49

7.1 OmniNotes and PassAndroid success rate 55

4

List of Tables

7.1 Characteristics of selected apps (as of September 2019) 52
7.2 Description of OmniNotes test case 53
7.3 Description of PassAndroid test case 54
7.4 OmniNotes and PassAndroid test results 56

5

Abstract

Context: Modern mobile GUI test tools are classified as first generation
(coordinate based), second generation (layout based) or third generation (vi-
sual). All of them have different benefits and drawbacks, which could be
leveraged through automated translation from one generation to another one.
Changing device or some graphical aspects of the application could result in
failure of visual scripts but not layout based ones. Visual scripts could be
easily regenerated having available layout based ones.
Goal: The aim of this work is to implement a tool that can automatically
translate third generation test scripts in the EyeAutomate syntax to second
generation Espresso test cases.
Method: A software project in Java was developed to achieve the proposed
goal and then an experiment was performed, to evaluate the success rate of
the translated scripts. The experiment consisted in translating EyeAutomate
visual test scripts, developed for two open source mobile applications (Pas-
sAndroid and OmniNotes), into Espresso layout based scripts.
Results: The translation proved feasible with the proposed tool architec-
ture, and the evaluation yielded a quite high success rate on the considered
software objects (58 out of 60 test cases successfully translated).
Conclusion: The study demonstrated that the translation from third gen-
eration (visual) to second generation (layout-based) test scripts is feasible
in the mobile domain, and that translation is able to reduce the required
effort for generating Layout-based test cases. More work is however required
to extend the proposed tool and evaluate it in industrial practice, as well
as to measure its capability of reducing fragility and maintenance effort for
Layout-based test suites.

6

Chapter 1

Introduction

This chapter introduces the work done and the project in its contest and
providing its motivations.

1.1 Software testing
Software testing is a process that allows to check that the actual result re-
sembles the expected one, matching the requirements, and allows to detect
possible errors. It is an important step of software development because soft-
ware bugs could be quite dangerous.
When working on a large project it is easy to miss out key details in the re-
quirements phase itself delivering a possible completely wrong product. It is
also possible to make mistakes in later steps even before reaching the coding
one. To monitor this and other processes the SDLC was established.

1.1.1 Software Development Life Cycle
The SDLC (Software Development Life Cycle) defines the steps involved in
the development of software at each phase and covers the plan for building,
deploying and maintaining it. There are usually six stages in this cycle:
analysis, design, development and testing, implementation, documentation,
and evaluation. One of the most used models is the V-model.

V-model

In software development the V-model, also known as Verification and Val-
idation Model, is a Software Development Life Cycle (SDLC) model where
instead of moving down in a linear way (as in the waterfall model) the pro-

7

cess steps are bent upward having the development of each step directly
associated with its testing phase.

Figure 1.1: V-Model

The Verification phase starts with collecting the system requirements by
analyzing the need of the users. In this steps a requirements document
is generated. Later on the system is designed by studying the generated
document.
Once the design is completed its the turn of the Coding phase that will take
place using the coding guidelines and standards.
Last phase, going up the V, is the Verification one. In this step the tests
designed with their verification step counter part are executed following the
reverse order. In this phase we can identify four main level of testing:

1. Unit testing

2. Component testing

3. System integration testing

4. Acceptance testing

Among all of these main focus for this thesis must be put on the System
integration testing one.

8

1.1.2 System testing and End-to-End testing
The System testing is a level of software testing which involves testing the
fully and integrated software to make sure it matches the requirements. It
is a type of Black Box Testing which involves the external workings of the
software from the user’s perspective. An alternative quite similar to it is the
End-to-End testing which is a methodology used to test whether the flow
of an application is performing as designed from start to finish.

Graphical User Interface testing

Graphical User Interface (GUI) testing is part of the system testing and is
the process of checking every possible interaction the user can do with the
Graphical User Interface (GUI). Even though it is a fundamental level of
testing, especially in applications, it still often performed manually at high
costs [18]. We can identify three generations of testing tools:

- First generations testing tools (also called Coordinate-based
testing tools) identify elements in the layout through their coordi-
nates. This technique is not much used due to its fragility. [17]

- Second generations testing tools (also called Layout-based or
Property-based testing tools) are able to access the GUI compo-
nents. These allows them to identify a component based on its label
or ID or a property as the text contained. This type of test is more
robust of the previous one but does not check the actual aspect of the
GUI and has an high maintenance cost [16].

- Third generation testing tools (also called Visual GUI testing
tools) identify elements through image recognition algorithms, which
capture the actual appearance of the elements as displayed to the user.

1.2 Android
As can be seen in the graph of figure 1.2 the operative system Android [4]
has nowadays a large control in the mobile market. It has therefore become
quite relevant being able to develop a working application to release. Before
diving on android testing we need to have a general understanding of the
various types of applications.

9

Android - 76.24%
iOS - 22.48%
KaiOS - 0.38%
Unknown - 0.23%
Windows - 0.17%
Samsung - 0.18%
Other - 0.32%76.24%

22.48%

0.38%0.23%0.17%0.18%0.32%

Figure 1.2: Mobile Operating System Market Share Worldwide - September
2019 [27]

1.2.1 Android Applications types
Three main types of android applications can be identified:

• Native applications

• Web applications

• Hybrid applications

The applications this thesis refers to are the native ones.

Native applications

A native application is the most common type of application. It is developed
for a specific operating system allowing it to use all the OS features and the
users to have a good experience. They also need to be downloaded from the
application store, taking up device storage.

Web application

A web application use a browser to be run and the user experience depends
on the connectivity. On the other hand they take up a really small quantity
of android storage (e.g. cookies) and they do not need to be downloaded.
They can be used in any device but they are unable to make use of a specific
device API except for some small functionalities as localization.

10

Hybrid application

An hybrid application is built using multi-platform web technologies so they
are generally web application disguised inside a native wrapper. For these
reasons they have both advantages and disadvantage of the two types men-
tioned previously.

1.2.2 Android testing
As mentioned previously an important step in software development is test-
ing. To test an android application there are different tools that can be used,
based also on the generation technique.
For the purpose of this thesis we will examine two of these tools: Espresso
[14] and EyeAutomate [7].

Espresso

Espresso is a framework by Google that allows to write layout based tests. It
is able to identify when the application is in a waiting status increasing the
reliability and execution speed. The API provides numerous methods but
to better match the developer requirements it is also possible to create your
own subclasses and methods.
The interactions usually use a view as an entry point (onView() and onData()
methods). The view is located in the view hierarchy through ViewMatchers
objects. It is expected that the matched view is one and only one in order to
perform correctly the interaction. An exception would be raised otherwise.
Examples of methods that return a matcher can be:

• withId(int id): this method returns a matcher for all the views with
that specific id.

• withText(String text): this method returns a mathcer for all the
views containing that specific text.

• allOf(Matcher<? super T>... matchers): this method returns a
matcher that satisfy all the other ones.

Commands and assertions can then be sent to the view through ViewActions
or ViewAssertions. This is the reason the onView() method can refer to a
single element.
ViewActions are objects that can be passed to the ViewInteraction.perform()
method to execute simple interaction as for example clicking on a view. Some
examples of methods can be:

11

• click(), longClick(), doubleClick()

• swipeDown(), swipeUp(), swipeLeft(), swipeRight()

• closeSoftKeyboard()

• pressBack()

• typeText(String stringToBeTyped)

GeneralClickAction and GeneralSwipeActions can be used to specify
for example the specific coordinates in the view.
ViewAssertions are objects that can be passed to the ViewInteraction.check()
to verify the status of the view. It does not have lot of methods:

• doesNotExist(): Returns an assert that ensures the view matcher
does not find any matching view in the hierarchy.

• matches(Matcher<? super View> viewMatcher) Returns a
generic ViewAssertion that asserts that a view exists in the view hier-
archy and is matched by the given view matcher.

• selectedDescendantsMatch(Matcher<View> selector,
Matcher<View> matcher) Returns a generic ViewAssertion that
asserts that the descendant views selected by the selector match the
specified matcher.

EyeAutomate

EyeAutomate is a tool by AUQTUS that allows to write Visual tests for
any app on any platform using intelligent image recognition. Most of the
commands are followed by an image of the element to operate into and co-
ordinates may be added too. The scripts can be written with a simple text
editor or with the provided one (EyeStudio [8]) that simplify the procedure.
The used algorithm is called âĂĲThe EyeâĂİ. it allows to identify the im-
ages in any screen using all the available CPU improving the execution speed
and efficiency of the test.

12

Figure 1.3: EyeStudio

For the thesis purpose the tests have been executed through the jar file pro-
vided during the installation:

java -jar EyeAutomate.jar script.txt

The generated execution log file (execution_log.txt) was also relevant for the
development of the tool since it reports all the script interactions results.
Examples of some commands can be:

• Check: checks that the provided image is currently visible

• Click: clicks at the center of the provided image or at the specified
position.

• Move: moves the mouse at the specified position provided through an
image

• MoveRelative: moves the mouse of the specified amount

• Type: types the provided string

• DragStart, DragDrop: used for mouse drag instructions

• MouseLeftPress, MouseLeftRelease: generic mouse interaction
that can be used either for click, long click, swipe, etc.

13

1.3 Motivation
Even if there are evidence of applicability, feasibility and usefulness [3] of
Visual GUI testing tools they are less commonly used than the Layout-based
ones [5] for their lack of robustness and performance compared to the later
[1]. However, Layout-based testing tools cannot fully emulate human user as
interactions through GUI properties do not verify the system’s appearance
as shown to the human user. Most researches aimed to compare the two
techniques have concluded that a hybrid approach is required where both
generations are developed and used in parallel by the practitioner [2].
A first advantage of an hybrid approach is the possibility of reusing already
existing Visual tests suites. This would reduce the development effort and
increase the productivity for layout-based ones [28] [21]. On the other hand
Device Fragmentation is a big issue of Visual tests [26]. By reusing the layout-
based tests it would be possible to automatically generate the Visual ones
for different devices without having to manually recapture all the required
screens [24]. Reusing already provided test suites is also useful for new devel-
oper. Studies have demonstrate that many Android apps are poorly tested
[9] or totally not tested [2] and developer prefer manually testing their ap-
plication [22] [29]. This approach is not affordable on an industrial level.
Studies have also identified repetition patterns in Android platform frame-
work test case libraries that can be represented in generic form for further
reuse using and design of generic test case libraries. [6]
Empirical measurements have proved that an hybrid approach would allow
the tester/developer to focus on the development of a single test suite in one
methodology and automatically generate the counterpart.
Other perk would be the mitigation of the fragility. Layout-based tests are
sensible to code changes while Visual ones to visual changes. We can in fact
identify five main causes of fragility [10]:

• Identifier change

• Text change

• Deletion or relocation of an element

• Change of Physical buttons into Action Bars

• Graphics changes

If tests of a generation do not work anymore it is possible to attempt trans-
lating the other one in order to greatly reduce the maintenance cost on which
the fragility has a relevant impact [11].

14

1.3.1 Example
Let us assume we are writing a Visual test that uses the button in the top
right corner of the screen (for example a simple check).

(a) Before editing (b) After editing

Figure 1.4: Application screen

As we can see in the picture below a Visual test will fail if changes are done
to the button appearance. This will make it not reusable for future testing
and will have to be recorded again.

(a) Before editing (b) After editing

Figure 1.5: Visual test on button

Let us now assume that the written test is a layout based one. This time
the test will use the id of the button to find the element so any change to its
appearance will not influence the result of the test.

15

(a) Before editing

(b) After editing

Figure 1.6: Layout test on button

1.3.2 The project
The tool I worked on is just part of a bigger project which objective is to allow
an hybrid approach without requiring the tester/developer to have knowledge
about both generations of test automation. [25]
“The project can hence provide benefits such as:

1. Automated generation of Layout-based tests from Visual GUI tests and
the other way around, reducing development costs.

2. Reduced script maintenance costs through automated analysis of failing
locators, and repair based on the other generation’s scripts.

3. Reuse of existing Layout-based tests for testing the SUT’s visual ap-
pearance

4. Porting of visual scripts for different devices/configurations through
strategic reuse of Layout-based tests, i.e. a single test can be run on a
set of emulated devices to automatically obtain Visual GUI test scripts
specific to each device.

5. Limited need for costly manual, repetitive, and error-prone regression
testing.”

Point 4 of the previous list is the main focus of the tool I implemented.

16

1.4 From Visual GUI to Layout-based tests

Figure 1.7: Process steps

To allow the conversion from Visual GUI to Layout-based tests four main
steps were identified:

0. Initialization

1. Log generation

2. Object creation

3. Second generation test script generation

1.4.1 Initialization
The initialization step purpose is to add the missing identifiers to the XML
and prepare the android application for the next steps. The android project
copied in a temporary directory will be edited in order to allow the generation
of a logger with the second generation test script (in our case EyeAutomate)
execution.

1.4.2 Log generation
Logs will be generated executing the EyeAutomate test. The logs will contain
information about each interaction and a dump of the screen after each check
command.

17

1.4.3 Object creation
In this step both the logcat and EyeAutomate script log are parsed in or-
der to generate some object representing each command done by the script
execution. Information to the check object will be added by the dump.

1.4.4 Second generation test script generation
In this last step the collection of objects is translated in a second generation
(in our case Espresso) test script.

1.4.5 Input and Output
As a tool that automatically translates from Visual GUI to Layout-based
tests the input and output are respectively scripts of these kinds.
As Visual GUI script type EyeAutomate was chosen while Espresso was
chosen for the Layout-based one. This choice was made based on the fact
that familiarity with these kinds of tests was already present due to the
Software Engineering course.

18

Chapter 2

Tool preparation

Figure 2.1: Main and executor steps

This chapter introduces the tool preparation step. As the name suggests this
step consist in preparing the tool before starting with the translation steps.
In this step the emulator is stared and prepared for the application execution.

19

The path of the scripts to be translated and the application project are also
gathered and each test will counts a maximum of five retry attempts.

2.1 Main class and translation automation
To ensure the correct and easy translation of the script a main class was
developed that, with the help of the Executor class, automatize the procedure
by executing the tool from the command line. The first execution of the tool
will require setting the Adb and EyeAutomate paths that will be saved in a
config file. Application project and scripts path must also be provided with
the following format.

.\tool [-setEye <eye path>] [-setAdb <adb path>] <application path>
<script path> ...

2.2 Attempts
Scripts cannot always be translated on their first attempt: sometimes the
script to translate could fail its execution (for example when executing swipe
actions) and sometimes the time on the emulator may not coincide with our
machine. To increase the possibility of translating a script it was decided to
retry its translation five times.

2.3 Emulator
In order to execute the scripts an android emulator must be started. This
emulator time may differ from our machine time and have a different clock.
To ensure that the two will always have the same one it will be resetted
before each script execution.

2.4 Adb, Gradle and Eyeautomate
In order to ensure the communication between the emulator and our machine
and editing some setting of the emulator the adb (Android Debug Bridge)
tool will be used. Installation and build of the application will instead be
done with the gradle system.

20

Figure 2.2: Main and executor classes

21

Chapter 3

Initialization

Figure 3.1: Initializer

This chapter introduces the initialization step. This step is the phase zero of
the translation. It takes care of:

- normalizing the application files for the next steps, which means making
sure that each element in each layout file of the application is provided
with an ID;

- copying the android project in a temporary directory;

- edit the temporary project in order to generate a log line after each
interaction.

22

Figure 3.2: Initializer and logger classes

3.1 Instruments

3.1.1 Support Libraries and gradle file
Not always the support libraries are imported in the android project. During
the testing with a batch of application two classes not always imported were
found: the RecyclerView and support Preference libraries. To avoid any issue
their dependencies are added in the gradle files.

AndroidX

An analysis of the gradle files must be done before starting in order to find
out if AndroidX is been used. AndroidX is an improvement of the Support
Library which provides backward-compatibility across Android releases.The
support library packages have been mapped into corresponding androidx.*
packages [13]. This will influence all the packages referencing in the inserted
code.

3.1.2 Javaparser
Until now we have seen the code placing from the android project point of
view. When we need to automatize this process we need to be able to easily
manage the java file. To do so the JavaParser tool [20] has been used. This
tool is open-source and allows to easily generate, analyze and process java.

23

3.2 Layout
A layout resource is an XML file which defines the User Interface. Each
View or View Group that is defined by the file can be associated to an ID
which uniquely identify each element in the current inflated layout. Same
identifiers can be used in different layouts but it is good practise to avoid it.

3.2.1 Layout folders
The layout of an Android Application must be placed in one of the folders
starting with "layout" or "menu". The later contains all the XML layout
files that define the user interface, the further the XML files that define app
menus [12]. Both of these folders must be placed inside the resources folder
"res". These information are important in order to be able to localize the
right XML file to normalize among all the application files.

3.2.2 Identifiers and Layout-based tests
In Layout-based tests it is easier to identify a view using its identifier but
this can also include some risks: the test will check each layout file for an
identifier and it will call an Exception if two matching views are found. When
generating the new identifiers during the normalization, it is important to
try avoiding redundancy in order to reduce risks. In the tool this was done
by adding to a fixed string the name of the layout file and a random number
(in case of two layout files with the same name but different folders).

3.2.3 Dynamic generated layout
During the execution of the application some layout may be generated dy-
namically. This may cause the presence of duplicate identifiers. To avoid
this issue the unique parent identifier is instead used in the logger and the
element can be referred using the child feature.

3.2.4 Programmatically added views
Not all the views are created through an XML file: some views can be pro-
grammatically added to the layout. This will not assure that all the views
have an ID as we need to. If none of its parents has an ID the root view will
be used in the future steps.

24

3.3 Normalization
The normalization is executed by selecting all the layout files and for each
one:

1. a random number, useful for the ID generation, is selected;

2. all the elements with and without an ID are collected;

3. an ID to all the elements without one is added by paying attention that
it was not already used by another one.

The random number is used in order to try avoiding common IDs among
different layout files with the same name. The name of the layout file will
also be used in the ID creation in order to reduce risks.
An ID will be added to all the elements in the layout XML file apart from
those defined by the include type. This is done because all the views of the
included files will have had an ID added in this step.

3.4 Application logger
The purpose of the application logger is to generate a log for each interaction
with the application from the EyeAutomate test script which will help in the
objects creation.

3.4.1 MyWindowCallback
A MyWindowCallback class has been defined in order to edit each win-
dow callback interface so that a log is generated after every click or swipe.
This class extends the android.view.Window.Callback class and edits the be-
haviours after specific events:

• Touch events

• Focus change events

• Detached from window events

• Dispatched key events

25

onTouchEvent

When a touch event is registered a different behaviour is taken based on the
kind of event.

• android.view.MotionEvent.ACTION_DOWN: it is called when the
screen is being pressed. When the event matches this case:

1. it is checked whether this is or not the first instance of the click
or swipe (the swipe will cause other calls of the onTouchEvent
method with an ACTION_DOWN event type but different coor-
dinates);

2. the event time is saved;
3. the event coordinates are saved;
4. the clicked view is calculated:

(a) every element is added in a map as a key and the pair parent-
child index as value.

(b) every element whose rectangle comprehend the coordinates of
the click event is added to an array

(c) each element in the array is checked and if it is clickable it
takes the place of the current selected view to be reported in
the log. If the view is not clickable it does not replace the
view that has to be reported if this one is clickable or child
of a clickable parent. The string containing the information
of the interaction is also created in this step. If the view does
not have a unique ID a parent-child index relationship will be
used to identify it.

• android.view.MotionEvent.ACTION_UP: it is called when the screen
is being released. When the event matches this case it is checked
whether the event is a click or a swipe by checking the distance be-
tween the starting and ending position:

– in case of a click event it is checked if it is a short click or a long
click

– in case of a swipe event the distance is added to the reported
string.

onWindowFocusChanged

When a focus change event is registered the Fragment Manager and the
fragment list is used to check all the current Fragments. We will talk about

26

this fragment list on section 3.4.3. If a DialogFragment is found the cus-
tom window callback interface is attached to the Dialog window inside the
DialogFragment.

dispatchedKeyEvent and onDetachedFromWindow

The dispatchedKeyEvent method is edited in order to intercept the pressing
of the back button.
The onDetachedFromWindow method is edited in order to intercept dialogs
dismiss.

3.4.2 AdapterView and RecyclerView
During the initialization step each element in the layout obtained its own ID.
This does not guarantee that there will not be two elements with the same
ID: it is the case of AdapterView and RecyclerView. These views allow to
represent a dynamic list whose children have all the same IDs but can be
told apart from the child number. This information must be added when the
clicked element id is given by the logger, especially in case of a RecyclerViews.
An "R" will be in fact placed before the child indexes of a RecyclerView in
order to identify it: they will be handled differently in later steps.

3.4.3 Dialog and DialogFragment
A Dialog is a window that either gives out some information or prompts the
user to input or accept something and floats on top of the rest of the content.
A DialogFragment is a Fragment that displays a Dialog and allows to control
it through itself.
Dialogs not managed by a DialogFragment are not detected by the Fragment
manager and have to be managed by separately. The first step is detect
which objects are Dialogs: to do so a set of application was chosen to detect
some of the possible Dialogs types. These classes where collected and a class
extending each of them was created, adding the custom window callback to
them.
The Dialogs can be grouped based on the presence or absence of a Builder:

• Dialogs with a Builder

– MaterialDialog
(com.afollestad.materialDialogs.MaterialDialog)

– AlertDialog
(android.support.v7.app.AlertDialog or android.app.AlertDialog)

27

• Dialogs without a Builder

– DatePickerDialog
(android.app.DatePickerDialog)

– TimePickerDialog
(android.app.TimePickerDialog)

– BottomSheetDialog
(android.support.design.widget.BottomSheetDialog)

The dismiss method of a dialog is called before the onTouch one. In case of
dialogs which classes have been extended the cancel listener can be edited
in order to report this event. In case of DialogFragments the onDetached-
FromWindow method comes to our rescue as was mentioned before.

3.4.4 Other cases
Studying the set of applications I was able to identify some other cases that
were not covered due to change of focus like in the Dialogs case.

Preferences and Spinners

Preferences and Spinners are special kind of Dialogs that can be managed by
editing the behaviour of a single method.

• Preferences allow the user to change functionality and behaviour of an
application. The method to be edited is the onPreferenceChange one.

• Spinner provide an easy way to select a value from a set. The method
to be edited is the onItemSelected one. Special attention should be
placed on this method for two reasons:

– the method could be called without clicking on a value
– the method is not called when the clicked value is the same as the

already selected one

In order to simplify later steps the text of the selected preference/spinner is
logged.

Toolbars

During the creation of the Activity or Fragment the window callback interface
may be overwritten by setting a Toolbar to act as an ActionBar for the
activity.

28

android.app.Fragments

Management of fragments it is not easy when the fragments are not from
the support library. These fragment are managed by the FragmentManager
which does not have a method to keep track of the fragments. To simulate
this behaviour a list of Fragments can be stored in the window callback
through the onAttachFragment method called by the Activity every time a
Fragment is attached to it (section 3.6.1)

Overflow menu

Another special case that has to be managed manually are the items in the
menu. Some of the menu items may be available through a window which
is different from the activity one (overflow menu). A log for each item from
the menu selected can be provided in order to have a report for these items
as well.
As in the previous case the text content of the menu option will be logged.
The closure of the overflow menu must be detected through a different
method: the onPanelClosed method. This method must be extended from
the activity class.

Back button key

As mentioned in section 3.4.1 the back button is logged through the dis-
patchedKeyEvent method. Unfortunately this method will not intercept all
the events since the closure of the keyboard will be managed by another
callback.

3.5 Issues with logger implementation

3.5.1 Logger placing
One of the main issues of this step was deciding where to place the logger.
A first solution was editing the click behaviour of each view by reporting
their id every time they were clicked. This solution obviously has some
disadvantages:

• each element of the view would become clickable causing change of
behaviour of the activity or fragment;

• changes of the click listener must be monitored because they would
bring to loosing the logger;

29

• there would be issues in managing external libraries.

A second approach was editing the onTouch event handler by directly putting
the code inside the activity. This behaviour as well has some disadvantages:

• it does not allow a big flexibility in setting the logger;

• big chunk of code should be placed in various point of the class;

• there would be many repetitions of pieces of code.

For these reasons a third approach was taken which comports in changes
to the window callback interface which is not usually edited.

3.5.2 Logger in custom activity
As it was just mentioned a third approach was taken which comports in
editing the window callback interface. To do so the window callback interface
must be edited at the beginning of the activity life-cycle. The onStart method
was chosen for this purpose because it takes place after the window has been
created.
If an activity extends another custom activity it is not always needed to
change the onStart method behaviour. If the activity calls the extended
activity onStart method it would be useless to change its behaviour.
If an activity extends an android.app.Activity class the support fragment
manager is not available. For this reason a check on the kind of activity will
be done before setting the callback.

3.5.3 Logger in Dialogs
When trying to add the logger to the Dialogs a first approach has been editing
the dialog listeners. This has some disadvantages:

• it must be kept track of changes on these listeners;

• the listeners must be manually set in order to be manageable;

• listeners could be easily overwritten.

The next approach has been editing the dialog class in order to add the
callback when the dialog is created. This approach encountered problems
when the dialog is created using a builder that will return a dialog of the
class our custom dialog extends from.
In case of Dialogs with builder the build method is edited, changing the

30

window callback interface of the returned dialog. Editing the build method
is not enough because the builder standard methods usually return a builder
of the extended type.

Dialog cancel

As mentioned before a dialog dismiss skips the onTouch method call. To
record the dialog cancel call a first approach was to set the dialog as not
cancelable and call the cancel method when clicking outside the dialog. This
would not cover back pressing or programmatically cancel/dismiss of the
dialog and will not cancel the dialog. The approach mentioned in previous
sections has then been chosen.

3.6 Extended methods
In the logger development three main methods had to be extended:

• onAttachFragment

• onStart

• onPanelClosed

Of these three methods we will see the first two in the next sections while
the third one has already been addressed in section 3.4.4

3.6.1 onAttachFragment
The onAttachFragment is not always called after the onStart method: in
some cases it could in fact be called during the creation phase. If the window
callback has not be set when the fragment is attached it can be set before
the onStart method, which will check the callback interface in order to avoid
overwriting it.
As the name suggests this method is called every time a fragment is attached
to the activity. With this method we can add to the list of fragments of the
window callback the new fragment to be handled.

3.6.2 onStart
The onStart method is used to set the window callback. In order to reduce
rendundance the method is extended only if the class does not its super
method or the extended class is not a custom one.

31

3.7 Tool custom classes and modules
The package containing the tool custom classes (MyWindowCallback and
Dialogs) should be placed inside each module source folder. The packages in
each module cannot contain the same classes since we cannot be certain that
each module has the same dependencies.

32

Chapter 4

Log Generation

Figure 4.1: Log Generation steps

This chapter introduces the log generation step. With the initialization com-
pleted it is time to execute the Visual GUI scripts that are going to be
translated. This execution allows the generations of logs that are going to
be used for the translation. Two types of logs are going to be generated:

1. Application log

2. Script log

Screen dumps are also going to be generated after every check.

4.1 Initialization
Before executing the script it has to be edited. The executed one will be an
edited temporary version on which a sleep is added between each command
in order to easily differentiate each click operation and complete the screen
dumping.
A thread (LogWatcher) is also executed with the script which will use a

33

WatchService to keep track of changes in the folder with the script report
and it will dump the screen every time a check command is added to it.

4.2 Application logs

Figure 4.2: Application log

This log is going to be generated by the application execution thanks to the
code inserted to its project during the initialization step. A log message is
mainly composed by a time-stamp, a tag and a string. Other values are in
between the time-stamp and the tag but they can be ignored.

• The time-stamp is used to associate each operation of the script with
its log message.

• The tag is used to find the log messages we need among all the others
and the string "Test_logger" was chosen for it

• The string contains the log message we are going to use

4.2.1 Structure of the log string
Let us now examine the log string. This string as well has a specific structure.

1. ACTION:
The first part of the string and only mandatory part of the string. It
indicates the type of action the log represent. It can be one of the
following types:

• SHORT_CLICK
It is used for a simple short click

• LONG_CLICK
It is used for a simple long click

34

Figure 4.3: Log generation and script executing classes

• SWIPE
It is used for a swipe or drag and drop

• BACK
It is used when the back button is pressed during the navigation

• SPINNER
It is used to indicate the new Spinner value when it is a string

• PREFERENCE
It is used to indicate the Preference value when it is a string

• MENU
It is used to indicate the value of the menu option pressed when t
is a string. It used in case of overflow menu in which click is not
intercepted by the activity

• MENU_DISMISSED
It is called when the overflow menu is being closed

• DIALOG_CANCEL
It is called when a dialog has been canceled

2. IDs or TEXT:
The second part of the string is optional and can show either the ID of
the clicked view or the text value of the clicked menu/preference/spin-
ner option.
In case it contains the IDs it will show the clicked view id, if it has one.
If the the view does not have an ID or it is not unique in the current
visible layout a list of indexes will be added. These indexes represents
the parent-child connection between the view and the first parent with

35

a unique id. If there is a parent belonging to the RecyclerView class in
this hierarchy it will be pointed out by adding an "R" to the index and
preceding it with its id. If the string is empty a view was not found
which means that the click was outside the window (e.g. a click outside
a dialog). It is to be noted that if the click outside a dialog cancels the
window a DIALOG_CANCEL type will be returned instead.

3. COORDINATES:
The third part of the string indicates the position of the click in the
view. It is returned in the form of percentage x and y.

4. DISTANCES:
In cases of swipes or drags a last information is returned which is the
distance x and y from the start position.

4.2.2 Not logged cases
Unfortunately there are some cases that are not recorded.

• Not all the Dialogs can be intercepted for the reasons discussed in the
previous chapter.

• The back button to close the keyboard. This can be supposed to have
happened when a type has just been performed and the next click was
not recorded.

• Spinners and menus value that are not texts.

4.3 Script log

Figure 4.4: Script log

The script execution log is the second one that will be used for the translation.
It reports each executed operation with its details. Each log message is
composed of a time-stamp and information about the executed operation.
A LogWatcher is going to be used to determinate when a check operation

36

is happening: this allows the dumping of the current window for future
commands. The script log will be used to get the list of executed commands
and get information about the check coordinates.

4.4 Screen dump
UI Automator is a testing framework that provides a set of APIs to build
UI tests that perform interactions on user apps and system apps. It also
provides a UiDevice class to access and perform operations on the device on
which the target app is running. Its methods can be called to access device
properties such as current orientation or display size [15].
The dump of the window is done through this UiDevice after each check
command, recognized thanks to the LogWatcher, and it helps translating
this command in later steps. The screen is dumped as an XML file and
contains information about visible views. These views are not ordered as in
the layout files but based on their visual position. This must be considered
in the object creation if the index is referenced.

4.4.1 When to dump
The main issue of this step was deciding when to dump the screen. A first
approach was to dump the screen after each click operation from the ap-
plication. This was more difficult than what it may look like since the click
operations are not always intercepted in the same way as was previously seen.
Another problem was that the operation is intercepted before the click has
happened and this would show the screen before the click operation making
it unusable for the check. For these reason another approach was taken which
is to dump the screen with the adb shell every time a check operation is done
by the script.

37

Chapter 5

Object creation

Figure 5.1: Object creations steps

This chapter introduce the object creation step. A list of object, that will be
later on translated, is generated in this step through three distinct parsing
operations: parsing of the application log, script execution log and screens
dump. The script log will be used as base for the objects list while the other
two will enrich these objects information.

38

5.1 Initialization
Before starting with the parsing some information of the emulator must be
gathered: the screen coordinates and the screen size.

5.2 Parsing of the script log
The first parsed log is the script one. This log is used to create the list of
objects whose information will be added with the next parsing operations.
Not all the commands are being parsed but only the ones that could be used
in the testing of an Android Application (for example Log or OpenBrowser
commands have been ignored).
The parsed commands are:

• Click

• DragStart

• DragDrop

• Check

• MouseLeftPress

• MouseLeftRelease

• Type

• Sleep

Some other commands may be needed but they can be easily managed by
reusing the already implemented ones (e.g. DoubleClick).
An object for almost each parsed command is generated in this step (some
objects may be grouped together e.g. DragStart and DragDrop).
Different data is stored based on the type of command:

• In case of mouse interaction commands the only stored information will
be the timestamp (two in case of composed commands).

• In case of type commands the typed string is stored in the object.

• In case of check commands the checked rectangle coordinates and size
are stored, calculated relatively to the emulator.

39

Figure 5.2: Object creation classes

40

5.3 Parsing of the application log
A list containing each intercepted click is generated in this step by parsing
the application log. Each object will have:

• a timestamp (mandatory) used to identify each click

• an action type (mandatory) used to identify each click type. The types
can be seen in figure 5.2

• a string (optional) containing either the id, the parent id-child index
list or the text contained in the clicked menu/preference option.

• the pair of float numbers (optional) indicating the percentage position
(mentioned in the Initialization chapter)

• the pair of distances x and y of the swipe operations (absent in the
other cases)

5.4 Object information filling
At this point we have two list of objects: the one that will be used for the
translation step is the one generated by the script log even thought it is
missing many information. In order to fill the missing data each object will
be analyzed one by one. Type and sleep objects are the only one which do
not need extra information.

5.4.1 Mouse interaction objects
If the object is an instance of either a ClickObject a DragObject or the
generic MouseInteractionObject the needed data will be gathered from the
log objects. These object are in fact all mouse interactions which should have
been intercepted by the application. In order to find the right log object the
timestamp is used. The gathered informations are then added to the object.

Not logged click

A log object cannot always be found.
If a typing operation has just been completed and the script closes the key-
board by pressing the back button this operation is not logged. I have decided
to assume that if a click is not logged after a type operation the keyboard
has been closed: obviously this is not always true.

41

The opening of the overflow menu is not intercepted. If a menu action type
is registered after a not logged click I have decided to assume that this is the
case.
All the remaining cases are not logged clicks.

5.4.2 Check objects
In case of check commands the correct dump file must be parsed. The dump
file with the closest timestamp is picked. Not all the views intercepting,
containing or contained by the rectangle are chosen but only whose rectangle
are in a certain percentage included in the checked rectangle. This is done
in order to avoid picking every view such as their containers. After some
experimenting the percentage was fixed to 10%. If no view is found the
check is considered not logged and the operation fails.
As with the click objects either the IDs or the parent-child index relationships
are stored in case of views without a unique id.

42

Chapter 6

Translation

Figure 6.1: Translation steps

43

Figure 6.2: Translation classes

This chapter introduces the translation step as the last one of our tool. We
now have a list of objects that must be translated into a second generation
script. Before starting with the translation we need to make sure that the
RecyclerView library is included in the gradle file. This library will be used in
by the script when translating clicks on RecyclerView children. Each object
from the list is then translated with the appropriate instructions.

6.1 Script directory
All the translated scripts will be added into the androidTest directory under
the source folder. The filename of these scripts will be the same of the one
they will be translated from. A method called "TestMethod" will hold the
script content.

44

6.2 Initialization
After the gradle file has been edited it is time to insert all methods and
classes needed for the translated script execution.
A file containing the RecyclerViewMatcher class will be added in the scripts
directory. This class will implement a Matcher interface that matches the
child of a RecyclerView.
Each script file will also have all the custom methods that could be needed
for the script execution. This will increase the length of the script and add
redundant code among all the translated script. A possible solution would
be adding these methods into a custom class in order to avoid these issues.
Imports and all the basic code needed in an Espresso test script is also
added in this step. All the code is saved in a CompilationUnit object, a
class provided by JavaParser representing the entire compilation unit which
is denoted by a java file. This class allows to easily edit and add Java code
and print it in a file at the end of the translation operation.

6.2.1 Custom methods
As mentioned in the previous section some custom methods are needed to
allow the translated script execution.

Matcher<View> childAtPosition(final Matcher<View>
parentMatcher, final int position)

This method matches the view whose parent is matched by the first parame-
ter and has position as an index. It is the same method that is autogenerated
by the Espresso Test Recorder, a tool that helps in the generation of Espresso
tests by interacting with the emulator.

Matcher<View> childAtPositionCheck(final Matcher<View>
parentMatcher, final int position)

This method is quite similar to the previous one but it is used for the check
operations. The index provided in the previous step may in fact not be
the correct one. It is calculated based on the current visible views, starting
with index 0. If the ViewGroup has been scrolled or there is a not visible
view in between it is not considered in the index counting. It has also to be
considered that the index does not correspond to the container position but
to the drawing order position.

45

Matcher<View> typeMatcher()

This method matches the view it has to be typed into. Matching the view
with focus is not enough since its parent will have it as well. This would
generate an Ambiguous match. To avoid the problem the view is matched if
it has focus and none of its children (if it has any) have it.

float[] coordinatesFunction(View view, double px, double py, dou-
ble x, double y)

This method returns the coordinates the view has to be clicked at. They
are calculated using the x and y left top corner position of the view and the
proportion calculated in the previous steps.

6.3 ViewMatcher and id
In Espresso a view has to be provided in order to perform an action on it or
check it. This can be accomplished by using a ViewMatcher. The method
prepareId was implemented to simplify the preparation of the ViewMatcher.

1. The onView entry point is selected

2. allOf matcher that matches the view matching all of the specified
matchers.

3. isDisplayed matcher for check operations, isDisplayingAtLeast matcher
with a value of 90 for the other ones.

4. the withId matchers is used to match a view with an id (either the
view we are looking for or a parent one). If no id is provided the
isRoot matcher is used instead.

5. the childAtPosition, childAtPositionCheck and RecyclerViewMatcher
matchers mentioned previously are instead used for the numeric part
of the id string (which represents the index).

onView(AllOf(isDisplayed, ...)
onView(AllOf(isDisplayingAtLeast(90), ...)
withId(...)
childAtPosition(withId(...), n)
childAtPosition(childAtPosition(withId(...), n), n)

46

6.4 Object translation
After completing the initialization procedures it is time to translate the var-
ious objects.
Different behaviours are taken based on the type of object.

6.4.1 WriteObject
WriteObjects indicate type operations. This is performed using the type-
Matcher method to find the view to type into and the perform and Type-
TextInfoFocusedView methods to perform the action. The text to be typed
is taken from the object.

onView(typeMatcher()).perform(typeTextIntoFocusedView(...))

6.4.2 CheckObject
CheckObjects indicate check operations. For each id in the id array of the
object a check operation has to be performed. After preparing the entry
set the check view assertions are added through the check method. The
matches() assertion with the isDisplayed matcher is always added. It assures
that the selected view is displayed. isChecked and isNotChecked matcher will
be used with the assertion in cases of checkable views. With hint or with text
is then used to check the view text content with the equalToIgnoringCase
matcher which ignores the text upper or lower case. This is need because
text inserted with EyeAutomate and Espresso may differ in the first capital
letter.

onView(...).check(matches(isDisplayed))
onView(...).check(matches(isDisplayed)).check(matches(isChecked()))
onView(...).check(...).check(matches(withText(

equalToIgnoringCase(...))))

6.4.3 ClickObject
ClickObjects indicate click operations. ClickObjects have different types.

• Back type - indicates a back action and can be executed with a single
line code

onView(isRoot()).perform(ViewActions.pressBack())

• Spinner_Preference type - indicates that the click selected a spinner
or preference value whose value is specified in the object. Instead of

47

performing a click operation on a view with an id it is done on a view
with that specific text.

onView(withText(...)).perform(click())

• Menu type - indicates that the click either opened the overflow menu
or clicked on an item of it. It can be determined by the id string value:
it can either be a string (which will be the menu option value) or null
(if it is an overflow menu opening). The first case is translated as in
the Spinner_Preference type case, the second one using the openCon-
textualActionModeOverflowMenu method.

openContextualActionModeOverflowMenu()
onView(withText(...)).perform(click())

• Normal - the remaining case is an easy click on a view that could be
performed with a simple click action but a GeneralClickAction action
was used instead. This action allows to specify if the click is long or
short and the specific coordinates of the view in which to click. The
calculateCoordinates method explained before is used inside the click
method.

onView(...).perform(new GeneralClickAction(Tap.SHORT,
new CoordinatesProvider(){

@Override
public float[] calculateCoordinates(View view) {

return coordinatesFunction(view, px, py , 0, 0);
}

},
Press.FINGER))

6.4.4 MouseInteractionObject
MouseInteractionObjects indicate swipe operations. These swipe can be not
only up, left, right or top swipe but have also different angles. They are
translated similarly to the normal click operations but a GeneralSwipeAction
is used instead of a GeneralClickAction.

onView(...).perform(new GeneralSwipeAction(Swipe.FAST,
new CoordinatesProvider(){

@Override
public float[] calculateCoordinates(View view) {

return coordinatesFunction(view, px, py , 0, 0);
}, new CoordinatesProvider(){

48

@Override
public float[] calculateCoordinates(View view) {

return coordinatesFunction(view, px, py , 0, 0);
}

},
Press.FINGER))

6.4.5 Sleep
Between each operation a sleep operation is inserted to avoid failure due to
screen still loading. A time of three seconds was chosen to wait.

Thread.sleep(3000)

6.5 Translation completed and testing the scripts
Once the translation has been completed it is time to save the test. The test
is saved in the path previously established of the original project. After all
the scripts have been translated they are then tested. The original idea was
to copy the script in the real project path only if the test had been successful.
The scripts had to be tested after each translation in case of build failure but
this would have increased the translation time (the application would have to
be built multiple time during the translation). Another found problem was
that sometimes the gradle would not correctly build the test instrumentation
failing test which would have instead passed. To avoid deleting possible
working tests I decided to opt for copying all the translated scripts and only
printing the testing results.

Figure 6.3: An example of testing output

6.6 Issues and improvements
A possible issue in the script translation could be the presence of ambiguous
view in case of those matched with the text content. Generally is unusual
for a spinner, menu or preference to have two options with the same value

49

but it is not assured the uniqueness.
A possible improvement could instead be grouping in a method the Gener-
alSwipeAction and GeneralClickAction code in order to avoid redundancy.

50

Chapter 7

Experimental Validation

This chapter introduces the experimental validation. Now that our tool is
completed it is time to test its effectiveness in translating second generation
scripts. To do so two test suites of thirty tests were generated for two distinct
open source applications.

7.1 Experiment subjects
To evaluate the tool performance two open-source applications have been
chosen: OmniNotes [19] (v6.0.0 Beta 7), a note taking application, and
PassAndroid [23] (2.5.0), an electronic tickets manager. The code of both
applications can be found on GitHub and both of them were released on
PlayStore. These two applications were chosen for their different aspect and
behaviour. Their charactersiscs can be found in table 7.1.
For the evaluation two test suites of thirty EyeAutomate tests cases each were
written in order to evaluate as much behaviour and aspect as possible. Each
test was designed to be executable independently in order to avoid failure in
cascade. They should be launched with a clean application started normally
with its launcher activity. The scripts contain from 2 to 43 commands mostly
check and clicks.

7.2 Procedure and materials
The test cases have been run on a laptop PC with an Intel i7-6700HQ CPU
at 2.60GHz clock, with 16GB RAM and Window 10 Operating System. The
development of the test suites and execution of the EyeAutomate test cases
were performed in EyeStudio 2.1. The apps have been first launched and on
an emulated Nexus 6P API 26 (Android 8.0) with disabled device frame and

51

Table 7.1: Characteristics of selected apps (as of September 2019)

OmniNotes PassAndroid
Number Of Downloads 100,000+ 1,000,000+
Number Of Releases 120 100
Tested release 6.0.0 Beta 7 2.5.0
Java LOCs 48,116 32,309
Number of Activities 13 17
Number of Layout Files 52 19

disabled animations.
The experimental evaluation aimed to answer the question:

RQ What is the success rate of the layout-based test scripts generated
through translation?

To answer the question for each test case we computed the Success Rate
(SR) which was defined as:

SRt = Ns

Nex

, (7.1)

where Ns is the number of generated test scripts whose execution ended with
a success, and Nex is the total number of attempted translated scripts. Failed
tests can be of two types:

• Tests failed to be generated

• Tests generated but failed their execution

The test cases are summarized on table 7.2 and 7.3.

7.3 Experimental results
As can be seen in figure 7.1 the experiment had a quite high success rate
(96.7%, 29/30, in both test suites with a total of 96.7%, 58/60). Figure 7.3
shows a summary of all the developed test cases for the two applications and
the individual test cases results. As we can see from the table the two scripts
translation failed on different steps.
The OmniNotes test script failed in the generation step. The cause was the
closure of the keyboard without any input. If there had been any input the
tool would in fact have translated the missing click in a keyboard closure.
This could be fixed by implementing the logger keyboard interception.
The PassAndroid test script failed in the testing step. It was in fact generated

52

TEST DESCRIPTION NUMBER
OF

COM-
MANDS

Test1 Test create note 7
Test2 Test trash 10
Test3 Check trash content 18
Test4 Test archive 11
Test5 Test swipe notes left and right 36
Test6 Test add reminder 13
Test7 Test create checklist 8
Test8 Test disable checklist 15
Test9 Test enable checklist 16
Test10 Test search 14
Test11 Test search wrongly 11
Test12 Test setting options swipe notes 5
Test13 Test setting options privacy and error reporting 4
Test14 Check floating action create Text note 2
Test15 Check floating action create Checklist 2
Test16 Check floating action add Photo 2
Test17 Test reduce and expand view 6
Test18 Check drawer menu 2
Test19 Check order menu 3
Test20 Check find operation 4
Test21 Test delete note after creation by swiping and undo oper-

ation
11

Test22 Test delete note from archive by swiping and undo oper-
ation

16

Test23 Test selected notes value is correct 20
Test24 Test order notes by last creation date 16
Test25 Test order notes by last modification date 16
Test26 Test add shortcut 13
Test27 Test discard changes to title before creating note 7
Test28 Test discard changes to content after note has been cre-

ated
11

Test29 Test sketch 7
Test30 Test removing category 8

Table 7.2: Description of OmniNotes test case

53

TEST DESCRIPTION NUMBER
OF

COM-
MANDS

Test1 Test set typed time 11
Test2 Test check to calendar 11
Test3 Check color wheel 18
Test4 Check images tab 13
Test5 Test scroll to last and first page 43
Test6 Test set description 6
Test7 Test set QR 7
Test8 Test set PDF41 7
Test9 Test set AZTEC QR 7
Test10 Test set message 8
Test11 Set alternative message 8
Test12 Check create pass 3
Test13 Check scan for pkpass files 3
Test14 Check add demo pass 3
Test15 Check open file 3
Test16 Check floating actions menu button 3
Test17 Check info 2
Test18 Check drawer menu 3
Test19 Check create pass 5
Test20 Test set description 13
Test21 Test delete pass from details 8
Test22 Test delete pass selected 11
Test23 Test edit pass 6
Test24 Test pass details toolbar 7
Test25 Check selected pass toolbar 10
Test26 Test set boarding pass 3
Test27 Test set generic pass 3
Test28 Test set coupon 3
Test29 Test set store card 3
Test30 Test set pass event and generic 4

Table 7.3: Description of PassAndroid test case

54

OmniNotes PassAndroid
Test successfully translated
Test failed to be generated
Test generated but not working

96.7%

3.3%

96.7%

3.3%

Figure 7.1: OmniNotes and PassAndroid success rate

a non working Espresso script. The script tried in fact to type inside the
focused view but none had any focus during the script execution. To fix this
typing may have to be handled differently in order to not have to guess on
which view it has to be typed to.
In conclusion we can be satisfied with the tool results and high success rate
that proves the tool capabilities even if some little improvements may be
needed for industrial uses.

55

Test SUCCESS
FAILED
GENERA-

TION

FAILED
EXECU-
TION

Test1 X
Test2 X
Test3 X
Test4 X
Test5 X
Test6 X
Test7 X
Test8 X
Test9 X
Test10 X
Test11 X
Test12 X
Test13 X
Test14 X
Test15 X
Test16 X
Test17 X
Test18 X
Test19 X
Test20 X
Test21 X
Test22 X
Test23 X
Test24 X
Test25 X
Test26 X
Test27 X
Test28 X
Test29 X
Test30 X

Test SUCCESS
FAILED
GENERA-

TION

FAILED
EXECU-
TION

Test1 X
Test2 X
Test3 X
Test4 X
Test5 X
Test6 X
Test7 X
Test8 X
Test9 X
Test10 X
Test11 X
Test12 X
Test13 X
Test14 X
Test15 X
Test16 X
Test17 X
Test18 X
Test19 X
Test20 X
Test21 X
Test22 X
Test23 X
Test24 X
Test25 X
Test26 X
Test27 X
Test28 X
Test29 X
Test30 X

Table 7.4: OmniNotes and PassAndroid test results

7.4 Threats to validity

7.4.1 Threats to Construction Validity
The tool effectiveness was measured in terms of success rate. A test is con-
sidered successful if it passes. Another aspect would be making sure that the
translated Espresso script executes the correct instructions in order to avoid
false positive. We decided to keep this limitation considering that avoiding
false negatives is more relevant.

7.4.2 Threats to Conclusion Validity
Standard statistical test were applied to test the tool effectiveness. The
results are consistent with the visual representation (96.7%).

7.4.3 Threats to External Validity
The experimental design includes some unfairness as only interactions and
dialogs supported by the translator were used. Therefore the results of this
evaluation are not generalizable to any EyeAutomate test suite. However,

56

since the supported commands of the tool include the most common com-
mands used in EyeAutomate and the dialogs were selected from a set of ap-
plications, we believe that the result is still meaningful to show the strengths
of the tool, especially since the translated third generation test cases are rep-
resentative of typical tests for Android applications in terms of sequences of
interactions performed. Moreover, some EyeAutomate were created based on
the Espresso ones already present in the GitHub project of PassAndroid and
were used for the experiment, hence adding to its external validity. Further-
more, the limitations of the current translator are only temporary technical
limitations in the tool, which will be addressed in future versions, and thereby
do not affect the results. Apps with a very different graphical appearance
or logic or used dialogs types may induce results that vary significantly from
those reported.

57

Chapter 8

Conclusion

This chapter concludes the thesis recapping the experimental results and
future works that can be done to the tool and for the future of the project.

8.1 Discussion and open issue
Even though the tool does not support the translation of every possible in-
teraction with the application the results indicate that the users will still get
the benefit of using it. However it should be considered that the translated
tests will be faulty if faults were present in the original test suits. A possi-
ble fault could be for example an interaction including an element changing
based on the current time: even if the translated test appeared working at
the translation moment it could fail on a later execution. Another consider-
ation is that the custom window callback will not be overridden during the
translation which would cause loss of the application log.
As explained in the implementation section the tool still does not cover all
the possible interactions. Among the not implemented ones the most urgent
are the dialog, preference, menu and spinner.
Dialogs, as mentioned, are not always easily interceptable so additional meth-
ods are provided to assure a log of their interaction. For this reason the
support Fragment Manager and the onAttach method are used on addition
to a new implementation of the dialgos. Further testing should be done to
ensure if all the dialogs interactions are intercepted or if further work should
be done on it.
Preference, menu and spinner interactions have a lot in common. Right now
they are cover only cases when their value is textual.
Last but not least the keyboard still needs further coverage. Right now key-
boards interactions are covered only if expressed through the type EyeAuto-

58

mate command. Other types of interactions are not covered and comports
to failure in translation.

8.2 Conclusion and future works
The results from the previous chapter confirm that it is possible to translate
test cases from third to second generation. Future works would cover im-
plementing the missing feature and perform a more through validation. A
further step would be ensure that the tool works properly with the previ-
ous developed one, translating from third to second generation. The com-
plete project would in fact simplify the creation of test cases for different
devices starting from one of them. Visual tests written for a specific emu-
lator would in fact be translated in Espresso test cases with this tool and
then re-translated in visual ones using the previously developed one for all
the desired devices.

59

Bibliography

[1] Maurizio Leotta , Diego Clerissi , Filippo Ricca , and Paolo Tonella.
Visual vs. dom-based web locators: An empirical study. In Sven Caste-
leyn, Gustavo Rossi, and Marco Winckler, editors, Web Engineering,
pages 322–340, Cham, 2014. Springer International Publishing. ISBN
978-3-319-08245-5.

[2] E. Alegroth, Z. Gao, R. Oliveira, and A. Memon. Conceptualization and
evaluation of component-based testing unified with visual gui testing:
An empirical study. In 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pages 1–10, April
2015. doi: 10.1109/ICST.2015.7102584.

[3] Emil Alégroth and Robert Feldt. On the long-term use of visual gui test-
ing in industrial practice: a case study. Empirical Software Engineering,
22(6):2937–2971, Dec 2017. ISSN 1573-7616. doi: 10.1007/s10664-016-
9497-6. URL https://doi.org/10.1007/s10664-016-9497-6.

[4] Android. Android operative system. URL https://www.android.com/.

[5] Haneen Anjum, Muhammad Imran Babar, Muhammad Jehanzeb, Ma-
ham Khan, Saima Iqbal, Summiyah Sultana, Zainab Shahid, Furkh Ze-
shan, and Shahid Bhatti. A comparative analysis of quality assurance of
mobile applications using automated testing tools. International Jour-
nal of Advanced Computer Science and Applications, 8, 07 2017. doi:
10.14569/IJACSA.2017.080733.

[6] Suriya Asaithambi and Stan Jarzabek. Towards test case reuse: A study
of redundancies in android platform test libraries. pages 49–64, 06 2013.
doi: 10.1007/978-3-642-38977-1_4.

[7] AUQTUS. Eyeautomate, . URL https://eyeautomate.com.

[8] AUQTUS. Eyeautomate, . URL https://eyeautomate.com/
eyestudio/.

60

https://doi.org/10.1007/s10664-016-9497-6
https://www.android.com/
https://eyeautomate.com
https://eyeautomate.com/eyestudio/
https://eyeautomate.com/eyestudio/

[9] Riccardo Copola, Luca Ardito, Marco Torchiano, and Maurizio Morisio.
Mobile testing: New challenges and perceived difficulties from developers
of the italian industry. 2019.

[10] Riccardo Coppola, Emanuele Raffero, and Marco Torchiano. Automated
mobile ui test fragility: an exploratory assessment study on android.
pages 11–20, 07 2016. doi: 10.1145/2945404.2945406.

[11] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. Mobile gui
testing fragility: A study on open-source android applications. IEEE
Transactions on Reliability, 68:67–90, 2019.

[12] Google. App resources overview, . URL https://developer.android.
com/guide/topics/resources/providing-resources.

[13] Google. Androidx overview, . URL https://developer.android.com/
jetpack/androidx.

[14] Google. Espresso, . URL https://developer.android.com/
training/testing/espresso.

[15] Google. Ui automator, . URL https://developer.android.com/
training/testing/ui-automator.

[16] Mark Grechanik, Qing Xie, and Chen Fu. Experimental assessment of
manual versus tool-based maintenance of gui-directed test scripts. pages
9–18, 09 2009. doi: 10.1109/ICSM.2009.5306345.

[17] Ellis Horowitz and Zafar U. Singhera. Graphical user interface testing.
2012.

[18] Ellis Horowitz and Zafar U. Singhera. Graphical user interface testing.
2012.

[19] Federico Iosue. Omninotes. URL https://github.com/
federicoiosue/Omni-Notes.

[20] JavaParser. Javaparser github. URL https://github.com/
javaparser/javaparser/.

[21] Ajay Jha, Deok Kim, and Woo Lee. A framework for testing android
apps by reusing test cases. 03 2019. doi: 10.1109/MOBILESoft.2019.
00012.

61

https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/jetpack/androidx
https://developer.android.com/jetpack/androidx
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://github.com/federicoiosue/Omni-Notes
https://github.com/federicoiosue/Omni-Notes
https://github.com/javaparser/javaparser/
https://github.com/javaparser/javaparser/

[22] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan,
Thomas Zimmermann, and David Lo. Understanding the test automa-
tion culture of app developers. 04 2015. doi: 10.1109/ICST.2015.
7102609.

[23] ligi. Passandroid. URL https://github.com/ligi/PassAndroid.

[24] Mario Linares-VÃąsquez, Kevin Moran, and Denys Poshyvanyk. Con-
tinuous, evolutionary and large-scale: A new perspective for automated
mobile app testing. pages 399–410, 09 2017. doi: 10.1109/ICSME.2017.
27.

[25] Marco Torchiano Luca Ardito, Riccardo Coppola and Emil AlÃľgroth.
Towards automated translation between generations of gui-based tests
for mobile devices. In Companion Proceedings for the ISSTA/ECOOP
2018 Workshops, Association for Computing Machinery, Inc, 2018.

[26] Je-Ho Park, Young Park, and Hyung Ham. Fragmentation problem in
android. pages 1–2, 06 2013. ISBN 978-1-4799-0602-4. doi: 10.1109/
ICISA.2013.6579465.

[27] StatCounter. Stats of mobile operating system market share
worldwide. URL https://gs.statcounter.com/os-market-share/
mobile/worldwide.

[28] Rajeev Tiwari and Noopur Goel. Reuse: reducing test effort. ACM
SIGSOFT Software Engineering Notes, 38:1–11, 03 2013. doi: 10.1145/
2439976.2439982.

[29] Mario Linares Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and
Denys Poshyvanyk. How do developers test android applications? 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 613–622, 2017.

62

https://github.com/ligi/PassAndroid
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

	Introduction
	Software testing
	Software Development Life Cycle
	System testing and End-to-End testing

	Android
	Android Applications types
	Android testing

	Motivation
	Example
	The project

	From Visual GUI to Layout-based tests
	Initialization
	Log generation
	Object creation
	Second generation test script generation
	Input and Output

	Tool preparation
	Main class and translation automation
	Attempts
	Emulator
	Adb, Gradle and Eyeautomate

	Initialization
	Instruments
	Support Libraries and gradle file
	Javaparser

	Layout
	Layout folders
	Identifiers and Layout-based tests
	Dynamic generated layout
	Programmatically added views

	Normalization
	Application logger
	MyWindowCallback
	AdapterView and RecyclerView
	Dialog and DialogFragment
	Other cases

	Issues with logger implementation
	Logger placing
	Logger in custom activity
	Logger in Dialogs

	Extended methods
	onAttachFragment
	onStart

	Tool custom classes and modules

	Log Generation
	Initialization
	Application logs
	Structure of the log string
	Not logged cases

	Script log
	Screen dump
	When to dump

	Object creation
	Initialization
	Parsing of the script log
	Parsing of the application log
	Object information filling
	Mouse interaction objects
	Check objects

	Translation
	Script directory
	Initialization
	Custom methods

	ViewMatcher and id
	Object translation
	WriteObject
	CheckObject
	ClickObject
	MouseInteractionObject
	Sleep

	Translation completed and testing the scripts
	Issues and improvements

	Experimental Validation
	Experiment subjects
	Procedure and materials
	Experimental results
	Threats to validity
	Threats to Construction Validity
	Threats to Conclusion Validity
	Threats to External Validity

	Conclusion
	Discussion and open issue
	Conclusion and future works

