
POLYTECHNIC OF TURIN

Master Degree Thesis in Computer Engineering

Experimentation of End-to-End Telco
Services through a Service Portal

Operating on an ONAP Orchestrator

Supervisors

prof. Guido Marchetto

prof. Fulvio Risso

Candidate

Serena Flocco

Academic Year 2019-2020

This work is subject to the Creative Commons Licence

Summary

The infrastructure used by network operators to deliver services to users at the edge
of the network is evolving towards a Cloud-native one. As a consequence, end-to-end
services are implemented as chains of PNFs and VNFs and an automated process is
required to manage their lifecycle. The Open Network Automation Platform (ONAP)
project is one of the available alternatives allowing to manage this kind of services,
providing service design, creation, KPI monitoring and closed-loop control capabili-
ties.

In order to help Communication Service Providers (CSPs) to manage the de-
scribed infrastructure and all the business operations related to it, the TeleManage-
ment Forum (TM Forum) organization has standardized a suite of REST based APIs
in its Open API program. In particular, service providers’ business operations have
been split into different categories, each one referring to a different layer of their
infrastructure. The Open API program defines a set of REST API specifications to
standardize the functionalities to be implemented at each layer and the communica-
tion among them. This thesis work focuses on three layers defined in the TM Forum’s
standard: Resource, Service and Product. Resources, also called Resource Facing
Services (RFS) represent the category of services internal to the service provider,
which are needed to support a Service at higher layer, i.e. a Customer Facing Ser-
vice (CFS). Therefore, a CFS represents the commercial view of a service exposed to
customers.

The ONAP platform is placed at Resource layer, which is also the lowest one. In
particular, it is responsible for managing resources located in different Cloud Central
Offices (Cloud-COs) and communicates with applications at Service layer through its
External APIs component, also called ONAP NBI. ONAP External APIs implementa-
tion is based on TM Forum’s REST specifications and allow applications at Service
layer to trigger actions on resources (i.e., creation, deletion or modification) by in-
teracting with ONAP in a standard way. This component has been studied, tested
and evaluated. For what concerns the Service layer, Service Order Management
(SOM) applications can be placed here. An example is Service Resolver developed
by Orange, an open source project which has been tested and improved. Service
Resolver exposes a set of REST APIs based on TM Forum’s standard. It accepts
requests from BSS applications and maps them into requests to be sent to ONAP Ex-
ternal APIs component in order to trigger the instantiation process of the resources

i

needed to support the required service. Finally, BSS applications refer to the Product
layer and are responsible for mapping customer requests into requests to be sent to
SOM applications. The work performed at this layer regards the implementation of
a BSS application called Service Portal, composed by a GUI from which customers
can order the desired product and a backend component sending requests to Ser-
vice Resolver, allowing it to instantiate the service which corresponds to the product
purchased by the customer.

The chain of functionalities implemented in the three described layers realises the
steps required by service providers to instantiate end-to-end services according to
customers requests. In conclusion, the purpose of this thesis is to provide a complete
analysis of this process with details on how it has to be implemented at each layer,
thanks to the contribution given to Service Resolver project and the development of
the Service Portal.

ii

Acknowledgements

Of course, aknowledgments are not my best. And everything I can write here will
never be sufficient to show my gratitude to people who have never left me alone
during these years, despite the many difficult moments.

Firstly, I would like to thank my parents for always supporting me and being
proud of my work. Thanks to my sisters, Michela and Alessia, the hardest thing for
me has been to be far from you.

Thank you, Mirko, there are no words to describe the importance of your pres-
ence by my side.

Thanks to all my friends, those that have always been there for me. Each one of
you knows. Thank you Nicola & Nicola for the great time spent together in Turin and
thank you, Dalila, you are one of the few persons able to understand me. You are my
second family.

Finally, thanks to professors Fulvio Risso and Guido Marchetto for giving me this
opportunity, and thanks to team members who followed me during my thesis work at
Telecom Italia. It was an unforgettable experience.

iii

Contents

List of Figures vi

1 Introduction 1

1.1 Context . 1

1.2 Purpose of the thesis . 3

1.3 Thesis organization . 4

2 ONAP 5

2.1 Overview . 5

2.2 ONAP functional description . 6

2.3 Architecture . 8

2.3.1 Service Design and Creation . 9

2.3.2 Service Orchestrator . 11

2.3.3 Active and Available Inventory . 13

2.3.4 Data Movement as a Platform . 13

2.3.5 ONAP External APIs . 15

2.3.6 ONAP NBI testing . 18

3 TM Forum and the Open API Program 26

3.1 Overview . 26

3.2 TMF641: Service Ordering Management API 27

3.3 TMF638: Service Inventory Management API 30

3.4 TMF633: Service Catalog Management API 31

4 Service Resolver for ONAP 36

4.1 Overview . 36

4.2 Architecture . 37

4.3 Service Resolver REST APIs . 40

4.3.1 RFS Specification API . 40

4.3.2 CFS specification API . 41

4.3.3 Service Instance API . 47

4.3.4 CFS Order API . 48

4.3.5 Instantiation Decision API . 52

iv

4.4 CFS Order workflow . 52
4.5 Service Resolver APIs testing and improvement 58

5 Service Portal: architecture 68
5.1 Overview . 68
5.2 Overall design . 68
5.3 Architecture . 69

5.3.1 Backend . 69
5.3.2 Frontend . 78
5.3.3 Database . 79

6 Service Portal: implementation 83
6.1 Technical choices . 83

6.1.1 MySQL database . 83
6.1.2 Python Flask . 84
6.1.3 React and Bootstrap . 85

6.2 Code’s structure . 87
6.2.1 Backend code . 87
6.2.2 Frontend code . 89

6.3 Configuration . 91
6.3.1 Docker and Docker Compose . 92
6.3.2 NGINX . 94
6.3.3 Communication between Service Portal and Service Resolver . . . 94

7 Service Portal: validation 96
7.1 Functional requirements . 96
7.2 Non functional requirements . 97
7.3 Performance analysis . 97

8 Conclusions and Future work 100
8.1 Conclusions . 100
8.2 Future work . 100

Bibliography 102

v

List of Figures

1.1 Cloud-COs-based infrastructure . 2

1.2 Business Process Framework (eTOM) . 2

2.1 ONAP main functions . 7

2.2 ONAP El Alto Architecture . 9

2.3 ONAP SO Service Instantiation Flow . 12

2.4 ONAP DMaaP functional architecture . 14

2.5 ONAP External APIs Architecture . 15

2.6 ONAP NBI Workflow for Service Order . 17

3.1 TMF641 Resource Model . 29

3.2 TMF641 state field values . 30

3.3 TMF641 methods definition . 31

3.4 TMF638 Resource Model . 32

3.5 TMF638 methods definition . 33

3.6 TMF633 Resource Model . 33

3.7 TMF633 methods definition . 35

4.1 Service Resolver component view . 38

4.2 Service Resolver demo portal . 39

4.3 Workflow for RFS Specification creation 53

4.4 Workflow for CFS Specification creation 54

4.5 Workflow for CFS Order request (action=add) 56

4.6 Workflow for CFS Order request (action=delete) 57

5.1 Service Portal architecture . 70

5.2 API methods for products management 71

5.3 API methods for categories management 73

5.4 API methods for orders management . 73

5.5 Workflow for order creation . 75

5.6 API methods for CFS models retrieval . 76

5.7 API methods for Inventory management 76

5.8 API methods for users management . 77

5.9 API methods for users authentication . 78

5.10Service Portal customer personal area . 81

5.11Service Portal administrator personal area 82

6.1 Service Portal code’s organization . 87

vi

6.2 Service Portal backend code’s organization 87
6.3 Service Portal frontend code’s organization 90
7.1 Functional requirements . 96
7.2 Non functional requirements . 97
7.3 Performance profile for product order (add) 98
7.4 Performance profile for product order (delete) 99

vii

Chapter 1

Introduction

1.1 Context

In recent years, the diffusion of new paradigms such as Software Defined Networking
(SDN) and Network Function Virtualization (NFV) has determined a radical change
of the way to operate networks. The transformation of telecommunication networks
is related to the possibility to virtualize network components and to decouple control
and data plane, allowing to reduce costs of ownership and to increase efficiency. As
consequence, Communication Service Providers (CSP) aim to exploit the described
technologies also in public networks and, therefore, their infrastructures are evolv-
ing toward Cloud-native ones. In particular, Central Offices, which nowadays are still
mostly hardware-based, will be replaced soon by a cloudified version: the Cloud Cen-
tral Office (Cloud-CO) [1], whose architecture has been standardized by the Broad-
Band Forum (BBF) organization [2].

This cloudification process is lead by both economical and technical reasons. First
of all, the increasingly wide distribution of Cloud Services is related to their flexibil-
ity, higher performance and rapid availability. Thus, the adoption of Cloud-COs aims
to provide all these advantages, combined with the possibility to satisfy customers’
requests in a dynamical way. Moreover, they allow CSPs to build networks which
are adaptable, agile, scalable and dynamic, reducing Capital Expenditures (CapEx),
migration and Operational Expenditures (OpEx) costs, cutting the mean time of deliv-
ery. In other words, this gives network operators the opportunity to run a single net-
work with all varieties of access technologies, and flexibly deploy new value-added
services.

In this scenario, end-to-end services delivered to users at the edge of the provider’s
network can be implemented as chains of Virtual Network Functions (VNF) and Phys-
ical Network Functions (PNF) located into different Cloud-COs. In order to manage
the lifecycle of these services, an automated process playing the role of a Service
Orchestrator is required. In this way, network operators can get rid of the vendor
lock-in problem, introducing an additional economical benefit.

1

1 – Introduction

Service Orchestrator

Cloud-CO

Cloud-CO

Cloud-CO

Cloud-CO

VNF

VNF

VNF

VNF

Metro
Transport
Network

Backbone
Transport
Network

Metro
Transport
Network

Internet

Figure 1.1. Cloud-COs-based infrastructure

The management of the described infrastructure is complex, therefore it has been
split into different layers, which are described in the Business Process Framework
(eTOM) [3], a hierarchical catalog of the key business processes required to run a
service-focused business, which has been standardized by TeleManagement Forum
(TM Forum) organization [4]. It is shown in figure 1.2.

Figure 1.2. Business Process Framework (eTOM)

2

1 – Introduction

At Product layer, there are BSS1 applications from which customers can buy
the desired products, for example fiber connectivity service offered by the network
provider. Customers’ requests then need to be translated in requests to trigger in-
stantiation of the corresponding service. These requests are managed by Service
Order Management (SOM) applications at Service layer. Since this kind of services
are usually implemented as chains of VNFs or PNFs, SOM applications have to de-
compose them into the list of resources to be instantiated by the network provider to
fulfill customers’ requests. These requests have to be sent to a network automation
platform placed at Resource layer, able to manage the lifecycle of available resources
(e.g. a VNF located in a Cloud-CO). Finally, the communication among applications
at different layers is performed through REST APIs standardized by TM Forum.

1.2 Purpose of the thesis

In a context such as the one described in the previous section, telecommunications
service providers are planning a new strategy to deliver services to users at the
edge of the network, according to the new technologies adopted in a Cloud-based
infrastructure and to their business needs. Consequently, they are studying and
testing different solutions in order to select the most effective one to be used in the
future.

This thesis work has been developed at Telecom Italia and aims to offer a detailed
analysis of the functionalities to be implemented at different layers of eTOM and of
how the communication among them works, an improvement of a SOM application
developed by Orange and the implementation of a BSS application at Product layer.

In particular, regarding the Resource layer, the purpose is to study and under-
stand how the ONAP orchestration platform works, focusing on the standard APIs
exposed on its NorthBound Interface2 towards SOM applications. At Service layer,
the target is to exploit the knowledge acquired about ONAP to improve Service Re-
solver for ONAP, the SOM application developed by Orange, and to study its REST
APIs based on TM Forum’s standard. Finally, the BSS application to be implemented
at Product layer aims to allow customers to trigger service instantiation or deletion
through a Graphical User Interface (GUI), thanks to a backend component mapping

1BSS stands for Business Support System and includes all the components needed by telecommuni-
cations service providers to support business operations towards customers.

2The Northbound Interface, or simply NBI, represents the application interface with higher-level
layers of software.

3

1 – Introduction

requests to Service Resolver, following the TMF specifications3 studied at lower lay-
ers.

1.3 Thesis organization

The thesis is organized as follows:

• Chapter 1 Introduction describes the context and the motivation of this work.

• Chapter 2 ONAP provides an overview about the ONAP platform, focusing on
some relevant components for this thesis.

• Chapter 3 Service Resolver for ONAP analyses the SOM application devel-
oped by Orange and shows the contribution given in order to improve it.

• Chapter 4 Service Portal: architecture describes the different components
of Service Portal design and architecture, the internal interaction among them
and the external one with the Service Resolver.

• Chapter 5 Service Portal: implementation focuses on the technical choices
performed during Service Portal implementation phase, providing details about
the tools, programming languages and frameworks used.

• Chapter 6 Service Portal: validation shows how the requirements provided
by Telecom Italia have been satisfied and analyses Service Portal performance.

• Chapter 7 Conclusion and Future Work sums up the objectives reached
thanks to this work and suggests some possible improvements.

3TMF specifications refer to the TM Forum documents which describe the standard to be followed in
REST APIs implementation at each layer of eTOM. They are numbered and each number corresponds
to a specific API (e.g., the TMF641 specification corresponds to Service Ordering Management API)
[5].

4

Chapter 2

ONAP

2.1 Overview

The Open Network Automation Platform (ONAP) is an open source project hosted
by the Linux Foundation [6]. It has been created in order to provide service design,
creation and orchestration capabilities, with the possibility to handle the full lifecycle
of services implemented exploiting the combination of SDN and NFV technologies,
which are usually deployed in Cloud-based environments.

The project was born in 2017 with the aim of satisfying the rising need for a
common automation platform which allows telecommunication and cloud service
providers to deliver network services on demand, improving velocity and simplify-
ing equipment interoperability and integration. In this way, CSPs can reduce costs of
hardware maintenance, avoiding the installation of new data center equipment and
the upgrade of CPE1 devices. Services can be created dynamically and deployed in
a virtualized environment, so lifecycle operations, such as instantiation, configura-
tion changes and upgrades, are all simply software steps that can be fully automated.
As a consequence, the combination of increased hardware utilization and adoption of
open source software may results in reduced CapEx, while automation and hardware
standardization can decrease OpEx.

The strength of ONAP derives from its massive scale automation capabilities for
both physical and virtual network elements, thanks to the offering of a unified frame-
work which allows vendor-agnostic and policy-driven service design, implementa-
tion, KPI2 monitoring and lifecycle management. Service instantiation can be per-
formed dynamically, since ONAP supports closed control loop automation with the
ability to react to real-time changes. Service agility, interoperability and simplified

1CPE stands for Customer Premise Equipment and represents the hardware needed by users at the
edge of the network to access providers’ communication services.

2KPI or Key Performance Indicator provides a measurement of the success of an activity it is referred
to. In this case, it is referred to perfromance parameters that are significant for a particular service.

5

2 – ONAP

integration are achieved thanks to its modularity and layered nature, the support
of data modeling languages which allow a rapid service and resource deployment,
and the suite of open NorthBound REST APIs provided. These characteristics allow
ONAP to support multiple VNF environments by integrating with multiple VIMs3,
VNFMs4, SDN Controllers and legacy equipment. Therefore, the described approach
allows network and cloud operators to optimize their physical and virtual infrastruc-
ture for cost and performance; at the same time, ONAP’s use of standard models
reduces integration and deployment costs of heterogeneous equipment.

All these features and the fact ONAP is open source represent a powerful in-
novation, able to change how CSPs build and operate their networks, and which,
therefore, includes several new architectural concepts.

Furthermore, the platform is in continuous evolution thanks to the developers
community responsible for continuously updating software and improving its com-
ponents and functionalities. The last published version is El Alto, and a new one is
released every six months. As part of each release, the ONAP community also defines
blueprints for key use cases, such as 5G, BBS (Broadband Service), CCVPN (Cross
Domain and Cross Layer Virtual Private Network), Voice over LTE (VoLTE), and vCPE
(virtual Customer Premise Equipment). Testing these blueprints with a variety of
open source and commercial network elements during the development process pro-
vides the ONAP platform developers with real-time feedback on in-progress code,
and ensures a trusted framework that can be rapidly adopted by other users of the
final release.

In conclusion, ONAP will harmonize the way VNFs and network services are de-
ployed, simplifying the interaction between CSPs and VNF vendors.

2.2 ONAP functional description

ONAP’s service design, deployment and operations activities are provided by two
major frameworks, the Design-time framework and Run-time one, as shown in figure
2.1.

Each function executed by ONAP is associated to a set of required activities. They
can be summed up as follows:

• Service design: thanks to a robust design framework, which allows service
definition in all aspects, it is possible to model resources and their relationships,

3The Virtual Infrastructure Manager (VIM) is responsible for controlling and managing the NFV
infrastructure (NFVI) compute, storage, and network resources, usually within one operator’s infras-
tructure domain [7].

4The VNFM or VNF Manager is a key component of NFV-MANO, the standard which allow interop-
erability of software-defined networking elements that use network function virtualization technology.
In particular, the VNFM is responsible for lifecycle management of VNFs [8].

6

2 – ONAP

Figure 2.1. ONAP main functions

specify the policy rules controlling service behavior and applications, analytics
and closed control loop events needed for a reactive management of the service.

• Service deployment: the policy-driven orchestration and control framework
provides automated instantiation of the service and performs required actions
on services.

• Service operations: the analytic framework monitors service behavior during
its lifecycle based on the specified KPI parameters, collected data and policies
to enable real-time response as required, making possible to deal with situa-
tions that require dynamical resource healing or scaling.

Each mentioned function is composed by a sequence of sub-tasks needed to complete
it. The following guidelines show the main steps to be executed in a chronological
order, presenting ONAP’s functional structure:

1. Service design activity includes the following sequence of sub-tasks:

• Planning VNF onboarding: checking which VNFs will be necessary for the
required features

• Creating resources to compose services

• Distributing the defined services to ONAP components, by exploiting a
publish/subscribe pattern

2. Service orchestration and deployment, which requires:

• Definition of the necessary VNFs for the service

• Definition of the steps to orchestrate the service

• Selection of valid cloud region

7

2 – ONAP

• Calling cloud APIs to deploy VNFs

• Application of configuration on VNFs by controllers

3. Service operations, which are:

• Closed Loop design and deployment

• Collecting and evaluating event data

2.3 Architecture

ONAP architecture [9] defines two major areas, design-time and run-time, as de-
scribed in the previous section. This separation allows for clean delineation between
design and operational roles. Moreover, functions for managing ONAP itself are in-
cluded, since it is a Cloud-native application.

The design-time environment allows to model resources, services, products and
to define their management and control functions. This is achieved by using a com-
mon set of specifications, usually called “recipes”, and policies for controlling service
behavior and process execution, which facilitates reuse of models and improves effi-
ciency.

Components in the run-time framework execute the rules, policies and other mod-
els defined in the design and creation environment. The distribution process of mod-
els and policies from the design-time environment to ONAP run-time modules, such
as the Service Orchestrator (SO), Controllers, Data Collection, Analytics and Events
(DCAE) and Active and Available Inventory (A&AI), enable them to know the oper-
ations to be performed when a new service instance has to be created, modified or
deleted, or when a workflow has to be applied in case service KPI parameters do not
respect a given threshold.

Figure 2.2 provides a high-level view of the ONAP architecture and shows its
various components.

As a Cloud-native application composed by different services, ONAP requires
complex initial deployment and post-deployment management. Deployment method-
ology needs to be flexible since the platform needs to be highly reliable, scalable,
secure and easy to manage. To satisfy all these requirements, ONAP architecture is
microservices-based and its components are runned in Docker5 containers with an
optimized image size.

The ONAP Operations Manager (OOM) module is responsible for orchestration,
lifecycle management and monitoring activities of all the other platform components,
by using Kubernetes container orchestrator6 to ensure CPU efficiency and resiliency

5Docker [10] is an open platform that provides the ability to package and run an application in an
isolated environment called a container. More details will be provided in chapter 6.

6Kubernetes [11] is an open source platform for managing and orchestrating containerized applica-
tions in cloud environment.

8

2 – ONAP

Figure 2.2. ONAP El Alto Architecture

of the managed components. Moreover, it supports a wide variety of Cloud infras-
tructures to suit operators’ individual requirements.

In addition, ONAP offers a GUI and an API interface. Both design-time and run-
time environments are accessed through the Portal Framework, with role-based ac-
cess for service designers and operations personnel.

ONAP interfaces with other external subsystems. On the NorthBound Interface
ONAP talks to OSS7 and BSS applications. On the SouthBound Interface8, ONAP
communicates with the VIM, NFVI (Network Function Virtualization Infrastructure),
and SDN controllers, as well as with the NFV Cloud hosting all the created resources,
such as VNFs and PNFs.

Among all ONAP components, five of them are relevant for this thesis work: SDC,
SO, A&AI, DMaaP and External APIs.

2.3.1 Service Design and Creation

The Service Design and Creation (SDC) project [12] is a tool for design-time activi-
ties such as VNFs onboarding, services and policies creation, workflows definition,

7The therm OSS, or Operational Support System, refers to all the systems needed by CSPs to manage
their networks and to ensure their functionalities.

8The SouthBound Interface, also named SBI, refers to the application interface with lower-level
layers of software.

9

2 – ONAP

data analytic applications onboarding and models distribution to run-time compo-
nents. Moreover, it provides a role-based distinction of users (e.g.: designer, tester,
administrator, governance).

SDC is catalog-driven, which means all the defined models are stored in a catalog,
that actually represents a single source of service data. The centralization of this
data allows providers to increase time to market for new digital services.

The SDC manages the catalog content and logical assemblies of catalog items
to establish rules on VNFs realization in target environments. A virtual assembly
of specific catalog items, together with related workflows and configuration data,
defines how the deployment, activation, and life-cycle management of VNFs have to
be executed.

The models defined in SDC describe asset capabilities and how they have to be
managed. Inside the SDC Catalog, two levels of assets are managed:

• Resource: it represents a combination of one or more Virtual Function Compo-
nents (VFCs), along with all the information necessary to instantiate, update,
delete, and manage the Resource. A Resource also includes license-related
information. There are three kinds of Resource:

– Infrastructure, composed by the Cloud resources (e.g., Compute and Stor-
age)

– Network (e.g., a VNF)

– Application (e.g., a load balancer)

• Service: it is an object composed by one or more Resources. Service Design-
ers create Services from Resources, including all of the information needed to
instantiate, update, delete, and manage the Service.

There are four major sub-components in SDC:

• The Catalog, which is the repository for Resources and Services.

• The Design Studio is used to create, modify, and add Resource and Service
definitions in the Catalog.

• The Certification Studio is used to test new assets in order to certify them.

• The Distribution Studio is used to deploy certified assets.

In addition, the SDC exposes a set of REST APIs to the outside ONAP components
and SDC Integrated Development Environment is accessible by designers through
the ONAP portal. Thanks to its graphical interface and visual tools, users can drag
and drop different components to model their service and to inspect the require-
ments provided by each VNF to the service. SDC offers an interface for distributing

10

2 – ONAP

the modeled services, TOSCA9 artifacts and CSAR10 files to SDN Controller, A&AI,
Service Orchestrator and other ONAP run-time components, using DMaaP notitica-
tions.

2.3.2 Service Orchestrator

The Service Orchestrator (SO) component [15] is responsible for performing actions
on services and automates the execution of tasks, rules and policies needed to con-
trol these services. ONAP SO performs orchestration at high level, thanks to its
end-to-end view of the network infrastructure. In order to fulfill the required tasks,
it interacts with four controllers, which are the Multi-VIM, the SDN Controller (SDN-
C), the Application Controller (APP-C) and the Virtual Function Controller (VF-C). In
addition, it communicates with SDC and A&AI to obtain topologies, configurations
and resource models. The SO can be invoked by means of APIs calls from BSS appli-
cations or manually through VID11. SO takes also homing12 decisions and manages
rollbacks operations in case errors occur.

In order to understand the operations performed by SO to instantiate a service,
the sequence of steps of instantiation flow [17] will be presented. Figure 2.3 shows
an overview of the mentioned flow.

After the design phase and SDC service CSAR distribution, an instantiation re-
quest for the desired service can be sent to SO via VID Portal (ONAP GUI), UUI
(User Interface), CLI (Command Line Interface) or External APIs module. The user
select the service from the available ones that could be instantiated and finds the
corresponding identifier. This information is stored in SDC Catalog, also available at
VID terminal, where the user can see the list of service models, search the one he is
interested in, and ask to deploy it.

ONAP provides three methods to instantiate a service:

• The A La Carte method requires the user to build and send operations for each
object to be instantiated: service, VNFs and networks. In other words, once the
service object has been created, the various VNFs or networks that compose it
have not been instantiated yet. To build instantiation requests for all resources
to be created, the user needs to collect by himself all necessary parameters and

9TOSCA is the acronym of Topology and Orchestration Specification for Cloud Applications [13] and
is a standard modeling language used to describe the topology of Cloud-based web services, and how
they are composed, managed and related among them.

10The SDC Service CSAR [14] is a package of artifacts which captures the information associated
with a service defined at design time.

11The Virtual Infrastructure Deployment (VID) [16] enables users to ask for the creation or deletion
of services and their components.

12Homing is intended as the process of determining the physical or virtual resources in which work-
loads will be placed.

11

2 – ONAP

Figure 2.3. ONAP SO Service Instantiation Flow

associated values. These operations can be performed via VID, SO REST API or
ONAP External APIs.

• The Macro method allows the user to build and send only one request to in-
stantiate all objects composing the service: for this reason it is also known as
“one-click instantiation”. The SO derives the sequence of actions, called “build-
ing blocks”, composing the Macro flow associated to the service and executes
them in order to instantiate all resources. For this method, only SO REST API
can be used.

• The E2E (End-to-End) method has the same output than the Macro one, but re-
sources are instantiated one after the other by executing the associated BPMN
workflow13 instead of using building blocks. The BPMN workflow related to
each resource has to be specified at design time.

When SO receives an instantiation request, the first step is the creation of a new
record in the Active and Available Inventory. SO asks A&AI for creation of service

13BPMN, which means Business Process Model and Notation [18], is a standard notation used for
business process modeling, which provides a graphical representation describing the steps that com-
pose business processes.

12

2 – ONAP

record and of records for the resources, such as VNFs and PNFs, associated to the
service. After this, it performs other operations such as service homing, Cloud re-
source requests, network assignments, instantiation, service activation and finally
notifies to the user the final outcome of his initial request.

If the user requests to delete a service instance, the SO just performs the opposite
process: it checks if service exists in A&AI, asks for Cloud resource deallocation,
removes the active instance and all its resources.

2.3.3 Active and Available Inventory

The Active and Available Inventory (also called AAI or A&AI) [19] is the ONAP module
storing real-time views of available Services and the relationships among them. It
registers active and available Service instances and relevant information about them
in an Inventory, keeping all these data up-to-date.

Data stored in AAI is continuously updated in real-time, according to the changes
made within the Cloud environment. Since AAI is metadata-driven, new resources
and services can be added quickly with Service Design and Creation (SDC) cata-
log models, by means of the model loader, such that long development cycles can
disappear. Moreover, new item types can be added to Inventory through schema
configuration files.

ONAP AAI exploits graph data technology to store relationships between Inven-
tory items. This allows to identify chains of dependencies between items. AAI dis-
plays relationships between products and the services composing them, but also
between services and their resources. It also shows relationships among different
VNFs that are chained to realise an end-to-end service.

Data collected by AAI can be used during service delivery, analysis of problems,
impact analysis, and many other processes, thanks to providing a reliable snapshot
of the current state of all resources managed by the ONAP platform.

2.3.4 Data Movement as a Platform

The Data Movement as a Platform component [20], usually called DMaaP, is one of
the two buses by means of which the different ONAP modules can communicate. It
is designed to provide low cost data movement services, ensuring high performance.
Its role is to allow data transport from any source to any destination, respecting the
quality, security, and concurrency requirements needed to fulfill the business and
customer requests, and using the appropriate format.

For what concerns DMaaP functional architecture, shown in figue 2.4, three areas
can be identified:

• Data Filtering, which includes all the operations needed to pre-process data
before transport begins. Data pre-processing is executed via data analytics and
exploits compression mechanisms in order to reduce the size of data before the
next processing steps.

13

2 – ONAP

Figure 2.4. ONAP DMaaP functional architecture

• Data Transport, responsible for data movement operations, which can be file
based or message based. Data can be propagated both inter data centers or
intra data centers. During transport, ability to move data from any system to
any system with minimal latency represents a fundamental requirement to be
satisfied. Moreover, delivery and high availability must be guaranteed.

• Data Processing, where data transformation, aggregation, and analysis oper-
ations are executed with low latency and high throughput. In addition, it can
ensure scalability and fault-tolerance to the traffic across data centers. Both
batch and real-time data processing is guaranteed.

Inside DMaaP there are four sub-components. They are:

1. The Message Router (or simply MR), a messaging service based on the pub-
lish/subscribe pattern, able to guarantee reliability and to perform high-volume
messages exchange. It exposes a RESTful API and it is available to clients as a
web service. It is initially built over Apache Kafka14.

2. The Data Router (DR), a project which aims to offer a common framework
allowing producers to send data to consumers. DR exposes a RESTful interface
to access it as a web service, known as the DR Publishing and Delivery API.

14Apache Kafka [21] is an event streaming platform, scalable and reliable, initially intended as a
simple messaging queue and evolved after it was open sourced by LinkedIn in 2011.

14

2 – ONAP

3. The Data Movement Director (or DMD), which implements a client to the
DMaaP platform and is responsible for publishing and subscribing data.

4. The Data Bus Controller, which is the DMaaP Provisioning API.

The Data Movement as a Platform component is used by ONAP modules to perform
the distribution process, i.e. the propagation of service models defined in SDC Cat-
alog to the microservices in ONAP run-time environment, with the purpose to make
them available to allow service creation, modification, deletion and monitoring.

2.3.5 ONAP External APIs

The External APIs component [22] is also called ONAP NBI, which stands for North-
Bound Interface. It brings to ONAP a set of REST APIs that can be used by external
systems, such as BSS, to interact with other ONAP components, hiding all the com-
plexity of these components. These APIs are based on TM Forum’s REST specifica-
tions, that will be described in the next chapter.

Figure 2.5 provides a global view about ONAP External APIs architecture [23],
showing its interaction with other ONAP components and the available API opera-
tion.

Figure 2.5. ONAP External APIs Architecture

ONAP External APIs provides access to different information stored in ONAP plat-
form components. By means of exposed API methods, BSS applications can get the
list of available models from SDC and the information stored in A&AI. Moreover,

15

2 – ONAP

BSS can ask for service instantiation, modification or deletion by sending a Service
Order request, whose syntax will be described in the next chapter. ONAP NBI will
convert this request to ONAP SO request, hiding the sequence of operations per-
formed at lower level. Furthermore, client applications can also receive notifications
about the state of their Service Orders thanks to an interface to ONAP DMaaP com-
ponent. In this way, the user can interact with the ONAP platform in a standard way,
without the necessity of technical knowledges about each component and executed
processes, making this kind of interaction easier and more intuitive.

Four REST APIs are exposed:

• ServiceOrder API, based on the TMF641 specification for Service Orders man-
agement. It provides all the methods that allow to retrieve (GET), create (POST),
modify (PUT) and delete (DELETE) Service Orders.

• ServiceCatalog API, which follows the TMF633 specification (Service Catalog
management). This API manages ONAP NBI Service Catalog containing all the
service models available in SDC Catalog. It is used by the NBI internally and
by the user in order to get the service models list from SDC, without the need
to perform direct calls to SDC component.

• ServiceInventory API, compliant to the TMF638 specification for Service In-
ventory management, which provides access to the NBI service Inventory. All
the active service instances stored in AAI are copied inside it. Also in this case,
the user can retrieve service instances in a transparent way.

• HUB API, also based on TMF641, which allows user to subscribe to ONAP NBI
notifications in order to check order status and percentage of progress; this
mechanism is implemented by subscribing to ONAP DMaaP topics and listening
for events on that topics.

In addiction, an API method is available to execute the NBI healthcheck. By
means of this request, the user can monitor the status of ONAP NBI and, in particular,
if it is connected to SDC, AAI and SO.

The diagram in figure 2.6 shows the workflow executed by the External APIs
component when a Service Order request is received.

When ONAP NBI receives a Service Order request, it firstly checks if the order
is valid. In particular, if the request body contains the mandatory information and
the specified fields contain values compliant to the API specification defined by TM
Forum, then order processing can be continued, otherwise an error code is returned.

The second step is order storage. This requires for SO intervention, which has
to initialize some attributes values such as order id and order state, which is usually
set to “acknowledged”. Finally, if the order creation ends correctly, a success code is
returned.

At this point, the Service Order is decomposed into different blocks. These blocks
are called Order Items, which specify the action to be performed on a given service.

16

2 – ONAP

1

Check Order

Store Order

POST
ServiceOrder

OK

FAILED: return
error code

OK:
return

success
code

For each orderItem

Check Order Consistence

FAILED: set
state=rejected

OK

Create A&AI Customer

Create A&AI service-type Send orderItem to SO

Update Service Order

• SO returns error code → set order state to
«failed»

• SO returns success code → set order state
to «completed»

Wait for a response…

Figure 2.6. ONAP NBI Workflow for Service Order

So, for each order item included in the service order request body, the following
sequence of operations is executed:

1. Check Order Consinstence, based on the action required on the specified
service. In particular, if the action is “add” (i.e., instantiate), the NBI has to
check that the service specification exists in the catalog via the ServiceCatalog
API, while if it is “delete” it needs to find the service instance related to the pro-
vided customer information (if this information is missing, the service instance
is searched among those associated to the “generic” customer) in the Inven-
tory by using the ServiceInventory API. In addiction tenant/cloud information
is checked. The result of these checks determines if the order item has to be
set in “rejected” state and an error code has to be returned or if the processing
can go on.

2. Create A&AI customer (if not already present), only if action is “add” for all
order items.

3. Create A&AI service type (if not already present) associated to the customer.

4. Send order Item to SO, so the NBI retrieves the information about the service
or VNF to be created, deleted or modified, it them to fill the SO request body
and sends a POST request via SO API.

17

2 – ONAP

5. Update Service Order. If the SO returns a success code in the response, then
the order item state is set to “completed”, otherwise its value is “rejected”. If
all order items have the state set to “completed”, the state of the Service Order
is set to the same value, while even if a single order item has been rejected, the
Service Order state is changed accordingly.

Service Order management in ONAP NBI supports 2 modes:

• E2E integration: NBI calls SO API to apply E2E instantiation method.

• Service-level only integration: NBI triggers only SO request at service in-
stance level (not at VNF level and nothing will be created on cloud platform).
This corresponds to the A La Carte instantiation method: the service instance
is only created in AAI and the objects composing it are not instantiated.

The choice of the mode is done by NBI depending on information retrieved in SDC.
If the service specification in the SDC Catalog is within a category “E2E Service”,
NBI will use E2E SO API to trigger E2E instantiation, otherwise only API at service
instance level will be used. The Macro instantiation method is not yet supported.

To sum up, ONAP External APIs play a primary role from customer perspective.
Everyone can develop a client application to NBI API and interact with ONAP com-
ponents in a transparent, standardized and simple way.

2.3.6 ONAP NBI testing

After having studied ONAP NBI, it was important to explore and evaluate its func-
tionalities by performing some practical tests. Therefore, some requests was sent in
order to verify service instantiation and deletion via ONAP External APIs.

In both cases, a Service Order was sent to ONAP NBI by means of a POST request
to the Service Order API. In particular, the request body must be filled correctly, spec-
ifying the information required to identify the service to be instantiated or deleted.
The method used was the A La Carte one.

For what concerns service instantiation request, the first information to be re-
trieved is the model of the service to be instantiated from ONAP SDC Catalog. A list
of all available service models in ONAP SDC is returned by ONAP NBI when sending
a GET request to the Service Catalog API, so this was the first test performed. An
example of JSON response body is provided below [24].

[
{
"id": "string",
"href": "string",
"name": "string",
"description": "string",

18

2 – ONAP

"@type": "string",
"@schemaLocation": "string",
"@baseType": "string",
"invariantUUID": "string",
"toscaModelURL": "string",
"toscaResourceName": "string",
"category": "string",
"subcategory": "string",
"distributionStatus": "DISTRIBUTION_NOT_APPROVED",
"version": "string",
"lifecycleStatus": "NOT_CERTIFIED_CHECKOUT",
"targetServiceSchema": {
"@type": "string",
"@schemaLocation": "string"

},
"attachment": [
{
"id": "string",
"name": "string",
"description": "string",
"@type": "string",
"artifactLabel": "string",
"artifactGroupType": "string",
"artifactTimeout": "string",
"artifactChecksum": "string",
"artifactVersion": "string",
"generatedFromUUID": "string",
"url": "string",
"mimeType": "string"

}
],
"relatedParty": [
{
"id": "string",
"role": "string",
"name": "string"

}
],
"resourceSpecification": [
{
"id": "string",
"version": "string",

19

2 – ONAP

"name": "string",
"@type": "string",
"resourceInstanceName": "string",
"resourceInvariantUUID": "string",
"resourceType": "string",
"modelCustomizationName": "string",
"modelCustomizationId": "string"

}
],
"serviceSpecCharacteristic": [
{
"name": "string",
"description": "string",
"valueType": "string",
"@type": "string",
"@schemaLocation": "string",
"required": true,
"status": "string",
"serviceSpecCharacteristicValue": [
{
"valueType": "string",
"isDefault": true,
"value": "string"

}
]

}
]

}
]

Listing 2.1. Response body returned after a GET request to the ServiceCatalog API

At this point, a model was selected among those in the list and the parameters
attached to it were used to fill the Service Order request body. After that, the infor-
mation about customer (i.e., relatedParty field) and orderItem were inserted. The
customer is not mandatory, but if it is not included, the order will be associated
to the “generic” one, that had to be previously defined in ONAP A&AI. In order to
ask service instance creation, the action specified for that orderItem must be “add”.
An example of request body is provided below, according to the ServiceOrder API
documentation [25].

20

2 – ONAP

{
"externalId": "{{externalId}}",
"priority": "1",
"description": "{{service}} order for generic customer via Postman",
"category": "Consumer",
"requestedStartDate": "2018-04-26T08:33:37.299Z",
"requestedCompletionDate": "2018-04-26T08:33:37.299Z",
"relatedParty": [
{
"id": "{{customer_name}}",
"role": "ONAPcustomer",
"name": "{{customer_name}}"

}
],
"orderItem": [
{
"id": "1",
"action": "add",
"service": {
"name": "{{service_instance_name}}",
"serviceState": "active",
"serviceSpecification": {
"id": "{{auto_service_id}}"

}
}

}
]

}

Listing 2.2. Request body for POST request to the ServiceOrder API

Finally, the POST request was sent to the Service Order API and a success code
was returned in the response, with the id of the created order and its state value
equal to “acknowledged” in the payload. After a few seconds, a GET request for
the created order was sent to the Service Order API in order to check again the
order state, that at this point was set to “completed”. An example of response body
provided in ServiceOrder API documentation is shown below.

{
"id": "string",
"href": "string",

21

2 – ONAP

"externalId": "string",
"priority": "string",
"description": "string",
"category": "string",
"state": "acknowledged",
"orderDate": "2020-03-10T10:28:59.199Z",
"completionDateTime": "2020-03-10T10:28:59.199Z",
"requestedStartDate": "2020-03-10T10:28:59.199Z",
"requestedCompletionDate": "2020-03-10T10:28:59.200Z",
"expectedCompletionDate": "2020-03-10T10:28:59.200Z",
"startDate": "2020-03-10T10:28:59.200Z",
"@baseType": "string",
"@type": "string",
"@schemaLocation": "string",
"relatedParty": [
{
"id": "string",
"href": "string",
"role": "string",
"name": "string",
"@referredType": "string"

}
],
"orderRelationship": [
{
"type": "string",
"id": "string",
"href": "string",
"@referredType": "string"

}
],
"orderItem": [
{
"id": "string",
"action": "add",
"state": "acknowledged",
"percentProgress": "string",
"@type": "string",
"@schemaLocation": "string",
"@baseType": "string",
"orderItemRelationship": [
{

22

2 – ONAP

"type": "reliesOn",
"id": "string"

}
],
"service": {
"id": "string",
"href": "string",
"name": "string",
"serviceState": "string",
"@type": "string",
"@schemaLocation": "string",
"serviceCharacteristic": [
{
"name": "string",
"valueType": "string",
"value": {
"serviceCharacteristicValue": "string"

}
}

],
"serviceRelationship": [
{
"type": "reliesOn"

}
],
"relatedParty": [
{
"id": "string",
"href": "string",
"role": "string",
"name": "string",
"@referredType": "string"

}
],
"serviceSpecification": {
"id": "string",
"href": "string",
"name": "string",
"version": "string",
"targetServiceSchema": {
"@type": "string",
"@schemaLocation": "string"

23

2 – ONAP

},
"@type": "string",
"@schemaLocation": "string",
"@baseType": "string"

}
},
"orderItemMessage": [
{
"code": "string",
"field": "string",
"messageInformation": "string",
"severity": "information",
"correctionRequired": true

}
]

}
],
"orderMessage": [
{
"code": "string",
"field": "string",
"messageInformation": "string",
"severity": "information",
"correctionRequired": true

}
]

}

Listing 2.3. Response body returned after a POST request to the ServiceOrder API

In order to verify that a new service instance was created, a check was performed
in ONAP A&AI. In conclusion, the first part of the test was successfully completed.

The second part of the test is about removing an existing service instance. In
order to select the service to be deleted, the list of active service instances was
obtained by means of a GET request to the Service Inventory API, that takes it from
ONAP A&AI. The structure of response body returned to this request is shown below
[26].

[
{
"id": "string",
"name": "string",

24

2 – ONAP

"serviceSpecification": {
"id": "string",
"name": "string"

},
"relatedParty": {
"id": "string",
"role": "string"

}
}

]

Listing 2.4. Response body returned after a GET request to the ServiceInventory API

Once the target service instance has been retrieved in the list, the information
attached to it was included in the request body for the Service Order to be sent. Also
in this case the customer was specified, while the action field value in the orderItem
was set to “delete”. So, the POST request to the Service Order API was sent and
order status was checked until it was set to “completed”. The service instance was
consequently deleted also from A&AI.

Finally, orders with wrong or missing information in the payload were sent to
the Service Order API and a response with an error code was returned. In particular,
when sending a Service Order without the relatedParty field, the order failed because
the “generic” customer did not exist in ONAP A&AI. In this case, the reason of the
failure was retireved by inspecting the log files of ONAP NBI application.

In conclusion, ONAP External APIs offer a simpler way to trigger actions on ser-
vices, that is very useful for BSS applictions. On the other hand, it has some limita-
tions:

• The Macro instantiation method is not supported

• If an order fails, details are not provided and in order to understand what went
wrong log files of the application have to be inspected

• Few documented use cases with respect to other ONAP components

• Documentation can be enriched for users that are not very familiar to ONAP

25

Chapter 3

TM Forum and the Open API
Program

3.1 Overview

TM Forum stands for TeleManagement Forum. It is a global industry association born
to help communication service providers to maximize their business success. In par-
ticular, the purpose of the organization is to lead the rapid digital evolution process
in which communications service providers and suppliers are involved. This is done
by providing an open environment and a practical support to allow them to adapt
their business operations and systems to the needs introduced by the transormation
affecting them. As a non-profit member organization, TM Forum represents over 850
companies generating $2 trillion in revenue and serving five billion customers across
180 countries.

TM Forum’s Open API Program is a global initiative to provide end-to-end con-
nectivity, interoperability and portability across complex services. It offers a suite
of standard REST based APIs enabling rapid, repeatable, and flexible integration
among operations and management systems and simplifying creation, build and op-
eration of complex innovative services. These Open APIs are technology agnostic,
thus can be used to implement any kind of digital service, including those appertain-
ing to categories such as Internet of Things, Smart Health, Big Data, NFV or Next
Generation OSS and BSS applications.

Among the several benefits brought by this initiative, there are:

• Improvement of business and IT agility: Open APIs enable a modular plat-
form architecture, allowing companies to abstract its complexity and to define
a set of capabilities which can be used to cut time to market for new services
and the costs to create and operate them.

• Reduced cost and complexity of operations: providers need to reduce costs
by simplifying operations and creating harmony across different geographic

26

3 – TM Forum and the Open API Program

regions in the world.

• Enabling Global Connectivity: currently, the existing wholesale ecosystem
results to be inefficient with respect to new NFV and SDN based infrastruc-
tures, since it requires to be manually handled. Operators can exploit Open
APIs to implement new IT systems able to radically improve and simplify provi-
sioning, to provide flexibility and to ensure scalability of their services.

• Reduced integration cost, risk and time: since providers are constantly
under pressure to rapidly improve their service efficiency, the costs and risks
associated with integration processes need to be reduced. TM Forum Open
APIs represent a solution to reduce time and risk of transforming business op-
erations and performing eventual future changes.

• Providing a global platform for telco-based innovation: the geographic
restrictions affecting most of telecommunications services limits the ability of
CSPs to attract software developers. By exposing a set common APIs, coopera-
tion between operators and developers communities can be simplified.

For these reasons, the Open APIs developed by TM Forum represent a powerful
toolset that can be used to establish a coherent integration architecture combining
management capabilities needed to operate and maintain complex digital services
at global scale. Service providers need not only to ensure software performance,
huge set of functionalities or effectiveness of their services, but they also have to
deal with the full range of business support capabilities required for commercial
service operation, such as customer management, product management, accounting,
billing, monitoring, infrastructure planning, design and ordering. In this context, the
above mentioned APIs offer a solution which has interoperability, integration and
standardization as key concepts and which avoids providers to become locked into
vendor specific approaches.

Among the TM Forum’s standard APIs, three of them are relevant for this thesis
work and, therefore, will be descripted in detail.

3.2 TMF641: Service Ordering Management API

The TMF REST API for Service Order Management [27] provides a standardized
mechanism for placing a Service Order, a type of order which allows to ask for ser-
vice instantiation, deletion or modification, used between a customer and a service
provider or between a service provider and a partner or vice versa. In particular, this
API allows to create, update and retrieve Service Orders, including filtering opera-
tions, and manages related notifications.

A Service Order can be referred to two different categories of services: Customer
Facing Service (CFS) and to a Resource Facing Service (RFS). Resource Facing Ser-
vices are services internal to the service provider, which are indirectly part of a

27

3 – TM Forum and the Open API Program

product and are invisible to the customer. They corresponds to the Resource concept
defined in eTOM standard, therefore are placed at Resource layer, and exist to sup-
port one or more Customer Facing Services. A Customer Facing Service represents
the realization of product within an organization’s infrastructure, thus it represent
the service exposed to customers and which will be delivered to them. It is placed at
Service layer according to the eTOM model. In particular, a CFS can be composed
by one or more RFS needed to realise it and provides functionalities at the boundary
of the provider’s infrastructure in a protocol-agnostic way.

From a component perspective, a Service Order should be available from:

• A Service Orchestrator, with the possibility to be referred both to CFS and RFS

• An Infrastructure Manager, with the possibility to be referred only to RFS

The API resource model1 is represented in figure 3.1.

The ServiceOrder resource refers to a type of order which can be used to describe
a group of operations on services by means of a list of service order items, with one
orderItem per service. A service order item references an action on an existing
or new service, which describes the operation to be done on the service, such as
add, change or delete. The service order is sent from the BSS system in charge
of the product order management to the SOM system that will manage the request
fulfillment.

The ServiceOrderItem sub-resource can be associated to only one ServiceRestric-
tion sub-resource, which is a data structure that captures the configuration to apply
to an existing subscribed service or to a new one, depending on the action requested
on the given service. This sub-resource has a relationship with other ones, including:

• The RelatedParty sub-resource, which is a reference to a party involved in the
order (e.g., final customer).

• Characteristic, which describes a given characteristic of an object or entity
through a name-value pair.

• Place, which defines the place where the products are sold or delivered.

The ServiceSpecificationRef relationship points to the service specifications required
to realize a Product Specification, while the ResourceRef one points to the support-
ing resources composing that service.

The table in figure 3.2 provides Service Order state and service Order Item state
fields description.

For what concerns the operations that can be performed on a Service Order, they
are:

1A resource model is a model describing the resource hierarchy modeled by the API it is referred to.

28

3 – TM Forum and the Open API Program

ServiceOrder

- id: String

- href: String

- category: String

- completionDate: DateTime

- description: String

- expectedompletionDate: DataTime

- externalId: String

- notificationContact: String

- orderDate: DataTime

- priority: String

- requestCompletionDate: DataTime

- requestStartDate: DataTime

- startDate: DataTime

- state: ServiceOrderType

- state: ServiceOrderType

- @baseType: String

- @schemaLocation: Uri

- @type: String

Note

- author: String

- date: DateTime

- system: String

- text: String

- @baseType: String

- @schemaLocation: Uri

- @type: String

ServiceOrderRelationship

- id: String

- href: String

- relationshipType: String

- @baseType: String

- @schemaLocation: Uri

- @type: String

- @referredType: String

«Enumeration»
ServiceOrderStateType

- acknowledged

- rejected

- pending

- held

- inProgress

- cancelled

- completed

- failed

- partial

0..*
note

0..*
orderRelationship

RelatedParty

- id: String

- href: Srting

- name: String

- role: String

- @baseType: String

- @schemaLocation: String

- @type: String

- @referredType: String

ServiceRef

- id: String

- href: String

- @baseType: String

- @schemaLocation: Uri

- @type: String

- @referredType: String

0..*

relatedParty

ServiceRelationship

- relationshipType: String
- @baseType: String
- @schemaLocation: Uri
- @type: String

ServiceRestriction

- id: String
- href: String
- category: String
- name: String
-serviceType: String
- state: ServiceStateType
- @baseType: String
- schemaLocation: Uri
- @type: String

0..*

relatedParty

0..*

supportingService

0..1
service

0..*

serviceRelationship

TargetServiceSchema

- @baseType: String
- @schemaLocation: String
- @type: String

ResourceRef

- id: String

- href: Srting

- name: String

- @baseType: String

- @schemaLocation: Uri

- @type: String

- @referredType: String

ServiceSpecificationRef

- id: String

- href: Srting

- name: String

- version: String

- @baseType: String

- @schemaLocation: Uri

- @type: String

- @referredType: String
0..*

supportingResource

0..1

serviceSpecification

0..1

targetServiceSchema

«Enumeration»
ServiceStateType

- feasibilityChecked

- designed

- reserved

- inactive

- active

- terminated

Place

- id: String

- href: Srting

- name: String

- role: String

- @baseType: String

- @schemaLocation: String

- @type: String

Characteristic

- name: String

- valueType: Srting

- value: Any

- @baseType: String

- @schemaLocation: Uri

- @type: String

ServiceOrderItem

- id: String

- action: ServiceOrderActionType

- state: ServiceOrderStateType

- @baseType: String

- @schemaLocation: Uri

- @type: String

«Enumeration»
ServiceOrderActionType
-add

- modify

- delete

- noChange

ServiceOrderItemRelationship

- id: String

- relationshipType: String

- @baseType: String

- @schemaLocation: Uri

- @type: String

AppointmentRef

- id: String

- href: String

- description: String

- @baseType: String

- @schemaLocation: Uri

- @type: String

- @referredType: String

0..*

place

0..*

characteristic
service

0..*

orderItem

0..1

0..*

appointment

orderItemRelationship

0..1

Figure 3.1. TMF641 Resource Model

29

3 – TM Forum and the Open API Program

• Retrieval of a Service Order or a collection of Service Orders depending on
filter criteria

• Partial update of a Service Order

• Creation of a Service Order

• Deletion of Service Order (for administration purposes)

• Notification of events on sent Service Orders

According to the API documentation, the corresponding methods are listed in the
table in figure 3.3.

Figure 3.2. TMF641 state field values

ONAP NBI ServiceOrder API has been implemented following this specification.

3.3 TMF638: Service Inventory Management API

The Service Inventory API [28] provides standardized mechanism for Service Inven-
tory management such as creation, partial or full update and retrieval of represen-
tation of services from the Inventory, which contains a list of service instances. It
allows also notification of events related to service lifecycle. The API resource model
is shown in figure 3.4.

Service is a base class for defining the Service hierarchy. All Services are char-
acterized as either being possibly visible and usable by a Customer or not. This
gives rise to the two sub-classes of Service: CustomerFacingService and Resource-
FacingService, that has to be specified in the category field of the Service resource.
Most of sub-resources correspond to the ones described in the TMF641 resource
model (e.g., Characteristic, RelatedParty).
The table in figure 3.5 lists the API available methods. The operations that can be
executed on service instances stored in the Inventory are:

• Retrieve a service or a collection of services depending on filter criteria

30

3 – TM Forum and the Open API Program

Method URI Description

serviceOrder

GET /serviceOrder
List or find ServiceOrder

objects

POST /serviceOrder Creates a ServiceOrder

GET /serviceOrder/{id}
Retrieves a ServiceOrder by

ID

PATCH /serviceOrder/{id}
Updates partially a

ServiceOrder

DELETE /serviceOrder/{id} Deletes a ServiceOrder

Notification listeners
(client side)

POST
/listener/serviceOrder-

CreateNotification

Client listener for entity
ServiceOrderCreate-

Notification

POST
/listener/serviceOrder-
AttributeValueChange-

Notification

Client listener for entity
ServiceOrderAttribute-

ValueChangeNotification

POST
/listener/serviceOrder-

StateChangeNotification

Client listener for entity
ServiceOrderStateChange-

Notification

POST
/listener/serviceOrder-

DeleteNotification

Client listener for entity
ServiceOrderDelete-

Notification

Events subscription
POST /hub Register a listener

DELETE /hub/{id} Unregister a listener

Figure 3.3. TMF641 methods definition

• Partial update of a service

• Create a service (for administration users only)

• Delete a service (for administration users only)

• Notification of events on service

An implementation of this API is provided by the ServiceInventory API of ONAP NBI
component.

3.4 TMF633: Service Catalog Management API

The Service Catalog Management API [29] provides a standardized solution for adding
Service Specifications to an existing Catalog, which contains a list of service mod-
els. This API allows the management of the entire lifecycle of the Service Catalog
elements and their consultation during several processes such as ordering process.
The API resource model is shown in figure 3.6.

The ServiceCatalog resource is the root entity for Service Catalog management.
A Service Catalog is a group of Service Specifications made available through service
candidates that an organization provides to the consumers. A Service Specification

31

3 – TM Forum and the Open API Program

1..*

Service

- id: String

- href: String

- type: String

- name: String

- description: String

- status: String

- category: String

- isServiceEnabled: boolean

- hasStarted: boolean

- startMode: String

- isStateful: boolean

- orderDate: DateTime

- startDate: DateTime

- endDate: DateTime

ServiceOrderRef

- id: String

- href: String

+serviceOrder 0..1

Place

- href: String

- role: String

0..1

+place 0..*

RelatedPartyRef

- id: String

- href: String

- role: String

- name: String

- validFor: TimePeriod

1..*1..*

+relatedParty

ServiceSpecificationRef

- id: String

- href: String

- name: String

- version: String

0..1

0..1+serviceSpecification

SupportingResouce

- id: String

- href: String

- name: String

0..*

0..*+supportingResource

SupportingService

- id: String

- href: String

- name: String

- category: String

0..*

0..*+supportingService

ServiceCharacteristic

- name: String

- value: String
1 0..*

+characteristic

ServiceRelationship

- type: String0..1 0..*

+serviceRelationship

ServiceRef

- id: String

- href: String

1

1+service

Figure 3.4. TMF638 Resource Model

represents a service model defined following the TMF633 standard. A Service Cata-
log typically includes name, description and time period that is valid for. It will have
a list of ServiceCandidate catalog items. A ServiceCandidate is an entity that makes
a ServiceSpecification available to a catalog. A ServiceCandidate and its associated
ServiceSpecification may be “published” (i.e., made visible) in any number of Ser-
viceCatalogs, or in none.
Service Catalog API allows to perform the following operations on resources:

• Retrieve an entity or a collection of entities depending on filter criteria

• Partial update of an entity

• Create an entity

• Delete an entity (for administration purposes)

• Manage notification of events

32

3 – TM Forum and the Open API Program

Method URI Description

service

GET /service List or find Service objects

POST /service Creates a Service

GET /service/{id} Retrieves a Service by ID

PATCH /service/{id} Updates partially a Service

DELETE /service/{id} Deletes a Service

Notification listeners
(client side)

POST
/listener/serviceCreate-

Notification
Client listener for entity

ServiceCreateNotification

POST
/listener/serviceAttribute-
ValueChangeNotification

Client listener for entity
ServiceAttributeValue-

ChangeNotification

POST
/listener/serviceState-
ChangeNotification

Client listener for entity
ServiceStateChange-

Notification

POST
/listener/serviceBatch-

Notification
Client listener for entity

ServiceBatchNotification

POST
/listener/serviceDelete-

Notification
Client listener for entity

ServiceDeleteNotification

Events subscription
POST /hub Register a listener

DELETE /hub/{id} Unregister a listener

Figure 3.5. TMF638 methods definition

ServiceCatalog

- id: String
- href: String
- description: String
- lastUpdate: DataTime
- lifecycleStatus: String
- name: String
- version: String
- validFor: TimePeriod
- @baseType: String
- @schemaLocation: Uri
- @type: String

ServiceCategoryRef

- id: String
- href: String
- name: String
- @baseType: String
- @schemaLocation: Uri
- @type: String
- @referredType: String

RelatedParty

- id: String
- href: String
- name: String
- role: String
- @baseType: String
- @schemaLocation: String
- @type: String
- @referredType: String

0..* 0..*

category relatedParty

Figure 3.6. TMF633 Resource Model

33

3 – TM Forum and the Open API Program

A subset of API methods, the more interesting ones for this thesis work, are described
in table in figure 3.7.
The ServiceCatalog API implemented in ONAP NBI module follows this specification.

Method URI Description

serviceCatalog

GET /serviceCatalog
List or find ServiceCatalog

objects

POST /serviceCatalog Creates a ServiceCatalog

GET /serviceCatalog/{id}
Retrieves a ServiceCatalog

by ID

PATCH /serviceCatalog/{id}
Updates partially a

ServiceCatalog

DELETE /serviceCatalog/{id} Deletes a ServiceCatalog

serviceCategory

GET /serviceCategory
List or find ServiceCategory

objects

POST /serviceCategory Creates a ServiceCategory

GET /serviceCategory/{id}
Retrieves a ServiceCategory

by ID

PATCH /serviceCategory/{id}
Updates partially a
ServiceCategory

DELETE /serviceCategory/{id} Deletes a ServiceCategory

serviceCandidate

GET /serviceCandidate
List or find

ServiceCandidate objects

POST /serviceCandidate Creates a ServiceCandidate

GET /serviceCandidate/{id}
Retrieves a

ServiceCandidate by ID

PATCH /serviceCandidate/{id}
Updates partially a
ServiceCandidate

DELETE /serviceCandidate/{id} Deletes a ServiceCandidate

serviceSpecification

GET /serviceSpecification
List or find

ServiceSpecification objects

POST /serviceSpecification
Creates a

ServiceSpecification

GET /serviceSpecification/{id}
Retrieves a

ServiceSpecification by ID

PATCH /serviceSpecification/{id}
Updates partially a

ServiceSpecification

DELETE /serviceSpecification/{id}
Deletes a

ServiceSpecification

Notification listeners
(client side)

POST
/listener/service-

SpecificationCreate-
Notification

Client listener for entity
ServiceSpecificationCreate-

Notification

POST
/listener/service-

SpecificationChange-
Notification

Client listener for entity
ServiceSpecification-
ChangeNotification

POST
/listener/service-

SpecificationDelete-
Notification

Client listener for entity
ServiceSpecification-

DeleteNotification

POST /listener/service-
CandidateCreate-

Client listener for entity
ServiceCandidateCreate-

34

3 – TM Forum and the Open API Program

Notification Notification

POST
/listener/service-

CandidateChange-
Notification

Client listener for entity
ServiceCandidate-

ChangeNotification

POST
/listener/service-
CandidateDelete-

Notification

Client listener for entity
ServiceCandidate-
DeleteNotification

POST
/listener/serviceCategory-

CreateNotification

Client listener for entity
ServiceCategoryCreate-

Notification

POST
/listener/service-
CategoryChange-

Notification

Client listener for entity
ServiceCategory-

ChangeNotification

POST
/listener/serviceCategory-

DeleteNotification

Client listener for entity
ServiceCategory-
DeleteNotification

POST
/listener/serviceCatalog-

CreateNotification

Client listener for entity
ServiceCatalogCreate-

Notification

POST
/listener/serviceCatalog-

ChangeNotification

Client listener for entity
ServiceCatalog-

ChangeNotification

POST
/listener/serviceCatalog-

BatchNotification

Client listener for entity
ServiceCatalogBatch-

Notification

POST
/listener/serviceCatalog-

DeleteNotification

Client listener for entity
ServiceCatalogDelete-

Notification

Events subscription
POST /hub Register a listener

DELETE /hub/{id} Unregister a listener

Figure 3.7. TMF633 methods definition

35

Chapter 4

Service Resolver for ONAP

4.1 Overview

Service Resolver [30] is a Service Order Management (SOM) application, according
to TM Forum terminology, developed by Orange. It processes CFS Orders, that are
Service Orders for Customer Facing Services, containing orderItems with “add” or
“delete” action for the CFS they are referred to. Its code is open source and, as a
prototype, it is usable only for demo purposes, not for production.

Service Resolver is placed at intermediate level between BSS applications and
ONAP External APIs module, therefore at eTOM Service layer. When a CFS Order
is received from a BSS system, it is decomposed into the corresponding set of RFS
needed to create it and a Service Order request is sent to ONAP External APIs for
each identified RFS. For this reason, Service Resolver addresses a need that ONAP
is not able to satisfy: the ability to select autonomously the RFS to be instantiated
for a CFS with characteristics specified by the customer. For example, to provide a
Firewall service, we need a Firewall software solution described by a RFS model or
specification. There can be multiple firewall software solutions from various vendors
or open source communities. How the best solution for the required service can
be selected? ONAP is not able to take decision on resources needed to create a
particular service, because a service can be composed by different combinations of
resources and ONAP has not any criterion to choose the best one satisfying customer
needs.

Service Resolver has very interesting characteristics which can be resumed as
follows:

• It is generic: it allows to order any kind of service, for example virtual Fire-
walls, Internet Access, Network Slice services or monitoring services

• It is model-driven: processing operations are not performed with respect to
the specific service, but they are simply based on a service definitions, which
are standard for every kind of service

36

4 – Service Resolver for ONAP

• It is adaptative to the context : the “solution” needed to satisfy client request
is elaborated onlywhen a new order is received, by applying some rules in a
dynamical way

• Its implementation is based on standard APIs, in particular the TMF641,
TMF633 and TMF638

• It is light: it is deployed on a few small Docker containers.

• It can be runned in simulation mode (without ONAP) to allow Service De-
signer to test service definitions before performing a real deployment

Service Resolver architecture and functionalities will be described in the next sec-
tion.

4.2 Architecture

Service Resolver application has been entirely developed in Python, using the Con-
nexion1 framework, and it exposes six REST APIs:

• RFS Specification API

• CFS Specification API

• Service (CFS and RFS) Instance API

• CFS Order API

• Instantiation Decision API

• Instantiation Rules Inventory API, which is a “work in progress” feature, not
yet used.

The RFS Specification API is used to insert new RFS Specifications (i.e., models)
in the Service Resolver RFS Catalog and to get the list of available ones. In the
same way, the CFS Specification API provides access to the CFS Catalog in Service
Resolver database, such that CFS Specifications can be added or retireved. A CFS
Specification is a set of data that describes the various characteristics and “solution”
that can potentially be used to instantiate the service. In other words, a CFS can
be defined thorugh a model which specifies the set of RFS that can compose it, a
list of characteristics that the CFS can have (i.e., that the customer can require) and
the rules allowing to select the correct RFS to be instantiated to satisfy each defined
characteristic. Those APIs are based on TMF633 standard.

1Connexion [31] is a Python framework that allows to handle HTTP requests defined using OpenAPI
specification [32].

37

4 – Service Resolver for ONAP

The Service Instance API manages Service Resolver Service Inventory, which con-
tains all created instances of both CFS and RFS, according to the TMF638 specifica-
tion.

The CFS Order API is based on the TMF641 specification and it is responsible for
CFS Order Management. In particular, it receives CFS Orders and translates them
in the corresponding set of RFS Orders to be sent to ONAP External APIs in order
to instantiate or delete the CFS. Moreover, it is possible to perform GET requests
in order to retrieve the list of created orders or only a particular one if the id is
specified as parameter in the URL.

When a CFS Order for a new CFS instance creation is received, a decision about
the set of RFS to be instantiated to fulfill the request has to be taken. The Instanti-
ation decision API is responsible for doing exactly that: it evaluates the set of RFS
composing the CFS to be instantiated and returns a solution containing the list of
selected RFS to the CFS Order API.

Figure 4.1 provides a component view of Service Resolver and shows high level
interactions among the different micro-services that compose it.

Figure 4.1. Service Resolver component view

The diagram includes three actors: the customer which sends the CFS Order
through a BSS application, the RFS designer and the CFS designer. In particular, the
RFS designer is responsible for designing services at Resource level, so he defines

38

4 – Service Resolver for ONAP

them in ONAP SDC Catalog. Once those models have been distributed to ONAP
run-time components, the RFS designer can insert them into Service Resolver RFS
Catalog and the CFS designer can use them to compose the CFS models that will be
made available for instantiation requests.

As shown in figure 4.1, the API servers composing Service Resolver interact
among them in order to perform the required processing operations. This kind of
interactions will be detailed in the section 4.4.

In addition, a “demo portal” is also part of the application in order to allow CFS
designers to test if service instance composition is correct after perfoming some CFS
Orders. Figure 4.2 provides an example of the relationships displayed by the portal.
Finally, a common MongoDB database2 is used to store all information.

Figure 4.2. Service Resolver demo portal

The next section explains more about the REST APIs exposed by Service Resolver.

2MongoDB is a NoSQL document-based database, used to provide data persistence for distributed
applications and particularly suitable for Cloud-based environments [33].

39

4 – Service Resolver for ONAP

4.3 Service Resolver REST APIs

4.3.1 RFS Specification API

This API provides methods to manage the RFS Catalog, a collection of RFS Specifi-
cation stored in Service Resolver database. A RFS Specification, or RFS model, is a
set of information that describe a service usually defined ONAP SDC. The RFS model
data structure will then be send via a POST message to http://api_rfs_spec_server:
6001/serviceResolver/serviceCatalogManagement/api/v1/rfsSpecification, the
URL to reach the RFS specification API server. The value of “api_rfs_spec_server” as
well as all server names inside the URL must be set to “localhost” if Service Resolver
is tested locally or to the IP address of the machine on which it is installed. The
available request methods are:

• POST, used to insert a new RFS model

• GET, which allows to retrieve the list of RFS Specifications from the RFS Cata-
log or a specific model by id

• PUT, used to update an existing RFS model

• DELETE, which deletes a given RFS Specification by id

If using Service Resolver in simulation mode, you need to provide fake data on used
ONAP platform but it will not be used. You do not need to provide any id for the new
RFS Specification since it will be generated by Service Resolver itself. An example
of request body is shown below.

{
"name": "vFW_model_A",
"supportingResource": [
{"name": "onap_1",
"id": "001",
"role": [

{
"description": "NFV-Orchestrator",
"id": "001",
"name": "NFV-Orchestrator"
}

]
}

]
}

Listing 4.1. POST RFS Specification request body example (simulation mode)

40

4 – Service Resolver for ONAP

If using Service Resolver connected with some ONAP platforms, it is necessary to
add the RFS Specification id, the ONAP platform that will perform the instantiation
and the Cloud platform where RFS will be instantiated. The RFS Specification id
value have to match with a service model UUID3 from ONAP SDC Catalog, otherwise
Service Resolver will not be able to get TOSCA file for the specified model. The
response will contain the full RFS definition with all informations coming from ONAP.
An example of request body is below.

{
"name": "vFW_model_A",
"id": "{{auto_vFW_model_A_spec_id}}",
"supportingResource": [
{"name": "onap_1",
"id": "001",
"role": [

{
"description": "NFV-Orchestrator",
"id": "001",
"name": "NFV-Orchestrator"
}

]
}

],
"cloud": {

"lcpCloudRegionId": "{{onap_cloud_region_id}}",
"tenantId": "{{tenant_id}}",
"cloudOwner": "{{cloud_owner_name}}"

}
}
}

Listing 4.2. POST RFS Specification request body example (with connection to ONAP)

4.3.2 CFS specification API

This API exposes the same methods than the previous one, but in this case CFS
Specifications in the CFS Catalog are managed. A CFS Specification, or CFS model,
is a set of information that describe a service usually defined from customer point

3UUID stands for Universally Unique Identifier and it is intended as an alphanumeric string which
uniquely identifies a service model inside the SDC Catalog.

41

4 – Service Resolver for ONAP

of view. The CFS model data structure will then be send via a POST message to
Service Resolver using the CFS Specification API. The URL to reach it locally or not
is http://api_service_spec_server:6004/serviceResolver/serviceCatalogMa-
nagement/api/v1/serviceSpecification. This data structure contains:

• The name and a description of the CFS it is referred to

• A list of key-value pairs coming from TMF633 standard

• A serviceSpecCharacteristic array describing the characteristics of the CFS

• A serviceSpecRelationship array with all the RFS models that can compose the
CFS

For each element in the serviceSpecRelationship array, there is:

• The name and the id of the RFS model, which must match with existing RFS
Specification from RFS Catalog and consequently also from ONAP SDC Catalog

• A Relationship type

• A description

• An instantiationPriority with a value that will allow Service Resolver to know
how sequencing the instantiation of RFS

• An instantiationDecisionRules array, which contains the rule to be applied to
select the list of RFS to be instantiated

An example of request body for creating a new CFS Specification is shown below.

{
"description": "vFW use-case",
"name": "vFW",
"version": "1.0",
"category": "cfs",
"href": "",
"lastUpdate": "",
"lifecycleStatus": "",
"@type": "",
"@baseType": "",
"validFor": {
"startDateTime": "",
"endDateTme": ""
},
"serviceSpecCharacteristic": [

42

4 – Service Resolver for ONAP

{
"description": "",
"name": "featureLevel",
"valueType": "string",
"possible_values": ["simple", "rich"],
"mandatory_characteristic": true

}
],
"serviceSpecRelationship": [

{
"id": "{{auto_vFW_model_A_spec_id}}",
"name": "vFW_model_A",
"relationshipType": "cfs_to_rfs",
"instantiationPriority": 1,
"description": "that rfs is instantiated by default",
"instantiationDecisionRules": [
{

"ruleEvaluationPriority": 1,
"rule_name": "param_in_cfs_order_rule",
"rule_params": {

"cfs_param_name": "featureLevel",
"operator": "equal",
"target_value": "simple"

},
"rule_results": [{

"rule_response": "no_param",
"decision": "instantiate",
"is_definitive_decision": true

},
{

"rule_response": "true",
"decision": "instantiate",
"is_definitive_decision": true

},
{

"rule_response": "false",
"decision": "do_not_instantiate",
"is_definitive_decision": true

}
]

}
]

43

4 – Service Resolver for ONAP

},
{

"id": "{{auto_vFW_model_B_spec_id}}",
"name": "vFW_model_B",
"relationshipType": "cfs_to_rfs",
"instantiationPriority": 1,
"description": "instantiated only if featureLevel is rich",
"instantiationDecisionRules": [
{

"ruleEvaluationPriority": 1,
"rule_name": "param_in_cfs_order_rule",
"rule_params": {

"cfs_param_name": "featureLevel",
"operator": "equal",
"target_value": "rich"

},
"rule_results": [{

"rule_response": "no_param",
"decision": "do_not_instantiate",
"is_definitive_decision": true

},
{

"rule_response": "true",
"decision": "instantiate",
"is_definitive_decision": false,
"next_instantiationDecisionRules": 2

},
{

"rule_response": "false",
"decision": "do_not_instantiate",
"is_definitive_decision": true

}
]

},
{

"ruleEvaluationPriority": 2,
"rule_name": "rfs_instance_capacity_rule",
"rule_params": {

"spec_name": "vFW_model_B",
"set_id_key": "all",
"capacity": 2

},

44

4 – Service Resolver for ONAP

"rule_results": [{
"rule_response": "true",
"decision": "do_not_instantiate",
"is_definitive_decision": true

},
{

"rule_response": "false",
"decision": "instantiate",
"is_definitive_decision": true

}
]

}

]
}

]
}

Listing 4.3. POST CFS Specification request body example

The instantiation decision rules are specified by CFS designer in order to provide
a criterion to select the desired combination of RFS to be instantiated for the CFS
ordered by the customer, based on the characteristics he requires for the CFS. In
particular, Service Resolver proposes three rules:

• param_in_cfs_order_rule: the RFS will be instantiated if a parameter is spec-
ified in the order with a specific value

• rfs_instance_in_a_set_rule: the RFS will be instantiated if a RFS model is not
already instantiated in a “set”. In this context, a set can be intended as the list
of service instances attached to a customer or the list of all instances in the
Service Resolver Inventory

• rfs_instance_capacity_rule: the RFS will be instantiated if a RFS model is
already instantiated and has no longer capacity available to support other ser-
vices.

Using param_in_cfs_order_rule, the following three informations have to be provided:
cfs_param_name, operator and target_value. The operator attribute can have one
value among equal, greater, less or not_equal. An example of how this rule can be
specified is provided below.

"rule_params": {
"cfs_param_name": "featureLevel",

45

4 – Service Resolver for ONAP

"operator": "equal",
"target_value": "rich"

}

Listing 4.4. param_in_cfs_order_rule example

Using rfs_instance_in_a_set_rule, the information which has to be specified in-
cludes the spec_name, which must be the name of a RFS Specification, and set_id_key,
which can have a value corresponding to “customer” or “all”. “Customer” value
means that Service Resolver will search about RFS instances in the Service Inven-
tory database but only those attached to the customer name provided in the order,
while “all” value means that Service Resolver will search about all RFS instances in
Service Inventory. An example of the described rule is provided below.

"rule_params": {
"spec_name": "vFW_model_A",
"set_id_key": "all"

}

Listing 4.5. rfs_instance_in_a_set_rule example

Using rfs_instance_capacity_rule, the following three information are needed:
spec_name, set_id_key and capacity. The spec_name and set_id_key fields have the
same meaning than in the previous rule, while the capacity one value must be the
maximum number of services that can support the RFS, measured as the length of
the serviceRelationship field in the RFS instance stored in Service Resolver Inven-
tory. An example is shown in the following JSON.

"rule_params": {
"spec_name": "vFW_model_B",
"set_id_key": "all",
"capacity": 2

}

Listing 4.6. rfs_instance_capacity_rule example

Those rules can be chained inside a single CFS Specification using the following
fields:

• ruleEvaluationPriority, needed to sequence the rule evluations for a RFS

• is_definitive_decision to prevent from trying to evaluate a next rule

• next_instantiationDecisionRules to force rule sequencing

46

4 – Service Resolver for ONAP

4.3.3 Service Instance API

This API is used to manage the Service Inventory collection in Service Resolver
database. It contains both CFS and RFS instances, which are related among them.
The base URL to reach the API is http://api_service_server:6003/serviceResol-
ver/serviceInventoryManagement/api/v1/.
The methods provided are:

• POST, in order to insert a new service instance

• PUT, which allows to update an existing instance

• GET, used to retrieve a specific instance by id or the list of stored service in-
stances

• DELETE, which deletes an existing instance

Among the listed methods, only the GET one should be called by the user, while the
other ones are used by the API servers of Service Resolver in order to perform all
the needed operations when a Service Order request is received, or can be used for
administration purposes.
An example of response body to a GET request is shown below.

[
{
"@baseType": "Service",
"@schemaLocation": "",
"@type": "Service",
"category": "cfs",
"href": "/service/c51a00fd-7ab1-42d5-9796-bb3870a50abe",
"id": "c51a00fd-7ab1-42d5-9796-bb3870a50abe",
"name": "vFW",
"place": [
{
"id": "",
"name": "",
"role": ""
}
],
"relatedParty": [
{
"href": "",
"id": "JohnDoe",
"name": "JohnDoe",
"role": "customer"

47

4 – Service Resolver for ONAP

}
],
"serviceCharacteristic": [
{
"name": "featureLevel",
"value": "rich"
}
],
"serviceOrder": [
{
"action": "add",
"href": "/cfsOrder/5382e453-f48e-4eee-9ac2-d0aa5d8e5657",
"id": "5382e453-f48e-4eee-9ac2-d0aa5d8e5657",
"orderDate": "2019-11-13T09:24:56.448Z"
}
],
"serviceRelationship": [],
"serviceSpecification": {
"href": "/cfsSpecification/08820c2c-a35d-420b-8f6e-93e5c290a1c4

",
"id": "08820c2c-a35d-420b-8f6e-93e5c290a1c4",
"name": "vFW",
"version": "1"
},
"serviceState": "active",
"serviceType": "",
"supportingService": []

}
]

Listing 4.7. Response body example after a GET request to Service instance API

In particular, the instance id of RFS is provided by ONAP, while the id of CFS
is generated by Service Resolver. Moreover, the relationships among CFS and RFS
composing them are displayed for each instance.

4.3.4 CFS Order API

As described before, this API allows to create and consult CFS Orders. According
to the TMF641 specification, a Service Order is a message containing a set of in-
formation about an order to add or delete an orderItem, which usually describes a
customer service. The API implements the following operations:

• POST, for CFS Order creation

48

4 – Service Resolver for ONAP

• GET, which provides access to the list of orders stored in Service Resolver
database

• DELETE, used to delete a CFS Order by id

• PUT, to update an existing order by id

The CFS Order data structure will then be send via a POST message to Service Re-
solver through this API, reachable at URL http://api_service_order_server:6002/
serviceResolver/serviceOrderManagement/api/v1/cfsOrder. This data structure
will describe the orderItem, the related customer (if any), the service parameter
values and the action to be performed on the service, which can be add or delete.

In case of “add” action, it is necessary to indicate the CFS model to be used to
create the CFS instance, while in case of “delete” action, it is necessary to indicate
the id of the CFS instance to be deleted. An example of request body for adding a
new CFS instance is provided below.

{
"category": "vFW service",
"description": "service order for vFW customer service",
"externalId": "BSS_order_01",
"note": {
"author": "Orange",
"date": "May 2019",
"text": ""

},
"notificationContact": "",
"orderItem": [
{
"action": "add",
"id": "1",
"service": {
"name": "vFW_01",
"place": [
{
"id": "",
"name": "",
"role": ""

}
],
"relatedParty": [
{
"id": "JohnDoe",

49

4 – Service Resolver for ONAP

"name": "JohnDoe",
"role": "customer",
"href": ""

}
],
"serviceCharacteristic": [
{
"name": "featureLevel",
"value": "simple"

}
],
"serviceSpecification": {
"id": "{{auto_vFW_cfs_spec_id}}",
"name": "vFW",
"version": "1"

},
"serviceState": "active",
"serviceType": ""

}
}

],
"priority": "1",
"relatedParty": [
{
"id": "JohnDoe",
"name": "JohnDoe",
"role": "customer",
"href": ""

}
]

}

Listing 4.8. POST CFS Order request body example (add)

Instead, the following JSON is an example of request body for a delete action.

{
"category": "vFW service",
"description": "service order for vFW customer service",
"externalId": "Customer_01",
"note": {
"author": "Orange",

50

4 – Service Resolver for ONAP

"date": "May 2019",
"text": ""

},
"notificationContact": "",
"orderItem": [
{
"action": "delete",
"id": "1",
"service": {
"name": "vFW_01",
"id": "{{auto_vFW_cfs_01_id}}",
"place": [
{
"id": "",
"name": "",
"role": ""

}
],
"relatedParty": [
{
"id": "JohnDoe",
"name": "JohnDoe",
"role": "customer",
"href": ""

}
]
}

}
],
"priority": "1",
"relatedParty": [
{
"id": "JohnDoe",
"name": "JohnDoe",
"role": "customer",
"href": ""

}
]

}

Listing 4.9. POST CFS Order request body example (delete)

In these examples, CFS Orders are respectively about creating and removing a

51

4 – Service Resolver for ONAP

virtual Firewall service for customer “John Doe”, as specified in the relatedParty
field.

4.3.5 Instantiation Decision API

This API is used to get decision about the RFS to be instantiated to create a CSF with
given characteristics. It provides the same methods than the previous ones, but in
this case only POST requests are performed by the CFS Order API when it receives
an order for CFS creation (i.e., the specified action is “add”).

In particular, the Instantiation Decision API server analyses the rules described
in the CFS Specification stored in Service Resolver CFS Catalog and determines if
they are satisfied by each candidate RFS to be included in the solution. Therefore,
for each RFS associated to the CFS model, if the RFS provides the characteristics
needed to create the required CFS, then it will be included in the list of RFS to be
instantiated, otherwise it will be excluded from this list.

4.4 CFS Order workflow

This section provides details about the workflows executed by Service Resolver to
process RFS and CFS Specifications and CFS Order creation, focusing on the inter-
actions among the different API servers.

In order to send a CFS Order to Service Resolver, it is necessary to provide the
definitions of the CFS which can be instantiated and of the RFS which can be used
to create them. Therefore, CFS Specifications and RFS Specifications have to be
inserted in Service Resolver database as prerequisite. In particular, the following
two steps have to be executed by service designers:

1. Insertion of available RFS Specifications in Service Resolover RFS Catalog

2. Definition of the CFS Specifications describing the possible CFS which cus-
tomers can request

The first operation regards the insertion of RFS models in Service Resolver RFS
Catalog via the RFS Specification API. Figure 4.3 shows the UML sequence diagram
detailing the actions performed when a POST request is sent to this API.

Before sending a POST request to insert a new RFS Specification in Service Re-
solver RFS Catalog, the service designer has to get the list of available models from
ONAP SDC Catalog and look for those he is interested in. Once he knows the id of
these models, he can fill correctly the request body and send the request to Service
Resolver. At this point, the RFS Specification API server is responsible for retriev-
ing service CSAR file from ONAP SDC, creating a new entry in the RFS Catalog and
populating it with the information returned by ONAP SDC and External APIs compo-
nents.

52

4 – Service Resolver for ONAP

Figure 4.3. Workflow for RFS Specification creation

The second step to be executed before sending CFS Orders to Service Resolver
is about creating CFS models in Service Resolver CFS Catalog. The UML sequence
diagram in figure 4.4 shows the actions performed by the CFS Specification API
server when a POST request is received.

In particular, this micro-service interacts with the RFS Specification API server
in order to verify if the list of RFS included in the request body are valid (i.e., they
exist in Service Resolver RFS Catalog), create the new CFS model in database and
generate the TOSCA description for it.

At this point, once Service Resolver database has been populated, client appli-
cations can send CFS Orders to ask for executing the desired actions on available
services.

For what concerns CFS Order creation via CFS Order API, a distinction between
the add action and the delete one is needed.

In the first case, as shown in the sequence diagram in figure 4.5, the steps per-
formed by Service Resolver are the following ones:

• orderItem validation by checking if the CFS it is referred to exists in CFS Cat-
alog, therefore a GET request to the CFS Specification API is sent

53

4 – Service Resolver for ONAP

Figure 4.4. Workflow for CFS Specification creation

• CFS instance creation by sending a POST request to the Service Instance API

• For each RFS included in the CFS definition:

– A validation is performed by sending a GET request to the RFS Specifica-
tion API, allowing to check RFS existence in Service Resolver RFS Catalog

– A POST request is sent to the Instantiation Decision API in order to know
if that RFS has to be instantiated or not

• When the solution is chosen, for each RFS included in it:

– The corresponding RFS Order is filled and sent to ONAP External APIs

– In case of success, the new RFS instance is stored in Service Resolver
Inventory

• The CFS instance is updated with the information returned by ONAP External
APIs, containing details about the instantiated RFS

The second case is about the deletion of an existing CFS instance and the associ-
ated workflow is shown in figure 4.6. Firstly, a GET request to the Service Instance
API is performed to retrieve the CFS instance to be removed, then the RFS instance
associated to it are analysed. In particular, CFS Order API server checks if each RFS
is associated only to that CFS and:

• If yes, it sends an RFS Order to ONAP NBI in order to delete the instance from
ONAP and from Service Resolver Inventory

54

4 – Service Resolver for ONAP

• Otherwise, the RFS is not deleted but only the corresponding relationship with
the CFS instance is removed

In both cases, the CFS instance is updated via the Service Instance API and, finally,
it is deleted from Service Resolver database.

To sum up, the workflow associated with the main operations performed by Ser-
vice Resolver and how its components interact among each other have been ex-
plained, therefore next section will focus on Service Resolver testing activities per-
formed during this thesis work.

55

4 – Service Resolver for ONAP

Figure 4.5. Workflow for CFS Order request (action=add)

56

4 – Service Resolver for ONAP

Figure 4.6. Workflow for CFS Order request (action=delete)

57

4 – Service Resolver for ONAP

4.5 Service Resolver APIs testing and improvement

In order to test Service Resolver APIs and their functionalities, all the software has
been installed on a virtual machine. The guide provided by Orange [34] explains all
the steps to configure and run the application and provides a list of required tools
to be installed as prerequisite. When Service Resolver has to be used in simulation
mode, no additional configuration is needed, while when connecting it to an ONAP
platform, the user has to modify the machine host file by specifying the name-IP
address mapping of the ONAP services (e.g., ONAP SDC, A&AI and NBI). The host
file of a Linux virtual machine is located in the etc system folder. Without adding
these entries to the file, Service Resolver components are not able to communicate
with the ONAP ones and the application returns a connection error, caused by failure
of DNS resolution of names specified in URLs.

After the installation phase, all the steps to send a CFS Order have been executed,
both for add and delete actions. As described in the previous section, these are:

• RFS Specifications insertion

• CFS Specifications definition

• CFS Order creation

For the first two, some POST requests to the RFS and CFS Specification APIs were
sent. The same data structures described in the previous section have been used
to fill request bodies. Moreover, for CFS model definition, different combination of
instantiation rules and RFS have been tested successfully. An example is shown in
below.

{
"description": "vFW use-case",
"name": "vFW",
"version": "1.0",
"category": "cfs",
"href": "",
"lastUpdate": "",
"lifecycleStatus": "",
"@type": "",
"@baseType": "",
"validFor": {

"startDateTime": "",
"endDateTme": ""

},
"serviceSpecCharacteristic": [
{

58

4 – Service Resolver for ONAP

"description": "",
"name": "featureLevel",
"valueType": "string",
"mandatory_characteristic": true

}
],
"serviceSpecRelationship": [
{
"id": "f307915a-29ff-4ee9-9aa0-92d83a85ccb6",
"name": "vFW_model_A",
"relationshipType": "cfs_to_rfs",
"instantiationPriority": 3,
"description": "that rfs is instantiated only if featureLevel

is simple or not indicated",
"instantiationDecisionRules": [
{
"ruleEvaluationPriority": 1,
"rule_name": "param_in_cfs_order_rule",
"rule_params": {
"cfs_param_name": "featureLevel",
"operator": "equal",
"target_value": "simple"

},
"rule_results": [{

"rule_response": "no_param",
"decision": "instantiate",
"is_definitive_decision": true

},
{

"rule_response": "true",
"decision": "instantiate",
"is_definitive_decision": true

},
{

"rule_response": "false",
"decision": "do_not_instantiate",
"is_definitive_decision": true

}
]

}
]

},

59

4 – Service Resolver for ONAP

{
"id": "13968aed-5013-4284-a2dc-9ef124d67f77",
"name": "vLB_model_A",
"relationshipType": "cfs_to_rfs",
"instantiationPriority": 2,
"description": "that rfs is instantiated only if featureLevel

is simple or not indicated",
"instantiationDecisionRules": [
{
"ruleEvaluationPriority": 1,
"rule_name": "param_in_cfs_order_rule",
"rule_params": {

"cfs_param_name": "featureLevel",
"operator": "equal",
"target_value": "simple"

},
"rule_results": [{

"rule_response": "no_param",
"decision": "instantiate",
"is_definitive_decision": true

},
{

"rule_response": "true",
"decision": "instantiate",
"is_definitive_decision": true

},
{

"rule_response": "false",
"decision": "do_not_instantiate",
"is_definitive_decision": true

}
]

}
]

},
{

"id": "d909d48d-db9a-47f5-abc8-b6b5326a8dfb",
"name": "vPG_model_A",
"relationshipType": "cfs_to_rfs",
"instantiationPriority": 1,
"description": "that rfs is instantiated only if featureLevel

is simple or not indicated",

60

4 – Service Resolver for ONAP

"instantiationDecisionRules": [
{

"ruleEvaluationPriority": 1,
"rule_name": "param_in_cfs_order_rule",
"rule_params": {

"cfs_param_name": "featureLevel",
"operator": "equal",
"target_value": "simple"

},
"rule_results": [{

"rule_response": "no_param",
"decision": "instantiate",
"is_definitive_decision": true

},
{

"rule_response": "true",
"decision": "instantiate",
"is_definitive_decision": true

},
{

"rule_response": "false",
"decision": "do_not_instantiate",
"is_definitive_decision": true

}
]

}
]

},
{

"id": "6e143726-3987-49d5-b841-58dc795a23d8",
"name": "vFW_model_B",
"relationshipType": "cfs_to_rfs",
"instantiationPriority": 3,
"description": "that rfs is instantiated only if featureLevel

is rich and if there is no longer capacity on existing ",
"instantiationDecisionRules": [
{

"ruleEvaluationPriority": 1,
"rule_name": "param_in_cfs_order_rule",
"rule_params": {

"cfs_param_name": "featureLevel",
"operator": "equal",

61

4 – Service Resolver for ONAP

"target_value": "rich"
},
"rule_results": [{

"rule_response": "no_param",
"decision": "do_not_instantiate",
"is_definitive_decision": true

},
{
"rule_response": "true",

"decision": "instantiate",
"is_definitive_decision": false,
"next_instantiationDecisionRules": 2

},
{

"rule_response": "false",
"decision": "do_not_instantiate",
"is_definitive_decision": true

}
]

},
{

"ruleEvaluationPriority": 2,
"rule_name": "rfs_instance_capacity_rule",
"rule_params": {

"spec_name": "vFW_model_B",
"set_id_key": "all",
"capacity": 2

},
"rule_results": [{

"rule_response": "true",
"decision": "do_not_instantiate",
"is_definitive_decision": true

},
{

"rule_response": "false",
"decision": "instantiate",
"is_definitive_decision": true

}
]

}
]

},

62

4 – Service Resolver for ONAP

{
"id": "1e28785d-d797-4b00-9365-79e43d107800",
"name": "vLB_model_B",
"relationshipType": "cfs_to_rfs",
"instantiationPriority": 2,
"description": "that rfs is instantiated only if featureLevel

is rich and if there is no longer capacity on existing ",
"instantiationDecisionRules": [
{

"ruleEvaluationPriority": 1,
"rule_name": "param_in_cfs_order_rule",
"rule_params": {

"cfs_param_name": "featureLevel",
"operator": "equal",
"target_value": "rich"

},
"rule_results": [{

"rule_response": "no_param",
"decision": "do_not_instantiate",
"is_definitive_decision": true

},
{

"rule_response": "true",
"decision": "instantiate",
"is_definitive_decision": false,
"next_instantiationDecisionRules": 2

},
{

"rule_response": "false",
"decision": "do_not_instantiate",
"is_definitive_decision": true

}
]

},
{

"ruleEvaluationPriority": 2,
"rule_name": "rfs_instance_capacity_rule",
"rule_params": {

"spec_name": "vLB_model_B",
"set_id_key": "all",
"capacity": 2

},

63

4 – Service Resolver for ONAP

"rule_results": [{
"rule_response": "true",
"decision": "do_not_instantiate",
"is_definitive_decision": true

},
{

"rule_response": "false",
"decision": "instantiate",
"is_definitive_decision": true

}
]

}
]

},
{

"id": "0ba1e964-f0b7-4061-a6c2-1b59e37eaecd",
"name": "vPG_model_B",
"relationshipType": "cfs_to_rfs",
"instantiationPriority": 1,
"description": "that rfs is instantiated only if featureLevel

is rich and if there is no longer capacity on existing ",
"instantiationDecisionRules": [
{

"ruleEvaluationPriority": 1,
"rule_name": "param_in_cfs_order_rule",
"rule_params": {

"cfs_param_name": "featureLevel",
"operator": "equal",
"target_value": "rich"

},
"rule_results": [{

"rule_response": "no_param",
"decision": "do_not_instantiate",
"is_definitive_decision": true

},
{
"rule_response": "true",

"decision": "instantiate",
"is_definitive_decision": false,
"next_instantiationDecisionRules": 2

},
{

64

4 – Service Resolver for ONAP

"rule_response": "false",
"decision": "do_not_instantiate",
"is_definitive_decision": true

}
]

},
{

"ruleEvaluationPriority": 2,
"rule_name": "rfs_instance_capacity_rule",
"rule_params": {

"spec_name": "vPG_model_B",
"set_id_key": "all",
"capacity": 2

},
"rule_results": [{

"rule_response": "true",
"decision": "do_not_instantiate",
"is_definitive_decision": true

},
{

"rule_response": "false",
"decision": "instantiate",
"is_definitive_decision": true

}
]

}
]

}
]

}

Listing 4.10. Example of CFS Specifications used in tests

Once the models have been created in Service Resolver database, a CFS Order
can be sent to add a new instance in service Inventory. The first test was made in
simulation mode, so without connecting the Service Resolver to a real ONAP plat-
form. In this case, order processing was successfully completed, but there was an
error when inserting a new RFS model in Service Resolver. This was due to the
need to specify the ONAP platform in the request body even if Service Resolver is
working in simulation mode, but the guide provided by Orange did not specified any
instruction about that. Therefore, the problem was notified to Orange that updated
the documentation.

For what concerns tests performed on Service Resolver connected to ONAP, some

65

4 – Service Resolver for ONAP

issues were found. Firstly, there were some coding errors that caused the failure of
the CFS Order sent. In particular, a “list assignment index out of range” and a
“KeyError” were fixed in the Python code responsible for building the request body
of RFS Order to be sent to ONAP External APIs. After that, another issue causing
CFS Order failure was notified to Orange. This error occurred when sending RFS
Orders to ONAP NBI. In more detail, when Service Resolver sends RFS Orders to the
ONAP platform, it has to perform the following actions:

• Send RFS Order to ONAP External APIs

• Wait for a response

• If the response notifies success, store the returned RFS instance in service
Inventory

• Otherwise, notify failure

After that, as shown in the previous section, Service Resolver updates the created
CFS instance with the information included in the RFS returned by ONAP NBI com-
ponent. The above mentioned problem was not related to ONAP NBI response, which
notified success, but each created RFS instance was stored in Service Resolver In-
ventory with an id value different than the one returned in ONAP NBI response body.
As a consequence, when a GET request to the Service Instance API was performed
in order to retrieve the new RFS instance and use it to update the CFS one, the CFS
Order API used the id provided by ONAP NBI and not the one actually stored in the
Inventory. At this point, the application returned an error and communicated CFS
Order failure to the user. Therefore, the issue was reported to Orange and fixed.

The second part of testing activity focuses on CFS Orders to delete existing CFS
instances. The same data structure described in the previous section was used, both
in simulation mode and with the connection to ONAP. Initially, no errors were found,
but all RFS Orders sent from Service Resolver to ONAP External APIs failed. In
order to understand the reason of the failure, an inspection of the log files of ONAP
NBI application was needed. The error found in these log files was the following
one: ONAP NBI module did not receive the information about the customer (which
has to be included in the relatedParty field) for the RFS Order to be sent to ONAP
Service Orchestrator. Consequently, the RFS instance to be removed was searched
among the ones associated to the “generic” customer in ONAP A&AI, but as the
“generic” customer was not created before, this request failed and an error was
returned causing the RFS Order state field to be set to “failed”. At this point, the
problem was notified to Orange and the cause was discovered: Service Resolver uses
predefined templates to build the payload of RFS Order requests, but when sending
requests to delete RFS instances, the relatedParty field and the serviceSpecification
one, containing information about the RFS model used to create the corresponding
CFS instance, were not filled by the application. Therefore, a correction of the code
responsible for this operation was made.

66

4 – Service Resolver for ONAP

All the problems found during the testing phase were fixed and CFS Order pro-
cessing works properly now. Service Resolver development is not completed yet, so
its code is continuously updated and new features are periodically added. At the mo-
ment, Orange is working on “Macro” instantiation method that does not follow the
TMF641 specification, and a new use case related to 5G network slicing has recently
been included in the public repository.

In conclusion, Service Resolver is a “work in progress” application, which needs
to be continuously updated, tested and fixed if necessary. A possible feature to be
added in the future can be the support of the E2E service instantiation method via
ONAP External APIs, but actually its development has not been planned yet. More-
over, the ONAP community will need to include Service Resolver functionalities in
the platform sooner or later, but also this aspect has not been defined yet. Neverthe-
less, Service Resolver realization confirms that service providers are more and more
adopting standardized approaches, with a particular interest on customer needs.

67

Chapter 5

Service Portal: architecture

5.1 Overview

Service Portal is a BSS application which allows users to order Customer Facing Ser-
vices exposed as products, therefore it is placed at Product layer of eTOM. In partic-
ular, through this portal, customers can see the list of available services and perform
orders for the desired ones, generating a CFS Order with action=“add”. These re-
quests are sent to Service Resolver, which will process them and return a response.
All purchased products are displayed in another list with the possibility to send a
delete request if the user wants to disable the service, which corresponds to a CFS
Order with action=“delete”. Moreover, it is possible to check all performed orders,
both for creation and deletion, and the details about their state (i.e., “aknowledged”,
“completed” or “failed”).

The list of products available to customers can be configured by a user with ad-
ministration privileges, i.e., a Telecom Italia company member responsible for portal
management.

In the next sections, Service Portal architecture and functionalities are described
in more detail.

5.2 Overall design

Service Portal architecture design is based on a set of functional requirements to be
satisfied. The previous section provides a general overview about these functionali-
ties, therefore a deeper analysis is needed.

From a functional point of view, three different categories can be distinguished:

• Client side, including all the functionalities available through the GUI

• Server side, containing the application logic and an API layer

• Data persistence, for data storage

68

5 – Service Portal: architecture

In more detail, client side functionalities includes all the operations that a user
should be able to perform through the GUI, from ordering a product to configure
products which can be purchased, providing role-based registration and login. More-
over, dynamical management of graphical components required for web pages ren-
dering and for reacting to user actions is performed at this layer.

For what concerns server side, the application should be able to collect user re-
quests, process them and generate the corresponding requests to be sent to Service
Resolver. Other functionalities such as users management and authentication, possi-
bility to modify data stored in database or to configure GUI should also be provided.

5.3 Architecture

Based on the functional requirements described before, Service Portal is composed
of three modules: backend, frontend and database. Figure 5.1 shows the architec-
ture and how the mentioned components interact.

Firstly, the backend part manages all server side operations, so it has to serve
client requests by interacting with database and Service Resolver. The frontend part
acts as a client to the backend one and manages all actions performed by the user
on browser.

All the components can be runned in standalone Docker containers, giving the
application a micro-service based structure. Inter-container communication is man-
aged thorugh a user-defined network and communication between frontend and
backend is performed via proxy.

In particular, the Docker network is a virtual network linking all the containers
among them, such that they can communicate to each other by using container IP
address or container name, thanks to automatic DNS resolution performed for user-
defined bridge networks.

For what concerns the proxy, it is responsible for redirecting requests performed
by the browser to backend real IP address and port.

Next, a focus on each one of the described components is provided, explaining its
architecture and design choices.

5.3.1 Backend

The backend exposes a REST based API towards the frontend and perform requests
to Service Resolver APIs. In particular, it exploits CFS Order API and CFS Specifica-
tion API to send CFS Order and to get CFS models to fill them, respectively.

The main operations performed by the backend component are the following
ones:

• Products management: creation, retrieval, modification and deletion of prod-
ucts stored in database

69

5 – Service Portal: architecture

User

User interacts with GUI Web Browser
(The Client Side)

Computer

HTTP
request and response

Web Server - (NGINX)
Listens on port 80

Proxy Pass port 5000
(F/E to B/E communication)

Backend application code running in Docker
container listens for requests on port 5000

Back-end application

Fetch frontend

codeFront-end Static Files

Assets
Css/

images/
etc

Html Js

Virtual Machine

Figure 5.1. Service Portal architecture

• Order management: creation, retrieval and deletion of orders according to cus-
tomer’s requests

• Models retrieval: read the list of CFS Specifications stored in Service Resolver
CFS Catalog

• Inventory management: retrieval and deletion of purchased products, corre-
sponding to CFS active instances stored in Service Resolver Inventory

• User management: creation, retrieval and deletion of users

• User authentication: login and logout operations

70

5 – Service Portal: architecture

A key point of backend design is it is model-driven. This means that operations
should not depend on a particular product to be displayed to customers or on the
particular CFS it is related to. This also requires a mapping between product models
and CFS models, which is model-driven too.

In order to discuss the presented features, Service Portal REST API and mapping
operations are described.

REST based API

Backend REST API provides an interface to allow client applications to execute any
operation required by the user. Among the provided methods, there are a set of them
which can be used only by administrators.

Firstly, the API methods to perform product management are presented. Figure
5.2 shows their design.

Resource Method
Request

body
Status code Resp. body Meaning

/products

GET 200 Products list OK

POST Product

201 Product Created

400 Bad Request

401 Unauthorized

/products/pages GET 200

Number of
products pages

and total
products

OK

/products/pages/{page} GET 200 Products list OK

/products/{name}

GET
200 Product OK

404 Not Found

PUT Product

204 No Content

400 Bad Request

401 Unauthorized

404 Not Found

DELETE

204 No Content

400 Bad Request

401 Unauthorized

404 Not Found

Figure 5.2. API methods for products management

The GET methods allow to access the list of available products or a specific prod-
uct in the Catalog. Since all users can perform an order on every product, these
methods do not require administration privileges. In addition, it is possible to ask
only for a specific products page if the retrieval of the complete list should be avoided
for performance improvement. Then, a POST method is also provided for product
creation, an operation which can be executed only by an administrator. Also the PUT
and DELETE methods are reserved for admin profiles and are needed to modify or
delete existing products.

A product in the Catalog is characterized by the following information:

71

5 – Service Portal: architecture

• A name field, which is a string identifying uniquely each product

• A description, containing details about product characteristics

• A price field

• A category to classify it

• The name and the id of the CFS model the product is referred to

• The list of service characteristics defined in CFS Specification that are needed
to realize that product

The CFS Specification id is not provided because Service Portal retrieve from
Service Resolver by sending a GET request to the CFS Specification API and looking
for the name value specified in the CFS model name field. An example of body for a
POST request is shown below.

{
"name": "FW gold",
"description": "Richest Firewall model with medium protection level

",
"price": "40€",
"category": "company",
"CFSmodelName": "vFW",
"serviceCharacteristic": [

{
"name": "featureLevel",
"value": "rich"

},
{

"name": "protectionLevel",
"value": "medium"

}
]

}

Listing 5.1. Request body example for POST /products

In order to retrieve and configure possible categories for products, a GET, a POST
and a DELETE methods are provided, as shown in figure 5.3. These methods are only
for administration purposes. A category is represented as a name value pair, which
therefore identifies it.

For what concerns order management, Service Portal offers the possibility to
GET all orders, also divided by page number, or a single order by id. Orders can

72

5 – Service Portal: architecture

Resource Method
Request

body
Status code Resp. body Meaning

/categories

GET 200 Categories list OK

POST Category

201 Category Created

400 Bad Request

401 Unauthorized

/categories/{name} DELETE

204 No Content

400 Bad Request

401 Unauthorized

404 Not Found

Figure 5.3. API methods for categories management

be filtered by providing the customer associated with them as query parameter in
URL. In particular, each customer can access to his orders, but can not see orders
performed by other customers: this requires administration privileges. Then, a POST
method allows to create a new order for a specific product, which is then mapped
to the corresponding CFS Order to be sent to Service Resolver, both for the add and
the delete actions. Administrators have also the possibility to DELETE a given order.
All the mentioned methods are listed in figure 5.4.

Resource Method
Request

body
Status code Resp. body Meaning

/orders

GET
200 Orders list OK

401 Unauthorized

POST Order

201 Order Created

400 Bad Request

401 Unauthorized

/orders/pages GET
200

Number of
orders pages

and total
orders

OK

401 Unauthorized

/orders/pages/{page} GET
200 Orders list OK

401 Unauthorized

/orders/{name}

GET

200 Order OK

401 Unauthorized

404 Not Found

DELETE

204 No Content

400 Bad Request

401 Unauthorized

404 Not Found

Figure 5.4. API methods for orders management

An order object is described by the following information:

• An id field, a string which uniquely identifies it

73

5 – Service Portal: architecture

• The customer which performed the order

• The name of the ordered product

• The action to be performed, therefore add or delete

• In case the action is delete, the id and name values of the CFS instance to be
removed from Service Resolver Inventory have to be specified

• The status information, which is filled based on Service Resolver response after
having completed order processing

An example of body for a POST request to send a new order is shown below.

{
"id": "string",
"customer": "TIM",
"product_name": "FW gold",
"action": "add",
"CFSinstanceId": "",
"CFSinstanceName": "",
"status": ""

}

Listing 5.2. Request body example for POST /orders

Figure 5.5 is the UML sequence diagram which shows in details all the operations
performed by Service Portal to process an incoming oder.

In particular, the workflow executed to fulfil an order request can be resumed as
follows:

1. Check payload: when a new order is received, the first action is to check it is
valid, otherwise a 400 error code is returned in the response

2. Check customer information: this information is needed to fill the related-
Party field for the CFS Order request body to be sent to Service Resolver

3. Check order action: CFS Order request body is filled based on this parameter,
in particular:

(a) If action is “add”, service characteristics defined in the product have to be
specified, therefore the product has to be retrieved from database

(b) If action is “delete”, CFS instance information has to be included

4. Wait for Service Resolver response

74

5 – Service Portal: architecture

Figure 5.5. Workflow for order creation

5. Store order and update inventory data according to the received response

6. Return response indicating success or failure

75

5 – Service Portal: architecture

For what concerns CFS models retrieval from Service Resolver CFS Catalog the API
methods allowing this operation are shown in figure 5.6. The response body is the list
of available models in case of a GET request for /models resource, while when per-
forming a GET request specifying the path /models/{name}/characteristics, the
list of service characteristics associated to the CFS model with name corresponding
to the one specified as path parameter is returned.

Resource Method
Request

body
Status
code

Resp. body Meaning

/models GET 200
CFS models

list
OK

/models/{name}/characteristics GET 200
Service

Characteristics
OK

Figure 5.6. API methods for CFS models retrieval

All purchased products, corresponding to the active CFS instances, are stored in
a Product Inventory. The management of Service Portal Inventory can be performed
through the method listed in figure 5.7. In particular, the GET method provides
access to the entire Inventory or to a given page of products stored inside it, and the
result can be filtered by customer, specified as query parameter. Also in this case,
a customer can get only the list of his purchased products. Administrators can also
DELETE a product from the Inventory.

Resource Method
Request

body
Status code Resp. body Meaning

/inventory GET
200

Inventory
items list

OK

401 Unauthorized

/inventory/pages GET

200

Number of
inventory

pages and total
inventory

items

OK

401 Unauthorized

/inventory/pages/{page} GET
200

Inventory
items list

OK

401 Unauthorized

/inventory/{id} DELETE

204 No Content

400 Bad Request

401 Unauthorized

404 Not Found

Figure 5.7. API methods for Inventory management

Finally, there are a set of API methods which allow to manage users and authen-
tication. Regarding users management, the available methods are shown in figure

76

5 – Service Portal: architecture

5.8.

Resource Method
Request

body
Status code Resp. body Meaning

/users

GET
200 Users list OK

401 Unauthorized

POST User
201 User Created

400 Bad Request

/users/{username}

GET

200 User OK

401 Unauthorized

404 Not Found

DELETE

204 No Content

400 Bad Request

401 Unauthorized

404 Not Found

Figure 5.8. API methods for users management

The POST method is used to create a new user, while the GET and the DELETE
ones are provided for administration purposes. The information required to create a
new user are the following ones:

• Name and surname of the user

• Company name

• Email

• Password

• Admin flag

In case the admin flag is set to true, the application checks if the user can be created
with administration privileges. This is established by checking user company name
and email, which have to be referred to Telecom Italia. This mechanism is a design
choice to easy manage role-based access with respect to the provided functional
requirements.

User authentication procedure can be performed through the methods shown in
figure 5.9, which allow to execute login and logout actions.

In addiction, the Swagger 1 documentation of the whole API has been generated
by exploiting JSON schema definition of API resources.

1Swagger [35] is a suite of tools for API development, from design and documentation, to test and
deployment.

77

5 – Service Portal: architecture

Resource Method
Request

body
Status
code

Resp. body Meaning

/login POST Credentials
200 Access token OK

401
Invalid

credentials

/logout POST 200 Ok message OK

Figure 5.9. API methods for users authentication

Model-driven mapping

As explained in previous sections, Service Portal backend works following a model-
driven approach. In particular, it is applied both at product and order levels for the
following reasons:

• Product management is model-driven because product characteristics can be
defined at creation time and in the same way for any kind of products, without
influencing how the application works

• Ordering procedure satisfies this principle thanks to the fact it is performed
by mapping products characteristics to the corresponding CFS model to be in-
stantiated or to CFS instance to be deleted, without depending on the particular
product or CFS Specification to be used

In more detail, product and order models are defined as JSON templates and are
consumed by Service Portal API to execute configuration and mapping operations.
All data referred to these models are then stored in an appropriate table inside a
database, which contains the set of information needed to describe and use the cre-
ated models when a certain operation is required by user.

5.3.2 Frontend

The frontend part of Service Portal is responsible for rendering graphical compo-
nents in the GUI, managing the interaction with the user and acting as a client to the
backend side.

GUI design is based on the different functionalities to be provided to users. In
particular, web pages structure allows to make a clear distinction among the differ-
ent operations the user can perform, thanks to the fact it is simple and intuitive. The
application is composed by the following pages:

• An home page, describing Service Portal and its main features

• A login page, containing a simple login form with an email and password input
fields

78

5 – Service Portal: architecture

• A page for user registration

• User personal area, including three pages for simple customers: a Catalog
page showing all products which can be ordered, an Inventory page listing the
purchased products and from which an active product can be removed and an
Orders page which allows to get details about performed orders. A screenshot
of the mentioned pages is provided in figure 5.10.

• Three additional pages for administrators to allow product management: a
page for product insertion through a form, a page for product modification
and one for product deletion. They are shown in figure 5.11.

Some additional comments about pages for product management are needed. In
particular, the administrator can insert products by simply filling the corresponding
form fields describing it and selecting product category and CFS model name from
a dropdown menu. Product modification is similar, but the product to be modified
can be chosen from a dedicated menu which displays all the existing products in
the Catalog. Thus, when the admin selects the product he wants to update, all the
other form fields are automatically filled and he can simply change the information as
desired. Finally, product deletion is very simple: the desired product can be chosen
and removed clicking on the corresponding button.

Moreover, layout and graphical components have been designed in order to keep
uniform all application pages. In particular, page navigation is available from links
displayed in the navigation bar at the top of page, while an additional side bar is
shown only to administrator profiles and allows navigation through product manage-
ment pages.

5.3.3 Database

Database architecture is defined based on the structure of data to be stored. The
following sets of data are managed:

• Product models, i.e. Product Catalog

• Orders

• List of purchased products, which corresponds to Product Inventory

• Users

• Blacklisted authentication tokens in order to prevent users to perform login
using an expired token

Each one of the mentioned categories of information is stored in a different table
inside the database. Table attributes corresponds to the ones defined in JSON bodies
produced and consumed by backend API methods. For products an additional column

79

5 – Service Portal: architecture

field has been added in order to store CFS model id once it has been retrieved from
Service Resolver. In this way, the backend can get and manipulate data without
further processing. This represents a very important point for application design,
since database structure has a strong influence on performances.

80

5 – Service Portal: architecture

Figure 5.10. Service Portal customer personal area

81

5 – Service Portal: architecture

Figure 5.11. Service Portal administrator personal area

82

Chapter 6

Service Portal: implementation

The starting point for Service Portal implementation was performing technical choices
for tools to be used. Once these choices have been made, code structure was defined.
After that, implementation phase has been completed and finally the application was
configured and tested.

6.1 Technical choices

From a technical point of view, it is necessary not only to choose tools able to satisfy
functional requirements described in the previous chapter, but also to allow a clean
and fast development and to make the application effective and robust.

Among all the available alternatives, an evaluation has been performed according
to the features to be implemented in each component of the application. Therefore,
the technologies chosen to build frontend, backend and database and the motiva-
tion behind these choices are presented in this section. After that, a focus on the
configuration of the whole application is also provided.

6.1.1 MySQL database

The first step regards database implementation, on which backend implementation
is also based. According to the described design, a relational database was imple-
mented using MySQL database management system [36]. This choice is due to the
following reasons:

• Different kinds of relationship can be identified among tables and data stored
inside them

• Tables have a reduced horizontal dimension because data are characterized by
a limited number of attributes

• Data availability, security and reliability

83

6 – Service Portal: implementation

• ACID1 properties are guaranteed while executing transactions

• Ensure scalability when large amount of data has to be managed

• Fast management and high performance

• It is open source, so it is a flexible solution which simplifies maintenance, de-
bugging and upgrade operations

In conclusion, database is composed by five small-sized tables and its implementation
was simple and fast.

6.1.2 Python Flask

The programming language selected to develop Service Portal backend was Python
and a framework named Flask [37] was used to implement it.

Flask is a lightweight WSGI2 web application framework. It is designed to eas-
ily implement web services, giving developers the possibility to get started quickly.
Moreover, it offers the ability to scale up to complex applications, and because of its
features it has become one of the most popular Python web application frameworks.
Flask suggests how to develop a web application, but it does not enforce any depen-
dency and does not impose any particular project layout. It is up to the developer
to choose the tools and libraries he wants to use among the large set of extensions
offered by the community. Thanks to simplicity of adding new extensions to a project,
adding new functionalities is also very easy.

Regarding this work, the choice of using Flask is due to the following reasons:

• It offers all the tools needed to implement the different functionalities the back-
end is required to provide. An example is the possibility to exploit an extension
to implement token-based user authentication.

• It is easy to learn, thus the time needed to implement backend component was
reduced

• It is well documented and easy to debug

• It allows to write clean code, with the possibility to extend or modify it very
easily in case this will be necessary in future

1ACID is the acronym of Atomicity, Consistency, Isolation and Durability, which are the properties to
be guaranteed by transaction operations executed on stored data.

2The therm WSGI means Web Server Gateway Interface [38], which is a communication protocol
defining an implementation-agnostic interface between Python web servers and web applications or
frameworks, created to allow the development of portable web services.

84

6 – Service Portal: implementation

• Implementing a REST API and mapping all resources and methods to be exe-
cuted when a certain request is received is very simple thanks to the @app.route()
decorator. An example of its use is provided below.

@app.route("/api/v1/users/", methods=[’GET’, ’POST’, ’PUT’])
def users():

...

Listing 6.1. Example of usage of Flask @app.route decorator

Further examples of code and used libraries are provided in the next section.

6.1.3 React and Bootstrap

The framework chosen for frontend implementation is React [39], which is a JavaScript
library for building user interfaces and whose popularity has increased rapidly dur-
ing last years. In this context, React has been use to create HTML pages and com-
ponents and to manage user interaction with them.

React offers several advantages to frontend developers. First of all, it simpli-
fies component design and writing. In fact, since it is component-based, complex
user interfaces can be implemented starting from single component definitions and
then they can be composed as needed. Moreover, React uses JSX, which stands for
JavaScript XML [40]. In particular, it is an optional syntax extension to JavaScript
which allows to write HTML elements in JavaScript and place them in the DOM. The
power of React is exactly related to this: it recognizes that rendering logic is strictly
coupled with UI logic. Events handling, state changes over time and how data should
be processed in order to be displayed are all operations related among them. An ex-
ample of the JSX syntax used to define React components is shown below.

var name = ’Josh Perez’;
var element = <h1>Hello, {name}</h1>;

ReactDOM.render(
element,
document.getElementById(’root’)

);

Listing 6.2. Example of JSX React syntax

An additional benefit of using a component-based approach in UI development is
the possibility to write reusable code. Consequently, application growth and mainte-
nance is simplified and code can be kept clean: this improves productivity and makes

85

6 – Service Portal: implementation

application logic easier to manipulate.
React provides also the capability to ensure optimized and faster rendering. This

is related to the concept of “state”, which allows the application to effectively manage
data to be displayed. In more detail, React components can be characterized by state
and “props”, which are both properties which can be passed as HTML attributes. The
difference between them is that while props are immutable, state can change at any
time. Therefore, components rendering and updates are performed only when a state
variable changes. An example of how to use props and state is provided below.

class Clock extends React.Component {
constructor(props) {
super(props);
this.state = {date: new Date()};

}

render() {
return (
<div>
<h1>Hello, {this.props.name}!</h1>
<h2>It is {this.state.date.toLocaleTimeString()}.</h2>

</div>
);

}
}

Listing 6.3. Example of usage of React state and props

Regarding Service Portal frontend implementation, React has been chosen not only
thanks to the features above described, but also for the following reasons:

• It is easy to learn, therefore frontend development was fast

• It allows to exploits other libraries and frameworks, in particular the Bootstrap
CSS framework [41] to build HTML pages

• It is well-documented

• It is continuously improved by its developers community

Therefore, actually frontend was developed by combining two frameworks: React
and Bootstrap. In this way, rendering, events management, sending requests to
backend API and all the required JavaScript code was developed using React, while
HTML pages and CSS stylesheets was defined using Bootstrap. In particular, Boot-
strap allows to create professional web pages and supports major of all browsers, it
is light, customizable and reduces time to design HTML components.

86

6 – Service Portal: implementation

6.2 Code’s structure

According to Service Portal architecture, code is split in two main parts: backend
and frontend. Project organization is displayed in figure 6.1. Then, the structure of
both components is described in more detail.

Figure 6.1. Service Portal code’s organization

6.2.1 Backend code

Backend code organization is shown in figure 6.2. The app.py file contains all API
resources and methods definitions and the code implementing them. Moreover, it
includes the definition of all configuration parameters and the main method imple-
mentation.

Figure 6.2. Service Portal backend code’s organization

An example of code implementing the API method to get product categories is
shown below.

@app.route(’/categories’, methods=[’GET’])
@jwt_required
def getCategories():

87

6 – Service Portal: implementation

connection = mysql.connector.connect(user=db_username,password=
db_password,host=db_host,port=3306, database=db_database)

cursor = connection.cursor(buffered=True)
query = ("SELECT * FROM categories")
data = ""
try:

cursor.execute(query, data)
response = []
if cursor.rowcount > 0:

result = cursor.fetchall()
for row in result:

category = {’name’: str(row[1])}
response.append(category)

connection.commit()
cursor.close()
connection.close()

except mysql.connector.Error as err:
return make_response(jsonify({’MySQLerror’: str(err)}), 500)

return make_response(jsonify(response), 200)

Listing 6.4. GET /categories implementation

After the @app.route decorator explained in the previous section, there is another
one: @jwt_required. This decorator is imported from the flask_jwt_extended
extension for Flask [42], which provides methods to provide a user authentication
mechanism based on JSON web tokens3. In more detail, when a user performs login,
the backend generates a random string, the token, and returns it to the client appli-
cation. Therefore, client has to include the token in the HTTP “Authorization” header
every time it sends a request which requires user to be logged in. The token expires
after fifteen minutes, which is the default value, and in this case or when the user
performs logout it is inserted in a blacklist to prevent user accesses with an outdated
token. The method which checks if a token is valid or has been blacklisted is shown
below and it is called whenever the @jwt_required decorator is associated to an API
method.

@jwt.token_in_blacklist_loader
def check_if_token_in_blacklist(decrypted_token):

jti = decrypted_token[’jti’]

3JSON Web Tokens are an open, industry standard RFC 7519 [43] method for representing claims
securely between two parties.

88

6 – Service Portal: implementation

connection = mysql.connector.connect(user=db_username,password=
db_password,host=db_host,port=3306, database=db_database)

cursor = connection.cursor(buffered=True)
query = """SELECT * FROM blacklist WHERE jti = %s"""
data = (jti,)
resp = False
try:

cursor.execute(query, data)
if cursor.rowcount > 0:

resp = True
connection.commit()
cursor.close()
connection.close()

except mysql.connector.Error as err:
return make_response(jsonify({’MySQLerror’: str(err)}), 500)

return resp

Listing 6.5. Token validity check implementation

Another useful extension used in backend implementation is the Python mysql_connec-
tor one [44], which allows to query database using the SQL syntax and to simply
manage transactions.

The templates folder contains a set of JSON files used to build the API response
bodies and the request bodies to send CFS Orders to Service Resolver. The use of
templates avoid useless information processing and is offered by the render_template
Python extension.

Finally, the swagger folder contains the JSON and YAML4 files providing backend
API Swagger documentation.

The backend configuration is detailed in the next section.

6.2.2 Frontend code

Frontend code is organized as shown in figure 6.3. The src folder contains all
JavaScript code, while all the static components are placed in the public folder. In-
side the src folder there are all the files defining the React main components, along
with two directories named components and assets. The first one contains the sub-
components to be rendered inside the higher level ones, while static assets such as
images are placed in the assets directory.

4YAML stands for YAML Ain’t Markup Language [45] and it is a human friendly data serialization
standard for all programming languages.

89

6 – Service Portal: implementation

Figure 6.3. Service Portal frontend code’s organization

Outside the src folder, the package-lock.json file lists all npm5 dependencies to
be installed in order to make the application working.

The React application entry point is the index.js file. In particular, it renders the
App component imported from the App.js file inside the HTML root element defined
in the index.html file, located in the public folder.

The App.js file specifies the main components to be rendered based on user ac-
tions. When the application starts, the default component rendered in the browser
is the Home one, defined in Home.js file. The list of available products, Inventory
items and performed orders are rendered respectively in Catalog.js, Inventory.js and
Orders.js files. In the same way, the InsertProduct.js, ModifyProduct.js and Remove-
Product.js defines the views to insert, modify and remove a product. All these com-
ponents are imported in the App.js file, which renders them dynamically, exploiting
the react-router-dom extension, which is the most popular routing library for Re-
act. In particular, page navigation in a React applications can be implemented by
using a Router. This allows to define the path to reach each page of the application,
the rules to be applied to establish if a user is allowed to access a given page and the
eventual redirect action to be performed to block unauthorized access. The following
example shows the usage of React Router inside the render method in App.js file.

5The therm npm stands for Node Package Manager [46] and it is a Software Registry containing
a huge number of JavaScript libraries, allowing developers to simply download and install it from
command line.

90

6 – Service Portal: implementation

<Route path="/insertproduct" render={() => (
this.state.admin === "true"
? <InsertProduct loggedin={this.state.loggedin} token={this.state.

token} handleLogout={this.handleLogout} />
: <Redirect to="/"/>

)} />

Listing 6.6. Example of React Router usage

As described before, components have been implemented by using the react-boot-
strap extension [47]. This library allows to write HTML pages using HTML elements
provided by the Bootstrap framework. An example is the “NavigationBar” component
defined in the NavigationBar.js file in the components folder. Its code is shown below.

function NavigationBar(props) {
return(

<Navbar variant="dark" expand="lg" fixed="top" style={navstyle
}>
<Container>

<Navbar.Brand href="">Service Portal</Navbar.Brand>
<NavBar loggedin={props.loggedin} handleLogout={props.

handleLogout}/>
<Nav className="ml-auto" as="ul">

<Nav.Item as="li">

</Nav.Item>
</Nav>

</Container>
</Navbar>

);
}

Listing 6.7. Example of React component implemented using Bootstrap

Finally, the JavaScript fetch function [48] has been used to perform asynchronous
HTTP requests to Service Portal backend.

6.3 Configuration

Service Portal components have been configured to be runned as Docker contain-
ers, allowing its deployment in virtual environments managed inside a Cloud-based

91

6 – Service Portal: implementation

infrastructure. Therefore, the application has been implemented in a Cloud-native
perspective, with the possibility to be installed in Multi-Cloud Platforms, since all ma-
jor cloud computing providers, including Amazon Web Services (AWS) and Google
Compute Platform (GCP), have added Docker’s support. Moreover, Docker is also
supported by other Cloud providers like Microsoft Azure and OpenStack.

Docker containers are started by means of a single command to be typed on termi-
nal, by using Docker Compose [49], which is detailed in the next section. Additional
configurations regards NGINX6 and communication among the backend and Service
Resolver.

Therefore, the above mentioned technologies and the motivation they have been
used for Service Portal implementation are presented in more detail.

6.3.1 Docker and Docker Compose

A key benefit of using Docker is the isolation. Docker ensures that each container
has its own resources that are isolated from other containers. This means that Ser-
vice Portal components can run independently without affecting the execution of the
other ones. In addition, this prevents components to exceed resources usage with
respect to the ones individually assigned to them, avoiding performance degradation.

Therefore, a Dockerfile is provided for backend, frontend and database. A Dock-
erfile is a text document containing all the commands to be executed on the command
line to create the Docker container and to install and run an application inside it. The
Dockerfile of the backend component is shown below.

FROM python:3.7.1

ENV PYTHONDONTWRITEBYTECODE 1
ENV FLASK_APP "app.py"
ENV FLASK_ENV "development"
ENV FLASK_DEBUG True

RUN mkdir /app
WORKDIR /app

RUN pip install --upgrade pip

We copy just the requirements.txt first to leverage Docker cache
COPY requirements.txt /app/requirements.txt

RUN pip install -r requirements.txt

6NGINX [50] is a web server for application deployment. More details are provided in section 6.3.2.

92

6 – Service Portal: implementation

ADD . /app

EXPOSE 5000

CMD flask run --host=0.0.0.0

Listing 6.8. Backend Dockerfile

In particular, the FROM directive specifies the image to be download to set up the
container. In particular, a Docker image is a file used to execute code in a Docker
container. In this case, the container is created using an image with Python version
3.7.1 installed on it. Then, the ENV directive allows to set environment variables for
the container, while the RUN one specifies commands to be launched from terminal.
The EXPOSE directive is used to make a given port reachable from outside the con-
tainer, in this case the specified port number is 5000. Finally, the CMD argument
defines how the application installed inside the container has to be runned.

All Docker containers composing Service Portal are built and started by typing
only two commands on terminal, using Docker Compose. The Compose tool of Docker
allows to define and run multi-container Docker applications by simply writing a
YAML file to configure application’s services. The Docker Compose file used to con-
figure Service Portal is shown below.

version: ’3’
services:
app:
build: ./back-end/
ports:
- "5000:5000"

links:
- db

db:
build: ./db/
ports:
- "3306:3306"

environment:
MYSQL_DATABASE: ’serviceportal’
So you don’t have to use root, but you can if you like
MYSQL_USER: ’user’
You can use whatever password you like
MYSQL_PASSWORD: ’password’
Password for root access

93

6 – Service Portal: implementation

MYSQL_ROOT_PASSWORD: ’password’
expose:
Opens port 3306 on the container
- ’3306’

frontend:
build: ./front-end/
ports:
- "80:80"

links:
- app

Listing 6.9. Service Portal docker-compose.yml

In this case, under “services” all the components are defined and a name is as-
signed to them. Then, for each component the location of Dockerfile is specified and
through the “links” option network configuration to allow inter-container communi-
cation is assigned.

6.3.2 NGINX

Frontend component has been deployed on NGINX web server, running inside a ded-
icated Docker container. NGINX is an HTTP and reverse proxy server, a mail proxy
server, and a generic TCP/UDP proxy server and it is used to serve static and index
files, to perform autoindexing and to manipulate cache. Moreover it provides accel-
erated reverse proxying with caching, load balancing and fault tolerance capabilities.

Regarding Service Portal, NGINX usage is due to its high performance in serving
static file and to the possibility to exploit its proxy capabilities to hide frontend React
application and to allow communication between backend and frontend. All the re-
quired settings to implement that have been written in the nginx.conf file inside the
frontend folder of the project. In particular, the server listens on port 80 at address
0.0.0.0, which is bound to any address. Then, requests from browser to frontend
are redirected to the React application running on port 3000, while requests from
frontend to backend are redirected to port 5000 at the IP address of the machine on
which Service Portal is installed. This setting is specified by means of the proxy_pass
directive [51].

6.3.3 Communication between Service Portal and Service Resolver

In order to communicate with Service Resolver, Service Portal backend has to know
the IP address of the machine on which Service Resolver is running. It is also pos-
sible to install both applications on the same machine and in this case a different
Docker Compose file must be used, in which network configuration allows all Ser-
vice Portal containers and Service Resolver containers to communicate sharing the

94

6 – Service Portal: implementation

same network by using container names.
In both cases, the URLs to reach Service Resolver CFS Order API and CFS Spec-

ification API are written in the backend.conf file, which can be edited as needed.
Thus, in the first case the machine IP address has to be used, while in the second
case it is sufficient to specify Service Resolver container names.

95

Chapter 7

Service Portal: validation

This chapter sums up Service Portal main requirements and the solutions proposed
to satisfy them. Moreover, application performance is analysed based on significant
parameters, measuring the quality of user experience, and corresponding values got
during testing activity.

7.1 Functional requirements

Functional requirements refer to the list of functionalities to be implemented in Ser-
vice Portal.

REQUIREMENT PROPOSED SOLUTION

Declarative UI
React allows to define HTML elements following a

declarative approach, so that they can autonomously
react to state changes of the components themselves.

Cloud Native The application is executed in Docker containers.

Pagination of data
Backend API offers dedicated methods to get single

pages of data from database, according to the subset of
data to be displayed.

Model-driven implementation

Adoption of a single model to define all products, such
that the application is independent from the particular

type of product, and of Service Resolver models in order
to perform mapping operations when CFS Orders has to

be sent.

Easy to configure and start

The application can be runned through a single Docker
Compose command and works properly with Service

Resolver installed on the same machine or on a
different machine, thanks to the possibility to provide
the desired configuration as explained in the previous

chapter.

Possibility to configure products from GUI Possible thanks to role-based management of users.

Possibility to modify data stored in database

Some data can be modified from GUI, but there are also
additional API methods which allow to modify data

thorugh clients like Postman, without the need to query
directly the database.

User authentication Provided by a mechanism based on JSON web tokens.

Figure 7.1. Functional requirements

Table in figure 7.1 describes them and the corresponding proposed solutions. All

96

7 – Service Portal: validation

mentioned requirements have already been discussed in previous chapters, but some
points need to be underlined. In particular, backend API offers additional methods
with respect to the ones called by the React application. Thanks to them, admin-
istrators have the possibility to perform not only products management, but also
to access, modify or delete data about users, orders, Inventory and products cate-
gories. This feature makes Service Portal a complete application from all points of
view, since it has been designed to satisfy all user needs as better as possible and it
is well documented.

7.2 Non functional requirements

Non functional requirements are related to how Service Portal functionalities have
been implemented. They are listed in figure 7.2.

REQUIREMENT PROPOSED SOLUTION
Robustness of transactions, simple data management

and possibility to retrieve and update data quickly
Adoption of a relational database.

Effectiveness in rendering graphical components
React updates the DOM tree only when needed,

according to components state changes.

Implementation of a robust backend service
Management of possible errors and their description

provided in API responses following REST design
practices

Possibility to load quickly application static contents
from the browser

Frontend application deployed on NGINX web server.

Well-documented API
Swagger documentation provides a detailed description

of backend API.

Communication between frontend and backend
modules independent from the particular machine on

which Service Portal is installed

Usage of NGINX proxy capabilities with the possibility to
specify backend IP address and port to which all client

requests have to be redirected.

Figure 7.2. Non functional requirements

This proves that Service Portal has been implemented following some key prin-
ciples. In particular, backend Flask application is robust and it has been developed
following REST best practices. On the other side, frontend React application pro-
vides an optimized rendering of HTML pages, combined with NGINX web server
high performance in serving static files. Finally, the MySQL database guarantees
reliability and data availability and optimizes time to retrieve and manipulate data.

7.3 Performance analysis

In this section, some tests performed in order to analyse Service Portal performance
are presented. These tests aim to analyse user experience when executing actions
through the GUI and regard the most critical operations in therms of time. Since
ordering products requires Service Portal to communicate with Service Resolver, the
most expensive operations are the purchase of a new service and the removal of an
active one.

97

7 – Service Portal: validation

Figure 7.3. Performance profile for product order (add)

For what concerns product ordering corresponding to a new service instance cre-
ation, user actions have been recorded for about 15 seconds, using Google Chrome
Developer Tools [52], also known as DevTools, which provide web authoring and de-
bugging tools built right into the browser. Test result is shown in figure 7.3. The
same test has been performed also for the delete order with a duration of about 11
seconds, and the obtained profile is shown in figure 7.4. In particular, the values
obtained are the following ones:

• CPU time for rendering operations: 254 milliseconds and 194 milliseconds

• CPU time for scripting operations: 105 and 230 milliseconds, respectively

• CPU time for painting operations: 187 and 89 milliseconds

• Frames Per Second (FPS): around 60/70 FPS at most

• Network: in this case obtained values are not relevant since they do not depend
on the application itself

The FPS indicator provides a measure of animations efficiency. For responsive
web pages, the value recommended is exactly the one obtained also in these tests:
around 60 fps. Also HTML pages rendering is optimal and added to scripting and
painting times produces a good response-time, since it is under the threshold of 1
second recommended by HCI1 guidelines [54]. Finally time to complete API requests

1Human Computer Interaction (HCI) [53] is an academic discipline which studies the interaction
between humans (the users) and computers.

98

7 – Service Portal: validation

Figure 7.4. Performance profile for product order (delete)

is not relevant since it depends on network performance.
In conclusion, Service Portal offers a good overall user experience, which com-

bined with advantages of using NGINX and the fact backend and database allow
fast request processing, data retrieval and manipulation, give the application a good
performance level.

99

Chapter 8

Conclusions and Future work

8.1 Conclusions

The work performed in this thesis can be considered as a confirmation of the fact
that CSPs have started a revolution process regarding their network infrastructure
and the way in which services are delivered to customers. Moreover, it emphasizes
the importance of studying new technologies according to the change of customers’
requests. This can be translated in the need of understanding the potentiality of new
paradigms such as SDN and NFV and how they will affect the future of networks, as
well as the spread of Cloud-based technologies.

The main result reached with this thesis work is the practical contribution given
to two Telecommunications Provider companies to support their evolution process.
To sum up, the improvement of Service Resolver for ONAP was a key achievement
since it was not working correctly before. For what concerns Service Portal, it rep-
resents a model of how a BSS application working at Product layer should be imple-
mented. Moreover, it is worth to remark that its proof-of-concept is a consequence of
provider’s specific needs, but the fact that its implementation is compliant with the
new dominant technologies represents an added-value feature.

In conclusion, the target of understanding CSPs needs, analysing the technolo-
gies leading their transformation and helping them to innovate their infrastructure
was satisfied.

8.2 Future work

This work can be further extended based on continuously evolving providers’ needs.
In particular, both Service Resolver and Service Portal can be improved.

Regarding Service Resolver, as already explained in the corresponding chapter,
it is not yet mature to be used in production environment. Moreover, it can be also
enriched with new features to allow BSS applications at Product layer to exploit
better ONAP capabilities. A possible implementation of a HUB API and the support

100

8 – Conclusions and Future work

of E2E instantiation method are an example.
For what concerns Service Portal, a possible improvement is backend API exten-

sion to be compliant to TMF specifications about Product Ordering, Product Catalog
and Product Inventory management. Moreover, users management is simplified for
now, but in order to use the application to satisfy customers’ request from an en-
tire country, customer management should be performed by an application working
at eTOM Customer layer and it should be integrated with the BSS system handling
products.

To sum up, thanks to their design, Service Resolver and Service Portal offer the
possibility to be easily extended in case of future necessity, following a CI/CD1 ap-
proach.

1CI/CD stands for Continuous Integration, Continuous Delivery and it is a process for continuous
development, testing, and delivery of new code [55].

101

Bibliography

[1] Cloud Central Office Reference Architectural Framework, BroadBand Forum,
January 2018

[2] BroadBand Forum, URL: https://www.broadband-forum.org/

[3] TM Forum’s Business Process Framework (eTOM), URL: https://www.tmforum.
org/business-process-framework/

[4] TeleManagement Forum, URL: https://www.tmforum.org/

[5] TM Forum Open API program, URL: https://www.tmforum.org/open-apis/

[6] Open Network Automation Platform (ONAP), URL: https://www.onap.org/

[7] ONAP Virtual Infrastructure Manager (VIM), URL: https://docs.
onap.org/en/elalto/submodules/multicloud/framework.git/docs/
MultiCloud-Architecture.html

[8] Network Functions Virtualisation (NFV); Management and Orchestration, NFV
ETSI Industry Specification Group (ISG), 2014

[9] ONAP Architecture, URL: https://docs.onap.org/en/elalto/guides/
onap-developer/architecture/onap-architecture.html

[10] Docker official documentation, URL: https://docs.docker.com/

[11] Kubernetes official web site, URL: https://kubernetes.io/

[12] ONAP Service Design and Creation (SDC) project, URL: https://wiki.onap.
org/display/DW/Service+Design+and+Creation+%28SDC%29+Portal

[13] OASIS TOSCA Technical Committee, URL: https://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=tosca

[14] ONAP SDC CSAR Structure, URL: https://wiki.onap.org/display/DW/Csar+
Structure

[15] ONAP Service Orchestrator (SO) project, URL: https://wiki.onap.org/
display/DW/Service+Orchestrator

[16] ONAP Virtual Infrastructure Deployment (VID) project, URL: https://wiki.
onap.org/display/DW/VID

[17] ONAP Service Orchestrator instantiation flow, URL: https://wiki.onap.org/
display/DW/ARCHCOM%3A+InfoFlow+-+SO+Service+Instantiation+Flow

[18] Business Process Model and Notation (BPMN) specification, URL: https://
www.omg.org/spec/BPMN/2.0/PDF, January 2011

[19] ONAP Active and Available Inventory (AAI, A&AI) project, URL: https://wiki.
onap.org/display/DW/Active+and+Available+Inventory+Project

102

https://www.broadband-forum.org/
https://www.tmforum.org/business-process-framework/
https://www.tmforum.org/business-process-framework/
https://www.tmforum.org/
https://www.tmforum.org/open-apis/
https://www.onap.org/
https://docs.onap.org/en/elalto/submodules/multicloud/framework.git/docs/MultiCloud-Architecture.html
https://docs.onap.org/en/elalto/submodules/multicloud/framework.git/docs/MultiCloud-Architecture.html
https://docs.onap.org/en/elalto/submodules/multicloud/framework.git/docs/MultiCloud-Architecture.html
https://docs.onap.org/en/elalto/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/elalto/guides/onap-developer/architecture/onap-architecture.html
https://docs.docker.com/
https://kubernetes.io/
https://wiki.onap.org/display/DW/Service+Design+and+Creation+%28SDC%29+Portal
https://wiki.onap.org/display/DW/Service+Design+and+Creation+%28SDC%29+Portal
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://wiki.onap.org/display/DW/Csar+Structure
https://wiki.onap.org/display/DW/Csar+Structure
https://wiki.onap.org/display/DW/Service+Orchestrator
https://wiki.onap.org/display/DW/Service+Orchestrator
https://wiki.onap.org/display/DW/VID
https://wiki.onap.org/display/DW/VID
https://wiki.onap.org/display/DW/ARCHCOM%3A+InfoFlow+-+SO+Service+Instantiation+Flow
https://wiki.onap.org/display/DW/ARCHCOM%3A+InfoFlow+-+SO+Service+Instantiation+Flow
https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/BPMN/2.0/PDF
https://wiki.onap.org/display/DW/Active+and+Available+Inventory+Project
https://wiki.onap.org/display/DW/Active+and+Available+Inventory+Project

Bibliography

[20] ONAP Data Movement as a Platform (DMaaP) project, URL: https://wiki.
onap.org/display/DW/Data+Movement+as+a+Platform+Project

[21] Apache Kafka official documentation, URL: https://kafka.apache.org/

[22] ONAP External APIs (NBI) project, URL: https://wiki.onap.org/display/
DW/External+API+Framework+Project

[23] ONAP External APIs documentation, URL: https://docs.onap.org/en/
dublin/submodules/externalapi/nbi.git/docs/offeredapis/offeredapis.
html

[24] ONAP External APIs ServiceCatalog API documentation, URL: https://docs.
onap.org/en/elalto/_downloads/b48637d161b9ca4807c181140d7405a0/
swagger.json

[25] ONAP External APIs ServiceOrder API documentation, URL: https://docs.
onap.org/en/elalto/_downloads/c5cff8a7b7fb8de1902794f57d4adf0f/
swagger.json

[26] ONAP External APIs ServiceInventory API documentation, URL: https://docs.
onap.org/en/elalto/_downloads/ac240fa96f8a911b357f7ad955aef3a2/
swagger.json

[27] Service Ordering Management API REST Specification, TM Forum, April 2019

[28] Service Inventory Management API REST Specification, TM Forum, April 2019

[29] Service Catalog Management API REST Specification, TM Forum, April 2019

[30] Service Resolver for ONAP public repository, URL: https://gitlab.com/
Orange-OpenSource/lfn/onap/service-resolver

[31] Python Connexion official documentation, URL: https://connexion.
readthedocs.io/en/latest/

[32] Open API Specification, URL: http://spec.openapis.org/oas/v3.0.3

[33] MongoDB official web site, URL: https://www.mongodb.com/

[34] Service Resolver installation guide, URL: https://gitlab.com/
Orange-OpenSource/lfn/onap/service-resolver/blob/master/install_

and_run.md

[35] Swagger official web site, URL: https://swagger.io/

[36] MySQL official web site, URL: https://www.mysql.com/

[37] Flask official documentation, URL: https://flask.palletsprojects.com/en/
1.1.x/

[38] PEP333 WSGI Specification, URL: https://www.python.org/dev/peps/
pep-3333/

[39] React official web site, URL: https://reactjs.org/

[40] JavaScript XML (JSX) official documentation, URL: https://jsx.github.io/
doc.html

[41] Bootstrap official web site, URL: https://getbootstrap.com/

[42] Flask-JWT-Extended’s documentation, URL: https://flask-jwt-extended.
readthedocs.io/en/stable/

103

https://wiki.onap.org/display/DW/Data+Movement+as+a+Platform+Project
https://wiki.onap.org/display/DW/Data+Movement+as+a+Platform+Project
https://kafka.apache.org/
https://wiki.onap.org/display/DW/External+API+Framework+Project
https://wiki.onap.org/display/DW/External+API+Framework+Project
https://docs.onap.org/en/dublin/submodules/externalapi/nbi.git/docs/offeredapis/offeredapis.html
https://docs.onap.org/en/dublin/submodules/externalapi/nbi.git/docs/offeredapis/offeredapis.html
https://docs.onap.org/en/dublin/submodules/externalapi/nbi.git/docs/offeredapis/offeredapis.html
https://docs.onap.org/en/elalto/_downloads/b48637d161b9ca4807c181140d7405a0/swagger.json
https://docs.onap.org/en/elalto/_downloads/b48637d161b9ca4807c181140d7405a0/swagger.json
https://docs.onap.org/en/elalto/_downloads/b48637d161b9ca4807c181140d7405a0/swagger.json
https://docs.onap.org/en/elalto/_downloads/c5cff8a7b7fb8de1902794f57d4adf0f/swagger.json
https://docs.onap.org/en/elalto/_downloads/c5cff8a7b7fb8de1902794f57d4adf0f/swagger.json
https://docs.onap.org/en/elalto/_downloads/c5cff8a7b7fb8de1902794f57d4adf0f/swagger.json
https://docs.onap.org/en/elalto/_downloads/ac240fa96f8a911b357f7ad955aef3a2/swagger.json
https://docs.onap.org/en/elalto/_downloads/ac240fa96f8a911b357f7ad955aef3a2/swagger.json
https://docs.onap.org/en/elalto/_downloads/ac240fa96f8a911b357f7ad955aef3a2/swagger.json
https://gitlab.com/Orange-OpenSource/lfn/onap/service-resolver
https://gitlab.com/Orange-OpenSource/lfn/onap/service-resolver
https://connexion.readthedocs.io/en/latest/
https://connexion.readthedocs.io/en/latest/
http://spec.openapis.org/oas/v3.0.3
https://www.mongodb.com/
https://gitlab.com/Orange-OpenSource/lfn/onap/service-resolver/blob/master/install_and_run.md
https://gitlab.com/Orange-OpenSource/lfn/onap/service-resolver/blob/master/install_and_run.md
https://gitlab.com/Orange-OpenSource/lfn/onap/service-resolver/blob/master/install_and_run.md
https://swagger.io/
https://www.mysql.com/
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://reactjs.org/
https://jsx.github.io/doc.html
https://jsx.github.io/doc.html
https://getbootstrap.com/
https://flask-jwt-extended.readthedocs.io/en/stable/
https://flask-jwt-extended.readthedocs.io/en/stable/

Bibliography

[43] RFC 7519, JSON Web Token (JWT), URL: https://tools.ietf.org/html/
rfc7519

[44] Python mysql-connector-python project, URL: https://pypi.org/project/
mysql-connector-python/

[45] The Official YAML Web Site, URL: https://yaml.org/
[46] npm Documentation, URL: https://docs.npmjs.com/
[47] React Bootstrap official documentation, URL: https://react-bootstrap.

github.io/
[48] JavaScript fetch documentation, URL: https://github.com/github/fetch
[49] Docker Compose official documentation, URL: https://docs.docker.com/

compose/
[50] NGINX official web site, URL: https://www.nginx.com/
[51] NGINX official documentation: URL: https://nginx.org/en/docs/
[52] Chrome DevTools, URL: https://developers.google.com/web/tools/

chrome-devtools
[53] HCI and Usability for e-Inclusion, 5th Symposium of the Workgroup Human-

Computer Interaction and Usability Engineering of the Austrian Computer So-
ciety, USAB 2009, Linz, Austria, November 9-10, 2009, Proceedings, Springer
2009.

[54] Jakob Nielsen, Website Response Times, June 2010, URL: https://www.
nngroup.com/articles/website-response-times/

[55] Isaac Sacolick, What is CI/CD? Continuous integration and continuous delivery
explained, January 2020

104

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://pypi.org/project/mysql-connector-python/
https://pypi.org/project/mysql-connector-python/
https://yaml.org/
https://docs.npmjs.com/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://github.com/github/fetch
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.nginx.com/
https://nginx.org/en/docs/
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://www.nngroup.com/articles/website-response-times/
https://www.nngroup.com/articles/website-response-times/

	List of Figures
	Introduction
	Context
	Purpose of the thesis
	Thesis organization

	ONAP
	Overview
	ONAP functional description
	Architecture
	Service Design and Creation
	Service Orchestrator
	Active and Available Inventory
	Data Movement as a Platform
	ONAP External APIs
	ONAP NBI testing

	TM Forum and the Open API Program
	Overview
	TMF641: Service Ordering Management API
	TMF638: Service Inventory Management API
	TMF633: Service Catalog Management API

	Service Resolver for ONAP
	Overview
	Architecture
	Service Resolver REST APIs
	RFS Specification API
	CFS specification API
	Service Instance API
	CFS Order API
	Instantiation Decision API

	CFS Order workflow
	Service Resolver APIs testing and improvement

	Service Portal: architecture
	Overview
	Overall design
	Architecture
	Backend
	Frontend
	Database

	Service Portal: implementation
	Technical choices
	MySQL database
	Python Flask
	React and Bootstrap

	Code's structure
	Backend code
	Frontend code

	Configuration
	Docker and Docker Compose
	NGINX
	Communication between Service Portal and Service Resolver

	Service Portal: validation
	Functional requirements
	Non functional requirements
	Performance analysis

	Conclusions and Future work
	Conclusions
	Future work

	Bibliography

