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Abstract

In recent years, the so called Cloudification is spreading more and more and, in
network world, it is bringing the Network Function Virtualization (NFV) paradigm
to life. With Cloudification, the abstraction given by NFV is brought at another
level: the integration of this two trends means that network functions would not
be deployed as virtual machines on physical servers, but as containers, the basic
element in a cloud environment, possibly deployed on same virtual machine. In
this respect, telecom operators need to adopt to this evolution, taking in account
all the problems related to it.

In first instance, this thesis provides an analysis of Kubernetes (the most popular
orchestrator for cloud native services) networking system, which is provided by
the so called Container Network Interface (CNI). It consists of set of APIs to
define a network configuration to be applied inside Kubernetes’ cluster, in order
to provide network connectivity to elements in the cluster. There are different
implementations of the CNI and some of them were analyzed to understand if, with
their functionalities, they can provide the necessary requirements to integrate VNFs
in Kubernetes environment. From the analysis, it comes out that CNIs do not
provide the features required for the integration, so other solutions were considered
and studied.

The most relevant and interesting existing solution is Network Service Mesh
project. In order to solve these problems and make VNFs work in a Kubernetes
environment, Network Service Mesh (NSM) project proposes to allow chaining
between pods that implements VNFs by building “virtual wires” that connect them
and allow the traffic to flow inside the established chain.

A deep analysis of the implementation of this project was carried out, under-
standing how it works in terms of control plane and data plane functionalities.

To understand the potentialities of NSM’s proposed solution, several performance
tests were carried out. To provide a basis of comparison, different scenarios
have been deployed, which do not necessarily includes NSM and Kubernetes.
These scenarios were manually created and tested, so it was possible to provide
a comparison not only in terms of performance, but also in terms of specific
configurations and requirements that were needed to deploy each scenario.
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Chapter 1

Introduction

The world of telecommunications and networking is moving from Virtualization to
Cloudification. Virtualization was born out of a desire to consolidate individual
servers running disparate applications onto fewer servers by implementing these
applications on virtual machines (VMs) in a hypervisor environment. In this
optic, the process of Network Function Virtualization (NFV) took place: network
functions were moved from physical dedicated hardware blocks to VMs running on
common servers (properly implementing the chaining between them), becoming in
this way Virtual Network Functions (VNFs).

The introduction of NFV technologies brought many benefits in terms of scalabil-
ity and flexibility, but there are also some drawbacks, e.g., in terms of performance,
compared to the solutions based on purpose-built hardware tightly coupled with
network function software. In these terms, Cloudification, and more specifically con-
tainers, can represent a better solution of network functions. With Cloudification,
network functions would not be deployed as virtual machines on physical servers,
but as containers, the basic element in a cloud environment, which can be deployed
on same virtual machine. Containers are a much lighter way of deploying multiple
workloads on the same host operating system; they also use far less memory and
start up more quickly than VMs. The advantages of containers, compared to VMs,
significantly contribute to the efficiency gains needed by NFV.

For these reasons, telecom operators are interested in the potential of containers
for NFV and in last years some projects have already started developing the so
called “Cloud-native Network Functions”(CNFs), i.e. network functions developed
appropriately to work as containers in cloud environment. Besides the creation,
CNFs need to be integrated in cloud environment: this aspect is nowadays the
most problematic one, and telecom operators are trying to address the problems
raised by requirement.

Kubernetes (K8s) is nowadays the most used and popular orchestrator for cloud
native services. It is an open source container orchestration engine for automating
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1 – Introduction

deployment, scaling, and management of containerized applications. With the
intent to understand if Kubernetes’ functionalities allow the integration of VNFs,
K8s’ networking was initially analyzed in this thesis. The analysis did not bring to
a solution, meaning that Kubernetes does not support natively integration of NFV,
mainly for two reasons:

• lack of multiple network interfaces’ configuration on containers: VNFs requires
two network interfaces to properly work. Kubernetes should configure these
interfaces in containers that implement VNFs, but it does not provide this
behavior.

• unsupported service chain implementation: each VNF provides a different
network function, which in most cases needs to to be linked to other network
functions. In this way a service chain, i.e. a chain of VNFs, is created, so that
traffic is elaborated by all the VNFs of the chain in the precise order with
which VNFs are disposed in the chain. Again, Kubernetes does not natively
support this behavior.

In the researches carried out to find a possible implemented solution, the project
Network Service Mesh (NSM) was the most valid and, for this reason, the one that
was analyzed in depth in this thesis. To understand how this solution behaves also
in terms of performance, various tests were carried out, and also comparison with
different scenarios which do not involve NSM is provided in following chapters.
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Chapter 2

Background

In order to give a basic comprehension of the context of work of this thesis, this
chapter provides a brief description of technologies that were used in this thesis.

2.1 Kubernetes
Kubernetes is a portable, extensible, open-source platform for managing container-
ized workloads and services, that facilitates both declarative configuration and
automation.

Figure 2.1 shows a graphic representation of main elements constitutive elements
in Kubernetes:
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Figure 2.1: Kubernetes main constitutive elements
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2.1. KUBERNETES

First of all, when Kubernetes is deployed, it is represented by a cluster. A
Kubernetes cluster consists of a set of worker machines, called nodes, that run
containerized applications [1]. A node can be arbitrarily a physical machine (i.e. a
server), or a virtual machine in a server.

Every cluster is always composed by a master node and at least one worker
node. The worker node(s) host the basic element in Kubernetes, which is called
Pod. A Pod is the basic execution unit of a Kubernetes application: it is the
smallest and simplest unit in the Kubernetes object model that can be created or
deployed. A Pod represents processes running on the cluster. A Pod encapsulates
an application’s container (or, in some cases, multiple containers), storage resources,
a unique network IP, and options that govern how the container(s) should run.
A Pod represents a unit of deployment: a single instance of an application in
Kubernetes, which might consist of either a single container or a small number of
containers that are tightly coupled and that share resources.

Master node hosts pods in charge of Kubernetes control plane functionalities.
The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod when a deployment’s replicas field is unsatisfied). Control
Plane components can be run on any machine in the cluster. However, for simplicity,
set up scripts typically start all Control Plane components on the same machine,
and do not run user containers on this machine. Here follows a brief description of
master node components:

• kube-apiserver: the API server is a component of the Kubernetes control
plane that exposes the Kubernetes API. The API server is the front end for
the Kubernetes control plane. The main implementation of a Kubernetes API
server is kube-apiserver. kube-apiserver is designed to scale horizontally—that
is, it scales by deploying more instances. You can run several instances of
kube-apiserver and balance traffic between those instances.

• etcd: this element is a consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data.

• kube-scheduler: Control Plane component that watches for newly created
pods with no assigned node, and selects a node for them to run on.

• kube-controller-manager: Control Plane component that runs controller
processes. Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single
process.

• cloud-controller-manager: this element runs controllers that interact with
the underlying cloud providers.
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2.1. KUBERNETES

On the other side, node components run on every node, maintaining running pods
and providing the Kubernetes runtime environment:

• kubelet: an agent that runs on each node in the cluster. It makes sure that
containers are running in a pod.

• kube-proxy: kube-proxy is a network proxy that runs on each node in
your cluster, implementing part of the Kubernetes Service concept. Kube-
proxy maintains network rules on nodes. These network rules allow network
communication to your Pods from network sessions inside or outside of your
cluster.

• Container Network Interface (CNI): consists of a specification and li-
braries for writing plugins to configure network interfaces in Linux containers,
along with a number of supported plugins [2]. It is in charge of providing
all kinds of connectivity in the cluster: intra-node pod-to-pod connectivity,
inter-node pod-to-pod connectivity, outside cluster-to-pod connectivity and
vice versa. In the interest of this thesis, further analysis of CNI will be provided
in next chapters.

When interacting with the cluster, user gives specific command, which are
translated in Kubernetes REST API requests that are sent to kube-apiserver on
master node. Depending on the kind of request, the kube-apiserver can interact
with other control plane components on master node, for example forwarding the
request to them so that they can elaborate it, or interact directly with worker
nodes. The interaction with worker nodes is made possible by action of the kubelet,
which receives and reply to messages from kube-apiserver. There is never direct
interaction from kube-apiserver to pods deployed in worker nodes, communication
is always mediated by the kubelet.
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2.2. NFV

2.2 NFV
Network functions (NFs) underwent a deep transformation under last decades.
First of all, it useful to define what is a network function: in its traditional
implementation, in consists in a physical block (i.e. a hardware component) to
which two network interfaces are associated. One interface is used to get the
internet traffic inside the network function and the other is used to get traffic
out of it. The heart of the network function is the software that implement the
functionalities of it: it runs inside the hardware box associated to the network
function and it elaborates the traffic that gets inside the network function. Once
the traffic is elaborated, it gets out from the network function and continues its
journey (possibly going to another network function).

In the first version of network functions, this structure was strictly respected:
NFs were composed by a dedicated hardware component on which software imple-
mentation of specific network function run. Service chains of network functions
were created by physically placing each “box” of a network function one after
another and physically connecting interfaces of these boxes together: in this way
traffic passed through each network function in the order they where physically
placed. Figure 2.2 gives a graphic representation of this scenario:
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Figure 2.2: Service chain of network functions

This implementation presents some problems in terms of management and
control of network functions. Moreover, most of the times dedicated hardware and
implemented software were proprietary, i.e. they were produced and provided by
the same vendor, making interoperability of network functions provided by different
vendors hard. As software implementation was specific for hardware component, it
was also difficult to have hardware of a vendor with a software of another vendor,
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2.2. NFV

making telecom operators’ choice to buy from a vendor binding.
To solve this situation, Network Function Virtualization (NFV) caught on. It

basically consists of decoupling hardware dedicated components from software
implementation of network function. In this way, network functions are deployed
as Virtual Machines on a common hardware infrastructure, which can be a physical
server, and, for this reason, they are called Virtual Network Functions: the envi-
ronment of work of each VNF is not a specific hardware for each of it, but more
VNFs can be deployed and executed on same machine. Each VNF has its own
VM where it is executed and can be linked together with other VNFs on the same
server. If VNF needs to receive or send traffic outside the server, one interface of
the VM in which it is executed is linked to a physical NIC of the server. If VNFs
that are deployed on different physical servers need to be chained together, network
components (such as switches or routers) can be specialized to provide the required
chaining. Figure 2.3 fives a graphic representation of the described scenario:
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Network Function Virtualization solved the problem of strict binding between
hardware and software components of a Network Function. On the other hand,
providing the right intelligence to other components on the network to allow
chaining of VNFs on different servers and the management itself of these VNFs
introduced the necessity of a management unity that provides proper functionalities
to implement this behavior. For this reason, Software Defined Networking (SDN)
concept is strictly related to NFV: briefly, it allows to create a centralized control
plane unity that can manage and gives proper instructions to network components
which implements the data plane. For NFV, it means that SDN can be properly
used to instruct network components involved in chaining of VNFs to forward traffic
between elements involved in the chain (which can be other network components
or servers where VNFs are deployed).
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2.3. VPP

2.3 VPP
VPP technology has been used in this thesis and, for this reason, a description of
this technology is provided in this section.

The VPP platform is an extensible framework that provides out-of-the-box
production quality switch/router functionality. It is the open source version of
Cisco’s Vector Packet Processing (VPP) technology: a high performance, packet-
processing stack that can run on commodity CPUs [3]. VPP is a key component of
FD.io - The Fast Data Project of Linux Foundation. VPP’s name comes from the
fundamental way of processing packets. Regular scalar packet processing processes
one packet at the time; in contrast VPP processes packets in vectors, which are
essentially lists of packets. This reduces overhead and increases cache performance.
VPP is especially attractive for call session data storage applications, since it also
has an user space TCP stack.

Figure 2.4: Example of VPP graph processing [4]

The core of VPP is the packet processing graph illustrated in figure 2.4. Vectors
of packets come into the system and are processed according to the graph. If
packets are not all the same, the vector is split in different nodes. All the basic
processing in VPP is done in vSwitch/vRouter, but due to the high modularity
users can create their own nodes to process the packets. As is apparent from
figure 2.4, DPDK is a common way to attach the NICs in the VPP.

One of the main performance gains of the VPP comes from better use of caches.
Modern CPUs have multiple caches, which differ in latency and size. The L1 cache
is the smallest and fastest, so ideally it is used as much as possible while running
a program. The L1 cache is divided into instruction cache and data cache. In
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2.3. VPP

case of packet processing the instruction cache is the most important factor. If a
packet is processed in a scalar manner, so many instructions are used for processing
the packet that when the next one starts the needed instructions are not in the
L1 cache anymore. This is an example of cache trashing. With vector packet
processing, where processing is done for all packets in the vector, one node at the
time, L1 cache usage is much more efficient, which leads to better performance.

VPP is also provided with a functional Host-stack, which can be used through
many different APIs, but it is also under refactoring and the APIs might be
changing in the process. In the current VPP version there are three main ways
to communicate with the Host-stack from a third-party application. Lowest level
of these is a binary API, which requires considerable integration work for it to
be used with the application, and it is not intended to be used directly for that.
VPP Communication Library (VCL) offers a higher-level API to build software
against. VCL is currently the recommended way of using the VPP Host-stack.
The last option is using VCL with LD_PRELOAD. This method does not require
integration work, but does have a very limited compatibility with applications.

Figure 2.5: VPP host stack [4]

Raw session layer binary API is the lowest level API provided in the VPP
Host-stack. It does not provide support for asynchronous communication. It is
not meant to be used for integrating applications to VCL. This can be done if the
limited functionality is not a problem from the standpoint of the application, but
it is not recommended and there are no guarantees on stability of the API. VPP
Communication Library (VCL) API is the most modern and recommended way to
leverage the VPP Host-stack. It does provide its own implementations of Linux
I/O event notification facility epoll which provides more support for integration
work. VCL also has a POSIX API which can be used through LD_PRELOAD.

10



2.3. VPP

LD_PRELOAD allows a user to load any libraries before others when starting
applications in Linux. This enables the user to replace any function provided by
other libraries. This way LD_PRELOAD can be used to link an application to
VCL without changing the application binary as long as it uses the POSIX API.
This is a key point in VPP technology as it is the only acceleration framework
which supports integration without changing the software.

In the context of this thesis, VPP Host-Stack and VPP application are useful in
the deployment of Virtual Network Functions in Kubernetes environment. VPP
acts in the pod which implements VNF as VPP Agent. The VPP Agent is a Go
implementation of a control/management plane for VPP based cloud-native Virtual
Network Functions. The VPP Agent is built on top of CN Infra, a framework for
developing cloud-native VNFs (CNFs) [5].

The VPP Agent can be used as-is as a management/control agent for VNFs
based on off-the-shelf VPP, or as a framework for developing management agents for
VPP-based CNFs. The VPP Agent is basically a set of VPP-specific plugins that use
the CN-Infra framework to interact with other services/microservices in the cloud.
The VPP Agent exposes VPP functionality to client apps via a higher-level model-
driven API. Clients that consume this API may be either external (connecting to
the VPP Agent via REST, gRPC API, Etcd or message bus transport), or local
Apps and/or Extension plugins running on the same CN-Infra framework in the
same Linux process.

Figure 2.6 shows the VPP Agent in context of a cloud-native VNF, where the
VNF’s data plane is implemented using VPP/DPDK and its management/control
planes are implemented using the VNF agent:

Figure 2.6: Example of VPP Agent [5]
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2.3. VPP

2.3.1 DPDK
VPP is strongly integrated with DPDK technology. DPDK is the Data Plane
Development Kit that consists of libraries to accelerate packet processing workloads
running on a wide variety of CPU architectures. DPDK consists of a set of libraries
and drivers for fast packet processing. It runs mostly in Linux user space and
supports a wide variety of hardware. One of the key ideas in DPDK is poll mode
driver (PMD). In its essence, PMD means moving from traditional interrupt-centric
way of sending to constantly polling for new packets instead. Polling is not a
new invention, but only recent advancements on hardware has made it a plausible
candidate for sending and receiving traffic. To do efficient polling-based transmit,
at least one CPU core has to be fully allocated to PMD only. Any interrupt by
other applications or kernel slows DPDK down and causes jitter. With PMD
packets are directly pulled to the user space from the rx_ring buffer of the NIC.
Also transmit is done directly from the user space to tx_ring buffer. Figure 2.7
shows the PMD receiving flow: 23
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Figure 9: DPDK PMD packet processing.

DPDK includes three major libraries: Mbuf, Mempool and Ring. The mbuf
library provides the structure to save packets to in DPDK. It can be generalized to
be corresponding to the sk_buff structure of the Linux kernel. Mbufs are stored
in mempool which does allocation of the space from memory. Mempool handles
are usually based on a ring buffer implemented in the ring library. Mempool also
implements a small cache which has a table of pointers for each core. This way,
recent packets are even faster to process further. Multiple DPDK cores can share
mempool, but caches are only accessed by the core which owns the cache table. If
there is only one interface which DPDK is receiving data from, it only needs one
core. However, if there are multiple interfaces or NIC rx/tx buffers, each needs its
own processing core [4].

Memory for the DPDK is allocated in hugepages. Hugepages are crucial for
the performance of DPDK. Normally memory is allocated in 4KB pages, which are
enough when there is only a limited amount of data or no performance constraints.
Normal pages are slow due to memory. The more memory is used, the harder it is to
figure out which of the 4k pages has the right data. For this reason if the application
needs a lot of memory, it is better to allocate the memory for that application in
hugepages. In Linux hugepage sizes are usually 500-fold, so the normal pages are
either 2MB or 1GB [11]. The hugepage cannot be shared with multiple applications,
so too large pages should be avoided. For example, it might sound appealing to
reserve a 1GB page for 500MB worth of data so it would fit in one page. However,
in 2MB pages 500MB of memory is saved, and the lookup for 250 pages is still very
fast.

Another important factor in DPDK is the number and availability of processing
cores. PMD requires at least one core in the use of DPDK. Without any setup
there is nothing which would prevent other applications from using that core other
than kernel scheduling, which would run other applications on other cores if they
are available. However, this does not take into account two things. First of all, if
the whole processor is running at a 100% load, the scheduler is going to assign work
for the PMD core. At that point the performance, and especially the jitter will take
a great hit. This can be prevented by pinning the core for DPDK. In Linux core
pinning is done by modifying the grub command line [9].

As DPDK is in direct contact with NIC over a Peripheral Component Intercon-

Figure 2.7: DPDK PMD packet processing [4]

DPDK includes three major libraries: Mbuf, Mempool and Ring. The mbuf
library provides the structure to save packets to in DPDK. It can be generalized to
be corresponding to the sk_buff structure of the Linux kernel. Mbufs are stored
in mempool which does allocation of the space from memory. Mempool handles
are usually based on a ring buffer implemented in the ring library. Mempool also
implements a small cache which has a table of pointers for each core. This way,
recent packets are even faster to process further. Multiple DPDK cores can share
mempool, but caches are only accessed by the core which owns the cache table. If
there is only one interface which DPDK is receiving data from, it only needs one
core. However, if there are multiple interfaces or NIC rx/tx buffers, each needs its
own processing core.
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2.3.2 MEMIF interfaces
As VPP technology purely works in user space, it uses MEMIF as network interfaces.
Shared memory packet interface (MEMIF) provides high performance packet
transmit and receive between user application and Vector Packet Processing (VPP)
or multiple user applications. Using libmemif, user application can create shared
memory interface in master or slave mode and connect to VPP or another application
using libmemif. Once the connection is established, user application can receive or
transmit packets using libmemif API [6].

In order to create memif connection, two memif interfaces, each in separate
process, are needed. One interface in master role and other in slave role. It is
not possible to connect two interfaces in a single process. Each interface can be
connected to one interface at same time, identified by matching id parameter.

Memif driver uses unix domain socket to exchange required information between
memif interfaces. Socket file path is specified at interface creation. If socket is used
by master interface, it’s marked as listener socket (in scope of current process) and
listens to connection requests from other processes. One socket can be used by
multiple interfaces. One process can have slave and master interfaces at the same
time, provided each role is assigned unique socket.

Slave is producer and master is consumer. Memory regions, are mapped shared
memory files, created by memif slave and provided to master at connection es-
tablishment. Regions contain rings and buffers. Rings and buffers can also be
separated into multiple regions. For no-zero-copy, rings and buffers are stored
inside single memory region to reduce the number of opened files.

Slave interface attempts to make a connection on assigned socket. Process
listening on this socket will extract the connection request and create a new
connected socket (control channel). Then it sends the “hello” message, containing
configuration boundaries. Slave interface adjusts its configuration accordingly, and
sends “init” message. This message among others contains interface id. Driver uses
this id to find master interface, and assigns the control channel to this interface. If
such interface is found “ack” message is sent. Slave interface sends “add region”
message for every region allocated. Master responds to each of these messages with
“ack” message. Same behavior applies to rings. Slave sends “add ring” message for
every initialized ring. Master again responds to each message with “ack” message.
To finalize the connection, slave interface sends “connect” message. Upon receiving
this message master maps regions to its address space, initializes rings and responds
with “connected” message. Disconnect can be sent by both master and slave
interfaces at any time, due to driver error or if the interface is being deleted.

13



2.3. VPP

2.3.3 TUN/TAP interfaces
TUN/TAP interfaces are a feature offered by Linux that can do user space network-
ing, that is, allow user space programs to see raw network traffic (at the ethernet
or IP level) and elaborate it if necessary [7].

TUN/TAP interfaces are software-only interfaces, meaning that they exist only
in the kernel and, unlike regular network interfaces, they have no physical hardware
component (i.e. there is not a physical “wire” connected to them). A TUN/TAP
interface can be considered as a regular network interface with the difference that,
when the kernel decides to send data “on the wire”, it instead sends data to some
user space program that is attached to the interface (using a specific procedure).
When the program attaches to the TUN/TAP interface, it gets a special file
descriptor, reading from which gives it the data that the interface is sending out.
In a similar fashion, the program can write to this special descriptor, and the
data (which must be properly formatted) will appear as input to the TUN/TAP
interface. To the kernel, it would look like the TUN/TAP interface is receiving
data “from the wire”.

The difference between a TAP interface and a TUN interface is that a TAP
interface outputs (and must be given) full ethernet frames, while a TUN interface
outputs (and must be given) raw IP packets (and no ethernet headers are added
by the kernel). Whether an interface functions like a TUN interface or like a TAP
interface is specified with a flag when the interface is created.

Figure 2.8: Example of TUN and TAP interfaces [8]

The interface can be transient, meaning that it’s created, used and destroyed
by the same program; when the program terminates, even if it doesn’t explicitly
destroy the interface, the interfaces ceases to exist. Another option is to make the
interface persistent; in this case, it is created using a dedicated utility and then
normal programs can attach to it; when they do so, they must connect using the
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same type (TUN or TAP) used to originally create the interface, otherwise they
will not be able to attach.

Once a TUN/TAP interface is in place, it can be used just like any other
interface, meaning that IP addresses can be assigned, its traffic can be analyzed,
firewall rules can be created, routes pointing to it can be established, etc.
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Chapter 3

Networking in Kubernetes

As first step in trying to solve this problem, a study of already existing tools was
carried out, to see if already implemented and working solutions were present. In
particular, as the problem consists of integration of VNFs in Kubernetes environ-
ment, K8s’ networking system was analyzed.

In Kubernetes, networking is provided by the so called Container Network
Interface (CNI). It consists of a set of APIs that are introduced in K8s cluster and
are used to provide network connectivity to pods of the cluster. Apart from specific
cases, one CNI can be used inside the cluster: once the CNI is applied with specific
command, the network configuration provided by that CNI is established to all
elements of the cluster.

There are some specific APIs that compose the CNI which are fundamental for
correct implementation of the CNI. This APIs are grouped together under under a
unique file called CNI plugin. A CNI plugin is responsible for inserting a network
interface into the container network namespace (e.g. one end of a veth pair) and
making any necessary changes on the host (e.g. attaching the other end of the veth
into a bridge). It should then assign the IP to the interface and setup the routes
consistent with the IP Address Management section by invoking appropriate CNI
plugin [9]. In this sense, different CNI plugin exist and must be invoked in a precise
order to allow the correct configuration of the network interface: the output of a
CNI plugin application can be given as input to another specific CNI plugin.

The operations that CNI plugins must support are:

• ADD: this function adds container to network. It takes some parameters
about container (container ID, network namespace path, network configura-
tion etc.) as input and, as result, it configures a network interface and all
necessary components in the container so that it can correctly use the network
configuration provided: this also means that, if network configuration provides
a specific network policy, the pod must respect the policy).
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• DEL: this function deletes container from network. As ADD operation, it
takes some parameters (which should be the same as those passed to the
corresponding add operation) as input and should release all resources held
by the supplied container ID in the configured network. As result, pod is not
present on the network configuration, i.e. it cannot reach other pods and it
cannot be reached by other pods.

• CHECK: this operation checks container’s networking is as expected (i.e. it
respects configuration and policies established in the network).

Some notes about CNI plugins:

• The container runtime must create a new network namespace for the container
before invoking any plugins.

• The runtime must then determine which networks this container should belong
to, and for each network, which plugins must be executed.

• The network configuration is in JSON format and can easily be stored in a
file. The network configuration includes mandatory fields such as “name” and
“type” as well as plugin (type) specific ones. The network configuration allows
for fields to change values between invocations.

• The container runtime must add the container to each network by executing
the corresponding plugins for each network sequentially.

• Upon completion of the container life cycle, the runtime must execute the
plugins in reverse order (relative to the order in which they were executed to
add the container) to disconnect the container from the networks.

• The container runtime must order ADD and DEL operations for a container,
such that ADD is always eventually followed by a corresponding DEL. DEL
may be followed by additional DELs but plugins should handle multiple DELs
permissively (i.e. plugin DEL should be idempotent).

• A runtime must not call ADD twice (without a corresponding DEL) for the
same (network name, container id, name of the interface inside the container).
This implies that a given container ID may be added to a specific network
more than once only if each addition is done with a different interface name.

CNI can also provide a specific behavior also for network policy implemented in
the cluster. Kubernetes imposes that the basic policy that each CNI must provide
is that all pods can reach each other inside the same cluster. CNI must implement
this behavior, but CNI can provide more elaborated network policy associated to
the network configuration.
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3.1 Analysis of different CNIs
Nowadays there are different kind of CNIs, each one providing a particular behavior
to allow networking inside the cluster. The one described in following sections has
been more specifically analyzed to properly understand their different behaviors
and see if they might provide useful function for integration of VNFs in Kubernetes.

To properly understand next sections, it is necessary to point out the meaning
of these concepts [10]:

• Layer-2 networking: The “data link” layer of the OSI (Open Systems
Interconnection) networking model. Layer 2 deals with delivery of frames
between two adjacent nodes on a network. Ethernet is a noteworthy example
of Layer-2 networking, with MAC represented as a sublayer.

• Layer-3 networking: The “network” layer of the OSI networking model.
Layer 3’s primary concern involves routing packets between hosts on top of
the layer 2 connections. IPv4, IPv6, and ICMP are examples of Layer 3
networking protocols.

• VXLAN: this term stands for “virtual extensible LAN”. Primarily, VXLAN is
used to help large cloud deployments scale by encapsulating Layer-2 Ethernet
frames within UDP datagrams. VXLAN virtualization is similar to VLAN, but
offers more flexibility and power (VLANs were limited to only 4,096 network
IDs). VXLAN is an encapsulation and overlay protocol that runs on top of
existing networks.

• Overlay network: An overlay network is a virtual, logical network built on
top of an existing network. Overlay networks are often used to provide useful
abstractions on top of existing networks and to separate and secure different
logical networks.

• Encapsulation: Encapsulation is the process of wrapping network packets
in additional layer to provide additional context and information. In overlay
networks, encapsulation is used to translate from the virtual network to the
underlying address space to route to a different location (where the packet
can be de-encapsulated and continue to its destination).

• BGP: Stands for “border gateway protocol” and is used to manage how
packets are routed between edge routers. BGP helps figure out how to send a
packet from one network to another by taking into account available paths,
routing rules, and specific network policies. BGP is sometimes used as the
routing mechanism in CNI plugins instead of encapsulated overlay networks.
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3.1.1 Bridge CNI
The first basic implementation of CNI is bridge CNI. With bridge CNI plugin, all
containers (on the same host) are plugged into a bridge (virtual switch) that resides
in the host network namespace. The containers receive one end of the veth pair
with the other end connected to the bridge. An IP address is only assigned to one
end of the veth pair (one residing in the container).

The bridge created by the CNI can be configured to work in two different way:
• L2-only mode: in this case the bridge would need to be bridged to the host

network interface. Inter-node communication between pods happens through
ARP and L2 switching, and it is based on underlay physical network.
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Figure 3.1: L2-only mode bridge

• L3 mode: an IP is also assigned to the bridge, turning it into a gateway
for the pods. Also in this case Inter-node communication between pods is
based on underlay physical network, but it will use L3 routing instead of L2
switching.
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The network configuration specifies the name of the bridge to be used. If the bridge
is missing, the plugin will create one on first use and, if gateway mode is used,
assign it an IP that was returned by IPAM plugin via the gateway field.

Speaking about network configuration, it is represented by a YAML file: when
the specific CNI must be installed in Kubernetes cluster, it is installed applying
the proper command in Kubernetes. In this case, the network configuration can be
as the following example [11]:

{
"cniVersion": "0.3.1",
"name": "mynet",
"type": "bridge",
"bridge": "mynet0",
"isGateway": true,
"isDefaultGateway": true,
"ipMasq": true,
"ipam": {

"type": "host-local",
"subnet": "10.10.0.0/16"

}
}

Each field has a different meaning and is useful to provide detailed information
to the network configuration:

• name: the name of the network.

• type: defines the type of CNI that is to be applied.

• bridge: name of the bridge to use/create.

• isGateway: assign an IP address to the bridge. Defaults to false.

• isDefaultGateway: Sets isGateway to true and makes the assigned IP the
default route. Defaults to false.

• ipMasq: set up IP Masquerade on the host for traffic originating from this
network and destined outside of it. Defaults to false.

• ipam (dictionary, required): IPAM configuration to be used for this network.
For L2-only network, create empty dictionary.

Bridge CNI does not explicitly manage inter-node communication. In facts, as
shown in previous figures, networking between different nodes relies on underlay
network, i.e. to network elements that lead from a node to another.
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3.1.2 Flannel CNI
Flannel is one of the most mature examples of networking fabric for container
orchestration systems, intended to allow for better inter-container and inter-host
networking. Flannel can use the Kubernetes cluster’s existing etcd cluster to store
its state information using the API to avoid having to provision a dedicated data
store [10].

Flannel CNI is responsible for providing a layer 3 IPv4 network between multiple
nodes in a cluster. Within a single Kubernetes node, it runs as a DaemonSet called
flanneld, which is responsible for creating the CNI network configuration for
communication between pods inside the same node. In particular, it spans a virtual
bridge and a virtual router inside the node: these two elements collaborate to
provide communication of pods inside the same node.

As CNI specifics impose, also Flannel CNI comes with a CNI plugin, which
implements the behavior of fanneld. When flanneld is started, it outputs a /run/flan-
nel/subnet.env file that looks like this [12]:

FLANNEL_NETWORK=10.1.0.0/16
FLANNEL_SUBNET=10.1.17.1/24
FLANNEL_MTU=1472
FLANNEL_IPMASQ=true

This information reflects the attributes of flannel network on the node. The
flannel CNI plugin uses this information to configure another CNI plugin, such as
bridge plugin. Given the following network configuration file and the contents of
/run/flannel/subnet.env above,

{
"name": "mynet",
"type": "flannel"

}

the flannel plugin will generate another network configuration file:

{
"name": "mynet",
"type": "bridge",
"isGateway": true,
"ipam": {

"type": "host-local",
"subnet": "10.1.17.0/24"

}
}
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It will then invoke the bridge plugin, passing it the generated configuration. Same
procedure (with appropriate parameters) is applied to configure router inside each
node. These two elements are linked together to provide correct traffic routing
inside each node.

Considering communication between pods across different nodes, large internal
network is created that spans across every node within the cluster. Within this
overlay network, each node is given a subnet to allocate IP addresses internally.
Fanneld provides encapsulation functionalities. When virtual bridge configured on
a node receives traffic sent from a pod in the same node that needs to be forwarded
to a pod on a different node, that traffic is first sent to flanneld, wich encapsulates it
for routing to appropriate destination. The router receives this traffic and, thanks
to encapsulation parameters (i.e. IP addresses), it understands that the traffic
needs to be sent on the overlay network so that it reaches appropriate node.

Flannel has several different types of backends available for encapsulation and
routing. The default and recommended approach is to use VXLAN, as it offers
both good performance and is less manual intervention than other options.

Figure 3.3 gives a graphic representation of how Flannel CNI is deployed in
Kubernetes:
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Figure 3.3: Flannel CNI

Speaking about network policy, Flannel does not offers any specific network
configuration to provide a different policy from the standard one (i.e. each pod
can communicate and reach each other pod inside the cluster).
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3.1.3 Calico CNI
While Flannel is positioned as the simple choice, Calico is best known for its
performance, flexibility, and power. Calico does not concern itself only with
providing network connectivity between nodes and pods, but also with network
security and administration [10]. All these characteristics are made possible by
the fact that Calico implements its own network policy, which substitutes the
Kubernetes default one.

An example of Calico CNI’s YAML file which is applied in installation of this
CNI is the following [13]:

{
"name": "any_name",
"cniVersion": "0.1.0",
"type": "calico",
"policy": {

"type": "k8s"
},
"kubernetes": {

"kubeconfig": "/path/to/kubeconfig"
},
"ipam": {

"type": "calico-ipam"
}

}

Differently from previous described CNIs, as Calico supports network policy specifi-
cation, the field “policy” is introduced in this file. The value of this field represents
the type of policy that is applied in the Kubernetes cluster. This field needs to be
followed by “kubernetes” field, whose value indicates the path where to find the
configuration that need to be applied for network policy.

To provide network connectivity to pods within the same node, Calico CNI
installs three fundamental elements in each node of the cluster:

• Calico node: This is the agent that will run inside each node. It includes
Bird, Felix and a few other helper processes.

• Bird: it is a per node BGP daemon that exchanges route information with
BGP daemons running on other nodes. It in fact interacts with routing table
of the host (or WM) where the node is running.

• Felix: it is another per-node daemon that is used to configure routes and
enforce network policies on the node it is running. It interacts with IP tables
of the host (or VM) where the node is running, implementing the required
network policy.
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These elements collaborate to provide the network policy that is specified in the
YAML file of the network configuration. Figure 3.4 gives a graphic representation
of Calico CNI deployed in a cluster:
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Figure 3.4: Calico CNI

Speaking about inter-node network connectivity, unlike Flannel, Calico does not
use an overlay network. Instead, Calico configures a Layer-3 network that uses the
BGP routing protocol to route packets between nodes. This means that packets do
not need to be wrapped in an extra layer of encapsulation when moving between
nodes. The BGP routing mechanism can direct packets natively without an extra
step of wrapping traffic in an additional layer of traffic. In this optic, calico node
and its internal elements are in charge of appropriately routing traffic to destination
node. In particular, Bird component, thanks to routing messages exchanged with
other Bird components in other nodes, knows where to route the traffic inside the
cluster and actually sends traffic outside the node.

As mentioned before, network policy customization is a key feature in Calico
CNI. Once specific network policy rules are defined, they are applied within the
cluster where the CNI is applied: this means that it is possible to configure
powerful rules describing how pods should be able to send and accept traffic (such
as namespace isolation specific rules), improving security and control over your
networking environment.

Moreover, an intrinsic characteristic of Calico CNI is that it allows for more
conventional troubleshooting when network problems arise. While encapsulated
solutions using technologies like VXLAN work well, the process manipulates packets
in a way that can make tracing difficult. With Calico, the standard debugging tools
have access to the same information they would in simple environments, making it
easier for a wider range of developers and administrators to understand behavior.
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3.1.4 Multus CNI
As the name suggests, Multus CNI allows K8s pods to be multi-homed. The Multus
CNI plugin can be used in conjunction with other CNI plugins (e.g. Flannel, Calico,
etc.). The Multus CNI plugin can also work with different internet protocol address
management (IPAM) configurations and networks [14].

In its basic operation, Multus CNI groups multiple plugins into delegates and
invokes each plugin in sequential order according to the CNI configuration file. A
possible configuration file of Multus CNI can be represented by following code:

{
"cniVersion": "0.1.0"
"type": "multus",
"delegates": [

{
"type":"flannel",
"masterplugin": true,
"delegate": {

"isDefaultGateway": true
"ipam": {

"type": "host-local",
"subnet": "10.1.17.0/24"

}
}

}
{

"type":"calico",
"masterplugin": true,
"delegate": {

"policy": {
"type": "k8s"

},
"kubernetes": {

"kubeconfig": "/path/to/kubeconfig"
}

}
}

]
}

When the Multus CNI plugin is enabled, a “master plugin” gets instantiated. This
master plugin is responsible for managing the “main” interface of the pod, i.e. it
identifies the primary network and sets the default route via this network. This
is the only network configuration option of the Multus plugin. The other plugins
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are referred to as minion plugins (indicated in the code as “delegates”): they are
responsible for configuring other interfaces in the pod. Naturally, there can only
be one master plugin, and this is specified in the Multus configuration file using
the tag “"masterplugin": true” in the minion plugins’ configuration, as shown in
the example code above.

When a pod is scheduled in a node, the kubelet of that node activates to
instantiate the pod. In the process of deployment, it invokes the master plugin
of Multus CNI, which acts like a “meta plugin” for other minion plugins: besides
configuring default network interface in the pod , it calls minion plugins, which
are in charge of configuring proper network interfaces in the pod: in the example,
Flannel plugin configures a veth pair between the pod and flannel bridge, while
Calico plugin configures a veth pair (along with correct entries inside routing table
and IP tables for implementation of required network policy) between pod and
Calico node. In this way, the pod is able to work with both implementation of CNIs.
Note that a “annotations” field in the YAML file of the pod must be provided,
otherwise this process cannot work properly. Referring to Multus CNI configuration
file above, an example of this file can be represented as follow:

annotations:
k8s.v1.cni.cncf.io/networks: flannel, calico

In this way, the kubelet knows that the pod must be deployed with interfaces
related to the network configurations specified in this field.

Figure 3.5 provides a graphic representation of the scenario:
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Figure 3.5: Multus CNI

In terms of inter-node communication, Multus CNI allows configuration of
different implementations, on the basis of minion CNIs. In this way, even in
inter-node communication each CNI can work separately.
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3.1.5 Contiv-VPP CNI
Contiv-VPP CNI is a Kubernetes network plugin that uses FD.io VPP to provide
network connectivity between pods in a K8s cluster. It deploys itself as a set of
system pods, some of them on the master node, and some of them on each node in
the cluster [15].

Contiv-VPP is fully integrated with K8s via its components, and it automatically
reprograms itself upon each change in the cluster via K8s API.

The main component of the solution, VPP, runs within the contiv-vswitch pod
on each node in the cluster and provides pod-to-pod connectivity across the nodes
in the cluster, as well as host-to-pod and outside-to-pod connectivity. While doing
that, it leverages VPP’s fast data processing that runs completely in user space
and uses DPDK for fast access to the network IO layer.

Kubernetes services and policies are also reflected into VPP configuration, which
means they are fully supported on VPP, without the need of forwarding packets
into the Linux network stack (i.e. to kube-proxy).

Contiv/VPP consists of several components, each of them packed and shipped as
a container. First three following components are deployed on Kubernetes master
node only, while the other are part of woker nodes:

• Contiv KSR: it is an agent that subscribes to K8s control plane, watches
K8s resources and propagates all relevant cluster-related information into the
Contiv ETCD data store. Other Contiv components do not access the k8s
API directly, they subscribe to Contiv ETCD instead.

• Contiv CRD: this element handles K8s Custom Resource Definitions defined
in k8s API and processes them into configuration in Contiv ETCD. Currently
it covers Contiv-specific configuration of individual k8s nodes such as IP
address and default gateway, etc. Apart from this functionality, it also runs
periodic validation of the topology, and exports the results as another CRD
entry. The contiv-netctl tool which sits in the same Docker container can be
used to explore runtime state of the cluster, such us current IPAM assignments,
VPP state etc., or to execute a debug CLI on any of the VPPs in the cluster.

• Contiv ETCD: Contiv/VPP uses its own instance of ETCD database for
storage of k8s cluster-related data reflected by KSR, which are then accessed
by Contiv vSwitch Agents running on individual nodes. Apart from the data
reflected by KSR, ETCD also stores persisted VPP configuration of individual
vswitches, as well as some more internal metadata.

• Contiv vSwitch : vSwitch is the main networking component that provides
the connectivity to pods. It deploys on each node in the cluster, and consists
of two main components packed into a single container: VPP and Contiv VPP
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Agent. VPP is the data plane software that provides the connectivity between
pods, host Linux network stack and data-plane NIC interface controlled
by VPP. Pods are connected to VPP using TAP interfaces wired between
VPP and each pod, host network stack is connected to VPP using another
TAP interface connected to the host network namespace, data-plane NIC
is controlled directly by VPP using DPDK. Note that this means that this
interface is not visible to the host Linux network stack, and the node either
needs another management interface for k8s control plane communication, or
STN (Steal The NIC) deployment must be applied. Contiv VPP Agent is the
control plane part of the vSwitch container. It is responsible for configuring
the VPP according to the information gained from ETCD and requests from
Contiv STN.

• Contiv STN (Steal The NIC) Daemon: as already mentioned, the default
setup of Contiv/VPP requires two network interfaces per node: one controlled
by VPP for data facing PODs and one controlled by the host network stack for
k8s control plane communication. In case that your k8s nodes do not provide
two network interfaces, Contiv/VPP can work in the single NIC setup, when
the interface will be “stolen” from the host network stack just before starting
the VPP and configured with the same IP address on VPP, as well as on the
host-VPP interconnect TAP interface, as it had in the host before it.

Figure 3.6 provides a graphic representation of the scenario:

9

Kubernetes cluster

Contiv 
netctl

Contiv CRD

Contiv KSR

k8s control plane

Master node

Contiv 
ETCD

192.168.0.2 192.168.0.3 192.168.0.4

overlay network 
(BGP)

Contiv 
UI

CNI

10.1.17.1 10.1.17.2
TAP TAP

TAP TAP

node1

Contiv vSwitch

Contiv 
VPP 
agent

VPP-based 
Switch

DPDK

Contiv 
STN

Linux network stack

10.1.17.254

pod1 pod2 pod1 pod2

CNI

10.1.18.1 10.1.18.2
TAP TAP

TAP TAP

node2

Contiv vSwitch

Contiv 
VPP 
agent

VPP-based 
Switch

DPDK

Contiv 
STN

Linux network stack

10.1.18.254

pod1 pod2

CNI

10.1.19.1 10.1.19.2
TAP TAP

TAP TAP

node3

Contiv vSwitch

Contiv 
VPP 
agent

VPP-based 
Switch

DPDK

Contiv 
STN

Linux network stack

10.1.19.254
172.30.1.2 172.30.2.2 172.30.3.2

Figure 3.6: Contiv-VPP CNI
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3.2 Limitations
Even if all described CNI do provide network connectivity inside Kubernetes cluster
and, in some cases, can also provide security and administration defining specific
network policies, they are not able to provide necessary behavior to allow Virtual
Network Functions’ integration inside Kubernetes environment. As mentioned in
the introduction, the two main features needed to allow this integration are the
following:

• Multiple network interfaces on single pod: a generic VNF needs two
interfaces to work properly, one for traffic to get inside the VNF and one to get
outside of it. In this optic, since in Kubernetes environment a VNF would be
implemented in a pod, the latter needs to have the two interfaces mentioned
before, to allow correct behavior of the VNF.

• Service chaining implementation: VNFs need to be linked together to
implement a service chain. The chain defines also the order of the VNFs, so
that traffic passes through them in the established order. Kubernetes does
not provide this behavior, which should be provided by an external element.

Figure 3.7 gives a graphic representation of the described concepts:
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Figure 3.7: Service chain of VNFs in K8s

Apart from Multus CNI, all the described CNIs does not provide the first feature.
In fact, as CNI specifics point out, a pod can be added to a network configuration
only once, which means that only one interface can be configured inside a pod.
Multus solves this problem assigning different network configurations in the cluster,
in this way the pod is added to different network configurations and each injected
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interface is separated from the other and has different associated parameters (i.e.
different interface id, IP address etc.).

However, neither Multus, nor other CNIs provide any implementation for the
service chain. Each CNI in fact provides connectivity between pods and deploys
necessary elements to allow routing not only inside the node but also between the
nodes, but it does not establish how links between pods need to be created to
implement a chain of VNFs (i.e. of pods). In most cases links are composed by
veth pairs created between each pod and a virtual network element (e.g. a virtual
bridge) and routing rules are applied to the network configuration to allow correct
routing, but this configuration cannot be specialized to make traffic traverse specific
links in specific order as a service chain requires.

In this sense, Kubernetes-related resources do not provide in any way a possi-
ble integration of VNFs in Kubernetes environment without any further specific
implementations.
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Chapter 4

Network Service Mesh

This chapter illustrates the project Network Service Mesh [16]. Its main aim is to
allow chaining of VNFs in a Kubernetes environment, which represents the main
existing solution to the problem analyzed in this thesis.

4.1 Main concepts
NSM offers a system of “virtual wiring” for communication between pods. It is based
on the following concepts, fundamental to understand how it works. Figure 4.1
presents a a graphical representation of the following concepts.
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Network Service

The first concept that NSM introduces is the Network Service.
First of all, it is implemented in Kubernetes as a Custom Resource Definition

(CRD). Briefly, besides Kubernetes basic installation resources (such as services),
Kubernetes allows to define a resource which is custom, so it is built ad-hoc
and implements a specific function. Once the CRD is defined and installed in
Kubernetes, it will accept any request of creation of the new defined resource. NSM
defines Network Service as a CRD and installs it in Kubernetes.

A Network Service represents the logical implementation of a chain of VNFs
implemented as pods in the cluster. If, like in figure 4.1, a chain of VNFs is
composed by a firewall and a VPN gateway, the Network Service would represent
in NSM’s world the chaining of these virtual network functions: it is important
to note that a Network Service also specifies the order of VNFs, so traffic that
traverses the chain represented by the Network Service will follow the order of the
VNFs defined in the Network Service.

Cross-connection

Another important concept to understand in order to correctly comprehend how
NSM works is what in this project is defined as cross-connection. It represents the
virtual Wire created between the pods involved in the chain. Referring to figure 4.1,
each link between two pods is represented by a cross connection. As we will see
in detail later, it is a prerogative of NSM’s control plane elements to build each
cross-connection, to allow proper communication between pods. It is composed
by two interfaces, each of which is configured and injected in pods involved in the
communication. NSM supports L2/L3 cross-connections: it means that ethernet
frames or IP packets will traverse these connections. Once the cross-connection is
established, traffic travels through it to go from one pod to another.
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4.2 Main elements
To properly create cross-connections and allow communications between pods,
NSM provides both control plane and data plane elements. Figure 4.2 gives a
graphical representation of these elements.
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Figure 4.2: Main elements involved in Network Service Mesh

Network Service Client

The first element involved in Network Service Mesh environment is the Network
Service Client. It is deployed as a pod in Kubernetes environment and its main
aim is to require a cross-connection to a specific Network Service. To provide this
behavior, it is composed by a NSM specific container (which can be a different
container from the main one) whose main aim is to request a cross-connection to
NSM Manager. This request is sent to the Manager using gRPC1 technology: it
includes all necessary parameters needed to allow the Manager understand which
Network Service is required. Once the request is sent, the container awaits to
receive a reply from the Manager: if, after a given timeout, it does not receives
any reply, it tries to send the request again for a specific amount of time. If, after
all the attepts, it does not receive any reply, or it receives a reply which however
contains an error message, the container reaches an error state and it needs to be
restarted to retry again to connect to the Network Service.

The process described above starts as soon as the pod is deployed in K8s, so
that the cross-connection is immediately established and the main container of the
NSC can communicate to the pods implementing VNFs involved in the required
Network Service as soon as possible.

1gRPC is a protocol used to exchange messages over Linux sockets
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Network Service Endpoint

This element is in charge of implementing a VNF specified in a Network Service.
Referring to figure 4.1, it would be the firewall pod (as well as the VPN gateway
pod) belonging to the Network Service named “secure-intranet-connectivity”.

As for Network Service Client, also this pod can be composed by two containers,
one implementing NSM control plane functionalities, the other implementing the
required virtual network function. The first container is the one in charge of
providing NSM control plane functionalities to the pod, in particular it receives
request of cross-connection forwarded by NSM Manager from NSC. Once it receives
the request, in may behave in two different ways: if it is not the last hop of
the service chain it belongs to, it will create a new request in order to create a
cross-connection to the next hop of the chain and, once it receives reply, it will
reply to NS Client’s original request; otherwise, if it is the last hop of the chain,
it will immediately elaborate the request and create appropriate reply which it
then sends to NSM Manager. This behavior is made possible by the particular
implementation of its functionalities: it is in fact divided in further Endpoints, each
of one representing one specific functionality. In order to implement one behavior
rather than another one, it is sufficient to add or remove specific endpoints in the
ones that compose the implementation. On the other side, the other container
implements the virtual network function, providing the specific required behavior.
It is worth to note that these two containers can work concurrently in the pod: for
this reason, it may be necessary for them to coordinate, or eventually the VNF
container may need additional configuration, so that the pod implementing the
VNF can work properly with cross-connection built by NSM container.

However, as it will be described in next chapter, there can be NSEs that
present only one container, which implements NSM control plane functionalities
and includes also VNF implementation. In this case, the part of the container
implementing the virtual network function does not need further configuration, as
it receives direct instructions from NSM part of the container.

Network Service Manager

This element is fundamental in the control plane of Network Service Mesh environ-
ment. Its main aim is to receive and transmit all messages involved in control plane
communications between elements involved in the construction of a cross-connection.
These messages are implemented by NSM using gRPC technology.

First of all, it is implemented as a DaemonSet in Kubernetes environment.
Briefly, in K8s when a resource is defined as DaemonSet, a pod which implements
this resource is deployed in each node of the cluster. In this way, each node has its
own Network Service Manager, which guarantee that each pod in a node that is
part of NSM will receive control plane messages. NSM Managers can interact with
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each other to exchange both direct messages and messages that need to be sent to
other NSM elements in the node.

This element is composed by three different containers, which coordinate to
provide proper functionalities:

• nsmd: this container is the heart of the NSM control plane implementation
of Network Service Manager. It is in charge of elaborating all kind of requests
involved in the cross-connections construction. For this reason, nsmd contains
several smaller components, each of which interacts with a particular NSM
elements. For sake of simplicity, only main components are described.

The first fundamental component is the one in charge of elaborating requests
from Network Service Client and Network Service Endpoint. This element is
composed by a series of functionalities that analyze parameters specified in
the request and, if necessary, modify it, to allow proper forwarding behavior
of the request.

Another fundamental component is the one that communicates with Network
Service Forwarder: this component, starting from other requests coming
from NSC and NSE, builds a request with specific parameters needed by the
forwarder to work properly. It also receives and elaborates replies coming
from the forwarder.

Another fundamental component is the one in charge of monitoring cross-
connection. Precisely, it registers to the Network Service Forwarder and
intercepts cross-connection related messages coming from it. This is necessary
to provide properly behavior to get updates about cross-connections between
pods registered with NSM Manager.

• nsmd-k8s: this container is in charge of everything in NSM Manager concern-
ing local and remote registries. It also communicates with Network Service
Endpoints that are deployed on its same node. In particular, when the NSE
starts running, it registers to its NSM Manager: the communication of this
registration happens with this container, which provides necessary functionali-
ties to register the NSE. It also communicates internally with nsmd container,
to provide interaction with data stored locally and NSM managers in other
K8s nodes for data stored remotely. For instance, every time nsmd needs to
check if an Network Service Endpoint is deployed on the same node or in
another node, it will ask the nsmd-k8s to access local registries and check if
there is a NSE registered locally: in positive case, it returns immediately the
registration associated to the endpoint, in negative case it will contact other
NSM Managers to understand where the NSE is deployed (i.e. which NSM
manager the NSE is registered with).
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• nsmdp: this last container is in charge of checking that all the elements
involved in NSM Manager functions are working properly. To do so, it interacts
with them, periodically interrogating their state and, in case something is
wrong, it provides necessary functionalities to correctly react to the event.

Network Service Forwarder

This element’s main aim is to implement NSM data plane functionalities. As
communication between pods is provided with cross-connections, it is in charge
of configuring interfaces and building cross-connection between involved pods. To
provide this behavior, it receives request with specific parameters about cross-
connection from the NSM Manager: the forwarder analyzes the request and, if
it supports the specified parameters, it builds the cross-connection. Once the
cross-connection is built, the forwarder advertises the NSM Manager about it, so
that the latter can replies to the Network Service Client, which will then be able
to use the cross-connection to communicate with the other pod.

Network service Mesh provides two different implementation of this forwarder:

• VPP Forwarder: this implementation is the default one provided by NSM.
In this case the forwarder behaves differently depending on the technology
of the cross-connection indicated in the request that the forwarder receives
from the NSM Manager. This forwarder can in fact support both “standard”
technology and VPP technology and it configures different kind of interfaces
basing on the technology that is implemented in the pods involved in the
communication. In the analyzed cases depicted in next chapter more details
about this behavior are described.

• Kernel Forwarder: differently from the previous implementation, in this case
the forwarder supports only the construction of cross-connection which consists
of a veth pair between the two pods involved in the communication.The set up
of the cross-connection, the forwarder uses NetLink Linux library, which not
only injects veth interfaces in pods, but it also configures appropriate routing
table’s entries to allow the reachability between involved pods. This behavior
that, if the request of creation of cross-connection specifies parameters which
are related to VPP technology, or in general to other technology rather than
the “standard” one, the forwarder will not be able to satisfy the request and
will reject it.

Admission webhook

In a Kubernetes cluster, normally, when the api-server receives a request of pod
creation, it will immediately elaborate the request, sending it to the proper elements
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inside the master node. However, the api-server can be configured to work in a
slightly different way: when the api-server receives a request of pod’s creation,
instead of elaborating immediately the request, it will previously send the request
to a chain of controllers (called webhooks), which are basically pods that analyze
the request and can perform some action on the request itself, modifying it or even
rejecting it. This controllers can be created created and configured manually, so
that requests can receive custom analysis.

In this optic, NSM provides its own mutating admission webhook: this elements
intercepts pod creation request to api-server and, on the basis of its internal
configuration, it can modify the request, inject specific code in the YAML associated
to the request.

The analysis of the request happens as follows [17]. The YAML file of the
request can have in its metadata section annotations, which are key value pairs
(similar to labels):

apiVersion: v1
kind: Pod
metadata:

name: icmp-responder-nsc
annotations:

ns.networkservicemesh.io: icmp-responder

The annotation key, in this case, is ns.networkservicemesh.io, the value is icmp-
responder. The basic form of the value is a comma-delimited list of urls for the
network service:

${nsname}/${optionally interface to attach the ns to}?${optional list of labels}$

So, for example:

secure-intranet-connectivity/eth2?app=firewall&version=2

would imply a network service named secure-intranet-connectivity connected on
eth2, with labels: app=firewall and version=2.

Merging this example to the full YAML above, we can let the client connect
with two network services simultaneously:

apiVersion: v1
kind: Pod
metadata:

name: icmp-responder-nsc
annotations:

ns.networkservicemesh.io:
icmp-responder,secure-intranet-connectivity/eth2?app=firewall&version=2

37



4.2. MAIN ELEMENTS

If and only if the pod has the ns.networkservicemesh.io annotation exists, and
is of the right form, and if the admission webhook is installed, then it will inject
an InitContainer (according to webhook’s configuration):

initContainers:
- name: nsc

image: ${REPO}/${INITCONTAINER}:${TAG}
imagePullPolicy: IfNotPresent
env:

- name: NS_NETWORKSERVICEMESH_IO
value: ${value of annotation}

resources:
limits:

networkservicemesh.io/socket: 1

The ${INITCONTAINER} is based on the SDK’s NSMClientList which parses
${NS_NETWORKSERVICEMESH_IO} and spawns the needed number of clients.
${REPO}, ${INITCONTAINER}, and ${TAG} are specifiable for the mutating
admission webhook container, defaulting to REPO=networkservicemesh, INIT-
CONTAINER=nsc, TAG=latest.

Once the pod is deployed, the InitContainer injected by the mutating admission
webhook will be executed: its main aim is to send a request with the specified
labels to connect to the proper Network Service.

This element is therefore necessary to allow a client pod be able to communicate
with other pods involved in NSM. It is important to note that also NSEs’ YAML
are analyzed by this element: however, in this case the admission webhook does
not find any particular annotation and it does not inject any specific code in the
YAML file.
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4.3 NSM use case
To provide a better understanding of how NSM works, here follows a detailed
description of all the steps to deploy a chain of VNFs, from the definition of pods’
YAML files involved in the chain, to how the cross-connection construction system
works.

4.3.1 YAML files definition
The first step in the deployment of a service chain is the correct definition of
YAMLs files of both the Network Service that represents the chain of VNFs and
the pods that implement the chain itself.

Network Service’s YAML

The first element that needs to be defined in service chain’s deployment is the
Network Service, whose definition is represented by a YAML. Figure 4.3 gives an
example of Network Service’s YAML:

16

Figure 4.3: YAML of Network Service

Following information are provided in this file:

• “kind” label: as mentioned before, Network Service is defined in K8s as CRD,
so the “kind” label indicates that this file represents the implementation of a
Network Service.
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• “name” label: the value of entry simply indicates the name of the Network
Service, which will be indicated in each request or reply to refer to that
particular Network Service.

• “payload” label: value of this entry indicates the kind of traffic that is supported
by cross-connections involved with this Network Service. This means that,
once cross-connections between pods that implement VNFs of the Network
Service are created, the traffic that traverses these links will be of the kind
specified in this label.

• “matches” label: this part of the YAML indicates which VNFs are associated
to the Network Service and mostly in which order VNFs are chained. Each
“math” label consists of a “sourceSelector” and a “destinationSelector” label:
the value of the key-value pair of this labels represent respectively the source
and the destination of a pair of VNFs that composes the Network Service.
Taking as example the first match in figure 4.3, the source of the pair is the
pod implementing the firewall, while the destination is the pod implementing
the VPN gateway: in the order of the VNFs, firewall pod is always before
VPN-gateway, meaning that, in the chaining of VNFs, a cross-connection is
built between these two pods and traffic will traverse it to go from firewall to
VPN-gateway in the specified order. A match may not have the sourceSelector
label: this means that each request of cross-connection which does not contain
any value for the “app” key is directed to the pod implementing the specified
VNF in the destinationSelector of this match. This is useful to point out
which is the first VNF that receives the traffic in the Network Service.

This YAML file gives all the necessary information to understand how the Network
Service is implemented. Each NSM Manager registers this information so that,
each time a NSM Manager receives a cross-connection request, depending on labels
contained in the request it knows the destination of the request.
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Network Service Endpoint’s YAML

To provide a correct deployment of the service chain, it is also necessary to define
Network Service Endpoints’ YAML files. Figure 4.4 gives an example of one possible
NSE’s YAML:

17 Figure 4.4: YAML of Network Service Endpoint

The YAML file must be provided with correct information to make the NSE
work correctly with NSM. For this purpose, necessary functions to allow the pod
behave properly (i.e. receive, elaborate and reply to cross-connections requests) in
NSM environment are to be implemented in a container that runs inside the pod.
In figure 4.4, the container that satisfies this necessity is the one called “sidecar-nse”.
First task of this element is to register with NSM Manager of the node in which the
pod is scheduled: in this way it advertises its presence to NSM Manager, also giving
information about itself. This information, together with other ones fundamental
to implement the correct behavior in NSM, must be provided to the container as
“env” key-value pairs, as figure 4.4 shows:
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• ENDPOINT_NETWORK_SERVICE: this value indicates the name of the
Network Service this NSE belongs to.

• ENDPOINT_LABELS: this value indicates the VNF that the NSE implements
in the Network Service. This and the previous value must be specified in the
registration to the NSM Manager.

• IP_ADDRESS: this value is necessary when the NSE is involved in a cross-
connection where IP addresses are required. It in fact represents the IP
addressing from which IP addresses are taken when assigning them to network
interfaces associated to a cross-connection. Further details will be provided
later.

• CLIENT_NETWORK_SERVICE: if the NSE is not the last of the chain, it
will require a cross-connection to the next hop of the chain. This value, as
well as the next one, represents the Network Service that is associated with
the cross-connection request.

• CLIENT_LABELS: this value is inserted in the cross-connection request and
it indicates the NSE that is making the request. In reference to figure 4.3, it
corresponds to the sourceSelector of a match.

Once the registration is completed, this container’s aim is to receive requests from
NSM Manager, elaborate them (i.e. send a request to the next hop of the chain if
it is not the last one) and reply to it.

As we are talking about a Network Service Endpoint, also VNF functionalities
must be provided in the pod. Depending on the implemention choice, the VNF can
run as a different container in the pod, or can be implemented within the NSM
container, integrating its functions with the ones provided by this container. In
figure 4.4, VNF is implemented in a specific container, different from the NSM’s
one.

Network Service Client YAML

To make a generic pod behave like a Network Service Client, meaning it can
interact with NSM and request a cross-connection to a Network Service, specific
configuration of its YAML must be provided. As example of a YAML file is can be
seen in left part of figure 4.5. The specific part of the YAML code that must be
provided is the “annotations” value: this key-value pair is fundamental to provide
the correct behavior. As explained in Admission Webhook section, this element
intercepts the YAML files of a deployment and, depending on the presence of the
“annotations” value, it will inject the code related to the initContainer provided by
NSM, to allow the pod require a cross-connection. As result, the final YAML file
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that will be elaborated by master node’s elements is the one in the right part in
figure 4.5. It is worth noticing that the key-value pair of the “annotations” value is
used and replicated by the Admission Webhook as variable that is passed to the
initContainer, so that the proper Network Service is required.
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Figure 4.5: YAML of Network Service Client
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4.3.2 Pods’ deployment
After the definition of pod’s YAML files involved, the service chain can be deployed
in Kubernetes environment. To provide an automatic installation, Network Service
Mesh uses Helm’s2 charts. As first part of Helm deployment, pods will be scheduled
in cluster’s nodes and after that they start performing their functions. Figure 4.6
shows what happens once pods are deployed in the cluster:
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Figure 4.6: Pods’ first functions executed during Helm deployment

First step that NSEs’s sidecar containers perform is register with NSM Manager
of the node in which it is deployed. This registration consists of a gRPC message
called “NSRegistrationRequest” sent to the NSM Manager, which contains different
information about the pod’s role in NSM. The most important part of this request
is the one indicated in figure 4.6 as “labels”: the first key-value pair pointed out in
the figure indicates the name of the Network Service, and the second part indicates
the specific VNF that this pod implements in the Network Service. It is important
to note that this two key-value pairs are the ones that are passed to the sidecar as
variables in the definition of the YAML file of the pod in which the container runs.
If the registration is successful, NSM Manager will know that in its node there is a
pod implementing a VNF function of that specific Network Service and it will send
requests directed to that pod if necessary.

On the other side, in the pod implementing Network Service Client initContainer
starts working and, as his main aim is to build it sends a request of cross-connection
to the NSM Manager. As this is part of the actual cross-connection construction,
more details are provided in the following section.

2It is a Kubernetes package manager which allows to define a group of Kubernetes resources and
automatically deploy them in the K8s’ cluster. Github reference https://github.com/helm/helm
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4.3.3 Building the cross-connection
Once pods involved in service chain implementation are deployed and VNFs’
NSM-related sidecar containers end their registration with the NSM Manager,
cross-connections construction begins. It is worth noticing that this event takes
place within the Helm’s deployment, i.e. the Helm command used to install pods
involved in the deployment will not terminate until all cross-connections between
pods are built. Main steps of building the cross-connection are the following:

1. The very first action of this process is performed by NSM initContainer in NS
Client pod: it sends a gRPC message to the NSM Manager containing the
cross-connection request to a Network Service. Figure 4.7 gives an example of
a the request:
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NSRequest {
…

labels {
…
‘ns_name’:‘example’,
‘app’: ‘’,
…

}
…

}

Figure 4.7

2. When NSM Manager receives the cross-connection request, it analyzes its
parameters, in particular it tries to find the Network Service specified in the
request and, if it exists, it analyzes label “app” to understand which VNF
of the Network Service is required. In figure 4.7 this label is empty meaning
that, referring to figure 4.3, the request needs to be sent to a pod which
implements a firewall. NSM Manager so tries to understand if the requested
VNF is implemented by a pod (i.e. an NSE) that is present in its same node:
to do so it checks its local registry to find out if there is a NSRegistration
that corresponds to a NSE that implements the required VNF and, if so, it
will forward the request to it. Otherwise, it forwards the request to NSM
Managers of other nodes, requiring where the NSE is scheduled. The NSM
Manager that receives the request behaves in the same way, until the request
sent by the first NSM is satisfied.
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3. Once the correct pod receives the request, it analyzes the request, to understand
if the parameters associated to the request (i.e. specific required technology
of cross-connection) can be satisfied. In positive case, it creates a reply to
the request and it sends it back to the NSM Manager. figure 4.8 provides an
example of the reply:
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NSRequest {
…

labels {
…
‘ns_name’:‘example’,
‘app’: ‘’,
…

}
…

}

Figure 4.8

As it can be seen, in this case the reply contains also parameters associated
to the IP addresses that need to be assigned to the interfaces involved in the
cross-connection.

4. NSM Manager receives the reply from NSE and elaborates it. In particular, it
extracts specific parameters, with the aim to create a request to be forwarded
to the NSM forwarder. This part of the process is called “programming of the
NSM forwarder”: the forwarder receives specific instructions and parameters
about the cross-connection that needs to be built. The request specify the
technology that is used by pods that must by cross-connected: depending on
this parameter, proper interfaces are configured in involved pods.

5. The NSM forwarder injects required interfaces in pods that need to commu-
nicate. Depending on the technology in may also create interfaces on itself
and properly configure them to receive traffic from interfaces injected in pods
and forward it between them. Next chapter will give more details about this
aspect.

6. Once the interfaces are injected and properly configured, forwarder creates
the cross-connection between involved pods. It registers it locally, so that it
can monitor (with the help of NSM Manager) all created cross-connections.
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7. Once the cross-connection is created, it advertises the NSM Manager that the
process is done: the Manager may interrogate the forwarder to check if all
cross-connections are still working properly, or it can also receive information
from the forwarder about cross-connections’ state.

8. As last step of this process, once the NSM Manager receives confirmation about
creation of the proper cross-connection, it advertises the NSM initContainer
running in NS Client pod that the cross-connection is created and it can be
used to communicate with NSEs involved in the required Network Service.
As the initContainer accomplished its job, it stops working and the main
container of NS Client starts running.

Cross-connection on same node - one hop
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Figure 4.9: Cross-connection to one Network Service Endpoint

Figure 4.9 gives a graphic representation of the steps explained above in the creation
of the cross-connection. As the example is provided in a single K8s’ worker node,
the NSM Manager does not have to communicate with NSM Manager on other
nodes to understand where the NSE implementing the firewall is scheduled.
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Cross-connection on same node - two hops
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Figure 4.10: Cross-connection to service chain of two NSEs

Figure 4.10 gives a graphic representation of the process of building the cross-
connection between more than two pods: it this case there is one NS Client requiring
a cross-connection with a Network Service which consists of two VNFs. For this
reason, the process is slightly different from the previous case: once the NSM
sidecar running inside firewall pod receives the NSRequest from NSM Manager,
it will not immediately reply to the NSM Manager, but it sends to it another
request of cross-connection: this request is labelled so that the NSM Manager
will understand that it is directed to next hop of the service chain implemented
in the Network Service. In reference to figure 4.7, the request contains a label
referring to the same Network Service required in the previous request (i.e. the
Network Service firewall pod and VPN gateway pod belongs to), but as value of
label “app” it has the name of the NSE, in this case the firewall, which is making
the request. In this way, referring to figure 4.3, the NSM Manager understands
the the sourceSelector of the request is the firewall and, basing on the matches of
the Network Service’s YAML file, the destinationSelector is the VPN gateway. As
the previous case, because all pods are deployed in same node, the request is not
sent to any NSM Manager on other nodes, but it is forwarded directly to the pod
that implements the VPN gateway. The NSM sidecar running inside VPN gateway
pod behaves as explained before, replying to NSM Manager in case parameters of
NSRequest are supported. NSM Manager then replies to firewall pod’s request,
which then replies to NS Client NSRequest and from this point on, the process
goes on in the same way as the previous case.
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Cross-connection on different nodes
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Figure 4.11: Cross-connection to service chain on different nodes

Figure 4.11 gives a graphic representation of the process of building the cross-
connection between more than two pods that are deployed on two different nodes.
The main difference with the previous case is the forwarding of the NSRequest
created by firewall pod: once NSM Manager on same node of firewall pod receives
the request, it understands that the VPN gateway pod is not scheduled in its same
node, so it sends the request to other NSM Managers. NSM Managers receives the
request, analyze it and, if required pod is scheduled in same node, it will forward
the request to it. NSM sidecar running inside VPN gateway pod processes the
request in the usual way and replies to the NSM Manager, which will forward the
reply to NSM Manager of the initial node. NSM Managers then properly program
the forwarder to allow communication between pods on different nodes: forwarders
of the involved nodes understand that a inter-node communication is required, so
they configure a VXLAN tunnel between them so that traffic can be forwarded from
one node to the other. In this case, as the process requires more elaboration, it may
takes more time to build all the required cross-connections, but the result is always
the same: pods involved in the communication can send traffic using the interfaces
injected by forwarders and traffic will traverse the created cross-connections.

49



4.4. DEVELOPMENT OF NSM APPLICATIONS

4.4 Development of NSM applications
The Network Service Mesh project shows up as a “plug-and-play” system, i.e. if
a VNFs provider with already developed and working virtual network functions
wants to use NSM to integrate its VNFs in Kubernetes, it simply needs to deploy
NSM main components in Kubernetes and its VNFs, properly configure them to
work together and the system will automatically works in the desired way. This
means that NSM would adapt to any kind of VNF service chain that needs to be
deployed in Kubernetes.

To understand if this behavior is actually supported, different combinations
of NSM with VNFs were deployed and tested. Results are summarized in next
subsections.

4.4.1 NSM with already developed VNFs
As previously said, NSM claims that VNFs service chains can be deployed together
with NSM in Kubernetes and the system should work in the desired way. This
feature is true, but it actually has some requirements that need to be taken in
account for this kind of deployment.

Let us pretend that, in a simplified scenario, an already developed VNF has
been properly containerized and it can be deployed as a pod in Kubernetes. Before
deploying the VNF, NSM main components are deployed as pods in K8s cluster.
As explained in previous sections, the VNF is represented in NSM as part of a
Network Service Endpoint: for this reason the container implementing the VNF is
deployed as part of the pod which represents the NSE and it cooperates with the
container implementing the NSE. This cooperation can be although problematic.
The first problem comes with the configuration of interfaces by NSM control plane
elements in the NSE in order to allow the NSE be part of the service chain. As
the VNF container implements the VNF functionalities, it expects to have two
already configured network interfaces that can be used to receive and send traffic.
If these interfaces need to have particular requirements (e.g. specific technology,
IP address, working method etc.), this last may not be satisfied by the configured
interfaces that are provided by NSM. It is true that specific variables can be passed
to the NSM container of VNF pod so that the configured interfaces satisfies some
requirements, but the behavior of the VNF container may be modified to correctly
adapt to the interfaces provided by NSM. In this respect, better behavior can be
obtained by VNFs that do not start working with specific configured interfaces as
they start working, but accept configured interfaces and start providing proper
behavior once interfaces are configured.

Another aspect that must be taken in account when working with NSM is the
fact that NSM implements by itself some functionalities that, in some cases, may
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be already implemented (or need to be implemented) by the VNF container. For
example, in most cases the interfaces’ IP assignment is provided by the NSM
container of VNF pod and this behavior is strictly required by NSM to work
properly: this can be problematic if the VNF requires to be the one in charge of
assigning IP addresses, or some of its functionalities are in some way involved with
dynamic IP assignment.

As described in next sections, NSM supports VPP technology 2.3 and provides
a substantial integration of this technology in its components. In particular, the
NSM forwarder in its default implementation presents VPP technology. NSM also
uses VPP inside NSE pods, integrating its functionalities in the NSM container
of the pod. In this case, the integration of “VPP NSE” with a VNF container
within the same pod can be problematic. The first problem is related to the fact
that VPP works and configure MEMIF interfaces in VNF pod. Nowadays VNFs
generally work with network interfaces and, as MEMIF are basically portion of
shared memory, the VNF would not be able to see and interact with this interface.
Moreover, when VPP technology is used, the VPP Agent is in charge of interacting
with packets received by MEMIF interfaces: this means that VNF container is not
able to elaborate received packets. In this respect, the VNF container can not work
properly and the only way to integrate VNF inside the pod is to rewrite the VNF
functionalities appropriately to work inside the VPP implementation.

It is important to note that, as NSM is an open source project, it allows to
create specific NSM containers that will run with VNF containers, i.e. it is possible
to define specific Network Service Endpoints that can correctly implement the
required behavior for the specific features of VNFs. In the tested scenarios of
next chapter, specific NSM container implementations were created, to satisfy the
requirements of the deployed VNFs containers. It is in fact necessary to use the
appropriate NSE depending on the “position” of the VNF inside the chain: if the
VNF is not the last hop, the NSE container needs to require a cross-connection
to the next hop, so this functionality must be provided, differently from the case
where the VNF is the last hop, where this functionality is not needed. This feature
is also very important in those situations where the features of the VNFs cannot
be modified, so a specific implementation of the NSE is required.

4.4.2 Ad-hoc VNFs with NSM
In the scenario depicted below, NSM can integrate already developed VNFs, but
with some constraints. A possible alternative to avoid apposite adjustments in
VNF implementation or in NSE implementation could be building ad-hoc VNFs
with NSM. This of course would mean to implement VNF from scratch, but can be
a possible solution when requirements of integration between developed VNF and
NSM cannot be satisfied. Note that this solution can be seriously taken in account
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when containerization of VNF means creating a Cloud-native Network Function,
i.e. the re-implementation of the VNF as container.

As NSM supports both standard and VPP technology, ad-hoc VNFs can be
differentiated in two cases, the first implementing a VNF with standard technology,
the second with VPP technology.

In the first case, the approach may be divided into two further cases. In the
first approach the VNF can be implemented as a separate container, differentiating
it from the container implementing NSM functionalities in the NSE pod. In this
case, the VNF container must be aware that interfaces are configured in the pod
after NSM container completes the communication with other NSM components.
Moreover, the two containers must cooperate such that, in case NSM container
takes over events of rebuilding or updating of cross-connections, the VNF container
must be advertised about these events, so that it can update or modify its behavior
on the basis of the new (or updated) cross-connections. On the other hands, in
the second approach the VNF functionalities are integrated within the container
implementing NSM functionalities in the NSE pod. As explained before, NSM
functionalities are divided in so called Endpoints, each one implementing one specific
functionality. In this case, VNF functionalities would be implemented as Endpoint
along with NSM functionalities. In this way, the part of the container implementing
the virtual network function does not need further configuration, as it receives
direct instructions from NSM part of the container. Moreover, in case of update
or rebuilding of cross-connections the pod is involved in, as VNF functionalities
are integrated with NSM functionalities, the former are automatically aware of the
update and do not need particular implementations or manual reconfiguration.

In the second case, the possible division explained in the previous case is not
possible. In fact, as explained in previous subsection, when using VPP technology
the interfaces configured by NSM in the VNF pod are MEMIF interfaces. For this
reason, if the VNF was implemented as a separate container, it would not be able
to elaborate packets received by MEMIF interfaces, only the VPP Agent is able
to manage interfaces and packets. In this respect, the only way to provide VNF
functionalities with VPP technology is to integrate them with VPP functionalities,
i.e. inside the VPP Agent. Also VPP Agent functionalities, as NSM functionalities
inside the NSE, are implemented as specific functions that are chained to work
together and can be added and removed to give different behavior. In this respect,
VNF functionalities become part of those functions and are integrated with the
ones that implement the VPP Agent: packets received by MEMIF interfaces can
be configured with specifics provided by VNF functionalities and, more in general,
they can elaborate packets received by these interfaces.
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Chapter 5

Benchmarking NSM

After a deep analysis of the Network Service Mesh project, various tests of per-
formance were carried out, to understand also the potentiality of the proposed
solution with respect to other technologies. For this purpose, different scenar-
ios were deployed. Figure 5.1 presents a general graphical representation of the
deployed scenarios:
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Figure 5.1: Representation of implemented service chain

Some considerations on figure 5.1:

• The application used to run the tests is iperf31. For this reason, the head and
the tail of the chain are respectively iperf client and iperf server.

1https://iperf3.fr/
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• Depending on the scenario, Kubernetes may or may not be the environment of
the deployment (an explanation of the choice will be given per each scenario).

• As described in previous chapter, NSM supports both communication between
pods that are both on the same Kubernetes node and on different nodes, but
for different reasons tests reported below refers to scenarios that involve only
one node. In this respect, also scenarios that do not involve Kubernetes were
tested on the same physical server.

• The chain is such simple in order to test a very basic implementation. In a
more realistic scenario, the connection can come from outside of the deployed
chain (for example from a user) and it can be directed outside the chain (for
example, on the public network).

5.1 Tested scenarios

5.1.1 First scenario: baseline
In order to have a basis of comparison in terms of performance, first scenario does
not involve Kubernetes environment, and can be considered a baseline for the
following ones. It consists in the communication between different Linux network
namespaces.

Case 1: two namespaces

The first case consists of communication of two different Linux network namespaces.
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Figure 5.2: First scenario, first case
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First namespace runs iperf client and second namespace runs iperf server. To
allow communication between namespaces, one veth pair is configured, in particular
one veth interface is configured on iperf client namespace and the other in iperf
server namespace. With this configuration, traffic generated by iperf instances goes
directly from one namespace to the other.

Case 2: “vanilla” service chain

To see how performance changes in a more chain-oriented context, the second case
consists of communication of three different Linux network namespaces. This case
is divided into three sub-cases. Figure 5.3 shows a graphic representation of first
sub-case.
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Figure 5.3: First scenario, second case, iptables rules as firewall

The first namespace runs the instance of iperf client, the middle namespace runs
iptables commands as implementation of a firewall application, the last namespace
runs the instance of iperf server. To allow communication between namespaces,
veth pairs are configured in different namespaces. In particular, IPs are assigned to
virtual ethernet interfaces such that each pair is isolated from the other one. In this
respect, the forwarding of the traffic is provided by manually configuring the correct
entries in the routing tables of each namespace: in the iperf client’s namespace
the routing entry to reach the IP addressing given to veth pair between firewall
and iperf server is added, and vice versa in the iperf server’s namespace. Always
in terms of routing, as the firewall is involved in both veth pairs with iperf client
and iperf server, no manual configuration of routing table’s entries was needed for
it: once the veth pairs are configured, appropriate entries in firewall namespace’s
routing table are configured. After the overall configuration, traffic flows from iperf
client namespace to iperf server namespace, passing through firewall namespace.
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Also another implementation of this case was tested. In this second sub-case, the
firewall is implemented as a transparent firewall, which consists of a Linux bridge
with iptables configured in it. Figure 5.4 graphically represents this sub-case:
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Figure 5.4: First scenario, second case, Linux bridge with iptables rules as trans-
parent firewall

Differently from previous sub-case, as it is necessary to implement a transparent
firewall, the veth interfaces configured in the Linux bridge do not have an IP
address. In this respect, only one IP addressing is used to assign IP addresses to
iperf client and iperf server namespace. As the bridge implements a transparent
firewall, the two namespaces see each other as directly attached, so no specific
routing table entries were to be configured in namespaces. Firewall implementation
is represented in this case by iptables inside Linux bridge: packets received by
interfaces are checked with iptables rules and, if checks are positive, they are
forwarded to the other interface.

Last implementation of this case, which represents the third sub-case, presents
the firewall application implemented as user application in firewall namespace. The
user application not only provides the firewall functionalities, but it also forwards
traffic between the two interfaces of firewall’s namespace, implementing what can be
call a transparent firewall. To allow this particular implementation, veth interfaces
on firewall namespace do not have an IP address, there is only one IP addressing
between client and server namespace. Figure shows graphic representation of this
sub-case:
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Figure 5.5: First scenario, second case, user application as firewall

Differently from previous sub-case, as client and server namespaces’ interfaces
have IP addresses belonging to the same IP addressing, routing table entries are
automatically configured in respective routing tables once the veth interfaces are
configured in the namespaces. On the other side, as firewall application is in charge
of forwarding traffic, firewall namespace’s routing table does not have any entry.

5.1.2 Second scenario: NSM Forwarder without VPP in
chain

The second scenario is deployed in a Kubernetes worker node and involves the use
of Network Service Mesh solution. It consists of a basic chain of pods:

• First pod runs two containers. The first container is the initContainer injected
by NSM Admission Webhook: it requires a connection to the Network Service
that (in this case) represents the chain between firewall pod and iperf server
pod. The second container implements the iperf client, which will send traffic
to iperf server to test the performance of the chain.

• Second pod runs two containers as well. The first one is the sidecar used to
allow the pod work properly in NSM, in particular its function is to register
with the NS Manager present on the same node, to advertise which function
of the Network Service it belongs to it implements. This container will receive
control plane request of cross-connection creation and will reply to them. The
second container runs the application that implements firewall functions.

• Third pod runs two containers as well. The first is the same sidecar described
in firewall pod; the second container implements the iperf server: it will receive
traffic from iperf client and it will send traffic back to it.
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This scenario is divided into two cases. The reason of this splitting is related to
the fact that NSM provides two different implementation of the forwarder, so same
implementation of pods with each type of forwarder was tested, to understand the
difference between them.

Case 1: NSM Kernel Forwarder

The first case is implemented with NSM kernel forwarder: this element configures
veth pair between pods involved in communications. As explained in the previous
chapter, to provide this behavior, it uses NetLink Linux library, which provides
necessary functions to properly configure and inject veth interfaces in involved
pods. As shown in figure 5.6, in this case the forwarder is not directly involved in
the communication, it just provides the cross-connection between pods involved
in the communications, it does not configures further interfaces (as it happens in
next case) to allow the forwarding.

As in second case of first scenario, also this case is divided in two sub-cases.
The first one is represented in figure 5.6.
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Figure 5.6: Second scenario, first case, iptables rules as firewall

Also in this case IP addressing assigned to each veth pair is different and veth
pairs are isolated from each other. For this reason, it was necessary to manually
configure routing tables entries in iperf client and iperf server, to allow each of them
to reach the other one. On the other hand, always in the same way as previous
scenario, no manual configuration of routing table inside firewall pod was needed,
i.e. once the veth pairs were configured, automatic routing tables inside firewall
pod were injected, so that it could reach both veth pairs. In this sub-case, the
firewall application consists of iptables rules injected in the kernel.
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The second sub-case, as previous scenario, implements a transparent firewall.
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Figure 5.7: Second scenario, first case, user application as firewall

As figure 5.7 shows, firewall pod’s veth interfaces do not have an IP address, so
that iperf client and iperf server pod can see each other as “directly” connected. In
this respect, firewall pod also provides forwarding functionalities, i.e. it forwards
traffic between interfaces. The implementation of firewall and forwarding func-
tionalities are provided by a user application built expressly to allow the firewall
behave as a transparent firewall: it listens to packets received on both interfaces,
once a packet is received from an interface it checks its parameters and, if checks
are positive, it properly forwards it to the other interface. Note that, as NSM
provides a configuration of this case as in first figure, appropriate commands were
needed to create this configuration.

Case 2: NSM VPP Forwarder

The second case is implemented with NSM VPP forwarder. In this case, this
element is involved in the forwarding of the traffic. In fact, this element configures
TAP interfaces2 pairs between each pod and itself, and configures the self-injected
TAP interfaces so that traffic flows correctly from one interface to another to allow
proper communication between pods.

2Section 2.3.3
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Figure 5.8: Second scenario, second case

Pods will not be aware of the presence of TAP interfaces configured in the
forwarder, they will consider the link to be direct to the TAP interface configured
in the other pod. As in the previous case, IP addressing assigned to TAP interfaces
pair is different and TAP interfaces pairs are isolated from each other. Also in this
case it was therefore necessary to manually configure routing table entries in each
involved pod.

It is important to point out a note about the figure above. The TAP pair
between iperf client pod and NSM VPP forwarder, as well as the one between iperf
server and the forwarder, is partially represented in Kernel space. This because,
while the TAP interface configured in the forwarder is in user space and is not
present in the Kernel, the TAP interface configured in the NS Client exists in the
network namespace of the pod and so it belongs to Kernel network namespace of
NS Client pod. For this reason, the connection actually passes in kernel space and
returns in user space. For sake of clarity in the figure, TAP pairs between firewall
pod and forwarder are “direct” (i.e. the link does not pass in kernel space), but
the implementation of the link happens in the very same way as with other pods.

As previous case, also this case is divided in two sub-cases. The first sub-case is
already represented in figure 5.8: in this sub-case firewall application is implemented
as iptables rules, so there was no need to create a particular configuration (i.e. the
one provided by NSM is maintained as it is). The second sub-case is represented
in figure 5.9:
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Figure 5.9: Second scenario, second case

In this sub-case, the firewall is implemented as a transparent firewall, i.e. it
provides both firewall and traffic forwarding functionalities. As in first case of this
scenario, in this sub-case the firewall is implemented as user application running in
firewall pod. To provide this behavior, specific commands were applied to configure
the system to work in this way.

5.1.3 Third scenario: NSM Forwarder with VPP in chain
The third scenario, as the previous one, is deployed in a Kubernetes worker node
and involves the use of Network Service Mesh solution. It consists of the same chain
of pods as the previous one, but with some modifications. Also in this case, the
scenario is divided into two different cases. The specific differences are explained
in the description of the two cases.

Case 1: VPP firewall

In the first case, pods involved in the chain are implemented as follows:

• iperf client and iperf server maintain the same characteristics as the previous
scenario, so they have both two containers, one implementing NSM control
plane functions and the other implementing iperf respective application.

• firewall pod, differently from the previous scenario, runs only one container.
The reason of this choice is that in this case VPP technology is used: as
VPP works with MEMIF interfaces and implements a VPP agent to manage
and configure this interfaces, code implementing firewall application must be
embedded in code implementing VPP agent. Moreover, to make the VPP agent
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correctly collaborate with NSM and receive the proper configuration of MEMIF
interfaces, code implementing VPP agent is embedded in code implementing
the sidecar which provides proper NSM control plane functionalities to pod. In
this way, NSM and VPP agent functionalities are bound together, automating
the processing of NSM control plane requests and processing of traffic by
firewall functionalities.

Figure 5.10 gives graphical representation of this case:
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Figure 5.10: Third scenario, first case

In this case NSM VPP forwarder works as adaption layer: it configures TAP
interfaces pairs with pods not including VPP technology, while it configures MEMIF
interfaces with firewall pod, which includes VPP technology. Self-injected interfaces
are configured so that traffic will be translated and forwarded from one kind of
interface to another.

Other two notes about this case:

• TAP interfaces injected in iperf client and iperf server pods receive an IP
address from the same IP addressing. This means that, differently from the
previous scenarios, there is no need to manually configure routing table entries
in each pod to allow reachability to the other pod. Each pod will see its TAP
interface as linked directly to the other TAP interface configured in the other
pod, it will not be aware of all the intermediate processing.

• Differently from the second case of the previous scenario, the graphic repre-
sentation provided in figure 5.10 is the actual implementation of the scenario:
as TAP interfaces configured in iperf client and iperf server pod are part of
the network namespace of the pods, the part of TAP pairs is represented in
kernel space, meaning that traffic passes also in kernel space. On the other
hand, as MEMIF interfaces are present only in user space, cross-connections
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between forwarder and firewall pod are strictly in user space and traffic does
not cross kernel space, as represented in figure.

Case 2: VPP technology across the chain

In the second case, to test the potentiality of VPP technology, VPP is deployed in
every element of the chain. Here follows a description of involved pods:

• Differently from the previous scenarios, iperf client pod runs one container.
The reason is the following: as iperf application needs to see the MEMIF
interface configured by VPP agent, it cannot run in the pod as a separate
container, but it must be integrated in the VPP itself. VPP does not natively
support iperf application, so VPP agent required specific manual configuration.

• firewall pod, as the previous case, runs one container, which embeds NSM
control plane functionalities and VPP agent implementation, the latter of
which includes firewall implementation.

• As for iperf client pod, also iperf server pod runs one container, for the same
previous explained reason. Also in this case, as VPP does not natively support
iperf application, VPP agent required specific manual configuration.

Figure 5.11 gives graphical representation of this case:
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Figure 5.11: Third scenario, second case

Differently from the previous case, NSM VPP forwarder behaves in a different
way: as configured interfaces on communicating pods are all MEMIF interfaces, the
forwarder works like a MEMIF proxy, which means that it does not self-inject any
kind interface, it simply allows the traffic to be proxied from one MEMIF interface
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to another. Moreover, as the previous case, MEMIF interfaces configured on iperf
client and server pods do not need manual configuration to be able to reach each
other, they see the two MEMIF interfaces as part of the same link, without being
aware of intermediate processing.

5.1.4 Forth scenario: eBPF
To compare NSM performance with eBPF technology, the last deployed scenario
involves Polycube project. Polycube is an open source software framework for
Linux that provides fast and lightweight network functions, called cubes, which can
be composed to build arbitrary service chains and, in this scenario, thet provide
custom network connectivity to namespaces. Network functions are based on recent
BPF and XDP Linux kernel technologies.

As Polycube provides different possible configuration to compare previous sce-
narios with, also this scenario is divided into two cases.

Case 1: transparent firewall
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Figure 5.12: Fourth scenario, first case

In the first case of this scenario, two namespaces are involved in the communication:
the first one implements an instance of iperf client, the second one implements an
instance of iperf server. The only element involved in communication is Polycube
firewall. It is implemented as a transparent virtual network function: it attaches
to an interface involved in the communication (in this case, it is attached to veth1
interface of iperf client’s namespace) and it analyzes incoming and outgoing traffic
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of the specific interface. To provide a correct behavior, simple rules are applied to
it, so that traffic can flows correctly from one namespace to the other.

Case 2: transparent firewall with “pbforwarder”
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Figure 5.13: Fourth scenario, second case

In the second case of this scenario, a more complex chain of Polycube cubes
is implemented. Veth pairs are created between namespaces involved in the
communication and host’s namespace (i.e. in the kernel of the host in which
namespaces are deployed). Firewall transparent cube is now attached to the kernel
side veth interface involved in the veth pair between iperf client’s namespace
and host’s namespace. To allow forwarding between veth pairs, the Polycube
pbforwarder3 is involved in the chain: this cube is able to forward traffic between
its interfaces depending on specific forwarding rules that are configured in the
cube itself. It this case it creates veth1, which is the veth peer to veth interface
configured in the host’s namespace for veth pair with iperf client’s namespace; the
same behavior is applied to veth2, peering to kernel’s veth interface for veth pair
with iperf server namespace. With forwarding rules configured in pbforwarder,
traffic is sent from veth1 to veth2 and vice versa.

3https://polycube-network.readthedocs.io/en/latest/services/pcn-pbforwarder/pbforwarder.
html
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5.2 Tests
The described scenarios were deployed and tested on a server available in network
laboratory at Polytechnic of Turin, where this thesis was carried out. Here follows
hardware and software information about environment of work:

• Environment tests’ characteristics:

– Ubuntu version: 18.04
– Kubernetes version: 1.16.3
– CNI used: Polycube CNI. However, the specific CNI in use does not affect
the result of the Kubernetes tests, as the traffic remains confined in the
NSM portion of the network.

– Kubernetes nodes deployed: one master node and two worker nodes, each
one in a different physical server

– Worker nodes hardware characteristics:
∗ Processor: Intel Xeon 3.50Hz
∗ Memory: 32 GB RAM
∗ Disk: 1TB HGST

• Application level characteristics:

– Firewall applications used:
∗ Iptables rules
∗ Firewall user application4

– Container image for iperf3: networkstatic/iperf3
– Container image for firewall: raffaeletrani/firewall_container:k8s. This
Docker image contains firewall user application and has kernel network
privileges to implement iptables rules as firewall.

– VPP configuration to work with iperf3: https://github.com/RaffaeleTrani/
VPP-iperf3-config

– NSM Git repository version: January 28th, 2020
– Helm version: 2.15.0

Iperf3 tests were carried out with following characteristics:

• Transport protocol layer used: TCP

4https://github.com/RaffaeleTrani/firewall
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• Interval of time of TCP transmission: 60 seconds

• Number of bytes per TCP block: 128 KBytes

Tests generates a single TCP session where packets, in Linux, are always
forwarded on the same CPU. For this reason, the measured throughput refers to
traffic managed by a single CPU; with a more diversified traffic, higher results
could be obtained.

Note that the choice of TCP is not mandatory in these tests. In fact, it is also
possible to execute these tests with UDP. Main reason why TCP was chosen is
because the aim of this tests is not to obtain absolute performance of the system
(i.e. considering also best behavior of environment hardware components), but to
obtain an effective comparison between the different deployed scenarios.

5.2.1 First scenario: baseline
Case 1: two namespaces

Figure 5.19 shows obtained results of this case. For sake of space, only first eight
seconds and last four seconds of the tests are explicitly reported. Also a summary
of results and CPU utilization are provided:

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 8.71 GBytes 74.8 Gbits/sec 0 396 KBytes

1.00-2.00   sec 8.73 GBytes 75.0 Gbits/sec 0 396 KBytes

2.00-3.00   sec 8.71 GBytes 74.9 Gbits/sec 0 396 KBytes

3.00-4.00   sec 8.71 GBytes 74.8 Gbits/sec 0 396 KBytes

4.00-5.00   sec 8.54 GBytes 73.4 Gbits/sec 0 396 KBytes

5.00-6.00   sec 8.58 GBytes 73.7 Gbits/sec 0 396 KBytes

6.00-7.00   sec 8.49 GBytes 73.0 Gbits/sec 0 467 KBytes

7.00-8.00   sec 8.68 GBytes 74.6 Gbits/sec 0 467 KBytes

… … … … …

56.00-57.00  sec 8.70 GBytes 74.8 Gbits/sec 0 2.33 MBytes

57.00-58.00  sec 8.58 GBytes 73.7 Gbits/sec 0 3.50 MBytes

58.00-59.00  sec 8.84 GBytes 76.0 Gbits/sec 0 3.50 MBytes

59.00-60.00  sec 8.69 GBytes 74.7 Gbits/sec 0 3.50 MBytes

Summary results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 527 GBytes 75.5 Gbits/sec 0

CPU Utilization: local/sender 96.1%, remote/receiver 93.7%

Figure 5.14: Results of iperf3 tests

CPU utilization indicates both iperf client (sender) and iperf server (receiver)
utilization of the CPU in which they are scheduled as processes. The percentage
refers to the the quantity of resources of the CPU that are dedicated to the iperf
process and also to forward traffic generated by iperf.
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Case 2: “vanilla” service chain

As explained in previous section, in this case are reported three further sub-cases:
the difference between them is how the firewall is implemented. In the first sub-case
the firewall consists of iptables rules configured in the firewall namespace.

Iptables as firewall:

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 7.71 GBytes 66.2 Gbits/sec 0 308 KBytes

1.00-2.00   sec 7.90 GBytes 67.9 Gbits/sec 0 322 KBytes

2.00-3.00   sec 7.63 GBytes 65.5 Gbits/sec 0 322 KBytes

3.00-4.00   sec 7.70 GBytes 66.1 Gbits/sec 0 342 KBytes

4.00-5.00   sec 7.56 GBytes 64.9 Gbits/sec 0 368 KBytes

5.00-6.00   sec 7.69 GBytes 66.1 Gbits/sec 0 407 KBytes

6.00-7.00   sec 7.62 GBytes 65.5 Gbits/sec 0 407 KBytes

7.00-8.00   sec 7.63 GBytes 65.6 Gbits/sec 0 532 KBytes

… … … … …

56.00-57.00  sec 7.78 GBytes 66.8 Gbits/sec 0 3.35 MBytes

57.00-58.00  sec 7.67 GBytes 65.9 Gbits/sec 0 3.35 MBytes

58.00-59.00  sec 7.64 GBytes 65.7 Gbits/sec 0 3.35 MBytes

59.00-60.00  sec 7.74 GBytes 66.5 Gbits/sec 0 3.35 MBytes

Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 465 GBytes 66.5 Gbits/sec 0

CPU Utilization: local/sender 100%, remote/receiver 96.3%

Figure 5.15: Results of iperf3 tests with iptables as firewall

In the second sub-case the firewall is implemented as kernel transparent firewall
and consists of a Linux bridge with iptables rules configured in it provide firewall
functionalities.
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Linux bridge as transparent firewall:

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 6.95 GBytes 59.7 Gbits/sec 0 464 KBytes

1.00-2.00   sec 6.97 GBytes 59.9 Gbits/sec 0 464 KBytes

2.00-3.00   sec 6.96 GBytes 59.8 Gbits/sec 0 464 KBytes

3.00-4.00   sec 6.71 GBytes 57.6 Gbits/sec 0 464 KBytes

4.00-5.00   sec 6.60 GBytes 56.7 Gbits/sec 0 665 KBytes

5.00-6.00   sec 6.94 GBytes 59.6 Gbits/sec 0 699 KBytes

6.00-7.00   sec 6.90 GBytes 59.3 Gbits/sec 0 699 KBytes

7.00-8.00   sec 6.86 GBytes 58.9 Gbits/sec 0 699 KBytes

… … .. … …

56.00-57.00  sec 6.91 GBytes 59.4 Gbits/sec 228 2.54 MBytes

57.00-58.00  sec 6.81 GBytes 58.5 Gbits/sec 0 2.54 MBytes

58.00-59.00  sec 6.94 GBytes 59.6 Gbits/sec 0 2.54 MBytes

59.00-60.00  sec 6.82 GBytes 58.5 Gbits/sec 0 2.54 MBytes

Summary results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 409 GBytes 58.6 Gbits/sec 228

CPU Utilization: local/sender 99.9%, remote/receiver 97.4%

Figure 5.16: Results of iperf3 tests with Linux bridge as transparent firewall

In the third sub-case the firewall is implemented as a transparent firewall by a
user application, which takes packets from one interface, analyzes it and sends the
packet to the other interface.

User application as firewall:

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 128 MBytes 1.07 Gbits/sec 0 1.35 MBytes

1.00-2.00   sec 147 MBytes 1.24 Gbits/sec 0 1.35 MBytes

2.00-3.00   sec 154 MBytes 1.29 Gbits/sec 0 1.35 MBytes

3.00-4.00   sec 138 MBytes 1.16 Gbits/sec 0 1.35 MBytes

4.00-5.00   sec 143 MBytes 1.20 Gbits/sec 0 1.35 MBytes

5.00-6.00   sec 154 MBytes 1.29 Gbits/sec 0 1.35 MBytes

6.00-7.00   sec 149 MBytes 1.24 Gbits/sec 0 1.35 MBytes

7.00-8.00   sec 139 MBytes 1.17 Gbits/sec 0 1.35 MBytes

… … … … …

56.00-57.00  sec 154 MBytes 1.29 Gbits/sec 0 1.35 MBytes

57.00-58.00  sec 154 MBytes 1.29 Gbits/sec 0 1.35 MBytes

58.00-59.00  sec 153 MBytes 1.29 Gbits/sec 0 1.35 MBytes

59.00-60.00  sec 154 MBytes 1.29 Gbits/sec 0 1.35 MBytes

Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 8.79 GBytes 1.26 Gbits/sec 0

CPU Utilization: local/sender 28.4%, remote/receiver 43.8%

Figure 5.17: Results of iperf3 tests with user application as firewall
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5.2.2 Second scenario: NSM forwarder without VPP in
chain

As in the second case of the first scenario, also both cases of this scenario were
tested with two different implementation of the firewall application, the first one
as iptables rules, the second one as user application.

Case 1: NSM kernel forwarder

Iptables as firewall:

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 6.99 GBytes 60.0 Gbits/sec 0 857 KBytes

1.00-2.00   sec 7.11 GBytes 61.1 Gbits/sec 0 857 KBytes

2.00-3.00   sec 7.11 GBytes 61.0 Gbits/sec 0 903 KBytes

3.00-4.00   sec 7.14 GBytes 61.3 Gbits/sec 0 903 KBytes

4.00-5.00   sec 7.14 GBytes 61.3 Gbits/sec 0 903 KBytes

5.00-6.00   sec 6.99 GBytes 60.1 Gbits/sec 0 903 KBytes

6.00-7.00   sec 7.04 GBytes 60.5 Gbits/sec 0 1.37 MBytes

7.00-8.00   sec 7.22 GBytes 62.0 Gbits/sec 0 1.37 MBytes

… … … … …

56.00-57.00  sec 7.17 GBytes 61.6 Gbits/sec 0 3.09 MBytes

57.00-58.00  sec 7.17 GBytes 61.6 Gbits/sec 0 3.09 MBytes

58.00-59.00  sec 7.03 GBytes 60.4 Gbits/sec 0 3.09 MBytes

59.00-60.00  sec 7.13 GBytes 61.2 Gbits/sec 0 3.09 MBytes

Summary results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 427 GBytes 61.1 Gbits/sec 4

CPU Utilization: local/sender 99.6%, remote/receiver 74.0%

User application as firewall:

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 315 MBytes 2.64 Gbits/sec 0 3.13 MBytes

1.00-2.00   sec 345 MBytes 2.89 Gbits/sec 0 3.13 MBytes

2.00-3.00   sec 344 MBytes 2.88 Gbits/sec 0 3.13 MBytes

3.00-4.00   sec 340 MBytes 2.85 Gbits/sec 0 3.13 MBytes

4.00-5.00   sec 342 MBytes 2.87 Gbits/sec 0 3.13 MBytes

5.00-6.00   sec 342 MBytes 2.87 Gbits/sec 0 3.13 MBytes

6.00-7.00   sec 306 MBytes 2.57 Gbits/sec 11 2.52 MBytes

7.00-8.00   sec 334 MBytes 2.80 Gbits/sec 0 3.03 MBytes

… … … … …

56.00-57.00  sec 346 MBytes 2.90 Gbits/sec 0 3.04 MBytes

57.00-58.00  sec 345 MBytes 2.89 Gbits/sec 0 3.04 MBytes

58.00-59.00  sec 344 MBytes 2.88 Gbits/sec 0 3.04 MBytes

59.00-60.00  sec 334 MBytes 2.80 Gbits/sec 0 3.04 MBytes

Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 19.0 GBytes 2.73 Gbits/sec 305

CPU Utilization: local/sender 22.4%, remote/receiver 13.4%

Figure 5.18: Results of iperf3 tests
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Case 2: NSM VPP forwarder

Iptables as firewall:

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 261 MBytes 2.19 Gbits/sec 293 788 KBytes

1.00-2.00   sec 160 MBytes 1.34 Gbits/sec 0 928 KBytes

2.00-3.00   sec 189 MBytes 1.58 Gbits/sec 0 1.05 MBytes

3.00-4.00   sec 174 MBytes 1.46 Gbits/sec 74 877 KBytes

4.00-5.00   sec 150 MBytes 1.26 Gbits/sec 5 738 KBytes

5.00-6.00   sec 125 MBytes 1.05 Gbits/sec 33 645 KBytes

6.00-7.00   sec 114 MBytes 954 Mbits/sec 20 407 KBytes

7.00-8.00   sec 93.8 MBytes 786 Mbits/sec 0 554 KBytes

… … … … …

56.00-57.00  sec 200 MBytes 1.68 Gbits/sec 0 1.11 MBytes

57.00-58.00  sec 148 MBytes 1.24 Gbits/sec 53 666 KBytes

58.00-59.00  sec 142 MBytes 1.20 Gbits/sec 0 817 KBytes

59.00-60.00  sec 139 MBytes 1.16 Gbits/sec 54 704 KBytes

Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 8.67 GBytes 1.24 Gbits/sec 1304

CPU Utilization: local/sender 4.3%, remote/receiver 23.0%

User application as firewall:

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 65.3 MBytes 548 Mbits/sec 461 1.22 MBytes

1.00-2.00   sec 88.8 MBytes 744 Mbits/sec 0 1.31 MBytes

2.00-3.00   sec 71.2 MBytes 598 Mbits/sec 349 1010 KBytes

3.00-4.00   sec 71.2 MBytes 598 Mbits/sec 0 1.04 MBytes

4.00-5.00   sec 72.5 MBytes 608 Mbits/sec 0 1.08 MBytes

5.00-6.00   sec 72.5 MBytes 608 Mbits/sec 0 1.12 MBytes

6.00-7.00   sec 76.2 MBytes 640 Mbits/sec 0 1.17 MBytes

7.00-8.00   sec 86.2 MBytes 724 Mbits/sec 0 1.22 MBytes

… … … … …

56.00-57.00  sec 72.5 MBytes 608 Mbits/sec 0 1.02 MBytes

57.00-58.00  sec 72.5 MBytes 608 Mbits/sec 0 1.07 MBytes

58.00-59.00  sec 65.0 MBytes 545 Mbits/sec 97 824 KBytes

59.00-60.00  sec 56.2 MBytes 472 Mbits/sec 0 925 KBytes

Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 4.41 GBytes 631 Mbits/sec 1905

CPU Utilization: local/sender 3.3%, remote/receiver 8.1%

Figure 5.19: Results of iperf3 tests
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5.2.3 Third scenario: NSM forwarder with VPP in chain
Case 1: VPP firewall

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 258 MBytes 2.16 Gbits/sec 183 1.57 MBytes

1.00-2.00   sec 266 MBytes 2.23 Gbits/sec 0 1.69 MBytes

2.00-3.00   sec 258 MBytes 2.16 Gbits/sec 0 1.80 MBytes

3.00-4.00   sec 255 MBytes 2.14 Gbits/sec 36 1.39 MBytes

4.00-5.00   sec 271 MBytes 2.28 Gbits/sec 0 1.52 MBytes

5.00-6.00   sec 272 MBytes 2.29 Gbits/sec 0 1.64 MBytes

6.00-7.00   sec 265 MBytes 2.22 Gbits/sec 0 1.75 MBytes

7.00-8.00   sec 275 MBytes 2.31 Gbits/sec 0 1.87 MBytes

… … … … …

56.00-57.00  sec 262 MBytes 2.20 Gbits/sec 0 1.68 MBytes

57.00-58.00  sec 259 MBytes 2.17 Gbits/sec 0 1.80 MBytes

58.00-59.00  sec 261 MBytes 2.19 Gbits/sec 0 1.89 MBytes

59.00-60.00  sec 259 MBytes 2.17 Gbits/sec 0 1.96 MBytes

Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 14.7 GBytes 2.10 Gbits/sec 2282

CPU Utilization: local/sender 6.6%, remote/receiver 32.6%

Figure 5.20: Results of iperf3 tests

Case 2: VPP technology across the chain

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 49.6 MBytes 416 Mbits/sec 0 0.00 Bytes

1.00-2.00   sec 54.2 MBytes 455 Mbits/sec 0 0.00 Bytes

2.00-3.00   sec 54.1 MBytes 454 Mbits/sec 0 0.00 Bytes

3.00-4.00   sec 54.0 MBytes 453 Mbits/sec 0 0.00 Bytes

4.00-5.00   sec 54.0 MBytes 453 Mbits/sec 0 0.00 Bytes

5.00-6.00   sec 54.2 MBytes 455 Mbits/sec 0 0.00 Bytes

6.00-7.00   sec 54.2 MBytes 455 Mbits/sec 0 0.00 Bytes

7.00-8.00   sec 54.2 MBytes 454 Mbits/sec 0 0.00 Bytes

… … … … …

56.00-57.00  sec 54.1 MBytes 454 Mbits/sec 0 0.00 Bytes

57.00-58.00  sec 54.3 MBytes 456 Mbits/sec 0 0.00 Bytes

58.00-59.00  sec 54.3 MBytes 455 Mbits/sec 0 0.00 Bytes

59.00-60.00  sec 54.3 MBytes 455 Mbits/sec 0 0.00 Bytes

Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 3.17 GBytes 454 Mbits/sec 0

CPU Utilization: local/sender 100.0%, remote/receiver 100.0%

Figure 5.21: Results of iperf3 tests

72



5.2. TESTS

5.2.4 Forth scenario: eBPF
Case 1: transparent firewall

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 8.20 GBytes 70.4 Gbits/sec 0 283 KBytes

1.00-2.00   sec 8.13 GBytes 69.8 Gbits/sec 0 419 KBytes

2.00-3.00   sec 8.05 GBytes 69.2 Gbits/sec 0 485 KBytes

3.00-4.00   sec 7.91 GBytes 67.9 Gbits/sec 0 485 KBytes

4.00-5.00   sec 8.08 GBytes 69.4 Gbits/sec 0 485 KBytes

5.00-6.00   sec 7.93 GBytes 68.1 Gbits/sec 0 485 KBytes

6.00-7.00   sec 7.87 GBytes 67.6 Gbits/sec 0 485 KBytes

7.00-8.00   sec 7.97 GBytes 68.5 Gbits/sec 0 485 KBytes

… … … … …

56.00-57.00  sec 7.92 GBytes 68.1 Gbits/sec 0 4.20 MBytes

57.00-58.00  sec 8.07 GBytes 69.3 Gbits/sec 0 4.20 MBytes

58.00-59.00  sec 7.92 GBytes 68.1 Gbits/sec 0 4.20 MBytes

59.00-60.00  sec 8.05 GBytes 69.1 Gbits/sec 0 4.20 MBytes

  Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 479 GBytes 68.6 Gbits/sec 0

CPU Utilization: local/sender 99.9%, remote/receiver 95.7%

Figure 5.22: Results of iperf3 tests

Case 2: transparent firewall with pbforwarder

Interval Transfer Bandwidth Retr Cwnd

0.00-1.00   sec 7.43 GBytes 63.8 Gbits/sec 0 494 KBytes

1.00-2.00   sec 7.47 GBytes 64.2 Gbits/sec 0 519 KBytes

2.00-3.00   sec 7.36 GBytes 63.2 Gbits/sec 0 574 KBytes

3.00-4.00   sec 7.27 GBytes 62.4 Gbits/sec 0 574 KBytes

4.00-5.00   sec 7.33 GBytes 62.9 Gbits/sec 0 574 KBytes

5.00-6.00   sec 7.32 GBytes 62.8 Gbits/sec 0 574 KBytes

6.00-7.00   sec 7.34 GBytes 63.0 Gbits/sec 0 734 KBytes

7.00-8.00   sec 7.23 GBytes 62.1 Gbits/sec 0 734 KBytes

… … … … …

56.00-57.00  sec 7.26 GBytes 62.3 Gbits/sec 0 2.01 MBytes

57.00-58.00  sec 7.30 GBytes 62.7 Gbits/sec 0 2.01 MBytes

58.00-59.00  sec 7.30 GBytes 62.8 Gbits/sec 0 2.12 MBytes

59.00-60.00  sec 7.25 GBytes 62.2 Gbits/sec 0 2.12 MBytes

Summary Results:

Interval Transfer Bandwidth Retr

0.00-60.00  sec 437 GBytes 62.6 Gbits/sec 4086

CPU Utilization: local/sender 99.9%, remote/receiver 97.8%

Figure 5.23: Results of iperf3 tests
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5.3 Final discussion
Figure 5.24 gives a graphic representation of the comparison between obtained
bandwidth in all different scenarios. Label such as “1S2C-usr-app” means that this
value refers to the first case (1C) of the second scenario (1S) and usr-app means
that the implementation of the firewall was provided by a user application.
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Figure 5.24: Comparison graph between bandwidth in scenarios

It is necessary to point out some notes about obtained results:

• high performance was obtained in first and fourth scenario where virtual
ethernet interfaces were used for communication between pods. Also first case
of second scenario involves veth pairs in communication of involved pods, in
fact performance is comparable to other mentioned scenarios.

• In scenarios where firewall application was implemented both as iptables rules
and as user application, better performance was obtained in the former case.
The reason of this difference is associated to the route and the forwarding
of the traffic in the two cases: in the first case, as firewall is implemented as
iptables rules that are implemented directly in kernel space of the specific
namespace (or, in Kubernetes environment, of the pod) and forwarding is
implemented as well in kernel space by routing table, traffic does not move
from kernel space to user space, its processing is entirely in kernel space. In
the second case, the firewall application (that implements also the forwarding)
runs in user space, so the processing of the traffic happens in user space: this
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means that traffic needs to move from kernel space when it enters inside the
namespace or in the pod where the application runs (through first interface),
to user space when it needs to be elaborated from firewall user application
and then back to kernel space when it exits from the namespace or the pod
(through second interface) to go to destination. This switch between kernel
and user space, together with the fact that kernel space has better performance
in forwarding traffic, generates a overhead in all traffic processing, impacting
on obtained performance.

• low performance are obtained in scenarios where VPP technology is used in
NSM forwarder and pods implementing the service chain do not runs with the
same technology. In this case, performance is low due to TAP interfaces that
the forwarder configures in involved pods and itself for communication. This
kind of interface seems to be not optimized for performance and, as result,
obtained numbers are low compared to other scenarios where this kind of
interface is not used.

• even worse performance is obtained in the case in which VPP is used across
all the chain (i.e. both pods that implement the service chain and NSM
forwarder runs with this technology). However, the reason is different from
the previous case; in fact here MEMIF interfaces are configured in pods
involved in communication. As explained in the description of this case, VPP
does not support native integration with iperf application, so specific manual
configuration of both iperf server and iperf client had to be provided to allow
this case work properly. This configuration is adapted from the one provided
by VPP documentation and it is possible that some parameters do not have
the best values to obtain best performance and they may impact on results.
Furthermore, VPP developers claim that current implementation of VPP
is not optimized for performance with standard application such as iperf.
Nevertheless, as NSM project is deeply involved with VPP technology, tests of
performance were executed also with this technology and results are reported
as well.

In terms of configuration of different scenarios to work correctly, the situation is
different respect to performance results:

• In Kubernetes scenarios, speaking about configuration of pods that were
involved in communication, it was sufficient for both VPP and non VPP
scenarios to write YAML’s templates of deployed pods and with few specific
commands deploy NSM control plane pods and the ones involved in the
communication. On the other hands, in VPP scenarios firewall functionalities
had to be specifically implemented to work with VPP Agent inside VPP Agent
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itself, while in non VPP scenarios the implementation of the firewall with
non-specific methods (i.e. iptables rules or user application).

• Speaking about configuration of the application to run the tests (i.e. iperf3),
non VPP scenarios require specific commands to allow proper communication of
pods through cross-connections created by NSM control plane. In particular,
routing table’s entries needed to be manually configured in pods to allow
reachability from iperf client to iperf server. On the other side, scenarios
that involve VPP in communicating pods do not require further manual
configuration to communicate through NSM’s cross-connections and traffic
can immediately traverse the chain from the head to the tail.

• In terms of configuration of elements to work with iperf application, besides
installing proper Linux packet to execute iperf3 command, non VPP scenarios
did not require any further specific configuration. VPP scenarios required
instead specific command and configuration to allow iperf interact properly
with VPP Agent.

Finally, CPU utilization needs to be commented as well. Iperf3 assigns one
thread to iperf server and one thread to iperf client. These threads, if not specified,
are scheduled by the Operating System arbitrarily to two different CPUs of the ones
available in the machine where iperf3 is running. Analyzing how this scheduling
happens, during tests these two threads can be rescheduled in different CPUs
depending on different factors (load on each CPU, different priority of running
processes, etc.) and the load of a thread can be distributed uniformly on more CPUs
if Operating System deems it necessary. Reported data show that CPU utilization
in most of the cases is 100%: as iperf communication consists of transmission and
processing of TCP traffic, most of the CPU is used from Kernel to forward traffic,
while the remaining part is dedicated to the actual iperf thread which elaborates
and send (or receive) the traffic. This means that the two threads use the totality
of available resources of the CPU on which they are scheduled, always giving best
effort in communication. Note that Operating System always tries not to schedule
iperf client and iperf server’s threads on same CPU, so that they do not risk to get
less resources of the CPU where they are running.

In those cases were CPU utilization is low, the main difference with previous
situation is how the forwarding of traffic happens. When the forwarding is provided
by the kernel (i.e. with routing tables), most of the CPU is used to provide this
forwarding. In those cases where the forwarding is provided by a user application,
the kernel does not consume CPU resources to forward traffic and, for this reason,
the CPU is only used by the user application and the iperf thread which elaborate
and forward TCP traffic. As kernel is consistently faster than user application in
providing traffic forwarding, better performance is obtained in those cases.
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Chapter 6

Conclusions and Future
Works

Network Service Mesh project is nowadays the most promising solution to allow
integration of Virtual Network Functions in Kubernetes environment. After the
analysis carried out in this thesis, following positive aspects can be pointed out:

• Effective chaining of pods: once the chain is established and pods implementing
VNFs are deployed, the cross-connections really allow communication between
them. Also the order of VNFs in the chain is respected, i.e. if a VNF is defined
to be chained before another one in the Network Service implementation, the
traffic will flow inside the first VNF and then inside the second VNF.

• Supported technologies: NSM supports standard technology and VPP tech-
nology in its data plane component (i.e. the forwarder) and in pods that
need to communicate. It also provides an already implemented support for
VXLAN tunneling in inter-node communication. Moreover, it provides APIs
for forwarder implementation, which means that own specific implementation
of the forwarder can be created and deployed.

• Self-healing system: NSM comes with a full working monitoring system, which
does not only concerns with cross-connections’ state, but also with pods
involved in NSM environment. Specifically, if a cross-connection for some
reasons fails, the NSM forwarder that created it advertises this event and
sends a message to NSM Manager, which restarts the process of creation
of cross-connection to substitute the failed one. On the other hand, if pod
implementing a VNF stops working, the NSM Manager advertises it and tries
to create a cross-connection with the replica pods that implement the same
VNF or, if no replicas are present, with the new same pod as soon as it is
recreated.
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Besides positive aspects, some other elements of this solution should be improved
and developed:

• Integration with VPP technology: VPP is becoming more and more used
in network world and it is properly used by NSM to allow more automatic
configuration of communication between pods. Nevertheless, it is still under
deep development and NSM should collaborate and better integrate VPP
technology in its solution, mostly in terms of performance where, as it can
be seen from obtained results, it does not behave as standard and older
technologies.

• Supported technologies for communication: as said before, NSM does support
more than one technology in communication of pods and also in the forwarder.
However, NSM claims that its solution can support and work with any desired
technology (i.e. SR-IOV for intra-node communication, BGP or MPLS for
inter-node communication), but functionalities in control plane elements still
need to be developed for other kind of technologies rather than the ones
already supported.

• Support for dynamic change of service chain: in VNF service chain is sometimes
necessary to dynamically change the chain (e.g. in order to send the traffic to
a VNF rather then to another one). NSM does not supports this aspect, but
its developers are working on it to provide this behavior.

• Load balancing: speaking about a more specific aspect, NSM does not provide
load balancing between NSEs that are replicas of same VNF implementation.
This means that if a NSM Manager receives more requests of cross-connection
and it knows that a pod implementing the required VNF is present on same
node, it will send all requests to it, not balancing requests to other possible
pods implementing same VNFs.

Performance tests were executed on one physical server and, in Kubernetes cases,
in one worker node. As future work of this thesis, to complete the benchmarking
of NSM same scenarios will be deployed in different Kubernetes nodes on same
physical machine, and on different Kubernetes nodes on different physical machines.

For what concerns Network Service Mesh future works, developers are mainly
focusing, besides improving already provided features, on inter-cluster communica-
tion of pods. This is an important and more and more relevant aspect that telecom
operators are requiring: it is frequent that one Virtual Network Function runs as a
pod in a Kubernetes cluster and another VNF the first one needs to be chained to is
running as another pod in another Kubernetes cluster (possibly in another physical
server). NSM is working on providing the possibility of this communication.
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Appendix A

Automatic scripts

To make the process of performance testing automatic, a suite of scripts1 was
developed. Once the script starts, it creates elements involved in the test, executes
the test and prints results of the test as output. At the end, it deletes created
elements, so that the environment of execution is not affected by the test.

Scripts are written in bash and uses iperf3 tool to obtain performance results.
Also Helm deployments’ templates2 for Kubernetes related tests were manually
created.

Tests were executed following this steps:

• reboot server where test was to be launched

• run command that starts the automatic script for test

• take note of the printed results

This steps guarantee that obtained performance results were reliable, which means
that they were not influenced by any possible factor related to other running
processes on servers where tests were executed.

1https://github.com/RaffaeleTrani/scripts
2Each Helm deployment can be found at appropriate Git repository at https://github.com/

RaffaeleTrani
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