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Chapter 1

Introduction

The growing adoption of virtualization technologies and micro-services architectures
is re-shaping the traditional paradigms for running software appliances. Services
are now designed as graphs of simple applications deployed over a virtualized set
of computing resources linked by virtual links. While it’s the best possible solution
to avoiding single points of failure in a world full of security and performance
threats (both malicious and accidental), this also complicates the way that these
systems must be monitored and maintained making it much more expensive to
implement and collect data; the more the services are disaggregated, the more
the number of data to be collected increases. Moreover, although de-coupling
software from the underlying infrastructure brings immediate benefits in terms of
elasticity, portability, automation and resiliency, the intermediate hypervisor tier
also raises new security concerns about the mutual trustworthiness between those
two layers and the potential threats in the virtualization substrate; therefore, the
need arises to activate precise monitoring able to inspect the traffic that reaches
the hosted services. As the bandwidth capacity of modern networks increases,
however, traditional traffic analysis mechanisms become increasingly inefficient
and can lead to significant degradation of systems performance. Given the need
for precise traffic monitoring and the unwillingness to bear its costs, this thesis
proposes a new method of traffic analysis that exploits the capabilities of the eBPF

technology to bring the traffic analysis as close as possible to its entry point into
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the systems to reduce as much as possible the time necessary for the processing of

individuals packets.



Chapter 2

Background

This chapter aims to discuss and explain the bases on which the thesis took
place. Network monitoring is an essential component of IT security but it has his
downsides; in modern distributed service architectures, its negative aspects are
accentuated and this creates the need for new solutions for security management.
This chapter will discuss about the problems related to network monitoring and

explain comprehensively the objective of the thesis.

2.1 Network Monitoring

Network monitoring is a tool that allows you to infer the conditions of a network and
of the devices that are part of it by tracking problems caused by non-functioning
devices or overloaded resources (servers, network connections or other devices).
Network monitoring is carried out by means of diagnostic software tools or specific
hardware appliances which are connected to the network and are capable of analyz-

ing the network traffic and the operation of the network devices.

Through network monitoring it is possible to generate alarms for the automatic
warning of support staff in order to carry out the appropriate checks when problems
are detected by the network monitoring system. Another feature of the monitoring

systems is to generate reports on the state of the network where all the problems
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detected are highlighted.
For security reasons, the ability to analyze traffic is extremely important be-
cause it allows you to find out when there are cyber attacks that exploit network

vulnerabilities and how they act on the affected infrastructure.

2.2 The ASTRID Project

The ASTRID Project [1] proposes a new approach to assess situational awareness
of virtualized services and effectively support quick remediation actions, beyond
mere integration of security appliances in service graphs. The main concept is
the disaggregation of cyber-security appliances into business logic and data plane,
mediated by orchestration logic and proper security models.

The proposed framework expect the use of multiple programmable hooks at-
tached to the virtualized containers (in the OS kernel, in system libraries, and in
the micro-service code) in order to inspect and report what happens inside.

These programmable hooks include logging and event reporting capabilities
developed by programmers into their software, as well as monitoring frameworks
built in the kernel and system libraries that inspect network traffic and system
calls (Figure 2.1).

Since monitoring operations and events reporting may introduce a significant
overhead on the performances of the monitored hosts, the ASTRID framework
foresee to selectively and locally adjust the monitoring deepness, the reporting
type and rate in order to retrieve the exact amount of knowledge needed, without
overwhelming the whole system with unnecessary information.

The purpose is to get more details for critical or vulnerable components when
anomalies are detected that may indicate an attack, or when a warning is issued
by cyber-security teams about new threats and vulnerabilities just discovered.

In the framework architecture, a Security Orchestrator enriches the deployed
services graph with the programmable hooks required to monitor and inspect
traffic and system calls. An analytics engine continuously monitors the statistics

exported by the deployed hooks and requires them to dynamically change their
8
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Figure 2.1: Embedded service-centric security framework

behavior, in order export differnt statiscs over time to feed the actual analysis needs.

2.3 Thesis objective

This thesis focuses on the creation of a new programmable hook able to inspect
the network traffic and export dynamically defined network statistics meeting the
requests of the ASTRID project.

The objective is to create a lightweight and adaptive traffic monitoring service
able to change its inspection deepness during its operation. This has been achieved
by using Polycube [2], an open source framework developed by the Computer
Networks Group of Politecnico di Torino, which allows the creation of Virtual

Network Functions capable of efficiently inspecting and manipulating the network

traffic by exploiting the eBPF technology.



Chapter 3

Exploited Technologies

This chapter introduces the main technologies that have been used to create the
architectures and implementations proposed in this thesis, explained in detail in
chapters 5 and 6. The informations about tools and technologies presented in this

chapter are inspired on the documentations present in the corresponding websites.

3.1 BPF

The Berkeley Packet Filter (BPF) provides on some Unix-like OSes a raw interface
to data link layers in a protocol-independent fashion, and the potential to operate
with custom code on the intercepted packets. All packets on the network, even
those intended for other hosts, are accessible through this mechanism, provided
that the network driver support promiscuous mode. BPF roughly offers a service
similar to raw sockets, but it provides packet access through a file interface rather
than a network interface (the packet filter appears as a character special device.
The BPF was designed as a common agent to allow network monitoring by multiple
applications running in user space, with the specific purpose of minimizing packets
getting copied between user and kernel space, which is known to lead to large
performance degradation. Thus, BPF is specifically designed with efficient and
effective packet filtering in mind, in order to discards unwanted packets as early

as possible within the OS’s stack. Associated with each open instance of a BPF
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file is a user-settable packet filter. Whenever a packet is received by an interface,
all file descriptors listening on that interface apply their filter. Each descriptor
that accepts the packet receives its own copy. Reads from these files return the
next group of packets that have matched the filter. Consequently, any modification
performed on captured packets do not influence the actual data, as in BPF packets

are always a copy of the original traffic.

BPF has two main components: the network tap and the packet filter. The
network tap collects copies of packets from the network device drivers and delivers
them to listening applications. The filter decides if a packet should be accepted
and, if so, how much of it to copy to the listening application. Figure 3.1 illustrates

BPF’s interface with the rest of the system.

Because network monitors often only want a small subset of network traffic, a
dramatic performance gain is realized by filtering out unwanted packets in interrupt
context. To minimize memory traffic, the major bottleneck in most modern work-
stations, the packet should be filtered ‘in place’ rather than copied to some other
kernel buffer before filtering. Thus, if the packet is not accepted, only those bytes
that were needed by the filtering process are referenced by the host. BPF uses a
re-designed, register-based ‘filter machine’ that can be implemented efficiently on
today’s register-based CPUs. Further, BPF uses a simple, non-shared buffer model
made possible by today’s larger address spaces. The model is very efficient for the

‘usual cases’ of packet capture.

The design of the BPF was guided by the following constraints:

e it must be protocol independent: the kernel should not have to be modified to

add new protocol support;

e it must be general: the instruction set should be rich enough to handle

unforeseen uses;

« packet data references should be minimized;
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Figure 3.1: Overview of BPF architecture

o decoding an instruction should consist of a single C switch statement;

o the abstract machine registers should reside in physical registers.

The BPF abstract machine consists of load, store, ALU, branch, return and
miscellaneous instructions that are used to define low-level comparison operations
on packet headers; on some platforms, these instructions are converted with just-
in-time compilation into native code to further avoid overhead.

BPF often refers to the filtering mechanism, rather than the entire interface.
With this meaning, it is sometimes implemented in OS’s kernels for raw data link

layer socket filters (e.g., in Linux).
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3.2 eBPF

Initially proposed by Alexei Staravoitov in 2013, eBPF is the next version of BPF,
which includes both modifications to the underlying virtual CPU (64-bit registers,
additional instructions) and to the possible usages of BPF in software products.
Packets are no longer a copy of the original data: eBPF program can operate and
modify the packet content, hence enabling a new breed of applications such as
bridging, routing, NATting, and more. The “Classic” BPF is not used anymore,
and legacy applications are adapted from the BPF bytecode to the eBPF.

An overview of the runtime architecture of eBPF is shown in Figure 3.2. The
following subsections will explain some of the relevant parts of the architecture and

point out some of the main improvements in eBPF.

Restricted C
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Source Byte Runtime Injection J

Cod
o LLVM/clang ted

§0% & Just In Time Compiler]

5%
Verifier
+ JIT

Sockets

TC
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Figure 3.2: eBPF architecture
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C-based programming

eBPF code can be written in (a restricted version of) C, which allows for easier
program development and more powerful functionalities with respect to bare

assembly.

Maps

An eBPF program is triggered by a packet received by the virtual CPU. To store
the packet in order to process it, eBPF defines a volatile “packet memory”, which
is valid only for the current packet: this means there is no way to store information
needed across subsequent packets.

eBPF defines the concept of state with a set of memory areas, which are called
maps. Maps are data structures where the user can store arbitrary data with a
key-value approach: data can be inserted in a map by providing the value and a
key that will be used to reference it.

An important feature of maps is that they can be shared between eBPF programs,
and between eBPF and user-space programs. This is especially important for all
those applications that need to perform operations that exceed the complexity
allowed by the eBPF bytecode. In fact, maps allow to split complex processing in
two layers (fast eBPF datapaths and slow user space control paths), keeping the
state information shared and synced. Another important advantage of using maps
is that their content is preserved across program executions.

Maps are never accessed directly: maps are read and written with predefined
system calls. An important side effect of using maps is that the state of the program
is decoupled from the code. Instructions are in the program, the data used by such

instructions are in the maps.

Hooks

eBPF programs can react to generic kernel events, not only packet reception: they
can react to any system call that exposes a hook.
Considering a network packet and recalling how the netfilter hooks work, with

eBPF we can listen to any of the predefined hooks to trigger programs only at
14
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Figure 3.3: eBPF maps

certain steps during packet processing. Netfilter is a set of linked modules but it
has no filtering concept: attaching to a hook means receiving all the packets. eBPF
can attach to hooks and filter packets.

The TC Ingress hook intercepts all the packets that reach the network adapter
from the outside. The TC Egress hook deals with the outgoing packets immediately

before sending them to the network adapter.

XDP

XDP (eXpress Data Path) is a programmable, high performance packet processor
in the Linux networking data path; it provides an additional hook to be used with
eBPF programs to intercept packets in the driver space of the network adapter,
before they are manipulated by the Linux kernel. The main advantage of this early
processing is that it avoids the overhead and the memory consumption added by
the kernel to create the socket buffer (skb data structure) which wraps the packet
for standard Linux processing in TC mode. XDP runs in the lowest layer of the
packet processing stack, as soon as the NIC driver realizes a packet has arrived.
However, packets here are not delivered to userspace, but to the injected eBPF

program executed in kernel space. One of the main use cases is pre-stack processing
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for filtering or DDOS mitigation.

Service chains

BPF did not quite have the concept of multiple cooperating programs: each parallel
program receives a copy of the packet and processes it; instead, eBPF can link
multiple programs to build service chains, such as in Figure 3.4.

Service chains can be created exploiting direct virtual links between two eBPF
programs or tail calls. Tail calls can be thought as function calls: the eBPF
programs are separated, but the first one triggers the execution of the second by
calling it. This allows developers to overcome the program size limitation in the
JIT compiler: starting from one big program, this can be split in multiple modules,
perhaps functionally distinct such as header parsing, ingress filtering, forwarding,

and analytics.

o MAP

Virtual NIC E_nﬂ\
g g
eBPF program 1 eBPF program 2

Physical NIC

Figure 3.4: eBPF service chain example

Helpers

Helpers are sets of functions pre-compiled and ready to be used inside the Linux
kernel. eBPF programs can call such functions, which are outside the virtual CPU

(e.g. function to get the current timestamp). Helpers delegate complex tasks to the
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operating system, overcoming the complexity restrictions in the eBPF validator

and allowing developers to exploit advanced OS functionalities.

System-wide monitoring capabilities

In addition to filtering packets, eBPF programs can be attached and run anywhere
in the Linux Kernel through kprobes. This allows inspecting the execution of the
kernel and userspace programs and opens the door to high-performance Linux
monitoring without running extra kernel modules. Potential kernel crashes caused
by eBPF are prevented through static analysis. The kernel runs a verifier on every
eBPF program before allowing its execution: it checks for any loops within the
code (which could lead to possible infinite loops, thus hanging the kernel) and any
unsafe memory accesses.

Using eBPF for dynamic tracing is very powerful and easier, as eBPF programs
can now be coded in C thanks to an LLVM [3] backend. The BPF Compiler
Collection [4] simplifies development even further, although it comes with addi-
tional runtime dependencies (Python, kernel headers and LLVM). Thanks to this
technology, any system call in the kernel can be monitored, and its calling/return
parameters can be inspected, paving the way for a holistic view of any kernel

activity in real-time.

3.3 Polycube

Polycube is an open source framework developed by the Computer Networks Group
of Politecnico di Torino, which allows the creation of Virtual Network Functions
capable of efficiently inspecting and manipulating the network traffic by exploiting
the eBPF technology.

All Polycube network functions feature a unified point of control, which enables
the configuration of high-level directives such as the desired service topology.
Polycube supports this model through a single, service agnostic, user space daemon,
called polycubed, which is in charge of interacting with the different network

function instances.
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Figure 3.5: Polycube high-level architecture

Each different type of virtual function is called Cube, which are similar to plugins
that can be installed and launched at runtime. A new Cube can be easily added
to the framework by a specific registration phase, in which the service sends the
information required for its identification within the framework. When the service
is registered, different instances of it can be created by contacting polycubed,
which acts mainly as a proxy; it receives a request from a northbound REST
interface and forwards it to the proper service instance, returning back the answer

to the user.
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3.3.1 Polycube VNFs characteristics

Each Polycube service is made up of a control plane and a data plane. The data
plane is responsible for per-packet processing and forwarding, while the control and
management plane is in charge of service configuration and non-dataplane tasks
(e.g., routing protocols). Although this separation between the control and data
plane is common in many network functions architectures, Polycube provides a clear
separation between these components; each service is composed of a set of standard
parts that make it easier for the programmers to implement the desired behavior,
while Polycube takes care of creating all the surrounding glue logic, handling all

the interactions and communications between the different components.

Data plane

The data plane design of a Polycube service is characterized of a fast path, namely
the eBPF code that is injected into the kernel, and a slow path, which handles
packets that cannot be fully processed in the kernel or that would require additional
operations, slowing down the processing of the other packets.

The data plane portion of a network service is executed per packet, with the
consequent necessity to keep its cost as small as possible. When fired, the fast path
retrieves the packet and its associated meta-data from the receive queues, then it
executes the injected eBPF instructions. Typical operations are usually very fast,
such as packet parsing, lookups in memory (e.g., to classify the packet), and map
updates, such as storing data in memory (e.g., statistics), for further processing.
When those operations are carried out, the fast path returns a forwarding decision
for that particular packet or send it to the slow path for further processing.

Although eBPF offers the possibility to perform some complex and arbitrary
actions on packets, it suffers from some well-known limitations due to his restricted
virtual machine, which however are necessary to guarantee the integrity of the
system. Those limitations may impair the flexibility of the network function, which
may not be able to perform complex actions directly in the eBPF fast path or
could slow down its execution, adding more instructions in the fast path to handle

exceptional cases. To overcome those limitations, Polycube introduces an additional
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data plane component that is no longer limited by the eBPF virtual machine and
it can hence execute arbitrary code. The slow path module is executed in user
space and interacts with the eBPF fast path using a set of components provided
by the framework. The eBPF fast path program can redirect packets (with custom
meta-data) to the slow path, similar to PacketIn messages in OpenFlow. Similarly,
the slow path can send packets back to the fast path; in this case, Polycube provides
the possibility to inject the packet into the ingress queue of the network function
port, simulating the reception of a new packet from the network, or into the egress

queue, hence pushing the packet out of the network function.

Control and management plane

The control plane of a virtual network function is the place where out-of-band tasks,
needed to control the data plane and to react to possible complex events (e.g.,
Routing Protocols, Spanning Tree) are implemented. It is the point of entry for
external players (e.g. service orchestrator, user CLI) that need to access service’s
resources, modify (e.g., for configuration) or read service parameters (e.g., reading
statistics) and receive notifications from the service fast path or slow path.
Polycube defines a specific control and management module that performs the
previously described functions. It exposes a set of REST APIs used to perform the
typical CRUD (create-read-update-delete) operations on the service itself; these
APIs are automatically generated by the framework starting from the service
description, removing this additional implementation overhead to the programmer.
To interact with the service, an external player has to contact polycubed, which
checks the service to which the request is directed to and dispatches it to the
corresponding service control path, which in turn serves the request modifying its

internal state or reflecting the changes to the service data path instance.

3.4 Prometheus

Prometheus [5] is an open-source systems monitoring and alerting toolkit originally

built at SoundCloud by ex-Googlers that wanted to monitor a highly dynamical
20
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container environment. Prometheus joined the Cloud Native Computing Foundation

in 2016 as the second hosted project, after Kubernetes [6].

3.4.1 Features
Prometheus’s main features are:

1. a multi-dimensional data model with time series data identified by metric
name and key/value pairs

2. PromQL, a flexible query language to leverage this dimensionality

3. no reliance on distributed storage; single server nodes are autonomous
4. time series collection happens via a pull model over HT'TP

5. pushing time series is supported via an intermediary gateway

6. targets are discovered via service discovery or static configuration

7. multiple modes of graphing and dashboarding support

3.4.2 Architecture

The diagram in figure 3.6 depicts the architecture of Prometheus and some of its
ecosystem components:

Prometheus scrapes metrics from instrumented jobs, either directly or via an
intermediary push gateway for short-lived jobs. It stores all scraped samples locally
and runs rules over this data to either aggregate and record new time series from
existing data or generate alerts. Grafana [7] or other API consumers can be used

to visualize the collected data.

3.4.3 Datamodel

Prometheus fundamentally stores all data as time series: streams of timestamped
values belonging to the same metric and the same set of labeled dimensions. Every

time series is uniquely identified by its metric name and optional key-value pairs
called labels.
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Figure 3.6: Prometheus architecture

The metric name specifies the general feature of a system that is measured.
Labels enable Prometheus’s dimensional data model: any given combination of
labels for the same metric name identifies a particular dimensional instantiation of
that metric. The query language allows filtering and aggregation based on these
dimensions.

Metrics in Prometheus have a type to indicate their meaning and usage.

Prometheus currently supports four metric types:

1. counter is a cumulative metric that represents a single monotonically increas-
ing counter whose value can only increase or be reset to zero on restart;

2. gauge is a metric that represents a single numerical value that can arbitrarily
go up and down;

3. histogram samples observations (usually things like request durations or
response sizes) and counts them in configurable buckets and provides a sum
of all observed values;

4. summary is similar to a histogram but it calculates configurable quantiles
over a sliding time window.
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3.5 OpenMetrics

OpenMetrics [8] is an open source initiative, focused on creating a neutral metrics
exposition format that is an evolution of the widely-adopted Prometheus exposition
format. OpenMetrics brings together the maturity and adoption of Prometheus
along with the experience and needs of a variety of projects, vendors, and end-users,
aiming to move away from the hierarchical way of monitoring to enable users
to transmit metrics at scale. The OpenMetrics format is a text-based metrics
exposition format; this format has the advantages to be human-readable, easy to
assemble and readable line by line as each metric is expressed in one text line
(excepting the comments which may surround the metric).

The OpenMetrics format supports the four types of metrics supported by
Prometheus (counter, gauge, histogram, summary) plus a generic type

called untyped.
A metric is composed by several fields:

1. metric name
2. any number of labels represented as a key-value array
3. current metric value

4. optional metric timestamp

Metric output is typically preceded with #HELP and #TYPE metadata lines.
The HELP string identifies the metric name and a brief description of it. The
TYPE string identifies the type of metric. If there’s no TYPE before a metric,
the metric is set to untyped. Everything else that starts with a # is parsed as a

comment.

Listing 3.1: Metric example

# HELP metric_name Counts the total number of POST http request failed with status 400
# TYPE metric_name counter
# Comment that’s not parsed by Prometheus

http_requests_total { method="post", code="400" } 3 1395066363000

Since the OpenMetrics exposition format is going to be the de facto model
for cloud native metric monitoring, it has been chosen to use it for the metrics

exported by the proposed service within this thesis.
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Related works

This section will shortly provide a description of these projects to highlight their
limits, as they were thoroughly considered during the development of the Dynmon

service.

4.1 Traffic monitoring tools

This section presents two tools used today to monitor the network traffic and to

collect information in order to detect anomalies.

4.1.1 Tcpflow

Tepflow is an open source tool created in 1999 which is capable of capture data
transmitted as part of TCP connections (flows). Tcpflow reconstructs the actual
data streams and stores each flow in a separate file for later analysis. Tepflow
understands TCP sequence numbers so it is able to correctly reconstruct data
streams regardless of retransmissions or out-of-order delivery. The main field of
use of Tcpflow is the forensic analysis of network traffic. For this reason, it has
been designed to collect as much information as possible with the awareness that it
is often not possible to catch the same traffic again. A key feature of Tcpflow is
the possibility to specify filtering expressions in order to filter the packets to be
captured. Since Tepflow uses the the libpcap library, tcpflow has the same powerful
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filtering language available as programs such as tcpdump. If the HTTP or SMTP
application protocol are encapsulated in the captured traffic, Tepflow is also able

to extract and save to disk the messages exchanged in each section.

II- DFXML

Kernel Buffer

Protocol Stack

(TCP/IP) Filter

Network Tap

Linux Kernel

Card Driver

Network
Hardware

Figure 4.1: Tcpflow pipeline

The output produced by the Tepflow tool is a DFXML (Digital Forensics XML)
file in which are stored various information including the following statistics on the
analyzed TCP flows:

—_

. timestamp of the beginning of the flow;
end of flow timestamp;

source IP address;

destination IP address;

source MAC address;

destination MAC address;

NS o e o

source port;
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8. destination port;
9. number of transmitted packets;

10. number of transmitted bytes.

Additionally, Tepflow is also able to export a a Portable Document Format
(PDF) file in which there are collected some overall statistics of the capture such
as a series of bar graphs showing the data received over time, the IP addresses and
the source ports that sent the most traffic and the IP addresses and destination
ports they have received more traffic.

Although this tool is capable of collecting information on network traffic, it is
not capable of monitoring any type of network traffic and extracting from it only

the information deemed interesting.

4.1.2 NetFlow

NetFlow is a network protocol that was introduced on Cisco routers around 1996
that provides the ability to collect IP network traffic as it enters or exits an interface.
The flow data is then analyzed to create a picture of network traffic flow and volume.
The NetFlow protocol is used as a network traffic analyzer to determine the source
and destination of the traffic, volume and paths on the network, class of service and
the causes of network congestion. Netflow is able to provide detailed insight on the
network bandwidth usage. Before NetFlow, network engineers and administrators
used Simple Network Management Protocol (SNMP) for network traffic analysis
and monitoring.

Cisco standard NetFlow defines a flow as a unidirectional sequence of packets

that all share the following 7 values:

1. ingress interface (SNMP ifIndex);
2. source IP address;
destination IP address;

IP protocol;

AN B

UDP and TCP source port;
26
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6. UDP or TCP destination port, type and code for ICMP;
7. IP type of service.

)
coli:‘lleocv‘gor \\/ 1

Analysis

Do

Flow
exporter

Flow
exporter

Flow
exporter

Flow
exporter

Figure 4.2: NetFlow environment

A typical NetFlow flow monitoring setup consists of three main components:

1. flow exporters: routers and switches which collect IP traffic statistics from
their interfaces, aggregating packets into flows and exporting the statistics as

flow records;

2. flow connectors: devices which collect, store and pre-process flow data received

from the flow exporters;

3. analysis application: analyzes received flow data in the context of intrusion

detection or traffic profiling.

Even if this tool is able to collect statistics on the network traffic, it is not

flexible enough as each monitoring node has to support the NetFlow protocol.

4.2 Tracing with eBPF

The use of the eBPF technology has been around for many years, and in the Linux

community it has been exploited many time in order to trace the performance of
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the systems and for network monitoring. This section presents two tools which

make use of this technology.

4.2.1 Bpftrace

Bpftrace [9] is a high-level open-source tracing tool developed by Alastair Robertson
which allows to analyze systems in custom ways. Bpftrace involves the injection of
custom tracing scripts inside the Linux kernel to allow the analysis and observation
of the system from the inside by exploiting the eBPF capabilities. Bpftrace
uses LLVM as a backend to compile scripts to BPF-bytecode and makes use of
BCC for interacting with the Linux BPF system, as well as existing Linux tracing
capabilities: kernel dynamic tracing (kprobes), user-level dynamic tracing (uprobes),
and tracepoints.

Even if powerful, bpftrace is not enough; it lacks of an ecosystem that can allow
it to cooperate with a dynamic monitoring system able to change its behavior at

runtime.

4.2.2 Falco

Falco [10] is an open-source cloud-native runtime security project originally created
by Sysdig and now part of the CNCF. Falco is a behavioral activity monitoring
agent that comes with native support for containers. Falco lets to define highly
granular rules to check for activities involving file and network activity, process
execution, IPC, and much more, using a flexible syntax. Falco will notify you when
these rules are violated.

Falco offers the following capabilities:

1. file integrity monitoring: Falco watches for any OS activity that is writing to

a file of interest, and generates alertes in real-time;

2. network monitoring: Falco can see I/O from the inside of VMs and containers,

and can correlate network traffic with applications activities;

3. detection capabilities: Falco is far simpler to understand and configure than
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Linux security modules like SELinux and AppArmor, but it offers only the

possibility to detect the problems, it cannot enforce measures to solve them.

Falco is a long-running server agent. In containerized environments, it can install
as a container which monitors the host itself and all containers running on it. In
regular environments it can also be installed as a regular host package. Once
activated, Falco taps into the stream of system call events, checking each event
against the list of rules in its configuration file. Specifically, it uses the sysdig
kernel module for syscall interception and sysdig user libraries for state tracking
and event decoding.

Behaviors and activities of interest are expressed as rules using a simple filter
language; each rule has an associated output template specifying the message to
be output if a matching event occurs.

Due to its nature, Falco cannot be used to do collection, alerting, reporting or
remediation when anomalies are detected; moreover Falco’s performance are an
open issue because in a busy hosts or with large rule sets Falco has a high CPU

usage.
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Architecture

This chapter illustrates the architecture defined for the proposed solution. In its
initial part, this work focused on the design of an architecture that could combine
the strengths of Polycube VNFs with the requests of the ASTRID project.

Two possible approaches were conceived to create a Polycube service that can

handle generic monitoring data planes and expose the corresponding metrics:
1. Intelligent Remote Control Plane
2. Generic, Self-adapting Local Control plane

The two architectures are explained in the following sections. Considering the
current capabilities of the framework, the different complexity between the two
solutions and the time needed for prototyping, also given the need for the developers

of the ASTRID project to use our results, the second architecture was chosen.

5.1 Intelligent Remote Control Plane

This first approach is meant to detach the implementation of the data plane and
the control plane of the network function giving the possibility to instantiate the
two components on different physical machines.

This requires to define a third component in charge of transforming monitoring

policies into an instance of the virtual network function through the use of a code
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Figure 5.1: first approach architecture

generation pipeline and a general purpose compiler.

Once the two components have been generated, they can be instantiated on two
different machines: the custom control plane is instantiated on a remote machine
(for example, an SDN controller), while the dataplane is injected at runtime
as a new service in Polycube on the machine to be monitored. The instanced
components can then communicate with each other through a gRPC channel to
allow the transport of data between the two. At this point, the two components
are completely independent and it is possible to modify both independently. For
example, it is possible to modify the logic of data extraction from the network
traffic, simply by replacing the data plane component, keeping the communication

logic with the remote control plane unchanged.

This first approach has the following advantages:

1. the ability to perform complex data processing in the control plane (e.g.,
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aggregating data intelligently);

2. the possibility of having a flexible remote control plane that is completely
disconnected and independent of Polycube and therefore can be written with

languages other than C ++ (the language used in Polycube).

The need to have a generation, compilation and building chain, however, makes
this architecture too complex. In addition to this we need to consider the missing
implementation of the gRPC communication in Polycube, a feature that has been
abandoned. Moreover, this architecture raises security concerns: the control plane
is executed locally and natively on the remote host (not in the sandbox such as
the data plane), hence can pose non-negligible security problems as it has access to

all the informations the dataplane exposes.

5.2 Generic Self-adapting Local Control plane

This second approach tries to simplify the architecture described above, eliminating
the remotization of the control plane, enabling the local control plane to export
monitoring information.

The basic idea is the creation of a Virtual Network Function which, once running,
receives the configuration of its data plane through its REST interface, injects
the monitoring code at runtime and exports the metrics it collects trough specific
endpoints.

The control plane has to be as generic as possible in order to be able to run any
data plane code, allowing the extraction of the data it wants to expose. For this
to work, a mechanism to extract the data collected by the dataplane is required.
Since in Polycube the control plane and the data plane of a VNF can communicate
with each other through the use of eBPF maps, it has been decided to exploit them
to store the information extracted from the traffic (by the data plane), and expose

their content as metrics through the control plane’s REST interface.

The data structure received as input, which represents the new data plane,

includes the inject-able eBPF code and a description of the metrics to be exported.
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This second approach has the following advantages:

1. dynamic and versatile: the ability to change the dataplane code at runtime
allows the extraction of different informations over time, depending on the

injected code;

2. continuous operation: thanks to the dynamic property of this architecture,
there is no need to re-instantiate the VNF when the monitoring parameters

change, so no packet is lost during the dataplane changes.

3. single point of control: as the VNF is instantiated in the monitored host, there

is no need of connections to multiple machines, nor of a gRPC channel.

5.3 Detailed VNF architecture

A shown in Figure 5.4, the control plane and the data plane are the two main

components of the conceived VNF structure.
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Control plane

The control plane represents the control point of the virtual network function;
it allows communication with the user and management of the data plane. The

control plane contains the logic responsible of:
o receive the the HT'TP requests coming through his REST interface;
o check the validity of the incoming data;
 inject the data plane code at runtime;
« store the metadata related to the injected data plane;
o interpret the structure of the eBPF maps;
o extract the content of the exportable maps;

e return the extracted data in form of metrics.
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The Map Extractor is a component designed to interpret the structure of the
allocated eBPF maps and extract their content by exploiting some internal metadata
provided by the Polycube framework, which describes how the entries of a eBPF

map are structured.

Data plane

The data plane is a low-level component responsible for processing network packets.

The data plane contains the logic responsible of:
o create eBPF maps to collect data;

 analyze every single packet passing through the network interface attached to
the VNF;

o filling up the eBPF maps.
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5.4 VNF Workflow
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Figure 5.5: VNF workflow

Figure 5.5 depicts the workflow of the service:

1. Service creation, the service is instantiated by contacting the Polycube daemon;
by default, it will create a basic version of the service that will not perform
any analysis on incoming packets and that is not connected to any network
interface. During the service creation it is possible to provide a configuration

in order to create and set up the service and its data plane all at once.

2. Data plane injection, an external operator, such as the ASTRID Security

Orchestrator, sends a representation of the data plane to be injected by
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contacting the VNF through the REST interface. Once this object is received,
the validity of the attached eBPF code is checked. If no error occurs during
this operation, the eBPF code is injected replacing the previous one. The
metadata contained in the input data plane are stored and available to be
interpreted for the eBPF maps extraction. Each eBPF map declared in the

eBPF code is here instantiated.

. Network interface attaching, the service is connected to a network interface
on the host machine, or to a port of any Polycube cubes instantiated in it, by
contacting the Polycube daemon, specifying the name of the network interface.
Once the VNF is connected to a network interface, its dataplane code is
attached to a hook in the kernel and is ready to analyze the traffic passing
through it.

. Data collection, every time a packet goes through the hook, the injected eBPF
code analyzed it and appropriately fills up the eBPF maps.

. Metric request, the user can request the collected metrics by querying the

metrics endpoint of the control plane through the REST interface.

. Data extraction, the service control plane receives the metrics request: here
the saved metadata are used by the Maps Extractor to get a reference to
the eBPF and recursively parse their content in order to fill up the output

structures. The output is then returned to the user.

. Network interface detaching, the service is disconnected by the specified
network interface by contacting the Polycube daemon that will take care to
remove the previously injected hook. After this action, the VNF will not

analyze any packet until it gets connected to a network interface again.

. Service deletion, the service is destroyed by the Polycube daemon, which

removes the injected hook and the eBPF maps created by the service.
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5.5 YANG model description

Within the Polycube framework, YANG is the language used for defining services’
structure. Each service is contained in precisely one module, where the service
name is the module name.

In order to design a Polycube service, a YANG model must be created to describe
the structure of the VNF; this permits Polycube VNFs to be compliant to the
RESTCONTF protocol.

Here we show the significant parts of the YANG model of the VNF, explaining

the most important fields.

Dataplane container

The dataplane container represents the structure of the VNF dataplane; it contains:
1. name, a string used by the user to identify the service instance;
2. code, the eBPF code that runs in the service data plane;

3. metrics, a list of items which describe the metrics that the data plane is able
to export. As an example, a possible metric in a probe that monitors the
TCP traffic could be the number of TCP bytes/packets received by the probe.

Each entry contains:

- name, the name of an exported metric;

- map-name, the name of the eBPF map which contains the value of the
metric;
- open-metrics-metadata, a structure which contains the informations used

to export the metric in the OpenMetrics format.

Listing 5.1: The dataplane container

container dataplane {
leaf name { type string;}
leaf code { type string; }

list metrics {
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key "name";
leaf name { type string; }
leaf map-name { type string; }
container open-metrics-metadata {
leaf help { type string; }
leaf type {
type enumeration {
enum Counter;
enum Gauge;
enum Histogram
enum Summary

enum Untyped

}
list labels {
key "name";
leaf name { type string; }

leaf value { type string; }

Metrics container

The metrics container represents the list of the exported metrics in the JSON

format; it contains:
1. name, the name of the metric

2. value, an object that follows the structure and content of the eBPF map linked
to the metric, expressed with the JSON format;

3. timestamp, a timestamp which indicates the time at which the metric has

been read from the eBPF map.

Listing 5.2: The metrics container

list metrics {
config false;
key "name";
leaf name {

config false;
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6 type string;

7 }

8 leaf value {

9 config false;
10 type string;

11 }

12 leaf timestamp {

13 config false;

14 type int64;

Open-metrics leaf

The open-metrics leaf represents the set of exported metrics in the OpenMetrics
format. This resource is a string that encapsulates the open-metrics-metadata of

each metric along with its name and its value.

Listing 5.3: The open-metrics leaf

1 leaf open-metrics {
2 config false;

3 type string;

5.6 Input data plane configuration

In order to configure the data plane of the VNF, a configuration has to be provided
to the control plane; this configuration consist in a JSON file that follows the struc-

ture of the Dataplane generated from the YANG model’s dataplane container.

A configuration file contains:
1. name, the name of the dataplane configuration
2. code, the eBPF code that must be injected in the Kernel

3. metrics, the list of metrics configurations

40



Architecture

In listing 5.4 we can notice that for each metric configuration there are three

Listing 5.4: Input dataplane configuration example

"name": "NTP Amplification probe",
"code": "\r\n#include <uapi/linux/ip.h>\r\n [...],
"metrics": [
{
"name": "ntp_packets_total",
"map-name": "NTP_PACKETS_COUNTER",

"open-metrics-metadata": {

"help": "This metric represents the number of NTP packets that has

traveled through this probe.",

"type": "counter",
"labels": [
{
"name": "IP_PROTO",
"value": "UDP"
br
{
"name": "L4",
"value": "NTP"

properties:

1

. name, the name of the exported metric

2. map-name, the name of the eBPF map which contains the value of the exported

metric

3. open-metrics-metadata, a set of metadata used to convert the content of the
eBPF map properly in the OpenMetrics format. This metadata include:
(a) help, a description which explains the meaning of the metric
(b) type, which indicates the type of the metric in the OpenMetrics format

(c) labels, custom key-value pairs attributes that will be attached to the

metric in order to enable the use of Prometheus’s dimensional data model.
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The example presented in listing 5.4 corresponds to a dataplane configuration
named "NTP Amplification probe"; this configuration contains an eBPF code
and a metric configuration which describes a metric that the service is able to
export. This metric named "'ntp_packets_total' is linked with the eBPF map
"NTP_PACKETS_COUNTER" which during the dataplane operation stores the value

of the metric.

5.7 Metrics

Metrics are exported in two formats to make the service as flexible as possible:

1. JSON: is capable of completely reproducing the structure of the eBPF maps
which are capable of containing complex structured data (C arrays, unions
and structs, also nested) as well as primitive data types (integers, doubles,

chars, etc ..);

2. OpenMetrics: a standard specifically designed for exposing metric data in the
context of Observability, used by monitoring systems (e.g., Prometheus). This
format is not able to represent complex data structures; hence only primitive

data types and arrays are exported.

In order to return the metrics in the above depicted formats, the service exposes
two main REST endpoints:

1. /metrics, which returns the collected metrics in the JSON format;

2. /open-metrics, which returns the collected metrics in the OpenMetric
format.

Thanks to the Polycube architecture, some other endpoints are generated to
allow the access to specific metrics and their fields:

1. /metrics/{metric-name}, which returns a single metric by providing its
name;

2. /metrics/{metric-name}/name, which returns the name of a selected
metric;

3. /metrics/{metric-name}/value, which returns the value of a metric;
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For example, to retrieve the metric ntp_packets_total declared in list-
ing 5.4, can be obtained by querying the control plane with a HT'TP request like

GET .../metrics/ntp_packets_total and an output like the following
would be returned:

{
"name": "ntp_packets_total",
"value": "1860",
"timestamp": 1583893571617726
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Implementation

As already described in the previous chapter, the chosen architecture is the one which
involves the use of a generic control plane capable of managing any monitoring eBPF
code injected into the data plane. This chapter aims to provide implementation
details for the aforementioned architecture and it divided into sections that analyze
the various elements that compose the solution. Finally, it will discuss the structure
of a user-friendly tool created to facilitate the deployment of the service and the
dynamically injection of monitoring eBPF code into it. The source code of the
solution can be found on the main GitHub repository of the Polycube framework

11].

6.1 Used languages

For the implementation of the architecture, the main language used was C++,
a choice forced by the fact that the entire Polycube framework is written using
this language. A second language used was YANG, necessary for the creation of a
service model for the automatic generation of the basic code structure. A third

language uses is Python, for the creation of the user-friendly tool aforementioned.
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6.2 Implementation workflow

This section explains which steps were needed to implement the solution.

To create a new service in the Polycube framework it is first necessary to define
a YANG model which declaratively describes each individual resource present in
the service structure.

Since the structure of the YANG model has been explained in the previous
chapter, this section is limited to explaining the role of the YANG model in the

implementation of the service.

In the Polycube framework, the polycube-codegen[12] tool is used to generate
the basic source code to speed up the implementation of the service.

This tool receives the YANG model of the service as input and generates all
the main classes which corresponds to the resources present in the YANG tree as

output.

> >

Source code

Figure 6.1: Code generation pipeline

Once the basic source code is generated, it can be modified and extended to

implement the functionality of the service.

The generated source code is composed by the following classes:
1. Dataplane
2. DataplaneMetrics

3. DataplaneMetricsOpenMetricsMetadata
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4. DataplaneMetricsOpenMetricsMetadatal.abels
5. Dynmon

6. Metrics

Several other classes are generated to provide the service’s REST interface APIs,
the deserialization of the objects received from the interface and the serialization

of objects sending responses in the JSON format.

In a second phase, it has been produced the source code that implements the
functionalities of the Control Plane, such as:

1. the reception and the storing of the data plane configuration;
2. the eBPF code injection at runtime;
3. the extraction the information present in the eBPF maps;

4. the transformation of the extracted data into the two supported formats.

A third phase concerned the creation of eBPF monitoring code for real use

cases to respond to the requests of the ASTRID project and to validate the solution.

The last phase was about the creation of a user-friendly tool named Dynmon
Injector which allows the instantiation of a dynmon service on a target machine
and the injection of a dataplane configuration without dealing with the Polycube

command line interface.

6.3 Main classes

As explained in the previous section, the generated classes reflect the structure
of the node tree present in the YANG model. Since the main structure is a tree,
each class represents a node and contains all the properties of the node itself and
references to its children nodes though the use of C++ shared pointers. Each
generated class receive in its constructor a configuration object which may contain

a value for any property of the class itself; this is mainly used by this service to be
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instantiated with a pre-defined configuration which has to be applied to initialize

the service.

Dynmon Class

The Dynmon class represents the entry point of the service: it actually contains
the logic that represents the Control Plane of the service.

This class contains a shared pointer to a Dataplane object which represent
the current dataplane of the VNF. This object is allocated when a data plane
configuration is received from the REST interface or during the creation of the
service itself if a configuration is provided.

The methods of the Dynmon class are linked to the service REST API and
they mainly perform the functions necessary for receiving a configuration for the

dataplane and for exporting the collected metrics.

Dataplane Class

The Dataplane class represents the configuration of the dataplane: it stores the
eBPF code and the metrics configurations. The metrics configurations are used to
identify the eBPF maps to be exported and to store the metadata needed for the
translation of the metrics in the OpenMetrics format.

By default, when the service is instantiated without a provided configuration, a
predefined configuration is generated where the eBPF code does no-inspection on
the network traffic and no metrics are exported. As this class has been generated
by the codegen tool [12], the constructor receives a conf object which may contain a
non-default configuration. In this case, the configuration is retrieved by the conf
object and stored. The getMetricsList method of this class returns the saved

metrics configurations.

MapExtractor Class

The MapFExtractor class is responsible for the extraction of the content of a eBPF
map at runtime. This class offers the static method extractFromMap that re-

ceives a reference to the service whose dataplane has instantiated the map, the
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name of the map and other parameters used to find the map in the set of eBPF
injected chains. The output of this method is a JSON object which represent the

content of the requested map.

More about how the maps content is extracted is explained in Section §6.5.

a R

getMetricsList ()
_
GET metrics
4>
g metrics
«— extractFromMap ()
e
—

\ Control Plane J

Figure 6.2: Main classes

6.4 Data plane configuration injection

As explained previously, the core aspect of this service is the capability to change
the behavior of the data plane during operation by injecting different eBPF code

in the Linux Kernel at runtime.

This capability exploits the use of the reload method exposed by the BaseCube
class from which the Dynmon class derives; this method is responsible for replacing

the eBPF code executed in the kernel hook to which the service is attached to.

When a dataplane configuration is sent to the service control plane, the eBPF
code it contains is passed as a parameter to the reload function. The reload
method tries to inject the new code in the kernel hook and, if the kernel’s eBPF
verifier considers it correct, the injection is successful and the eBPF code immedi-

ately starts running, analyzing the new packets which reach the service.
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If the kernel’s eBPF verifier rejects the eBPF code, an exception is raised, the

dataplane configuration is rejected and the previous configuration is restored.

Once the new dataplane Configuration is injected, the service is able to export

the new configured metrics automatically without any other required action.

user space | kernel space
;

Dynmon <i> :>
Control Plane i

Data plane
configuration

Figure 6.3: Data plane configuration injection

6.5 Data extraction

One of the main features of this service is the capability to export the content of

eBPF maps in a lightweight data-interchange format: JSON.

The data extraction from the eBPF map is performed by a component called
MapFEztractor. This component exploits the use of the TableDesc class, a class

provided by the BCC library which describes how a eBPF map is built.

The TableDesc object of a map is obtained by calling the get_table_desc
method exposed by the BaseCube class from which the Dynmon class derives.

A TableDesc object contains a property called leaf desc, a JSON object which
describes the structure of the entries of the eBPF map. This JSON object has a
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predefined tree structure to represent C structs, unions, arrays, enums and primitive
types (such as int, char, double, unsigned long long and so on). The

structure of this object is different for each one of the aforementioned C data types.

In order to extract the content of a eBPF map, the leaf desc object is parsed
recursively to cast the memory block of the map’s entries accordingly to their
structure. The parsing recursion of the leaf desc JSON object first recognizes it as
one of the aforementioned C data types, then calls the corresponding extraction
method that will cast the memory block of a map entry to extract the contained
value.

Since in the leaf desc object structs and unions have nested data types for each

one of their fields, the recursive method is called on each of them.

MapExtractor JSON

Figure 6.4: Map extraction pipeline

The static extractFromMap method of the MapFEztractor class is the one
used by the Dynmon class to get the content of an eBPF map. This method obtains
the TableDesc object corresponding to a eBPF map and calls, for each map entry,
the recursive extraction method recExtract. The obtained objects are grouped

in a single JSON which is returned as output.
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The static recExtract method of the MapEztractor class is the recursive
method which identifies the type of a node obtained from a TableDesc’s leaf desc

tree and calls the corresponding extraction method.

The extraction methods used to parse the memory blocks of the maps entries

are:

1. valueFromStruct: parses a memory block corresponding to a C struct
and produces a JSON object which represents the struct as a set of key-value
pairs where the keys are the names of the struct properties and the values are

the results of the memory casting operation.

2. valueFromUnion: parses a memory block corresponding to a C union;
The real type of the union is decided by the program which is using the union
and cannot be known at runtime so the memory corresponding to the union
value is here parsed as each possible type the union contains in order to let
decide who uses the union how to handle its value. This method produces
a JSON object which represents the union value as a set of key-value pairs
where the keys are the names of the possible types and the values are the

results of the memory casting operation.

3. valueFromEnum: parses a memory block corresponding to a C enum and
produces a JSON object which represents the enum. The casting operation
will look at the value stored in the memory block and will transform it into

the name of the corresponding enum field as a string.

4. valueFromPrimitiveType: parses a memory block corresponding to a C
primitive type (e.g., int, uint, float, double, char, etc...) and produces
a JSON object which represents the value resulting from the memory casting
operation. For each primitive type supported by eBPF, a corresponding string
name is contained in the leaf desc JSON object (e.g., unsigned long
long, signed char, etc..). The casting operation will use this string to

cast the memory block correctly and return the contained value.
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Here we show some examples that explain how the various data types are

represented in the leaf_desc object.

"mystruct",
union mystruct{ [
uinté4 t propertyl; ["propertyl", "unsigned long long"],
char property2; [:::::> ["property2", "char long "]
} 1,

"struct packed"

Figure 6.5: C struct to leaf desc JSON

"myunion",
union myunion{ [

uint64 t typel; ["typel", "unsigned long long"],
char type2; ["type2", "char"]

} 1,

"union"

Figure 6.6: C union to leaf desc JSON

enum myenum/{ "myenum",
TCP, UDP |:> ["TCP", "UDP"],

} "enum"

Figure 6.7: C enum to leaf desc JSON
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6.6 Metrics export

The collected metrics remain saved in the corresponding eBPF maps throughout
the life cycle of the control plane. During the operation of the service, the control
plane accesses the maps only when the REST endpoints that return their content

are contacted.

When the /metrics endpoint is reached by a GET HTTP Request, the
getMetricsList method of the Dynmon class is called; this method first gets
the metrics configurations from the dataplane configuration, then, for each ex-
portable metric, extracts the corresponding eBPF map content by calling the static
extractFromMap method of the MapFExtractor class. For each extracted metric
a Metric object is created and the set of metrics is returned as a JSON in response
to the HT'TP Request.

Listing 6.1: JSON metrics output example

"name": "ntp_packets_total",
"value": "1860",

"timestamp": 1583893571617726

"name": "ntp_mode_private_packets_total",
llvalue": "3"’

"timestamp": 1583893571617762

Similarly, when the /open-metrics endpoint is reached by a GET HTTP
Request, the getOpenMetrics of the Dynmon class is called and the same metrics
extraction process is performed but, instead of producing a JSON object containing
the set of metrics, the extracted metrics are transformed in the OpenMetrics format
using the OpenMetricsMetadata data present in the metrics configurations stored
in the dataplane configuration. The result of this operation will be a string
which contains all the extracted metric. This string is then returned as Response

to the HT'TP Request.
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Since the OpenMetrics format is able to represent only numeric values, only
metrics with a numeric value type can be exported with this format. If an eBPF
map corresponding to a exportable metric contains a set of values, the service
generates a metric for each entry of the map, concatenating the entry index to the

metric name.

Listing 6.2: OpenMetrics metrics output example

#HELP ntp_packets_total This metric represents the number of NTP packets
that has traveled trough this probe.
#TYPE ntp_packets_total counter

3 ntp_packets_total {IP_PROTO="UDP", L4="NTP"} 1860 1583893571

5 #HELP ntp_mode_private_packets_total This metric represents the number of NTP

packets with MODE = 7 (MODE_PRIVATE) that has traveled trough this probe.
#TYPE ntp_mode_private_packets_total counter

7 ntp_mode_private_packets_total{IP_PROTO="UDP", L4="NTP"} 3 1583893571

6.7 Dynmon injector tool

The Dynmon Injector tool is a Python REST client which communicates to a Poly-
cube daemon running on a target machine to facilitate the creation of a Dynmon
service instance and the injection of a dataplane configuration on a target machine
without dealing with the Polycube command line interface. The tool has been
developed mainly because the Polycube command line interface does not support

the insertion of complex data input like the dataplane configuration.

The tool receives in input:
1. cube name: name of the dynmon instance to handle;
2. interface: name of the network interface to which attach the service;

3. path_to_dataplane: path to a JSON file which represent a dataplane configu-
ration which has to be injected on the target instance.

By default the tool tries to connect to a Polycube daemon running on localhost]|
and listening on port 9000; a different address and port configuration can be pro-

vided by using two optional input parameters.
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When the tool is lauched, it checks if a dynmon instance with the provided
name already exists: if it does, the tool checks if the cube is attached to a different
network interface compared to the specified one; in case this condition is verified,
it detaches the existing cube instance to the previous interface and attaches it to
the new interface. If a service instance with the provided name does not exist, a

new instance is created and attached to the specified network interface.

Finally the provided dataplane configuration is sent to the service instance

control plane.

Figure 6.8 shows a flowchart which summarises the tool behavior.
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Figure 6.8: Dynmon Injector workflow

56



Chapter 7

Results

This chapter analyzes the performance of the proposed architecture and the goodness
of the implemented solution.

Two types of validations were performed: the first concerning the prototype’s
performance in performing the functions for which it was designed; the second,
based on the measurements of performance overhead on the monitored host in
terms of network throughput degradation. The first vaidation is performed through
the measurement of the times necessary for the injection of different dataplanes at
runtime and those necessary for the extraction of the contents of the maps eBPF.
The second validation is performed through the use of the iperf3 tool [13].

All the tests have been run on an Ubuntu Server 18.04.3 LTS, kernel 4.15.0-
88-generic x86_ 64 equipped with a Intel(R) Xeon(R) CPU E3-1245 v5 3.50GHz
processor (four cores plus hyper-threading, 8MB of L3 cache), 32GB DDR4 RAM,
with a installed Polycube distribution aligned to the Polycube repository master

branch at commit df3cl6e.

7.1 Injection of monitoring code

In order to test the performance of the service in terms of speed in the injection of
a new dataplane at runtime, several measurements were made in which eBPF codes

is provided which uses an increasing number of eBPF maps. The time required for
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the injection of new code is in fact linked to the number of eBPF maps that must

be created within the kernel.

In a first measurement the maps declared in the eBPF code are maps with a
single entry of type uint64_t, in a number ranging from one to one hundred. A
second measurement replaces the previous maps with maps of 10k entries of type
uint64_t, still in a number ranging from one to one hundred. The size of the
code injected in each test includes N lines of code dedicated to the declaration of
maps (where N is the number of declared maps) and three lines of code for the
handle_rx function which takes no action on the received packets. During the
tests the service has not been attached to any network interface in order to have

no interference on the access to the map by the dataplane.

150 ms

125 ms
= 100 ms
2 75 ms
§ M 1 entry

= 50 ms M 10k entries
25 ms
0 ms

1 5 10 50 100

Number of defined maps

Figure 7.1: Dataplane injection time

From the graph in figure 7.1 it is possible to notice that the size of the eBPF
maps that are created during the injection process does not affect the injection

time while the number of maps that are created, does.
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7.2 Extraction of collected metrics

In order to test the time spent by the service to extract the content of the eBPF
maps it has been created a dataplane configuration in which multiple eBPF maps
with different structures are defined. The structures of the eBPF maps used
in this test follow the structure of Ethernet frames headers, IP headers, TCP
headers and UDP headers, plus a simple uint64_t value type. For each one of
the aforementioned structures maps of 1, 10, 100, 1k and 10k entries have been
defined. The tests have been performed without attaching the service to a network
interface to eliminate delays due to concurrent access to the eBPF maps by the
dataplane.

The following chart depicts the result of this tests; the extraction time axis is
in a base 10 logarithmic scale in order to facilitate the reading of the data and
to better see how the extraction time grows proportionally to the number of map
entries.
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Figure 7.2: Maps extraction time
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Number of map entries

1 10 100 1000 10000
uint64_t 53 us 93 us 474 us 4203 pus 41354 pus
ETH HDR 134 ps 532 s 4324 us 41439 ps 417362 s
325 us 1549 ps 13415 ps 130870 ps 1305696 ps

Map entry content

298 us 1325 ps 11722 ps 117415 ps 1179823 ps
UDP_HDR 177 ps 649 ps 5067 ps 49529 ps 499384 us

Figure 7.3: Test results

Extraction time with traffic flow

This tests aim at evaluating the cost of the concurrent access to the map from
both dataplane (which produces data) and the control plane (which reads it and
deliver on connected clients). In fact, the kernel has the precedence over control
plane, given that it runs at higher privilege. Therefore, particularly in presence of
large traffic, we expect that the control plane access to the map is considerably
delayed, with the consequent impact in reading the data. Finally, it is worth
noticing that the access time to a single entry may have a huge impact in case of
large tables, as the total amount of time for reading all the data can be in the order
of seconds, which results in a possible non-coherence of the data read returned by
the dataplane.

The tests have been performed by creating a dataplane configuration where
the eBPF code saves in a eBPF maps a data structure for each TCP session it
discovers. A map entry contains the source and destination IP address, the source
and destination port and a counter of packets traveled through a TCP session.

The iperf3 has been configured to generated traffic using only one tcp session in
order to maximize the concurrent access to the eBPF map by the dataplane and

the control plane.
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Figure 7.4: Testing setup

The iperf3 client and server have been instantiated in two different Linux names-
paces, connected by a virtual link. The Polycube daemon has been instantiated in
the same namespace of the iperf3 server and an instance of the Dynmon service
has been attached to the virual interface of this namespace.

In these tests the bandwidth parameter of the iperf3 client has been used to
generate traffic from 1 Mbps to 100 Gbps. In order to measure the maximum
achievable throughput by the physical machine on which these tests are run, a
preliminary test has been done setting the iperf3 bandwidth cap to 100 Gbps
without having the Dynmon service instantiated. A maximum value of 72.2 Gbps

has been measured.

Iperf3 bandwidth

0 Mbps 1 Mbps 10 Mbps | 100 Mbps 1 Gbps 10 Gbps | 100 Gbps

Extraction
time

308 ps 313 ps 316 ps 320 us 344 ps 358 us 368 us

Figure 7.5: Extraction time results
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Iperf3 bandwidth

1 Mbps 10 Mbps | 100 Mbps 1 Gbps 10 Gbps | 100 Gbps

Achieved
throughput

983 Kbps |9.29 Mbps | 91.4 Mbps | 986 Mbps | 9.68 Gbps | 66.7 Gbps

Figure 7.6: Throughput results
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Figure 7.7: Maps extraction time with incremental throughput

These tests confirm what was expected: with lower network traffic the effects of
the concurrent access on the eBPF maps by the dataplane and the control plane
are reduced. Moreover, it is clearly proven that with higher network traffic the
access to the eBPF maps of the control plane suffers a delay due to the lower access

privileges.
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Conclusions

The proposed solution has shown promise and could have uses that go beyond
integration with the ASTRID project, since at the moment there are not many
alternative tools that can offer the possibility of injecting eBPF code directly into

the kernel to inspect and manipulate the network traffic in a quick and easy way.

8.1 Possible improvements

At the end of the work, many possible improvements were thought of.

By delving deeper into the BPF ecosystem, an alternative method was found to
dump the contents of the eBPF maps. This method consists of exploiting BTF
(BPF type format), a metadata format that encodes debug information related to
BPF program and maps. This method already used by bpftool[14], a tool which
allows to analyze varied information on BPF programs and maps already injected
into the kernel, through a simple command line interface. The use of BTF would
greatly simplify the logic of extracting data from maps, significantly improving the

performance of the service.

Another important improvement to the service can be the enabling of the
injection of multiple codes of data planes in cascade which would allow the addition

of monitoring code in a modular way without replacing the code already injected.
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Furthermore, the dataplane of the virtual network function currently only acts on
the incoming traffic of the interface to which it is connected, while the outgoing
traffic is not considered.

The addition of a second pipeline for outgoing traffic would therefore allow you
to monitor different parameters on incoming and outgoing packets, enabling more

complete traffic analysis.

As for as the metrics exported in OpenMetrics format, not all possible metrics
types are currently managed; a necessary improvement would be to give full support
to the OpenMetrics standard, allowing to export metrics of the Histogram and

Summary types.

In addition to the work already implemented and the possible improvements
listed above, the theme of how to provide the service with monitoring codes ready
to be injected starting from the monitoring policies to be applied remains open.
A continuation of the work carried out could be the creation of a service that
is capable of automatically generating the eBPF codes and the metadata that
make up the structure of the dataplane to be injected, starting from an abstract

description of the network parameters to be monitored.
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