
POLITECNICO DI TORINO

Master degree in Computer Engineering

Master Thesis

Semantic Simultaneous
Localisation based on

deep-learning algorithm,
Mapping and Tracking

Supervisors
prof. Berger Cyrille
prof. Caputo Barbara

Alberto Giacomini

April 2020

Semantic Simultaneous Localization based on deep-learning al-
gorithm, Mapping and Tracking

Master thesis. Politecnico di Torino, Turin.

© Alberto Giacomini. All right reserved.
April 2020.

Acknowledgements

I would like to thank my two supervisors Cyrille and Barbara, for their
guidance through each stage of the process and for the patience towards me.
With them, all the guys from the lab and from the department in Linköping
because they treat me like one of them and they gave me all the support I
needed. All the people I met while I was far from Italy because each of them,
with its stories and the moments shared together, has left something positive
in me and they allowed me to have a second family far from home.

Ora vorrei ringraziare chi più di tutti ha sempre creduto in me, i miei genitori
e la mia famiglia. Grazie perchè ci siete sempre stati e grazie perchè mi avete
sempre spronato ad arrivare dove sono ora, chi in un modo e chi in un altro,
senza avermi mai fatto pesare nulla. Ho sempre potuto contare su di voi
come esempi e modelli da seguire. Grazie anche ai miei amici e a coloro
che mi hanno accompagnato in questi anni e con cui ho vissuto momenti
indimenticabili, supportandomi e sopportandomi per qualsiasi cosa. Grazie
ai miei coinquilini e ai nuovi amici che ho conosciuto a Torino perchè con
voi non ho sentito la distanza da casa. Grazie a Giulia, perchè con lei ho
condiviso la maggior parte del mio percorso finale, attraversando parecchi
momenti facili e difficili raggiungendo diversi obiettivi universitari e non, ma
sempre con il suo supporto al mio fianco.

Grazie di cuore a tutti, perchè ognuno di voi ha lasciato un tassello impor-
tante di se, in me. Contribuendo così a formare la persona che sono ora.

i

Abstract

During the last few years, the area of greatest development has been that
of Artificial Intelligence (AI), given the fact that it is applicable in the vast
majority of situations that also involve those of daily life. The field in which
it is applied by us is the robotic one where, a fundamental point, is the
perception of the environment by the robot. The problem that has been
analyzed is the Simultaneous Localisation And Mapping (SLAM) which has
been addressed through the integration of deep-learning algorithms such as
object detection. In this thesis is analyzed and compared the state of the
art of those algorithms and is given a solution as robust as possible to the
problem stated above.

ii

iii

Contents

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 2
1.3 Research questions . 2

2 Basic concepts of Artificial Intelligence and Machine Learn-
ing 3
2.1 Artificial Intelligence . 3
2.2 Machine Learning . 4
2.3 Deep Learning . 5

2.3.1 Neural Networks’ basics concept 5
2.3.2 CNN - Convolutional Neural Network 12

3 State of the Art 18
3.1 You Only Look Once . 18

3.1.1 Model . 19
3.1.2 Architecture . 19
3.1.3 Training . 20

3.2 Residual Network . 22
3.2.1 Model . 22
3.2.2 Implementation . 24

4 Robot Operating System 26
4.1 Characteristic . 26
4.2 Components . 26

4.2.1 Ros Visualization . 27

iv

4.2.2 Transform Library . 27
4.3 Programming languages . 27

5 Simultaneous Localization and Mapping 28
5.1 Problem definition . 28
5.2 Probabilistic SLAM . 30

5.2.1 Structure of Probabilistic SLAM 30
5.2.2 Solution to the probabilistic SLAM 32

5.3 Graph-based SLAM . 33

6 Tracker 35
6.1 Speeded-Up Robust Features and Fast Library for Approxi-

mate Nearest Neighbors . 36
6.2 FLANN algorithm functionality 38
6.3 Perceptual Hash . 39

7 Ground Robot - HUSKY 41
7.1 Ground Vehicle . 42
7.2 Robot Arm . 43
7.3 Depth Camera . 44

8 Method 46
8.1 Object Distance . 46

8.1.1 Pre-study . 46
8.1.2 Implementation . 48
8.1.3 Evaluation . 49

8.2 Vector Pose Observation . 50
8.2.1 Implementation . 50
8.2.2 Evaluation . 51

8.3 Feature State Printer . 51
8.3.1 Implementation . 51
8.3.2 Evaluation . 52

9 Test and Results 53
9.1 Test 1: Label accuracy . 54
9.2 Test 2: Reliability of detections 55
9.3 Test 3: Tracker . 57
9.4 Test 4: Object distance . 57

10 Conclusions and Future works 65

v

List of Figures

2.1 Perceptron . 5
2.2 Multilayer Perceptron . 6
2.3 Learning process NN . 6
2.4 Sigmoid Function . 7
2.5 ReLU function. 10
2.6 Dropout in a Neural Network. 11
2.7 Examples of our selective search application 13
2.8 Object detection system overview 13
2.9 Fast R-CNN architecture . 14
2.10 Region Proposal Network (RPN) 15
2.11 Faster R-CNN process . 16
2.12 Overall architecture of R-FCN 16
2.13 Example of R-FCN . 17

3.1 YOLO Model. 20
3.2 YOLO Architecture. 20
3.3 ResNet building block. 23
3.4 Architectures for ImageNet. 25

5.1 SLAM problem. 29
5.2 Landmarks network. 32
5.3 Aspects of an edge. 34

6.1 Surf algorithm operation. 36

7.1 Ground robot. 41
7.2 Husky. 42
7.3 UR5e. 43
7.4 Intel® RealSense™ depth camera D435. 44

vi

List of Figures

8.1 The object’s centre and the label of it. The centre is repre-
sented by the effective centre and other pixels taken as shown
in the picture(white pixels). This choice lead to more accuracy
for the distance calculation. 49

8.2 Vector Pose Observations . 50
8.3 Vector Pose Observations . 51
8.4 Feature state printer . 52

9.1 YOLO’s frames. 54
9.2 YOLOv3 compare performances. 55
9.3 Sample comparison between YOLO (left) and ResNet (right)

detection algorithms. 60
9.4 ResNet’s frames. 61
9.5 Tracker. 62
9.6 Tracker failure. 63
9.7 RVIZ environment. Tracker on the right and what the robot

effectively see with the distance on the left. 64
9.8 Test n. 4. On the left, the output from ResNet detection

algorithm, in the centre the object distance from our algorithm
and on the left the position of the robot based on the IPS
measure. 64

vii

List of Tables

7.1 Camera specifications. 45

9.1 ResNet vs YOLO captures. 56
9.2 Table test 4.1. 58
9.3 Table test 4.2. 59

viii

Chapter 1

Introduction

1.1 Motivation

A key challenge in mobile robotics is the perception of the environment and
the availability of an accurate map allows for the design of systems that
can operate in complex environments only based on their on-board sensors
and without relying on external reference system (i.e. GPS). A lot of work
has been done on a subject called "Simultaneous Localisation And Mapping"
(SLAM). This problem asks if it is possible to construct or update a map
of an unknown location in an unknown environment while simultaneously
keeping track its location within this map.
In SLAM both the trajectory of the platform and the location of all land-
marks are estimated on-line without the need for any a priori knowledge of
location.
SLAM has been formulated and solved as a theoretical problem in several
different forms. Those techniques are quite well established in the case of
a static environment (i.e. no moving obstacles) and predefined landmarks.
The biggest problem is for the robot to decide what is static and what is
moving. In our project also what is a landmark and what is not. A possible
approach is to consider that everything is moving, and if after many itera-
tions, an object is not moving changing it to a static object. But this lead
to poor estimation of the robot position and lower the quality of the map.
What we would like is to investigate detecting if the object is likely to move
based on observation.
This observation is based on a set of cameras mounted on the machine. Con-
sidering that, a possible approach would be to use a real-time deep-learning

1

1 – Introduction

based image classifier to identify and classify objects in the environment. Af-
ter finding the class we can mark them as "moving object" or "static object",
as “landmark” and “not landmark” (i.e. a human is a moving object, and a
tree is static and possible landmark object).
Then, using a graph-slam approach, after process data, it would be possible
to build the map, localise the robot and track the moving objects.

1.2 Aim
This project aims to integrate, on a ground robot, an object detection algo-
rithm with a graph-SLAM approach in order to improve the map building
and the perception of the environment from the non-humane unity by the
combination of object tracking and object detection.

1.3 Research questions
The research questions we are aim to answer are:

1. Which between YOLO and RetinaNet is the best real-time object de-
tection CNN?

2. How is, the distance measurement through the camera affected, com-
pared to other instruments?

3. How it will affect, the implementation of the tracker, the full system.
How it can be correlated to the map building in the graph-SLAM ap-
proach?

4. How does the object detection approach will increase the accuracy level
of the map building in the graph-SLAM approach?

2

Chapter 2

Basic concepts of
Artificial Intelligence and
Machine Learning

The purpose of this chapter is to introduce basic helpful concepts to under-
stand the context of the thesis.

2.1 Artificial Intelligence
"The study is to proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it.” [1]

Artificial Intelligence (AI), theory and algorithms that enable computers to
mimic human intelligence. Such as the ability to reason, discover meaning,
generalize, or learn from past experience, AI is one of the newest fields in
science and engineering, coined after the World War II in 1956. [2]

After its foundation it was applied in different subfields from the proving
of mathematical theorems to a car driving through healthcare, video games
and military.

Different approches can be follow. Statistical methods, computational in-
telligence, and traditional symbolic. Many tools are used in AI, including
versions of search and mathematical optimization, artificial neural networks,
and methods based on statistics, probability and economics. The AI field

3

2 – Basic concepts of Artificial Intelligence and Machine Learning

draws upon computer science, information engineering, mathematics, psy-
chology, linguistics, philosophy, and many other fields.

After its foundation[1] several philosophical discussion were raised on the
ethics of using AI to simulate human thought by creating artificial beings.
These have been explored by myth, fiction and philosophy. Some people also
consider AI dangerous to humanity if it progresses without control.

2.2 Machine Learning

We are entering the era of big data. For example, there are about 1 tril-
lion web pages[3]; one hour of video is uploaded to YouTube every second,
amounting to 10 years of content every day 2; the genomes of 1000s of peo-
ple, each of which has a length of 3.8× 109 base pairs, have been sequenced
by various labs; Walmart handles more than 1M transactions per hour and
has databases containing more than 2.5 petabytes (2.5×1015) of information
(Cukier 2010) and so on.

This deluge of data calls for automated methods of data analysis, which
is what machine learning provides.[4]

ML is a subset of AI that includes statistical techniques enabling machine
to improve tasks with experience.

It is usually divided into two main types:

1. Predictive or supervised learning: the goal is to learn a mapping from
inputs x to outputs y, given a labeled set of input-output pairs D =
{(Xi, Yi)}Ni=1. Here D is called the "training set", and N is the number
of training examples;

2. Descriptive or unsupervised learning approach. Here we are only given
inputs, D = {xi}Ni=1, and the goal is to find “interesting patterns” in the
data, sometimes called knowledge discovery. This is a much less well-
defined problem, since we are not told what kinds of patterns we have to
look for, and there is no obvious error metric to use (unlike supervised
learning, where we can compare our prediction of y for a given x to the
observed value).

4

2 – Basic concepts of Artificial Intelligence and Machine Learning

2.3 Deep Learning
Since the beginning of the AI, the subject solved and faced with problems
that are intellectually difficult for human beings, but relatively simple for
computers. A real challenge for AI are problems that are easy for people to
perform but hard for people to describe formally, problems that we usually
solve intuitively, that feel automatic, like recognize faces or spoken words.

One solution to these problems is to allow computers to learn from expe-
rience and understand the world in terms of a hierarchy of concepts, with
each concept defined in terms of its relation to simpler concepts.

The hierarchy of concepts allows the computer to learn complicated con-
cepts by building them out of simpler ones. If we draw a graph showing how
these concepts are built on top of each other, the graph is deep, with many
layers. For this reason, we call this approach to AI deep learning. [5]

2.3.1 Neural Networks’ basics concept
In order to understand what a CNN is, it is important to know some basic
concepts.

Perceptron

The perceptron (2.1) takes for input different binary values x1, x2, ..., xn
and produce a single binary output y.

Figure 2.1: Perceptron

Rosenblatt, in 1958 introduced some little rules in order to evaluate the
output by the introduction of weights by matching input value xj, to a weight
wj, a real value that represents the importance of input xj in the calculation
of y.

y can assume values included between 0 and 1 following this formula:
y =

{
0 if

∑
iwjxj ≤ threshold

1 if
∑
iwjxj > threshold

}

5

2 – Basic concepts of Artificial Intelligence and Machine Learning

One single perceptron cannot represent a robust decision-making model,
but a combination of them can take a complex decision based on the easiest
ones.

Figure 2.2: Multilayer Perceptron

In the network figure 2.2, more neurons are connected. The first column
or layer takes easy decisions producing results. These are processed by the
second layer that, weight the input, and can takes decision in a higher, ab-
stract and complex level. More convoluted is going to be the decision taken
by the third layer and so on.

Following this path, a perceptron’s network can solve complex problems.

Learning

The main purpose of the learning of a neural network is to adjust all the
weights in the different layers in order to have a proper output from the
network.

Figure 2.3: Learning process NN

6

2 – Basic concepts of Artificial Intelligence and Machine Learning

When we are designing a neural network, inputs corresponds to the first
layer of neurons whose outputs are the same input values. If small changes in
the weight, corresponds to small changes in the output, it would be possible
to use this capability to lead the network to the best behavior based on the
situation.

For example, if we have a neural network for the classification of images
that misclassify a dog image as a "cat" one, a little change on the weights
can lead the network to correct classification. This change is what we call
learning.

This does not happen with the neural network that contains perceptron;
in fact, a small change on the weight can bring the output to change from
0 to 1 and this change can lead to a large change in the behaviour of the
network. So even if the classification is correct; it is probable that every
other image is changed without control. For this reason, the sigmoid neuron
fits better the situation.

Sigmoid Neuron

Sigmoid neurons are similar to perceptrons, but modified so that small changes
in their weights and bias cause only a small change in their output. This fact
will allow a network of sigmoid neurons to learn.

Figure 2.4: Sigmoid Function

The rappresentation of a sigmoid neuron is the same as a normal neuron
but the inputs can take any value between 0 and 1. Also like the perceptron,
it has weights(w1, w2, ...) and overall bias b. But the output is not 0 or 1

7

2 – Basic concepts of Artificial Intelligence and Machine Learning

but follow this function called Sigmoid Function:

σ(z) = 1
1 + e−x

(2.1)

y = 1
1 + e−(wTx+b) (2.2)

Suppose z = w · x + b is a large positive number. Then e− z ≈ 0 and so
σ(z) ≈ 1. In other words, when z = w ·x+ b is large and positive, the output
from the sigmoid neuron is approximately 1, just as it would have been for
a perceptron. Suppose on the other hand that z = w · x+ b is very negative.
Then e− z →∞, and σ(z) ≈ 0. So when z = w · x+ b is very negative, the
behaviour of a sigmoid neuron also closely approximates a perceptron. It’s
only when w · x + b is of modest size that there’s much deviation from the
perceptron model.

Backpropagation

In the Multi-Layer Perceptron (MLP) the presence of multiple layers of con-
nection imply the use of special weight correction techniques. In the feed-
forward network is used the Backpropagation. We identify two phases:

1. Signal propagation [IN -> OUT]

2. Error propagation [OUT -> IN]

Considering a generic network, three types of neurons are identified :

• xk -> Input layer;

• aj -> Hidden layer;

• yi -> Output layer;

and two level of connection:

• Wjk -> Connection between xk e aj;

• VIj -> Connection between aj e yi;

During the first phase (signal propagation):

• Is presented the µ-th xµ;

8

2 – Basic concepts of Artificial Intelligence and Machine Learning

• The hidden layers receive the input
hµj =

∑
k

Wjkx
µ
k

and they produce the output:
aµj = g(

∑
k

WJKx
µ
k)

• The output layers receive the input
hµi =

∑
j

Vija
µ
j =

∑
k

Vijg(
∑
k

Wjkx
µ
k)

and they produce the output(assuming the same activation function):
yµi = g(

∑
j

Vija
µ
j) = g(

∑
j

Vijg(
∑
k

WjKx
µ
k))

While in the second phase (error propagation):
• The error function is calculated

E = 1
2
∑
µi

(dµi − y
µ
i)2

= 1
2
∑
µi

[dµi − g(
∑
j

Vijg(
∑
k

WjKx
µ
k))]2

• Is applied the gradient descent for the first connection layer

∆Vij = −η δE
δVij

= η
∑
µ

(dµi − y
µ
i)g′(hµi)aµj

= η
∑
µ
δµi a

µ
j

with
δµi = (dµi − y

µ
i)g′(hµi)

• Is applied the gradient descent for the second connection

∆Wjk = −η δE

δWjk
= −η

∑
µ

δE

δaµj

δaµj
δWij

= η
∑
µi

(dµi − y
µ
i)g′(hµi)Vijg′(hµj)xµk

= η
∑
µi

δµi Vijg
′(hµj)xµk

= η
∑
µi

δµi x
µ
k

9

2 – Basic concepts of Artificial Intelligence and Machine Learning

with
δµj = g′(hµj)

∑
Vijδ

µ
i

In the case of multiple hidden layers, the error is propagated until the input,
updating layer after layer each weight vector.

Rectified Linear Unit - ReLU

In the previous chapter, it can be observe that we need to derivate the ac-
tivation function. If we derive the sigmoid function sigma (x) we could see
that we will obtain, for x that goes to + and - infinite, a gradient that goes
to zero. This means that ∆Wij goes to zero and the backpropagation does
not converge. This problem is known as the vanishing gradient. To partially
solve this problem is introduced the activation function ReLU.

Is defined as the positive part of its argument:

f(x) = x+ = max(0, x)

where x is the input to a neuron.
With this function we can observe that the gradient is not equal to zero

for x that goes to infinite.

Figure 2.5: ReLU function.

10

2 – Basic concepts of Artificial Intelligence and Machine Learning

Dropout techniques

Deep neural networks are made by different connections between neurons. A
group of neurons is called a layer, some of them are hidden other are visible.
The dropout technique aims to face the overfitting problem by dropping out
some of these neurons. More easily the dropout randomly ignores some neu-
rons during the training phase. This means that some of them are randomly
not considered during the forward or backward propagation.

(a) Standard Neural Network. (b) After applying dropout.

Figure 2.6: Dropout in a Neural Network.

By dropping a unit out, we mean temporarily removing it from the net-
work, along with all its incoming and outgoing connections as shown in figure
2.6. The choose of which unit cut, as already said, is random. The probabil-
ity p is fixed or chosen using a validation set. Typically a good fixed value
is 0.5, close to optimal for a wide range of networks and tasks. For what
concern input units the optimal probability is more closer to 1 than 0.5. [6]

Data Augmentation

Sometimes we do not have so many data in our dataset. So, it could be
difficult to train or have a good performance in our neural network. The
data augmentation tries to help with this problem by adding more data on
the dataset by means of some mutation to the images, like flipping, rotation,
scaling etc.

11

2 – Basic concepts of Artificial Intelligence and Machine Learning

There are two different types of data augmentation based on different
application timing on the pipeline of my CNN:

1. Offline augmentation: is preferred for smaller datasets. Is applied be-
forehand, increasing the size of the dataset by a factor equal to the
number of transformations that are performed;

2. Online augmentation or augmentation on the fly: is performed on a
mini-batch, just before feeding the machine learning model. Preferred
for larger datasets. Some machine learning frameworks have support for
online augmentation, which can be accelerated on the GPU.

The most popular techniques of data augmentation are:

• Scale: the image can be scaled outward or inward. The data augmenta-
tion factor is arbitrary;

• Crop: sampling the original image and resize the section to the original
image size. The data augmentation factor is arbitrary;

• Flip: can be applied horizontally and vertically. The data augmentation
factor goes from 2x to 4x;

• Rotation: only possible problem is that the rotation of the image may
not preserve the image size. Usually applied with 90° degrees angles.
The data augmentation factor goes from 2x to 4x;

• Translation: the translation is done moving the image along the X or
Y direction (or both). This is an excellent method because most of the
objects can be located almost anywhere in the image. This leads the
CNN to look everywhere. The data augmentation factor is arbitrary.

2.3.2 CNN - Convolutional Neural Network
The Convolutional Neural Network (CNN) is a feed-forward artificial neural
network. This use an architecture inspired to the organization of the animal
vision, whose neurons, overlapped, are stimulated from a specific region called
receptive field. The CNNs are inspired by biological processes and are a
variation of multi-layer perceptrons developed to use the pre-processing to
a minimum. They are used in different fields as image and video detection,
natural language recognition and bioinformatics.

12

2 – Basic concepts of Artificial Intelligence and Machine Learning

Region-based Convolutional Network (R-CNN)

This kind of approach is divided into two phases. The first begins with
the region search and then perform the classification on them. In order to
deal with the problem of selecting a huge number of regions [7] proposed
an alternative to exhaustive search where we use selective search to extract
object location.

Figure 2.7: Examples of our selective search application

It generates a sub-segmentation of the image to create many small regions.
Using a greedy algorithm, merges them with a hierarchical grouping, accord-
ing to a variety of colour spaces and similarity metrics, in a larger one. It
uses the generated regions to produce the final output region proposals.

Figure 2.8: Object detection system overview

A combination of selective search methods to detect region proposals and
deep learning to find out the object is represented by the R-CNN model [8].
Every region proposed from the algorithm is resized into a square and fed into
a convolutional neural network from which we extract a 4096-dimensional
feature vector as output. Those are now fed into an SVM to classify the
presence of the object into the proposed regions. The output vector is also
used by a linear regressor to adapt the shapes of the bounding box in order

13

2 – Basic concepts of Artificial Intelligence and Machine Learning

to reduce the localization errors for every region proposal.
The main problems with the R-CNN are related to the time; in fact:

• The network took a huge amount of time from to get trained;

• Around 47 seconds for every test images, so usless for real time classifi-
cation.

Fast Region-based Convolutional Network (Fast R-CNN)

Fast R-CNN is a develop of the previous algorithm still developed from Gir-
shick with the aim of reduce the time consumption related to the high number
of models necessary to analyse all region proposals is the Fast Region-based
Convolutional Network (Fast R-CNN)[9].

Figure 2.9: Fast R-CNN architecture

Following the architecture in the figure 2.9 a FastR-CNN network takes as
input a set of proposed object and an entire image instead of using a CNN
for each region proposals (R-CNN). In order to detect the Region of Interests
(RoI) a convolutional feature map is produced. For this purpose, the whole
image is processed with several convolutional and max-pooling layers. The
map’s size is then reduced using an RoI pooling layer and a feature vector
is extracted. Each feature vector is fed into a sequence of fully connected
layers. This is used to predict the observed object with a softmax classifier
and to adopt bounding box positions.

Faster Region-based Convolutional Network (Faster R-CNN)

The use of selective search to find out the region proposal is computationally
expensive. In order to eliminate this Shaoqing Ren et al.[10] have introduced
Region Proposal Network (RPN). This network is able to directly generate

14

2 – Basic concepts of Artificial Intelligence and Machine Learning

region proposal, predict bounding boxes and detect objects.

As the Fast-CNN a convolutional feature map is produced from the input
image. A features vector is obtained as an output of the sliding of a 3x3
window and is connected to two fully-connected layers, one for box-regression
and one for box-classification.

Figure 2.10: Region Proposal Network (RPN)

Multiple region proposals are predicted by the fully-connected layers. The
predicted region proposals(archor boxes) are then reshaped using a RoI pool-
ing layer which is then used to classify the image within the proposed region
and predict the offset values for the bounding boxes. This value is a thresh-
old score to keep only the relevant boxes. A Fast R-CNN model is powered
by the archor boxes and the feature maps.

The RPN, to be faster, it is fine-tuned on the PASCAL VOC dataset and
use a pre-trained model over the ImageNet dataset for classification. The
anchor boxes are used to generate region proposals used to train the Fast
R-CNN. All these steps lead to an iterative process2.11.

Region-based Fully Convolutional Network (R-FCN)

Based on the R-CNNmodel, the R-FCN adopt a two-stage detection strategy.
After the region proposal a classification of this region is compute.

The regions are extracted by the RPN. Given them they will be classified
from the R-FCN into object catregories and background. All the learnable
weight layers in the R-FCN are convulational and are computed in the entire
image.

15

2 – Basic concepts of Artificial Intelligence and Machine Learning

Figure 2.11: Faster R-CNN process

Figure 2.12: Overall architecture of R-FCN

In the last convolutional layer a bank of "k2 position-sensitive score maps"
is produced for each category. This bank correspond to a patial grid of kxk
relative positions. For example, with kxk=3x3, the 9 score maps encode
the cases of {top-left, top-center, top-right, ..., bottom-right} of an object
category2.13. In case that enought relative positions are activated, the vote
will be "yes" and therefore the object will be recognized.

16

2 – Basic concepts of Artificial Intelligence and Machine Learning

Figure 2.13: Example of R-FCN

17

Chapter 3

State of the Art

In this chapter are presented the two algorithms that, in the state of the art,
are the fastest and most performing object detection algorithm. YOLO(You
Only Look Once) and ResNet.

3.1 You Only Look Once
You Only Look Once (YOLO) is a real-time object detection alghoritm[11].
In a single evaluation bounding boxes and classes probability related to them
are done by a single neural network from full images.

Its detection performance are directly optimized by itself on full images.
Those are due to some aspects:

1. Easy pipeline of work because the detection is a regression problem;

2. Prediction making reasons. Since YOLO sees the entire image dur-
ing training and test time, not like sliding window and regio proposal-
based techniques, it encodes also contextual information about classes
and their appearance;

3. Generalizable representations of objects are learned.

Some accuracy problems belonged to YOLO in the first releases are now
increased in the latest.

18

3 – State of the Art

3.1.1 Model
The input image is divided into an SxS grid. The grid is responsible for the
detection of each object whose centre is into a cell.

Each grid cell predicts B bounded boxes and confidence scores for those
boxes. The score is related to how confident the model is that an object is
inside and the accuracy of that confidence. We can define it as:

Pr(Object) ∗ IOU truth
predict (IOU = IntersactionOverUnion1) (3.1)

The confidence of a no object detection should be zero.
Every bounded box has 5 predictions: x, y, w, h, confidence. Centroid

coordinates, width, height and confidence prediction(represents the IOU be-
tween the predicted box and any ground truth box).

Every grill cell has C conditional class probability conditioned on the fact
that contain or not an object.

Pr(Classi|Object) (3.2)

Only one set of class probability per grid cell is predicted to look at the
number of boxes B.

At test time:

Pr(Classi|Object) ∗ Pr(Object) ∗ IOU truth
predict = Pr(Classi) ∗ IOU truth

predict

(3.3)
the conditional class probability is multiplied by the individual box confi-

dence predictions which gives a class-specific confidence score for each box.
The result scores shows are how well the predicted box fits the object and

the probability of that class appearing in the box(figure 3.1).

3.1.2 Architecture
As already said the model is built as a convolutional neural network. The
output prediction about the probabilities and coordinates are developed after
the extraction, by the first layers, of features from the image.

24 convolutional layers followed by 2 fully connected layers using 1x1 re-
duction layers followed by 3x3 convolutional layers.

The final output of our network is the 7 x 7 x 30 tensor of predictions.

1Intersection over Union is an evaluation metric used to measure the accuracy of an
object detector on a particular dataset.

19

3 – State of the Art

Figure 3.1: YOLO Model.

Figure 3.2: YOLO Architecture.

3.1.3 Training

The convolutional layers are pre-trained on the ImageNet 1000-class compe-
tition dataset.

The final layer predicts bounding box coordinates and class probability.
In order to use low numbers (between 0 and 1), the width and the height are

20

3 – State of the Art

normalized. The founding box x and y coordinates are parameterized to be
offset of a particular grid cell location and so be bounded between 0 and 1.

All the layers, except for the last one that uses a linear activation function,
use the following leaky rectified linear activation:

θ(x) =
{
x, ifx > 0

0.1x, otherwise
(3.4)

The optimization is based on the sum-squared error in the output of the
model.

If any object is contained inside a grid cell bring the "confidence" scores
towards zero. A frequent consequence is overpowering the gradient from
cells that do contain objects. A possible result is model instability, causing
training to diverge early on. In order to manage this weakness, the loss
is increased from bounding box coordinate predictions and decreased from
confidence predictions for boxes that don’t contain objects.

YOLO predicts multiple bounding boxes per grid cell, but during the
training time, just one bounding box predictor is responsible for each object.
The strategy used is based on the highest current IOU with the ground truth,
a predictor is “responsible” for predicting an object.

Following the loss function we optimize during the training:

λcoord
S2∑
i=0

B∑
j=0

1obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2]

+ λcoord
S2∑
i=0

B∑
j=0

1obj
ij

[(√
wi −

√
ŵi

)2
+
(√

hi −
√
ĥi

)2]

+
S2∑
i=0

B∑
j=0

1obj
ij

(
Ci − Ĉi

)2

+ λnoobj
S2∑
i=0

B∑
j=0

1noobj
ij

(
Ci − Ĉi

)2

+
S2∑
i=0

1obj
i

∑
c∈classes

(pi (c)− p̂i (c))2 (3.5)

Where:

• 1obj
i : Indicate if an object is in cell i;

• 1obj
ij : Indicate that the jth bounding box predictor in cell i is "responsi-

ble" for that prediction;

21

3 – State of the Art

If an object is located into a grid cell the loss function penalizes classifica-
tion error for that cell. Also in a predictor is responsible for a ground truth
box the function penalizes bounding box coordinate error.

The network is trained for 135 epochs on the training and validation sets
from PASCAL VOC 2007 and 2012 with a batch size of 64, a momentum of
0.9 and a decay of 0.0005.

The learning rate is slowly raise from a rate of 10−3 to 10−2 and locked
for 75 epochs, then 10−3 for 30 epochs until 10−4 for 30 epochs.

In order to avoid the overfitting, extensive data augmentation and dropout
are used. After the first connection layer a dropout layer with rate =.5 pre-
vents co-adaptation between layer. For the data, augmentation is used ran-
dom scaling and translations of up 20% of the original image size. Exposure
and saturation of the image are randomly adjusted.

3.2 Residual Network
Residual Network (ResNet)[12] is a deep neural network based on the refor-
mulation of the layers as learning residual functions with reference to the
layer inputs. It aims to ease the training of the network.

The main problem of the deeper networks is that when they are able to
start converging, a degradation problem shows up. So on the increasing of
the depth, accuracy gets saturated and then degrades rapidly.

The algorithm introduces a deep residual neural network in order to correct
the degradation problem. For this purpose, each layer is lead to fit a desired
residual map.

In order to show the degradation problem and evaluate ResNet, we can
say that the network:

1. is easy to optimize but higher training error when the depth increase;

2. can experience accuracy gains from the depths increase and producing
good results;

3.2.1 Model
Consider an underlying mapping H(x) to be fit by a few stacked layers with
x as inputs to the first of this layer.

22

3 – State of the Art

If one hypothesizes that multiple nonlinear layers can asymptotically ap-
proximate complicated functions, then it is equivalent to hypothesize that
they can asymptotically approximate the residual functions, i.e., H(x)x (as-
suming that the input and output are of the same dimensions). So rather
than expect stacked layers to approximate H(x), we explicitly let these layers
approximate a residual function F (x) := H(x)−x. The original function thus
becomes F (x) + x. Although both forms should be able to asymptotically
approximate the desired functions (as hypothesized), the ease of learning
might be different.

In the case of optima identity mapping, in the residual learning reformula-
tion, the solvers can bring the weights of the multiple nonlinear layers toward
zero to approach identity mapping.

The residual learning is adopted every few stacked layers with building
blocks(figure 3.3) defined as:

y = F (x, {Wi}) + x (3.6)

With:

• x and y: input and output vectors of the layers considered;

• y = F (x, {Wi}): function that represents the residual mapping to be
learned;

x and F must have the same dimension, otherwise we can perform a linear
projection WS by the shortcut connection to match the dimensions:

y = F (x, {Wi}) +WSx (3.7)

The residual function F has a flexible form.

Figure 3.3: ResNet building block.

23

3 – State of the Art

Plain Network

The convolutional layers mostly have 3x3 filters and follow two simple design
rules:

1. for the same output feature map size, the layers have the same number
of filters;

2. if the feature map size is halved the number of filters is doubled so as to
preserve the time complexity per layer.

The downsamping is performed directly by convolutional layers that have
a stride of 2. The network ends with a global average pooling layer and a
1000-way fully-connected layer with softmax. The total number of weighted
layer is 34.

Residual Network

Based on the above plain network, shortcut connections are inserted(Figure
3.4) they turn the network into its counterpart residual version. The identity
shortcuts (Eqn 3.6) can be directly used when the input and output are of the
same dimensions. When the dimensions increase two options are considered:

[(A)]The shortcut still performs identity mapping, with extra zero en-
tries padded for increasing dimensions. This option introduces no extra
parameter; The projection shortcut in (Eqn 3.7) is used to match di-
mensions(done by 1x1 convolutions).

For both options, when the shortcuts go across feature maps of two sizes,
they are performed with a stride of 2.

3.2.2 Implementation
The image is resized with its shorter side randomly sampled in [256, 480] for
scale augmentation. A 224x224 crop is randomly sampled from an image or
its horizontal flip, with the pre-pixel mean subtracted. The standard colour
augmentation is used. Batch normalisation (BN) is adopted right after each
convolution and before activation. We use SGD with a mini-batch size of
256. The learning rate starts from 0.1 and is divided by 10 when the error
plateaus and the models are trained from up to 60x104 iterations. The weight
decay is 0.0001 and momentum is 0.9. We do not use dropout.

24

3 – State of the Art

Figure 3.4: Architectures for ImageNet.

25

Chapter 4

Robot Operating System

Robot Operating System (ROS) is a flexible framework for writing robot
software. It is an open-source, meta-operating system for robots that aims
to simplify the task of creating complex and robust robot behaviour across
a wide variety of robotic platforms.

4.1 Characteristic
It provides services like hardware abstraction, low-level device control, im-
plementation of commonly-used functionality, message-passing between pro-
cesses, and package management. It also provides tools and libraries for
obtaining, building, writing, and running code across multiple computers. A
set of processes inside of ROS can be represented in a graph as nodes that
can receive, send and multiplex messages coming and direct to other nodes,
sensors, and actuators. Even if the low level of latency of the operations
to control a robot, ROS is not a real-time operating system, but it is even
possible to integrate it with some real-time modules.

4.2 Components
In the ROS architecture software can be grouped into three categories:

1.2.1. Instruments to develop a publishing software based on ROS;

2. Libraries for ROS client processes like roscpp, rospy and roslisp;

3. Packages holding applications and codes that use one or more libraries
for ROS client processes;

26

4 – Robot Operating System

4.2.1 Ros Visualization
RVIZ is a ROS graphical interface, a three-dimensional visualizer used to
visualize robots, the environments they work in, and sensor data. It allows
users to visualize a lot of information, using plugins for many kinds of avail-
able topics.

4.2.2 Transform Library
TF plugin allows visualizing the positions and the orientations of all the
frames that compose the TF Hierarchy.

TF is a package that lets the user keep track of multiple coordinate frames
over time. TF maintains the relationship between coordinate frames in a
tree structure buffered in time and lets the user transform points, vectors,
etc between any two coordinate frames at any desired point in time.

Key parameters:
[*]Show names: Enable/disable the 3D visualization of the name of the
links Show axes: Enable/disable the 3D visualization of the axes of the
frames Show arrows: Enable/disable the 3D visualization of the arrows
that connect the various frames

4.3 Programming languages
The libraries and the development tools are independent on the programming
language used(C++, Python e LISP) and are realised under license BSD.
There are free software for commercial and research use. The biggest parts of
the packages are realised under different open source licenses. Those packages
are used for functionalities like: drivers, three-dimensional robot model, 2D
and 3D simulation, image visualisation. localisation instruments, maps and
other algorithms.

27

Chapter 5

Simultaneous Localization
and Mapping

Simultaneous localization and mapping (SLAM) problem aim of constructing
or updating a map of an unknown environment while simultaneously keeping
track of a mobile robot location within it.

It’s a multi-stage process that includes alignment of sensor data using a
variety of algorithms well suited to the parallel processing capabilities.[13]

The “solution” of the SLAM problem has been one of the notable successes
of the robotics community over the past decade. SLAM has been formulated
and solved as a theoretical problem in many different forms. SLAM has also
been implemented in some different domains from indoor robots to outdoor,
underwater, and airborne systems.

At a theoretical and conceptual level, SLAM can now be considered a
solved problem. However, substantial issues remain in practically realising
more general SLAM solutions and notably in building and using perceptually
rich maps as part of a SLAM algorithm.

5.1 Problem definition
The figure 5.1 shows a mobile robot moving to an environment taking relative
observations of several unknown landmarks using a sensor located on the
robot.

At a time instant k, the following quantities are defined:

1.2.3.1. xk: the state vector describing the location and orientation of the vehicle;

28

5 – Simultaneous Localization and Mapping

Figure 5.1: SLAM problem.

2. uk: the control vector, applied at time k−1 to drive the vehicle to a
state xk at time k;

3. mi: a vector describing the location of the ith landmark whose true
location is assumed time invariant;

4. zik: an observation taken from the vehicle of the location of the ith
landmark at time k. When there are multiple landmark observations
at any one time or when the specific landmark is not relevant to the
discussion, the observation will be written simply as zk.

In addition, the following sets are also defined:

1. X0:k = {x0, x1, ..., xk} = {X0:k−1, xk}: the history of vehicle locations;

2. U0:k = {u1, u2, ..., uk} = {U0:k−1, uk}: the history of control inputs;

3. m = {m1,m2, ···,mn} the set of all landmarks

29

5 – Simultaneous Localization and Mapping

4. Z0:k = {z1, z2, ···, zk} = {Z0:k−1, zk}: the set of all landmark obser-
vations.

5.2 Probabilistic SLAM
This solving method of SLAM requires that:

P (xk,m|Z0:k, U0:k, x0) (5.1)

the probability distribution(5.1) is computed for all times k. The equation
(5.1) describes the joint posterior density of the landmark locations and ve-
hicle state (at time k) given the recorded observations and control inputs up
to and including time k together with the initial state of the vehicle.

The join posterior, is computed using Bayes theorem, after an estimation
for the distribution P (xk−1,m|Z0:k−1, U0:k−1) at time k-1 following a control
uk and observation zk.

Describing the effect of the control input and observation we define the
state transition model and an observation model required from the compu-
tation above. The probability of making an observation zk is described by
the observation model:

P (zk|xk,m) (5.2)
when the vehicle and landmark locations are known. It reasonable assume
that observations are conditionally independent once the vehicle location and
map are defined, given the map and the current vehicle state.

The probability distribution on state transitions can describe the motion
model:

P (xk|xk−1, uk) (5.3)
for the vehicle. Where the state transition is assumed to be a Markov process
in which the next state xk depends only on the immediately proceeding
state xk−1 and the applied control uk, and it is independent of both the
observations and the map.

5.2.1 Structure of Probabilistic SLAM
The dependence of observations on both the vehicle and land-mark locations
are made explicit from the observation model (5.2).

The joint posterior can not be partitioned as:

P (xk,m|zk) /= P (xk|zk)P (m|zk) (5.4)

30

5 – Simultaneous Localization and Mapping

and is well known, from previous research on consistent mapping [14] [15],
that a partition similar to this leads to inconsistent estimates.

As we can see from the figure 5.1, much of the error between estimated
and true landmark locations(errors of where the robot is when landmark
observations are made) is common between landmarks and it is because of a
single source.

This implies that the errors in landmark location are highly correlated,
basically means that the relative location between any two landmarks, mi−
mj may be known with high accuracy, even when the absolute location of a
landmark mi is quite uncertain. From the probabilistic point of view, this
means that the joint probability density for the pair of landmarks P (mi −
mj) is highly peaked even when the margin densities P (mi) may be quite
dispersed.

It is known that the correlations between landmark estimates increase
monotonically as more and more observations are made(for the linear Gaus-
sian case)[16]. So we can see that the knowledge of the relative location
of landmarks, for robot motion, never diverges but always improves. From
a probabilistic view, the joint probability density on all landmarks P (m)
becomes monotonically more peaked as more observations are made.

Referring again to Figure 5.1, if we take a look at the relative location
of observed landmarks is clearly independent of the coordinate frame of the
vehicle and successive observations from his fixed location. This considers
the robot at location xk observing the two landmarks mi and mj.

Assuming now the robot moves to the location xk+1, if it observes the
landmark mj for a second time, it will lead the estimated location of the
robot and landmark to be updated relative to the previous location xk. This
last action will propagate back to update the landmark mi even if is not seen
any more from the new location. This is due by the high correlation between
the two landmarks from the previous measurements and the update increases
again the correlation between those two.

Every time we move to a new location there is the possibility to increase
the observation of new landmarks immediately correlated or linked to the
rest of the map. This new update will bring cascade updates to the previous
landmarks.

We can see from Figure 5.2 what we obtain from this process. In this
network, the springs(the connection between landmarks) become increasingly
(and monotonically) stiffer as the robot moves through this environment and
takes observations of the landmarks.

At the end of this process an accurate relative map of the environment or

31

5 – Simultaneous Localization and Mapping

Figure 5.2: Landmarks network.

a rigid map of landmarks is obtained.

In the theoretical limit, robot relative location accuracy becomes
equal to the localisation accuracy achievable with a given map

The location accuracy of the robot is bounded by the quality of the map
and relative measurement sensor.

5.2.2 Solution to the probabilistic SLAM
Solutions to the probabilistic SLAM are made by finding feasible represen-
tation for the observation model Equation 5.2 and motion model Equation
5.4.

[13] One important alternative representation is to describe the ve-
hicle motion model in Equation 5.4 as a set of samples of a more
general non-Gaussian probability distribution. This leads to the use
of the Rao-Blackwellised particle filter, or Fast-SLAM algorithm,
to solve the SLAM problem as described in Section IV-B. While
EKF-SLAM and FastSLAM are the two most important solution
methods, newer alternatives, which offer much potential, have been
proposed including the use of the information-state form[17]

32

5 – Simultaneous Localization and Mapping

5.3 Graph-based SLAM
A graph-based SLAM approach constructs a simplified estimation
problem by abstracting the raw sensor measurements.[18]

The raw measurements(virtual measurements) are replaced with the edges
in the graph. The probability distribution over the relative locations of the
two poses labels the edge between two nodes, conditioned to their mutual
measurements. In general, the observation model p(zt|xt,mt) is multi-modal
and therefore the Gaussian assumption does not hold. This means that
a single observation zt might result in multiple potential edges connecting
different poses in the graph and the graph connectivity needs itself to be
described as a probability distribution. A combinatorial complexity could be
reached due to the multi-modality in the estimation process.

As result, most practical approaches restrict the estimate to the most
likely topology, introducing the problem of data association because we need
to determine the most likely constraint resulting from observation and this
depends on the probability distribution over the robot poses. This problem
is usually addressed by the front-end SLAM. To compute the correct data-
association is required a consistent estimate of the conditional prior over the
robot trajectory p(x1:T |z1:T , u1:T).

During the computation, some observations can be affected by Gaussian
noise. In this case, and the data association is known, the goal of the graph-
based mapping algorithm is to compute a Gaussian approximation of the
posterior over the robot trajectory by computing the mean of this Gaus-
sian as the configuration of the nodes that maximises the likelihood of the
observations.

Let’s take a vector x of poses of each node i, x = (x1, ..., xn)T . Then the
mean zij and the information matrix of a virtual measurement between the
node i and the node j, Ωij. With Ωij as a transformation that guarantees
that the observations acquired from i maximally overlap with the observation
acquired from j. Let ẑij(xi, xj) be the prediction of a virtual measurement
given a configuration of the nodes xi and xj.

The log-likelihood lij of a measurement zij is:

lij ∝ [zij − ẑ(xi, xj)]TΩij[zij − ẑij(xi, xj)] (5.5)

Let e(xi, xj, zij) be a function that computes a difference between the
expected observation ẑij and the real observation zij gathered by the robot.

33

5 – Simultaneous Localization and Mapping

Figure 5.3: Aspects of an edge.

The Figure 5.3 shows the aspects of an edge connecting the vertex xi and
the vertex xj . This edge originates from the measurement zij. From the
relative position of the two nodes, it is possible to compute the expected mea-
surement ẑij that represents xj seen in the frame of xi. The error eij(xi, xj)
depends on the displacement between the expected and the real measure-
ment. An edge is fully characterized by its error function eij(xi, xj) and by
the information matrix Ωij of the measurement that accounts for its uncer-
tainty. Let’s introduce now C as the indices’s set of pairs where z exists. We
will minimizes the negative log likelihood F(x) by finding the configuration
of the nodes x∗ using a maximum likelihood approach.

F (x) =
∑
〈i,j〉∈C

eTijΩijeij︸ ︷︷ ︸
Fij

(5.6)

it tries to solve:
x∗ = argmin

x
F (x) (5.7)

In order to solve 5.7 can use different approaches utilizes standard opti-
mization methods, like the Gauss-Newton or the Levenberg-Marquardt algo-
rithms, it is particularly efficient because it effectively exploits the structure
of the problem.

34

Chapter 6

Tracker

The target deals with the research of an algorithm able to compare two (or
more) images and to determine if one of them is a duplicate (the same or
similar) of the other one, in order to keep only distinct images into a database.
There are three strategies to fix this problem:

• The first method consists to choose the best 100 pixels, to compare
images basing only on them. The “best pixels” means pixels that pro-
vide the most important information about the image, generally borders
or edges. Today the commonest key points are Scale-Invariant Fea-
ture Transform (SIFT), because they are efficient even if the image to
compare is rotated, scaled, or differently lit. This approach, even if it is
smart, is also so much wasteful, in fact, it costs T (n) = O((n2)m), where
n is the number of image’s key points and m is the number of images
stored in the database. There are some algorithms that try to reduce
the cost, for example with faster identification of the closest correspon-
dence. Two examples of them can be the “Quadtrees” and “Binary space
partitioning";

• The second method, called “histogram method”, consists to create func-
tionality histogram for each image, comparing them with ones generated
by the input image, to choose one that has more correspondence. It is
faster than the first method, but less solid, because it is efficient only
for images that are similar to ones on the database. Nonetheless, it is
not unreliable because small changes, as a small cutout, does not affect
the functionality of the algorithm. It is possible to implement that for
example with five histograms, three of colours and two of weft (direction
and scale).

35

6 – Tracker

• The third method consists to use semantic text forests (PDF) to extract
simple key points and to classify images by collection decision trees.
This approach is faster than the first one, because it avoids the matching
process and because key points are easier than SIFT, therefore also the
extraction is faster than the first one. It is also more solid than the
second method, because it works even If images are rotated, scaled, or
differently lit.

In this case, to make the algorithm more solid, two techniques have been
used: the first that finds key points and descriptors with SURF algorithm and
that correlates them to each other with FLANN algorithm and the second
one that uses the “Perceptual Hash” technique. The two techniques are
described, in particular, below:

6.1 Speeded-Up Robust Features and Fast Li-
brary for Approximate Nearest Neighbors

This technique plans to apply the SURF algorithm to find key points and
descriptors of the image and, after that, to apply FLANN method that, with
the calculation of distances, chooses matches that have less distance, that
are ones with the best correspondence into the dataset.

Figure 6.1: Surf algorithm operation.

In 2006, to fix the problem of poor speed of the SIFT algorithm, Bay, H.,
Tuytelaars, T. and Van Gool published a new one, called SURF, that was an
update and improved version of the first one. It resulted three times faster
than SIFT, but keeping performance already achieved. Unlike SIFT, SURF
approximates the “Laplacian of Gaussian” with Box Filter, to calculate the

36

6 – Tracker

convolution with the help of integral images and to allow to calculate them
in parallel for different scales. As the first algorithm, the second relies on
the determinant of the hessian matrix for the scale but also for the position.
Therefore, we can say that SURF is affordable to handle hazy and rotated im-
ages, but it is less efficient for a different point of view and different lighting.
Some functionalities of the algorithm are described below:

• Orientation:

For some applications, the invariance of rotation is not required, so in
those cases it is not necessary to assign the orientation, speeding up
the process. However, when it is required, wavelet answers are used
(discoveries through integral images on any scale) in horizontal e vertical
direction, for a neighbour of 6s dimensions, to which relevant Gaussian
weights are applied. Dominant orientation is estimated calculating the
sum of all the answers into a sliding orientation window with an angle
of 60 degrees.

• Functionality descriptor:

SURF uses wavelet answers in a horizontal and vertical direction. It is
taken a neighbourhood 20s x 20s, divided into sub-regions 4 x 4. For
every sub-region wavelet, answers are taken and a vector is formed. It
provides a SURF functionality descriptor with 64 total dimensions. v =
(∑ dx,

∑
dy,

∑ |dx|,∑ |dy|). The calculate (and correspondence) speed
increases reducing dimensions, but in this way, it is provided with the
best distinctive character of the characteristics. Increasing dimensions,
for example to 128, sums dx and |dx| are calculated in a different way
according to the sign of dy (the other way around for dy). This case
does not increase computational cost, even if it doubles up the number
of functions.

• Below points of interest:

It is used the Laplacian sign (track of Hessian Matrix), which has al-
ready been calculated during the discovery (so it doesn’t add calculation
cost). It allows distinguishing bright patches on dark backgrounds and
dark patches on bright backgrounds, to compare only images that have
the same kind of contrast. In this way, we have faster correspondence,
without affecting descriptor performances.

37

6 – Tracker

6.2 FLANN algorithm functionality
Identified key points and descriptors, to correlates them, the concept of “near-
est neighbour search problem” has been defined and used for the elaboration
of points of a vector space, to find (using an efficient way) points close to
a new query point. For hierarchical k-means tree, the method that has
been used is a priority queue to expand the research in order according to
distances of every k-mean domain of the query. While the method that is
usually known uses a branch-and-bound approach, this one searches deep in
the first order[19]. The algorithm that is most frequently used for the search
of the nearest neighbour is the kd-tree (Freidman et al., 1977), that is effi-
cient for low size, but it quickly loses its effectiveness with the increase of
dimensions. Over time a lot of algorithms have been proposed and modified,
to improve speed and effectiveness. Those that seem more efficient are ones
that use hierarchical trees or randomized kd-trees, because the accuracy of
the approximation is measured in terms of precision of question marks for
which the nearest neighbour is located.

• The randomized kd-tree algorithm
The original kd-tree algorithm splits the data at each level of the tree
in half, over the dimension for which the data show greater variability.
It results efficient for low dimensions, but performances rapidly worsen
with large size. To obtain a speedup on the linear search becomes nec-
essary been satisfied with a closest approximate neighbour, because it
increases search speed, but it is not so accurate. To fix this problem
Silpa-Anan e Hartley proposed an improved version, in which are cre-
ated more randomized kd-trees, that are built choosing the dimension
randomly divided among the first dimensions on which the data have
greater variability. The approximation degree is determined by examin-
ing a landline number of leaf knots, then the search is closed, and the
best containers are returned. In this implementation, the user-specified
only the search precision desired.

• The hierarchical k-means tree algorithm
In this case, the tree is built dividing data points on each level into
K distinct regions using a grouping of k-means and then applying the
same method in a recursive way to points of each region. The recursion
ends when the number of points in a region in less than K. *Figure
1 shows projections of different hierarchical k-means trees built with

38

6 – Tracker

SIFT functionality with 100 K, using different factors of ramification*
In reality, the implementation used tries to improve the exploration of
the kd-tree, performing a single crossing and adding a priority queue all
unexplored branches in each node during the way. After that, it extracts
from priority queue the branch that has the centre closest to query point
and restarts the crossing from that branch. The approximate degree is
specified in the same way of randomized kd-tree, with the interruption
of the search after a predetermined number of leaf nodes have been
examined.

• Automatic selection of the optimal algorithm
In reality, the selection of the optimal algorithm for a fast approximative
search of the closest neighbour depends on different factors, for exam-
ple, the data set structure or the search precision desired. There are a
series of parameters, for each algorithm, those influence performances,
for example, the number of randomized trees in kd-trees case, or the
ramification factor in case of hierarchical k-means tree. So, we can say
that the research of the best algorithm is reduced to the research of the
best parameters, which make the algorithm optimal. It is also possible
to decide whether to apply the optimization to the complete set of data
or only to a fraction of it. The first option provides the best result,
obviously, but it has a longer execution time, while the second one is
faster and it is equally effective if the data set is chosen appropriately,
for example, a tenth of the total.

6.3 Perceptual Hash
The perceptual hash algorithm plans to reduce the image to a small hash
code, as if it was a kind of fingerprint, to use a more compact representation
(and consequently a comparison). While cryptographic hash functions are
based on the avalanche effect of small input changes leading to drastic changes
of the output, the perceptive hashes are “close” to each other if characteris-
tics are similar. They must be enough robust to cope with transformations
or modifications of input, but at the same time, they must be enough flex-
ible to distinguish between different files. These changes can be rotations,
inclinations, regulation of contrast and different formats/compressions. The
generally used algorithm is “Average hash”, bus in this case “PHash” has
been used because it is slower than the first one, but it tolerates better mod-
ifies, so it is more reliable. This kind of algorithm use functions, called “hash

39

6 – Tracker

functions”, that can be classified in “unkeyed hash functions” and “keyed
hash functions”. First of them generate a random variable from a random in-
put, while second ones generate random variable from an input that contains
a secret key. PHash uses ones of the first type, which are, in specific:

• Discrete Cosine Transform based hash:
It calculates fixed length hashes (64 bits), and it saves them in a string.
It plans to calculate the mean of the 64 coefficients DCT, and then to
normalize the sequence in a binary form, to obtain the final hash value:

h =
{

0, if Ci < m
1, if Ci ≥ m

(6.1)

where hi is the perceptive image’s hash bit in i position.

• Radial variance-based hash:
It calculates fixed length hashes (320 bits) and it saves them in an away
uint8 t (coeffs). To determine the final hash, Peaks of Cross-Correlation
(PCC)) between the two hash values is calculated, and it is compared
with a variable threshold value. If the PCC is under the threshold,
images are considered the same, otherwise, they are different. Radial
variance-based hash is the only one that does not normalize the image
compared to resolution.

• Marr-Hildreth operator-based hash:
It calculates fixed length hashes (576 bits) and returns a pointer to
the string that contains the hash. Unlike the other functions, this one
implements the calculate of hamming distance normalized for a kind of
hash, but before the extraction of the image, it is pre elaborated. It is
subjected to a conversation to greyscale, it is blurred and resized. At
the end of the process, an equalized version of the image histogram is
calculated, using 256 levels of the histogram.

Recently, a perceptive hash function has been inserted, which is based on
average blocks values, where the hash is returned into a BinHash object.

40

Chapter 7

Ground Robot - HUSKY

The robot shown in figure 7.1 is a composition of different sub part that we
will analyse in the next chapters. The base is an Husky UGV outdoor robot.
On the top of it we have the UR5e, a flexible collaborative robot arm and a
Depth Camera D435.

Figure 7.1: Ground robot.

41

7 – Ground Robot - HUSKY

7.1 Ground Vehicle

Figure 7.2: Husky.

Husky (fig. 7.2) is an unmanned ground vehicle. It is a medium-size
rover with a development platform. The power system and the large payload
capacity allow it to accommodate a variety of different payloads useful to
be customized depending on the use situation. Many different sensors can
be added like GPS, IMUs, Stereo cameras, LIDAR, etc.. It can rely on the
high-torque drivetrain and rugged construction. The UGV has full support
in ROS with open source code.

Husky is born with fully ROS support, within a big, growing community.
It uses a serial open-source protocol with API support for ROS, and options
for C++ and Python. Its high-performance, maintenance-free drivetrain and
large lug-tread tires allow Husky to tackle challenging real-world terrain.

Various research papers have been published using Husky as the test set-
up. Husky’s community is made by hundreds of researchers and engineers
globally. Husky is a proven benchmark for all kind of robot research.

Husky is plug-and-play compatible with a wide range of robot accessories.
The controller offers smooth motion even at slow speeds (<1cm/s) and with
excellent disturbance rejection.

42

7 – Ground Robot - HUSKY

7.2 Robot Arm
The UR5e (fig. 7.3) is a lightweight 6-axis robot arm with long-term flexi-
bility and it is a popular cobot for industry produced by Universal Robots.
A leader in collaborative robots.

Figure 7.3: UR5e.

Some specifications:

• Automates tasks with payload up to 11 lbs (5 kg)

• Reach radius of up to 33.5 in (850 mm)

• Weighs only 40.6 lbs (18.4 kg)

• Small footprint of just 5.9 inches (149 mm)

• 6-axis motion with 360-degree wrist-joint rotation and infinite end-joint
rotation

The arm lends itself very well to optimize collaborative processes such
as pick-and-place, machine tending, and testing applications also because it
is easy to program and redeploy, and programs can be reused for recurrent
tasks.

It is mounted on the top and brings to the robot the capacity of pick-up
objects.

The UR5e feature precise 0.1mm repeatability. It is safe to work alongside
human workers without any other secure.

43

7 – Ground Robot - HUSKY

7.3 Depth Camera

Figure 7.4: Intel® RealSense™ depth camera D435.

This is the main component we mostly used and at the center of all the
developed algorithms.

The Intel® RealSense™ depth camera D435 (fig. 7.4) is a stereo solution
that offers good image quality indoor and outdoor. It perfectly fits with a
big variety of applications such as robotics or augmented and virtual reality.

The camera has a cross-platform support that helps it to be integrated
into any solution. It has a rage up to 10m with an image sensor technol-
ogy Global Shutter, 3µm x 3µm pixel size. The accuracy can depend on
scene, calibration and lighting condition. In the table 7.1 is shown a list of
specifications.

44

7 – Ground Robot - HUSKY

Depth Depth Technology: Minimum Depth
Distance (Min-Z):

Active IR Stereo 0.105 m

Depth Field of
View (FOV):

Depth Output
Resolution and
Frame Rate:

87°±3° x 58°±1° x
95°±3°

Up to 1280 x 720
active stereo depth
resolution. Up to 90

fps.

RGB RGB Sensor
Resolution and
Frame Rate:

RGB Sensor FOV
(H x V x D):

1920 x 1080 69.4° x 42.5° x 77°
(+/- 3°)

RGB Frame Rate:
30 fp

Major Components Camera Module: Vision Processor
Board:

Intel RealSense
Module D430 + RGB

Camera

Intel RealSense Vision
Processor D4

Physical Form Factor: Connectors:
Camera Peripheral USB-C* 3.1 Gen 1*

Length x Depth x
Height:

Mounting
Mechanism:

90 mm x 25 mm x 25
mm

One 1/4-20 UNC
thread mounting

point.Two M3 thread
mounting points

Table 7.1: Camera specifications.45

Chapter 8

Method

In this chapter is described how the work was actually carried out. All the
sources are available from https://gitlab.liu.se/lrs/lrs_semantic_mapping.

8.1 Object Distance
The main idea behind this code is something that allows combining the object
detection algorithms explained before with SLAM. We take datas coming
from the object detection and we produce observations that can be read by
the SLAM process.

8.1.1 Pre-study
We already explained what is and what was the aim of our code. In the
beginning, we faced the issue and we tried to explore it in order to develop
something concrete and robust. We started by analysing which components
we had. The robot has, as we already explained in chapter 7, a series of
sensors. Our approach was to decide which one of them we could use to help
to develop our goal. We choose to build the system around the camera sensor
because it is also used from the object detection algorithms.It is composed,
in fact, from two cameras:

1. Image colour camera;

2. Black and White depth camera.

This means that we can use the same images of the algorithm process, so,
the same objects that we receive from them as ROS messages. These sharing

46

https://gitlab.liu.se/lrs/lrs_semantic_mapping

8 – Method

images are really useful because are also combined with the depth camera’s
measures.

After this first step in which we analyse the hardware components we
focused on the software part: We started from the object detection; we ana-
lyzed the algorithms to choose which one to use.

Based on the searching made on the state of the art of object detection,
the real-time object detection algorithms we choose were:

• YOLO

• ResNet

The details of them are already explained in the theory chapter n. 3.
In order to implement them on our system we used those developed ROS

package:

• DarkNet YOLO

• Tensorflow object detection - ResNet

The first one allows using YOLO (V3) on GPU and CPU[20]. The pre-trained
model of the convolutional neural network is able to detect pre-trained classes
including the data set from VOC and COCO, or it also possible to create a
network with our own detection objects. The second one allows using one
of 28 models from Tensorflow models repository[21]. The one we used from
this repository was ResNet that allows using the algorithm in a ROS node.
Both nodes publish a message(a bit different for each one) containing the
bounding boxes, the label (membership class) and the probability of each
object to actually belong to the Class.

Then we started planning our algorithm. This step was divided into two
sub-steps:

1. Object distance ad feature extractor;

2. Object tracker.

With the first one, we built something that allows us to measure the distance
of each object from the camera and extracts some other parameters useful
for the other part. After that, we built the tracker, whose aim is to recognize
the same object in different frames. This technology has a structure to store
the objects we collect from the cameras and check if these objects match with
the one just captured by the same. We will better show the technologies we
used in the next chapter.

47

8 – Method

8.1.2 Implementation
After the pre-study phase in which we decided some guidelines for the algo-
rithm, we started with the implementation.

The algorithm is built as a ROS node that is a subscriber to the channels
that publish these contents:

• Camera information;

• Colour images from the camera;

• Black and white images from the camera;

• Bounding boxes from the object detection algorithms;

We made two different versions of the same algorithm, due to the different
ROS message published from the object detection nodes(YOLO, ResNet).

We started describing the support structure, as we mentioned in the pre-
vious chapter, to store the tracking objects. This structure contains different
fields. The ID of the object is recognized between frames. In this way, if the
ID or the image (even a crop from the full) is seen more than one time, it will
be represented as the last time we analyzed that, and the same label(that
object detector algorithm assigned at the crop before) will be assigned to it.
Other useful information are the "centre" of the object(basically the coordi-
nate expressed in pixels of the centre of the object inside the image) and the
distance between the camera and the objects detected. We calculated the
distance with the combination of the black and white frame and the object’s
centre(Fig 8.1).

At this point we knew what we were looking for, so we focused on how
data were taken and especially how they were elaborate.

We already said that we can divide the main idea into two sub-blocks.
The first one aims to get the times, the images and the distance, from the
information derived from channel we are subscribed to. The second block
tries to recognize if the object we are processing it is already inside the
structure or is a new one. We can call this second block as object tracker. In
order to solve the last problem described, we used two different methods of
image comparison: SURF combined with FLANN and PHash. We already
described the two used algorithms in Chapter n. 6. The reason why we
implemented both of them is that we wanted to have a robust tracker for the
images.

Assuming that the second technique is better than the first, if at the end
of the analysis the latter gives a result, this is considered as excellent. While

48

8 – Method

Figure 8.1: The object’s centre and the label of it. The centre is represented
by the effective centre and other pixels taken as shown in the picture(white
pixels). This choice lead to more accuracy for the distance calculation.

if no result has been found, the solution provided by the first technique is
used (in case this has found one). This allows us to have a double control
that guarantees greater robustness and efficiency to the program and gives
to the tracker a good accuracy in terms of a past object correctly recognize
inside the new frames. All the data collected are publish as a ROS mes-
sage(Observations message) on the channel "/darknet/observations" for the
darknet and "observations" for the ResNet.

We will see later some tests done on the algorithm in order to prove is
strengths and weaknesses.

8.1.3 Evaluation
As we said some tests are conducted in order to evaluate the work done
here. We will just list them. The discussions are postponed to the next
chapter(Chapter n. 9). Tests:

• Test1: Label accuracy;

• Test2: Reliability of detection;

49

8 – Method

• Test3: Tracker;

• Test4: Object distance;

8.2 Vector Pose Observation
We wanted to show with a graphical representation the distance between the
object and the camera of the robot.

8.2.1 Implementation
We developed a small tool to have a graphical representation of what the
robot sees as distance between him and the object that he frames with the
camera. It works with the ROS RVIZ tool (Chapter n. 4). As shown in the
pictures (8.2 and 8.3) we can see the representation of the distance between
the centre of the object and the camera of the robot in the form of arrows.

Figure 8.2: Vector Pose Observations

For each object(ID) there is a different arrow with a different colour. The
reason for the multiple arrows(the duplicated ones) is because they do not
get deleted during the running time. This shows that the tracker is quite
accurate because where is supposed to be the object, the arrow’s colour
does not change but, on the other hand, we can see that the distance for a
stationary object situated in a certain position changes a bit. This will use in

50

8 – Method

the test part for what concerns the stability of the object distance algorithm,
and the reliability of object detection algorithms.

Figure 8.3: Vector Pose Observations

8.2.2 Evaluation
We did not conduct any tests on this part because we build it to use it as
the test itself. We will see in Chapter n. 9 the use we have been done of it.

8.3 Feature State Printer
In order to print the map that the EMS(Environment Modelling System)
builds with the data it takes from the observations published by the ob-
ject_distance node we built this tool.

8.3.1 Implementation
Using RVIZ tool we built something that we could use to have a graph-
ical representation of the map the robot is building with the help of the
observation made and analyzed by the camera. It uses the RTMappingN-
odelet/request_features_state service to take the information it needs. As
we can see from the picture(8.4) the sphere represents the landmarks.

51

8 – Method

The overlap between the sphere and the arrow is due to the arrow aims
to the centre of the sphere.

Figure 8.4: Feature state printer

8.3.2 Evaluation
For this tool, as in the previous point, we did not conduct any tests on it
because we build it to use it as the test itself. We will see in Chapter n. 9
the use we have been done of it.

52

Chapter 9

Test and Results

In this chapter, we describe the test part of this work, in order to evaluate
it and to test the strengths and weaknesses. This is a small introduction to
the tests done. We will analyze and discuss them in the next chapters.

• Test1: Label accuracy.
To perform this test, some frames are randomly taken and checked. It
is analyzed how many possible objects are actually bounded from the
detection algorithms.

• Test2: Reliability of detection. Does the label fit the object?
To test the reliability of the detection a series of random frames are ana-
lyzed. We took a certain number of frames and we checked in how many
of them the objects inside are correctly detected(ratio object/correct
label).

• Test3: Tracker.
To test the performance of the tracker a series of random frames are
analyzed. We calculate out of "x" number of frames how many times the
objects are correctly tracked in them.

• Test4: Object distance.
To test the correctness of the object distance computed from the soft-
ware we make a comparison between the one from it and a measure
made without. To take these measurements we used the IPS(Indoor Po-
sitioning System) provided inside the lab. The system gives as output
the coordinates of the object, that compared with the position of the

53

9 – Test and Results

robot and with a simple calculation of the distance between two points,
gave us the real distance between the object and the robot.

9.1 Test 1: Label accuracy
Here we analyze the accuracy of the label. Are all the possible labelled object
actually classified inside the frame? As we can see from the Figure 9.3 most
of the bounding boxes are correct around the object except for the fact that
not all the possible bounded objects are really bounded.

On the left Yolo, on the right ResNet. As we can see from these pictures
both the algorithms work fine. ResNet seems to work better, in fact, it
recognises the helicopter in the front that YOLO does not seem to detect.
Also, the small case on the bottom right is recognized in 3/4 of the frames
from ResNet while YOLO just 1/4.

The pictures show how the ResNet algorithm seems to detect (bound)
more objects than YOLO. But we will analyze later the reliability of these
detections.

(a) frame at time t (b) frame at time t+1 (c) frame at time t+2

(d) frame at time t+3 (e) frame at time t+4 (f) frame at time t+5

Figure 9.1: YOLO’s frames.

In order to analyze better what it seems to be the worst algorithm, we

54

9 – Test and Results

take as sample some YOLO’s frames. Watching the figure (9.1) we can
see the same situation as before. But this time just the "bottle" in the
middle-bottom is missed in 3/6 frames. Considering, however, the multitude
of objects within the scene. Comparing the two figures(Fig. 9.1 and 9.3)
and analyzing the possible causes of the problem, the main differences come
out from the dimension of the object and from the quality of the image.
The dimension is also based on the camera distance from the object. On
the moving of the robot, when the distance decreases, we can see that the
detection is more precise. Based on empirical measurements an optimal
distance (camera-object) should be less than 2 meters.

Those problems affect both algorithms but YOLO seems to suffer more
than ResNet of it.
The same results can be seen in details in the figure 9.2. This graph is taken
from [22].

Figure 9.2: YOLOv3 compare performances.

9.2 Test 2: Reliability of detections
We already faced the problem of not labelling from the detection algorithm.
Here we are asking: Does the label fit the object? The label just released
is reliable? Taking as sample the figure 9.3, where we have both algorithms
compared, we can see that the object labelling is quite different from object
to object. Before starting the analysis of the single labels we want to remind
that each detection algorithm publish inside the message also a percentage of
reliability of the pair object-class detected. On the ResNet is published in the

55

9 – Test and Results

corner after the name of the class, for YOLO is just published inside the ROS
message. So, a first decision, concerning the veracity of the label provided by
the object detection algorithm should be inserting a certain "trust" threshold
beyond which we can accept that specific label. On an empirical basis, we
can say that a fair threshold is 60%. For example we can see from the images
that the "chair" at the bottom right has a percentage equal to 40%, like the
"bench" in the left part. While if we take the two helicopters, we can see how
the percentage is clearly higher. As we can see from these examples the first
prediction is wrong(<60%) while the second one is right(>60%).

We previously examine some aspects that are strictly related to this anal-
ysis. The distance from the object is one of them. We already said that the
distance influences or not the labelling of the object and another consequence
is the reliability of that label. Less distance leads to less errors. Another as-
pect that can influence the labelling process is also the light condition due
to the environment. In a condition of too much shadow, the process fails.
So, in good environmental condition, we can be satisfied with the detection
made from both algorithms.

Comparing YOLO(Fig. 9.1) and ResNet(Fig. 9.4) we can see how ResNet
seems to be more reliable for labelling instead of YOLO.

Another aspect that we want to analyze regarding the veracity of the labels
concern the computational speeds of the two algorithms. The times in which
the individual frames of the YOLO and ResNet images were taken in order
to make a visible comparison have been placed in the table 9.1.

ResNet YOLO
t 57:92 53:03

t+1 58:04 53:06
t+2 58:11 53:10
t+3 58:18 53:13
t+4 58:25 53:18
t+5 58:37 53:21

Table 9.1: ResNet vs YOLO captures.

We can see how YOLO gives result quicker then ResNet. Probably this fact
gives to ResNet more accuracy then YOLO. So, even if we have an optimal
distance and a good image quality, an important aspect is the computational
complexity of the algorithm for the robot. Also because the robot has to
handle all the sensor it is employing at the same time.

56

9 – Test and Results

Also these results can be seen in the figure 9.2.

9.3 Test 3: Tracker
We already explained in chapter n.6 the two techniques used to build the
tracker and in chapter n.8 how we combined them. In the first version of
the algorithm, there was just the first technique (SURF+FLANN) and the
tracker was really inaccurate compared to this new one. In the figure 9.5 we
can see some frames taken every 0.5 seconds one from each other.

The picture is quite small but we can clearly recognize the IDs of the 4
main objects.

• ID 22 : Helicopter;

• ID 23 : Chair;

• ID 24 : TV;

• ID 26 : Helicopter;

All the IDs does not change between frames, to show that the tracker does
a good job. Calculating the accuracy(ratio correct object tracked/frames)
over almost 260 frames(more than 1 minute of working) we got 91%, with
an error equal to 9,84%. The main failure aspect of the tracker is when the
detection object algorithm gives to an object a wrong label(different from
the previous frame). This leads the tracker to an error because the tracker
is optimized to work with objects having the same label.

In the figure 9.6 we can see the propagation error from the object detector
to the tracker. We can clearly see how the label changing from person to
chair, changing also the ID given as output.

9.4 Test 4: Object distance
In figure 9.7 is showed the full software suite working. On the left, we can see
the combination of what the robot actually sees (represented as a cloud) and
the distance calculated by our algorithm (arrow between robot and cloud).
The starting point of the arrows in the ground robot where we can observe
an example of the ROS TF system (chapter 4). On the right of the figure,

57

9 – Test and Results

the tracker. The objective of this test is precisely to compare the measure-
ment obtained by our system with the ones obtained through the Indoor
Positioning System present in the laboratory.

In figure 9.8 we can see how the test was conducted. The robot’s posi-
tion was extracted by subscribing to the "/husky/viconpose" channel. The
following tables (tab. 9.2 and tab. 9.3) show the points used for measuring
distances. While regarding the distances obtained by our algorithm, they
have been empirically extracted as reported by the same figure.

As we can see from the tables there is a fair difference between the measure
calculated by the camera and the ones calculated using the IPS. This error
seems to increases as the distance of the object increases from the robot.

Object
detected

Object
location

Robot
location

Distance
with the
camera

Distance
with IPS

Helicopter
x = 5.979 x = 2.990

3.455 m 4.712 my = -1.859 y = 1.766
z = 0.896 z = 0.533

Truck
x = 2.271 x = 2.664

7.778 m 12.071 my = -7.756 y = 4.302
z = 0.108 z = 0.517

Truck 2
x = 2.271 x = 2.697

7.925 m 11.275 my = -7.756 y = 3.503
z = 0.108 z = 0.523

Box
x = 4.801 x = 2.697

7.867 m 9.252 my = -5.496 y = 3.503
z = 0.960 z = 0.523

TV
x = -5.864 x = 2.588

6.651 m 9.402 my = -2.971 y = 1.031
z = 1.520 z = 0.543

Table 9.2: Table test 4.1.

From the data obtained it would also seem that the measurement, once
exceeded a certain threshold, is no longer very effective. This could be due to
the power limitation of the camera mounted on the robot. Let’s remember to
be the Intel® RealSense ™ depth camera D435 with a range that is actually
around 10m. In fact, the measures that are around or exceed this threshold
are the most incorrect. Other problems could be related to scene and lighting

58

9 – Test and Results

Object
detected

Object
location

Robot
location

Distance
with the
camera

Distance
with IPS

Helicopter
x = 5.979 x = 1.488

5.759 m 4.674 my = -1.859 y = -0.607
z = 0.896 z = 0.560

Truck
x = 2.271 x = 2.680

8.015 m 11.516 my = -7.756 y = 3.745
z = 0.108 z = 0.523

Truck 2
x = 2.271 x = 2.673

7.485 m 11.575 my = -7.756 y = 3.805
z = 0.108 z = 0.520

Box
x = 4.801 x = 2.673

8.288 m 9.551 my = -5.496 y = 3.805
z = 0.960 z = 0.520

TV
x = -5.864 x = 3.127

6.756 m 10.075 my = -2.971 y = 1.467
z = 1.520 z = 0.536

Table 9.3: Table test 4.2.

condition. Unfortunately, there is not much we can do to correct this mistake.
It would be useful do deeper investigation on it, understanding if the error is
related to the instrument or to the data processing. An other thing perhaps
possible, would be to rely not only on the camera to measure the distance
from an object but also on other sensors such as a laser pointer or similar.
However it would lead to other problems due to the measurement of the
distance by the same.

59

9 – Test and Results

(a) frame at time t

(b) frame at time t+1

(c) frame at time t+2

(d) frame at time t+3

Figure 9.3: Sample comparison between YOLO (left) and ResNet (right)
detection algorithms. 60

9 – Test and Results

(a) frame at time t (b) frame at time t+1 (c) frame at time t+2

(d) frame at time t+3 (e) frame at time t+4 (f) frame at time t+5

Figure 9.4: ResNet’s frames.

61

9 – Test and Results

(a) frame at time t (b) frame at time t+1 (c) frame at time t+2

(d) frame at time t+3 (e) frame at time t+4 (f) frame at time t+5

(g) frame at time t+6 (h) frame at time t+7 (i) frame at time t+8

Figure 9.5: Tracker.

62

9 – Test and Results

(a) frame at time t

(b) frame at time t+1

(c) frame at time t+2

Figure 9.6: Tracker failure.

63

9 – Test and Results

Figure 9.7: RVIZ environment. Tracker on the right and what the robot
effectively see with the distance on the left.

Figure 9.8: Test n. 4. On the left, the output from ResNet detection algo-
rithm, in the centre the object distance from our algorithm and on the left
the position of the robot based on the IPS measure.

64

Chapter 10

Conclusions and Future
works

In the introduction, we presented the SLAM problem, in short, a process
that constructs a map of an unknown environment by an unmanned vehicle
where it can keep track of itself.

The purpose of this thesis was to offer a solution to this problem. To
do it, we implemented a deep-learning algorithm for object detection. This
should provide us a tool to identify the objects inside the environment and
tag them as moving or not moving. The work we have done gives us a
connection between the object detection algorithm and the SLAM; it also
allows us to track the objects between frames. All of this in order to improve
the accuracy of the map and to help the robot to track itself inside. As we
can see from the last chapter (chapter n. 9) we also conducted some tests
in order to evaluate the work. We started from the algorithms. From the
tests conducted we did not really establish a best one. We have shown some
strengths and weaknesses of each one. This can help to choose one instead
of the other, based on its use. If we aim to have more accuracy then speed
we should choose ResNet. Otherwise a faster algorithm but less accurate,
YOLO (as reported in chapter 9.1 - figure 9.2). We conducted other tests on
the tracker, to prove its robustness. The results there, are quite good. The
accuracy (computed as the ratio correct object tracked/frames) is around the
91%, with an error equal to the 9,84%. The implementation of the tracker is
fundamental because it can be used, to help the object detection algorithms,
to decide which object is a moving or static one. The last test we have
conducted is related to the measure of the distance with the support of the
depth camera. The results show, in a range of 10m (the measure given by the

65

10 – Conclusions and Future works

producer), an error approximately around a meter. But, on the other hand,
the correlation between the colour and black and white cameras(chapter n.
8.1.1) give us more data in order to be more accurate for the measure of each
object by our system.
Considering the result obtained from the tests, we can be generally satisfied.
The aim of improving the perception of the environment by the use of an
object detection algorithm it is been reached. In fact, we were able to answer
most of the research questions defined at the early stage of the work.
Although we did not identify the best object detection algorithm, we made
a comparison between YOLO and Resnet; this feedback can be used in the
future in order to choose the most adequate one, based on the field applica-
tion and the study case. In the analysis conducted the results confirm our
expectations.
An other important result is obtained in the tracker system. In fact we can
consider the accuracy reached, about 91%, a good result. This allowed an
improvement of the map reliability, on the basis of the observation made.
We are now able to recognize the same object in different frames, enhancing
in this way the map building.
An outcome we did not expect is the inaccuracy of the distance value deter-
mined with the depth camera. Nevertheless, the chosen method was useful
to the full system, because of the reason explained before. It would be rec-
ommended to carry on deeper investigation on this matter, establishing if the
error obtained can be attributed to the instrument mounted on the robot or
to the unsatisfactory data processing, that can be improved.

Unfortunately, we did not have enough time to face all the objectives
settled at the beginning of the thesis work. In the actual situation all the
objects we identify are sent to the EMS as observations and considered as
non-moving objects; so, viewing all of them as possible landmarks. A further
improving step of the research, for the future use of this algorithm, would
be classify and study those observations, in order to use or discard them to
increase even more the accuracy of the map. We would like to obtain best
results from our algorithm, starting by the use of the test’s results carried out
during the study. Our plan is to increase as much as possible the accuracy
of the tracker, in order to use it for the classification of the objects just
discussed.

66

67

Acronyms

AI Artificial Intelligence. ii

API Application Programming Interface. 42

BSD Berkeley Software Distribution. 27

CNN Convolutional Neural Network. 5

DCT Discrete Cosine Transform. 40

EMS Environment Modelling Simulator. 66

Fast R-CNN Fast Region-based Convolutional Network. 14

Faster R-CNN Faster Region-based Convolutional Network. 14

FLANN Fast Library for Approximate Nearest Neighbors. 36

GPS Global Positioning System. 1

GPU Graphics Processing Unit. 12

IMU Inertial Measurement Unit. 42

ML Machine Learning. 4

MLP Multi-Layer Perceptron. 8

NN Neural Network. iv, 5

PCC Peaks of Cross-Correlation. 40

68

Acronyms

PHash Perceptual Hash. v, 39

R-CNN Region-based Convolutional Network. 13

R-FCN Region-based Fully Convolutional Network. 15

ReLU Rectified Linear Unit. 10

ResNet Residual Network. 22

RoI Region of Interests. 14

ROS Robot Operating System. 26

RVIZ Ros Visualization. 27

SIFT Scale-Invariant Feature Transform. 35

SLAM Simultaneous Localisation And Mapping. ii

SURF Speeded-Up Robust Features. 36

TF Transform Library. 27

YOLO You Only Look Once. 18

69

Bibliography

[1] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E
Shannon. “A proposal for the dartmouth summer research project on
artificial intelligence, august 31, 1955”. In: AI magazine 27.4 (2006),
pp. 12–12.

[2] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach. Malaysia; Pearson Education Limited, 2016.

[3] Jesse Alpert & Nissan Hajaj. We knew the web was big... 2008.
[4] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT

press, 2012.
[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.

MIT press, 2016.
[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural
networks from overfitting”. In: The journal of machine learning research
15.1 (2014), pp. 1929–1958.

[7] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold
WM Smeulders. “Selective search for object recognition”. In: Interna-
tional journal of computer vision 104.2 (2013), pp. 154–171.

[8] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
“Region-based convolutional networks for accurate object detection and
segmentation”. In: IEEE transactions on pattern analysis and machine
intelligence 38.1 (2015), pp. 142–158.

[9] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1440–1448.

[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster r-cnn:
Towards real-time object detection with region proposal networks”. In:
Advances in neural information processing systems. 2015, pp. 91–99.

70

BIBLIOGRAPHY

[11] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You
only look once: Unified, real-time object detection”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016,
pp. 779–788.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep resid-
ual learning for image recognition”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2016, pp. 770–778.

[13] Hugh Durrant-Whyte and Tim Bailey. “Simultaneous localization and
mapping: part I”. In: IEEE robotics & automation magazine 13.2
(2006), pp. 99–110.

[14] Hugh F Durrant-Whyte. “Uncertain geometry in robotics”. In: IEEE
Journal on Robotics and Automation 4.1 (1988), pp. 23–31.

[15] Randall C Smith and Peter Cheeseman. “On the representation and
estimation of spatial uncertainty”. In: The international journal of
Robotics Research 5.4 (1986), pp. 56–68.

[16] MWM Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F
Durrant-Whyte, and Michael Csorba. “A solution to the simultaneous
localization and map building (SLAM) problem”. In: IEEE Transac-
tions on robotics and automation 17.3 (2001), pp. 229–241.

[17] Sebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y Ng, Zoubin
Ghahramani, and Hugh Durrant-Whyte. “Simultaneous localization
and mapping with sparse extended information filters”. In: The inter-
national journal of robotics research 23.7-8 (2004), pp. 693–716.

[18] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Bur-
gard. “A tutorial on graph-based SLAM”. In: IEEE Intelligent Trans-
portation Systems Magazine 2.4 (2010), pp. 31–43.

[19] Marius Muja and David G Lowe. “Fast approximate nearest neighbors
with automatic algorithm configuration.” In: VISAPP (1) 2.331-340
(2009), p. 2.

[20] Marko Bjelonic. YOLO ROS: Real-Time Object Detection for ROS.
https://github.com/leggedrobotics/darknet_ros. 2016–2018.

[21] Karol Majek. Tensorflow Object Detection API in a ROS node. https:
//github.com/karolmajek/object_detection_tensorflow. 2018.

[22] Joseph Redmon Ali Farhadi and J Redmon. “YOLOv3: An incremental
improvement”. In: arXiv preprint arXiv:1803.10827 (2018).

71

https://github.com/leggedrobotics/darknet_ros
https://github.com/karolmajek/object_detection_tensorflow
https://github.com/karolmajek/object_detection_tensorflow

	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim
	Research questions

	Basic concepts of Artificial Intelligence and Machine Learning
	Artificial Intelligence
	Machine Learning
	Deep Learning
	nns' basics concept
	CNN - Convolutional Neural Network

	State of the Art
	You Only Look Once
	Model
	Architecture
	Training

	Residual Network
	Model
	Implementation

	Robot Operating System
	Characteristic
	Components
	Ros Visualization
	Transform Library

	Programming languages

	Simultaneous Localization and Mapping
	Problem definition
	Probabilistic SLAM
	Structure of Probabilistic SLAM
	Solution to the probabilistic SLAM

	Graph-based SLAM

	Tracker
	Speeded-Up Robust Features and Fast Library for Approximate Nearest Neighbors
	FLANN algorithm functionality
	phash

	Ground Robot - HUSKY
	Ground Vehicle
	Robot Arm
	Depth Camera

	Method
	Object Distance
	Pre-study
	Implementation
	Evaluation

	Vector Pose Observation
	Implementation
	Evaluation

	Feature State Printer
	Implementation
	Evaluation

	Test and Results
	Test 1: Label accuracy
	Test 2: Reliability of detections
	Test 3: Tracker
	Test 4: Object distance

	Conclusions and Future works

