
POLITECNICO DI TORINO

Master of Science Degree in Electronic Engineering

Masters Thesis

Electronic architecture
of a

Formula Student Electric Car

Supervisor:
Prof. Marcello Chiaberge

Candidate:
Federico Porrá

March 2020

Table of contents

1 Introduction 1
1.1 Intent . 1
1.2 Overview . 1
1.3 Author’s contribution on SC19 . 2

2 State of Art 4
2.1 Formula Student . 4
2.2 Rules analysis . 5
2.3 Previous year Vehicle . 7
2.4 Specifications . 10

3 Hardware 12
3.1 Microcontroller . 12
3.2 Acquisition . 15
3.3 BMS for low voltage batteries . 17

3.3.1 Battery Management System Theory 17
3.3.2 Battery Management System Overview 19

3.4 Safety . 24
3.4.1 Precharghe and Discharghe 24
3.4.2 Shutdown Circuit . 27
3.4.3 TLBoard . 29

4 Software 34
4.1 Architecture overview . 34
4.2 Bootloader . 35

4.2.1 Bootloader Theory . 35
4.2.2 OpenBLT . 37

4.3 Low Level Init . 40
4.4 SensorBoard - Acquisition Module . 41
4.5 DashBoard - Cockpit Management Module 44
4.6 TLBoard - Safety Module . 46
4.7 BMS Low Voltage Module . 48
4.8 PC Host Module . 52

A Control Area Network BUS 55

Glossary I

I

Bibliography III

II

Chapter 1

Introduction

1.1 Intent

The purpose of this thesis is the architectural analysis of an electrical Formula Stu-
dent car that competed in the 2019 season manufactured by Squadra Corse from
Polytechnic of Turin. For simplicity this document will treat only the electronic
management units that for rules impositions have to be mounted in the vehicle and
for the normal vehicle’s operation. At the beginning a little overview of Formula Stu-
dent’s event will be given in order to explain the environment in which the project
took place. Rules restrictions and constraints will be analyzed and synthesized to
create a set of requirements that will drive the design of the architecture.
This document will focus on three main parts of this Electric Vehicle: a data ac-
quisition system, an accumulator management system and the safety system. For
each module both hardware and software will be designed and the architecture of
the previous vehicle will be examined focusing on problems that arises. The last
part will deal with a custom graphical interface for in vehicle debugging purposes.

1.2 Overview

This document is divided into four sections: an Introduction (1), the State of Art
(2), the Hardware part (3) and the Software part (4). The State of Art chapter
will focus on what formula student is, analyzing the rules that will necessary drives
the project’s specifications, considering the previous year vehicle and creating a set
of specifications and constraints that will drive the entire electronic design. The
Hardware chapter will explain the main hardware feature starting from the choice
of a microcontroller suitable for the intent, the design of a dedicated circuit for
analog signal acquisition, and the schematic of a battery management system for
low voltages purposes and finishing with the safety electronics systems mandatory
due to rules. Here below is reported in figure 1.1 the final electronic architecture.

1

1 – Introduction

Figure 1.1: Final Electronic Architecture

The Software chapter will describe in detail the software architecture of the de-
veloped firmwares. The use of an open source bootloader will be justified describing
a modular architecture that reduced the overall development time creating a robust
system. Hence firmwares of all units will be described focusing on main features
and a host software that runs on PC will be presented. This for debug and directly
update firmwares on vehicle.

1.3 Author’s contribution on SC19

Squadra Corse is internally divided into Divisions. Being a part of the Electric and
Electronic division was an educational but also challenging experience. The division
was composed by two members that co-worked for all the time; due to the reduced
number of human resources the work has been done in cohesion and is difficult to
underline who-did-what. My contribution relates to both hardware design, start-
ing from the schematic to the layout of the board and software design. But also
manufacturing the vehicle was a crucial part: each board has been electrically and
functionally tested to ensure the correct behaviour. The wiring harness has been

2

1 – Introduction

developed and physically placed in-vehicle. The overall contribution to the project
starts from the design stage and jumps into the manufacturing processes (PCBs,
soldering components, testing, harness crimping).

Figure 1.2: Tems’s photo in Varano de Melagari circuit

3

Chapter 2

State of Art

This chapter will lay the groundwork for the project specification starting from a
deep analysis of the requirements in terms of performances and restrictions ending
with a detailed architecture. Formula Student events will be presented: rules, scores,
limitations and team’s previous vehicle will be introduced and synthesized into a set
of requirements that will drive the design of the vehicle participant 2019’s season.

2.1 Formula Student

Formula SAE is a student design competition organized by SAE International. The
concept behind Formula SAE is that a fictional manufacturing company has con-
tracted a student design team to develop a small Formula-style race car. The pro-
totype race car is to be evaluated for its potential as a production item. The target
marketing group for the race car is the non-professional weekend autocross racer.
Each student team designs, builds and tests a prototype based on a series of rules,
whose purpose is both ensuring on-track safety (the cars are driven by the students
themselves) and promoting clever problem solving. The prototype race car is judged
in a number of different events divided in two classes: Static and Dynamic. Static
events are compose by three different disciplines: Engineering Design, Business Plan
and Cost and Manufacturing. Dynamic events are composed by four different dis-
ciplines: Acceleration, Skid Pad,Autocross and Endurance. For each discipline the
following point are assigned:

Event Points
Design 150

Business Plan 75
Cost and Manufacturing 100

Acceleration 75
Skipad 75

Autocross 100
Endurance 325
Efficiency 100

One of the most important discipline, from a technical point of view is the Engineer-
ing Design for which at least 15% of the total score can be gained. Different judges

4

2 – State of Art

will examinate more in details the project each one of them focusing into different
area of interest. For what concern the vehicle electronics, team members belonging
to Electronic area will be interviewed and judges will perform a series of questions
in order to understand more in deep the motivations behind engineering choices.
Even project and development methodologies will be analyses and evaluated. This
static event is one of the most difficult since innovative techniques and solutions
must be provided to reach the highest scoring. In addition to these events, various
sponsors of the competition provide awards for superior design accomplishments. At
the beginning of the competition, the vehicle is checked for rule compliance during
the Technical Inspection. Its braking ability, rollover stability are checked before the
vehicle is allowed to compete in the dynamic events. Formula SAE encompasses all
aspects of a business including research, design, manufacturing, testing, developing,
marketing, management, and fund raising. The volunteers for the design judging
include some of the racing industry’s most prominent engineers and consultants.
Squadra Corse is the Formula Student team of Polytechnic of Turin, founded in
2003 and competing since 2005 with their first car, SC05. The first electric car was
built in 2012, the SC12e. Today, the latest prototype is the 6th electric car built
by the team, named SC19 (internally Lucia). The project of the vehicle is based
on SCXV configuration with 4-wheel drive outboard. I was a part of the Electronic
Division in the 2019 season and thanks to my job, as one of each of the 30 members
of the team, we achieved the 1st place in the Italian event at Varano de Melegari.

2.2 Rules analysis

The analysis of the rules[1] is the beginning for project development: the prototype
has been build in 2019 and rules belonging to that period will be presented and
briefly commented. Since restrictions are related to different areas of interest this
document will debates only for what concern the electric and electronic system.
Voltage levels must be carefully chosen in order to supply correctly the vehicle; two
power supply systems are present on board. A LVS is defined according T11.1 and
the voltage must be chosen in a proper way to be sure not to exceed any limits.
At the beginning no constraints in terms of voltage are given but at the end the
minimum voltage necessary to operate any module (ECU, VMU or Inverters) will
be considered the lowest LV voltage possible. A TS voltage is defined according to
EV4.1 and the maximum permitted is 600v. Two choices can be made at this step:

• One TS accumulator plus DC-to-DC converter to supply LVS

• One TS accumulator plus one LV battery with/without regulator

The overall energy must be stacked in one or two different accumulators, the first
solution in any case entail a small supply battery to be able to ignite the vehicle.

5

2 – State of Art

This battery must be carefully handled and connected to the low voltage system (the
low voltage is provided via an isolated DC-to-DC) and a management unit such as
BMS must be used according to T11.7.7 (In this document chemistry different from
lithium-poly will not be taken into account due to the highly energy density of this
technology). The second solutions seems more straightforward and the problem is
reduced to simple sizing two accumulators without any regulator according to the
longest (in terms of time) event. Each subsystem will be provided by its own reg-
ulator with the highest acceptable voltage range. The high voltage accumulator
must be managed by proper electronics such as low voltage accumulator. The ar-
chitecture of the BMS for the high voltage accumulator in this document will not
be discussed since provided by a sponsor1 but the interface and the main concept
will be explained in the following. LV system must supply all the secondary services
needed to the correct behavior of the vehicle such as sensors, data acquisition units,
VMU and inverters. Once dimensioned the power supply for both tractive system
and low voltage system, rules focuses their attention on safety devices. At least
two safety devices must be settled in the vehicle: according to T11.6 and EV4.10.
The former is the BSPD and the latter is the TSAL. Both system must be hard-
wired (T11.6.1 and EV4.10.8). The peculiar feature these devices must implement
is something not commercial or available in the market hence custom solution have
to be provided. The BSPD must be a stand alone device with non-programmable
electronics, must shutdown the vehicle under certain circumstances such as combi-
nation of power delivered to motors and hard breaking condition. This device as
specified in T11.6.4 must be enclosed into a single printed circuit board without any
additional functionalities. TSAL is a light indicator of the high voltage relay status
that must have a specific behavior according to EV4.10.2 and EV4.10.3. These con-
ditions implies measurement on the high voltage bus in two different nodes2 (with
perspicacity of galvanic isolation) and the lighting of a light that have to be placed
according to EV4.10.6. Hardwire electronics must be exploited without any possi-
bility of using software control. These safety units interrupts the shutdown circuit
described in EV6.1 and analyzed in details in the followings and a error latching unit
must be implemented according to EV6.1.6. The tractive system must be activated
and deactivated by the driver according to EV4.11 and a minimum driver interface
must be provided, buttons and light indicator have to be place in the cockpit. At
least three indicator must be placed in visible position, even in bright sunlight in
the cockpit according to EV5.8.8 for the BMS, EV6.3.7 for the IMD and EV4.10.9
for the TSAL. EV4.11 specify the procedure the drive must be able to perform to
activate and deactivate the TS and to set the vehicle in ready-to-drive mode. Once
entered in this state the vehicle must perform a characteristic sound according to

1Podium Engineering
2Across DC link capacitors and at the vehicle-side of the accumulator container

6

2 – State of Art

EV4.12. Thanks to this brief background a set of mandatory requirements takes
shape.

2.3 Previous year Vehicle

During 2018 season a vehicle has been designed and manufactured, the SC18. After
one year of tests and debug the vehicle travels about 1000 Km and some critical
points arises from the electronic architecture. A block diagram is presented below
in figure 2.1.

Figure 2.1: Electronic architecture of SC18

As shown above many control units has been used, each one of them performing
its service. The main structure is composed by a VMU connected through a CAN
bus line with four inverters, each one per wheel. The high voltage accumulator has
its own BMS connected to the VMU via CAN and a low voltage battery with its own
BMS has been used. Security functionalities such as TSAL and BSPD are performed
by dedicated units and a single unit called DashBoard manages both cockpit and
pedal signals. A the end of the ’18 season a list of improvements has been released
as follow:

7

2 – State of Art

• DashBoard: a microcontroller unit with no more than seven analog input
was used with its internal 10bit ADC. Signals were not conditioned, buffered,
clamped or filtered before been acquired hence no protection against voltage
spikes or noise filtering were performed. The unit also performed cockpit
management hence drives LEDs.

• BMS LV: a battery management system for the low voltage accumulator was
used due to rules. A commercial solution has been chosen due to the simple
integration into the system, but the lack of documentations creates problems.

• Debug: it was impossible to perform diagnostics in vehicle. Each unit had
to be unmounted and placed on the bench in order to perform any type of
debug. Some units that must be composed by hardwired electronics had no
predisposition for debug even on the bench.

• Update: if a firmware update on custom units has to be performed, each
unit have to be connected to a proper programmer and disconnected from the
vehicle.

• Connectors: each unit was not designed to have a pcb-mount connector.
Each unit have its own enclosure and the connection with wiring harness was
made by a first connector soldered on the pcb thought wires bringing signals
to a panel mount connector fixed in the enclosure.

The DashBoard performed data acquisition and were able to read analog signals
with range up to 5V. During tests a sensor swap may happen, but since the unit was
not properly designed for hot plug some channels became faulty. The resolution of
the acquisition was not enough for the type of signals used and could be computed
as in equation 2.1:

Vq =
VFR
2Nb

=
5

210
= 4.882mV (2.1)

Vq is the quantization voltage, VFR is the full range voltage and Nb is the number
of bits used for the quantization. However signals coming from sensors with higher
resolution such as DHAB S-145 [3] could not be acquired maintaining the resolution.
Cockpit management means switching on and off some light indicator positioned in
the cockpit and reading the status of a switch used to power up the vehicle. The
BMS for the low voltage system was a commercial unit by OrionBMS [4] that suffers
from lack of thermistor inputs and documentation that makes the integration harder
than expected. Debug is also important especially in a prototype car but control
units had only few LEDs soldered on the PCB. Hence to understand the status of
each unit was necessary look at the board. The last critical part refers to connectors:

8

2 – State of Art

each PCB have a pcb-mount connector, then a set of wires connect the pcb to a
second connector places on the side of the enclosure. This solution increase the
equivalent length of the wires and add some resistance (due to the contacts of the
two connectors) and the time needed to crimp the whole wiring hardness since is
doubled the number of pins.
A consideration in terms of time must be made: the design of the vehicle took place
every year and the time needed to complete the assembling is without error margin.
No mistakes can be made otherwise a delay is added. Once the vehicle is complete
a set of race-test must be made to validate the choices made in the design phase
and to adjust and customize some parameters to increase performances. Hence a
delay in the manufacturing phase shifts and reduce the amount of time available
for testing. This restriction involves that fundamental changes cannot be made and
year-by-year just small improvements can be implemented.

9

2 – State of Art

2.4 Specifications

Starting from the assumptions above the current architecture will be extended and
not radically modified maintaining compatibility and adding some new feature that
in any case will not compromise the correct behavior of the vehicle. Here below in
figure 2.2 a diagram with the proposal architecture and some comments will follow:

Figure 2.2: Electronic architecture of SC19

• SensorBoard: sample, filter analog pedal signals and send data via CAN
with up to 16 inputs. The board must use a single connector to the wiring
harness.

• DashBoard: read vehicle status from CAN bus and switch on or off certain
indicator light performing a minimal driver interface. Verify cockpit button
status and send ignition command to the VMU.

• TLBoard: integrate TSAL functionalities, AMS and IMD error latching into
a single board reducing dimension and weight of the system but maintaining
both subcircuit separated. The circuit that performs high voltage detection
will be redesigned and distributed inside both high voltage accumulator and
inverter. The unit will be equipped with a microcontroller for debug purpose.

10

2 – State of Art

• BSPD: problems relating to current sensor will be fixed and the unit will
remain a stand alone device due to rules reducing as much as possible the
number of pins in the connector and providing outside an analog error signal.

• BMS LV: a small battery management system will be designed performing
current measurement, single cell voltage measurement, cell balancing, OV pro-
tection, UV protection, and overcurrent protection.

Units equipped with a microcontroller will be capable to upgrade the firmware
directly in vehicle removing needs to unmount the board because of the use of
an open source Bootloader. This ecosystem will work in cohesion connected to a
custom windows tool able to perform debug and status monitoring in order to speed
up development process.

11

Chapter 3

Hardware

The chapter presented below will treat the hardware development of the electronic
architecture. The initial idea was to implement a modular system with a repeatable
approach. Hence a microcontroller has been chosen taking into account the team’s
previous experience with the development environment. Each unit will have the
same schematic for the MCU block with the same component in order to have at
the end the same circuit replicated in different units. This approach leads to a
dual result: if a bug is discovered, the solution fixes all the other circuits on the
other hand, the bug is replicated hence potentially affects the whole system if not
discovered. The MCU will be provided by STMicroelectronics.

3.1 Microcontroller

The Microcontroller chosen is the STM32F303VCT6 due to the availability of many
development board that speed up the software development process. This solution
is flexible and configurable on needs. Below in figure 3.1 the block diagram of the
microcontroller from the original datasheet[5].

12

3 – Hardware

Figure 3.1: STM32F303 Block diagram

The core is wrapped with several peripherals that makes the final product com-
pact and full of possible interface. The flash memory is up to 128 KBytes, RAM
deep 32 KBytes, the number of ADC channels operating at 12-bit is up to 39, one
CAN bus available, up to 31 PWM channels with a core operating frequency up

13

3 – Hardware

to 72 MHz. This product meets the requirements of all the units that have to be
designed. The core is powered up by the power supply composed of a DC-DC con-
verter that lower the supply voltage from 24v to 5v, and a bank of capacitors is
placed in order to stabilize the voltage locally beside the core as shown in figure 3.2.

Figure 3.2: MCU Power Supply

In figure 3.3 is depicted the schematic of a generic MCU placed inside a unit:
this solution is replicated in every unit taking care of different configurations and
pinouts.

Figure 3.3: MCU Schematic

14

3 – Hardware

The oscillator is placed as near as possible and grounded with two capacitors as
specified in the datasheet. A debug RGB led is connected via three mosfet and the
transceiver CAN is provided. Particular care must be taken to the design of the
CAN filtering that has been driven by guidelines provided by TI[6], in figure 3.4 the
particular of the circuit.

Figure 3.4: CAN Bus filter

The line is filtered with a common mode choke, and the termination of the line
is set up even if not installed in every unit. The termination is also connected to
a capacitor that performs filtering on the line. Bypass capacitor are also added
to additional filtering and protection diode specific designed for CAN bus lines are
fitted. Additional information on CAN Bus line and protocol-layer are provided in
Appendix A.

3.2 Acquisition

In order to correctly acquire signals coming from pedal sensors as brake and throttle
a dedicated unit has been developed, the SensorBoard due to the critical target.
Signals coming from the front of the vehicle as been concentrated into this unit
hence not only pedals but also steering, damper and brake oil pressure. To reduce
the cost of the unit and the overall complexity the internal microcontroller ADC
has been used. The main problem was the compatibility between maximum signal
voltage and the maximum permitted VFR; in fact the microcontroller is able to
handle signals up to 3.3v. Sensors used in vehicle have an higher signal slope up

15

3 – Hardware

to 5v. A voltage divider has been used in order to scale the signal and lower it
back to the maximum permitted value. In figure 3.5 the schematic for the analog
conditioning circuitry is reported.

Figure 3.5: Acquisition scheme

The overall resolution is higher than previous vehicle, as shown in formula 3.1
due to the higher ADC resolution that have 12-bit dept even if the VFR is lower.

Vq =
VFR

2Nb ∗K
=

3.3

212 ∗ 0.66
= 1.22mV (3.1)

Vq is the quantization voltage, VFR is the full range voltage, Nb is the number
of bits used for the quantization and K is the coefficient introduced by the voltage
divider. With this configuration specifications are met ensuring the capability of
reading signals with higher resolution. Protecting sensitive units against transients
and overvoltages is mandatory, hence additional components are needed. The main
protection is performed by clamping diodes ensuring the signal is not allowed to reach
values above the maximum permitted and below the minimum, in this scenario the
maximum is the supply voltage and the minimum is the ground reference. Additional
protection is assured by transient voltage suppressor diodes (TVS) placed in parallel
to load they are protecting. During normal operation these diodes are transparent
to the function of the circuit and interacts only if an unwanted behavior occurs.
Both clamping diodes are reversed biased and if overvoltage or undervoltage occurs
are forward biased allowing electric current through it. The series resistor R9 and
R10 limit the current and have to be chosen in order to set the maximum tolerable

16

3 – Hardware

voltage at the input that is higher than the supply voltage. Here below the formula
to calculate the value of these resistors in function of the current:

R >
VOVMAX − VD

IDMAX

(3.2)

R <
∆V

IOMAX

(3.3)

The equation 3.2 considers the maximum voltage drop across the resistor due to
overvoltages divided by the maximum diode forward current. The equation 3.3 take
into account the maximum current permitted by the input channel. Hence ranges
of values have to be chosen in order to met protection requirements. TVS diodes
respond faster than many other classes of transient suppression devices. During nor-
mal operation, a TVS diode is invisible to the circuit. In the presence of a transient
voltage, they clamp the voltage across the protected load to a given level without
being damaged. The avalanche breakdown effect makes this possible whereby the
diode which previously was not conducting electricity begins to conduct due to the
spike in voltage. The voltage divider is composed by the two resistors and the values
has been chosen having a ratio of 0.66 hence to lower the maximum 5v to 3.3v The
last section of the conditioning circuitry is composed by an operational amplifier in
voltage follower configuration that decouple the sensor form the acquisition system,
providing high input impedance.

3.3 BMS for low voltage batteries

The battery management system for the low voltage system used in the vehicle has
been designed starting from requirements focusing on mechanical dimension keeping
as small as possible. Below a briefly overview of what a BMS is and the type of
configuration possible following the block diagram of the units designed with focus
on the main feature regarding the hardware configuration.

3.3.1 Battery Management System Theory

In order to manage correctly an accumulator container a specific control unit is
necessary and safety functionalities have to be implemented for rules[1] compliance.
The accumulator is composed by a set of cells connected in series and then in
parallel as shown in figure 3.6. The Battery Management Systems is in charged to
monitoring the status of each cell: voltages and temperatures must be acquired and
then processed to be sure safety conditions are verified. Voltages of each cell must
be controlled but rules[1] imposes only 30% of the temperature to be measured.

17

3 – Hardware

Generally two configurations are available: in figure 3.6 and 3.7 are shown the
differences.

Figure 3.6: Centralized BMS

The centralized solution is composed of a single board directly connected to each
cell. This configuration is not as flexible as distributed one, in fact the maximum
number of cells is fixed and no further expansion is possible. The BMS also measure
cells temperature, in figure 3.6 two sensors are placed as example; also the total
output current is measured with a sensor.

Figure 3.7: Distributed BMS

Distributed solution as in figure 3.7 have a master board that controls different
slaves. Each slave performs autonomously measures as temperature and voltages
and the connections with the master is performed with a daisy chain. This solution
create a flexible system making future changes possible as total number of cells.

18

3 – Hardware

3.3.2 Battery Management System Overview

In order to develop a custom battery management system a deep analysis on the
market has been performed and different solutions has been found. The main idea is
to use a Co-Processor in conjunction with a Microcontroller. The former is in charge
of performing acquisition on cells and the latter to read data from co-processor, and
following some logic acts on consequences. Here below in figure 3.8 is reported the
block diagram of the BMS.

Figure 3.8: BMS low voltage architecture

The market analysis found a co-processor from TI, the BQ76PL455A[7] able
to monitor up to sixteen cells autonomously with a 14-bit ADC resolution. The
interface with a microcontroller host is performed via UART, in figure 3.9 the details
of the component from the datasheet.

19

3 – Hardware

Figure 3.9: BQ76PL455A block scheme from datasheet[7]

This co-processor embedded in the same package two die, the first for the analog
domain and the second for digital making this solution compact. Equipped with up
to sixteen voltage sense inputs, balancing circuitry output, up to eight temperature
sense inputs, self-supplied from cells, with daisy chain capability. Capable of mon-
itoring autonomously cells and detect different faults as overvoltage, undervoltage,
overtemperature and communication errors. The integrated high-speed, differen-
tial, isolated communications interface allows up to sixteen BQ76PL455A devices
to communicate with a host via a single UART interface as in figure 3.10.

20

3 – Hardware

Figure 3.10: Daisy chain connection with two or more BQ76PL455A from
datasheet[7]

This connection is useful in case of higher number of cells since the host remains
one, hence the circuit is simply replicated identical. Is also feasible to implement
a distributed solution where slave integrates only the co-processor. In order to
perform balancing of cells and voltage sense few components must be included and
connected as mentioned in the datasheet, here below in figure 3.11 is reported the
main schematic with the interconnections.

21

3 – Hardware

Figure 3.11: Balancing circuit from datasheet[7]

The front end circuit for voltage sense is composed by an RC filter and a zener
diode against reverse voltage. For what concern the balancing circuit a mosfet as
a switch is used and the current flows into a 75 Ω resistor. This resistor must be
carefully dimensioned and all the order surrounding components due to the heat dis-
sipation. Also the layout of traces is critical in this section due to the high balancing
currents. This architecture decouple the problem of reading each cell independently
with an isolated operational amplifier, hence simplify the whole system. The Bat-
tery Management System for the High Voltage accumulator use the same chipset
with a distributed architecture hence slave pcb with BQ76PL455A and passive only
are available. The pcb slave is only composed by the co-processor and passives com-
ponents with two Independent connectors, the former for voltage and the latter for
temperature sense. One connector is used for the UART communication with the
microcontroller. Since the BMS due to specification have to be capable of reading
the current provided by the battery a current sensor is mounted and a relay driver
is placed in order to disconnect or connect the battery. In figure 3.12 the schematic
of the current sensor’s connections and in figure 3.13 for the low side driving of the
relay.

22

3 – Hardware

Figure 3.12: Current sensor connection

The current sensor is from LEM - CAS15NP [8] and as mentioned in the datasheet
must be connected to few components as capacitor to locally stabilize the power
supply. The output value have a slope of maximum 5v biased of 2,5v in order
to represent both positive and negative current values. The master have the same
acquisition circuitry with the same equivalent resolution mentioned in the acquisition
chapter with the same physical low pass filter pole, then the signal will be filtered
digitally.

Figure 3.13: Relay low side driver

The relay disconnect the whole battery to the vehicle hence a particular scheme
has been used in order to perform a supply chain. As in figure 3.14 the positive pole
of the battery is connected to a mechanical switch (A) positioned on the vehicle’s
side. Once closed the BMS is power on and is able to perform diagnostic on cells, if

23

3 – Hardware

a safe state is met the BMS close the relay (B) the supply the vehicle. The supply
chain is reported in figure 3.14.

Figure 3.14: Connection to the vehicle of low voltage battery

This supply configuration is versatile due to the fact the BMS is the last in
the chain and drives directly the supply relay. Additional functionalities can be
implemented via software, the positive pole of the battery upstream the relay via
connector is available on the vehicle side. Hence the battery can be charged directly
inside the vehicle: the BMS reads the current direction and close or open the relay
in order to supply the vehicle or recharge the battery.

3.4 Safety

This section will explain the main feature implemented by the safety system and
begins with a briefly overview of what concern electrical vehicle precharge and dis-
charge circuit, explaining what the shutdown circuit is. After the introduction the
hardware will be outlined focusing on the high voltage detection circuit split in ac-
cumulator container version and inverter housing version then collection unit then
the TLBoard will be described.

3.4.1 Precharghe and Discharghe

This section will explain the key points of an Electric Vehicle (EV) high voltage
wiring diagram, starting from the accumulator1 connection to inverters2, from the
safety functionalities that must be implemented. Usually an electrical vehicles have

1The accumulator is a set of cells connected together to store and delivery energy, is the main
energy storage of an electric vehicle

2The inverter is the motor driver capable to convert direct current into alternating

24

3 – Hardware

an accumulator directly connected to a DC link capacitance as shown in figure 3.15.
The capacitance simulate the inverter’s input load.

Figure 3.15: Simplified accumulator to vehicle connection

Two high voltage relay3 are used, the first in the positive terminal and the second
in the negative in order to electrically disconnect the accumulator from the vehicle.
Nodes are named BAT if the connection is made directly in the battery terminal and
BUS if the connection is below high voltage relays. A dedicated unit the Battery
Management Unit (BMS)4 is responsible for the startup procedure: the negative
relay in closed and become the reference point for the high voltage potential and then
the positive can be closed. A problem arises: the capacitance have to be charged,
in a certain amount of time, before the positive relay can be closed, otherwise the
current that flows will damage the capacitors since the equivalent series resistance
is low. The circuit in figure 3.15 is not capable of pre-charging the capacitor bank
and a modification is need adding a resistor in series as shown in figure 3.16.

3High voltage relay in formula SAE are known as AIRs
4In formula SAE usually named AMS, Accumulator Management Unit

25

3 – Hardware

Figure 3.16: Simplified accumulator to vehicle connection with precharge

The current flowing into the capacitor follows the equation 3.4:

ic =
Vbatt
R

(1 − e
−t
RC) (3.4)

The value of R can be chosen in order to set the time5 needed to precharge
procedure according to 3.5. Rise time from 10% to 90% is 2.2τ .

τ = RC (3.5)

The startup procedure managed by BMS becomes: close negative relay, close
precharge relay and wait until the voltage on the BUS has become identical6 with
BAT side, open precharge relay and close positive relay. When the vehicle shuts
down the relays are opened, and a potential dangerous situation occurs: even if
the accumulator is electrically disconnected, high voltage potential difference is still
present into the vehicle’s circuitry. The solution is to insert a resistor in parallel to
the capacitance as in figure 3.17.

5Generally in Automotive the precharge procedure is so fast that customer is not aware
6Usually a difference of 10% is negligible

26

3 – Hardware

Figure 3.17: Simplified accumulator to vehicle connection with precharge and dis-
charge

Particular attention must be taken to the position of the discharge circuitry: is
placed inside the vehicle like that even disconnecting the accumulator container is
possible to perform discharging. The relay used is normally closed and is supplied
by the same signal that supply high voltage relay since when high voltage relays
are closed, the discharge is opened and vice versa. The value of discharge resistor
have the be choose in order to set the discharge time according to the following 3.5
and the power of the resistor have to be chosen according to maximum current that
flows 3.6.

ic =
Vbatt
R

(e
−t
RC) (3.6)

3.4.2 Shutdown Circuit

The shutdown circuit is a safety system of a Formula Student vehicle, is defined
in rules [1] and will be described in details in this section. The basic idea is that
this circuit supplies directly AIR and if ad unwanted situation occurs this circuit is
interrupted hence AIR not supplied anymore. The figure 3.18 illustrate a generic
block diagram of the circuit.

27

3 – Hardware

Figure 3.18: Shutdown circuit diagram from [1]

It starts from a low voltage battery and in series a set of switches or relay are
connected, each one of them performing a different safety function. In vehicle are
installed different safety units, in figure 3.18 are represented the mandatory ones.
Starting from the left, Low Voltage Master Switch (LVMS), is a physical switch
placed on the right side of the vehicle, used for switch on low voltage system. Once
switched on LV the first safety device is the BSPD; it performs its safety function
continuously and if safe condition is verified close a normally-opened relay. The
same for IMD and AMS. The first three elements are composed by electronic devices,
others are physical switches placed in the vehicle in order to be actuated by drive or
people around: switches are places in the cockpit, on the left and right side of the
main-hoop. These physical actuators are normally closed in order to be actuated
hence open the shutdown when a critical situation occurs. Inside the vehicle is
placed an inertial switch that opens the shutdown if a collision or a shock happened.
After the inertia, a switch mounted into the brake pedal verify the if pedal position
exceed the maximum, the BOT. The next point is the HVD, a physical connector
that interrupts the high voltage path, hence have to interrupt the shutdown as rules
compliance. This connector is usually removed when performing handwork on the
vehicle. Last step is the TSMS, a physical switch placed next to LVMS. From that
point on the shutdown could supply AIRs.

28

3 – Hardware

3.4.3 TLBoard

High Voltage Detection - Slave

Inside the accumulator container an high voltage detection circuit is placed and is a
part of a master-slave architecture. In fact this small slave only detects if the voltage
across the high voltage bus is above or below a certain threshold. The circuit is also
able to detect if AIRs are individually opened or closed performing cross measure
between them. In order to perform a cross measure in both downside and upside
AIRs connection two isolated power supply have to be generated as in figure 3.19.

Figure 3.19: Isolated Power Supply for High Voltage detection

The power supply used requires few passives around and a minimum load com-
posed by two high power resistors connected to the output. To perform cross measure
two different potential reference are needed as in figure 3.19. The first starting from
the top is connected in the battery negative pole and the second is connected to the
negative pole of the vehicle side. A more detailed scheme is reported in figure 3.20
to better understand the connection.

29

3 – Hardware

Figure 3.20: Connection for cross measure

With this scheme is possible to determine if one of the AIR is stuck at closed.
In fact the measure is performed in with cross references: the voltage above the
positive relay is measured with reference the battery side and with the vehicle side.
Also the voltage upside the positive relay is measured with reference the vehicle
side. This setup creates three signals: a negative AIR closed signal, a positive AIR
closed signal and a generic High Voltage detection signal. Rules imposes to verify
coherence between wanted AIRs state and the real one, also the voltage across DC
link capacitors must be the same as downstream AIRs. A generic detection circuit
is reported in figure 3.21 and the same is replicated three times for AIRs status
detection and once inside the inverter.

Figure 3.21: Measuring circuit for High Voltage Detection

The circuit is able to detect if the voltage is above or below a certain threshold as
rules states, if the voltage across the input is higher than sixty volts the comparator
is triggered switching on the mosfet which pulls down the cathode of the optocoupler
that triggers its output. Protection diodes are used in order to clamp input to the

30

3 – Hardware

power supply to prevent overvoltages. The input voltage is first divided by a factor
of 139 then compared with the output of a voltage divider that set the threshold
of 0.434v corresponding to 60.3v. The same circuit is copied and used inside the
inverter container in order to detect implausibility.

High Voltage Detection - Master

The TLBoard is composed of three subcircuits:

• TSAL driver: the logic that drives the TSAL.

• Error Latching: the latching circuit for the IMD and BMS errors.

• MCU: a core that wraps all the logics performing debug and monitoring of
the unit.

Due to rules the TSAL light must be driven by non programmable logic hence
logic gates has been used. The circuit reported in figure 3.22 driver the light and is
connected with the slaves explained in 3.4.3.

Figure 3.22: TSAL light logic driver

31

3 – Hardware

The input signals coming from outside the unit are connected to the logic gates
via dedicated mosfets in order to guarantee electrical decoupling hence the signal
logically must be inverted. Here the explanation of NOT gates placed in inputs.
From the slaves arrive three signals, the first from the inverter that detects high
voltage is present, a second coming from the battery accumulator that identify high
voltage is present downstream AIRs and the third signal that indicate both AIRs
are closed. 7 Other signals arrives from the outside, in fact the unit is able to
detect if both battery and inverter battery are relatively connected to the vehicle.
If the three signals have low logic value an AND8 logic gate will result to high logic
value. This logic gate drives two other AND9 gates that drives the TSAL light via
pulldown mosfets. The green light is on and stable if connectors of both battery
pack and inverter are connected, and high voltage is not present. The red light is on
and flashing with a frequency of 4Hz 10 if connectors are connected and high voltage
is present in both inverter and battery pack slave. The light is off representing a
implausibility condition if signals coming from slaves are different. Logic gates have
output connected directly to pulldown mosfet in order to drives light without any
possible fault and one signal is brought to microcontroller in order to perform debug.

Error Latching Circuit

The error latching circuit is mandatory due to rules and latch IMD and BMS errors.
These errors are sent to the TLBoard analogically with single signals. The schematic
of the circuit is reported in figure 3.22.

7The slave detect each AIR individually, but internally the signal is placed in OR condition in
order to reduce the number of pins and the wire used in the wiring harness

8U22
9Respectively U26 and U6

10Due to the oscillator U7

32

3 – Hardware

Figure 3.23: Error Latching circuit

Inputs are connected to oscillators11 used in trigger mode. Once triggered out-
puts remains high inutile reset pin is pulled down. Oscillator are triggered by error
signal via mosfet12 or buffer in order to decouple the signal. The latching circuit can
be reset with a pushbutton positioned on the vehicle side and that pulls down each
reset pin of the oscillator. In order to maintain the error status if the pushbutton
is pressed while error persists a XOR gate is connected to the oscillator gate with
the reset. This circuit directly interrupt the shutdown circuit if the error status
is reached driving two separated normally opened relays. The output status of the
circuit is brought outside with two separated mosfet and read by the microcontroller
for debug. This separation is needed in order to guarantee clearness in the circuit
that must be approved by judges before events. Hence all non programmable logic
of the TLBoard is monitored with dedicated output signals that are red by the mi-
crocontroller and sent via CAN. The signal from the TSAL is used then for drive a
cockpit led that warn driver high voltage is present.

11NE555
12In case of IMD error due to the incompatibility of voltages level that reaches 24V

33

Chapter 4

Software

This chapter will treat in details the software’s architecture focusing on the finite
state machine developed. Since the microcontroller used is the same for multiple
units also the software structure is similar. The main idea that drives the develop-
ment was to replicate also the software part hence a component-based solution has
been implemented. There are components common to units such as low level drivers
and higher level components that are custom designed for the specific application. A
specific development environment has been set up and a git repository was used to
manage code revision. At beginning custom hardware solutions were not available
hence the original code was developed on evaluation board and multiple board con-
nected together via shields were set up to simulate the vehicle. Once the hardware
was ready to be mounted the firmware has been customized for the final hardware
revision and then installed and ready to be tested in field.

4.1 Architecture overview

The software component developed are the same for every unit. The firmware is
composed of different components that are reporter in figure 4.1

Figure 4.1: Firmware’s architecture

34

4 – Software

The first module is the Bootloader that will be described in details in the fol-
lowing chapter. The second module is composed of all necessary low level functions
that initialize correctly the microcontroller, since the hardware is the same for ev-
ery board, this module is also common to every unit. Initialization functions and
parameter had been generated automatically by a proprietary STMicroelectronics
graphical tool known as STMCubeMX [10]. This tools permits a safe and robust ini-
tialization since verify mismatches and eventually configuration errors generating a
source code file that should not be modified. Below the low level initialization mod-
ule a custom application initialization module is placed in order to be able to modify
the pinouts depending on application. At the end the core application module that
implements specific application features.

4.2 Bootloader

The bootloader is a software module normally used in modern electronics allowing
embedded system to be autonomously updated. This layer is common to every unit
installed in the vehicle and use CAN as deploy interface. Due to the complexity and
the critical functionalities that have to be implemented the main structure is from
an open source solution[9]. This solution is flexible and libraries are available to
manage directly at high level application. Here below a briefly theoretical overview
of what a booloader is and how it should behave.

4.2.1 Bootloader Theory

This section will explain why is necessary the use of a bootloader into an embedded
automotive system. Bootloader is a piece of code that is responsible for remotely
code upgrade. Inside a vehicle are placed several VMU and most of them are located
in unreachable places or disconnecting them from the vehicle is not possible. Pro-
totypes like formula student’s vehicles are subject to continuous software upgrade
even on-the-track therefore a fast and easy procedure to upgrade VMU’s firmware
in-vehicle have to be implemented. Usually a bootloader is not different from a
standard application, the only difference is the location in which is stored: the first
section of the memory in order to be the first set of instruction to be executed as
shown in figure 4.2.

35

4 – Software

Figure 4.2: Bootloader’s position

The memory is divided in two sections: bootloader and user application. Several
communication protocols can be used in order to upgrade firmware, UART, CAN,
TCP/IP etc. In automotive usually CAN is preferred. The VMU at boot performs
the following procedure, as shown in figure 4.3.

36

4 – Software

Figure 4.3: Bootloader’s state machine

At power up the bootloader verify if a new firmware is available on the com-
munication bus: if present start a procedure that erase the memory and substitute
byte to byte with the new code of the user application. At the end of the commu-
nication a safety checksum is performed to be sure the firmware is coherent with
the forwarded one. If checksum verification is positive the user application can be
executed and bootloader terminated, otherwise the booloader remains in idle. If
no firmware update is present on the bus the user application starts directly. An
important feature that must be implemented is the possibility to enter in bootloader
mode when the user application is running. Usually the user application is able to
reboot the whole system hence force the bootloader to start.

4.2.2 OpenBLT

The bootloader core is based on the open source version but few modifications has
been done in order to make is feasible for the application. The main function is
listed below and is composed of few sub-functions. At beginning al peripherals are
correctly set up and the internal oscillator has been used to prevent faults. During
the whole bootloader task the clock is generated internally and once that task ends
the clock is deinitialized to permits the user application to use the more precise
external oscillator.

37

4 – Software

int main(void)

2 {

/* initialize the microcontroller */

4 Init();

/* initialize the bootloader */

6 BootInit ();

8 /* start the infinite program loop */

while (1)

10 {

/* run the bootloader task */

12 BootTask ();

}

14

/* program should never get here */

16 return 0;

} /*** end of main ***/

Then a infinite loop begins and wait for special commands to be received via
CAN. If the command are received the bootloader is triggered and stars receiving
the new firmware and installing in the previously erased flash memory. When the
download is finished1 the CRC is calculated and compared with the expected one.
This make the download safe and fully reliable since the bus is not totally error-free.

1Special techniques are implemented for sending the firmware over the bus as XCP protocol

38

4 – Software

Figure 4.4: Bootloader communications with an Host

In figure 4.4 is reported the communications protocol used by an host PC that
runs a custom tool that will be described in the following sections. Four state can
be described:

• HandShake: a special command 0xFF is send to trigger the bootloader and
establish a connection.

• Key: a security key is fed if enabled.

• Erease: erase the block of memory reserved for the user applications.

• Programm: fill the memory with the new data provided by the host PC and
calculate the CRC.

If the CRC is correct the bootloader boots the user application otherwise re-
mains in waits for new firmware upgrade. In normal conditions, at every reset, the
bootloader is not triggered hence the user application start almost immediately and

39

4 – Software

a fast check is performed at boot verifying the checksum, that is calculated and
programmed at the end of a firmware update, to determine if a valid user program
is present. Since multiple control units are connected to the same CAN bus the
host PC must be able to address the new firmware to the correct unit with a unique
ID. The special command sent to establish the bootloader connection is sent to a
particular reserved CAN ID as in table 4.1 that has been chosen with the highest
possible priority.

Board ID

SensorBoard 0x001
DashBoard 0x002
TLBoard 0x003
BMS LV 0x004

Table 4.1: Bootloader CAN ID

4.3 Low Level Init

The code generated by STMCubeMX is composed of a main functions structured as
follow:

int main(void)

2 {

/* MCU Configuration */

4

/* Reset of all peripherals , Initializes the Flash interface and the

Systick. */

6 HAL_Init ();

8 /* Configure the system clock */

SystemClock_Config ();

10

/* Initialize all configured peripherals */

12 MX_GPIO_Init ();

MX_DMA_Init ();

14 MX_CAN_Init ();

MX_TIM2_Init ();

16 MX_TIM3_Init ();

MX_ADC1_Init ();

18 MX_ADC3_Init ();

MX_I2C1_Init ();

20 MX_ADC2_Init ();

MX_USART1_UART_Init ();

22

/* Custom App Init */

24 SetupBoard ();

26 /* Infinite loop */

while (1)

40

4 – Software

28 {

30 CoreBoard ();

32 }

34 }

All necessary peripherals as DMA, GPIO, CAN, Timer and UART are initialized
properly before the clock is configured. Then the SetupBoard() function is called
to initialize the custom application taking into account different pinouts. After the
correct initialization an infinite loop begin with the CoreBoard() performing the
core of the application. In order to perform different tasks in a parallel-like mode
a scheduler has been developed based on internal microcontroller timers: once the
timer reach the defined value an interrupt is triggered. The callback function has
been designed in order to increment the value of a global variable with a precise
time delay. This variable is read constantly by different functions and compared
with the a previous value corresponding to the last function call. If the value is
greater or equal the function is executed meaning a specific amount of time has
passed. Otherwise the function is not executed. This implementations permits the
execution of different functions with different time delays.

4.4 SensorBoard - Acquisition Module

The SensorBoard have to acquire and filter analog sensors then send to the VMU
the data; the main Core() is reported below.

/*Core SensorBoard */

2 void CoreSensorBoard(void)

{

4

SaveADCValues (2);

6 /*Read from DMA and save 10 samples x channel */

8 FilterADCValues (50);

/*Mean value for 10 samples each 5ms */

10

Debug_UART(true);

12 /*Print into "value" string the content of ADC[], then write to UART1*/

14 CAN_Tx (80);

/*Send data via CAN*/

16

LedBlinking(LED_G_GPIO_Port , LED_G_Pin , 1000);

18 /*Blink green led*/

20 }

The argument passed to the function is the time delay that the function must
wait before being executed expressed in hundreds of microseconds. For example

41

4 – Software

SaveADCValues(2) will be executed every 200µ seconds. The first function reads
sampled values from DMA2 and save them into a matrix with deep the number
of inputs and wide a defined maximum number of samples. The code is reported
below.

/*Fill ADC matrix with samples */

2 void SaveADCValues(uint32_t delay_100us)

{

4 static uint32_t delay_100us_last = 0;

6 if(delay_fun (& delay_100us_last ,delay_100us))

{

8

for(int j = 0; j < CH_NUMBER; j++)

10 {

for(int i = 0; i < ADC_SAMPLE_NUMBER -1; i++)

12 {

ADC_SAMPLE[j][i+1] = ADC_SAMPLE[j][i];

14 }

/*shift all samples by 1 position: ADC_SAMPLE [0][1] =

ADC_SAMPLE [0][0] */

16

ADC_SAMPLE[j][0] = ADC_IN[j];

18 /*Fill first column with new samples */

}

20 }

}

This procedure is useful to save the history of previous values, needed to perform
digital filtering. The digital filter is implemented with moving average as follows.

/*Mean value for each channel */

2 void FilterADCValues(uint32_t delay_100us)

{

4 static uint32_t delay_100us_last = 0;

6 if(delay_fun (& delay_100us_last ,delay_100us))

{

8 for(int j = 0; j < CH_NUMBER; j++)

{

10 ADC_OUT[j] = 0;

/*Reset buffer */

12

for(int i = 0; i < ADC_SAMPLE_NUMBER; i++)

14 {

ADC_OUT[j] += ADC_SAMPLE[j][i];

16 }

18 ADC_OUT[j] = ADC_OUT[j] / ADC_SAMPLE_NUMBER;

}

20

}

22

}

2The DMA writes samples from the ADC to the memory autonomously, hence the acquisition
is reduced to a memory-read process.

42

4 – Software

Values saved in the matrix are summed together and the divided by the number
of samples saved. The number of samples and the period when the function is called
determines the cut off frequency of the low pass filter, but due to the complexity
solution of the filter’s equation the tuning has been done empirically taking into
account also the introduced delay. Then a debug UART function is called in order
to have a debug interface active; the parameter passed is used to enable or disable
the interface. With this interface is possible to send debug information outside hence
normally disabled during normal operation of the vehicle. The next function sends
the data via CAN and is structured as follows.

/*Send data to CAN BUS*/

2 void CAN_Tx(uint32_t delay_100us)

{

4 static uint32_t delay_100us_last = 0;

6 if(delay_fun (& delay_100us_last ,delay_100us))

{

8 TxHeader.StdId = 0x010;

TxHeader.ExtId = 0x0010;

10 TxHeader.RTR = CAN_RTR_DATA;

TxHeader.IDE = CAN_ID_STD;

12 TxHeader.DLC = 8;

TxHeader.TransmitGlobalTime = DISABLE;

14

TxData [0]= (ADC_OUT [0] >> 8);

16 TxData [1]= ADC_OUT [0];

18 TxData [2]= (ADC_OUT [1] >> 8);

TxData [3]= ADC_OUT [1];

20

TxData [4]= (ADC_OUT [2] >> 8);

22 TxData [5]= ADC_OUT [2];

24 TxData [6]= (ADC_OUT [3] >> 8);

TxData [7]= ADC_OUT [3];

26

CAN_Msg_Send (&hcan , &TxHeader , TxData , &TxMailbox , 30);

28

...

30 }

}

The structure TxHeader is used to set the CAN ID and other parameters that
are explained in details in AppendixA. The structure TxData represent the byte to
be send and the function CAN Msg Send() adds the message to a queue ready to
be send on the bus. The last function switch on or off intermittently a RGB LED
placed on the board that is useful to understand the unit is working correctly. If the
unit is booting the LED blinks blue and then if everything works correctly blinks
green. If an error occurs the LED remains fixed in red.

43

4 – Software

4.5 DashBoard - Cockpit Management Module

The DashBoard unit have to read from CAN signals and switch on or off certain
LEDs. Also perform a finite state machine needed to make the vehicle in ready to
drive state. The main Core() function of the DashBoard is reported below.

/*Core DashBoard */

2 void CoreDashBoard(void)

{

4

LedBlinking(LED_G_GPIO_Port , LED_G_Pin , 1000);

6 //Blink green led

8 UpdateCockpitLed (5000);

/* Update state Cockpit ’s LEDs*/

10

ReadyToDriveFSM (500);

12 /*Ready to drive FSM*/

14 UpdateOnTime (20000);

/* Update EEPROM counter value*/

16

CAN_Tx ();

18 /*Send timer data via CAN*/

20 Debug_CAN_Tx (500);

/*Send debug packet */

22

}

The first function perform LED management. Then UpdateCockpitLed() is called
every 500 ms. The DashBoard receives a signal via CAN named Error Byte contain-
ing the status of BMS, IMD and High Voltage Bus and switch on the corresponding
red LED showing if an error occurs. Due to the safe nature of this signals this task
must be fail safe, hence if the Error Byte is not received for any reason the error
status is reached. Below is reported the code.

/* Update Cockpit ’s LEDs*/

2 void UpdateCockpitLed(uint32_t delay_100us)

{

4 static uint32_t delay_100us_last = 0;

6 if(delay_fun (& delay_100us_last ,delay_100us))

{

8

if(ERR_BYTE_RECEIVED)

10 {

ERR_BYTE_RECEIVED = false;

12 HAL_GPIO_WritePin(GPIOE , BMS_LED_Pin , BMS_ERR);

HAL_GPIO_WritePin(GPIOE , NOHV_LED_Pin , NOHV);

14 HAL_GPIO_WritePin(GPIOE , IMD_LED_Pin , IMD_ERR);

16 /*LED ON or OFF depending on ERR_BYTE */

18 }

44

4 – Software

else

20 {

HAL_GPIO_WritePin(GPIOE , BMS_LED_Pin , ON);

22 HAL_GPIO_WritePin(GPIOE , NOHV_LED_Pin , ON);

HAL_GPIO_WritePin(GPIOE , IMD_LED_Pin , ON);

24 /*LED always ON, timeout can*/

}

26

}

28

}

If the signal is received an interrupt is triggered and the status of corresponding
LED is saved into global variables. ERR BYTE RECEIVED is a global variable
that is true only if the signal is received and false vice-versa. This ensure the
fail safe condition. The most complicated part is the finite state machine that
have to read the status of a push button in order to be triggered. Once started a
set of particular commands are sent to the VMU. The communication mechanism
implemented follows the following structure: the DashBoard send a command to the
VMU and wait for an aknowledge. If the aknowledge is received the state changes
otherwise remains in wait until a timeout expires. The finite state machine graph is
reported in figure 4.5.

Figure 4.5: Finite State Machine to ignite the vehicle

The finite state machine starts in IDLE and waits to be triggered by the push
button positioned on the cockpit. When pushed changes state into CTOR EN and

45

4 – Software

send to the VMU a command to close AIRs. Then when the message is sent goes into
WAIT CTOR EN ACK waiting for the aknowledge. If received goes into RTD EN.
The vehicle in this state is almost ready, AIRs are closed and High Voltage is present
on the bus. Due to rules the ready to drive condition have to be entered by simulta-
neously pushing the cockpit button and the brake pedal. If this condition occurs a
message is sent to the VMU and the state goes into WAIT RTD EN ACK waiting
for the aknowledge. If the aknowledge is received an acoustic emitter is switched on
for few seconds due to rules and a LED on the cockpit is switched on to warn the
driver the vehicle is ready to drive. The VMU is able to reboot in any conditions
the state machine sending a particular command hence if the vehicle is switched off
there is no need to do a power cycle.3 The unit is equipped with an EEEPROM
in order to store data. For analysis the amount of time elapsed in ready to drive
state is saved and the UpdateOnTime() function is called every two seconds. The
saved data have to be accessible to the external world hence CAN Tx() is called,
the time spent in ready to drive state in send via CAN only if a particular signal
is received. This technique is a good tradeoff between functionalities and bus uti-
lization. For debug purpose in order to understand the current state of the finite
state machine Debug CAN Tx() is called and send a message containing the current
state of the finite state machine, the status of cockpit LEDs, and the value of the
generated PWM for drive fans. In fact the DashBoard is also able to drive three
PWM channels to supply battery pack fans, radiator fans and cooling pumps. This
is handled directly via interrupt receiving via CAN the value in percentage of the
PWM and applying instantly the changes.

4.6 TLBoard - Safety Module

The TLBoard’s firmware is due to debug hence the microcontroller reads the status
of the hardwired electronics and writes on CAN. The unit is also capable of reading
analog sensors as the SensorBoard do. This permits acquisition on the rear side of
the vehicle. The Core() function is reported below.

/*Core TLBoard */

2 void CoreTLBoard(void)

{

4

LedBlinking(LED_G_GPIO_Port , LED_G_Pin , 1000);

6 //Blink green led

8 SaveADCValues (2);

/*Read from DMA and save 10 samples x channel */

10

FilterADCValues (50);

3A power cycle means switch off the low voltage system and switching back on.

46

4 – Software

12 /*Mean value for 10 samples each 2ms */

14 BrakeLightRoutine (100);

/*Check BrakeLight status */

16

CAN_Tx (20);

18 /*Send data via CAN*/

20

}

The first set of functions are exactly the same as the SensorBoard, the acquisition
implementation is the same. The first unknown function is BrakeLightRoutine().
Since positioned on the rear side of the vehicle is capable of driving the brake
indicator light that is mandatory due to rules, reading on CAN bus the signal coming
from SensorBoard and corresponding to the brake pedal position. This sensor is the
most precise and the light must be turned on even if the brake is under slightly
pressure.

void BrakeLightRoutine(uint32_t delay_100us)

2 {

static uint32_t delay_100us_last = 0;

4

if(delay_fun (& delay_100us_last ,delay_100us))

6 {

if((BREAK_PEDAL > BREAKLIGHT_THRESHOLD) || DSPACE_BRAKE)

8 {

HAL_GPIO_WritePin(BRAKELIGHT_GPIO_Port , BRAKELIGHT_Pin ,

ON);

10 }

else

12 {

HAL_GPIO_WritePin(BRAKELIGHT_GPIO_Port , BRAKELIGHT_Pin ,

OFF);

14 }

}

16

}

The functions reads the value of the sensor and if above a certain threshold
switch on the light, otherwise off. The condition that switch the light on is in logic
OR with a second variable, DSPACE BRAKE. In fact the vehicle is able to perform
regenerative breaking and rules imposes to switch on brakelight in both regenerative
breaking and normal breaking. The variable is sent via CAN from the VMU. The
last function sends debug data and is reported below.

/*Send data to CAN BUS*/

2 void CAN_Tx(uint32_t delay_100us)

{

4 static uint32_t delay_100us_last = 0;

6 if(delay_fun (& delay_100us_last ,delay_100us))

{

8 ...

47

4 – Software

10 TxHeader.StdId = 0x20;

TxHeader.ExtId = 0x020;

12 TxHeader.RTR = CAN_RTR_DATA;

TxHeader.IDE = CAN_ID_STD;

14 TxHeader.DLC = 1;

TxHeader.TransmitGlobalTime = DISABLE;

16

BSPD_ERR = HAL_GPIO_ReadPin(BSPD_ERR_GPIO_Port , BSPD_ERR_Pin);

18 IMD_ERR = HAL_GPIO_ReadPin(IMD_ERR_GPIO_Port , IMD_ERR_Pin);

BMS_ERR = HAL_GPIO_ReadPin(BMS_ERR_GPIO_Port , BMS_ERR_Pin);

20 COCKPIT_GREEN_LED = !HAL_GPIO_ReadPin(COCKPIT_GREEN_LED_GPIO_Port ,

COCKPIT_GREEN_LED_Pin);

22 TxData [0]= (BSPD_ERR <<3) | (IMD_ERR <<2) | (BMS_ERR <<1) |

(COCKPIT_GREEN_LED);

24 CAN_Msg_Send (&hcan , &TxHeader , TxData , &TxMailbox , 30);

/* Message 3 with Error Byte*/

26

}

The message reported above is the ERROR BYTE mentioned in 4.5. The byte is
composed by four errors shifted by one position; with this format is easy to perform
bitwise masks. This function also sends acquired signals from analog channels in
messages with others ID.

4.7 BMS Low Voltage Module

The software module for the BMS for the low voltage system is able to perform
different tasks.

/* Thresholds */

2 extern uint16_t UV_threshold;

extern uint16_t OV_threshold;

4 extern uint16_t TEMP_threshold;

extern uint32_t cell_voltage [8];

6 extern uint16_t cell_temp_raw [8];

extern uint16_t cell_temp [6];

8 extern bool cell_voltage_fault [8];

extern bool cell_temp_fault [8];

10 extern uint16_t high_cell_voltage;

extern uint16_t low_cell_voltage;

12 extern uint16_t batt_voltage;

14 /*Error status */

extern bool faults;

16 extern bool faults_msk;

extern bool charging;

18 extern bool balancing;

Above are reported the main variables used to perform its tasks: under voltage
and over voltage threshold, temperature threshold, the voltages values of each cell,
the temperature of each cell, the highest voltage and the lowest, the total battery

48

4 – Software

voltage and some parameters used to set in charging mode, in balancing mode and
in fault mask mode. Faults array are used (cell voltage faults and cell temp fault)
in order to determine which cell is faulty and the array is filled as follows.

/*Check voltage thresholds */

2 for(int i = 0; i < 7; i++)

{

4 /*Check OV or UV error*/

if(cell_voltage[i] > OV_threshold || cell_voltage[i] <

UV_threshold)

6 {

cell_voltage_fault[i] = true;

8 }

else

10 {

cell_voltage_fault[i] = false;

12 }

}

If the cell voltage is below the undervoltage threshold or above the overvoltage
threshold the variable is set true. With this method the index of the array correspond
to the faulty cell id. The same technique is adopted for cell temperatures and if one
of them is true a global variable is set as follow.

faults |= cell_voltage_fault[i] || cell_temp_fault[i] || (CURRENT > OVERCURRENT);

The current of the battery is measured and the value is saved into CURRENT.
An overcurret threshold is used and the previous task is performed continuously in
order to have a system with a real time response. The Core() function of the BMS
is reported below.

*Core SensorBoard */

2 void CoreBmsLV(void)

{

4

LedBlinking(G_LED_GPIO_Port , G_LED_Pin , 100);

6

if(faults)

8 {

LedBlinking(R_LED_GPIO_Port , R_LED_Pin , 100);

10 }

/*If fault , led should be orange */

12 HAL_Delay (200);

14 /*Poll 8 sens + 8 aux*/

if(Uart_Send_CMD (0x81 , 0x00 , 0x02 , 0x01 , 0xe8 , 0x9c , 0x00 , 0x00 , 0x00 ,

0x00 , 6, 10) != HAL_OK)

16 {

Error_Handler ();

18 }

20 /*Read 8 sens + 8 aux*/

if(Uart_Receive_CMD(uart_rx_cmd , 35, 100) != HAL_OK)

22 {

49

4 – Software

Error_Handler ();

24 }

/*END OF CO-PROCESSOR COMMANDS */

26

batt_voltage = 0;

28 /*Fill voltage array with converted values , compute total , lower and

higher voltage */

for(int i = 0; i < 7; i++)

30 {

cell_voltage[i] = (uart_rx_cmd [2*i+3] << 8);

32 cell_voltage[i] = (cell_voltage[i] | uart_rx_cmd [2*i+4]);

cell_voltage[i] = (cell_voltage[i] * 5000) / 65535;

34 batt_voltage += cell_voltage[i];

36 low_cell_voltage = 5000;

if(low_cell_voltage >= cell_voltage[i])

38 {

40 low_cell_voltage = cell_voltage[i];

42 }

44 high_cell_voltage = 0;

if(high_cell_voltage <= cell_voltage[i])

46 {

48 high_cell_voltage = cell_voltage[i];

50 }

52 }

54 /*Fill temp array with converted values */

for(int i = 0; i < 8; i++)

56 {

cell_temp_raw[i] = (uart_rx_cmd [2*i+17] << 8);

58 cell_temp_raw[i] = (cell_temp_raw[i] | uart_rx_cmd [2*i+18]);

cell_temp_raw[i] = 100.0 * (1.0 / (1.0/298.0 +

(1.0/ BETA)*log (1.0/(65535.0/(float)cell_temp_raw[i] - 1.0))

) - 273.0);

60 }

62 /*END CONVERSION VOLTAGEs and TEMPERATURE */

...

64

if(CURRENT < CURRENT_OFFSET_CHARGING)

66 {

charging = true;

68 HAL_GPIO_WritePin(R_LED_GPIO_Port , R_LED_Pin , GPIO_PIN_SET)

/*Turn on yellow led*/

70

}

72 else

{

74 charging = false;

HAL_GPIO_WritePin(R_LED_GPIO_Port , R_LED_Pin , GPIO_PIN_RESET)

76 /*Turn off yellow led*/

78 }

80

/*Check current and temperature threshold */

50

4 – Software

82 for(int i = 0; i < 7; i++)

{

84 /*Check OV or UV threshold */

...

86 }

for(int i = 0; i <6; i++)

88 {

/*Check over temperature */

90 ...

}

92

CAN_Tx (2500);

94 /*Send via can*/

96 /*Open or Close vehicle relays */

if(((faults == false) && (charging == false)) || (faults_msk == true))

98 {

/*CLOSE RELAIS */

100

HAL_GPIO_WritePin(RELAY_CMD_GPIO_Port , RELAY_CMD_Pin ,

GPIO_PIN_SET);

102

}

104 else

{

106 /*OPEN RELAIS */

HAL_GPIO_WritePin(RELAY_CMD_GPIO_Port , RELAY_CMD_Pin ,

GPIO_PIN_RESET);

108 }

110 }

The BMS led positioned on the board behaves as others with new color, in fact
if the battery is in charging mode the led becomes orange (switching on red and
green). The task performed at beginning are commands needed to be sent to the
co-processor via uart in order to request voltages and temperatures. Once received
values are converted into voltage since are coming from the internal ADC with 4.1.

cell voltage =
ReadV alue ∗ VFR

2Nb
=
ReadV alue ∗ 5

216
(4.1)

The number of bits Nb is fourteen but during the transmission via UART two
byte are received for a total of sixteen bits. Hence the reason of sixteen used for the
conversion. Then the temperature values are acquired first into voltage then into
degrees as in equation 4.2

cell temp =
1

1
298

+ 1
β
∗ log(1

2Nb
ReadV alue

−1
)
− 273 (4.2)

After the data conversion, the current read by the sensor is compared with
a minimum threshold, if below the current is flowing through the battery and a
variable is set as true then the red led is switched on changing color to orange and
vice-versa. Once performed this check at the end the task decides to open or close

51

4 – Software

the battery relay with the possibility of fault masking sending a command via CAN.
This task is repeated indefinitely every 200 milliseconds.

4.8 PC Host Module

The host pc module is an application that runs on Windows able to send commands
and perform debug via CAN. This module that is mandatory to upgrade unit’s
firmware is written in C++ using Qt and is composed by three treads. The main
thread is the graphical interface, the second performs CAN broker between the
application and the low level driver and the last is a dedicated thread that uses
OpenBLT libraries to upgrade firmwares. The graphical interface is reported below
in figure 4.6.

Figure 4.6: Host PC

The tool connects via CAN and reads all data to update the graphical interface.
Is possible to upgrade individually unit’s firmware and a dedicated sheet is available
for each unit. For example as in figure 4.7 the DashBoard internal variable are

52

4 – Software

shown as finite state machine status and error byte received. Is is also possible to
set a certain value for the PWM and send instantly to the unit.

Figure 4.7: DashBoard tile

This tool is also useful when the high voltage battery has to be charged: in fact
the battery have the be unmounted from the vehicle and positioned in a custom
battery charger. The high voltage BMS in fact needs some commands to close AIRs
hence a the tool is able to perform this task. As in figure 4.8 the tool have some
buttons in order to start the charging procedure and show the state of charge in real
time, the temperature of the highest cell, the value of the charging current and the
total battery voltage.

53

4 – Software

Figure 4.8: Charger tile

One of the most useful feature this module implements is the ping mode: the
tool is able to perform a ping to each unit and waits for a response. This result
useful in the beginning debug phase in order to identify if the unit is online or not.

54

Appendix A

Control Area Network BUS

The Controller Area Network (CAN) as described in [2] is a multi-master commu-
nication protocol initially developed by BOSH. Originally created for automotive
industry for replacing complex communication systems with a only two wire bus.
The messages are broadcasted to the entire network providing data consistency in
every node of the system. The communication protocol defines each node must wait
a specific amount of time before attempting to send a message and collisions are
resolved trough arbitration based on priority of each message in the identifier filed:
the highest priority identifier wins bus access. Standard identifiers are 11-bit depth
providing 211 different identifiers instead of extended identifier that are 29-bit depth
with at least 229 different identifiers. Messages can be classified into two categories:
Data Frame and Remote Frame. The former are messages containing data byte, the
latter are messages without data used to solicit the transmission of a corresponding
data frame. Data frame with standard identifiers are formatted as in figure A.1.

Figure A.1: Data Frame with 11-bit identifier

Remote frame are formatted as figure A.2.

55

A – Control Area Network BUS

Figure A.2: Remote Frame with 11-bit identifier

As shown above bit field are the same for both data and remote frame: fields
will be explained in the following.

• SOF: (Start of Frame) marks the beginning1 of data and remote frames with
a dominant2 bit.

• Arbitration Field: includes message ID and RTR bit. Identifiers are 11 or 29
bit and the first bit is the MSB. In case of an extended message the identifier
is split into two pieces: as in figure A.3 block A contains the first 11 bits of
the ID (from 28 to 18) and the second block B contains the remaining (17 to
0). If RTR = 0 the message is a data frame otherwise a remote frame. For
extended ID the IDE is present in Arbitration Field, if equals to one specify
an extended identifier, otherwise standard3.

• Control Field: contains the DLC and a reserved bit r0. In case of a standard
ID also the IDE field, but for extended a second reserved bit r1 is present.

Figure A.3: Extended Frame

1The falling edge of SOF identifies the attention of a node to access the bus and serves as a
synchronization mechanism between nodes

2Zero logic since is like open collector principle
3The position of IDE bit must be considered, since in both standard or extended is the same

56

A – Control Area Network BUS

• Data Field: contains from 1 to 8 bytes of data.

• CRC Field: this field contains the CRC frame 15 bits deep and one bit of
delimiter that is always recessive.

• Acknowledgement Field: contains one bit of acknowledge and one bit of de-
limiter that is always recessive. This field serves as confirmation of a successful
CRC check by the receiving nodes in the network.

• End-of-Frame Field: each frame is terminated by a sequence of seven reces-
sive bits (EOF) plus an interframe space of three bits (IFS). During interframe
bits nodes are not allowed to transmit on the bus.

Physical signaling layers generally are implemented into any controller. Connec-
tion to the physical layer is implemented through a transceiver as shown in figure
A.4.

Figure A.4: Physical connection of a CAN Network

Signaling are differential which provides noise immunity and fault tolerance. The
signal is balanced, meaning that the current flowing in each signal line is equal but
opposite. This solution reduce noise coupling and allows for high rates over twisted
pairs. The use of balanced differential together with twisted pair cabling enhances
the common-mode rejection and provides high noise immunity. The cable could be
both shielded or unshielded with 120Ω of characteristic impedance; the line have to
be terminated at both ends with a 120Ω resistors in order to mach the impedance
to avoid signal reflection as shown in figure A.4. Two signal lines are labeled CAN

57

A – Control Area Network BUS

H and CAN L, in a recessive state are biased to 2.5v in order to have a typical 2v
different between.

58

Glossary

Acceleration The vehicle’s acceleration from a standing start is measured over a
75 metre straight 4

ADC Analog-to-Digital Converter 19

AIR Accumulator Isolation Relay 27, 28, 29, 30, 32, 46, 53

AMS Accumulator Management System 28

Autocross The car traverse a kilometre-long with straights, curves, and chicanes.
A fast lap time is a sign of high driving dynamics, precise handling and good
acceleration and braking ability 4

BMS Battery Management System 6, 7, 8, 18, 19, 22, 23, 24, 25, 26, 31, 32, 44,
48, 49, 51, 53

BOT Brake over Travel 28

BSPD Brake System Plausibility Device 6, 7, 28

Business Plan Simulation of the presentation of their project by each team in
front of potential sponsors 4

CAN Controller Area Network 7, 33, 35, 36, 38, 40, 43, 44, 46, 47, 52, 55

Cost and Manufacturing Analysis of the cost report drafted by each team where
are included quantities of materials and components used 4

CRC Cyclical Recovery Checking 38, 57

DC Direct Current 25

DC-to-DC Direct Current to Direct Current Converter 5, 6

DLC Data Length Code 56

Endurance Endurance is the main discipline; over a distance of 22 kilometers the
cars have to prove their durability under long-term conditions 4

Engineering Design Car project presentation 4

I

Glossary

EV Electrical Vehicle 24

HVD High Voltage Disconnect 28

IMD Insulation Measurement Device 6, 28, 31, 32, 33, 44

LED Light Emitting Diode 8, 43, 44, 45, 46

LV Low Voltage 5, 6, 28

LVMS Low Voltage Master Switch 28

LVS Low Voltage System 5

MSB Most Significant Bit 56

PCB Printed Circuit Board 3, 8, 9

RTR Remote Transission Request 56

Skid Pad The cars must drive a figure of 8 circuit lined with track cones, perform-
ing two laps of each circle 4

TS Tractive System 5, 6

TSAL Tractive System Active Light 6, 7, 31, 32, 33

TSMS Tractive System Master Switch 28

UART Universal Asynchronous Receiver-Transmitter 19, 20, 22, 43, 51

VMU Vehicle Management Unit 6, 7, 35, 36, 41, 45, 46, 47

II

Bibliography

[1] Formula Student Germany Rules, 2019 v1.1, Rev-713. Link.
[2] Introduction to the Controller Area Network, 2002, Texas Instruments Link.
[3] AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY

DHAB S-145Link.
[4] OrionBMS JuniorLink.
[5] STM32F303xB / STM32F303xC - ARM based Cortex-M4 32b MCU+FPU, up

to 256KB Flash+ 48KB SRAM, Datasheet Link.
[6] Common Mode Chokes in CAN Networks: Source of Unexpected Transients,

Application Note Link.
[7] Texas Instruments BQ76PL455A-Q1 16-Cell Battery Monito, Datesheet Link.
[8] CAS/CASR/CKSR series Current Transducers, LEM, Datesheet Link.
[9] OpenBLT GNU GPL Bootloader, Link.
[10] STM32CubeMX, initialization code generator Link.

https://www.st.com/en/development-tools/stm32cubemx.html

III

https://www.formulastudent.de/fileadmin/user_upload/all/2019/rules/FS-Rules_2019_V1.1.pdf
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://www.lem.com/en/dhab-s145
https://www.orionbms.com/downloads/documents/orionbms_jr_specifications.pdf
https://www.st.com/resource/en/datasheet/stm32f303cb.pdf
http://www.ti.com/lit/pdf/slla271
http://www.ti.com/lit/gpn/bq76pl455a-q1
https://www.lem.com/sites/default/files/marketing/lem%20leaflet%20cas%20casr%20cksr.pdf
https://www.feaser.com/en/openblt.php
https://www.st.com/en/development-tools/stm32cubemx.html

	Introduction
	Intent
	Overview
	Author's contribution on SC19

	State of Art
	Formula Student
	Rules analysis
	Previous year Vehicle
	Specifications

	Hardware
	Microcontroller
	Acquisition
	BMS for low voltage batteries
	Battery Management System Theory
	Battery Management System Overview

	Safety
	Precharghe and Discharghe
	Shutdown Circuit
	TLBoard

	Software
	Architecture overview
	Bootloader
	Bootloader Theory
	OpenBLT

	Low Level Init
	SensorBoard - Acquisition Module
	DashBoard - Cockpit Management Module
	TLBoard - Safety Module
	BMS Low Voltage Module
	PC Host Module

	Control Area Network BUS
	Glossary
	Bibliography

