
POLITECNICO DI TORINO

Master Degree in Computer Engineering

Master Thesis

Deep Domain Adaptation through
Inter-modal Self-supervision

Supervisor

prof. Barbara Caputo

Co-supervisors:

doct. Mirco Planamente
doct. Mohammad Reza Loghmani

Candidate

Luca Robbiano

March 2020

Deep Domain Adaptation through Inter-modal Self-supervision
Master thesis. Politecnico di Torino, Turin.

© Luca Robbiano. All rights reserved.
March 2020.

The work in this thesis has been submitted to the International Conference on
Intelligent Robots and Systems (IROS) 2020 and for publication on IEEE Robotics
and Automation Letters (RA-L).

http://www.iros2020.org/
http://www.iros2020.org/
https://www.ieee-ras.org/publications/ra-l
https://www.ieee-ras.org/publications/ra-l

Acknowledgements

In this section I want to thank all the people who have been supporting me in these
years and during the development of this work. Since not all of them are comfortable
with English, this part will be in Italian.

Vorrei ringraziare prima di tutto la mia famiglia per essermi stati vicini e avermi
sostenuto in questi anni di studio.

Ringrazio poi la professoressa Barbara Caputo, per avermi offerto questa op-
portunità di tesi e per avermi dato la possibilità di lavorare presso il laboratorio
VANDAL, e i miei correlatori, Mirco Planamente e Mohammad R. Loghmani, con
cui ho collaborato nello svolgimento di questa ricerca. Grazie a loro e alla loro
pazienza ho imparato molto in questi mesi. Ringrazio anche tutti i ragazzi del
laboratorio, con cui ho imparato cosa significhi letteralmente vivere la ricerca.

Un enorme grazie va infine ai miei amici, che mi sono stati vicini e mi hanno
sostenuto in questi anni, anche nei momenti più difficili. Un ringraziamento parti-
colare a Ilaria, Elian, Andrea e Silvia e a tutto il resto della Cluster. Questi anni
non sarebbero stati gli stessi senza i momenti folli che abbiamo vissuto assieme. Un
grazie speciale anche a Teresa, per aver sempre saputo trovare le parole giuste nei
momenti giusti, a Michela per essere sempre stata presente e di supporto negli ultimi
anni e a Giovanni, per le nostre passeggiate con annesse chiacchierate filosofiche,
sempre spunto di riflessione.

Un grazie enorme anche a tutti coloro che non ho esplicitamente nominato, non
per importanza ma per vincoli di spazio...e tempo, visto che i ringraziamenti sono
l’ultima cosa e come al solito sto consegnando all’ultimo. Lo sapete, lavoro meglio
sotto pressione.

iii

Abstract

Computer vision in robotics makes heavy use of RGB-D data. However, collecting
large manually annotated datasets is extremely time-consuming and therefore costly.
A potential solution is to automatically generate synthetic datasets and to use them
in order to make predictions on the real data. Nevertheless, the domain shift between
the synthetic dataset (source domain) and the real data (target domain) partially
invalidates the effectiveness of this solution, yielding an accuracy significantly lower
than the one that would be obtained using labelled real data. In order to overcome
this issue, multiple domain adaptation methods have been developed. These methods
can also be employed on multimodal data, such as RGB-D data, but they do not
explicitly exploit the natural relationship between modalities. We propose a novel
domain adaptation method which allows reducing the domain shift by forcing the
convolutional neural network to learn the connection between RGB and Depth
images through a secondary self-supervised task. Extensive experiments on object
categorization and instance recognition show that the exploitation of inter-modal
relation can significantly enhance the performance of the main classification task.

Contents

List of Figures iv

1 Introduction 1

2 Related Works 5

3 Background 7
3.1 Neural Networks . 7

3.1.1 Optimisation . 9
3.1.2 Batch Normalisation . 11
3.1.3 Regularisation . 12
3.1.4 Dropout . 12

3.2 Convolutional Neural Networks . 13
3.2.1 Convolutional layer . 14
3.2.2 Pooling layer . 15

3.3 Residual Networks . 16

4 Domain Adaptation 19
4.1 Domain Adversarial Neural Network 19

4.1.1 Motivation . 20
4.2 Deep Adaptation Network . 22
4.3 Self-supervised Rotation . 24
4.4 Adaptive Feature Normalisation . 25

5 Multimodal Domain Adaptation 27
5.1 Feature extraction and main task 27
5.2 Secondary task . 28
5.3 Loss . 29

6 Implementation Details 31
6.1 Main classifier . 31
6.2 Secondary classifier . 31
6.3 Training . 32

ii

6.4 Preprocessing . 34

7 Experiments 35
7.1 Datasets . 35

7.1.1 synROD - ROD . 35
7.1.2 synHB - HB . 36

7.2 Baselines . 36
7.3 Results . 37

7.3.1 Ablation study . 38
7.3.2 Baseline comparison . 40

8 Conclusions and future work 45

Bibliography 47

iii

List of Figures

1.1 A robot using RGB-D sensors. 1

3.1 Three-layer neural network. 8
3.2 Plots of different activation functions. 9
3.3 Gradient Descent. 10
3.4 Neural Network after applying dropout. 13
3.5 Convolution operation. 15
3.6 Pooling operation. 16
3.7 Illustration of a residual block. 17
3.8 ResNet-18 Architecture. 18

4.1 Domain Adversarial Neural Network 20
4.2 Architecture of a Deep Adaptation Network 23
4.3 DA through self-supervised rotation. 25
4.4 Example of a network adapted by using AFN 26

5.1 Architecture for Relative Rotation Multimodal Domain Adaptation 28
5.2 Examples of relative rotations . 29

6.1 Architecture of the main classifier. Batch normalisation and dropout
layers are not represented. 32

6.2 Architecture of the relative rotation classifier. 32
6.3 Surface Normal++ steps. 34

7.1 RGB-D Object Dataset (ROD) and synROD 36
7.2 HomeBrewed db (HB) and synHB 37
7.3 RGB-D setting for baseline evaluation 38
7.4 RGB-D e2e setting for baseline evaluation 39
7.5 Comparison between the synthetic datasets used in our experiments

and PACS . 40
7.6 t-SNE projection of adapted and not adapted features 43
7.7 Guided backpropagation. 44

iv

List of Acronyms

AFN Adaptive Feature Normalisation

CNN Convolutional Neural Network

DA Domain Adaptation

DAN Deep Adaptation Network

DANN Domain Adversarial Neural Network

e2e End to End

FC Fully Connected

GD Gradient Descent

GRL Gradient Reversal Layer

HAFN Hard Adaptive Feature Norm

HB HomeBrewed db

MK-MMD Multiple Kernel Maximum Mean Discrepancy

MMD Maximum Mean Discrepancy

MMFND Maximum Mean Feature Norm Discrepancy

RKHS Reproducing Kernel Hilbert Space

ROD RGB-D Object Dataset

RR Relative Rotation

SAFN Stepwise Adaptive Feature Norm

SGD Stochastic Gradient Descent

SVM Support Vector Machine

v

Chapter 1

Introduction

Since the advent of the first computers, researchers tried to push the boundaries of
their capabilities in order to solve complex tasks. Machine-learning algorithms play
a key role in this endeavour, by enabling computers to learn from experience. In the
last few years, the breakthrough of deep neural networks profoundly transformed
machine learning, allowing to accomplish tasks previously thought to be out of reach
for computers.

Computer vision is one of the fields that have been affected the most by the
deep learning revolution: the introduction of AlexNet [38] and its victory in the
ILSVRC [64] competition in 2012 showed how deep Convolutional Neural Networks
(CNNs) could be effectively trained on hundreds of thousands of images achieving
significantly better performances than the previous state-of-the-art methods. Other
fields had indirect benefits from these results: for instance, robotics makes extensive
use of computer vision algorithms to make robots more autonomous.

Figure 1.1: Centauro is a robot designed at the Italian Institute of Technology (IIT)
that makes use of RGB-D sensors. Image from [52].

The use of robots has been standard practice in the industry for decades and is
still becoming more and more relevant, but other areas are increasingly benefitting

1

Introduction

from robotic workforce. Robots have been successfully used for medical applications,
space exploration and educational purposes [4], and are rapidly becoming part of
our daily lives by assisting humans in their everyday tasks.

In order to correctly perform their tasks, robots usually need to collect information
about the surrounding environment. Emulating what humans and other animals do,
many robots make use of images to obtain such information and take consequent
actions thanks to computer vision. However, because robots physically interact with
the environment, they have a particular need for robustness: bad decisions taken by
robots can often be very costly and even life-endangering.

For this reason, robots are often equipped with additional sensors, which provide
supplementary data to improve the understanding of the context. Among the most
frequently used ones there are depth sensors, which along with a standard RGB
camera provide visual information enriched by an extra channel encoding distance.
This multimodal type of data is usually referred to as RGB-D.

The employment of RGB-D data has been empirically proven to be an effective
technique to improve the robustness of computer vision algorithms: RGB-D cameras
provide a precise pixel-wise measure of the distance between the sensor and portrayed
objects. The additional spatial and geometric information helps the robot to
understand the surrounding space better, being less sensitive to light conditions and
different textures.

The availability of low-cost RGB-D sensors encouraged their spreading in robotics.
However, the lack of large scale multimodal datasets to train the computer vision
models is currently a significant bottleneck for the wider adoption of this kind of
sensors. CNNs need a massive amount of training samples to be effectively trained
for practical purposes, and the production of the required manually annotated
datasets can be very expensive.

A possible solution to this problem is to generate large training datasets auto-
matically. Three-dimensional models can be used to render a virtually unlimited
amount of samples for each class with different light conditions and backgrounds.
However, despite the rendering photorealism achievable thanks to modern raytracing
algorithms, the difference between the synthetically generated images and the real
world heavily affects the effectiveness of this approach.

The ability of a model to perform well despite the domain shift (i.e. the differ-
ence between the training domain, called source, and test domain, called target) is
addressed by a specific research field, known as Domain Adaptation (DA). Unsuper-
vised DA aims to minimise the effect of the domain shift by exploiting an unlabelled
collection of samples from the target distribution. Since unlabelled samples can
be created without needing per-image human intervention, they are much cheaper
to collect. Therefore, a domain-adapted training algorithm takes as input a large
dataset of labelled data from the source domain and a dataset of unlabelled samples
from the target domain. The resulting trained network should be able to perform
well on both datasets. In our RGB-D synthetic-to-real setting, we are particularly

2

Introduction

interested in the performances on the target domain, since the source dataset is
synthetic and produced specifically for training purposes.

Multiple strategies have been proposed to perform DA and can be used for
this purpose, but none of them was specifically designed to handle multimodal
data. We believe that the additional information provided by multimodality can
effectively be exploited to better adapt to the target domain. Our approach consists
of encouraging the neural network to learn more transferable features by learning
a relation between the two modalities, thus becoming able to balance the lack of
information of each channel by using the information provided by the other one.

In chapter 2 we present a summary of the approaches already studied in the
literature, pointing out the main differences with our method. In chapter 3 we
provide the basics about neural networks required to understand the details of our
method, which is described in chapter 5. In chapter 6 and 7 we describe in detail
our implementation and the experiments we conducted to compare it with four
baseline methods described in the literature, which we describe in chapter 4.

3

4

Chapter 2

Related Works

Several approaches have been proposed in the literature for RGB-D object classifi-
cation. While traditional single-modality RGB object recognition has been based
on unsupervised feature extraction for a long time, many of the successful RGB-D
approaches kept employing hand-crafted feature extractors [10, 41]. In the last few
years, however, some studies suggested extending the use of unsupervised feature
learning for RGB-D data as well. Some of the proposed strategies involve clustering
algorithms [9], random forest classifiers [3] or convolutional filters combined with
recurrent neural networks [70].

More recently, multi-stream CNNs have been proposed [19, 67]. This approach
employs colourisation methods for the depth channel in order to better leverage
transfer learning. CNNs have been proven to be superior to other methods due
to their ability to automatically learn a hierarchical set of filters with multiple
abstraction levels [38]. Therefore we follow the same approach and implement a
dual-stream CNN for our method.

With respect to unsupervised DA, no method has been proposed in literature
specifically for RGB-D data. Nevertheless, general-purpose DA methods can be
adapted for use in a multimodal setting [11]. A first distinction within DA techniques
can be drawn between shallow and deep methods, the latter designed to work with
deep neural networks. Because shallow DA is not of interest to our work and our
method is based on deep neural networks, we focus on deep DA. More specifically,
since in our setting the source and target domain share the same feature space
and no labelled target samples are available during training, we are interested in
homogeneous unsupervised DA [75].

Some of the methods, like [49, 77], encourage the network to reduce the domain
shift by directly penalising the discrepancy between source and target distributions.

Another approach is to use an adversarial objective to boost domain confusion;
for example [20] makes use of a domain discriminator and a gradient reversal layer
to prevent the feature extractor from learning domain-specific features.

A third approach is to use a secondary task trained to reconstruct the input data.

5

Related Works

Xavier and Bengio [24] suggest extracting a hidden feature representation from
a stacked denoising autoencoder (SDA) trained on both source and target. Less
computationally expensive methods include applying some kind of random transfor-
mation on the input and using an auxiliary classifier to reverse it. Xu et. al. [76]
propose to randomly rotate source and target images by multiples of 90°. By using
a four-way classifier to predict the rotation, the feature extractor is encouraged to
learn domain-invariant features. With the same purpose, Carlucci et. al. [12] suggest
solving a jigsaw puzzle by predicting the correct permutation of the input crops.

Our method falls in this last category, but an inter-modal secondary task is used:
both modalities are randomly and independently transformed, and the auxiliary
classifier is trained to predict the relation between the transformed modalities.

6

Chapter 3

Background

This chapter introduces the technical foundation on which our work is based.
Section 3.1 provides a brief overview of Neural Networks. In section 3.2 we focus
on CNNs, which is the specialised type of network used for our work. Lastly,
in section 3.3, we describe the recently introduced Residual Networks, which we
adopted to implement our method.

3.1 Neural Networks

Neural networks are machine learning models loosely inspired by the way the
biological brain processes information. Like the animal brain, they work through
simple interconnected units. The name network is due to their common directed-
graph representation. When the graph is acyclic, the model is said to be a feedforward
network, in contrast to recurrent networks.

Feedforward neural networks can be formalised mathematically as compositions
of functions. For example

f (x) = (f3 ◦ f2 ◦ f1) (x) = f3 (f2 (f1 (x))) (3.1)

is a network composed of three functions, called layers. f1 first processes input data,
then its output is processed by f2 and f3. Therefore f1, f2 and f3 are referred to as
the first, second and third layer. Each layer is composed of multiple units defined
as

h (x) = g (w · x+ b) , (3.2)

where w and b are model parameters to be optimised during the training of the
network, and g (·) is an activation function (note that, depending on the context,
the activation function is sometimes considered a separated layer itself).

Activation functions are crucial for neural networks since they prevent the model
from being a composition of linear functions, which would be a linear function

7

Background

Input

Hidden

Output

Figure 3.1: Three-layer neural network.

itself, thus being unable to solve non-linear problems. A high number of activation
functions have been proposed in the literature [56]. Some of the most used are:

• Hyperbolic Tangent

g (x) = tanh (x) ≜
1− e−2x

1 + e−2x
(3.3)

• Sigmoid

g (x) = σ (x) ≜
1

1 + e−x
(3.4)

• ReLU [34]
g (x) = relu (x) ≜ max {x , 0} (3.5)

However, modern neural networks mostly use ReLU because it can be defined
piecewise by linear functions, allowing to preserve their useful properties and
making models more easily optimisable by using gradient-based algorithms. Another
important activation function often used with multiclass classification is the Softmax
function, which is a multidimensional generalisation of the logistic function:

softmax (x) ≜

[︄
exi∑︁|x|
n=1 e

xn

]︄|x|
i=1

. (3.6)

While ReLU is the generally preferred activation function for input and hidden
layers, Softmax is the most used one for output layers in C-classifiers because its
output can be interpreted as a probability distribution over C classes.

The simplest type of neural network layer is the Fully Connected (FC) layer, in
which each output unit is connected to all the neurons of the following layer:

fi (x) = g (W · x+ b) , (3.7)

8

3.1 – Neural Networks

−3 −2 −1 1 2 3

−2

−1

1

2

(a)

−4 −2 2 4

−2

−1

1

2

(b)

−1 −0.5 0.5 1

−1

−0.5

0.5

1

(c)

Figure 3.2: Plots of different activation functions. (a) tanh, (b) sigmoid, (c) relu.

where the activation function g (·) is computed element-wise when defined as a
scalar function.

FC layers do not have any hyperparameters, except for the number of neurons,
which for input and output layers is bound to the dimensionality of input and
output data. At the cost of a high number of parameters and high computational
requirements due to dense matrix multiplication, FC layers offer a high expressive
power (capacity): provided it has enough neurons, a network having at least one
hidden layer can approximate any function required by practical applications [15,
31, 32, 45].

3.1.1 Optimisation

Training a neural network means solving an optimisation problem in order to
minimise the cost of the errors made by the network. In machine learning terminology,
the cost is called loss. In a supervised setting, given a sample (x , y) and a prediction
ŷ = fθ (x), the loss function L (y, ŷ) measures the quality of the prediction ŷ with
respect to the ground truth y. The choice of the loss function depends on the task.
For classification problems, a popular one is the cross-entropy loss

Lc (y, ŷ) =
∑︂
i

yi log (ŷi) . (3.8)

Training a network consists of finding the optimal parameters for the model

θopt = argmin
θ

L (y, fθ (x)) . (3.9)

Unfortunately, finding the global minimum θ would require strong assumptions on
the form of f . Typically such assumptions are not satisfied, therefore the only viable
way to proceed is searching a local minimum.

Several iterative optimisation algorithms allow to solve this problem by exploiting
the gradient of the loss function with respect to the network parameters, ∇L. The
training procedure consists of two repeated steps:

9

Background

• During forward propagation, the network computes predictions for the
training input data, by using the current weights.

• The gradient is computed through the backpropagation algorithm, and it is
used to update the weights.

The simplest gradient-based optimisation algorithm is the vanilla Gradient
Descent (GD) [14], which computes the gradient of the cumulative loss for the whole
dataset at each step and then updates the weights as

∆ θ = −η∇L, (3.10)

where η is a value called learning rate. Like all gradient-based optimisation methods,
GD works by exploiting the fact that a multivariate function f(x) decreases fastest
in the opposite direction of its gradient ∇f (figure 3.3).

(a)
(b)

Figure 3.3: Gradient Descent. (a) Plot of a loss function of two parameters, (b)
plot of the negative gradient of the loss function. The parameters are optimised by
following the negative gradient.

Vanilla GD, though effective with small amounts of data, cannot be easily scaled
to large datasets, which would require to compute the loss function over all the
samples before each weigh update. In order to solve this issue, GD is usually
approximated by using Stochastic Gradient Descent (SGD) [62], which computes
the loss and its gradient only on a small subset (“batch”) of the whole dataset at
each step.

A number of variations of SGD have been proposed. For example, a “momen-
tum” [61, 63, 73] is added to the update term in order to remember the previous
update at each step:

∆ θn = µ ∆ θn−1 − η∇L. (3.11)

A variant of this method is the Nesterov momentum [53, 54, 73], which is similar
to standard momentum except that the gradient ∇L is computed at θ + µ ∆ θn−1

10

3.1 – Neural Networks

instead of θ. Some other popular optimisation algorithms, like AdaGrad [18] and
Adam [37], use different learning rates for each parameter and automatically update
them during training.

3.1.2 Batch Normalisation

When training a neural network, we update the weight of every layer at the same
time. However, the weight update is computed under the assumption that the
other functions of the function-composition chain do not change. In practice this
assumption is not satisfied, thus preventing to train very deep networks effectively
due to a phenomenon known as internal covariate shift [68]. The distribution of
the input of each layer changes after each training step due to the update of the
weights of the previous layer.

A common method to mitigate the effects of internal covariate shift is to use a
lower learning rate. Nevertheless, this solution has the drawback of significantly
slowing down the training process. Observing that a neural network usually benefits
from the normalisation of its input, Ioffe and Szegedy [33] suggest normalising the
input of hidden or output layers. For this purpose, a batch normalisation layer is
proposed. Given an input x, it can be normalised as

fBN (x) ≜ (x− µ)⊘ σ, (3.12)

where ⊘ denotes the element-wise division. µ and σ are the mean and standard
deviation of each feature, respectively:

µi = E [xi]

σi =
√︁
δ +Var [xi],

with δ being a small positive constant to avoid division by 0 and the undefined
gradient

√
a at a = 0. During training the statistics are computed for the current

batch, and at test time it is possible to use the statistics previously collected, thus
allowing inference for single samples.

Because batch normalisation can reduce the expressive power of the model, batch
normalisation layers are often defined as

fBN (x) ≜ γ [(x− µ)⊘ σ] + β, (3.13)

where γ and β are learnable parameters. This formulation allows the output
features to have any mean and variance, but both these value are directly learned
as single parameters to optimise, thus not affecting the benefit gained with batch
normalisation.

11

Background

3.1.3 Regularisation

Optimisation algorithms are designed to minimise the training loss. However, when
developing a machine learning model, we aim to get a low test loss, which does not
always happen due to overfitting. Overfitting happens when the model learns the
training data noise, thus closely fitting the training samples but failing to generalise
when fed with new input. Overfitting is strictly linked with the model capacity:
higher representational power leads to higher exposition to overfitting. Since deep
models often have a high number of parameters, they have a large capacity, therefore
being particularly prone to overfit the training data.

The act of modifying an algorithm in order to minimise specifically the test error
without taking into account the training error is known as regularisation. Several
regularisation methods have been described in the literature, many of which act by
restricting the capacity of the model. One of the most popular approaches consists
of adding a parameter norm penalty. L2 Parameter regularisation, also known as
weight decay [39], defines a regularised loss

L̃ = L+ αLr

Lr ≜
1

2
∥w∥22 ,

where L is the main loss and w denotes the weights of the network, with θ = (w ; b).
The biases b are usually left unregolarised in order not to reduce too much the
capacity of the model.

3.1.4 Dropout

A common regularisation practice in machine learning is to use ensembles of
separately-trained models in order to improve the performances. This method,
called bagging, is not very suitable for use with big neural networks due to the high
amount of time and memory required to fit this kind of models.

Dropout (Srivastava et. al. [72]) provides an inexpensive way to approximate
an ensemble of a large number of models while training a single network. During
training, random units from the hidden layers of the network are temporarily
removed at each step. From a mathematical perspective, this can be formalised by
defining a “dropout layer” as

fd (x) ≜ m⊙ x, (3.14)

where ⊙ denotes the Hadamard product. At test time m is a mask with constant
value 1, while during training it is defined as

m = (m1,m2, . . . ,mk) (3.15)

mi ∼ B (p) , (3.16)

12

3.2 – Convolutional Neural Networks

where B is the Bernoulli distribution. The only hyperparameter of this type of layer
is p ∈ (0 , 1). The most common of choice is p = 0.5.

Figure 3.4: Neural Network after applying dropout. At each iteration, random units
are temporarily disabled. At evaluation time all the units are active.

3.2 Convolutional Neural Networks

FC networks can model virtually any kind of function, but they tend to be unusable
when the complexity of data and task grows beyond a certain point. The number
of parameters composing the model is often huge, therefore making the training of
such networks infeasible due to memory requirements and computational time. This
problem arises because in FC networks, each unit of a layer interacts with every unit
of the following one. This interaction is regulated through a weight which is unique
for every possible pair of neurons. A network taking a 64× 64 px image as input
and with 4,096 units in the first hidden layer would need 642 · 4,096 = 16,777,216
weights (64 MiB assuming 32-bit single-precision arithmetic) just for the first two
layers.

However, this large amount of parameters is often redundant: weights that are
useful to process some parts of the input are likely useful for other parts of the
input data. CNNs (LeCun et. al. [42, 43]) solve the problem by exploiting three
principles:

• Sparse interactions: each unit is connected only to a subset of the units of
the following layer.

• Parameter sharing: the same weights are applied to multiple portions of the
input.

• Equivariant representations: CNNs are equivariant to translation (i.e. if
translating the input yields the same output, translated).

Besides FC layers, the two essential blocks of a CNN are convolutional layers
and pooling layers.

13

Background

3.2.1 Convolutional layer

From a mathematical point of view, the convolution is an operation on two functions
x,w : R → R defined as

h (t) = (x ∗ w) (t) ≜
∫︂ +∞

−∞
x (a)w (t− a) da. (3.17)

Actual implementations are bound to work with finite-precision arithmetic, therefore
a discretized convolution has to be defined. Given two functions x,w : Z → R, their
discrete convolution is:

h (t) = (x ∗ w) (t) ≜
+∞∑︂

a=−∞

x (a)w (t− a). (3.18)

Moreover, neural networks often need to process multidimensional data (e.g. images
or videos), hence a multidimensional definition of convolution is required. Given
two functions x,w : Z2 → R, their bidimensional discrete convolution is

h (i , j) = (x ∗ w) (i , j) ≜
∑︂
m

∑︂
n

x (i , j)w (i−m, j − n). (3.19)

This definition can be easily extended to n-dimensional functions. Because it is
possible to process only finite data, we can assume both x and w to have a limited
support. This allows referring to them as n-degree tensors x and w.

Referring to CNNs, the two operands x and w are called respectively input
and kernel (or filter), while the result h = x ∗w is called feature map. A single
convolutional layer is defined by one or more kernels of size d× k1 × · · · × kn−1 and
takes as input a tensor of size d× s1 × · · · × sn−1. Since this work focuses on static
image recognition, from this point we will assume three-dimensional input tensors
of size c× h× w, where c, h and w are the number of channels (typically 3), the
height and the width of the input respectively. The size of the kernel (c× kh × kw)
is an important hyperparameter which defines the receptive field of each neuron.
Kernels are usually square-shaped (kh = kw = k) and much smaller than the input
tensor, with sizes ranging between 3 and 7.

The output of the layer is computed by convoluting the input with each filter
and by stacking the resulting feature maps. Therefore the output volume is defined
by the input volume and the number of kernels. Nevertheless, in practice, some
other hyperparameters affect the output size. The stride S defines the step size
while sliding the input tensor during the convolution. Sometimes it can be useful to
zero-pad the input, and the size of the padding is an additional hyperparameter P .
The output volume can then be computed as

F ×
(︃
H −K + 2P

S
+ 1

)︃
×
(︃
W −K + 2P

S
+ 1

)︃
, (3.20)

where F is the number of kernels of the layer.

14

3.2 – Convolutional Neural Networks

3 0 1

2 6 2

2 4 1

-1 0 1

-2 0 2

-1 0 1
-3

Figure 3.5: Convolution operation with a 3× 3 kernel, stride 1 and padding 1.

3.2.2 Pooling layer

The output of a convolutional layer is usually fed to an activation function, which
operates element-wise without changing the size of the tensor. After the activation
layer, a pooling layer is often present. It does not have any learnable parameters,
and its role is to reduce the dimensionality of the input by replacing each value
with a summary of its neighbourhood. Pooling is useful because while reducing the
dimensionality, it is approximately invariant to small translations. When appended
to a convolutional layer with multiple filters, the block can learn to be invariant to
any transformation, which is useful for generalisation.

Multiple types of pooling layers have been proposed in the literature. The most
common functions are max(·) [79] and avg(·), but others are sometimes used (e.g.
L2-norm or weighted average). The pooling function is computed over a rectangular
(typically squared) neighbourhood on each channel, so the tensor depth is unaffected.
The size of the neighbourhood is a hyperparameter, corresponding to the kernel
size of convolutional layers. Similarly to convolutional layers, pooling layers take
stride and padding as additional hyperparameters, and the output volume can be
computed in the same way.

Some studies [71] suggest deprecating the use of pooling layers, advocating that
dimensionality reduction can be effectively achieved by using convolutional layers
alone with higher stride values, but at the moment most architecture still make use
of them.

15

Background

13
-47

4 21
4 -19

-1
17

91
2 46

17

-57
20

-45
4 11

-37

14
-81

17
2 14

74

-30
22

-26
-72

-91
0

98
17

-7
3 11

24

91
46

98
74

Figure 3.6: Max pooling with a 3× 3 filter and stride 3.

3.3 Residual Networks

Due to their ability to learn features on multiple abstraction levels, Deep Neural
Networks quickly became the dominant approach to computer vision and many
other machine learning fields. Several studies [69, 74] show how the depth of the
network (i.e. the number of layers) plays a central role in determining the model
performances. All the most successful architectures participating in the ILSVRC [64]
competition feature a high number of layers.

Though evidence suggests employing deeper and deeper networks, a major issue
arises when stacking a high number of layers [7, 23]. During back-propagation, the
gradient gets very small, thus preventing the optimisation algorithm from effectively
updating the weights of the first layers. This problem, known as vanishing gradient,
has been addressed by carefully initialising the network weights [23, 29, 44, 65] and
normalisation layers [33].

A second problem when training very deep networks is the degradation of the
performances: the accuracy gets saturated during training and then starts decreasing
rapidly. Since the training loss diverges, we can conclude that degradation is not
caused by overfitting. A network with more layers should be able to perform at least
as well as a shallower version of the same network because the additional layers can
be set to be the identity mapping f (x) = x, thus making the two models perform
identically.

He et. al. [30] propose a solution to both degradation and vanishing gradient by
introducing Residual Networks. The primary component of the proposed architecture

16

3.3 – Residual Networks

is the residual block (figure 3.7). Instead of trying to learn the desired mapping

Weight layer

Weight layer

+

x

xreluF(x)

reluF(x) + x

Figure 3.7: Illustration of a residual block.

H (x), the model tries to fit the residual

F (x) = H (x)− x. (3.21)

The original mapping is then rebuilt as H (x) = F (x) + x. The hypothesis is that
it is easier to optimise F than to fit H. More specifically, if the optimal mapping
were the identity function H (x) = id (x) = x, it would be easier to fit it by putting
the residual F to 0 than by combining multiple non-linear layers. In real-world
problems, the optimal mapping is not expected to be the identity function, but it
could be closer to the identity than it is to a zero mapping, thus making it easier to
optimise the residual mapping.

In order to compute F (x) + x, x and F (x) must share the same dimensionality.
Depending on the specific form of F , this requirement is not always satisfied. For
example, pooling layers (see 3.2.2) apply a dimensionality reduction. Therefore, a
linear projection is used to reduce or increase the dimensionality when required:

H (x) = F (x) +Ws x (3.22)

The authors propose several architectures, with a number of layers varying from
18 (figure 3.8) to 152. Multiple stacked residual blocks compose each of the suggested
networks.

17

Background

Input Image

7× 7 conv, 64, /2

max (·) pool /2

3× 3 conv, 64

3× 3 conv, 64

3× 3 conv, 64

3× 3 conv, 64

3× 3 conv, 128, /2

3× 3 conv, 128

3× 3 conv, 128

3× 3 conv, 128

3× 3 conv, 256, /2

3× 3 conv, 256

3× 3 conv, 256

3× 3 conv, 256

3× 3 conv, 512, /2

3× 3 conv, 512

3× 3 conv, 512

3× 3 conv, 512

avg (·) pool

FC 1000

Figure 3.8: ResNet-18 Architecture. The dashed arrows denote a projection due to
dimensionality reduction.

18

Chapter 4

Domain Adaptation

One of the main challenges in training deep neural networks for classification is the
need for massive amounts of labelled data in order to make the model generalise
well. However, large datasets are often expensive to be collected and annotated,
and sometimes an adequate amount of data is unavailable.

Fortunately, even when it is difficult to obtain enough data from the domain
of interest, it is possible to exploit data from other domains, which might be
much cheaper to collect and annotate and in some cases could be even produced
automatically. Nevertheless, the shift between the domain of interest (target domain)
and the domain of the training data (source domain) heavily affects the performances
of the model on target data.

Deep DA solves this problem by using unlabelled target data, which is usually
less costly to collect due to the absence of the manual annotation process. Several
DA methods have been explored in literature [75]. In this section we describe four
of them.

4.1 Domain Adversarial Neural Network

Ganin et. al. [20] suggest promoting the generation of domain-invariant features
through an adversarial learning approach. The proposed architecture, called Domain
Adversarial Neural Network (DANN) (figure 4.1), is composed of a deep feature
extractor Gf , a classifier Gy and a domain discriminator Gd. The domain discrimi-
nator is a binary classifier trained to distinguish source and target samples, while
the classifier is trained to solve the main label prediction task.

Both the classifiers are fed with features extracted by Gf , but the discriminator
Gd gets the features through a Gradient Reversal Layer (GRL). The GRL behaves
like the identity function at forward time but multiplies the gradient by a negative
constant during backpropagation.

19

Domain Adaptation

Feature extractor Gf

Target

Source

Classifier Gy

Discriminator GdR
Figure 4.1: Domain Adversarial Neural Network. The features extracted by Gf are
used by Gy to predict the sample classes and by Gd to discern between source and
target samples. The gradient reversal layer R prevents Gf from learning features
useful to make such distinction. The classifier Gy is trained using only source
samples, while the discriminator Gd is trained using both source and target data.

We can define GRL formally as a “pseudo-function” R (x):

R (x) = x

∂R
∂x

= −λ I,
(4.1)

where I is the identity tensor. Reversing the gradient forces the feature extractor to
make source and target as indistinguishable as possible for the domain discriminator,
therefore generating similar feature distributions for both domains and reducing the
domain shift.

The value of λ can either be constant or change during training. The authors
propose the increasing scheme

λ =
2

1 + e−γ·p − 1, (4.2)

where p linearly grows from 0 to 1 during training and γ is a hyperparameter.

4.1.1 Motivation

From a theoretical point of view, the use of a GRL for domain adaptation optimises
the H-divergence between source and target distribution.

Definition 4.1.1. H-divergence (Ben-David et. al. [5, 6], Kifer et. al. [36]) Given
two domain distributions DX

S and DX
T over X, and a hypothesis class H, the H-

divergence between DX
S and DX

T is

dH
(︁
DX

S , DX
T

)︁
≜ 2 sup

η∈H

⃓⃓⃓⃓
Pr

x∈DX
S

[η (x) = 1]− Pr
x∈DX

T

[η (x) = 1]

⃓⃓⃓⃓
.

20

4.1 – Domain Adversarial Neural Network

TheH-divergence quantifies the capability of the hypothesis classH to distinguish
from examples from the two distributions. Ben-David et. al. [6] proved that if H
is symmetric, the empirical H-divergence between two samples S ∼

(︁
DX

S

)︁n
and

T ∼
(︁
DX

T

)︁n′
can be computed as

d̂H (S , T) ≜ 2

(︄
1−min

η∈H

[︄
1

n

n∑︂
i=1

I [η (xi) = 0] +
1

n′

N∑︂
i=n+1

I [η (xi) = 1]

]︄)︄
, (4.3)

where I (·) is the indicator function defined as 1 if the argument is true, 0 otherwise.
In order to compute the exact empirical H-divergence using (4.3), one should

take into account all the possible classifiers of interest (i.e. belonging to H), which
is generally infeasible. However, Ben-David et. al. [6] suggest that an estimation of

d̂ can be computed by training a model Gd to predict if a given sample belongs to
the source or target distribution. Denoting with ϵ the generalisation error of Gd,
d̂H can be approximated as

d̂H ∼ d̂A ≜ 2 (1− 2ϵ) , (4.4)

where d̂A is called Proxy A-distance and A ⊆ X.
Let us consider a shallow neural network composed by a single hidden layer

Gf (x ; W,b) = σ (W · x+ b) , (4.5)

that maps the input x into a D-dimensional space, and an output layer Gy : RD →
[0 , 1]L

Gy (Gf (x ; W,b) ; V, c) = softmax (V ·Gf (x ; W,b) + c) . (4.6)

(W,b,V, c) are the parameters to optimise when training the model. Assuming to
use the classification loss

Ly (Gy (Gf (xi) yi)) = log
1

Gy (Gf (xi))yi
, (4.7)

where (xi , yi) is a training sample, fitting the model consists of solving the optimi-
sation problem

min
(W,b,V,c)

[︄
1

n

n∑︂
i=1

Li
y (W,b,V, c) + λLr (w, b)

]︄
(4.8)

where λLr is a regularisation term.
Ganin et. al.suggest defining a domain discriminator Gd : RD → [0 , 1]

Gd (Gf (x ; W,b) ; u, z) = σ (u · (Gf (x ; W,b) + z) , (4.9)

21

Domain Adaptation

trained by using the loss

Ld (Gd (Gf (xi) di)) = di log
1

Gd (Gd (xi))
+ (1− di) log

1

1−Gd (Gd (xi))
, (4.10)

with di the binary domain label for the sample xi. We can then define a DA
regularisation term in equation (4.8)

Lr (W,b) = max
u , z

[︄
− 1

n

n∑︂
i=1

Li
d (W,b,u, z)− 1

n′

N∑︂
i=n+1

Li
d (W,b,u, z)

]︄
. (4.11)

From (4.4) we have that 2 (1− Lr (W,b)) approximates d̂H. The complete loss can
be rewritten as

L (W,b,V, c,u, z) =
1

n

n∑︂
i=1

Li
y (W,b,V, c)−

λ

(︄
1

n

n∑︂
i=1

Li
d (W,b,u, z) +

1

n′

N∑︂
i=n+1

Li
d (W,b,u, z)

)︄
, (4.12)

from which we can conclude that training the classification model Gy ◦ Gf while
regularising by H-divergence minimisation, leads to minimise the loss with respect
to a subset of the parameters to maximise it with respect to the others.

4.2 Deep Adaptation Network

In order to reduce the domain shift of the deep features, a direct approach could
consist of adding a loss function to penalise the discrepancy of source and target
features. Such discrepancy is more significant in the higher layers of the network,
which tends to learn more specific features.

Long et. al. [49] encourage the network to align source and target by minimising
the Maximum Mean Discrepancy (MMD) [27] between deep features in the higher
FC layers. MMD is a measure of the discrepancy between two distributions. More
specifically, it is a distance defined on the space of probability by measuring the
distance between their mean embeddings. Given a kernel k and its associated
Reproducing Kernel Hilbert Space (RKHS) Hk, the distance between the mean
embeddings of two distributions p and q is defined as

d2 (p, q) ≜
⃦⃦
Ep [ϕ (x

s)]− Eq

[︁
ϕ
(︁
xt
)︁]︁⃦⃦2

Hk
. (4.13)

The authors propose a Deep Adaptation Network (DAN) (figure 4.2), composed of
a convolutional feature extractor and a FC classifier.

22

4.2 – Deep Adaptation Network

Batches of data coming from both domains are fed into the network. Source
labelled samples are used to train the classifier by backpropagating the classification
loss. The output resulting from target data is discarded, but the hidden features
are used to compute the DA loss

LMMD ≜
∑︂
l∈L

d2
(︁
Dl

s , Dl
t

)︁
, (4.14)

where L is the set of the adapted layers and Dl
s, Dl

t are the distributions of the
features at layer l for source and target respectively. The loss to minimise is then

L = Lc + λ LMMD, (4.15)

with Lc being the main classification loss and λ a trade-off hyperparameter.

M
M

D

M
M

D

M
M

DSource

Target

Feature Extractor E

Classifier C

Figure 4.2: Architecture of a Deep Adaptation Network. The classifier C takes as
input the features extracted by the deep feature extractor E. The Maximum Mean
Discrepancy loss is computed between the features of the Fully Connected layers.
Note that C is a siamese network (i.e. the two branches share the same weights).

Instead of using basic MMD with a specific kernel, the authors follow a multi-
kernel approach implementing Multiple Kernel MaximumMean Discrepancy (MK-MMD)
(Gretton et. al. [26]), with a kernel defined as the convex combination of m positive-
semidefinite kernels

K ≜

{︄
k =

m∑︂
u=1

βuku :
m∑︂

u=1

βu = 1 , βu ≥ 0 ∀u

}︄
, (4.16)

where the coefficients {βu} are selected with the constraint that the resulting
composite kernel is characteristic.

MK-MMD can be computed using (4.14) with complexity O(n2). Since CNNs
are usually trained with large datasets, the exact discrepancy is therefore too

23

Domain Adaptation

computationally expensive to compute. Instead, the linear-complexity unbiased
estimate

d̂
2
(p, q) ≜

2

ns

ns
2∑︂

i=1

gk
(︁
xs
2i−1 , x

s
2i , x

t
2i−1 , x

t
2i

)︁
(4.17)

is used, where

gk
(︁
xs
2i−1 , x

s
2i , x

t
2i−1 , x

t
2i

)︁
= k

(︁
xs
2i−1 , x

s
2i

)︁
+ k

(︁
xt
2i−1 , x

t
2i

)︁
− k

(︁
xs
2i−1 , x

t
2i

)︁
− k

(︁
xt
2i−1 , x

s
2i

)︁
.

(4.18)

4.3 Self-supervised Rotation

Self-supervision employs supervised learning algorithms in settings where external
pre-labelled data is not available. The idea is to define an artificial problem,
tailored to be trained by using supervision coming from the data itself. Training a
model to solve this auxiliary (or “pretext”) task will hopefully make it learn deep
representations useful to solve the main task.

Several pretext tasks have been explored in the literature, like image inpaint-
ing [59], solving jigsaw puzzles [55], grey-scale image colourisation [78], predicting
the location of a patch of the image [17] or predicting audio from video [57]. Gi-
daris et. al. [22] propose to rotate unlabelled training images by random multiples
of 90° and to predict the rotation by using a four-way classifier.

This kind of approach has been mainly used to exploit transfer learning: the
network is first trained to solve the pretext task, then it is fine-tuned to solve the
main task. More recently, self-supervision has been used in other settings, like DA.
Several studies [12, 21] show how it is possible to encourage the network to learn
transferable features by adding a secondary self-supervised task, which can be solved
without using target labels but at the same time helps to learn domain-invariant
features.

Following the example of Gidaris et. al., Xu et. al. [76] use absolute rotation:
during training input images are randomly rotated by multiples of 90°. The secondary
task aims to predict the rotation angle, thus promoting the generation of features
useful to solve the main classification task on the target domain. More formally,
given a training sample x (from either source or target domain) and a randomly
selected j ∈ [0, 3], the network takes as input the transformed example

x̃ = rot (x, j · 90°) (4.19)

and uses it to predict j.

24

4.4 – Adaptive Feature Normalisation

Main Task

Self-supervised Task

Source

Target

Deep feature extractor E

Figure 4.3: Domain Adaptation through image rotation prediction. Input images
from both domains are randomly rotated and the self-supervised task is trained to
predict the rotation angle.

4.4 Adaptive Feature Normalisation

The approach proposed by Xu et. al. [77]. is based on two hypotheses:

• Misaligned-Feature-Norm Hypothesis: the domain shift between source
and target features causes the feature-norm expectations to be misaligned.
Encouraging the norms to be similar is expected to cause the network to learn
more transferable features, thus yielding better performances on target.

• Smaller-Feature-Norm Hypothesis: the domain shift causes the target
features to be less informative. Empirically, non-adapted target features can be
shown to have smaller norms, suggesting to encourage the network to generate
higher-norm features.

Given the first hypothesis, the authors propose Maximum Mean Feature Norm
Discrepancy (MMFND) to measure the distances between the distributions of source
and target. With reference to the network shown in figure 4.4, composed by the
deep feature extractor G and the FC classifier F = Ff ◦ Fy, the MMFND can be
defined as:

MMFND
(︁
H,Ds,Dt

)︁
= sup

h∈H

⎛⎝ 1

Ns

∑︂
xi∈Ds

h (xi)−
1

Nt

∑︂
xi∈Dt

h (xi)

⎞⎠ , (4.20)

where H is the space of all the possible h = ∥·∥2 ◦ Ff ◦G.
Without any restrictions on h, the MMFND distance will probably diverge or

increase to high values. This problem can be addressed by restricting the mean
feature norm, which is bound to converge to a scalar R. Both source and target
feature norms will then converge to the same value, thus making the MMFND vanish.
The constraint is enforced through an additional loss term. The cost function to
optimise is then

L = Lc + λ LAFN, (4.21)

25

Domain Adaptation

Source

Target

Deep feature extractor G

Fully connected Ff

Fully connected Fy

Shared Lmax

L1

L2

∆r
∆r

Figure 4.4: Example of a network adapted by using Adaptive Feature Normalisation.
G is the backbone, a convolutional general feature extractor. The extracted features
are fed into the Fully Connected classifier F = Ff ◦ Fy. Feature-norm adaptation
works by adding a constraint to the features extracted before the last Fully Connected
layer of F , Fy.

where Lc is the main classification loss, λ is a trade-off hyperparameter and

LAFN = Ld

(︄
1

Ns

∑︂
xi∈Ds

h(xi) , R

)︄
+ Ld

⎛⎝ 1

Nt

∑︂
xi∈Dt

h(xi) , R

⎞⎠ , (4.22)

with Ld being the Euclidean distance.
Coherently with the Smaller-Feature-Norm Hypothesis, empirical evidence proves

that higher values of R yield more transferable features. However, the value of
R cannot be arbitrarily increased: large values would cause the gradient of the
feature-norm loss to get extremely large, leading the model to explode. In order to
overcome this limit the authors developed a variant of the method, called Stepwise
Adaptive Feature Norm (SAFN), in contrast to the plain version, named Hard
Adaptive Feature Norm (HAFN).

Instead of encouraging the feature norm to converge to a fixed value R, the new
approach consists of pushing the norm to increase progressively. The proposed loss
function is

LAFN =
1

Ns +Nt

∑︂
xi∈Ds∪Dt

Ld [h (xi , θ0) + ∆r , h (xi , θ)], (4.23)

were θ0 and θ are the model parameters in the last iteration and current iteration
respectively.

26

Chapter 5

Multimodal Domain Adaptation

Our goal is to perform DA by exploiting the existing relationship between the two
modalities of an image, RGB and Depth. We work in a classification setting, so
we are interested in predicting the labels associated with target images using only
labelled source data and unlabelled target data.

Our approach consists of adding a secondary “self-supervised” inter-modal task
to the main classification one. The purpose of the self-supervised task is to force
the network to learn domain-invariant features that will be useful to classify target
data correctly. Several secondary tasks could be used. We focus on predicting the
relative rotation between the two modalities. Before being fed to the network, the
RGB and the Depth images are randomly and independently rotated by multiples
of 90°. The secondary classifier is trained to recognise the relative rotation between
the two. Figure 5.1 illustrates the architecture of our network, which is composed
of three parts:

• The two-stream deep convolutional feature extractor E, which is composed
of two single-modality feature extractors (Ec and Ed)

• The main classifier M

• The secondary classifier P

5.1 Feature extraction and main task

The feature extractor E is composed of two independent convolutional networks
with the same architecture, Ec and Ed, aimed to extract features from RGB (xc)
and Depth (xd) images. Given the input RGB-D image x =

(︁
xc,xd

)︁
, we compute

the features

h =
(︁
hc,hd

)︁
=
(︁
Ec (x

c) , Ed

(︁
xd
)︁)︁

. (5.1)

27

Multimodal Domain Adaptation

R
G
B

D
ep
th

Source

Target

Source

Main Task

Target

Self Supervised TaskDeep feature extractor Ed

Deep feature extractor Ec

Feature extractor E

Figure 5.1: Source labelled and non-rotated images are used to train the feature
extractors and the main classifier for object classification. Both source and target
samples are randomly rotated and used to train the feature extractors and the
secondary classifier, in order to predict the relative rotation between modalities.

The extracted features h, resulting from the concatenation of the features extracted
from RGB and Depth, are then fed to the main head M , a FC network used to
predict the object label.

5.2 Secondary task

The relative rotation classifier P takes as input the features extracted by the rotated
modalities and tries to guess the relative rotation between the two. This inter-modal
task makes the network learn a relationship between the modalities, resulting in the
extraction of domain-invariant features.

Another benefit of using relative rotation over simple rotation is that it does not
require to make any assumptions on the dataset. In contrast, a self-supervised task
based on absolute rotation can only work under the hypothesis that the pose of the
objects portrayed in the dataset is coherent in the majority of the images. For some
datasets this is not the case, and even when this requirement is satisfied it prevents
from using random rotation as data augmentation technique.

Given an RGB-D sample x =
(︁
xc,xd

)︁
, we randomly define j, k ∈ [0, 3]. The

transformed sample which is fed into the network is then

x̃ =
(︁
x̃c, x̃d

)︁
=
(︁
rot (xc, j · 90°) , rot

(︁
xd, k · 90°

)︁)︁
, (5.2)

where rot (·, α) is a clockwise rotation by α degrees around the centre of the image.
Let then z be the hot-encoded relative rotation between the two images

z = one hot ((k − j) mod 4) . (5.3)

28

5.3 – Loss

The self-supervised task consists of predicting z given the transformed x̃, which
gives the number of times the RGB image has to be rotated by 90° in order to be
aligned to the Depth one.

0° 90° 180° 270°

Figure 5.2: All the 16 possible combinations of relative rotations between modalities.

5.3 Loss

During the training, the optimisation algorithm updates the weights in order to
minimise the value of the loss function:

L = Lm + λ Lp + ϵ Lr. (5.4)

Lm is the main classification loss, it is needed to train the model to classify the
objects and it is defined as a cross-entropy loss:

Lm = − 1

Ns

Ns∑︂
i=1

ysi · log (ŷsi). (5.5)

Lp is the classification loss of the self-supervised task and it is weighted by the
coefficient λ. Like the main loss, it is a cross-entropy function, defined as

Lp = − 1

Ñ s

Ñs∑︂
i=1

zsi · log (ẑsi)−
1

Ñ t

Ñt∑︂
i=1

zti · log
(︁
ẑti
)︁
. (5.6)

Lr is a generic regularisation term, weighted by the coefficient ϵ.

29

30

Chapter 6

Implementation Details

In this section we describe the details of our implementation of the network and the
training algorithm. Specifying implementation choices that may affect experiment
results is needed for reproducibility, but it is important to remember that the DA
method exposed in chapter 5 is independent of these details.

For our experiments, we defined the convolutional feature extractors Ec and Ed

as the ResNet-18 (section 3.3) without the last FC and average pooling layers.

6.1 Main classifier

The main classifier M takes as input the features extracted by E and solves a C-way
classification problem, with C being the number of classes in the dataset. The
classifier is a two-layer FC network, following an average pooling layer. The first
FC layer is composed of 1000 units, uses ReLU activation function and implements
both batch normalisation and dropout, while the second FC layer (C units) uses
Softmax activation. The detailed structure of the network is shown in figure 6.1.

6.2 Secondary classifier

Similarly to M , the secondary classifier P takes as input the features extracted by
E and solves a 4-way classification problem. For this classifier we used a different
architecture, implementing it as a CNN composed of two stacked convolutional
layers and two FC layers, without global pooling.

The convolutional layers are defined to have 100 kernels (1× 1 the first, 3× 3 the
second). The FC layers have 100 and 4 units respectively. Both the convolutional
layers and the first FC one implement ReLU activation function, batch normalisation
and dropout. The last layer uses Softmax activation function. The classifier
architecture is described in figure 6.2.

31

Implementation Details

1 10
00

fc1

1 C

fc2

Figure 6.1: Architecture of the main classifier. Batch normalisation and dropout
layers are not represented.

100 100

conv1

1 10
00

fc1

1 4

fc2

Figure 6.2: Architecture of the relative rotation classifier.

6.3 Training

The network is trained using SGD with momentum µ = 0.9, learning rate η = 3×10−4

and weight decay 0.05 (see 3.1.3). We add entropy-minimisation [51] as a DA specific
regularisation loss, as described in section 5.3. Both M and P have dropout layers
with p = 0.5.

32

6.3 – Training

All the parameters of the network are optimised during training. The weights of
Ec and Ed are initialised from models pre-trained on ImageNet [16], while M and
P are randomly set using Xavier initialisation [23].

In each iteration, the network is fed with synchronised pairs of RGB and Depth
images, independently for object classification and DA. The detailed process is
described by algorithm 1.

Algorithm 1 Training algorithm

Require:
Labelled source dataset S = {(xs

i , y
s
i)}

Ns

i=1

Unlabelled target dataset T = {xt
i}

Nt

i=1

Ensure:
Object class prediction for target data

{︁
ŷti
}︁Nt

i=1
procedure train(S, T)

Compute transformed source dataset ˜︁S = {(x̃s
i , z

s
i)}

˜︁Ns

i=1

Compute transformed target dataset ˜︁T =
{︁(︁

x̃t
i, z

t
i

)︁}︁ ˜︁Nt

i=1
for each iteration do

Load batch from S
Compute main classification loss Lm

Load batches from S and T
Compute DA loss Lp and regularisation loss Le

Update weights of M from ∇Lm

Update weights of P from λ∇Lp and ϵ∇Le

Update weights of E from ∇Lm, λ∇Lp and ϵ∇Le

end for
end procedure
procedure test(T)

for each xt
i in T do

Compute ŷti = M(E(xt
i))

end for
end procedure

The images in the datasets we use for our experiments are not square-shaped.
We scale to 256px the longer side of the pictures and get 256× 256 images by tiling
the pixels of the longer sides. Before being fed to the network during training, the
samples are randomly cropped to 224× 224. Random horizontal flip (with p = 0.5)
is used as an additional data augmentation technique. At test time, images are
centre-cropped to 224× 224.

33

Implementation Details

6.4 Preprocessing

Before the steps described in section 6.3, additional preprocessing is required for
Depth data in order to exploit effectively transfer learning.
Depth images are thus preprocessed using surface normal++ encoding [1, 2], a
colourisation technique which maps a 1-channel depth image to a 3-channels RGB-
like space.

Because depth images are often incomplete and have missing values, a median
filter is first applied considering only non-missing values in a small neighbourhood
of each missing pixel (Lai et. al. [41]), therefore filling all the missing values without
significantly blurring the image. In order to solve the border problems that could
manifest when applying such filter, padding with border replication is used. A
second, bilateral, filter is applied to reduce noise, then the actual surface normal
vectors are computed pixel-wise. For each pixel two vectors

v1 =

(︃
1 ; 0 ;

∂z

∂x

)︃
,

v2 =

(︃
0 ; 1 ;

∂z

∂y

)︃
are defined. The “surface normal” vector is then computed as the cross product

n = v1 × v2 =

(︃
−∂z

∂x
;
∂z

∂y
; 1

)︃
. (6.1)

The vector n is then normalised as n̂ = n
∥n∥2

and remapped from the [−1 , 1]3 space

to [0 , 255]3 to be interpreted as an RGB triplet. Finally, the resulting image is
sharpened by using a filter which increases contrast in high-frequency zones, like
the edges.

Figure 6.3 shows the steps of the colourisation procedure.

(a) (b) (c) (d) (e)

Figure 6.3: Surface Normal++ steps. (a) Original depth image, (b) missing values
are filled by using the median filter, (c) surface normal colourised image without
bilateral filter, (d) surface normal colourised image with bilateral filter, (e) sharpened
final result. Images from [2].

34

Chapter 7

Experiments

In this section, we describe different experiments to assess the capabilities of our
Relative Rotation (RR) approach and the potential of inter-modal self-supervision in
general. For this purpose, our DA method is compared with four existing methods
described in chapter 4.

7.1 Datasets

The first challenge developing an RGB-D DA method is the lack of standard
benchmark datasets for evaluation. In order to evaluate DA methods, two distinct
datasets presenting the same object classes are needed. Source and target datasets
must have different origins for the domain shift to be considerable. More specifically,
we are interested in a synthetic-source and real-target scenario.

7.1.1 synROD - ROD

Due to the absence of synthetic data suitable for this purpose, we collect a new
synthetic dataset called synROD and we model it on the existing dataset ROD [40].
ROD is the primary reference dataset for object recognition in robotics [13, 19, 48].
It is composed of 41,877 RGB-D pictures taken from 300 objects divided into 51
classes. The images are captured from different angles with a camera placed at
about 1 m from the object.

In order to synthesize the new dataset, we select 303 textured models from public
3D repositories. The models are then rendered using Blender [8] with a ray-tracing
engine, to get photorealistic images. Each rendered scene is generated by randomly
selecting a subset of the available objects and by dropping them on a virtual plane
using a physics simulator. The size of the subset varies from 5 to 20, and the model
selection is conditioned in order to ensure balanced classes. The background is
created by using random images from the Microsoft COCO dataset [47].

35

Experiments

Figure 7.1: Examples from the two datasets ROD [40] (on the left) and synROD.

7.1.2 synHB - HB

HomebrewedDB [35] is a dataset featuring objects from 33 categories. The dataset
contains 3D object models obtained using a scanner and validation sequences
consisting of images captured with two RGB-D cameras. HB was conceived for 6D
pose estimation, but we fix it for instance recognition and DA.

For this purpose, we crop the validation scenes to get images containing only the
object instance. We refer to the resulting 22,935 samples as realHB. This part of
the dataset is aimed to be the target domain in our DA setting.

The synthetic counterpart of realHB, synHB, is generated by rendering the
scanned object models following the same procedure used for synROD.

7.2 Baselines

We compare our novel method with four existing DA techniques: GRL (section 4.1),
MMD (4.2), Rotation (4.3) and AFN (4.4). GRL, MMD and AFN are general-
purpose methods, since they are not limited to computer vision tasks. The first two
are the most established DA algorithms, and the latter can arguably be considered
state of the art. Rotation is specifically designed for use in computer vision problems,
and it is the most relevant to our method.

Since RGB-D DA has not been explored in literature yet and none of the
methods mentioned above was designed for use with multimodal data, we adopt
two approaches to evaluate them on RGB-D data:

• RGB-D We first train until convergence two single-modality classifiers, adapt-
ing RGB and Depth separately. Then we freeze the feature extractors and

36

7.3 – Results

Figure 7.2: Examples from the two datasets HB [35] (on the left) and synHB.

train a single FC layer fed with the concatenation of the extracted features
(figure 7.3).

• RGB-D e2e We perform DA while training a single classifier for both modali-
ties, concatenating the extracted features (figure 7.4).

7.3 Results

This section reports the results obtained by confronting the selected baselines and
variations of our method. The main challenge when evaluating DA methods is the
need for target labels in order to assess the actual performances on target data.
Labels are usually available for benchmark datasets like realHB and ROD, but they
should not be used to select the best model because they are not available in a
real-world scenario. Therefore we use target labels only after having chosen the
best model to use for the test. Since there is not a standard protocol for model
selection in a DA context, we proceed by manually choosing models by heuristically
inspecting evaluation source losses. More specifically, we adopt the following criteria:

• For GRL, we identify an interval of epochs where the discriminator accuracy is
stable around a reasonable value (∼ 0.5). In such interval we select the model
having the minimum classification loss on the source test set.

• For MMD, Rotation and Relative Rotation, we find a compromise between
the minima of classification and DA specific loss, focusing on minimising the
classification loss.

37

Experiments

Target

Source

Classifier

Domain Adaptation

R
G
B

/
D
ep
th

RGB / Depth feature extractor E

(a)

Source

Source

Frozen feature extractor E

Frozen deep feature extractor Ec

Frozen deep feature extractor Ed

Fully connected classifier C

D
ep
th

R
G
B

(b)

Figure 7.3: RGB-D setting. First, two single-modality feature extractors Ec and Ed

are trained using both labelled source data and unlabelled target data to perform
DA with the selected method. For this purpose, the output of E is fed into a
classifier M (a). After convergence a new network is built and trained, using Ec

and Ed as frozen feature extractors and a FC layer C as classifier (b).

• For AFN we just select the model exhibiting the minimum test classification
loss.

7.3.1 Ablation study

In order to understand how different components of our method influence the overall
performance, we perform an ablation study. Table 7.1 presents the accuracy obtained
with three different versions of Relative Rotation:

• Target rotation: we use labelled source data only for classification and DA
is performed solely with unlabelled target samples.

• FC classifier: the self-supervised task is solved using the same FC classifier

38

7.3 – Results

Target

Source

Classifier

Source

Target

Domain Adaptation

Feature extractor E

Deep feature extractor Ec

Deep feature extractor Ed

R
G
B

D
ep
th

Figure 7.4: RGB-D e2e setting. The feature extractors Ec and Ed are trained
simultaneously while performing Domain Adaptation on the concatenation of RGB
and Depth features.

we use for the primary task. Both source and target are used for DA.

• Ours: the final version of our method. We use a convolutional classifier in
order to solve the secondary task (see section 6.2).

Method synROD → ROD synHB → HB

Target rotation 64.60 86.32
FC classifier 64.20 86.49
Our 66.68 87.28

Table 7.1: Accuracy (%) of variations of our method. Using convolutional layers
instead of a pooling layer in the rotation classifier helps to exploit spatial information,
causing the network to better adapt to the target domain.

Performing DA only by predicting relative rotation of target samples is sufficient
to improve the accuracy significantly over “source only” (table 7.2), but it is not
as effective as using both source and target datasets. The network learns more
useful features when the self-supervised task is trained with data coming from both
domains due to the higher diversity in data.

Finally, we evaluate the performance of our method when using the same classifier
architecture for the secondary task and the main task. The network performs better
when convolutional layers are used instead of a pooling layer, because spatial
information is more easily preserved, therefore helping to solve the relative rotation
task.

39

Experiments

7.3.2 Baseline comparison

Table 7.2 shows that general-purpose DA methods do not always perform well on
multimodal data. For example, AFN and MMD yield higher accuracy on single-
modality RGB data than on multimodal RGB-D images. These results are due to
the less informative nature of Depth data: without an effective method to exploit
the additional information provided by the Depth channel, training on RGB-D data
can produce lower performance than using the RGB modality alone.

P
A
C
S

sy
n
R
O
D

sy
n
H
B

Figure 7.5: Comparison between the synthetic datasets used in our experiments and
PACS [46]. The latter portrays subjects in their natural position, so it is easy to
guess if the image has been rotated. Instead, the first two datasets contain pictures
taken from random angles, which makes it almost impossible to guess the absolute
rotation.

Rotation suffers from an additional issue: as already mentioned in section 5.2, it

40

7.3 – Results

can only work under the hypothesis that the objects in the dataset are portrayed
in a pose that is coherent through the majority of the samples. As figure 7.5
shows, this requirement is not satisfied by the synthetic datasets we used, making
the self-supervised task an ill-posed problem. Since the secondary task cannot be
solved by natural means, the network learns to solve it by overfitting or by using
shortcuts [55], thus not helping the feature extractor to learn domain-invariant
features. The attempt to answer an impossible problem is not just ineffective,
but it can severely damage the ability of the network to generalize, yielding even
lower performances than the ones obtained in a “source only” setting, as shown
by the results of Rotation on Depth. Nevertheless, this method still produces an
improvement over “source only” in some cases (RGB-D, RGB-D e2e and RGB).
Such performance gain is not due to the rotation task, but it is caused by the update
of batch normalisation layers while training on target. Depth images do not benefit
as much of batch normalisation on target because of the higher domain shift and
less informative channel.

Despite being related to rotation, our method does not share this weakness.
In addition, it does learn inter-modal relationships, thus effectively exploiting
multimodal data: table 7.2 proves that predicting the relative rotation between
modalities is an efficient DA method, indeed outperforming all the selected baselines
on both datasets.

From a qualitative point of view, the effectiveness of our method can be shown
by plotting the t-SNE [50] visualisation of the features of the main classifier when
the network is fed with data coming from the source and target domains. Figure 7.6
clearly shows that using our method source and target features are better aligned
and form well-defined clusters.

41

Experiments

Method synROD → ROD synHB → HB

Source only

RGB 52.13 51.17
Depth 7.56 15.50
RGB-D 50.57 49.71
RGB-D e2e 47.70 49.45

GRL

RGB 57.12 74.74
Depth 26.11 29.52
RGB-D 59.09 75.23
RGB-D e2e 59.51 74.95

MMD

RGB 63.68 74.95
Depth 29.34 28.24
RGB-D 62.10 77.96
RGB-D e2e 62.57 77.26

Rotation

RGB 63.21 84.46
Depth 6.70 5.62
RGB-D 63.33 83.99
RGB-D e2e 57.89 84.15

AFN

RGB 64.63 84.04
Depth 30.72 31.67
RGB-D 61.19 83.06
RGB-D e2e 62.40 86.49

Ours (RR) 66.68 87.28

Table 7.2: Accuracy (%) of several RGB-D Domain Adaptation methods.

42

7.3 – Results

(a) Source Only (ROD) (b) Relative Rotation (ROD)

(c) Source Only (HB) (d) Relative Rotation (HB)

Figure 7.6: t-SNE [50] projection of the features extracted from the last hidden
layer of the main classifier M . Red dots represent source samples, while blue dots
denote target samples.

43

Experiments

Figure 7.7: Visualisation of the most relevant pixels to predict the relative rotation
between modalities. The first row displays the randomly rotated RGB-D image
fed into the network. The second row shows the pixels that maximally activate
the last layer of the feature extractors. The pixels are determined by guided
backpropagation [71]. The third row highlights the peaks through binarisation to
make visualisation easier.

44

Chapter 8

Conclusions and future work

This work shows the effectiveness of exploiting inter-modal relations in order to
perform DA. We propose the first multimodal DA method specifically tailored for
RGB-D data. Our approach consists of randomly rotating both the modalities and
training a network to predict the relative rotation between the two images. This
task works alongside the main classification head, which is trained on labelled source
samples, and helps it to better generalise on target data.

In order to assess the performance of our novel method, we define two synthetic-
to-real benchmarks for DA and object classification. For this purpose we adapt
and use the existing dataset HB, and we collect a new dataset called synROD as a
synthetic counterpart to the already existing ROD. Our experiments show that the
inter-modal self-supervised task effectively reduces the domain shift and outperforms
all the baselines we considered, thus proving that exploiting inter-modal relations is
the key to perform DA on multimodal data.

Further research can be done in order to experiment with other inter-modal self-
supervised tasks. For example, it could be possible to make the network solve a cross-
modality jigsaw puzzle [12, 55] or determine the relative shift between modalities.
Since it is unlikely that a specific self-supervised task is proven to be optimal in
every possible scenario, it would be interesting to study the effectiveness of different
tasks depending on the dataset. Ultimately, the self-supervised transformation
could be learnt at training time through an encoder, yielding a general-purpose
multimodal DA method that would go beyond computer vision and could be used
in scenarios where there are no obvious hand-crafted self-supervised tasks.

Another issue that could be addressed by future research is the lack of a standard
benchmark protocol for DA methods. As already discussed in section 7.3, the
knowledge of target labels should not be employed until the evaluation of the chosen
model. In a real-world scenario, target labels are not available at all, and requiring
them in order to select the model would nullify the purpose of DA itself. A possible
approach could involve training an anomaly detection algorithm, for example a
one-class SVM [66] or autoencoder-based network [28], on source deep representation

45

Conclusions and future work

features. The unsupervised model could then be tested on both source and target
features, and the main classification model could be selected based on the inability
of the anomaly detector to identify target samples.

We hope that this work encourages the community to further research on the
topic of multimodal DA.

46

Bibliography

[1] A. Aakerberg, K. Nasrollahi, and T. Heder, ≪Improving a deep learning based
RGB-D object recognition model by ensemble learning≫, in 2017 Seventh
International Conference on Image Processing Theory, Tools and Applications
(IPTA), Nov. 2017, pp. 1–6.

[2] A. Aakerberg, K. Nasrollahi, C. B. Rasmussen, and T. B. Moeslund, ≪Depth
Value Pre-Processing for Accurate Transfer Learning based RGB-D Object
Recognition.≫, in Ijcci, 2017, pp. 121–128.

[3] U. Asif, M. Bennamoun, and F. Sohel, ≪Efficient RGB-D object categoriza-
tion using cascaded ensembles of randomized decision trees≫, in 2015 IEEE
International Conference on Robotics and Automation (ICRA), May 2015,
pp. 1295–1302.

[4] M. Ben-Ari and F. Mondada, ≪Robots and Their Applications≫, in Elements
of Robotics. Cham: Springer International Publishing, 2018, pp. 1–20.

[5] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Vaughan,
≪A theory of learning from different domains≫, Machine Learning, vol. 79,
no. 1-2, pp. 151–175, 2010.

[6] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, ≪Analysis of represen-
tations for domain adaptation≫, 2007, pp. 137–144.

[7] Y. Bengio, P. Simard, and P. Frasconi, ≪Learning long-term dependencies with
gradient descent is difficult≫, IEEE Transactions on Neural Networks, vol. 5,
no. 2, pp. 157–166, Mar. 1994, issn: 1941-0093.

[8] Blender, https://www.blender.org/, Accessed: 2020-03-06.

[9] M. Blum, Jost Tobias Springenberg, J. Wülfing, and M. Riedmiller, ≪A learned
feature descriptor for object recognition in RGB-D data≫, in 2012 IEEE
International Conference on Robotics and Automation, May 2012, pp. 1298–
1303.

[10] L. Bo, X. Ren, and D. Fox, ≪Depth kernel descriptors for object recognition≫,
in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sep. 2011, pp. 821–826.

47

https://www.blender.org/

BIBLIOGRAPHY

[11] S. Bucci, M. R. Loghmani, and B. Caputo, Multimodal Deep Domain Adapta-
tion, 2018. arXiv: 1807.11697 [cs.LG].

[12] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi, ≪Do-
main Generalization by Solving Jigsaw Puzzles≫, in 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019,
pp. 2224–2233.

[13] F. M. Carlucci, P. Russo, and B. Caputo, ≪(DE)2CO: Deep Depth Coloriza-
tion≫, IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2386–2393,
Jul. 2018, issn: 2377-3774.

[14] A. Cauchy, ≪Méthode générale pour la résolution des systemes d’équations
simultanées≫, Comp. Rend. Sci. Paris, vol. 25, pp. 536–538, 1847.

[15] G. Cybenko, ≪Approximation by superpositions of a sigmoidal function≫,
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[16] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, ≪ImageNet: A large-
scale hierarchical image database≫, in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Jun. 2009, pp. 248–255.

[17] C. Doersch, A. Gupta, and A. A. Efros, ≪Unsupervised Visual Representation
Learning by Context Prediction≫, in 2015 IEEE International Conference on
Computer Vision (ICCV), Dec. 2015, pp. 1422–1430.

[18] J. Duchi, E. Hazan, and Y. Singer, ≪Adaptive subgradient methods for online
learning and stochastic optimization≫, Journal of Machine Learning Research,
vol. 12, pp. 2121–2159, 2011.

[19] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard,
≪Multimodal deep learning for robust RGB-D object recognition≫, in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Sep. 2015, pp. 681–687.

[20] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.
March, and V. Lempitsky, ≪Domain-Adversarial Training of Neural Networks≫,
Journal of Machine Learning Research, vol. 17, no. 59, pp. 1–35, 2016.

[21] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, andW. Li, ≪Deep Reconstruction-
Classification Networks for Unsupervised Domain Adaptation≫, in Computer
Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., Cham:
Springer International Publishing, 2016, pp. 597–613, isbn: 978-3-319-46493-0.

[22] S. Gidaris, P. Singh, and N. Komodakis, Unsupervised Representation Learning
by Predicting Image Rotations, 2018. arXiv: 1803.07728 [cs.CV].

48

https://arxiv.org/abs/1807.11697
https://arxiv.org/abs/1803.07728

BIBLIOGRAPHY

[23] X. Glorot and Y. Bengio, ≪Understanding the difficulty of training deep
feedforward neural networks≫, in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, Y. W. Teh and M. Tit-
terington, Eds., ser. Proceedings of Machine Learning Research, vol. 9, Chia
Laguna Resort, Sardinia, Italy: Pmlr, May 2010, pp. 249–256.

[24] X. Glorot, A. Bordes, and Y. Bengio, ≪Domain adaptation for large-scale
sentiment classification: A deep learning approach≫, 2011.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press,
Nov. 2016, isbn: 978-0-262-03561-3.

[26] A. Gretton, B. Sriperumbudur, D. Sejdinovic, H. Strathmann, S. Balakrishnan,
M. Pontil, and K. Fukumizu, ≪Optimal kernel choice for large-scale two-sample
tests≫, vol. 2, 2012, pp. 1205–1213.

[27] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola, ≪A Kernel
Method for the Two-Sample-Problem≫, in Advances in Neural Information
Processing Systems 19, B. Schölkopf, J. C. Platt, and T. Hoffman, Eds., MIT
Press, 2007, pp. 513–520.

[28] J. Guo, G. Liu, Y. Zuo, and J. Wu, ≪An Anomaly Detection Framework Based
on Autoencoder and Nearest Neighbor≫, in 2018 15th International Conference
on Service Systems and Service Management (ICSSSM), Jul. 2018, pp. 1–6.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ≪Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classification≫, in 2015 IEEE
International Conference on Computer Vision (ICCV), Dec. 2015, pp. 1026–
1034.

[30] ——, ≪Deep Residual Learning for Image Recognition≫, in 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016,
pp. 770–778.

[31] K. Hornik, M. Stinchcombe, and H. White, ≪Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward networks≫,
Neural networks, vol. 3, no. 5, pp. 551–560, 1990.

[32] K. Hornik, M. Stinchcombe, H. White, et al., ≪Multilayer feedforward networks
are universal approximators.≫, Neural networks, vol. 2, no. 5, pp. 359–366,
1989.

[33] S. Ioffe and C. Szegedy, ≪Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift≫, in Proceedings of the 32nd
International Conference on International Conference on Machine Learning -
Volume 37, ser. Icml’15, Lille, France: JMLR.org, 2015, pp. 448–456.

[34] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, ≪What is the best
multi-stage architecture for object recognition?≫, in 2009 IEEE 12th Interna-
tional Conference on Computer Vision, Sep. 2009, pp. 2146–2153.

49

BIBLIOGRAPHY

[35] R. Kaskman, S. Zakharov, I. Shugurov, and S. Ilic, ≪HomebrewedDB: RGB-
D Dataset for 6D Pose Estimation of 3D Objects≫, in 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), Oct. 2019,
pp. 2767–2776.

[36] D. Kifer, S. Ben-David, and J. Gehrke, ≪Detecting change in data streams≫,
in Vldb, Toronto, Canada, vol. 4, 2004, pp. 180–191.

[37] D. Kingma and J. Ba, ≪Adam: A method for stochastic optimization≫, 2015.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ≪Imagenet classification with
deep convolutional neural networks≫, in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[39] A. Krogh and J. A. Hertz, ≪A Simple Weight Decay Can Improve Generaliza-
tion≫, in Proceedings of the 4th International Conference on Neural Informa-
tion Processing Systems, ser. Nips’91, Denver, Colorado: Morgan Kaufmann
Publishers Inc., 1991, pp. 950–957, isbn: 1558602224.

[40] K. Lai, L. Bo, and D. Fox, ≪Unsupervised feature learning for 3D scene
labeling≫, in 2014 IEEE International Conference on Robotics and Automation
(ICRA), May 2014, pp. 3050–3057.

[41] K. Lai, L. Bo, X. Ren, and D. Fox, ≪A large-scale hierarchical multi-view
RGB-D object dataset≫, in 2011 IEEE International Conference on Robotics
and Automation, May 2011, pp. 1817–1824.

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ≪Gradient-based learning
applied to document recognition≫, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, issn: 1558-2256.

[43] Y. LeCun et al., ≪Generalization and network design strategies≫, Connection-
ism in perspective, vol. 19, pp. 143–155, 1989.

[44] Y. LeCun, L. Bottou, G. Orr, and K.-R. Muller, ≪Efficient backprop≫, Neural
Networks: Tricks of the Trade. New York: Springer, 1998.

[45] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, ≪Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function≫, Neural networks, vol. 6, no. 6, pp. 861–867, 1993.

[46] D. Li, Y. Yang, Y. Song, and T. M. Hospedales, ≪Deeper, Broader and Artier
Domain Generalization≫, in 2017 IEEE International Conference on Computer
Vision (ICCV), Oct. 2017, pp. 5543–5551.

[47] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ≪Microsoft COCO: Common Objects in Context≫, in
Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T.
Tuytelaars, Eds., Cham: Springer International Publishing, 2014, pp. 740–755,
isbn: 978-3-319-10602-1.

50

BIBLIOGRAPHY

[48] M. R. Loghmani, M. Planamente, B. Caputo, and M. Vincze, ≪Recurrent
Convolutional Fusion for RGB-D Object Recognition≫, IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2878–2885, Jul. 2019, issn: 2377-3774.

[49] M. Long, Y. Cao, J. Wang, and M. I. Jordan, ≪Learning Transferable Features
with Deep Adaptation Networks.≫, in Icml, F. R. Bach and D. M. Blei, Eds.,
ser. JMLR Workshop and Conference Proceedings, vol. 37, JMLR.org, 2015,
pp. 97–105.

[50] L. van der Maaten and G. Hinton, ≪Visualizing Data using t-SNE≫, Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[51] P. Morerio, J. Cavazza, and V. Murino, ≪Minimal-Entropy Correlation Align-
ment for Unsupervised Deep Domain Adaptation.≫, in ICLR (Poster), Open-
Review.net, 2018.

[52] (2018). Nasce il Centauro, un nuovo robot quadrupede per il supporto dell’uomo,
[Online]. Available: https : / / opentalk . iit . it / nasce - il - centauro -
un- nuovo- robot- quadrupede- per- il- supporto- delluomo (visited on
03/23/2020).

[53] Y. Nesterov, Introductory lectures on convex optimization: A basic course.
Springer Science & Business Media, 2013, vol. 87.

[54] ——, ≪A method of solving a convex programming problem with convergence
rate≫, Soviet Mathematics Doklady, vol. 27, pp. 372–376,

[55] M. Noroozi and P. Favaro, ≪Unsupervised Learning of Visual Representations
by Solving Jigsaw Puzzles≫, in Computer Vision – ECCV 2016, B. Leibe, J.
Matas, N. Sebe, and M. Welling, Eds., Cham: Springer International Publishing,
2016, pp. 69–84, isbn: 978-3-319-46466-4.

[56] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, Activation Functions:
Comparison of trends in Practice and Research for Deep Learning, 2018. arXiv:
1811.03378 [cs.LG].

[57] A. Owens, J. Wu, J. McDermott, W. Freeman, and A. Torralba, ≪Ambient
sound provides supervision for visual learning≫, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9905 Lncs, pp. 801–816, 2016.

[58] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, and A. Lerer, ≪Automatic Differentiation in PyTorch≫,
in NIPS Autodiff Workshop, 2017.

[59] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros, ≪Context
Encoders: Feature Learning by Inpainting≫, in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 2536–2544.

[60] PyTorch, https://pytorch.org/, Accessed: 2020-03-19.

51

https://opentalk.iit.it/nasce-il-centauro-un-nuovo-robot-quadrupede-per-il-supporto-delluomo
https://opentalk.iit.it/nasce-il-centauro-un-nuovo-robot-quadrupede-per-il-supporto-delluomo
https://arxiv.org/abs/1811.03378
https://pytorch.org/

BIBLIOGRAPHY

[61] N. Qian, ≪On the momentum term in gradient descent learning algorithms≫,
Neural networks, vol. 12, no. 1, pp. 145–151, 1999.

[62] H. Robbins and S. Monro, ≪A stochastic approximation method≫, The annals
of mathematical statistics, pp. 400–407, 1951.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ≪Learning representations
by back-propagating errors≫, nature, vol. 323, no. 6088, pp. 533–536, 1986.

[64] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ≪ImageNet
Large Scale Visual Recognition Challenge≫, International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[65] A. M. Saxe, J. L. McClelland, and S. Ganguli, Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks, 2013. arXiv: 1312.6120
[cs.NE].

[66] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
≪Estimating the Support of a High-Dimensional Distribution≫, Neural Com-
put., vol. 13, no. 7, pp. 1443–1471, Jul. 2001, issn: 0899-7667.

[67] M. Schwarz, H. Schulz, and S. Behnke, ≪RGB-D object recognition and pose
estimation based on pre-trained convolutional neural network features≫, in
2015 IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 1329–1335.

[68] H. Shimodaira, ≪Improving predictive inference under covariate shift by weight-
ing the log-likelihood function≫, Journal of statistical planning and inference,
vol. 90, no. 2, pp. 227–244, 2000.

[69] K. Simonyan and A. Zisserman, ≪Very deep convolutional networks for large-
scale image recognition≫, cited By 5548, 2015.

[70] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng, ≪Convolutional-
recursive deep learning for 3d object classification≫, in Advances in neural
information processing systems, 2012, pp. 656–664.

[71] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for
Simplicity: The All Convolutional Net, 2014. arXiv: 1412.6806 [cs.LG].

[72] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
≪Dropout: A Simple Way to Prevent Neural Networks from Overfitting≫,
Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[73] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, ≪On the importance of
initialization and momentum in deep learning≫, in International conference
on machine learning, 2013, pp. 1139–1147.

52

https://arxiv.org/abs/1312.6120
https://arxiv.org/abs/1312.6120
https://arxiv.org/abs/1412.6806

BIBLIOGRAPHY

[74] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, ≪Going deeper with convolutions≫, in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2015, pp. 1–9.

[75] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, ≪A Survey on
Deep Transfer Learning≫, in Artificial Neural Networks and Machine Learning
– ICANN 2018, V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and
I. Maglogiannis, Eds., Cham: Springer International Publishing, 2018, pp. 270–
279, isbn: 978-3-030-01424-7.

[76] J. Xu, L. Xiao, and A. M. López, ≪Self-Supervised Domain Adaptation for
Computer Vision Tasks≫, IEEE Access, vol. 7, pp. 156 694–156 706, 2019, issn:
2169-3536.

[77] R. Xu, G. Li, J. Yang, and L. Lin, ≪Larger Norm More Transferable: An
Adaptive Feature Norm Approach for Unsupervised Domain Adaptation≫, in
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct.
2019, pp. 1426–1435.

[78] R. Zhang, P. Isola, and A. A. Efros, ≪Colorful Image Colorization≫, in Com-
puter Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.,
Cham: Springer International Publishing, 2016, pp. 649–666, isbn: 978-3-319-
46487-9.

[79] Zhou and Chellappa, ≪Computation of optical flow using a neural network≫,
in IEEE 1988 International Conference on Neural Networks, Jul. 1988, 71–78
vol.2.

53

	List of Figures
	Introduction
	Related Works
	Background
	Neural Networks
	Optimisation
	Batch Normalisation
	Regularisation
	Dropout

	Convolutional Neural Networks
	Convolutional layer
	Pooling layer

	Residual Networks

	Domain Adaptation
	Domain Adversarial Neural Network
	Motivation

	Deep Adaptation Network
	Self-supervised Rotation
	Adaptive Feature Normalisation

	Multimodal Domain Adaptation
	Feature extraction and main task
	Secondary task
	Loss

	Implementation Details
	Main classifier
	Secondary classifier
	Training
	Preprocessing

	Experiments
	Datasets
	synROD - ROD
	synHB - HB

	Baselines
	Results
	Ablation study
	Baseline comparison

	Conclusions and future work
	Bibliography

