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Abstract

An open problem in the artificial intelligence community is building an algo-
rithm able to geo-localize a given photo, overcoming the multiple problems
related to the domain shift between the images used during the training and
the ones passed at test time.
Our thesis is a combination of research and development contribution. To
approach the visual place recognition (VPR) problems with a deep learning
method, we have used the current state-of-the-art convolutional neural net-
work (CNN) called NetVLAD [1]. We have properly modified it in order to
speed up the process and to study the results on our dataset. In particular,
we have changed the backbone and trained the entire network on our dataset
with a self-supervised approach, to make the network more confident with the
different domains belonging to the training and testing phases. Moreover, we
have also partially investigated the effect of some artificial occlusions applied
on the image that needs to be geo-localized, seeing if they can be useful to
focus the network attention on the relevant object inside a photo, instead
of the dynamic ones. Finally, two kinds of software are developed, the first
one is composed by a set of steps, to download and create all the necessary
things related to the dataset that a user wants to create, while the second
one is a graphical user interface, used to upload a photo and visualize the
network results.
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Chapter 1

Introduction

The landscape: In recent years, the research in the artificial intelligence
environment has reached huge improvements, making systems more intelli-
gent and capable of performing actions always more similar to what a human
can do.
The best results, in terms of accuracy, have been obtained through the imple-
mentations of Deep Learning algorithms, which are able to receive in input
a set of images and directly analyze the pixels contained in them thanks to
the application of convolutional neural networks (CNN). So, CNNs extract
more useful information and they are able to perform multiple tasks than
compared to the more traditional machine learning algorithms.
This is the reason why currently in the Computer Vision community the
CNNs find applications in a variety of fields, such as robotics, medical deci-
sions and autonomous driving. The networks, in turn, have changed much
since their first developments, they are richer in layers, thus reaching a higher
level of abstraction.
At the beginning, their role was only the ability to correctly solve a classi-
fication task, such as understanding whether an image contains a dog or a
cat, or predict if an extract of histological cancer tissue is probable or not.
After further developments, the community also deployed networks that can
localize the objects in a photo, as for the object detection task, or systems
that are used only to extract the important and more abstract features, from
the original pixels set. For this reason, CNNs have easily found space in the
image retrieval field.
The image retrieval has the goal to recognize the content inside an image,
called query, and to find its best match in a large-scale database that is la-
belled and filled of various metadata. This process can be summarized as

12



1 – Introduction

follow:

1. Receive a big database of images and for each of theme:

• Extract the most useful features, related to the development field
(e.g. for example for face recognition these features can be the eyes,
mouth and nose position, face shapes and so on);

• Save an aggregated representation of these features;

2. Receive a query image:

• Extract the most useful features and build the aggregate represen-
tation also for each of them;

• Through some optimized research algorithm, as the KNN, finds the
most relevant and similar match between the query features repre-
sentation and the ones inside the database.

Furthermore, it becomes really important the sets of features extracted by
the input images. Nowadays the CNNs are used in order to perform the best
feature extraction as possible. They assume the role of encoder instead of
a standard classifier, extracting the descriptors from a certain convolutional
layer. Another key point in the whole retrieval process, especially for the
real-time systems, is the possibility of applying filters on the search area
based on parameters known a priori, such as somethings suggested by a user.
In this way, it makes an effort to minimize the possible solutions space. Thus,
the time needed to obtain the results is greatly reduced.
Overall, the instance retrieval process can be applied in a lot of different
fields, such as recognition of faces, car models, a fashion brand e-commerce
and also the outdoor geo-localization.

Visual place recognition: The visual place recognition problem (VPR)
is really challenging and currently it is an open problem in the robotics and
computer vision community. The goal of VPR is to build a system able to
recognize the exact location of a given outdoor photo. This system should
respect different constraints, related to the amount of time needed and the
efficiency in retrieving the GPS coordinates of a given street-corner compared
with large-scale dataset, that ideally can contain the entire city/country.
Although, the huge improvements of the recent years, the main challenge
remains how to represent images of places containing buildings, landmarks
etc. in order to distinguish them when they seem to be very similar.
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1 – Introduction

In the most recent years, the visual place recognition field is approached as
an image retrieval problem, that appears to be easier and more accurate
rather than trying to solve the issue with the image classification approach.
Therefore, the main effort is to associate the query image location to one of
the most visual similar places contained in the database used for the retrieval
task. Moreover, the image retrieval process is mainly implemented with a
convolutional neural network, which is used for the extraction feature.
Furthermore, the problems of VPR are also related to changes in appearance
between the query and database images, such as different lighting conditions.
These changes produce a domain shift, that should be overcomed to develop
a solid and efficient system. We can summarize these problems as:

• Different point of view: the images inside the database are captured
from a certain point of view, which is more or less the same one for the
entire database domain. On the other hand, the queries set, i.e. all the
images that we want to geo-localize from the database, can be composed
by photos that may have been taken from another point of view, maybe
with some environment details that are not in the foreground.

• Lighting conditions: in the same way as the point of view, the database
set may contain always the same lighting condition as daytime, while
the queries set can be composed of photos taken at nighttime.

• Dynamic objects: this is one of the most relevant issues because the
algorithm should focus on the most important features of the images,
so it should ignore dynamic objects like cars and people. So during the
extraction of the descriptors from the queries, the algorithm should not
really take into account the ones of the dynamic object to perform the
image retrieval.

• Long-term conditions: the scenarios continuously evolve during the year,
the environment suffers from many changes due to climate and seasonal
changes. For example, we can easily picture how much a road with many
trees changes during the year. Therefore, the query set taken during the
winter should be recognized as the same compared with a database set
collected during the summer.

In addition, this research area is becoming increasingly interesting, thanks to
the progress made in fields such as augmented reality or autonomous driving.
In the last case, the technology should use the VPR results to geo-localize
vehicle position, when the GPS system is offline. Another interesting field is
given by applications that want to geo-localize on outdoor archival imagery.
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1 – Introduction

1.1 Thesis contribution

Focusing on image geo-localization, the thesis objectives are related to a soft-
ware system, that should be used by inexpert users and its main goal is to be
robust for the environment changes, to be fast in producing results and more
accurate as possible on large-scale situations. Our work concerns different
implementations. We want to approach the VPR task through some deep
learning methods. Before starting with the algorithms, we have developed
two different softwares to collect data and run the algorithms. Then, the
state-of-the-art (SOTA) network for VPR is downloaded and tested on our
large-scale dataset. From this point on we have tried to improve the accuracy
of that CNN, modifying the architecture and testing some new approaches
(Section 4).
The first software developed is composed by a set of steps that allow the
download of all the needed data in order to create a dataset of photos taken
by Google Street View. These steps mainly consist in downloading the meta-
data about the images in a certain region, downloading the images and stor-
ing them in a MySQL database. Through these codes, all the images of
Google Street View in Turin have been downloaded and stored creating the
Turin1M dataset. Starting from this huge dataset, we have created three
subsets related to three geographically-disjoint zones. It is called Turin30k
and it is used to train and test our deep learning algorithms. Furthermore,
a new set of images is created, containing photos of Turin taken with our
smartphone, so belonging to a third-domain w.r.t. Turin1M and Turin30k,
it is called Turin81. More details about this software and datasets are re-
ported in Section 3, where we have also introduced some other subsets that
are built to perform some analysis (Turin81_occluded) and to solve some
problems with Turin1M (Turin_undistorted). The last steps of this pipeline
also allow to execute the test phase of our CNN, performing some operations
offline, in order to reduce the big amount of time needed for large dataset
such as Turin1M. The implementation and results with the deep learning
methods are shown in the section related to the experiments 4.3.
The second software instead is an application with a web-like graphical user
interface, that allows the user to upload an image, set some filters to speed up
the process and improve the final accuracy and visualize the results produced
by our CNN, also providing the user with a map representation (Section 3.7).
Finally, the thesis is also research oriented and for this reason we have started
the SOTA for VPR, called NetVLAD [1]. First, we have downloaded a Py-
Torch version [2] and tested it on our dataset (Section 4.3) to have our
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baseline. Then, we have changed the backbone from the VGG16 [3] to
the ResNet18 [4] to speed up the prediction time, re-training on the same
dataset of the previous version to allow a comparison. We have noticed a
huge amount of test time saved thanks to the new backbone (Section 4.5).
Moreover, this new architecture is trained on our dataset to build a model
robust for the images and the domain downloaded related to Turin1M. We
have demonstrated an improvements in performance when training with the
Turin source domain and, as consequence, we executed the user-friendly soft-
ware with higher accuracy and faster geo-localization time (Section 4.6).
In addition, to improve the accuracy of the third domain dataset (Turin81),
since it is composed by few images that cannot be used to train the VPR
branch, we have used a domain adaptation approach by adding a self-supervised
task to the architecture (Section 4.7.2), in order to reduce the gap across the
different domains. The results improve of few points, suggesting us that
the mobile phone domain is not so different than Google Street View one,
considering also that all these images contain pretty the same environment
conditions.
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Chapter 2

Related Works

2.1 The landscape
Research on visual place recognition has been steadily growing in the last
decade. This increase in interest is due to the creation of large geo-localized
images datasets, the easiness in acquiring new data (e.g. through camera
on smart phone) and the limitations of localization and orientation systems
(e.g. GPS signal worsens in urban cluttered environments), which intrinsi-
cally have a high degree of approximation. Moreover, an increasing number
of present-day practical applications would rely on a ideally perfect visual
based localization system, such as 3D reconstruction, consumer photogra-
phy -"Where did I take these photos?"-, augmented reality, and outdoor
or indoor navigation systems, which are essential for self-driving cars and
robotics. There is no standardized designation for visual place recognition,
methods name vary from one paper to another. The most common ones are
visual place recognition, visual based localization, structure-based localiza-
tion, visual geo-localization, image-based pose estimation, and a number of
rearrangements of these terms. Most of current approaches for VPR rely on
image retrieval, while others try to exploit 3D methods, and some even view
VPR as a classification task.

2.2 Image retrieval
An image retrieval system is a system that, given a dataset of images, called
database or gallery, and a single other image, called query, is able to retrieve
the images in the database that are most similar to the query. Image retrieval
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can have lots of practical applications, one of the most common being face
retrieval. In this task, the database is made of images of faces, usually
annotated with the person’s full name. Then, when a new image of a face is
given to the system, this has to be able to understand which person the new
image belongs to, by searching the most similar face in the database. This
task is similar to the VPR task, where the database is made of images of
places, and the queries can be new images uploaded by a user. In the vast
majority of cases, an image retrieval system is based on 4 steps:

Figure 2.1: Image retrieval

• features extraction, which is the extraction of the descriptors that give
meaningful information about the image;

• features aggregation, which is the rearrangement of features, preparing
them for the next step;

• similarity research, which is the algorithm that takes the features in
input and outputs the likelihood of their images representing the same
place;

18
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• candidates re-ranking, after having found a restricted number of poten-
tial candidates, re-ranking them from the most likely positive.

2.2.1 Features extraction
The task of extracting the best descriptors to represent an image has been
approached in a huge variety of methods. The goal is to have features that
incorporate the greatest amount of discriminant information, possibly with-
out requiring too much memory, and in a fast and light way. The types of
features used belong to one of these 3 groups: local, global, hybrid.

2.2.1.1 Local features

In the pre-deep-learning era, local features were without a doubt the most
used in visual place recognition and computer vision in general. Their de-
scription occur at a small level, usually just a pixel and its local neigh-
borhood. Its extraction is based on two steps: finding a salient area, and
extracting its descriptors. The most famous features-extractor of this kind is
the scale-invariant feature transform (SIFT) [5], published and patented in
1999. Various alternatives have been proposed during the years, mostly to
speed up the computation, such as SURF [6], which are required when the
computation needs to be real-time. Another more recent evolution of SIFT
is RootSIFT [7], which creates better descriptors than SIFT while reducing
the computational requirements

2.2.1.2 Global features

Global features consider the image as a whole, and compute a vector as its
representation. Perhaps the most naive example of global features would
be to just use the raw image itself, possibly after resizing. Global features
are usually less robust to changes in point-of-view and local changes (such
as occlusions), but are usually much less computationally hungry than local
features. In this group there are both hand-crafted methods, such as GIST
[8], and more recent learned methods. Among the learned methods, the most
widely used for images are convolutional neural networks [1, 9], which can
be used as a features extractor for a given image. Usually the features are
the output from one or more convolutional layer. The CNN can either be
trained on a different task, like classification, or directly trained for the image
retrieval task.
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2.2.1.3 Hybrid features

By hybrid features we refer to those types of features that don’t belong to
the previous two groups, and that either consider just a part of the image, or
that combine multiple types of features. One example is represented by patch
features, which, during the extraction, consider only a patch of the image at
a time. The patch can be chosen in various ways, either based on the content
(e.g. on the image saliency [10]) or in a standardized fashion, like through a
fix grid or a sliding window [11]. On the other hand, combined features use
a combination of local and global features to build the final descriptors of
the image. One example is presented by [12], which uses global features to
restrict the number of potential positives, and local features to compute the
final output

2.2.2 Features aggregation
Features aggregation is the task of aggregating features in a more convenient
way. These is because the features, especially if local, can have huge dimen-
sion. Moreover, in visual place recognition, aggregation can be performed
in a way to benefit the retrieval process, for example by enhancing features
that are known to be useful for the task.

2.2.2.1 Feature to visual word assignment

This technique comes from the more famous bag of words (BoW) used in
natural language processing, where a vector is built counting the occurrences
of each word. However, in computer vision there are no such things as words,
so it was common to group the features in clusters, or Voronoi cells, and con-
sider only the center of the clusters as features [13]. In this way, a vector with
the same length as the number of clusters can be built, with the counts of fea-
tures belonging to each cluster. This creation of a visual vocabulary is known
as bag of visual words or bag of features. However, this hard assignment of
each feature to its cluster can worsen the representation of the features, and
numerous ways to replace this with a "softer" assignment have been thought.
An example is hamming embedding, by Jegou et al. [14], which further di-
vides each cluster for a more precise assignment of every feature. Another
subsequent work by Jegou et al. is Vector of Locally Aggregated Descriptors
(VLAD) [15], in which also the distance between the feature and the center
of its cluster is saved, giving a more precise representation.
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2.2.2.2 Weighting scheme

Weighting consists in assigning a weight to each features, usually by giving
higher weights to more discriminative features. The weights can be computed
by taking into account the frequency of a certain feature in the dataset, as
in [13]. Other works [16] propose to assign the weight according to their
intra and inter-burstiness, which is the likelihood that a feature is repeated
more than once in an image and in the dataset. Other techniques [17] sim-
ply propose to remove the least discriminative features, saving memory and
reducing noise.

2.2.2.3 Multiple features aggregation

Features obtained with neural networks can be used together with local or
patch features. This way its possible to gather multiple types of features into
a single vector, like a bag of features. Mixing local and neural features has
been done in [18], and [19] has replace local with patch features.

2.2.2.4 Pooling of deep feature maps

With the recent advances of deep learning, it has become more common
to extract features with CNNs. The features can be extracted by the last
convolutional layers, and can be concatenated together. To reduce the high
dimensionality several types of pooling have been applied. Maximum Ac-
tivatin of Convolutions [20] proposes to reduce the dimensionality by ag-
gregating each maximum of the activation maps into unidimensional vectors.
Sum-Pooled Convolutional features [21] gives better results, simply summing
the responses of each maps instead of finding their maximum. More recently
Arandjelovic et al. [1] propose NetVLAD, a fully differentiable layer that
can be plugged into a CNN and be treated like another layer of the network.
This layer has trainable weights, which make it the state-of-the-art option
at the moment. This later propose to mimic the architecture of NetVLAD
in a deep-learning fashion, therefore calculating clusters and distances from
them for each feature.

2.2.3 Similarity Research
The most common way to find the most similar vector of features to a given
one (e.g. computed from a query) is by finding the closest to it by euclidean
distance (usually with L2 norm) or cosine similarity. This is simple to do
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as long as the dimensions don’t grow too much, both in terms of number
of descriptors (one for each image) and of size of each descriptors. In the
latter case, a dimensionality reduction is often needed, and PCA is a common
technique [1, 9]. To improve results, whitening can also be applied, as in [1].

2.2.3.1 K-nearest neighbors

Brute force KNN can be used in those cases where the datasets are not too
large, and computation can be done in a reasonable time. However, if the
size of the dataset grows, so does the number of descriptors, and having an
exact response can take too long to be computed. In some cases, approxi-
mate k-nearest neighbors can be a better solution, in which a little loss in
accuracy can give a huge reduction of computation time [22]. An example
of a library which implements approximate nearest neighbors search is Faiss
[23], developed by the Facebook AI Research team.

2.2.3.2 Machine Learning methods

Other methods have been employed which focus on better understanding the
distribution of the features, and exploit this knowledge to improve the accu-
racy of the retrieval task. An example is given by [24], where the similarity
search is viewed as a classification task, and an SVM is used. In [25] the
authors avoid the heaviness of SVM by exploiting the advantages of Linear
Discriminant Analysis (LDA).

2.2.4 Candidates re-ranking
The retrieved candidates can optionally undergo a post-processing phase of
re-ranking, attempting in this way to sort them in a more accurate way.
This is often done when the similarity search is done in an approximate way,
and the re-ranking of the selected candidates can be performed in an exact
manner. Another example in which re-ranking can be used, is when the
features have been reduced by PCA, and the candidates can be sorted by
using their distance with the query considering their full dimension, skipping
therefore the PCA reduction. Re-ranking is also performed in cases where
other data is known about the dataset, such as in [26], where Torii et al.
exploit the location of their dataset to further improve the accuracy of the
final response.
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2.3 Other approaches
A lot of research has tried to approach the VPR problem with various image
retrieval techniques that take into account the various problem of VPR, such
as domain shift, while others tried to find solutions very different from the
standard image retrieval, such as using 3D methods or transforming the
localization task into classification.

2.3.1 Cross-appearance localization
Given the huge amount of interest in standard visual place recognition, some
researchers also focused their work on solving the problem in different ways.
This is the case of cross-domain VPR, where the database and query images
belong to slightly different domains, and cross-view VPR, where the domain
shift is much bigger.

2.3.1.1 Cross-domain

Cross-domain visual place recognition takes explicitly into account the dif-
ferences in distribution between the database domain and the query domain.
Some examples can be of database images taken as normal daylight photos,
while the queries can belong to many different domains, such as photos taken
at night, grey-scale images, or even painting (Figure 2.2). An example in this
field is [25], in which the query is an old sketch or painting.

Figure 2.2: Cross-domain

2.3.1.2 Cross-view

Cross-view VPR focuses on the much more challenging task of having a
database made of aerial views images (Figure 2.3). These images have the
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Figure 2.3: Cross-view

advantage to be available for any corner of the globe. However the query
images are still taken on from the ground, thus the difficulty of the task.
Several works have been done in the field, both with classical [27] and deep
methods [28]. Interesting work from Bansal et al. [29] relies on image recti-
fication for ground-level query images, in a way to make them more similar
to aerial-view images.

2.3.2 Localization problem as a classification task
Researchers have also approached the VPR task as a classification task, which
is, instead of finding the exact position of the query image, to find the region
in which it was taken. This allows VPR to take a more global approach, for
example by designing a system that predicts in which continent or country
the image was taken. To this end, researchers [30] propose a variety of world-
wide grids, as in Figure 2.4, and design systems that classify images according
to their position in the grid.

2.3.3 3D-based methods
3D based methods use a database of geo-localized 3D models, which are used
to find the location of the 2D query image. The databases can be built using a
variety of sensors, such as RGB-D cameras, LIDARs, RADARs, etc., and are
usually expensive to acquire, in terms of money cost (3D sensors are usually
more expensive than cameras), time, computation and storage needs. These
methods are often much slower than 2D-based methods, which makes them
less scalable, but they give much higher 6-DOF accuracy [31]. This methods
can be used together with 2D-based methods, as in [32], where the authors
use the speed of 2D based methods to filter a limited amount of candidates
from the database, and then 3D methods to have a precise estimate of the
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Figure 2.4: World-wide grid from [30]

query position.

Figure 2.5: 3D based method from [33]. These methods recover the exact
pose of the query. The central image is the query and the surroundings
represent the 3D database
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2.4 Deep Learning approach
Recently, a lot of works have used a deep learning approach to extract the
image descriptors. They are more robust w.r.t. the handcrafted ones, in the
sense that, are robust in recognizing particular details of a place also with
drastic changes in viewpoint and lighting conditions. This work is done by
means of a convolutional neural network, truncated in a certain layer, where
the features are then concatenated or pooled. In this way, CNN is used as a
feature extractor instead of a classifier.
A lot of CNN-based methods has been developed, like the work of Weyand et
al. [34] that divides the earth into cells and performs a classification task to
solve VPR problem, but it is not too accurate. There are also works that use
3D point cloud scans, for example, retrieved by LIDAR sensors, to estimate
the coordinates of a certain place, like PointNetVLAD [35].
Overall, the state of the art is represented by NetVLAD [1] (next paragraph
2.4.1).

2.4.1 State-of-the-art for VPR
Today, the state-of-the-art (SOTA) is achieved by NetVLAD [1] network,
that is properly developed for the VPR task solved via image retrieval and
is inspired by the VLAD representation [36]. The network is composed by a
backbone, which is the VGG16 [3] for the best result, or AlexNet [37]. It is
truncated at the last convolutional layer (conv5), where the features related
to the entire image are extracted. At this point, a novel trainable VLAD
layer is used to compact the features in a fixed length vector representation.
The architecture is shown in the Figure 2.6. In [1] the Triplet Loss (Figure

Figure 2.6: NetVLAD architecture [1]

2.7) is used, in a revisited form properly for the VPR task. They [1] call
their loss ’Weakly supervised triplet ranking loss’, that we can summarize in
this way:
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• Take a test query q;

• Between all its potential positives pqi , take the best matching potential
positive pqi∗ = argmin

pq
i

dθ(q, pqi );

• Take its negative samples {nqj};

• Compute the distance between the query and positive d(q, {pqi∗}) and
the ones between the query and all the negatives d(q, {nqj});

• The goal becomes: d(q, {pqi∗}) < d(q, {nqj}) ∀j, so it’s a ranking loss
between each training triplet (q, {pqi}, {n

q
j});

• So, their [1] loss is defined in this way:

Lθ =
∑
j

l

(
min
i
d2
θ(q, p

q
i ) +m− d2

θ(q, n
q
j)
)

where l is the hinge loss and m is a constant figuring the margin. In this
way all the negatives that have distance greater by a margin than the
distance between the best matching potential positive and the query,
will have loss 0. While when the margin is violated, the loss will be
proportional to the amount of violation.

Figure 2.7: Triplet Loss: minimize the distance between the anchor and the
positive sample, while maximize the distance between the same anchor and
the negative sample.

Overall, the best advantage is related to the fact that their [1] network is
end-to-end trainable and is developed for the specific VPR task, so it is very
robust in order to find a certain street corner.
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Chapter 3

Data collection

3.1 Building a dataset

After analysing the alternatives, we decided that 2D image retrieval would
be the best option for our task. This because 3D datasets are too few and
cover just small portion of the territory, and approaching the problem as a
classification task, as in [30], would be too imprecise for our needs. Moreover,
we decided not to use aerial views, because they usually rely on a stream of
images, and their performance with a single image is still very low.
We then briefly explored the various options available in order to obtain a
dataset with ground-level street images, that could be scalable and easy to
use. The top options were Google Street View, Mapillary, Bing Streetside,
Apple Maps, Open Street Cam. All these are websites or apps built on top of
massive datasets, usually made of images taken by cars with a camera that
drive around cities (Figure 3.1). However, the only ones covering all Euro-
pean cities are Google Street View and Mapillary. Of these two, the latter
only has frontal and backward images, while the former has 360° spherical
panoramas, which would be perfect for our case of study. Using Street View,
we could build datasets covering almost any city of the western world (Figure
3.2).
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Figure 3.1: Car used by Google Street View to take panorama images

Figure 3.2: The streets in blue have been covered by Google Street View

3.2 Metadata and Google street view panora-
mas

The Google Street View dataset covers almost all Italian roads, and in most
places the photos were taken several times throughout the years. We fo-
cused our research in the area of the city of Turin, to limit the amount of
images needed for the task. The images provided by Street View are 360°
equirectangular panoramas (Figure 3.3), that can be downloaded with vari-
ous resolution, the highest being 6656x13312 pixels. Using Street View APIs
we are able to download some metadata for each panorama, including its
ID, latitude, longitude and the date when the image was taken. In this way
we are able to build a large database with information about whole cities,
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and its related dataset of images. We made scripts in order to simplify the
download of the data, which take as parameters the coordinates of the area,
and the number of processes that we want to launch, in order to speed up
the download by multi-processing. In this way we are able to obtain city-
wide metadata in a couple of hours, and their related panoramas in a couple
of days, all without requiring high-end computers or incredibly fast internet
connection.

Figure 3.3: Example of a Google Street View panorama

3.3 Google Street View Time Machine
A good algorithm for visual place recognition must be invariant to changes
in viewpoint and lighting and to moderate occlusions. It should also learn
to suppress confusing visual information such as clouds, vehicles and people,
and to chose to either ignore vegetation or to learn a season-invariant veg-
etation representation. The Google Street View Time Machine can help to
achieve this, as it can show the same location in different dates. The Time
Machine is based on the fact that Google cars pass through the same roads
multiple times over the years, and the dataset keeps accumulating images.
So every passage of a Google car can be seen as a new layer of panoramas
over the previous ones. On the Street View website, one can easily see the
same location throughout the years, and using their APIs it is possible to
download those panoramas. Figure 3.4 represents various images of the same
location between 2008 and 2019. It can be noticed that the images have huge
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differences, and by using them to train a neural network it can learn to ignore
dynamic objects (such as vehicles), illumination changes, small point of view
changes, changes in the vegetation and shadows.

(a) September 2008 (b) November 2011

(c) May 2012 (d) May 2014

(e) May 2015 (f) July 2016

(g) October 2017 (h) March 2019

Figure 3.4: Various images of the same place from 2008 to 2019

3.4 Removing the distortion
As shown in Figure 3.3, panoramas represent a 360° equirectangular projec-
tion of the surroundings of the camera. Although equirectangular projections
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are an excellent way to map the surface of a sphere to a flat image, the re-
sulting image appears very distorted, and thus very far from any undistorted
image that we would later on use as query. This can represent a challenge
for a retrieval neural network, as most visual place recognition networks are
designed to handle database images and query images coming from the same
domain. Undistorting an equirectangular panorama can be done only for
small sections of the image (the field of view has to be less than 180°) by
using the gnomonic projection, also known as rectilinear projection. The
gnomonic projection is a nonconforming map projection obtained by pro-
jecting points P1 (or P2) on the surface of sphere from a sphere’s center O to
point P in a plane that is tangent to a point S. In Figure 3.5, S is the south
pole, but can in general be any point on the sphere. Since this projection
obviously sends antipodal points P1 and P2 to the same point P in the plane,
it can only be used to project one hemisphere at a time. In a gnomonic
projection, great circles are mapped to straight lines, and it represents the
image formed by a spherical lens. In the projection of Figure 3.5, the point

Figure 3.5: Gnomonic Projection

S is taken to have latitude and longitude (λ, φ) = (0,0) and hence lies on the
equator. The transformation equations for the plane tangent at the point S
having latitude φ and longitude λ for a projection with central longitude λ0
and central latitude φ1 are given by

x = cosφ sin(λ− λ0)
cos c

y = cosφ1 sinφ− sinφ1 cosφ cos(λ− λ0)
cos c
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and c is the angular distance of the point (x, y) from the center of the pro-
jection, given by

cos c = sinφ1 sinφ+ cosφ1 cosφ cos (λ− λ0)

The inverse transformation equation are

φ = sin−1
(

cos c sinφ1 + y sin c cosφ1

ρ

)

λ = λ0 + tan−1
(

x sin c
ρ cosφ1 cos c− y sinφ1 sin c

)

where
ρ =

√
x2 + y2

c = tan−1ρ

By using the inverse transformation equation we’re able to undistort small
tiles of the panorama (Figure 3.6), which we can then use for the image
retrieval task.

(a) Distorted image (b) Undistorted image

Figure 3.6: Example of a tile of a panorama, distorted (a) and undistorted
(b).
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3.5 Cleaning the dataset
Even by keeping low resolutions for panoramas, a dataset collected with
Google Street View can take huge amount of memory, and its processing will
therefore need a long time and computation power. To reduce the size of
the dataset, we remove parts of the panoramas that contain the least useful
information: the top 4/13, and the bottom 5/13 (Figure 3.7), reducing the
size to 4/13 of the original image. This helps to achieve huge memory sav-

Figure 3.7: An example of a panorama, and in the center the part that we
save in the dataset

ings, but the dataset can still be of very large dimension. Just to give an
example, a dataset of the Turin area, with around 1.000.000 panorama with
resolution 512x3584 (removing the top and bottom parts), requires about
300GB of memory. Processing this amount of data can easily take days, and
it is therefore necessary to make sure that the our dataset doesn’t contain
unneeded images. The focus of our research was to retrieve the position of
given images which were taken in urban environments. Therefore, all the
images containing non-urban scenes can be deleted from the dataset, and
this can greatly reduce the amount of memory needed to store the dataset,
depending on the area from which the images are downloaded. Obviously,
due to the size of the dataset, this process of deleting rural panorama has to
be done in an automated way. In order to do this, we decided to use semantic
segmentation neural networks to estimate the number of pixels that belong
to buildings for each panorama: if this number is below a threshold (we
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chose 2.5% of the total amount of pixels as the threshold), it means that the
photo was taken in a rural area and can therefore be deleted. The network
that we used was a PSPNet [38] with a ResNet50 [4] backbone trained on
the ADE20k dataset [39, 40], which showed good qualitative results on our
Street View images. This method turned out to work very well for the task,
and, when the geographical area selected to download images is big enough
(more than 10.000km2), it helps to reduce the size of the dataset of up to
75%. Although the accuracy of PSPNet [38] is very high, its huge compu-
tational requirement made it unfeasible to be used of large scale datasets.
Our solution was therefore to train a light-weight ResNet18 [4] to give an
estimate of the number of pixels belonging to buildings for each panorama,
changing therefore a semantic segmentation task to an inference task. To
train the ResNet18 [4] we built a dataset of 288.000 panoramas using the
PSPNet [38]. After a qualitative analysis we found that the ResNet18 [4]
could identify the rural-area images equally well as the PSPNet [38], and
was able to do this in a fraction of the time, giving us the possibility to use
this method to clean even large scale datasets.

(a) Panorama with buildings

(b) Semantic segmentation of the panorama

(c) Semantic segmentation with buildings highlighted

Figure 3.8: Example of a panorama with many pixel belonging to buildings,
and therefore it should be kept in the dataset
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(a) Panorama without buildings

(b) Semantic segmentation of the panorama

(c) Semantic segmentation with buildings highlighted

Figure 3.9: Example of a panorama with no pixel belonging to buildings,
and therefore it should be deleted

3.6 Our datasets

In order to train and test our algorithms we built three datasets, all of which
contain images in the Turin area. All our experiments will be conducted on
these three datasets, plus the Pitts30k dataset, used in the state-of-the-art
paper of NetVLAD [1] and made publicly available by its authors.

3.6.1 Turin1M

Turin1M is a dataset of 949542 Street View panoramas covering the area
between latitude 45.0 and 45.1 and longitude 7.6 and 7.7. This area covers
most of the city of Turin, its whole center, and parts of nearby towns (Figure
3.10). The dataset is made of panoramas with resolution 512x3584 where
the top and bottom part have been removed, as in Figure 3.7. The whole
dataset requires about 300 GB of memory.
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Figure 3.10: The blue rectangle represents the area of Turin1M, while the
red boundary is the border of the city of Turin

3.6.2 Turin30k

When Turin1M dataset is completely downloaded, we have extracted three
geographically disjoint subsets (train set, val set and test set) as in Figure
3.11, in order to fine-tune the network giving a reasonable amount of data
and reducing also the retrieval time. First of all, during the training part of
the CNN, we have followed what is done by the authors of [1], that consists
in use images of the last year (2018/2019) for the query set, and the ones
of the same places but in different years for the database set. This is a
good approach, because in this way the network receives the image of the
same places in a different instant, from different view-points and environment
conditions. So, it generalizes and learns which features are useful and which
are not. Further, the subsets are built providing the number of images inside
the database equal to the one of the query set. This means that for each query
there is exactly one positive corresponding database image (e.g. for 10 images
of places of the database there are respectively the same 10 places of last year
like queries). Since, the network will receive distorted images for the bag-
of-visual-words like set and not-distorted images as queries, at test time, we
have trained it to try to prepare the algorithm to this kind of situation. Then,
we have trained using the cropped panos that are downloaded by means of
unofficial API, so the distorted images, as a database for searching the similar
images corresponding to the queries. While, the queries are retrieved using
the official API, that returns images with straight lines.
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Anyway, we have built three different subsets, following the previous rules,
that are composed as described in Table 3.1.

Dataset Database Query set
Turin30k_train 10,000 10,000
Turin30k_val 10,000 10,000
Turin30k_test 10,000 10,000

Table 3.1: Number of images in subsets Turin30k.

In order to consider the whole Turin1M dataset, passing to a large-scale
situation, a possible solution is to immediately filter the images that contain
somethings similar to the queries, discarding all the rests. In this sense, the
retrieval area should be reduced together with the needed amount of time. An
example could be using such detection/semantic segmentation algorithms to
produce annotations applied to filter over the entire dataset. Through these
methods, we can retrieve what objects are represented in a photo, discarding
all the dynamic ones, detecting texts, vegetation, car models, urban cleanings
and so on. In this way, all the images that don’t contain the annotation that is
extracted by the query should be ignored at least in a first moment. Overall,
we have postponed this kind of approaches to future works.

3.6.3 Turin81 - Third-domain dataset

The main idea of this thesis is to develop a software able to receive images
from a third domain, like a mobile phone, and visualize the results produced
by the algorithm.
Then, it is not trivial to collect a set of geo-localized images from an external
device w.r.t. the one of the database. Overall, just to make some indicative
tests, we have created a set of 81 images, called Turin81 (Figure 3.13), around
the city-center of Turin captured with our iPhone 7 which has the GPS turned
on. In this way, the information about the coordinates is stored in the EXIF
metadata attached to the photo. Retrieve a consistent number of this kind of
images remains a big problem. Some images of Turin81 are shown in Figure
3.12.
Moreover a set of 10000 images (1000 panos) is extracted by Turin1M to be
used as database set during the retrieval task.
This images are also used to perform tests about occlusions.
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Figure 3.11: The three rectangles represents the area selected to build the
sets of training, validation and test

3.6.4 Extra
We have also transformed the previous dataset (Turin30k and Turin81) in
two sets used for few tests.

3.6.4.1 Turin30k_undistorted

Turin30k_undistorted contains the same sets of Turin30k, but with the
database images that are processed in our algorithm to remove the distor-
tion (Section 3.4). This is used to perform the same tests and evaluate the
domain shift given by the distortion in our task.

3.6.4.2 Turin81_occluded

Turin81_occluded contains different sets of images, all the ones collected in
Turin81, where an artificial occlusion is applied (Section 4.4). The idea is
to see if an occlusion can help the retrieving, occupying, for example, some
possible dynamic object that distracts the algorithm. The occlusion is pro-
duced offline putting a black square/rectangle on the image. For the sake of
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Figure 3.12: Example of Turin81 images

completeness we have applied the occlusion, in different percentages (12.5%,
50%, 75%) proportionally to the image size, in a different part of the image:
on the left/right top/bottom corners, on the center, on the full bottom and
randomly. Some examples are shown in Figure 3.14.
However, the occlusion analysis should be investigated better, a bigger collec-
tion of data should be used and some methods could be applied. For example
given an image, apply online random occlusions, produce different copies of
that query and perform voting on the results obtained. To complete our
experiments and prepare the models for a third-domain, we have postponed
the occlusion analysis to the future works.
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Figure 3.13: The red dots represent the location of the photos in Turin81

3.7 Interface to access data and test algo-
rithm

Once, the dataset is built, we want to make easy for a novice user execute
two kinds of operation: access to the database (not implemented for the
thesis goal) and visualize the algorithm results, for an uploaded photo. In
order to allow this, we have developed a web-like interface, the main page is
shown in Figure 3.15. The software allows to choose a city, from the available
(actually Torino), set some filter, for example, it’s possible to select only a
specific area of the selected city, through the map of the right, and finally
explore the database visualizing all the image matching the filter, or upload
a user photo and run the deep learning algorithm. At this point, the software
remands the user to a new page, where the results are shown. Further, for
what concerns the DL software-feature, the user can navigate on the map,
that will show markers in the places predicted (Figure 3.16).
The website is developed in HTML, CSS, BOOTSTRAP and JavaScript for
the client-side, while in PHP for the server one. The maps shown are imple-
mented using the official Google API for JS, so they include all the features
provided by Google Maps, like navigate through the streets with Google
Street View.
Actually, the filter that works is the one on the geographical area. Once
Torino is selected between the cities, the map is updated and a drawable
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(a) Original photo

(b) center occlusion

(c) Bottom occlusion

(d) Bottom-left

(e) Bottom-center

Figure 3.14: Example of photo contained in Turin81.
a) Original photo made by iPhone7
b) Center occlusion with (h,w) = 12.5% of photo size
c) Bottom occlusion with (h,w) = (50% photo height, 100% photo width)
d) Bottom-left occlusion with (h,w) = 12.5% of photo size
e) Bottom-center occlusion with (h,w) = 25% of photo size

rectangle allows the user to select a specified zone. The corresponding coor-
dinates are passed to the algorithm and are applied only at the end, so are
shown only the predicted images that match the user-specified coordinates.
The number of images returned by the algorithm is at most 20.
The improvement for the future is to apply the filter before the retrieval is
performed.
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Figure 3.15: Main page of web site
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Figure 3.16: Result-page of web site: on top there is the user-uploaded image,
while in the red circles all the correct predictions. On the bottom the map
shows the markers corresponding to the predictions done.
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Chapter 4

Experiments

4.1 Hardware setup
The algorithms are trained and tested on computer with:

• GPU: NVIDIA GeForce GTX Titan X 12GB

• RAM: 64GB

• CPU(s): 12 x Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz

4.2 NetVLAD on Pitts30k

4.2.1 Algorithm
In this section, we want to briefly present the algorithm used to train/test the
network. It is downloaded from a GitHub repository [2], that contains a Py-
Torch version of NetVLAD [1] that was originally developed in Matlab. This
code receives a set of arguments in order to run the algorithm for training,
testing or clustering. Furthermore, from the command line, it’s possible also
decide the pre-trained network to use, the number of epochs to train, which
dataset to test, the path to resume a checkpoint and many others settings.
We want to remember to the readers that each dataset used is composed of
two subsets, the first one is the database i.e. the field of search of retrieval,
while the second one is composed by the queries that will be searched. To
train completely the network, two steps are needed:

• Run the algorithm in clustering mode:
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– Build model: it is compose by the pre-trained backbone (VGG16 [3]
or AlexNet [37]) and a L2 normalization layer;

– Take the dataset used to train: in this phase only the database set
is used;

– Create a dataloader sampling randomly from the database set and
extract the descriptors;

– Perform a K-means algorithm to cluster the extracted descriptors
for a given K (from NetVLAD [1] paper K=64);

– Store the cluster centroids.

• Run the algorithm in train mode:

– Build model: the network is composed by the encoder (same back-
bone as before) and the pooling layer NetVLAD [1], that is initialized
with the centroids previously extracted;

– Take the dataset used to train: there are two classes for the dataset,
the first one is for the database images, it contains the path for the
images, how many database and query images there are, the coor-
dinates and some others information. While the one for the queries
contains all the stuff so the code to analyze each query and find its
positive and negatives. This research is performed in two steps, the
first one is a KNN with radius, used to find the positives images
inside the 25 meters from the query coordinate, and the second step
is a KNN based on the features, to keep the most positive between
the ones previously found. This last KNN is executed inside the in-
herit __getitem__ function of the dataset class, where the features
of the database images are already passed. For the negative sam-
ples instead, the code considers all the samples out of 25 meters and
keep randomly 1000 samples. Then, a KNN based on the query and
negatives features is computed, extracting only 10 negative samples
that are within margin w.r.t. the positive.

– Start the training: for a certain number of epochs, it splits the
queries set in subsets, for each of them the algorithm extracts the
descriptors of the database saving that results in a cache variable.
The dimension of the cache is given by the argument cacheBatchSize
(default value is 24). The use and advantages of the cache are ex-
plained in [1]. At this point, the data loader of the considered subset
of queries is created. The data loader of queries set returns tensors
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corresponding to the query, its positive and its negatives. Then,
the Triplet Loss is calculated and the backpropagation algorithm is
performed. All this stuff is repeated for all the subsets of queries
set.

– Each time an epoch ends, an evaluation is performed on a speci-
fied set (val set by default). A checkpoint is saved for each epoch
and whether the accuracy is improved a further checkpoint called
’model_best’ is stored.

– The metrics used to evaluate the algorithm is the recall@N. It con-
sists in to give us how many predictions are correct after N ones.
The value used to compare an epoch and evaluate if is the best one
is the recall@5.

The training can be also restored from a checkpoint. In this case the
option ’resume=path_of_checkpoint’ should be defined when the pro-
gram is launched. Then, all the flags, the optimizer parameters and so
on, are resumed from the checkpoint.

• Run the algorithm in test mode:

– Specify the checkpoint path in the resume option;
– The model is built and the weights of the resumed checkpoint are
loaded;

– The specified dataset is loaded, both database and queries set. There
is only one dataloader, because the samples are all collected in an
sorted list, then the counter of database and queries images, give us
the split of that two sets.

– The batches pass through the network extracting the descriptors
and search between the descriptor vector is executed. To improve
the efficiency of this step, the faiss [23] python library is used.

– The recall@N with N = [1, 5, 10, 20] is displayed.

4.2.2 Setup
• Dataset: Pitts30k (see Table 4.1);

• Backbone: VGG16 [3] (pre-trained on ImageNet) cropped at the last
convolutional layer (conv5);
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Dataset Database Query set
Pitts30k_train 10,000 7,416
Pitts30k_val 10,000 7,608
Pitts30k_test 10,000 6,816

Table 4.1: Number of images in subsets Pitts30k.

• Pooling: NetVLAD [1] initialized with the clusters extracted from Pitts30k
4.1;

• LossNetV LAD: Triplet ranking loss [1];

• Trainable layers: whole backbone + pooling;

• Number of clusters K: 64;

• Learning rate: 0.0001;

• Learning rate step: 5 epochs;

• Learning rate decay: 0.1;

• Momentum: 0.9;

• Weight decay: 0.001;

• Optimizer: SGD;

• Number of epochs: 30 (effective 25);

• Batch size: 4 tuples (each tuple contains the query, the positive and the
negatives);

• CacheRefreshRate: 1000.

4.2.3 Results
Here, the results obtained using the pytorch implementation of NetVLAD
[2], resuming the checkpoint after the training of Pitts30k:
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PITTS30K_VAL
Backbone R@1 R@5 R@10 R@20 Test Time
VGG 0,8527 0,9468 0,97 0,9838 0 : 21 : 44

Table 4.2: Test on Pitts30k_val (see Table 4.1): VGG = VGG16 [3].

PITTS30K_TEST
Backbone R@1 R@5 R@10 R@20 Time
VGG 0,819 0,9123 0,9323 0,9575 0 : 19 : 59

Table 4.3: Test on Pitts30k_test (see Table 4.1): VGG = VGG16 [3].

4.3 NetVLAD on Turin81/Turin1M

4.3.1 Algorithm

Finally, in order to achieve our thesis’ goal, we had to find a way to make our
algorithms scalable to whole cities, and prove that they could work even on
such huge datasets. Moreover, the final algorithm would have to be processed
fast enough to be used through the GUI. Therefore, the classical pattern of
online processing would be way too slow for our purpose (it might take days
for a city).
One of the biggest challenges was due to the fact that even if each panorama
was about 400 KB, its related vector of features, calculated with NetVLAD,
was 1284 KB. This is because the vector of features is a vector of 32768 (215)
floats of 4 bytes, and we take 10 crops from each panorama, and we there-
fore have 10 vectors of features. In order to calculate the euclidean distance
between a vector of features of a query and all the vector of features of the
database images, it is necessary to load the features of the whole database
each time that we have a new query. This process could take days in a
city-wide dataset. As an example, in our Turin1M dataset the images need
about 300 GB of storage, while its vector of features need around 1200 GB.
Just loading sequentially in memory such a huge dataset, without doing any
computation on it, requires almost a day.
To overcome this memory obstacle, we decided to apply PCA on all the vec-
tors of features, to reduce the dimension from 32768 to a smaller number,
to make sure that these vectors could fit in RAM without losing too much
accuracy. After trying different values for the final dimension of the vectors,
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we decided 256 to be the best one: using PCA 256 the recall5 on the Pitts-
burgh dataset drops from 94.8% to 91.8%, but the dimension of the vectors
of features could be reduced by 128 times. The memory required to store the
features for the Turin1M dataset could therefore be reduced from 1200 GB
to about 10 GB, which made them easy and fast to load to RAM. But even
with the whole dataset loaded in RAM, finding the nearest neighbours with
traditional methods would require too much time, as its complexity varies
between O(nd+kn) and O(ndk), depending on the algorithmic choices, where
n is the size of the database set, d the size of the query set, and k is KNN’s
hyperparameter. To speed up the KNN search, we found a great library de-
veloped by Facebook AI Research team named Faiss [23].
Faiss is a library for efficient similarity search and clustering of dense vec-
tors. It is written in C++ with complete wrappers for Python/numpy. Faiss
[23] has various implementation of KNN search, many of which give approxi-
mated results, and which can be performed on GPU. Moreover, Faiss [23] has
a great tool for clustering, which can also be performed on GPU. The clus-
tering can be of great help because given a vector of features from a query,
we can perform the KNN only on the features of the database images which
are closest to the features of the query. To find the closest ones, we just
take those that belong to the same cluster to the query features, or to the
neighboring ones. This helps to avoid computation on the farthest vectors
of features, which obviously would not improve the recall, and would greatly
slow down the algorithm.

Step Duration Offline/Online Disk usage
Download metadata 3 hours Offline 300 MB
Download panoramas 1 day Offline 300 GB
Features computation 2 days Offline 1200 GB
PCA-256 computation 2 days Offline 10 GB
Faiss [23] clustering 2 hours Offline 10 GB

Retrieval 0.1 sec - 2 min Online NA

Table 4.4: We show the duration of each step for the retrieval on Turin1M

When the faiss [23] index are built on the Turin1M dataset, the model can
be tested through the GUI or by our dedicated step in the pipeline. This
pipeline step is useful to test a set of images in a supervised environment,
while with the GUI we can test one image at a time, without knowing the
recall but watching the database images predicted. In order to process and
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test big images like the ones produced by a smartphone, we have decided
to perform a 5-crop during the pre-processing. Each crop has square shape
equal to the 90% of the smallest side of its original image. Then each crop is
resized to a smaller dimension (224x224 pixels) and finally tested. The final
result is produced by a voting performed on the produced predictions of each
single crop.
Summarizing, the test on each query is performed in this way:

• produce 5 crops;

• extract a certain number of predictions for each crop called preds_per_crop;

• the predictions that will be pooled for the entire query is preds_per_query,
where preds_per_query < preds_per_crop);

• assign to all the preds_per_crop different weights: the first preds_per_query
have weight A and to all the rest (preds_per_crop - preds_per_query)
a weight B, where A > B. In this way the first preds_per_query pre-
dictions of each crop will have higher importance w.r.t. the others, so
the most common predictions between the 5 crops will be extracted;

• only the top_per_query (at most preds_per_query) predictions are used
to show the results and calculate the recalls.

4.3.2 Setup
• Model: NetVLAD [1] with VGG16 [3] pre-trained on Pitts30k (Tab.4.1);

• Database: Turin1M

• Query set: Turin81

• PCA: 256

• Precision: 100

• Predictions per crop: 1000

• Predictions per query: 100

• Top per query (max recall): 100

• Weights for voting: 3·preds_per_query+2·(preds_per_crop−preds_per_query)
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4.3.3 Results

Here we want to show the results obtained using our pipelines, where the
original NetVLAD [1] is used (explained in the Section 4.2), passing our
third domain query set (Turin81), cropped in 5 tiles, each of them resized to
224x224 pixels and elaborated by means of voting for the final result. This
is one of the first experiments, so the goal was to test our pipeline and see
somethings about the occlusion presence. Best results could be achieved by
bigger crops (e.g. 500x500 pixels) and with one of the models obtained in
the previous experiments (Sections 4.5 4.6 4.7.2).

Set R@1 R@5 R@20 R@50 R@100
Turin81 0,407 0,617 0,864 0,877 0,914

Table 4.5: Test of third domain set Turin81 over Turin1M dataset

4.4 NetVLAD on Turin81_occluded/Turin1M

4.4.1 Algorithm

In order to superficially test the influence of occlusions, we have developed a
brief code to produce occlusions in a different part of the queries (Turin81).
This is done offline, so when the new set of images containing occlusions is
produced, they can be tested as described in Section 4.3. The algorithm
to produce offline images with occlusion is structured as follow: first of all
the occlusion has a different dimension, it is computed w.r.t. the size of the
original image. Then a black mask is created, it has the same dimension
of the original image, but with a certain area composed of black pixels.
Then OpenCV library is used to perform a bitwise_and operation and finally
perform an and operation between the original image and the mask.
The occlusions are produced on the corners (bottom-left, bottom-right etc.),
on the centre of the image, on the side centre, over the entire bottom part
and randomly. The percentage of the original size that is used to create the
occlusions is 12.5% for the occlusions on the corners, on the centre and on
the centre sides, while it is 25% for the occlusion that lies entirely on the
bottom. We have seen that with a higher percentage it didn’t make sense
because the results were never better.
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4.4.2 Setup
The algorithm and setup are the same ones explained in the Section 4.3.

4.4.3 Results
We can see from the Table 4.6 that the images with bottom occlusions per-
forms quite better than the ones without occlusions (Table 4.5. This is com-
prehensible due to the fact that the occlusions on the bottom can hide some
dynamic objects like the cars, that can distract the network during the test.
Also the occlusions on the top don’t perform bad, since they can obscure the
sky and other characteristics not useful. For this reasons we have postponed
this kind of analysis to future works, since it can be useful or however it can
give us some idea.

4.5 ResNetVLAD on Pitts30k

4.5.1 Algorithm
We have tried to change the backbone from a VGG16 [3] to a ResNet18 [4],
to speed up the test process and later try to add a self-supervised task. Here
we are focusing on the algorithm used to change the backbone and the results
obtained. The goal is achieve the baseline given by NetVLAD [1] with the
VGG16 [3] as backbone.
We have downloaded the torchvision ResNet18 [4] architecture, loading the
weights of the ResNet18 pre-trained on ImageNet. Then, we have tried dif-
ferent configurations for the backbone and the best results are achieved ex-
tracting the descriptors from the 4th block, training all the layers.
The rest of the algorithm works as we have already described in Section 4.2.1.

4.5.2 Setup
• Train dataset: Pitts30k_train (see Table 4.1);
• Backbone: ResNet18 [4] (pre-trained on ImageNet) cropped at the 4th

convolutional block;
• Pooling layer: NetVLAD [1] initialized with the clusters extracted from

Pitts30k (Tab. 4.1);
• LossNetV LAD: Triplet ranking loss [1];
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• Trainable layers: last conv block of backbone + pooling layer;
• Number of clusters K: 64;
• Learning rate: 0.00001;
• Optimizer: Adam;
• Number of epochs: 15 (effective 4);
• Batch size: 4 tuples (each tuple contains the query, the positive and the

negatives);
• CacheRefreshRate: 1000;
• Image size: original one (640x480).

4.5.3 Results
In the tables below, we show the results obtained. In the Table 4.7 there are
the recalls on Pitts30k_val 4.1 and the difference w.r.t. the original model
[2]. While in the Table 4.8 there are the recalls, but testing on Pitts30k_test.

PITTS30K_VAL
Backbone R@1 R@5 R@10 R@20 Test Time

RN 0,875 0,953 0,969 0,981 0:04 :09
RN-VGG +0,022 +0,006 −0,001 −0,003 +0:17:35

Table 4.7: Test on Pitts30k_val (see Table 4.1): RN = ResNet18 [4] | VGG
= VGG16 [3]. The first row is about the model with the new backbone, while
the second one is the difference w.r.t. the original model.

PITTS30K_TEST
Backbone R@1 R@5 R@10 R@20 Time

RN 0,855 0,924 0,943 0,959 0:03 :49
RN-VGG +0,036 +0,012 +0,011 +0,001 +0:16:10

Table 4.8: Test on Pitts30k_test (see Table 4.1): RN = ResNet18 [4] | VGG
= VGG16 [3]. The first row is about the model with the new backbone, while
the second one is the difference w.r.t. the original model.

As we can see from the Tables 4.7 and 4.8, and as it’s known by liter-
ature, the model with the ResNet18 [4] is a lot faster than the one with
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the VGG16 [3]. In fact, we can save more than 15 minutes at test time.
Overall, the results obtained are pretty equal to the ones with the VGG16
[3], also considering that we have trained for less epochs and updating less
parameters.

4.6 ResNetVLAD on Turin30k
4.6.1 Algorithm
In this new set of experiments, we want to use the network containing the
ResNet18 [4] pre-trained on ImageNet to learn the features of our images
3.1. So, we have re-built the model, again cut at the 4th convolutional block,
loading the weights learnt on ImageNet. This one is used as a normal pre-
trained model, so the training is started with the default parameters as in
Section 4.5. The NetVLAD layer is initialized with the centroids extracted
from Turin30k dataset (as explained in 4.2.1). During the training, the learn-
able parameters are the ones contained in the NetVLAD pooling layer and
in the 4th convolutional block of the ResNet18 [4].
We have kept the image dimension similar to the ones of Pittsburgh, it is
500x500 since we have also tried with smaller images (224x224) and the re-
sults were lower. All the rest about the algorithm works as described in
Section 4.2.1.

4.6.2 Setup
• Train dataset: Turin30k_train (see Table 3.1);
• Backbone: ResNet18 [4] (pre-trained on Pitts30k 4.1) cropped at the

4th convolutional block;
• Pooling: NetVLAD [1] (pre-trained on Pitts30k 4.1);
• LossNetV LAD: Triplet ranking loss [1];
• Trainable layers: last conv-block of backbone + pooling;
• Number of clusters K: 64;
• Learning rate: 0.00001;
• Optimizer: Adam;
• Number of epochs: 15 (4 effective);
• Batch size: 4 tuples (each tuple contains the query, the positive and the

negatives);
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4.6.3 Results

The results here (Tables 4.9 4.10 4.11) shows the comparisons between the
three networks, on Turin30k 3.1, where only the last one is trained on this
dataset.
As expected the accuracy is higher when the network is trained on Turin30k
dataset [3.1]. In the Table 4.11 we have reported the recalls obtained on the
third domain dataset Turin81. The produced results by the ResNetVLAD
trained on Turin30k is higher than the ones of the first ResNetVLAD trained
on Pitts30k. In the next section a self-supervised task is attached to the
ResNetVLAD to try to reduce the domain shift between Turin30k database
set, Turin30k query set and Turin81.

4.6.3.1 Extra results

We have applied the technique explained in Section 3.4 to remove the distor-
tion. The result should be investigated better, but training with the same
setup, we obtain a very little improvement on the recalls. This tells us that
there is not a lot of domain shift between the distorted images and the ones
without. So Turin30k database and Turin30k query collections seem to be al-
most similar also for the network. In Table 4.12 there are the results obtained
after the test on Turin30k_val and Turin30k_test.

TURIN30K_VAL
Backbone R@1 R@5 R@10 R@20
V GGPitts 0,523 0,754 0,827 0,885
RNPitts 0,545 0,761 0,834 0,889
RNTurin 0,760 0,907 0,942 0,965

Table 4.9: Test on Turin30k_val (see Table 4.1):
V GGPitts =VGG16 [3] pre-trained on ImageNet and then trained on Pitts30k
(Table 4.1);
RNPitts = ResNet18 [4] pre-trained on ImageNet and then trained on
Pitts30k (Table 4.1);
RNTurin = ResNet18 [4] pre-trained on ImageNet and then trained on
Turin30k (Table 3.1).
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TURIN30K_TEST
Backbone R@1 R@5 R@10 R@20
V GGPitts 0,5194 0,7159 0,7842 0,8451
RNPitts 0,547 0,736 0,800 0,858
RNTurin 0,767 0,913 0,948 0,970

Table 4.10: Test on Turin30k_test (see Table 4.1):
V GGPitts =VGG16 [3] pre-trained on ImageNet and then trained on Pitts30k
(Table 4.1);
RNPitts = ResNet18 [4] pre-trained on ImageNet and then trained on
Pitts30k (Table 4.1);
RNTurin = ResNet18 [4] pre-trained on ImageNet and then trained on
Turin30k (Table 3.1).

TURIN81
Backbone R@1 R@5 R@10 R@20
RNPitts 0,535 0,691 0,757 0,798
RNTurin 0,523 0,733 0,782 0,835

Table 4.11: Test on third domain set Turin81:
RNPitts = ResNet18 [4] ImageNet and then trained on Pitts30k (Table 4.1);
RNTurin = ResNet18 [4] pre-trained on ImageNet and then trained on
Turin30k (Table 3.1).

Dataset R@1 R@5 R@10 R@20
Turin30k_val 0,773 0,914 0,945 0,965
Turin30k_test 0,774 0,916 0,949 0,971

Table 4.12: Test on Turin30k_val and Turin30k_test with ResNetVLAD
trained on Turin30k_train. All these sets contain database undistorted.
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4.7 ResNetVLAD with self-supervision

In this section of experiments, we will explain a new approach based on a self-
supervised task. It consists of using the source dataset for the main network
task and the target dataset only for the second task. In this way, two losses
are calculated and derived for the gradient. We hope to see an improvement
of the accuracy when there is a domain shift if the network learns something
about the target features just solving the secondary task.
So, we have added a new branch that solves the rotation task. It consists in
giving to the network the input from the source and another one from the
target that is randomly rotated of 90°, 180°, 270° or 0°. So the backbone
receives both inputs and extracts the features. Then, the source feature maps
are passed to the main task, NetVLAD in our case, while the target feature
representations are given only to the rotation task. The Figure 4.1 shows the
whole architecture.
This process is known as domain adaptation.

Figure 4.1: Architecture NetVLAD + Self-Sup branch. The layers trainable
are in red.
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4.7.1 Domain adaptation on Pitts30k/Turin81
Here, we have tried a domain adaptation when we train on Pitts30k. So, we
want to improve the accuracy of ResNetVLAD on Turin81 when the main
task learns to solve the VPR task on Pitts30k, overcoming the domain shift
between Pittsburgh dataset and Turin dataset.

4.7.1.1 Algorithm

The main part of the algorithm is the same one explained in Section 4.2.1. To
train the new network the clusters are immediately extracted from Pitts30k,
to initialize the NetVLAD layer.
The source dataset is Pitts30k while for the target dataset we have passed
Pitts30k query set, Turin81 database set and Turin81 query set. In this way,
the rotation task receives both datasets and is solved across the domain.
The network receives batches of source images with their original label (the
coordinates) and batches of rotated images where the label is the rotation
randomly applied (integer value from 0 to 3). The first ones pass inside the
backbone and the NetVLAD layer, while the second ones are passed through
the backbone and the self-supervised branch. Then, the rotation loss is com-
puted and summed to the one of NetVLAD, both weighted of a certain value.
The backpropagation is computed. Also, in this case, we have only trained
the last convolutional block of the backbone.
To compare the effectiveness of DA, we have developed two kinds of experi-
ments: in the first one (DA experiment 1) the self-supervised branch receives
only the Pitts30k query set, while the second one (DA experiment 2) receives
also the whole Turin81.

4.7.1.2 Setup

• Train dataset main task: Pitts30k_train (see Table 4.1);
• Dataset secondary task: Pitts30k_train query set, Turin81 database set,

Turin81 query set;
• Backbone: ResNet18 [4] (pre-trained on ImageNet) cropped at the 4th

convolutional block;
• Pooling branch: NetVLAD [1] (initialized with the centroids previously

extracted);
• Self-sup branch: 5th conv-block of ResNet18 [4] + AvgPooling + Fully

connected layers to outputs 4 classes;
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• Trainable layers: last conv-block of backbone + pooling + self-sup;

• LossNetV LAD: Triplet ranking loss [1];

• LossSelfSup: Cross-Entropy loss;

• Final Loss: LossNetV LAD + 0.5 · LossSelfSup

• Learning rate: 0.00001;

• Optimizer: Adam;

• Number of epochs: 11 (6 effective);

• Batch size: 4 tuples (each tuple contains the query, the positive and the
negatives);

• Batch size self-sup: 256;

• Image size in NetVLAD branch: original one;

• Image size in Self-sup branch: Resized to 500x500 pixels and then ran-
domly cropped to 100x100 pixels;

• Data augmentation in NetVLAD branch: Normalization;

• Data augmentation in Self-sup branch: Random crop at 100x100 pixels.

4.7.1.3 Results

Here the results (Tables 4.13 4.14 4.15 4.16 4.17) compare the training of this
architecture when the self-supervised task receives only the Pitts30k query
set (DA experiment 1) or also the whole Turin81 (DA experiment 2). The
tests are made on the val and test sets of Pitts30k and Turin30k and on
Turin81.
The accuracy is quite the same on the source domain (Pitts30k), while is
improved on Turin81 of 6 points at recall@5.
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PITTS30K_VAL
Experiment R@1 R@5 R@10 R@20 Rotation
NO_DA 0,875 0,953 0,969 0,981 −
DA1 0,868 0,952 0,967 0,980 72%
DA2 0,873 0,955 0,969 0,981 70%

Table 4.13: Test on Pitts30k_val (see Table 4.1):
NO_DA is the model without the self-supervised branch (experiment in
Section 4.5; DA1 is the model with the self-sup branch trained with only
the queries of Pitts30k_train; DA2 is the model with the self-sup branch
trained with the queries of Pitts30k_train and the Turin81 database and
query images.

PITTS30K_TEST
Experiment R@1 R@5 R@10 R@20 Rotation
NO_DA 0,855 0,924 0,943 0,959 −
DA1 0,846 0,918 0,941 0,955 71,7%
DA2 0,850 0,917 0,937 0,955 68%

Table 4.14: Test on Pitts30k_test (see Table 4.1):
NO_DA is the model without the self-supervised branch (experiment in
Section 4.5; DA1 is the model with the self-sup branch trained with only
the queries of Pitts30k_train; DA2 is the model with the self-sup branch
trained with the queries of Pitts30k_train and the Turin81 database and
query images.
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TURIN30K_VAL
Experiment R@1 R@5 R@10 R@20 Rotation
NO_DA 0,545 0,761 0,834 0,889 −
DA1 0,520 0,733 0,807 0,868 69%
DA2 0,523 0,742 0,814 0,871 87,3%

Table 4.15: Test on Turin30k_val (see Table 4.1):
NO_DA is the model without the self-supervised branch (experiment in
Section 4.5; DA1 is the model with the self-sup branch trained with only
the queries of Pitts30k_train; DA2 is the model with the self-sup branch
trained with the queries of Pitts30k_train and the Turin81 database and
query images.

TURIN30K_TEST
Experiment R@1 R@5 R@10 R@20 Rotation
NO_DA 0,547 0,736 0,800 0,858 −
DA1 0,536 0,727 0,790 0,848 66%
DA2 0,531 0,724 0,786 0,846 85,5%

Table 4.16: Test on Turin30k_test (see Table 4.1):
NO_DA is the model without the self-supervised branch (experiment in
Section 4.5; DA1 is the model with the self-sup branch trained with only
the queries of Pitts30k_train; DA2 is the model with the self-sup branch
trained with the queries of Pitts30k_train and the Turin81 database and
query images.
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Turin81
Experiment R@1 R@5 R@10 R@20 Rotation
NO_DA 0,535 0,691 0,757 0,798 −
DA1 0,469 0,741 0,765 0,790 64%
DA2 0,506 0,753 0,790 0,827 77,8%

Table 4.17: Test on third domain set Turin81:
NO_DA is the model without the self-supervised branch (experiment in
Section 4.5; DA1 is the model with the self-sup branch trained with only
the queries of Pitts30k_train; DA2 is the model with the self-sup branch
trained with the queries of Pitts30k_train and the Turin81 database and
query images.

4.7.2 Domain adaptation on Turin30k/Turin81
4.7.2.1 Algorithm

The main part of the algorithm is the same one explained in Section 4.2.1. To
train the new network the clusters are immediately extracted from Turin30k,
to initialize the NetVLAD layer.
The main problem in our project is about the unsupervised test samples
that belong to different domains. Moreover, we have few images of the third
domain, that we cannot use to train the model and we have used distorted
images in the database to compare the results against the ones obtained
with Turin1M. So, the idea is to inject more information as possible to the
network about our datasets. Summarizing, the focus on the very important
features (e.g. the ones of the buildings) is already partially done in the
SOTA [1], using the Google Time Machine, then we use the distorted images
as database set also during the training. Finally, to learn more about these
features and to adapt the network to the different domains of Turin datasets
a self-supervised task is used.
The set of images used here is composed by only the queries that are seen
also by the NetVLAD branch (self-sup experiment 1) or by the queries and
the images of the third domain Turin81 (self-sup experiment 2).
The idea concerning the two self-supervised experiments is related to the
fact that we want to see if NetVLAD [1] performs better on the third domain
photos, seeing these only in the self-supervised branch, without the real label
(coordinates). Since the third domain images are bigger than the ones of
Turin30k Tab. 3.1, we have performed at training time a resized to 500 pixels
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for the smallest edge, while the other one is respectively rescaled. Overall, the
first layer in the self-supervised task receives only a random crop (100x100
pixels) from the original images.

4.7.2.2 Setup

The setup of the self-supervised branch is the best one belong our set of
experiments which different configurations.

• Train dataset: Turin30k_train (see Table 3.1);
• Backbone: ResNet18 [4] (pre-trained on ImageNet) cropped at the 4th

convolutional block;
• Pooling: NetVLAD [1] (initialized with the centroids previously ex-

tracted);
• Self-sup: 5th conv-block of ResNet18 [4] + AvgPooling + Fully con-

nected layers to outputs 4 classes;
• Trainable layers: last conv-block of backbone + pooling + Self-sup;
• LossNetV LAD: Triplet ranking loss [1];
• LossSelfSup: Cross-Entropy loss;
• Final Loss: LossNetV LAD + 0.5 · LossSelfSup
• Learning rate: 0.00001;
• Optimizer: Adam;
• Number of epochs: 11 (6 effective);
• Batch size: 4 tuples (each tuple contains the query, the positive and the

negatives);
• Batch size self-sup: 256;
• CacheRefreshRate: 1000;
• Image size in NetVLAD branch: original one (500x500 pixels);
• Image size in Self-sup branch: original one for the images of Turin30k

Tab. 3.1 (500x500 pixels), while it is resized to 500 pixels for the Turin81
(Nx500 or 500xN pixels, where N is the re-scaled side w.r.t. 500). In
both cases the images are finally randomly cropped to 100x100 pixels.

• Data augmentation in Self-sup branch: Random crop at 100x100 pixels.
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4.7.2.3 Results

Here we show the results obtained with the two self-supervised experiments,
providing the recalls on the Turin30k val (Tab.4.18) and test (Tab.4.19) sets
and also on the third domain set (Tab.4.20).

TURIN30K_VAL
Experiment R@1 R@5 R@10 R@20 Rotation
NO_SS 0,760 0,907 0,942 0,965 −
SelfSup1 0,748 0,901 0,937 0,961 93,43%
SelfSup2 0,749 0,904 0,939 0,962 93,54%

Table 4.18: Test on Turin30k_val (see Table 4.1):
NO_SS is the model trained on Turin30k without the self-supervised branch
(experiment in Section 4.6);
SelfSup1 is the model with the self-sup branch trained with only the queries
of Turin30k_train;
SelfSup2 is the model with the self-sup branch trained with the queries of
Turin30k_train and the third-domain images.

TURIN30K_TEST
Experiment R@1 R@5 R@10 R@20 Rotation
NO_SS 0,767 0,913 0,948 0,970 −
SelfSup1 0,758 0,906 0,946 0,969 96,87%
SelfSup2 0,758 0,908 0,946 0,969 92,09%

Table 4.19: Test on Turin30k_test (see Table 4.1):
NO_SS is the model trained on Turin30k without the self-supervised branch
(experiment in Section 4.6);
SelfSup1 is the model with the self-sup branch trained with only the queries
of Turin30k_train;
SelfSup2 is the model with the self-sup branch trained with the queries of
Turin30k_train and the third-domain images.
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Turin81
Experiment R@1 R@5 R@10 R@20 Rotation
NO_SS 0,523 0,733 0,782 0,835 −
SelfSup1 0,519 0,728 0,790 0,852 92,59%
SelfSup2 0,519 0,728 0,790 0,877 96,30%

Table 4.20: Test on third domain set Turin81:
NO_SS is the model trained on Turin30k without the self-supervised branch
(experiment in Section 4.6);
SelfSup1 is the model with the self-sup branch trained with only the queries
of Turin30k_train;
SelfSup2 is the model with the self-sup branch trained with the queries of
Turin30k_train and the third-domain images.
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Chapter 5

Conclusions and future
works

In this thesis we have focused on the visual place recognition (VPR) task,
implementing deep learning algorithms and developing software to make eas-
ier the dataset creation related to Google Street View images and the geo-
localization of user-updated photo.
As explained in this paper, our pipeline allows to download metadata and
images for all the places covered by Google Street View and perform offline
many expensive operations, reducing the amount of time during the deep
learning algorithm test.
We have seen that the datasets used (Pitts30k and Turin30k) are not so dif-
ferent. The approach based on self-supervision helps the training, but the
result concerning the domain adaptation suggest us that there is not a lot
of gap between these domains. We will continue to investigate on this topic,
trying other self-supervision tasks and comparing more different domains like
day/night that are more challenging.
Moreover, we have already started removing of distortion inside Turin1M,
and from the first tests, it seems to not affect a lot the results.
Also, the analysis of the occlusion should be continued with other techniques
based on what we have already seen during this thesis.
The most interesting works that should be immediately tried from our point
of views are:

• Attention module in the network, to focus the prediction on the features
related to the static objects;

• Reduce the number of features used during the VPR task, with some
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5 – Conclusions and future works

machine learning methods (e.g. PLDA-like), to reduce the amount of
time needed during the retrieval;

• Annotation process: semantic segmentation or object detection networks
to annotate and then filter the database images used during the retrieval;

• Domain adaptation / Domain generalization: other methods and selfsu-
pervised tasks to improve the accuracy of extremely distinct domains as
day/night or with/without snow/rain and so on.
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