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Abstract

The growing interest in space exploration is focusing the research in the develop-
ment of space architectures able to be independent and self-sustainable. To this
end, different control strategies have been studied for different types of spacecrafts.
The following thesis has the goal to design a linear Model Predictive Control (MPC)
approach for the attitude control of a spacecraft testbed equipped with 4 Control
Moment Gyroscopes (CMGs) in pyramidal configuration. The CMGs are torque
generators used for the attitude control of spacecrafts, and the principal problem in
the large diffusion of these devices is that, in a certain condition, the CMGs cannot
provide torque along a specific direction. This condition is called singularity, and
it compromises the stability of the control system, therefore it must be avoided.
The MPC strategy has been adopted because we can directly avoid the singularity
condition implementing this control approach. Contrary to other control strategies,
the MPC can directly calculate the values to apply to the motors of the CMGs,
without calculating the desired value of the total output torque; in such a way,
a singularity avoidance steering law is not necessary. In the following work have
been performed different simulations investigating different MPC approaches with
additional characteristics. After, the control algorithm has been converted in C++
programming language, and used to perform experiments on a testbed in pyramidal
configuration located at the Yamada’s laboratory at Osaka University.
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Chapter 1

Introduction

1.1 Spacecraft attitude control general problem
What is the meaning of space exploration? EASAC has provided the following
definition as reported in [8]: "Space exploration represents the extension of human
research beyond the Earth’s atmosphere using spacecraft to access unknown ter-
rains and environments, and to acquire knowledge about space, planets, stars, or
other celestial bodies by human and robotic means."
The space exploration began in the 1950s, when United States and Soviet Union
launched the first spacecrafts. After a short time Europe and Japan started to sent
their first small satellites in the space too. From that moment the space exploration
has changed a lot with the parallel development of technologies and techniques.
Nowadays, the interest in space field is continuously growing. There are different
motivations for this interest in space: first, the scientific reason to try to under-
stand always more the Solar System and the Universe in general; but the space
exploration reflects also on societal and cultural aspects. It strives to develop the
scientific research, setting new goals and it raises the interest of people towards
scientific careers and studies.
Nasa has highlighted as "Robotics, Tele-Robotics, and Autonomous System" shall
be considered as high-priority fields of study in consolidating and broadening ac-
cess to space and incrementing the human presence in the Solar System [1] [9]. The
major space agencies all agree about this opinion: the advancement of the space
missions must be performed creating space architectures able to be totally inde-
pendent and self-sustainable, hence not more controlled by the Earth. One of the
main problems ever encountered in space missions is the Autonomous Rendezvous
and Docking (ARVD) manoeuvre among different systems in space. This problem
must be treated with always more sophisticated techniques, because with the grow-
ing complexity of the space missions, the ARVD manoeuvres must be treated as
better as possible. With the advancement of the autonomous systems and control
techniques, space architectures always more able to deal with all the operational
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Introduction

and safety constraints of these ARVD manoeuvres in an independent way will be
created. In this way, these space architectures will be able to support the crew in
the space and will be also possible to perform these rendezvous manoeuvres with-
out a crew on the system, considerably relaxing the safety constraints for these
operations.
In ARVD manoeuvres there is a chaser, the system who leads towards, and the
target that is the system that must be achieved. One of the main aspect of these
operations, is that the two involved systems have a specific docking point through
which they must be attached. The attitude control of these space systems to
perform ARVD manoeuvres is fundamental for the correct orientation of the two
system one respect to the other, according to the docking points. But in general a
good attitude control of spacecrafts is the starting point to perform a lot of different
operations, and hence to obtain the success of the space mission.
In Figure 1.1 is reported an ARVD manoeuvre where a chaser (craft on the right)
tries to achieve the target (craft on the left). This picture presents a V-bar ap-
proach typically considered in these operations.

Figure 1.1: ARVD manoeuvre [1]

In general the attitude control can be defined as the process aimed to stabilize
and adjust the orientation of spacecrafts during space manoeuvres [10]. Nowadays,
space missions for satellites require a capability to rapidly change the attitude with
high slew rate, both to ensure the success of the mission and to avoid catastrophic
impacts among crafts [11]. The environment in which the attitude control of the
spacecrafts must be performed, is particularly challenging. Indeed, spacecrafts con-
trol is not like aircraft control, in which ailerons, elevators and rudders are used
for the attitude control exploiting aerodynamic forces. In the vacuum space, these
forces are absent, hence these actuators are useless. For the spacecraft, devices able
to generate torques from the variation of the angular momentum are necessary. In
this way, through the spinning of the angular momentum vector of these actuators,
is possible to control the attitude of the craft.
There exist passive and active control strategies. However, the active ones ensure
more precision and reliability, therefore the second ones are preferred for the atti-
tude control of spacecrafts. The most common active control devices for satellites
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are the Reaction Wheels, the Control Moment Gyros (CMGs), Magnetic Torque
Rods, and Thrusters. Among them, the main devices used in space applications
are the Reaction Wheels and the CMGs, due to their high accuracy. The Reac-
tion Wheels are devices that use torque to spin up a wheel; in this way, an equal
and opposite amount of torque is imparted to the spacecraft (Figure 1.2). In this
devices, the angular velocity of the wheel (the rotor) may change according to the
desired attitude.

Figure 1.2: Reaction Wheel [2]

The CMGs have in general a fixed rate of rotation, thus the magnitude of the an-
gular momentum vector is fixed too. A CMG is composed by a wheel and from one
or two motorized gimbals that tilt the rotor’s angular momentum; the creation of
the gyroscopic torque is performed varying the direction of the angular momentum
vector through the gimbals. A CMG system is composed by a group of 3 or 4
CMGs in order to ensure the three-dimensional control, and the configuration in
which the CMGs are allocated is very important for the definition of the model of
the system (Figure 1.3). In general CMGs are preferred because they are able to
generate larger output torque compared to the Reaction Wheels. The generated
output torque is much greater than the input torque required to drive the gimbal
motor; this property is known as torque amplification of CMGs.

In Figure 1.4 is represented the International Space Station, that uses CMGs for
its attitude control.
Though CMG systems can provide rapid slew capability and high pointing accuracy,
not using any of the limited propellant dedicated to the main propulsion system,
an important difficulty is their inherent geometric singularity problem, regardless
of how many CMGs are equipped. In certain configuration of the gimbal angles,
it is not possible to generate torque along a specific direction. In the last years,
different methodologies have been realized to avoid the singularity condition for the
CMGs implementation, each one with its strong and weak aspects.
A possible solution is the implementation of a steering law that, once received the
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Figure 1.3: CMG platform (credit: Gyroscope.com)

Figure 1.4: CMGs are used for the attitude control of the International Space
Station (credit: NASA)

desired output value of the torque from the controller, is able to calculate the value
of the gimbal rates in order to avoid the singularity condition.
In paper [12], is presented a configuration with CMGs and steering scheme for rapid
maneuvering of Earth observation satellites. The CMG singularity arises when the
torque vectors of all the CMGs are aligned on a plane, so that the CMG system
cannot produce a control torque in the normal direction of that plane. In this paper,
the CMG steering problem is solved using two planar systems in a rooftop CMG
configuration. The component of momentum perpendicular to gimbal directions to
be shared between the two pair of actuators is used to avoid the singularities or
minimize the control degradation.
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In [2], different configuration of CMGs systems are compared, utilizing a single PID
controller with a steering law based on the Moore-Penrose inverse matrix to avoid
the singularity condition. The analysis is particularly interesting for the comparison
among different actuator system: the first two are CMG systems in pyramidal con-
figuration with a different skew angles, the third system is a cluster of two CMGs
and four Reaction Wheels.

Even if PI and PID controllers are largely used in industrial applications, they
are used in simple cases where the plant has not a complex dynamics and where an
appropriate proportional and damping gains are able to ensure a stable behaviour of
the control system. However, if the system to be controlled is more complex, maybe
because more variables in the same time have to be calculated by the controller,
the implementation of a optimal control strategy could be better. The optimal
control solution has the particularity simple form of linear state feedback for the
case of linear systems and quadratic cost functions, and the feedback gains can be
computed by solving an equation known as the steady-state Riccati equation. The
most successful methodology among the optimal control environment is the Model
Predictive Control.

The Model Predictive Control (MPC) uses a dynamic model of the system to
be controlled, to predict its future behaviour and choose the best control input to
apply to the plant. The MPC computes a sequence of control inputs, but unlike
general optimal control, this sequence is recomputed at each sampling time after
having measured/estimated the current state of the system. This brings the MPC
more suitable for systems that operates in environments with disturbances. The
MPC has received a great interest in the last decades for its great compromise
between computational speed and accuracy, due to its receding horizon implemen-
tation for the system prediction. Particularly interesting is the Non linear MPC
(NMPC) that is able to deal with non linear systems and constraints. This partic-
ular MPC has received less attention in the past decades with respect to the Linear
MPC because it was used for relatively slow dynamic processes which leave time
for intense computational control algorithms. However, with the development of
the optimization control functions, NMPC is getting more and more considered.
In paper [13], the problem of attitude control of spacecraft using CMGs in pyra-
midal configuration is faced with the implementation of a method to avoid the
singularity condition by means of NMPC. Into the cost function that must be min-
imized, is introduced a singularity avoidance term, in order to generate a control
input that moves away from the singularity when the CMG system approaches the
neighbourhood of singularity, and to rapidly converge to a desired attitude when
the CMG system stays away from the singularity. Even if the implementation of an
NMPC is treated, this paper still uses a steering law to calculate the value of the
gimbal angular velocities. But a great advantage of using an MPC strategy is the
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direct calculation of the gimbal rates by the controller, without previously found
out the required output torque value for the spacecraft.
As said, MPC is more effective with respect to general optimal control strategies
to deal with disturbances and uncertainties. However, if the problem requires a
certain level of robustness against the parameter uncertainties in the system model
and against additive disturbances coming from the environment, it could be neces-
sary the implementation of more sophisticated control strategies. The Robust MPC
(RMPC) is a particular type of MPC able to reject noise; in particular is assumed
that are known just the bounds of the disturbances, but no other information is
known. The RMPC is able to guarantee state constraint satisfaction, feasibility
and closed-loop stability for any value of the disturbances inside the bounds.
In certain condition, the uncertainties and the disturbances coming from the envi-
ronment can be modelled as random noises but with a probabilistic distribution.
This control problem is called Stochastic MPC (SMPC) and its objective is to en-
sure that all the constraints are met and the closed-loop stability guaranteed.
The paper [14] is concerned with the inclusion of integral action in an LMI based
RMPC formulation for the purpose of ensuring offset-free regulation. In particu-
lar, the paper proposes a novel integrator resetting scheme aimed at improving the
transient response of the closed-loop system. The resetting procedure is designed
to retain the recursive feasibility and asymptotic stability properties of the RMPC
formulation.
In paper [15], a sample based SMPC for tracking control problem of fixed-wing
UAV is presented. The proposed control exploits recent results on sample-based
stochastic MPC, which allow coping in a computationally efficient way with both
parametric uncertainties and additive random disturbances. In this essay different
scenarios have been studied and the effectiveness of the control strategy is shown
by the experimental results.
The implementation of a similar SMPC algorithm for discrete-time linear systems
subject to parametric uncertainties and additive disturbance is proposed in [1].
In this paper the control algorithm has been developed and validated for a float-
ing spacecraft experimental testbed, proving that this solution is implementable in
real-time. The considered SMPC provides reliability and robustness for the ARVD
operations performed by the considered testbed, even if parametric uncertainties
and disturbances due to external space environment are simultaneously considered.
This paper has developed an off-line sample-based strategy for addressing in a com-
putationally tractable manner SMPC. In the chapter dedicated to the description
of the MPC, a section will be devoted to the initial operations that must be per-
formed in order to implement the off-line computation of this SMPC algorithm.
Indeed, as will be motivated after, a possible future work related to the following
thesis essay, can be the implementation of an SMPC strategy.

In the last years, the problem of feasibility of the on-line optimization and stabil-
ity of the closed loop system have been extensively studied. The dual-mode MPC
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strategy is accepted as one of the most systematic approaches to design an MPC
that guarantees stability and feasibility. In this strategy, the open loop optimal
control is initially applied, then a terminal control law is utilized after the state
variable reaches a positively invariant set. Nowadays, the MPC is particular in-
teresting for tracking control problems; and for these problems a standard way to
achieve the goal is the insertion of an integrator into the feedback loop in order
to achieve set-point tracking. Inserting the integrator, the overall system on which
must be designed the MPC approach is the augmented system that consists of the
plant and of the integrator. It would be possible to reset, in certain sampling times,
the value of the integrator state in order to improve the tracking performance. In
paper [16] is proposed a Linear MPC algorithm that enhance the tracking control
performance by introducing a controller initialization technique. This controller is
assumed to have an integrator to achieve set-point tracking. By the optimization
procedure at each sampling time the open loop optimal control sequence and the
integrator state are obtained simultaneously so that a cost function is minimized
until the value of the cost function becomes smaller than a threshold value. After
it, the integrator state is updated according to the integrator equations in order to
achieve zero steady state error.

1.2 Thesis motivation and previous works
The following thesis had the objective to design a linear Model Predictive Control
(MPC) strategy for the attitude control of a testbed, which simulates a spacecraft,
located at the Yamada’s laboratory at Osaka University. The considered testbed
is equipped with 4 Control Moment Gyroscopes (CMGs) disposed in pyramidal
configuration.
The implementation of an MPC approach for the attitude of a spacecraft is moti-
vated by the fact that an MPC strategy can directly calculate the desired angular
velocities of the gimbals without previously calculating the desired output torque
for the spacecraft. Furthermore, MPC approach can take into account in the op-
timization procedure the state and input constraints, optimizing the control input
that must be applied to the plant.

For the development of this work, different paper have been studied. In par-
ticular, the following essay is a continuation of the work developed by a student
of the Politecnico di Torino, exposed in [17], in which a comparison of the results
obtained by the implementation of an MPC and of a PID control with Singular
Direction Avoidance (SDA) steering law in simulation has been carried out. In this
thesis project the same model of the testbed is used and explained in that work has
been adopted.
The other important article for this work is [18], because the Linear MPC strategy
developed in that paper is used in this thesis project. In this paper is exposed a
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linear MPC approach where are introduced additional characteristics with respect
to conventional MPC. In this paper is considered an MPC in which are optimized
not just the sequence of control inputs to apply to the plant, but from the opti-
mization procedure, are obtained also other variables: the virtual reference signal
and the integrator state.

1.3 Thesis outline
Chapter 2 is concerned to explain the basic principles of the MPC. After, the

MPC proposed in [18] is analysed, where are also implemented the optimization of
the virtual reference signal and of the integrator state.

Chapter 3 deals the definition of the model used to simulate the behaviour of the
testbed located at the Yamada’s laboratory at Osaka University. Starting from the
Euler’s equation of rotation and from a quaternion representation for the attitude
description is defined a Linear Time-Invariant state space model of the system.

Chapter 4 is the one dedicated to the simulations in Matlab environment. Three
different types of MPC have been implemented: the first simulation has been per-
formed with a classic MPC; the second one with an MPC in which also the virtual
reference signal optimization is implemented; finally, the third one has been per-
formed with an MPC in which both the virtual reference and the integrator state
are optimized. The results of each of these simulations have been reported and
compared among them, highlighting the benefits brought by the additional charac-
teristics.

Chapter 5 is dedicated to the experiments performed at the Yamada’s laboratory
at Osaka University. A description of the physical features of the considered testbed
has been given, and the experimental results obtained have been reported showing
the differences with respect to the simulation outcomes.

Chapter 6 is devoted to the conclusions of this thesis work.
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Chapter 2

Model Predictive Control
description

2.1 General system definition and Classic control
techniques

In general, it’s possible to define a system as a collection of elements that work
together to obtain something. A system is composed by inputs (which go in),
outputs (which go out) and by some process that collecting the inputs, is able to
produce the outputs. In the world of the control theory, inputs and outputs are
usually called signals, and the process between them is called plant. In the control
field is usually utilized a type of representation called block diagram (Figure 2.1).
In this type of representation the signals are pictured as arrows, while the processes
are represented by rectangular boxes.

Figure 2.1: Block diagram representation of a generic system with input and output
signals [3]

The plant alone is a so-called "equal-opportunity" process that provides an out-
put, given either a random input from the environment or a precisely calculated
input. In the space application, the success of the mission heavily relies on the
ability to reach a specific output in a certain moment. In these applications a more
complex system is needed; for these purposes are more interesting a specific class
of systems, the control systems. Control systems are present in every aspect of
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Model Predictive Control description

our life, from turn up the thermostat in the house to drive a car. In general, a
control system can be defined as a system in which the input signals are precisely
calculated in order to obtain a specific desired behaviour of the output signals.
In order to calculate the required input signals to obtain the desired outputs, a con-
troller is needed. At this point is important also differentiate between two types of
control systems: the open loop control systems and the closed loop control systems.
The open loop control systems are systems in which is not possible to dynamically
correct the value of the input based on what is actually happening (Figure 2.2).
It is clear that this type of systems don’t work properly in case in which from
the environment come disturbances. The second type are the closed loop control
systems, where sensors are used to calculate the actual values of the state and,
exploiting this information, the value of the input signals to apply to the plant is
recalculated (Figure 2.3). In space applications is clear that are needed the second
type of control systems, because they provide more reliability for the success of the
mission.
In general the principal elements which constitute a closed loop control system are:
a controller, a desired reference signal, a plant, actuators (not represented in the
images) and sensors.

Figure 2.2: Block diagram representation of an open loop control system [3]

Figure 2.3: Block diagram representation of a closed loop control system [3]

The purpose of the control system in space applications is to obtain a good
tracking behaviour of the actual outputs with respect to the desired output refer-
ences. The controller’s job is to generate commands to the actuator in order to
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obtain this tracking behaviour of the actual outputs with respect to the references.
The most common type of controller is the PID (Proportional, Integrative, Deriva-
tive) controller. It uses the difference between the reference state and the measured
one, obtained from sensors, to calculate the best control input to apply to the plant,
in order to minimize the error between the reference signals and the actual ones.
This type of controllers is very useful for applications in which the system to be
controlled is simple, and they can give a good result with the minimum effort. But
if the problem is more complex, maybe because some input or state constraints
have to be considered, or because we have to control more variables in the same
time, the use of these control strategies can be inappropriate. Indeed, the tuning of
the gain parameters to obtain a good behaviour can be tricky and these controllers
can also fail to guarantee the stability of the control system. In PID controllers,
the constraints are not considered in the input calculation, as consequence, input
values are often saturated and in this case we cannot obtain an optimal control.
Simple PID controllers can be also complicated to implement in control systems for
space applications where is required to generate different commands for different
actuators in the same time. Indeed, the different control systems of each actuator
can be connected among them, consequently they can affect each other and all the
PID controllers should be calibrated all together.
In this work has been implemented a control strategy called Model Predictive Con-
trol, which will be treated better in the next section. One of the great character-
istics of this control strategy, is the ability to consider the constraints already in
the control input computation; in this way the input signals are efficiently chosen.
Utilising the MPC strategy is also easier calculate different commands for different
actuators in the same time.

2.2 Introduction to Model Predictive Control
To understand better how the predictive control works, it’s common to compare
this strategy to the chess game (Figure 2.4). In the chess game, each player on his
turn has to decide the best move to do trying to predict the future development of
the game, anticipating the future moves of the opponent. If, at the next turn, the
opponent reply in an unexpected way, the player has to replan his strategy, trying
again to predict the future progress of the game. A good chess player is able to
predict the development of the game for a lot of next turns forward in the time,
considering different possible scenarios.

Similarly, the Model Predictive Control uses a dynamic model of the system
that we want to control, in order to make a prediction of the future behaviour of
the system itself and consequently "chooses" the best control input to apply to the
plant. It’s easy to understand that the definition of the mathematical model of the
system is a really important part for the success of this control strategy. From one
hand, the model has to be descriptive enough to capture all the most important
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Figure 2.4: MPC is like playing chess [4]

characteristics of the system, in order to make predictions as much as possible near
to the real evolution of the process. But on the other hand, if the model is too
much descriptive, the complexity is increased too, and the result is that the control
system has a high computational cost, that can be processed just by expensive
hardware devices [4] [19]. This was the principal problem for the development of
this control strategy some decades ago. Indeed, at the beginning of its progress, it
was used just for industrial and chemical processes, systems in which the dynamic
can be really slow. In Figure 2.5 is reported the block diagram of a generic MPC
control.

Figure 2.5: Block diagram of an MPC control [4]

At each sample time, the controller computes the sequence of control inputs for
the actual and next sample times in open loop fashion, but just the first one of this
sequence is applied to the plant. At the next sample time the procedure is repeated
from the beginning, without considering the other control input values obtained in
the previous sample times.
The number of control inputs collected in the control sequence that are obtained by

12
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the controller at each sampling time, depend on the capability of the controller itself
to "look forward" in the future. This characteristic is defined by a parameter called
Receding Horizon, and is a design parameter that is possible to tune according to
the performance expected by the specific MPC. The choice of this value must be
done taking into account a good trade-off between the prediction capability of the
controller and the computational cost we want to meet. In practise, this parameter
has to be as high as possible, in order to improve the optimal control input obtained
from the controller, but always respecting the stabilized computational limits.
In Figure 2.6 are reported the variables included in an MPC problem. From the
picture is important to notice that the MPC solves the optimization problem ex-
ploiting the entire control sequence calculated at time k to reach the reference
signal; but in reality, only the first value of the control sequence, circled in green,
will be utilized.

Figure 2.6: Receding Horizon concept for MPC (credit: Wikipedia)

In this work has been implemented a Linear MPC, so just this type of MPC will
be treated. But in the literature there exist a lot of different types of MPC, such
as Non Linear MPC, Linear Time-Varying MPC, Explicit MPC and the Stochastic
MPC, the one on which the research is focusing on for its great characteristics to
deal with disturbances and uncertainties.

Starting the formulation of the problem, the first thing to define is the Linear
dynamic model of the system in state space formulation:

x(k + 1|k) = Ax(k|k) +Bu(k|k) (2.1)
y(k|k) = Cx(k|k) +Du(k|k) (2.2)

13
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The first equation is the state equation, where appear the state of the system
x ∈ Rnp , and the input applied at time k, u ∈ Rm. The second equation is the
output equation, from which is obtained the value of the output y ∈ Rny .
The matrices of the state space system have the following dimensions: A ∈ Rnp×np ,
B ∈ Rnp×m, C ∈ Rny×np and D ∈ Rny×m.
The notation x(k + 1|k) indicates the value of the state x at time k + 1 calculated
at time k.
Using the defined model of the system is possible to obtain the prediction matrices
that will be used to calculate the optimal sequence of control inputs.

x1
x2
...
xHs

 =


B 0 · · · 0
AB B · · · 0
... ... . . . ...

AHs−1B AHs−2B · · · B


︸ ︷︷ ︸

S


u0
u1
...

uHs−1

+


A
A2

...
AHs


︸ ︷︷ ︸

T

x0 (2.3)

The nomenclature xHs is the abbreviation of the term x(k + Hs|k); similarly, the
variable x0 represents the state x(k|k).

The previous equation is composed by two terms: the first one collects all the
future inputs that compose the input sequence U , obtained by the optimization
procedure; this sequence is multiplied by a matrix called S. The second term is
defined by the multiplication of a matrix T by the state x0, which is the only vari-
able known before the optimization procedure, because it is the actual value of the
state obtained by the sensors.
The objective of the controller is to find the optimal sequence of control inputs.
For this reason, each sample time, a convex optimization problem must be solved.
In particular is defined a Quadratic Program in which a cost function must be
minimized. The cost function is defined at time k:

J(k) = x′HsPxHs +
Hs−1∑
k=0

x′kQxk + u′kRuk (2.4)

Where:

• Hs is the prediction horizon;

• x0 = x(k|k) is the initial state;

• U = U(k) is the control sequence;

• Q,R and P are the weighting matrices and are defined as follows:

R = R′ > 0
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Q = Q′ ≥ 0
P = P ′ ≥ 0

The goal is to find the sequence U∗ =


u∗0
u∗1
...

u∗Hs−1

 that steers the output to the

desired reference "optimally".
The cost function can be rewritten as:

J(k) = x′0Qx0 +



x1
x2
...

xHs−1
xHs



′ 

Q 0 0 · · · 0
0 Q 0 · · · 0
... ... . . . ... ...
0 · · · 0 Q 0
0 0 · · · 0 P


︸ ︷︷ ︸

Q



x1
x2
...

xHs−1
xHs



+


u0
u1
...

uHs−1


′ 

R 0 · · · 0
0 R · · · 0
... ... . . . ...
0 · · · 0 R


︸ ︷︷ ︸

R


u0
u1
...

uHs−1

 (2.5)

It is important to notice the presence of the P matrix as last term in Q. This
matrix is the terminal controller, and its presence ensures feasibility and stability
to the MPC. Combining the prediction equation (2.3) and the previous one (2.5)
we obtain the following final version of the cost function:

J(k) = x′0Qx0 + (SU + Tx0)′Q(SU + Tx0) + U ′RU

= 1
2U
′ 2(R + S ′QS)︸ ︷︷ ︸

H

U + x′0 2T ′QS︸ ︷︷ ︸
F

U + 1
2x
′
0 2(Q+ T ′QT )︸ ︷︷ ︸

Y

x0 (2.6)

One of the great features of the MPC is the fact that, in the optimization problem
is possible to include input and state constraints. Moreover, it’s possible to demon-
strate that the previous formulation of a quadratic program without constraints,
it’s nothing else that a linear state feedback law.

The input and state constraints can be defined:

umin 6 uk 6 umax k = 0, . . . , Hs − 1 (2.7)
xmin 6 xk 6 xmax k = 1, . . . , Hs (2.8)

15



Model Predictive Control description

Finally we can define the constrained optimal control problem (Quadratic Pro-
gramming):

min
U
x′HsPxHs +

Hs−1∑
k=0

x′kQxk + u′kRuk

subject to (2.7), (2.8) and (2.3) (2.9)

The algorithm of the Linear MPC is, starting at time k:

1. Measure the current state xk = x(k|k);

2. Solve the Quadratic problem:
From which we obtain the solution: U(k)∗ = [u∗(k|k)T ; ...u∗(k+Hs− 1|k)T ]T ;

3. Apply to the plant the first input of the sequence u(k) = u∗(k|k) and eliminate
the remaining part of the control sequence obtained;

4. Set k + 1→ k and repeat from the beginning.

In the following thesis project an MPC has been designed for the attitude con-
trol of a testbed equipped with 4 CMGs. The designed MPC is a Linear MPC but
with additional characteristics. Indeed, each sample time, from the optimization
problem, it’s not just obtained the control sequence U , but also other variables that
help to obtain a better tracking performance of the system. From the Quadratic
Programming problem is obtained also the virtual reference signal, and the integra-
tor state. The virtual reference signal is a variable that replaces the real reference
of the system. It has to be as much as possible equal to the real one, but in certain
moments it can deviate from the real one in order to guarantee the satisfaction of
the input constraints. The second variable, the integrator state, it can be or not
optimized at each sample time. So at each sampling time the controller has to
decide if this variable will be or not optimized.

2.3 MPC with online optimization of Virtual Ref-
erence Signal and Controller state

In the previous section the basic Linear MPC has been described, in which from the
optimization procedure, the optimal value of the control input is the only variable
obtained. In this thesis project a more sophisticated Linear MPC has been used to
control the attitude of the testbed. In this section is presented the MPC described
in paper [18]. In this control algorithm from the optimization procedure is obtained
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the sequence of the control inputs, the actual value of the virtual reference signal
and can be also optimized the value of the integrator state.
This two new optimized variables bring benefits to the control problem. Indeed,
the virtual reference signal can be seen as a variable that substitutes the real ref-
erence signal in the control algorithm. The virtual reference has to be as much as
possible equal to the real reference but in some occasions it can assume different
values with respect to the real reference. In certain conditions it could be difficult
or maybe even impossible for the system follow the real reference. In this critical
situation the virtual reference deviates from the original one, in order to provide to
the control system an easier reference to achieve, and thus trying to improve the
general tracking behaviour of the control system.
The use of the virtual reference is particularly useful in control problems in which
are included input constraints. Indeed, if the output of the system is too far from
the real reference, a too high control input could be required; in this situation the
virtual reference is optimized, deviating from the real reference signal, taking into
account the input constraints.
The other variable is the controller state. As will be described later, the paper con-
siders to include into the feedback system an integrator as a servo compensator, in
order to eliminate the steady-state error. The controller has to decide at each sam-
ple time if the integrator state xc must be optimized or not. If xc is not optimized,
it evolves according to the integrator equations in order to guarantee the steady-
state error elimination; instead, if xc is included in the optimization problem, the
optimized value of this variable gives a rapid decrement of the cost function value.

2.3.1 Plant definition and constraints
The system is described in the state space formulation as follows [16]:

xp(k + i+ 1|k) = Apxp(k + i|k) +Bpu(k + i|k) (2.10)
y(k + i|k) = Cpxp(k + i|k) +Dpu(k + i|k) (2.11)

Where xp ∈ Rnp is the state of the plant, and the notation xp(k+ i|k) indicates the
plant state at time k + i calculated at time k.
In the considered paper the matrix Dp is considered null.
In the formulation of this MPC, both input and state constraints are considered.
The input constraints are defined as:

|u(k + i|k)| ≤ u, ∀i ≥ 0 (2.12)
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Which becomes:

−u ≤ u(k + i|k) ≤ u, ∀i ≥ 0 (2.13)

Where the maximum value u ∈ Rm.
For the implementation of these constraints in the MPC problem, it is more suitable
a matrix formulation:

Ψuu(k + i|k) ≤ θu, ∀i ≥ 0 (2.14)

Where the matrices Ψu ∈ R2m×m and θu ∈ R2m.
For example, if we consider an input u with dimensionsm = 3, the matrices become:

Ψu =



1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1



θu =



u(1)
u(1)
u(2)
u(2)
u(3)
u(3)


In order to obtain the inequality:

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1


 u(1)(k + i|k)
u(2)(k + i|k)
u(3)(k + i|k)

 ≤


u(1)
u(1)
u(2)
u(2)
u(3)
u(3)


, ∀i ≥ 0

The state constraints are defined:

|xp(k + i+ 1|k)| ≤ xp, ∀i ≥ 0 (2.15)

Similarly to the input constraints, also in this case is possible to derive a matrix
formulation:

Ψxpxp(k + i+ 1|k) ≤ θx, ∀i ≥ 0 (2.16)
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Where θx ∈ R2np and Ψxp ∈ R2np×np .

2.3.2 Error System and cost function definition
As said previously, the studied paper inserts an integrator into the control system
to obtain the steady-state error elimination. The equations of the integrator are:

xc(k + i+ 1|k) = xc(k + i|k) + e(k + i|k) (2.17)
e(k + i|k) = w(k|k)− y(k + i|k) (2.18)

Where xc ∈ Rnc is the controller state, w ∈ Rny is the virtual reference signal and
e ∈ Rny is the error obtained by the difference between w and y.
Combining the equations of the plant and of the integrator it is possible to obtain:

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k) + Ew(k|k) (2.19)
e(k + i|k) = Cx(k + i|k) +Dww(k|k) (2.20)

Where x = [xTp , xTc ]T , C = [−Cp,0], Dw = I,

A =
[

Ap 0
−Cp I

]
, B =

[
Bp

0

]
, E =

[
0
I

]

The state constraints can be rewritten as:

Ψx x(k + i+ 1|k) ≤ θx, ∀i ≥ 0 (2.21)

Where Ψx = [Ψxp ,0].

At this point the paper made the following assumptions:

• The first one is that there exist matrices Π ∈ R(np+nc)×ny and Γ ∈ Rm×ny that
satisfy the following equations:

Π = AΠ +BΓ + E

0 = CΠ +Dw

• the second useful assumption is that the steady-state value of the reference
signal r satisfies ΨuΓr ≤ θu and ΨxΠr ≤ θx.
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The above assumptions ensure respectively the resolvability of the tracking control
problem in case of liner systems, and that the control input u and the state x satisfy
the constraints (2.14) and (2.21). The proof for the previous assumptions is called
in the studied paper.
Using the previous assumptions is possible to obtain the values of Π and Γ, and
with these matrices it’s constructed the following error system:

ξ(k + i+ 1|k) = Aξ(k + i|k) +Bν(k + i|k) (2.22)
e(k + i|k) = Cξ(k + i|k) (2.23)

Where:

ξ(k + i|k) = x(k + i|k)− Πw(k|k) (2.24)
ν(k + i|k) = u(k + i|k)− Γw(k|k) (2.25)

The obtained error system will be used to construct the MPC problem, hence from
the optimization procedure will be obtained the value of ν, and not the value of u.

In the considered paper, the following cost function is implemented:

J(k) =
Hs−1∑
i=0
{||ξ(k + i+ 1|k)||2Q + ||ν(k + i|k)||2R}+

+||ξ(k +Hs|k)||2P + ||Π(w(k|k)− r(k|k))||2M (2.26)

Where Q, R, M , and P are positive-definite matrices. The first three matrices are
design matrices, instead the matrix P is found solving an LMI problem, as will be
explained later. Hs is the prediction horizon.
The novelty in the defined cost function is found out in the last term, ||Π(w(k|k)−
r(k|k))||2M , in which appears the Virtual Reference Signal, in order to include this
new variable in the optimization. This term is optimized if w(k|k) = r(k|k), that is
what we want, but as already said in certain condition can be useful to have a small
difference between the two variables, to increase the general tracking performance
of the control system.
It’s important to notice that the controller state xc, that is the other variable that
can be included in the optimization procedure, appears in the cost function in the
terms associated to ξ.

2.3.3 Predictions and Constraints with the Error System
The state predictions of the error system up to the horizon Hs is:

ξ̃ = Tξ(k|k) + Sν̃ (2.27)
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Where:

ξ̃ =


ξ(k + 1|k)

...
ξ(k +Hs|k)

 and ν̃ =


ν(k|k)

...
ν(k +Hs − 1|k)


ξ̃ is the vector of the future state, instead ν̃ is the optimized vector of the error
system inputs, obtained by the optimization procedure.
The matrices T and S have been defined previously in the equation (2.3) and are
constructed using the matrices A and B of the error system.
Now it is necessary to rewrite the constraints in function of the variables used in
the error system. The input constraints must be rewritten, during 0 ≤ i ≤ Hs − 1:

Ψ̃u(ν̃ + Γ̃w(k|k)) ≤ θ̃u (2.28)

Where Ψ̃u = block− diag[Ψu, · · · ,Ψu], θ̃u = [θTu , . . . , θTu ]T and Γ̃ = [ΓT , . . . ,ΓT ]T .

Where the notation block− diag defines a diagonal matrix composed by the ele-
ments in the brackets.
The state constraints must be rewritten, during 1 ≤ i ≤ Hs:

Ψ̃x(Tξ(k|k) + Sν̃ + Π̃w(k|k)) ≤ θ̃x (2.29)

Where Ψ̃x = block− diag[Ψx, · · · ,Ψx], θ̃x = [θTx , . . . , θTx ]T and Π̃ = [ΠT , . . . ,ΠT ]T .

2.3.4 LMI problem for terminal control law
In the studied paper the dual-mode MPC is considered, because is generally ac-
cepted as a design approach that guarantees the feasibility. In the dual-mode
strategy, the open loop optimization problem is applied, but then a terminal con-
troller is used to reach a positive invariant set. This terminal controller consists in
the derivation of a matrix P that substitute the last matrix Q in the optimization
problem. This matrix is obtained through the resolution of an LMI problem. The
calculation of P is performed off-line, bringing an important benefit in terms of
real-time implementability.
The paper consider a theorem for the definition the LMI problem. In the following
will be reported just the definition of the problem, without entering into the details.
The reader interested in the proof of the following theorem can consult the paper
[18].
The theorem that defines the LMI problem states that, considering the defined
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error system, and for given positive-definite matrices Q,R and positive scalars η2,
τ , there exist a matrix Y and a positive-definite matrix S that satisfy:

S ∗ ∗ ∗
AS +BY S ∗ ∗

Y 0 R−1 ∗
AS +BY 0 0 Q−1

 > 0 (2.30)

[ 1
η2
S ∗

Y (l) ρ(l)2

]
≥ 0, ∀l = 1, . . . ,m (2.31)

 τS ∗ ∗
0 θ(j)2

x − τη2 ∗
Ψ(j)
x (AS +BY ) Ψ(j)

x Πνi 1

 ≥ 0,

∀i = 1, . . . , ns, ∀j = 1, . . . , nx (2.32)

Where P = S−1.
It is very important to highlight that the resolution of the previous LMI problem
and the consequently implementation of the P matrix in the MPC problem, ensure
the closed-loop stability of control system.
Furthermore, another theorem states that, if the control algorithm is feasible at
time k, the same algorithm is feasible for all t > k.
The closed-loop stability and feasibility conditions are demonstrated by theorems
explained in [18].

2.3.5 MPC algorithm with integrator resets
In these section the control algorithm will be explained. As already said, in the
considered MPC, the integrator state can be or not optimized. In order to choose if
xc has to be optimized or not, a threshold ηs must be defined: the integrator state
xc is reset at each sampling time so that the cost function value J(k) is minimized
while J(k) is greater then ηs. The control algorithm with integral action is used to
achieve zero steady-state error when J(k) is less than or equal to ηs.
The algorithm is defined in this way:

• Step 1 (Initialization): Set k = 0, ηs and all the design parameters, matrix P
computation.

• Step 2: Measure the state xp(k|k).

• Step 3: If J(k − 1) ≤ ηs, go to Step 5.

• Step 4 (MPC with integrator reset) Mode 1:

min
ν̃,w̃,x̃c

J(k)
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subject to

Ψ̃u(ν̃ + Γ̃w̃) ≤ θ̃u

Ψ̃x(T ξ̃(x̃c, w̃) + Sν̃ + Π̃w̃) ≤ θ̃x

|Γw̃| ≤ θu − ρ

Where ξ̃(x̃c, w̃) = [xp(k|k)T , x̃Tc ]T − Πw̃. Then set xc(k|k) = x̃c, w(k|k) = w̃
and go to Step 6.

• Step 5 (MPC with integral action) Mode 2:

min
ν̃,w̃

J(k)

subject to

Ψ̃u(ν̃ + Γ̃w̃) ≤ θ̃u

Ψ̃x(T ξ̃(xc(k|k), w̃) + Sν̃ + Π̃w̃) ≤ θ̃x

|Γw̃| ≤ θu − ρ

Where ξ̃(xc(k|k), w̃) = [xp(k|k)T , xc(k|k)T ]T − Πw̃. Then set w(k|k) = w̃.

• Step 6: Apply u(k|k) = ν(k|k) + Γw(k|k) to the plant system.

• Step 7: Compute xc(k + 1|k) using the integrator equations.

• Step 8: Set k + 1→ k and go to Step 2

In the algorithm appears a further constraint, |Γw̃| ≤ θu − ρ, which limit the
maximum amplitude of the virtual reference signal. It is possible to observe that
in this constraint appears the variable ρ, that was introduced in the problem for
the first time in the LMI problem to calculate the value of matrix P . So ρ needs to
be determined before solving the LMI problem. From its definition, ρ must satisfy
the condition 0 < ρ ≤ u.
The effect of ρ in the LMI problem is to restrict the maximum value of the control
signal of the error system. So, in order to have a large value of the control input,
and hence a better tracking performance, ρ should be choose ad large as possible.
On the other hand, analysing the new constraint defined in the control algorithm,
ρ has the objective to limit the maximum value of w(k|k). Hence to track a large
reference, the value of ρ must be decreased.
From the previous considerations, it has been pointed out the importance of the
value of ρ. The value has to be determined considering a trade-off, between the
tracking performance and the maximum amplitude of the virtual reference signal.
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Another parameter that must be chosen carefully is ηs. As said, this parameter
is compared to the actual value of the cost function and, depending on whether it
is minor or major, Mode 1 or Mode 2 is utilized. Consequently, ηs can assume a
minimum value equal to 0, as the cost function. If ηs = 0, the Mode 1 is always
called in the control algorithm. As a consequence, a rapid decrement of the cost
function is observed and the error also converges to zero. However, if some distur-
bance occurs, the error increases because the integral action is not used. On the
other hand, if ηs assumes a too large value, Mode 2 can be always called and an
improvement of the robustness against disturbances is observed, but, in the same
time, the convergence of the cost function is slower, with a decrement of the track-
ing performances.
Hence, the parameter ηs must be chosen taking into consideration a trade-off be-
tween robustness and tracking performance.

2.4 Introduction to Stochastic MPC
In paper [1] is treated the implementation of a Stochastic MPC, and possible future
works after this thesis essay are to perform simulations and experiments with this
stochastic control strategy. For this reason a preliminary step in the implementa-
tion of this control strategy is here presented.
In this paper, the implementation of an integrator is not considered, hence the sys-
tem matrices A and B correspond to the plant matrices Ap and Bp that are defined
in (3.20).
In the implementation of a Stochastic MPC, the following state space system sub-
ject to external disturbances and stochastic uncertainty is considered:

x(k + 1|k) = A(q(k))x(k|k) +B(q(k))u(k|k) + w(k) (2.33)

Where the state xk ∈ Rnp , the input uk ∈ Rm, the additive disturbance wk ∈ Rmw

and the parametric uncertainties qk ∈ Rnq . In the following will be explained how
the uncertainty qk affects the matrices A and B of the system. The main problem of
Stochastic control strategies is their slowness, but the considered Stochastic MPC
has the great advantage to reduce the on-line computational time using a matrix
K, calculated off-line, to obtain the optimal control sequence. Indeed the control
input is obtained by the following equation:

u(k + l|k) = Kx(k + l|k) + v(k + l|k), ∀l = 0, . . . , Hs − 1 (2.34)

Where x(k|k) is known, and the vector v(k) = [v(k|k)T , . . . , v(k + Hs − 1|k)T ]T is
a vector obtained solving an optimization problem.
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For the off-line definition of the matrix K is needed the explication of the matrices
A(q(k)) and B(q(k)) and is also important to highlight how the uncertainties affect
these matrices.

2.4.1 Explication of matrix A with uncertainties
Starting considering the matrix A without uncertainties, its explicit form is:

A =



0 0 0 0 1
2qd4 −1

2qd3
1
2qd2

0 0 0 0 1
2qd3

1
2qd4 −1

2qd1

0 0 0 0 −1
2qd2

1
2qd1

1
2qd4

0 0 0 0 −1
2qd1 −1

2qd2 −1
2qd3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



Substituting with the value of the final desired quaternion, qd = [0; 0; 0.2164; 0.9763],
the matrix becomes:

A =



0 0 0 0 0.4881 −0.1082 0
0 0 0 0 0.1082 0.4882 0
0 0 0 0 0 0 0.4882
0 0 0 0 0 0 −0.1082
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Considering the uncertainties on the angular velocity terms , the matrix A becomes:

A =



0 0 0 0 0.4881 −0.1082 0
0 0 0 0 0.1082 0.4882 0
0 0 0 0 0 0 0.4882
0 0 0 0 0 0 −0.1082
0 0 0 0 qω 0 0
0 0 0 0 0 qω 0
0 0 0 0 0 0 qω


Where qω is the parametric uncertainty relative to the angular velocity.

25



Model Predictive Control description

2.4.2 Explication of matrix B with uncertainties

The explication of matrix B is more complicated with respect to the one of ma-
trix A. The difficulty arises from the fact that the inertia tensor in this term
−hωJ−1A(θ) appears inverted; consequently, more mathematical passages are re-
quired. It’s necessary starting by the definition of the inertia tensor J:

J =

 0.9684 −0.0062 −0.0087
−0.0062 0.9768 −0.0074
−0.0087 −0.0074 1.300


Using MATLAB, the following inverse matrix is obtained:

J−1 =

 1.0327 0.0066 0.0069
0.0066 1.0238 0.0059
0.0069 0.0059 0.7693

 =

 j11 j12 j13
j21 j22 j23
j31 j32 j33



The angular momentum of each wheel is: hω = 0.0361 kg m2/s as explained in
(4.1).
The matrix A(θ) is defined in (3.16).
So we can define the explicit form of the B matrix without parametric uncertainties
as:

B =



0 0
0 0
0 0
0 0

−hω[−j11 cos(θ1)c− j12 sin(θ1) + j13 cos(θ1)s] −hω[j11 sin(θ2)− j12 cos(θ2)c+ j13 cos(θ2)s]
−hω[−j21 cos(θ1)c− j22 sin(θ1) + j23 cos(θ1)s] −hω[j21 sin(θ2)− j22 cos(θ2)c+ j23 cos(θ2)s]
−hω[−j31 cos(θ1)c− j32 sin(θ1) + j33 cos(θ1)s] −hω[j31 sin(θ2)− j32 cos(θ2)c+ j33 cos(θ2)s]

0 0
0 0
0 0
0 0

−hω[j11 cos(θ3)c+ j12 sin(θ3) + j13 cos(θ3)s] −hω[−j11 sin(θ4) + j12 cos(θ4)c+ j13 cos(θ4)s]
−hω[j21 cos(θ3)c+ j22 sin(θ3) + j23 cos(θ3)s] −hω[−j21 sin(θ4) + j22 cos(θ4)c+ j23 cos(θ4)s]
−hω[j31 cos(θ3)c+ j32 sin(θ3) + j33 cos(θ3)s] −hω[−j31 sin(θ4) + j32 cos(θ4)c+ j33 cos(θ4)s]
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Using θ = θ0 = [0; 0; 0; 0] we obtain the following matrix:

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0.0262 −0.0000 −0.0265 −0.0003
0.0000 0.0260 −0.0003 −0.0263
−0.0195 −0.0195 −0.0198 −0.0198



Considering uncertainties just on the diagonal of J:

J(qp) =

 qp + 0.9684 −0.0062 −0.0087
−0.0062 qp + 0.9768 −0.0074
−0.0087 −0.0074 qp + 1.300


The corresponding inverse matrix is:

J−1(qp) =


2500(25000000q2

p+56920000qp+31744631)

62500000000q3
p+202825000000q2

p+217157764375qp+76845957632
1250(310000qp+406219)

62500000000q3
p+202825000000q2

p+217157764375qp+76845957632
2500(217500qp+213601)

62500000000q3
p+202825000000q2

p+217157764375qp+76845957632

1250(310000qp+406219)
62500000000q3

p+202825000000q2
p+217157764375qp+76845957632

2500(217500qp+213601)
62500000000q3

p+202825000000q2
p+217157764375qp+76845957632

625(100000000q2
p+226840000qp+125884431)

62500000000q3
p+202825000000q2

p+217157764375qp+76845957632
6250(74000qp+72201)

62500000000q3
p+202825000000q2

p+217157764375qp+76845957632

6250(74000qp+72201)
62500000000q3

p+202825000000q2
p+217157764375qp+76845957632

2500(25000000q2
p+48630000qp+23647367)

62500000000q3
p+202825000000q2

p+217157764375qp+76845957632


Also if the uncertainty qp appear just in the diagonal of the J(qp), the uncertainty
propagates to all the terms of the inverse matrix J−1(qp)
But we are interested in a formulation where each term of the previous matrix is
defined as follow:

J−1(qJ) =

 qJ11 + j11 qJ12 + j12 qJ13 + j13
qJ21 + j21 qJ22 + j22 qJ23 + j23
qJ31 + j31 qJ32 + j32 qJ33 + j33



=

 qJ11 + 1.0327 qJ12 + 0.0066 qJ13 + 0.0069
qJ21 + 0.0066 qJ22 + 1.0238 qJ23 + 0.0059
qJ31 + 0.0069 qJ32 + 0.0059 qJ33 + 0.7693

 = qJ + J−1

where J−1 is the inverse of the J matrix without uncertainties.
At this point to obtain the values of the qJii it’s sufficient to put each term of the
J−1(qJ) matrix, equal to the respective term of the J−1(qp).
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For example to obtain the value of qJ11:

qJ11+1.0327 =
2500(25000000q2

p + 56920000qp + 31744631)
62500000000q3

p + 202825000000q2
p + 217157764375qp + 76845957632

qJ11 =
2500(25000000q2

p + 56920000qp + 31744631)
62500000000q3

p + 202825000000q2
p + 217157764375qp + 76845957632−1.0327

It’s important to notice that the terms qJii are different among them.
Further more, performing simulation in MATLAB, I noticed that the values of
the qJii not in the diagonal are significantly smaller with respect to the terms of
the diagonal qJ11,qJ22 and qJ33. So it’s possible to make consideration in order to
neglect the terms not in the diagonal.
For simplicity, the resultant B matrix, is written in the case in which all the terms
qJii not in the diagonal are neglected:

B =


0 0
0 0
0 0
0 0

−hω [−(qJ11 + j11) cos(θ1)c− j12 sin(θ1) + j13 cos(θ1)s] −hω [(qJ11 + j11) sin(θ2)− j12 cos(θ2)c + j13 cos(θ2)s]
−hω [−j21 cos(θ1)c− (qJ22 + j22) sin(θ1) + j23 cos(θ1)s] −hω [j21 sin(θ2)− (qJ22 + j22) cos(θ2)c + j23 cos(θ2)s]
−hω [−j31 cos(θ1)c− j32 sin(θ1) + (qJ33 + j33) cos(θ1)s] −hω [j31 sin(θ2)− j32 cos(θ2)c + (qJ33 + j33) cos(θ2)s]

0 0
0 0
0 0
0 0

−hω [(qJ11 + j11) cos(θ3)c + j12 sin(θ3) + j13 cos(θ3)s] −hω [−(qJ11 + j11) sin(θ4) + j12 cos(θ4)c + j13 cos(θ4)s]
−hω [j21 cos(θ3)c + (qJ22 + j22) sin(θ3) + j23 cos(θ3)s] −hω [−j21 sin(θ4) + (qJ22 + j22) cos(θ4)c + j23 cos(θ4)s]
−hω [j31 cos(θ3)c + j32 sin(θ3) + (qJ33 + j33) cos(θ3)s] −hω [−j31 sin(θ4) + j32 cos(θ4)c + (qJ33 + j33) cos(θ4)s]


Next steps for the implementation of this Stochastic MPC are the calculation of

matrix K and to perform simulations and experiments.
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Chapter 3

Spacecraft Dynamics and
Model of CMG-based
testbed

It’s common practise to consider the testbed as a rigid body, in such a way that
it’s possible to apply for the spacecraft the Euler’s equations of motion to describe
the dynamics of the body. In particular, we are interested in the attitude motion,
so the rotational equation of motion is the starting point for the derivation of the
model.
The attitude is the orientation of a craft with respect to a reference frame. In
the following work the attitude has been described through the use of the four-
parameter quaternion representation. There exist also other attitude representa-
tion techniques such as the the Euler angles, Gibbs vector, Cayley Rodrigues vector
and Modified Rodrigues parameter.
In this work has been studied a testbed equipped with 4 CMGs in pyramidal con-
figuration. The CMG is a torque generator device, and it can be used to answer
the attitude control requirements of future spacecrafts. The great advantage of this
device is that it can improve the torque and momentum capability of the spacecraft
and consequently their agility. On the other hand, the large diffusion of this device
is limited by one great problem, the singularity condition. In certain combination
of the gimbal angles is not possible to provide a value of torque in a particular direc-
tion. After the definition of the dynamic and kinematic equations of the testbed,
the Linear Time-Invariant (LTI) mathematical model is derived in a state space
formulation.
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3.1 Reference Frames
For the study of spacecraft dynamics are usually utilized two reference frames: an
Inertial Reference Frame and a Body Reference Frame.

3.1.1 Inertial Reference Frame
The inertial reference frame considered in this study is the Earth-Centered Inertial
(ECI) that is also called Inertial Geocentric Reference Frame. It is commonly used
to study the motion of a body orbiting around Earth. It has its origin in the
center of mass of Earth. Thus, the x axis is on the equatorial plane, oriented
towards the mean vernal equinox at J2000 epoch, the z axis is aligned with Earth’s
axis of rotation with positive sign towards the celestial North Pole, and the y axis
completes the right-handed frame (Figure 3.1). The reference frame can be defined
by:

RFECI = (xECI , yECI , zECI) (3.1)

In Figure 3.1 is represented the Earth-Centered Inertial Reference frame.

Figure 3.1: Earth-Centered Inertial Reference frame [5]
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3.1.2 Body Reference Frame
The Body Reference Frame has been adopted to describe the attitude dynamics
once introduced the CMGs to the equations of motion. The origin of the Body
Reference Frame is in the center of mass of the spacecraft. If we consider principal
axis of inertia, the Body Reference Frame has the axis oriented along the spacecraft
principal axis of inertia. The z axis direction is positive from the lower to the upper
side of the spacecraft, the x axis is orthogonal to z and the y axis completes the
right-handed triad (Figure 3.2). The Reference frame can be defined as:

RFB = (xB, yB, zB) (3.2)

In Figure 3.2 is represented the Body Reference Frame of the spacecraft.

Figure 3.2: Body Reference Frame for a spacecraft with pyramidal CMG system
[6]

3.2 Introduction to Dynamics
The dynamics of a general rigid body may be described in terms of its linear
momentum l and its angular momentum h according to the following equations
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[7]:

l = mv (3.3)
h = r × l = r × (mv) (3.4)

In which v and r is the velocity and position with respect to an arbitrary point O,
and m is the mass of the body. The former equation describes the trajectory of the
body, the latter one the attitude.
Since we want to control the attitude of the spacecraft, the angular momentum h
will be studied.
The angular momentum decomposed in its Cartesian components is:

h = h1x̂+ h2ŷ + h3ẑ (3.5)

For a generic body, the inertia tensor directly relates the angular velocity with
the angular momentum. The angular velocity is indicated with ω. The angular
momentum h of a rigid body, referred to its Center-of-Mass, can be defined:

h = Jω (3.6)

In general the inertia tensor J is defined as:

J =

 Jx −Jxy −Jxz
−Jxy Jy −Jyz
−Jxz −Jyz Jz


Where Jx, Jy and Jz are the moments of inertia with respect to the Center-of-Mass.
The other terms in the matrix are the products of inertia and they represent the
lack of inertia symmetry. The angular momentum Cartesian components can be
defined as:

h1 = Jxw1 − Jxyw2 − Jxzw3

h2 = −Jxyw1 + Jyw2 − Jyzw3

h3 = −Jxzw1 − Jyzw2 + Jzw3

Where w1, w2 and w3 are the angular velocity components.
From the following, Î, Ĵ , K̂ is the notation used for the inertial reference frame,
and î, ĵ, k̂ is the notation used for the body reference frame.

The angular momentum of a body, can be seen as the torque impulse needed to
create the rotational motion of the body itself. As a consequence, the rotational
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motion can be interrupted with the application of a torque impulse equal and
opposite to the angular momentum h. When the reference point respect which are
calculated the values of velocity and position is the Center-of-Mass or an inertially
fixed point, the angular momentum can be changed in two ways:

• By applying an external torque or a force that creates a moment about the
reference point.

d◦h
dt = ◦M (3.7)

Where ◦M is the applied torque. The notation ◦ indicates the inertial ref-
erence frame. It’s important to highlight that forces and torques exchanged
between internal particles of the body, for example through the movement of
the fuel, don’t change the total angular momentum of the spacecraft.

• The second way to change the total angular momentum is through the emission
of particles from the body, whose momenta with respect to the reference point
is different from 0.

The angular momentum can be rewritten with respect to the Inertial Reference
Frame as:

◦h = hxÎ + hyĴ + hzK̂ = ◦J ◦ω (3.8)

Rewriting the inertia tensor and the angular velocity in terms of the Body Reference
Frame using the rotation matrix ◦RB:

◦J = ◦RB JB ◦RT
B

ωB = ◦RB
◦ω

Where B indicates the Body Reference Frame.
The angular momentum with respect to the Body Reference Frame can be rewrit-
ten:

hB = hxî+ hyĵ + hzk̂ (3.9)

At this point, is assumed that the Body Reference Frame is rigidly attached to
the body, in this way its angular velocity Ω is equal to the angular velocity of the
spacecraft ωB. With the previous assumption, the absolute angular acceleration is
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equal to the derivative of the angular velocity of the spacecraft, that in general is
not true. The Euler’s equation of motion can be rewritten:

MB = ḣB + ωB × hB (3.10)

Where:

Mx = Jxω̇x + (Jz − Jy)ωyωz
My = Jyω̇y + (Jx − Jz)ωzωx
Mz = Jzω̇z + (Jy − Jx)ωxωy

3.3 Spacecraft Dynamic equation of motion
The initial dynamic equation of motion from which the model of the testbed is
obtained, it’s the equation that relates the rate of change of the angular momentum
with the torque applied to the body (3.11) [13] [17]:

ḣB = MB − ωB × hB (3.11)

Where:

• MB is the torque vector defined as:

MB =
n∑
i=1

ri × Fi

where Fi is a force that has a momentum with respect to the Center-of-mass,
and ri is the distance between the considered force and the Center-of-mass;

• ωB is the angular velocity vector of the spacecraft.

In the equation (3.11) is present also the term ωB × hB on the right side. This
term indicates that also if MB = 0, the angular momentum hB, and consequently
also the angular velocity ωB are not constant in the spacecraft. This phenomenon
is called nutation.

Using again the equation that relates the angular momentum with the angular
velocity, considering the whole system, it’s possible to derive the following equation:

hB = JBωB + hCB (3.12)
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The first term of the right side represents the angular momentum of the spacecraft,
instead the second term indicates the contribution given by the CMG system.
This last term can be rewritten, for a testbed equipped with 4 CMG in pyramid
configuration, in the following way:

hCB = hω
4∑
i=4
hi(θi) (3.13)

Where hω = Jωωω is the angular momentum of each wheel, and it is constant be-
cause in the following work the wheel velocity is set to a defined fix value; θi is the
gimbal angle, for i = 1, ...,4.
Combining the previous equations it’s possible to rewrite in the following way the
rotational equation of motion:

MB = ωB × (JBωB + hCB) + JBω̇B + ḣCB (3.14)

For a cluster of four CMGs, the internal angular momentum vector hCB is non linear
function of the gimbal angles θ1, θ2, θ3, θ3 of each CMG, as reported in (3.13). The
time derivative of this equation, is possible to get:

ḣCB = hωA(θ)θ̇ (3.15)

Where the matrix A(θ) ∈ R3×4, considering a fixed skew angle equal to β = 45◦, is
defined:

A(θ) =

 − cos(θ1) cos β sin(θ2) cos(θ3) cos β − sin(θ4)
− sin(θ1) − cos(θ2) cos β sin(θ3) cos(θ4) cos β

cos(θ1) sin β cos(θ2) sin β cos(θ3) sin β cos(θ4) sin β

 (3.16)

The columns of matrix A(θ) expresses the contribution of each CMG to total ḣCB.
Now the following assumptions are made:

1. The initial angular momentum is zero, and consequently ωB(0) = 0

2. The initial torque applied to the body is zero, MB = 0

With these hypothesis the dynamic equation can be rewritten as:

ω̇B = −hωJ−1
B A(θ)θ̇ (3.17)
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The last equation is very useful because it relates the angular acceleration of
the testbed with respect to the angular rate of the gimbals θ̇, that are the control
input vector in this control system. For the definition of the model, the subscript
that indicates the Body Reference Frame will be omitted for simplicity.

3.4 Spacecraft Kinematic equation of motion
To describe the attitude of a rigid body in a three-dimensional space are required
at least three parameters [20]. There are different parametrization techniques to
describe the rotational motion of bodies. In the presented work, the attitude of the
testbed has been described using the quaternion representation. Another alterna-
tive method is the Euler Angles, that have the great characteristic to be easy to
visualize, but in the same time, the problem of having an elevated computational
cost; indeed the three angles are used for three successive transformations, hence
the computational effort is high. Instead, the quaternion representation permits
to describe the attitude just defining a unit vector around which is performed the
rotation, having a smaller computational impact. The corresponding kinematic
equation is:

d(q)
dt = q̇ = 1

2Γ(q)ω (3.18)

With q = [qTv , q4]T = [q1, q2, q3, q4]T ∈ R4, where qv is the vectorial part of the
quaternion, and q4 is the scalar term.
The matrix Γ(q) ∈ R4×3 is defined as:

Γ(q) =


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3



3.5 Mathematical Model of the system
The state vector for the considered system to represent the attitude dynamics is
defined as:

xp =
[
q
ω

]
∈ Rnp
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In this work np = 7.
Combining the dynamic and kinematic equations obtained previously:

ẋp =

 q̇

ω̇

 =


1
2Γ(q)ω

−hωJ−1A(θ)θ̇

 (3.19)

Rearranging the previous equation in a state space formulation, we can obtain the
state equation of the system:

ẋp =

 04×4
1
2Γ(q)

03×4 03×3

xp +

 04×4

−hωJ−1A(θ)

 θ̇ = Apxp +Bpθ̇

Where is highlighted that the state of the system is xp ∈ R7 and the control input
is θ̇ ∈ R4, that is the array with the four values of the angular rates of the gimbals.
The system described by the previous equation is a Non Linear Time-Varying model
because in matrix Ap is needed the actual value of the quaternion, and in matrix
Bp is necessary the actual value of θ for the derivation of A(θ).
For ensure the stability of the plant, we need to linearise the model. The linearisa-
tion is performed assuming that the initial gimbal angles are θ0 = [0,0,0,0]T . This
fixed value is used to calculate the matrix A(θ), in order to make constant the
matrix Bp. To linearise the matrix Ap, the desired attitude in terms of ωd and
qd = [q1,d, q2,d, q3,d, q4,d]T is considered as equilibrium point.
The Linear Time-Invariant model without any parameter dependence is:

ẋp =

 04×4
1
2Γ(qd)

03×4 03×3

xp +

 04×4

−hωJ−1A(θ0)

 θ̇ = Apxp +Bpθ̇ (3.20)

To have a complete state space formulation, the output equation has been defined
as:

y =

 I3 03×4

03×4 I3

xp = Cpxp (3.21)

Where I3 is a identity matrix with dimensions R3×3. From the equation is pointed
out that the output y has been chosen as y = [qTv , ωT ]T ∈ R6

3.6 Control Moment Gyroscopes description
The CMGs are devices able to generate torque for the attitude control of satellites.
Compared to the reaction wheels, the CMGs are able to provide higher torques as
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output and more rapid responses [7].
A CMG is composed by a flywheel rotating at constant or variable speed (in this
work the speed is fixed) and by motorized gimbals. The creation of the torque
comes from the variation of the angular momentum of the flywheel. Indeed, the
rotating flywheel possesses angular momentum that is fixed in magnitude, because
we chose to set a constant speed for the flywheel. Through the motors, which drive
the gimbals, is possible to change the direction of the angular momentum vector of
the flywheel, and thus generates a gyro-effect torque.
When the gimbal is rotating, the rotation axis of the flywheel points towards dif-
ferent directions, causing a change in its angular momentum orientation.
In Figure 3.3 is presented a CMG with a single gimbal, and the physical vector
quantities are pointed out.

Figure 3.3: CMG with a single gimbal [7]

Three orthogonal vectors are shown, and are defined as:

• g: Gimbal vector;

• c: Torque vector;

• h: Angular momentum vector;

And θ is the gimbal angle. The mathematical relation between them is:

c = g× h (3.22)

The gimbal vector is constant, while the other two vectors change orientation ac-
cording to the gimbal angle θ. In Figure 3.4 is shown an example of how the
orientation of the vectors changes with the rotation of the gimbal.

If we assume to know the initial vectors of the previous figure, the other vectors
can be found in function of θi:
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Figure 3.4: Physical vectorial quantities representation [7]

hi = hi0 cos(θi) + ci0 sin(θi) (3.23)
ci = −hi0 sin(θi) + ci0 cos(θi) (3.24)

Normally the CMGs are used in groups of 3 or 4, in order to ensure three-dimensional
attitude control. The total torque provided by the group of CMGs will be the vec-
torial sum of each toque provided by a single CMG. The objective of the control
will be to calculate the angular speed of each gimbal that the motors must provide
to the CMGs in order to obtain a certain desired total torque as output. If we
consider the angular momentum given by one CMG as hj, the total angular mo-
mentum provided by the system will be:

h =
NCMG∑
j=1

hj = f(θ) (3.25)

Where the variable θ = [θ1, ..., θNCMG
]T is the vector composed by all the gimbal

angles which compose the system and NCMG is the total number of CMGs in the
system. The previous equation highlights the non-linear relation that holds be-
tween the total angular momentum of the system h and the vector of all the gimbal
angles θ.
In Figure 3.5 is shown a testbed in pyramidal configuration equipped with 4 CMGs,
the same type of system used in the simulations and experiments in this work.

The main problem encountered in the large diffusion of the CMGs is the singularity
problem. Indeed, in certain combinations of the gimbal angles, it is not possible to
provide torque along specific directions.
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Figure 3.5: Testbed equipped with four CMGs in pyramidal configuration

If each CMG has the same speed and inertia tensor, the singular angular momen-
tum provided by each of these devices will be the same. The total torque is given
by the derivative of the angular momentum respect the time.

M = d(h)
dt = d(h)

dθ θ̇ = A(θ)θ̇ (3.26)

Where in general the matrix A(θ) ∈ R3×NCMG is the instantaneous Jacobian matrix.
In this work the matrix A(θ) ∈ R3×4 and has been already defined in (3.16).
Each column of this matrix represents the torque vector of the respective CMG in
the system. If the matrix were analysed, it would be noticed that the maximum
rank of the matrix is equal to 3. When the rank of this matrix is:

rank(A(θ)) < 3

the previous equation deteriorates. Indeed, each column of the matrix A(θ) be-
comes coplanar (one term of each column is null), and there exists a unit vector u
orthogonal to that coplanar plane.
Therefore, the total torque M is also orthogonal to u, because is a combination of
the columns of matrix A(θ), and so the system is not able to generate any momen-
tum along the direction of u. This coincides with a singularity condition, and must
be avoided at any cost. As said, one of the great advantages to use MPC as control
law, is the fact that can directly calculate the value of the angular velocity of the
gimbal. Indeed, more common control techniques, like a simple PID controller, cal-
culate the value of the desired total torque to follow the reference signal, and then
the values of the angular velocities of the gimbals is obtained from the previous
equation in which is used the desired total torque and the matrix A(θ). This last
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passage is the critical one, in which the singularity condition can be encountered.
For this reason special singularity avoidance algorithms must be implemented if a
common control technique has been chosen.
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Chapter 4

Simulations in Matlab
environment

After having defined the model of the spacecraft and the considered MPC, the
following chapter is intended to explain the implementation in MATLAB of the
control system and also to show the obtained results. In MATLAB three differ-
ent MPC strategies have been implemented: the first one is a classic linear MPC
(from the optimization problem is obtained just the optimal sequence of control
inputs); in the second presented simulation, is implemented an MPC in which just
the Mode 2 is used (optimization of the sequence of the control inputs and of the
virtual reference signals); the last one is obtained with an MPC constructed with
Mode 1 and 2, as treated in [18]. With the representation of the obtained results,
is also highlited the improvement obtained adding the new characteristics.

4.1 Optimization function
In this work different optimization functions have been used in the simulations
on MATLAB and all these functions attempt to solve the quadratic programming
problem:

min
ψ

1
2ψ(k)′Hψ(k) + f ′ψ(k) subject to : Aconψ ≤ Bcon

Where the vector ψ(k) is the optimized vector.
For convenience, it is better to rewrite the cost function in the following inter-
mediate way, already seen in (2.6), before to write it in the final format for the
implementation in MATLAB:

min
ψ

1
2ψ(k)′Hψ(k) + φ(k)′Fψ(k) + 1

2φ(k)′Y φ(k) subject to : Aconψ ≤ Bcon
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Where the vector φ is a vector of the variables already known before the optimiza-
tion procedure. Starting from the formulation of the cost function described in [18],
it is necessary to rewrite it in the just presented way to implement the optimization
procedure in MATLAB. To this end will be discussed the implementation for the
various types of MPC defined previously.
The tested optimization functions were:

• quadprog, the interior-point-convex algorithm provided by the MATLAB Op-
timization Toolbox to solve quadratic programming problem;

• fmincon, MATLAB function that can implement four different algorithms:
interior-point, SQP, active set, and trust region reflective. Also this solver
deals quadratic programming problems.

• quadwright, a quadratic programming solver developed by J. Currie presented
in [21], able to speed up the computational capabilities for embedded applica-
tions.

All these solvers provided good and similar results performing simulations, but
for the experiments has been decided to use the solver quadwright. Indeed, this
function provided the smallest computational times, hence it is the best for real
time implementation. Furthermore, this one was the only solver that could be
converted by MATLAB Coder Toolbox for the creation of the C++ algorithm.

4.1.1 Virtual reference term of the cost function

Before entering into the details of the implementations, is useful analyse the term
of the cost function referred to the virtual reference signal ||Π(w(k|k)− r(k|k))||2M ,
because it must be decomposed in different terms to construct the cost function as
described above. Analysing this term:

[Π(w(k|k)− r(k|k))]TM [Π(w(k|k)− r(k|k))] =

(Πw(k|k))TM(Πw(k|k)) + (Πr(k|k))TM(Πr(k|k))− 2(Πr(k|k))TM(Πw(k|k)) =

w(k|k)TΠTMΠw(k|k) + r(k|k)TΠTMΠr(k|k)− 2r(k|k)TΠTMΠw(k|k)

In this way the term has been split in three parts, and according to which variables
are included in each part, the first one will be included in the matrix H, the second
one in Y and the third one in F .
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4.2 MPC Implementation

4.2.1 Classic MPC implementation
Considering the implementation of a classic MPC using the error system described
in paper [18], we can define two vectors, φ0, is the vector in which are collected
all the variables known before the optimization procedure, and ψ0, constituted by
the variables that will be obtained by the optimization procedure, and hence are
unknown before it:

φ0(k) =

 xp(k|k)
xc(k|k)
r(k)

 , ψ0(k) =
[
ν̃
]

(4.1)

Where φ0 ∈ Rnp+ny+ny and ψ0 ∈ RHsnu .
The vector ψ0 is simply the optimized control input sequence, because in this case
the implementation of a classic MPC is treated; φ0 is constituted by the error
system state and from the reference. It’s important to notice that in the following
MPC the virtual reference signal w is not present, as consequence, in the definition
of the error system state and input, the virtual reference must be substituted by
the real reference r:

ξ(k + i|k) =
[
xp(k + i|k)
xc(k + i|k)

]
− Πr(k) = x(k + i|k)− Πr(k)

ν(k + i|k) = u(k + i|k)− Πr(k)

At this point, the prediction equation is defined as:
ξ(k + 1|k)
ξ(k + 2|k)

...
ξ(k +Hs|k)

 =


B 0 · · · 0
AB B · · · 0
... ... . . . ...

AHs−1B AHs−2B · · · B


︸ ︷︷ ︸

S0


ν(k|k)

ν(k + 1|k)
...

ν(k +Hs − 1|k)

+

+


A
A2

...
AHs


︸ ︷︷ ︸

T0

ξ(k|k)

In this case, the last term of the cost function, related to the virtual reference
signal, is null. Consequently the cost function has the same terms of the cost
function already seen in (2.4). The definition of the matrices H,F and Y is carried
out in the same way as in (2.6)
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4.2.2 Mode 1 implementation
Considering the Mode 1, for the implementation in MATLAB, is useful to define
the following vectors:

φ1(k) =
[
xp(k|k)
r(k)

]
, ψ1(k) =

 ν̃
w(k|k)
xc(k|k)

 (4.2)

Where φ1 ∈ Rnp+ny and ψ1 ∈ RHsnu+ny+ny .
The vector φ1 define the variables known before the optimization procedure; in
particular r(k|k) is known a priori and xp(k|k) is given by sensors. The vector ψ1
is the vector of all the variables optimized; it’s important to notice that in Mode
1, the integrator state xc(k|k) is included as variable in the optimization problem.

Remembering that ξ(k|k) =
[
xp(k|k)
xc(k|k)

]
−Πw(k|k), the prediction equation for the

error system becomes:
ξ(k + 1|k)
ξ(k + 2|k)

...
ξ(k +Hs|k)

 =


B 0 · · · 0
AB B · · · 0
... ... . . . ...

AHs−1B AHs−2B · · · B




ν(k|k)
ν(k + 1|k)

...
ν(k +Hs − 1|k)

+

+


A
A2

...
AHs


︸ ︷︷ ︸

A

([
xp(k|k)
xc(k|k)

]
− Πw(k|k)

)

At this point, defining the matrix A = [Axp Axc ]:
A
A2

...
AHs

 =


Axp Axc
A2
xp A2

xc... ...
AHsxp AHsxc


Using the obtained new nomenclature for the matrix A, and rewriting the pre-

diction equation in function of ψ1:


ξ(k + 1|k)
ξ(k + 2|k)

...
ξ(k +Hs|k)

 =


B 0 · · · 0 −AΠ Axc
AB B · · · 0 −A2Π A2

xc... ... . . . ... ... ...
AHs−1B AHs−2B · · · B −AHsΠ AHsxc


 ν̃
w(k|k)
xc(k|k)


︸ ︷︷ ︸

ψ1

+
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+


Axp
A2
xp...

AHsxp

xp(k|k)

Including also the reference r(k) in the previous equation, we obtain a formula-
tion in which are included just ψ1 and φ1:


ξ(k + 1|k)
ξ(k + 2|k)

...
ξ(k +Hs|k)

 =


B 0 · · · 0 −AΠ Axc
AB B · · · 0 −A2Π A2

xc... ... . . . ... ... ...
AHs−1B AHs−2B · · · B −AHsΠ AHsxc


︸ ︷︷ ︸

S1

ψ1(k)+

+


Axp 0
A2
xp 0
... ...

AHsxp 0


︸ ︷︷ ︸

T1

φ1(k)

At this point, using the definition of the matrices Q and R explicated in (2.5), and

defining for simplicity the state prediction ξ̃ =


ξ(k + 1|k)
ξ(k + 2|k)

...
ξ(k +Hs|k)

, the cost function

(2.26) becomes:

J(k) = ξ̃′Qξ̃ +

 ν̃
w(k|k)
xc(k|k)


′

︸ ︷︷ ︸
ψ1(k)′

 R 0 0
0 Π′MΠ 0
0 0 0


︸ ︷︷ ︸

R1

 ν̃
w(k|k)
xc(k|k)


︸ ︷︷ ︸

ψ1(k)

+

+r(k|k)′Π′MΠr(k|k)− 2r(k|k)′Π′MΠw(k|k)

In the previous cost function definition, the term w(k|k)′Π′MΠw(k|k) has been
already included in the definition of matrix R1.
If the last terms are rewritten in terms of φ1(k) and ψ1(k), and if the prediction
equation is inserted, the cost function becomes:

J(k) = (S1ψ1(k) + T1φ1(k))′Q (S1ψ1(k) + T1φ1(k)) + φ1(k)′R1φ1(k)+
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+φ1(k)′
[

0 0
0 Π′MΠ

]
φ1(k) + φ1(k)′

[
0 0 0
0 −2Π′MΠ 0

]
ψ1(k)

After some mathematical calculation:

J(k) = 1
2ψ1(k)′ (2(S ′1QS1 +R1))︸ ︷︷ ︸

H1

ψ1(k) + φ1(k)′
([

0 0
0 Π′MΠ

]
+ T ′1QT1

)
︸ ︷︷ ︸

Y1

φ1(k)+

+φ1(k)′
(

2T ′1QS1 +
[

0 0 0
0 −2Π′MΠ 0

])
︸ ︷︷ ︸

F1

ψ1(k)

The previous definition of the cost function is the one useful for the optimization
functions utilised in MATLAB.

4.2.3 Mode 2 implementation
Considering the implementation of Mode 2, it’s necessary to reformulate the pre-
diction equation, this time considering the integrator state xc as a known variable
before the optimization procedure. Consequently, the vectors used in the optimiza-
tion problem are defined as:

φ2(k) =

 xp(k|k)
xc(k|k)
r(k)

 , ψ2(k) =
[

ν̃
w(k|k)

]
(4.3)

Where the integrator state is obtained updating the integrator equations. The
considerations for the other variables are the same explicated previously for the
Mode 1 implementation.

Remember that ξ(k|k) =
[
xp(k|k)
xc(k|k)

]
−Πw(k|k) = x(k|k)−Πw(k|k), the prediction

equation for the error system becomes:
ξ(k + 1|k)
ξ(k + 2|k)

...
ξ(k +Hs|k)

 =


B 0 · · · 0
AB B · · · 0
... ... . . . ...

AHs−1B AHs−2B · · · B




ν(k|k)
ν(k + 1|k)

...
ν(k +Hs − 1|k)

+

+


A
A2

...
AHs


([

xp(k|k)
xc(k|k)

]
− Πw(k|k)

)
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Rewriting the previous equation in function of ψ2 and φ2:
ξ(k + 1|k)
ξ(k + 2|k)

...
ξ(k +Hs|k)

 =


B 0 · · · 0 −AΠ
AB B · · · 0 −A2Π
... ... . . . ... ...

AHs−1B AHs−2B · · · B −AHsΠ


︸ ︷︷ ︸

S2

ψ2(k)+

+


A 0
A2 0
... ...

AHs 0


︸ ︷︷ ︸

T2

φ2(k)

At this point it is possible to obtain the required structure of the cost function
for the optimization procedure following the same steps explained for the imple-
mentation of Mode 1, substituting S1 and T1 with S2 and T2.

4.3 Parameters used in the simulation
In Table 4.1 are defined the principal physical quantities utilised to perform the
simulations and also used for the experiments. The value of the inertia tensor of
the testbed is:

J [kg/m2] =

 0.9684 −0.0062 −0.0087
−0.0062 0.9768 −0.0074
−0.0087 −0.0074 1.300

 (4.4)

Furthermore, in all the simulations the initial conditions of the state x and of the
gimbal angles θ are:

θ(0) =


0
0
0
0

 x(0) =



0
0
0
1
0
0
0


(4.5)

The other decision variables such as the weight matrices Q,R and M have been
chosen with different values for each simulation case.
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Variable Nomenclature Numerical value Units
Angular momentum of each wheel hω 0.0361 kg m2/s

Input constraint θ̇ 4 rad/s
(gimbal motors speed max value)

Angular velocity constraint ω 5 deg/s
of the testbed

Acceleration constraints θ̈ 2 rad/s2

on the CMG motors
Horizon of prediction Hs 5 -

Table 4.1: Parameters used for the simulations

4.4 Simulation Results
The simulations have a total duration of 30 seconds. The angular velocity reference
has a triangular shape for the third component, the references for the other two
velocity components are equal to zero for the entire duration of the simulation.
This means that, for the first 5 seconds, the testbed should increase its angular
velocity around its vertical axis; then, for the next 5 seconds, the velocity should
decrease in such a way that a value equal to zero is reached at the 10 second. From
that moment, all the components of the angular velocity reference of the testbed
are zero. The reference signals for the vectorial part of the quaternion have been
suitably calculated utilizing the angular velocity reference signals.
For the next plots, the actual values of each quantity is indicated with a blue
line, the reference signals are indicated in red and the virtual reference signal is
represented in yellow.

4.4.1 Classic MPC results
The first simulation has been performed implementing a classic MCP with the
integrator as servo compensator. In Figure 4.1 are reported the vectorial part
of the quaternion. In Figure 4.2 are represented the values of the testbed angular
velocity. The vectorial part of the quaternion and the angular velocity of the testbed
are the output of the control system. From the images, it is possible to notice a
growing oscillatory behaviour along the time. This compromise the stability of
the control system. In Figure 4.3 are reported the values of the angular speeds
of the motors which control the CMG gimbals; also in this variable is observed a
oscillatory behaviour.

In Figure 4.4 are plotted the derivatives of the control inputs. To respect the
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Figure 4.1: Vectorial part of the quaternion of the classic MPC

Figure 4.2: Angular velocity components of the classic MPC

hardware constraint of the testbed, a further acceleration constraint has been added
for this control algorithm, to bound the maximum absolute value of the acceleration
speed of the gimbals equal to 2 rad/s2.

In Figure 4.5 are plotted the values of the gimbal angles during the simulation.
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Figure 4.3: Input signals of the classic MPC

Figure 4.4: Acceleration of the input signals of the classic MPC

In Figure 4.6 are reported the values of the 4 components of the quaternion. In
particular is interesting to notice that the fourth component change, despite it is
not an output of the system and hence it has not a reference to follow. Indeed, the
scalar component change in order to ensure that the quaternion, in each instant of
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Figure 4.5: Gimbals evolution of the classic MPC

the simulation, is a unit quaternion, with absolute value equal to one.

Figure 4.6: Quaternion components of the classic MPC
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4.4.2 MPC with Mode 2 results
In this second simulation, an MPC with virtual reference signal optimization has
been implemented. In this case, the integrator state is never involved in the opti-
mization procedure, so it is simply updated by the integrator equations (2.17) and
(2.18). In Figure 4.7 is plotted the actual values of the vectorial components of the
quaternion, with the respective reference signals. In Figure 4.8 are reported the

Figure 4.7: Vectorial part of the quaternion of the MPC with Mode 2

angular velocity components of the testbed. In this simulation appears the virtual
reference signal in yellow, in the graphs of the output variables. Respect to the first
simulation, in this case, utilizing the virtual reference, is possible to obtain a de-
creasing oscillatory behaviour, hence the stability of the control system is improved
with respect the previous case. In Figure 4.9 are represented the control inputs of
the system. In Figure 4.10 are reported the value of the acceleration of the control
input. In this case the acceleration constraints have not been implemented cause
the accelerations are always inside the permitted range of values. In Figure 4.11
are reported the time evolutions of the gimbal angles. In Figure 4.12 are plotted
the four components of the quaternion. Also in this case the scalar term varies to
ensure the unit quaternion condition.

4.4.3 MPC with Mode 1 and 2 results
In the third simulation, an MPC with virtual reference signal and integrator state
optimization has been implemented. In this case, if the integrator state is involved
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Figure 4.8: Angular velocity components of the MPC with Mode 2

Figure 4.9: Input signals of the MPC with Mode 2

in the optimization procedure, its value is rapidly decreased; if it is not considered
in the optimization, it is simply updated by the integrator equations (2.17) and
(2.18). In Figure 4.13 is plotted the actual values of the vectorial components of
the quaternion, with the respective reference signals and virtual reference signals. In
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Figure 4.10: Acceleration of the input signals of the MPC with Mode 2

Figure 4.11: Gimbals evolution of the MPC with Mode 2

Figure 4.14 are reported the angular velocity components of the testbed. With the
integrator state reset, in this third simulation, the outputs have been improved with
respect the previous simulation. Indeed, the output signals show an attenuation
of the oscillations, hence the system response is better with respect the previous
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Figure 4.12: Quaternion components of the MPC with Mode 2

Figure 4.13: Vectorial part of the quaternion of the MPC with Mode 1 and 2

cases. In Figure 4.15 are represented the control inputs of the system. In Figure
4.16 are reported the value of the acceleration of the control input. In this case
the acceleration constraints has been implemented because the acceleration had too
high values. In Figure 4.17 are reported the time evolutions of the gimbal angles.
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Figure 4.14: Angular velocity components of the MPC with Mode 1 and 2

Figure 4.15: Input signals of the MPC with Mode 1 and 2

In Figure 4.18 are plotted the four components of the quaternion. Also in this case
the scalar term varies to ensure the unit quaternion condition.
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Figure 4.16: Acceleration of the input signals of the MPC with Mode 1 and 2

Figure 4.17: Gimbals evolution of the MPC with Mode 1 and 2
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Figure 4.18: Quaternion components of the MPC with Mode 1 and 2
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Chapter 5

Testebed characteristics and
Experimental results

5.1 Experimental setup
The testbed used in this work, located at the laboratories of Osaka University
(Japan) [22], simulates a spacecraft using an air floating table as represented in
Figure 5.2 and Figure 5.3.
The problem of this experimental setup is that some misalignments between the
center of rotation and the center of gravity can happen. In this situation gravity
torques arise even if there is a slightly misalignment as shown in Figure 5.1. To
minimize this gravity effect, the experimental setup is equipped with three counter
weights, which are attached to the testbed by ball screws (Figure 5.2). The position
of the three counter weights must be adjusted manually, hence it is very complicated
to obtain a perfect alignment of the center of gravity and of the center of rotation. In
adjusting the counter weights, the period of the platform is empirically maximized if
the center of rotation coincides with the centre of gravity as much as possible. The
simulation parameters treated in Chapter 4 have been chosen because they represent
the physical characteristics of the described testbed utilized for the experiments.
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weight

weight

⨁
center of rotation

center of gravity

𝑚𝒈$

gravity torque

Figure 5.1: Gravity effect on the testbed [22]

counter
weight

VSCMG

VSCMG

air table

VSCMG

Figure 5.2: Experimental setup located at Osaka University [22]
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Figure 5.3: Experimental setup located at Osaka University
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5.2 Experimental results and C++ conversion
After having implemented the three types of MPC previously explicated, has been
decided to utilize the MPC with only the Mode 2 for the experiments. The moti-
vations to implement this MPC with respect to the complete MPC with Mode 1
and 2 come from the difficult definition of ηs. This parameter is the one that in
the control algorithm chooses if either the Mode 1 or the Mode 2 must be applied.
During the simulations was quite difficult to choose its optimal value, a small vari-
ation of its value with respect to the optimal one could compromise the control
performance of the system.
Since it was expected a difference, even small, between the behavior of the model
used in the simulations and the one of the testbed, it would been necessary to
perform different experiments to find out the optimal value of ηs. For this reason
the next experiment results have been obtained utilizing the MPC without the
integrator state reset.

5.2.1 Conversion of the control algorithm in C++
After having performed the simulations in MATLAB environment, to perform the
experiments has been necessary to convert the decided control algorithm in C++.
For this purpose MATLAB Coder Toolbox has been used to convert directly the
control algorithm in C++.
After, the integrated development environment called Microsoft Visual Studio has
been used to create a C++ project in which the converted control algorithm has
been tested.
Initially the mathematical model of the testbed has been used to perform a software-
in-the-loop simulation as in the Matlab environment, to verify the effectiveness
of the converted control algorithm. The results obtained in Visual Studio were
perfectly identical to the ones obtained in MATLAB, confirming that the converted
algorithm was effective as the original one.
Finally, the final project in Visual Studio has been created to test the control
algorithm on the real testbed. It is important to remember that the plant in the
control scheme has been substituted by the real testbed, but the mathematical
model defined in Chapter 3 was still inside the control algorithm, to predict the
future behavior of the testbed.

5.2.2 Experimental results
Different experiments have been performed, but here are reported only the better
results I had obtained during the stay at Osaka University. As expected the grav-
ity effect acted as a disturbance for the control system, hence, in order to relax
the tracking performance for the testbed, the reference signal has been changed

63



Testebed characteristics and Experimental results

extending the overall time for the triangular shape of the vertical angular velocity
reference. Furthermore, many different values for the weight matrices has been
tested, relaxing the tracking performance required for the testbed.
In the following images are reported the actual values of the variables with a blue
line; in red are reported the reference signals; and in yellow the virtual reference
signals.
In Figure 5.4 is reported the vectorial part of the quaternion. In Figure 5.5 are re-
ported the angular velocity components of the testebed. From output plots arises
an elevate oscillatory behaviour, in particular in the horizontal components of the
angular velocity, probably due to the gravity effect. Indeed, when misalignment
occurs, the gravity acts on the testbed causing the inclination of the floating table.
At this point, the controller tries to compensate this effect creating a large control
input, but this brings to an inclination on the opposite side. However, the tracking
performance of the vectorial part of the quaternion is sensibly better.
In Figure 5.6 are reported the control inputs of the system. In Figure 5.7 is shown

Figure 5.4: Vectorial part of the quaternion obtained from the experiment

the gimbal angles evolution of the testbed. And it is important to notice that in
this case the gimbals don’t return to a value equal to 0, as happened in the sec-
ond and third simulation. Finally, in Figure 5.8, are reported the four quaternion
components, where is shown that the unit quaternion condition is respected.
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Figure 5.5: Angular velocity components of the testbed obtained from the experi-
ment

Figure 5.6: Control input signals obtained from the experiment
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Figure 5.7: Gimbal angles evolution obtained from the experiment

Figure 5.8: Quaternion components obtained from the experiment
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Chapter 6

Conclusions and possible
future works

In this thesis work the implementation of a linear MPC with virtual reference and
integrator state optimization has been analysed for the attitude control of testbed
which simulates a spacecraft.
This final essay has presented an introduction where several past related works
have been cited, showing the objectives and results achieved.
In Chapter 2, the classic linear MPC approach has been briefly described. After,
the linear MPC with virtual reference and integrator state optimization has been
described accurately.
In Chapter 3, the dynamic and kinematic equations have been used to construct
the mathematical model of the system in an LTI state space formulation.
Three different simulations have been performed in MATLAB, highlighting the
benefits brought by the optimization of the virtual reference signal and of the inte-
grator state.
In the first simulation, a classic MPC has been implemented. The results obtained
by this simulation, in which just the control input is obtained by the optimization
procedure, show a growing oscillatory behaviour in the output signals. This ob-
served trend can compromise the stability of the control system.
The second simulation has been performed implementing an MPC where both the
control input and the virtual reference signal are optimized. The results obtained
by this simulation have highlighted the benefits brought by the implementation of
this further variable. The virtual reference signal at some time during the simu-
lation departs from the real reference signal, creating an initial difference between
the actual values of the output variables and real references to follow, but in this
way is obtained a decreasing oscillatory behaviour of the output variables.
From the last simulation, also the integrator state has been included in the opti-
mization procedure. With this further characteristic, a better response has been
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obtained with respect to the previous simulation, because the oscillations are at-
tenuated faster.
After, the control algorithm has been converted in C++ programming language
using MATLAB Coder Toolbox and it has been verified on the real testbed per-
forming experiments. The results obtained by these experiments show an unstable
behaviour of the testbed, which presents quite large oscillations along the horizontal
components of the angular velocity. This behaviour is probably due to the grav-
ity effect, as explained in the previous chapter. The problem of this experimental
setup is that some misalignments between the center of rotation and the center of
gravity can happen, creating quite large gravity torques even in presence of small
misalignments. To minimize this gravity effect, the experimental setup is equipped
with three counter weights, which are attached to the testbed by ball screws. The
position of the three counter weight must be adjusted manually, therefore it is very
complicated to obtain a perfect alignment of the center of gravity and of the center
of rotation.
But another source of instability can be also the adopted mathematical model used
inside the MPC control algorithm to predict the future behaviour of the testbed.
If this model doesn’t represent sufficiently well the testbed, the prediction cannot
be accurate and consequently the control inputs too.

A future step of this thesis work is obviously the improvement the experimental
results. To this end, a first step could be the redefinition of the model of the sys-
tem, to obtain a more similar behaviour to the real testbed. Moreover, a dedicated
control system to correct the error given by the gravity effect could be designed and
implemented on the considered testbed, in order to create conditions more similar
to the vacuum space.
The study of the attitude control of the considered testbed can be carry forward
investigating the implementation of a more robust Stochastic control strategy. To
this end, the Stochastic MPC able to deal with disturbances and uncertainties,
treated in [1], should be designed for the testbed. In this way the gravity effect
can be treated as disturbance for the control system, improving the tracking per-
formance of the control system. In Section 2.4 , some primary calculations used
to implement the considered Stochastic MPC are performed. Next steps are to
perform simulations and experiments with this Stochastic control strategy.
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