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Abstract

In the last years the technological improvements have led to a new generation of Space-
crafts. Very small sizes are required nowadays, in order to achieve more efficient structures
and consequently, both lower costs and simpler designs. This innovation is based on minia-
turized Satellites, called CubeSat.
On the contrary, space is not a friendly environment: many unpredictable events (external
environmental forces, modeling and design mistakes) affect the orbit and the attitude of
these systems and, the smaller the satellites are, the bigger is the influence on them.
Attitude control is crucial to avoid radiations dissipation, to point antennas and solar
panels or to orient Spacecrafts during space Rendezvous and Docking operations. This
maneuvers are subject to strict requirements in terms of angular position and actuation
limits, therefore, good control performances combined to small inputs must be achieved.
This research focuses on the robustness of the exploited controllers, highlighting the ef-
fectiveness of the obtained results in terms of performances and efficiency in real scenario
simulations.
The robustness properties of both sliding-mode controllers (SMC) and Linear Parameter
Varying controllers (LPV) make them suitable for many real situations. On the other
hands, real SMC exhibit high-frequency oscillations in the plant output, called chatter-
ing, which lead to excitement of unmodeled dynamics. This issue can be mitigated both
by exploiting an higher order sliding mode controller and by substituting the classical
sliding mode control law with an approximated smoother function.
These are the goals of this thesis: first, the implementation of both two variants of the
Second Order Twisting Sliding Mode controller, and an LPV (Linear parameter
varying) controller, in order to achieve an optimal combination between control law flex-
ibility, robustness and accuracy for the attitude control of a small satellite, actuated by
reaction wheels. Performances and uncertainty rejection results are compared, focusing
on the chattering aspect.
Then, the attitude control treatise is made complete through the use of a b-dot control,
correlated to an on-board magnetorquer, to analyze the possible answer of this system on
the considered Spacecraft.
Finally, a first order sliding mode controller is used for the position control of the Cube-
Sat, by exploiting cold gas thrusters as actuators, in order to achieve a complete control
of the overall system.
Good results have been achieved since, in a real scenario, the considered attitude con-
trollers are able to reject uncertainties with nice performances, by guaranteeing the re-
quested robustness. The position control problem has been partially studied, obtaining
positive results for a future work.





Sommario

Negli ultimi anni i miglioramenti tecnologici hanno portato a una nuova generazione di
veicoli spaziali. Al giorno d’oggi sono necessarie dimensioni molto ridotte, al fine di otte-
nere strutture più efficienti e, di conseguenza, costi inferiori e design più semplici. Questa
innovazione si basa su satelliti miniaturizzati, chiamati CubeSat.
Di contro, lo spazio non è un ambiente favorevole: molti eventi imprevedibili (forze am-
bientali esterne, errori di modellazione e di progettazione) influenzano l’orbita e l’assetto
di questi sistemi e, più piccoli sono i satelliti, maggiore è l’influenza su di essi.
Il Controllo di assetto è cruciale per evitare la dissipazione delle radiazioni, puntare
antenne e pannelli solari o orientare i veicoli spaziali durante le operazioni di Rendez-
vous e Docking. Queste manovre sono soggette a severi requisiti in termini di posizione
angolare e limiti di attuazione, pertanto è necessario raggiungere buone prestazioni di
controllo combinate a piccoli ingressi. Questa ricerca si concentra sulla robustezza dei
controllori sfruttati, evidenziando l’efficacia dei risultati ottenuti in termini di prestazioni
ed efficienza durante simulazioni di scenari reali.
Le proprietà di robustezza dei controllori Sliding Mode (SMC) e dei controllori a para-
metri lineari variabili (LPV) li rendono adatti a molte situazioni reali. D’altra parte, gli
SMC in situazioni reali mostrano oscillazioni ad alta frequenza sull’ output dell’impianto,
chiamate chattering, che portano all’eccitazione di dinamiche non modellate. Questo
problema può essere mitigato sia sfruttando un controllore SMC di ordine superiore, sia
sostituendo la classica legge di controllo con una funzione approssimata meno discontinua.
Questi sono gli obiettivi di questa tesi: in primo luogo, l’implementazione di entrambe le
varianti del controllore Twisting Sliding Mode del secondo ordine e di un control-
lore LPV (Linear Parameter Varying), al fine di ottenere una combinazione ottimale
tra flessibilità della legge di controllo, robustezza e precisione per il controllo dell’assetto
di un CubeSat, azionato da ruote di reazione. I risultati sono confrontati in termini di
performance e attenuazione dell’incertezza, concentrandosi sull’aspetto relativo al chatte-
ring.
Quindi, per quanto riguarda il controllo di assetto, la trattazione viene resa completa
mediante l’uso di un controllo b-dot, correlato a un magnetorquer a bordo, per analizzare
la possibile risposta di questo sistema sul satellite considerato.
Infine, un controllore Sliding Mode del primo ordine viene utilizzato per il controllo della
posizione del CubeSat, sfruttando i propulsori a gas freddo come attuatori, al fine di ot-
tenere un controllo completo del sistema complessivo. Buoni risultati sono stati raggiunti
poiché, in uno scenario reale, i controllori di assetto considerati sono in grado di respingere
le incertezze con buone prestazioni, garantendo la robustezza richiesta. Il problema del
controllo di posizione è stato parzialmente studiato, ottenendo risultati positivi in vista
di un lavoro futuro.
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Chapter 1

Introduction

"The wing structure of the hornet, in relation to its weight, is not suitable for flight, but
he does not know this and flies anyway” A. Einstein.
Flight is a complicated task, particularly due to unsteady air variations which are un-
predictable in outdoor flight environments. Flying organisms daily face these difficulties
using active and passive control mechanisms; would a tumbling eagle be able to identify
an hidden prey? Just like animals, satellites have to keep their attitude through many dis-
turbances in space and the smaller they are, the more they are affected by them. That’s
why attitude control is very important. How a rigid body has to be oriented in a 3D
environment with respect to an inertial frame, this is the aim of the attitude control. At-
titude control can be divided in two areas: attitude stabilization, which is the process of
maintaining an already existing orientation, and attitude maneuver control, which is the
process of controlling the attitude from an orientation to another one. The two areas are
related, for example stabilizing one spacecraft axes toward the earth implies a continuous
change in its inertial orientation.
The attitude control is fundamental for all kind of spacecrafts: in the case of components
sensitive to solar radiations for example, the direct exposure to the Sun, during the satel-
lite orbit, may damage the on-board devices with terrible consequences for the related
mission.
On 11th June 2018, a test, related to the verification of collision avoidance, has been
carried out by the German Space Operations Centre (GSOC) of the German Aerospace
Centre (DLR) in Oberpfaffenhofen [11]. The active attitude control of the TET-1 space-
craft has been used for the collision avoidance between space debris and operating satellites
or even between two operating satellites. The collision risk has been reduced by changing
the satellite attitude in order to modify its orbit semi-major axis. Moreover, varying the
satellites attitude, the impact entity can be minimized, by making the minimum effective
area perpendicular to the relative velocity vector at the instant of closest approach. This
collision avoidance concept, based on attitude control of a satellite, shows high potential
for non-propulsive spacecrafts with asymmetrical shapes.
Another very important feature concerning the spacecraft attitude is the power genera-
tion: energy for spacecrafts is provided by solar radiations through solar panels. Since
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Introduction

the panels efficiency is strictly dependent on the incidence of the radiations on the pan-
els surface, the spacecraft has to keep this perpendicularity during the orbit. This is
an attitude maneuver which can be assimilated to the pointing of directional antennas,
key element for nowadays telecommunications. For example, figure 1.1 shows a CubeSat

Figure 1.1: SONATE: ASAP-L for the autonoumous tracking of a passing meteor [1]

during the SONATE mission of the University of Wuerzburg, Germany [1], exploiting an
ASAP (Autonomous Sensor and Planning) system to track a passing meteor totally au-
tonomously, clearly exploiting an attitude controller. The CubeSat has been launched on
5 July 2019 on a Soyuz-2-1b/Fregat rocket from Russia’s far-eastern spaceport Vostochny
Cosmodrome, with a mission duration time of at least on year.
Another example, based on both attitude control and position control, can be Rendezvous
and Docking maneuvers, or Autonomous Cooperative Flight, very important operational
points in many spacecraft missions, where tolerances are very strict. Rendezvous and
Docking maneuvers consist of a series of orbital maneuvers where the controlled space-
craft (chaser) capture a passive target vehicle. The mission goal is reached when the
chaser vehicle safely and efficiently approaches, with very strict requirements in terms of
orientation, position, velocity and with zero angular velocity. When the target is reached,
the chaser has to remain stationary until the holding system mechanically grabs and docks
the target vehicle.
This maneuver accuracy has to be maintained in presence of external disturbances and
parametric uncertainty as well (the spacecraft inertia for example can change due to mul-
tiple causes during the spacecraft orbit). As it can be found in [7], a controller is robust
if some level of performance of the controlled system is guaranteed irrespective of changes
in the plant dynamics within a predefined class. Several are the controllers in literature
for this aim: for linear systems H-infinity controllers are widely used, in [30] an H-infinity
controller is exploited so that the closed-loop system is mean-square asymptotically sta-
ble for all admissible uncertainties. In [28] the same controller has been designed for
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linear uncertain systems with stochastic uncertainty, where the uncertainty class involves
uncertain multiplicative white noise perturbations. A prescribed level of disturbance at-
tenuation had to be ensured. Another valid alternative for nonlinear systems is the MPC
(Model predictive control) controller. In [5] a multiplicative model uncertainty is taken in
account so that a robust model can be defined to describe the process non-linear dynamic
behaviour as a function of a nominal linear model, then controlled through an MPC algo-
rithm. In [33] it is shown as robustness is guaranteed by solving a min-max optimization
problem online in the presence of unknown but bounded disturbance and/or model mis-
matches. Computational complexity is avoided by exploiting a nominal prediction model
and a tube MPC constraints scheme. Most of recent studies [22] - [29] - [23] use Lyapunov
function-based controllers to realize attitude control. With this kind of approach, overall
stability of attitude control is always guaranteed, but control performances can be hard
to evaluate. To overcome this problem, LPV (Linear Parameter varying) controllers are
widely used: in [10] an LPV controller has been designed for the control of an hypersonic
vehicle with parametric uncertainties. In [24] - [16] - [12] the same controller has been
exploited to control the attitude of a spacecraft through reaction wheels as actuators. In
[32] and [15] a first order SMC is exploited to guarantee both transient performances and
globally uniformly bounded stability in presence of both parametric uncertainties and un-
certain non-linearities. In [31] the main focus is on the principal drawback of this method:
discontinuities in the input command which can be reflected as high-frequency oscillations
in the output. This phenomena, called chattering, can lead to serious consequences as
the possibility of exciting unmodeled dynamics, loosing the robustness properties of the
control law.
For this reason a higher order twisting sliding mode controller (T2S) has been imple-
mented: it is still able to guarantee good performances, better than the first order im-
plementation, considerably decreasing the chattering phenomena, exploiting higher order
derivative of the already discussed sliding surface. As it is written in [21] SMC and higher

Figure 1.2: Sliding mode second order trajectory[17]

order SMC are generally suitable only if the sampling frequency is sufficiently big when
compared with the inverse of the system time constants. In addition, implementation of
these controllers should consider safety constraints relevant to the maximum switching fre-
quency allowed by power-electronic devices. Moreover, since the analyzed spacecraft has
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very small dimensions, the actuators can’t have the optimal designed size, consequently
actuation is constrained to very small torque amounts.
The possible actuators for attitude control are several: External torque generators (e.
g. gas jets or magnetic torquers) have disadvantages such as limited resources or small
torques; moment gyros are more efficient than reaction wheels in terms of torque and
momentum storage but they are subject of singularities which can be avoided only by
increasing hardware resources (redundancies), not suitable idea for very small satellites.
Reaction wheels (RWs) have been modelled for this treatise, since they can generate con-
trol torque precisely and they do not require fuel (electric motors are used to generate
torque). Small spacecraft sizes lead to a very disturbances-sensitive system, so taking in
account small possible control inputs and big sensitivity to the disturbances, the complex-
ity level of the control problem increases drastically. For this aim both an LPV controller
and a particular sliding mode controller have been exploited for robust control of this
non-linear system.
Many controllers have been analyzed for this purpose, in [21] and [26] three different slid-
ing mode controller variants have been taken in account in presence of uncertainty on the
spacecraft inertia tensor and sinusoidal disturbance model. In [27] an integral higher order
sliding mode controller has been implemented for the same reason with both uncertainty
on the inertia tensor of the spacecraft and sinusoidal disturbance model. In [24]-[12] an
LPV controller has been exploited to control the same analyzed plant through reaction
wheels while in [16] the control has been carried out through moment gyros.
The objectives of this thesis are multiple: the first aim is to recreate a real scenario for the
attitude control problem by taking in account spaceraft detumbling and reaction wheels
desaturation as well, through a magnetorquer system. Then the discussion is going to
move to the orbital control problem of the exploited satellite. A real disturbance torques
model and a suitable actuator scheme are exploited in order to test properly the robustness
and the performances of the designed attitude controller in presence of uncertainties. Both
LPV and the two variants of the Twisting Second Order Sliding mode controller (T2S) are
used for the attitude control of the 12u CubeSat 1HOPSAT (1st-generation High
Optical Performance Satellite) in a real scenario: the scientific observation of the
Crab Nebula.
Moreover, a solution for the spacecraft detumbling, after the launch, is adopted, in fact
Magnetorquers are modeled and simulated in real conditions to test the behaviour and
the time response of the system. Finally the position control of the discussed spacecraft
is dealt with, taking in account the possible orbital maneuvers.
In relation to the presented references: the LPV controller presents comparable results in
time for the regulation problem and very good robustness properties. The T2S presents
optimal performances in time and very good tunability in both regulation and tracking
control problems; the T2S hyperbolic tangent variant totally deletes the chattering phe-
nomena leading both to smaller errors in steady state and better performances in time;
in fact the input doesn’t have amplitude limitations due to chattering but only due to
actuators physical bounds.
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Introduction

1.1 Overview

As it has been already said, robust control methods for small satellites are getting the
attention of the space systems community, with particular attention to the efficiency and
performances. Therefore, the aim of this thesis is to design and compare two different
robust controllers, specifically a Second order Sliding Mode controller and an LPV con-
troller, able to work well under plant and environment uncertainties. The studied case
is characterized by reaction wheels as actuators in a pyramidal baseline 4-configuration.
In addition, desaturation of actuators has been taken in account by implementing a mag-
netorquer, driven by a suitable b-dot control. A brief discussion has been made for the
orbital control of the considered spacecraft as well.

• In chapter 2, all the mathematical equations, used to describe the system, are shown
and explained into details. The kinematics is studied with quaternions formulation,
to avoid singularity problem that can occur with Euler angles, while the satellite
dynamics is studied through the Euler’s equation of motion. Moreover a real reaction
wheel configuration is modeled to take in account all the possible limits of this
actuators.

• In chapter 3, a first source of uncertainty is considered, all the mathematical equa-
tions concerning real environmental attitude disturbances are discussed. Moreover,
the already cited magnetorquer is dealt with, in order to both desaturate the ac-
tuators and detumble the spacecraft after the launch. The chapter is focused on
how the Earth magnetic field is modeled, with particular attention to the related
exploited control.

• In chapter 4, both LPV and T2S controllers are analyzed in detail, highlighting
the possible variants of the Twisting Second order sliding mode controller. This
treatise is based on their robustness properties and on the chattering phenomena,
with particular attention on how this problem can be attenuated. Then, the orbital
control of the considered CubeSat is discussed. First, the plant is modeled by
exploiting the Hill’s equation of relative motion, in order to achieve a position trend
of the controlled spacecraft in the reference frame of a target one. Then, a first
order sliding mode is designed for the related position control problem.

• In chapter 5, the designed controllers have been tested in different scenarios. The
results are shown and explained in detail.

• In the last chapter, conclusion and future works are briefly discussed.
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Chapter 2

Spacecraft mathematical model

In this chapter, the mathematical model of the Spacecraft is discussed. First, the used
reference frames are described and, then, the attention will focus on the spacecraft plant
model based both on quaternions kinematic and spacecraft dynamics.

2.1 Spacecraft model

The considered spacecraft is a 12u CubeSat with dimensions 20cm× 20cm× 34cm. The
weight is 25 Kg, falling within Micro satellite definition [19]. In fact, according to weight
and dimensions, every satellite can be classified as following:

Figure 2.1: 12u CubeSat 1HOPSAT (1st-
generation High OpticalPerformance Satel-
lite)

Category Mass [in Kg]
Large satellite >1000

Medium satellite 500 to 1000
Mini satellite 100 to 500
Micro satellite 10 to 100
Nano satellite 1 to 10
Pico satellite 0.1 to 1
Femto satellite <0.1

Table 2.1: Category of satellite [19]
In control system engineering, it is useful to consider a dynamic system as a union of
successive blocks. Therefore it is important to create a realistic block diagram, able to
describe correctly the system. The considered case is defined as a closed-loop system,
based on feedback control. It can be explained with four blocks: one concerning the
controller, one for the plant (system to be controlled) and other two which take in account
sensor and actuator, as shown in figure 2.2. In this thesis, it will be considered no difference
between the system output and the measured output, so the sensor part will be neglected.
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Spacecraft mathematical model
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Figure 2.2: Control Scheme Block Diagram

2.2 Reference frames
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Figure 2.3: Inertial frame and body frame shown together [19]

The attitude variation of the considered spacecraft has to be studied with respect another
fixed reference frame; therefore it is crucial to explain the adopted reference frames. In this
thesis, three different reference systems have been exploited: As it is possible to find out in [2]
Earth-centered inertial (ECI) coordinate frames are quasi-inertial reference frames which have the
origin at the center of mass of Earth. These frames are not fixed to the Earth, they don’t rotate
with respect to the stars, except for precession of the equinoxes. The x-axis is in the invernal
equinox direction (direction towards a point in the constellation of Aries). The z-axis is in the
Earth’s rotation axis, perpendicular to equatorial plane (pointing in the direction of the north
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pole). The y-axis completes the triad of the reference system and is in the equatorial plane.
LVLH (Local Vertical, Local Horizontal) is an orbital Earth pointing reference. It is a rotating
reference frame that has its origin in the center of the Spacecraft. The z-axis is oriented in the
direction of the center of Earth (Local Vertical), the x-axis is in the direction of orbital motion,
parallel to the local horizontal, and the y-axis is perpendicular to the orbital plane, forming a
right-handed coordinate system.
Finally the body reference frame is defined: The origin is the center of mass of the spacecraft
while the axis are denoted by using unit vectors dependent on the mission and mission phase;
they form a right handed system. It is rotated from the orbital frame by the attitude angles αz
(azimuth), αy (elevation) and αx (roll).
However, body and ECI reference frames, are linked with each other thanks to a general property
of vector, also called conversion from fixed to moving frame.

2.3 Attitude Dynamics with quaternions

2.3.1 Kinematics

Quaternions are a mathematical system extending complex numbers. Useful to describe spatial
rotations due to their compactness, low computational cost and their lack of singularity, they were
successfully implemented in several control algorithm. A quaternion, however, can be interpreted
as:

• point in a 3D projective space (w,x,y,z);

• linear transformation of four space;

• algebraic quantity;

• and a scalar plus 3-vector quantities

In this thesis, the latter interpretation is chosen and, consequently, it can be described as:

q = q0 + q1î+ q2ĵ + q3k̂ (2.1)

Moreover, the following notation has been used:

q =


q0
q1
q2
q3

 (2.2)

where q0 is the scalar value, while q1 , q2 and q3 are the vector ones. Furthermore, it is possible
to describe the orientation of a rigid body through a σ rotation over an axis ν, according to Eu-
ler’s theorem. Thus, considering ~ν as the unit magnitude vector, quaternion can be represented as:

q0 → cos
σ

2
~q → ~ν · sin σ

2

For this aim, quaternions have to have unitary norm as follows:

q21 + q22 + q23 + q24 = 1

If used to represent rotations, unit quaternions are also called rotation quaternions. In other
hands if they are exploited to represent an orientation (rotation relative to a reference coordinate
system), they are called orientation quaternions or attitude quaternions. Then, it is important to
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evaluate the evolution of quaternions in time. Quaternions kinematic is commonly used in this
sense to relate the quaternions variation with the spacecraft angular velocity

q̇ =
1

2
(q)×ωB =

1

2
(ωB)×q (2.3)

where

(q)× =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 and (ωB)× =


0 −ωx −ωy −ωz
ωx 0 −ωz ωy
ωy ωz 0 −ωx
ωz −ωy ωx 0


2.3.2 Dynamics

Let describe the dynamic of the CubeSat through the Euler’s equations: In classical mechanics,
Euler’s rotation equations are a vectorial first-order ordinary differential equation which describe
the rotation of a rigid body, using a rotating reference frame with its axes fixed to the body and
parallel to the body’s principal axes of inertia. In our case the CubeSat is seen as a rigid body,
exploiting the variation of the body axes with respect the ECI reference frame (Earth-centered
inertial coordinate frames have their origins at the center of mass of Earth and do not rotate
with respect to the stars.) Since the reaction wheels momentum has been taken in account the
following equation can be introduced:

ω̇B = J−1 (MB − ω × (Jω + hRw
)) (2.4)

where:

Mb = Md +MRw (2.5)
JRwΩ = hRw

(2.6)

MRw = PJRwΩ̇ (2.7)

ω ∈ R3 is the spacecraft angular velocity in the ECI reference frame, MRw ∈ R3 is the control
input from the controller through the reaction wheels model, Md ∈ R3 is the environmental
disturbance torque vector; JRw ∈ R3×3 is the inertia tensor of a single reaction wheel, Ω ∈ R4 is
the vector containing the four reaction wheels angular velocities (in every Rw reference frames);
P ∈ R3×4 is the spin axis matrix, discussed in chapter two. For the tracking control problem the
related tracking error between the body pose q and the desired body pose qd has to be computed
as quaternion product between the inverse of the the body pose q∗ and qd as follows:

q̃ = q∗ ⊗ qd

2.4 Reaction wheels mathematical model
MED systems can be exploited to modify the orientation of the spacecraft,in particular, reaction
wheels have been used in this treatise. These devices apply a torque through an electric motor
putting a wheel in rotation. Then, an equal and opposite inertia torque is applied to the body
of the spacecraft, allowing the spacecraft to rotate. It is possible to describe the behaviour of a
reaction wheel through a basic model, as shown in figure 2.4. The device is composed mainly
by two components: a motor and a fly-wheel. The reaction wheels system has been modeled by
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ŵ2

ŵ3

h

τ

ŵ1

Ω

Figure 2.4: A basic model describing a reaction wheel, where the red body represents the
motor and the blue body the wheel itself. [19]

transferring the angular momentum of the wheels themselves from the wheels reference frame to
the body reference frame, as it is described in [6]. A single wheel can be described through a local
frame, referenced as the wheel frame with its spin axis aligned with the third axis. The angular
momentum of the ith reaction wheel (Rwi) within its wheel frame can be represented in the body
reference frame B through a simple rotation matrix. The formula for this change of basis is the
following:

hbi = [BRRWi ]h
RWi
i (2.8)

A classical choice for reaction wheels configuration, represented in figure 2.5, is the square pyramid
configuration in which each of the RW are placed at 90° apart. Arranged at the proper angle β = 45
, this configuration allows to maximize torques in all directions, minimizing torque cancellations
between wheels; moreover it provides redundancy in case of a single wheel failure. The exploited
arrangement is α1 = 0° α2 = 90° α3 = 180° α4 = 270°. This configuration can be achieved
as sequence of three fundamental rotations for each wheel and represented as direction cosine
matrix. First, a rotation around w3 of αi is performed, then a second rotation around w2 allows
us to achieve the desired orientation. This two frame transformations are represented through
the following rotation matrices:

R3(αi) =

 cosαi sinαi 0
−sinαi cosαi 0

0 0 1

 R2(β) =

cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ

 (2.9)

These rotation matrices can be combined together in a single rotation matrix in order to convert
the momentum vector from the body frame to the wheels reference frame.

RwRB = R2(β)R3(αi) =

cosαicosβ sinαicosβ −sinβ
−sinαi cosαi 0
cosαisinβ sinαisinβ cosβ

 (2.10)
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y axis

z axis

x axis β

Figure 2.5: Square pyramid reaction wheels configuration [2]

The rotation matrix from the wheels reference frame to the body reference frame can be computed
by transposing the matrix RwRB :

BRRw = R3(−αi)R2(−β) = [RwRB ]T =

cosαicosβ −sinαi cosαisinβ
sinαicosβ cosαi sinαisinβ
−sinβ 0 cosβ

 (2.11)

The general angular momentum for the ith wheel (only around its third axis) will be:

h
Rwi

Rwi
=

0
0
1

hi (2.12)

Transforming this angular momentum from the wheels frames to the body frame,as shown in eq.
2.13, by exploiting the rotation matrix BRRwi for a single wheel, the total angular momentum
can be computed as summation of all the wheels momentum represented in the body frame, as it
is possible to see in eq. 2.14.

hBRwi
=B RRwh

Rwi

Rwi
(2.13)

hBRw
=

n∑
i

hBRwi
(2.14)

Where hBRw
is the total angular momentum of the overall reaction wheels configuration, in the

Spacecraft body reference frame. Considering the number of active wheels equal to n, the total
angular momentum in the body frame can be rewritten as product between a matrix P (3xn
rotation matrix, which represents the orientation of each wheel with respect to the body frame),
and the n x 1 vector hW containing the momentum in the wheels frames as follows:

hBRw
=

n∑
i

hBRwi
= PhW (2.15)
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where:

hW =


h1
h2
h3
h4

 (2.16)

The total transformation matrix P will be:

P =

cosα1sinβ cosα2sinβ cosα3sinβ cosα4sinβ
sinα1sinβ sinα2sinβ sinα3sinβ sinα4sinβ
cosβ cosβ cosβ cosβ

 (2.17)

The angular momentum for each wheel can be seen as the product between inertia tensor, with
respect an inertial frame, and the angular velocity of the ith wheel.

h
Rwi

Rwi
=
[
JRwi,33

Ωi
]Rwi

(2.18)

The vector hRwi

Rwi
representing the momentum for all the wheels is computed as it has been done

in [6] in eq. 2.19.

h
Rwi

Rwi
=


JRw1,33

0 0 0

0 JRw2,33
0 0

0 0 JRw3,33
0

0 0 0 JRw4,33


Rwi 

Ω1

Ω2

Ω3

Ω4


Rwi

(2.19)

Thus, the inertia matrix for reaction wheels is a n × n matrix, while the vector describing the
angular rate of each reaction wheels is a 1×n vector. Consequently the torque in the wheel frame
will be the time derivative of the wheels momentum seen in the wheel reference frame, as it is
shown in eq. 2.20.

τ
Rwi

Rwi
= ḣ

Rwi

Rwi
= JRwi

Ω̇Rwi (2.20)

Moreover, considering equation 2.14, in a case where the orientation is fixed and the moment of
inertia is not dependent with respect to time. So, the following is a correct assumption:

τBRwi
=�����Ṗ JRwi

Ωw +�����P J̇Rwi
Ωw + PJRwi

Ω̇w

Due to Euler’s transport theorem:

τNRwi
= ḣBRwi

+ ω × hBRwi
(2.21)

Where τNRwi
is the wheels torque with respect the inertial reference frame N. Substituting the

equation 2.19 in the formula 2.13:

τNRwi
= PJRwi

Ω̇w + ω × PJRwi
Ωw (2.22)

Knowing that the requested torque from the controller τNreq has to be the the opposite of the
torque given by the wheels, in absence of external disturbances :

−τNreq = PJRwi
Ω̇ + ω × PJRwi

Ω (2.23)

Involving the pseudo inverse of the matrix P, the previous formula can be inverted in terms of the
torque in the wheels frames:
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τ
Rwi

Rwi
= P+(−τNreq − ω × PJRwi

Ωw) (2.24)

Recalling eq. 2.20 and substituting the equation 2.24 in the equation 2.22 it is possible to write
the wheels torque in the inertial reference frame τNRwi

, as function of the requested torque from the
controller τNreq. In the end the saturations, related to the physical limitations of the real reaction
wheels have been added in terms of momentum and maximum torque.

2.4.1 Reaction wheels saturation
A real reaction wheel has some limitations. Both the angular momentum and the maximum
torque should fall within a certain range. To simulate this behaviour, better known as saturation
of the reaction wheels, a specific block on SIMULINK has been used with specific data obtained
by real model existing in commerce.
The considered model is a Honeywell HR16-50 as shown in Fig. 2.6

Figure 2.6: Reaction wheel model section [9]

Model Mass Max Angular momentum Max torque Inertia
[in Kg] [in Nms] [in Nm] [in Kgm2]

HR16-50 9 50 0.1 0.02

Table 2.2: Reaction wheel Data
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Chapter 3

Environmental disturbances and
Magnetorquer control

During the lifetime of a satellite, its attitude is continuously disturbed by different phenomena,
generating disturbance torques. Usually satellites are designed to keep a determined orientation in
a very precise way for relatively long periods of time. Disturbances can be divided in external and
internal. External effects are given by Space environment and they can affect the spacecraft even
if it was completely a rigid body. Internal disturbances instead are strictly related to spacecraft
structure, for example if there are internal moving parts or there is mass or radiation emission
by the spacecraft itself. These torques have to be attenuated by the control algorithm; that’s
why it has to be robust, in order to guarantee that the satellite is always pointed in the right
direction. Four different external sources of environmental disturbance have been taken in account:
Gravity gradient, Solar radiation pressure, Residual dipole and Aerodynamic drag disturbances.
Some of these forces can also cause orbit perturbations, but in this treatise only the attitude
disturbances have been considered without taking in consideration internal disturbances. In the
next figure influence of the different torques on a classical satellite has been dealt with over a
range of altitudes, as it can be found in [34]. Generally, up to an altitude of around 500 km,

Figure 3.1: Disturbance torques with respect altitude level [9]
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the aerodynamic torque is the main disturbance, but increasing the height, the gravity gradient
becomes predominant, as shown in figure 3.1. In this thesis, disturbances have been modeled as
it has been done in [18] [14] [8].

3.1 Gravity gradient disturbance

Gravitational force causes spacecraft to obey Keppler’s laws of planetary motion. Gravitational
attraction by the Sun and the Moon and movements of oceans affect spacecrafts, deviating them
from ideal elliptical orbit. Those irregularities usually are not taken in account for the attitude
control problem formulation of spacecrafts, since their effects in this case are negligible, but
only in scientific measurements or performing other satellite’s tasks. Instead the gravity effect
is considered for Spacecrafts in LEO orbit and, if their mass is distributed irregularly, a gravity
gradient torque τGG must be taken in account.

~τGG = 3
GM

R3
~unadir × J~unadir (3.1)

where:

• J = Spacecraft inertia;

• G = 6.6741× 10−11[ m3

Kgs2 ] Gravitational constant

• M = 5.9721× 1024[Kg]

• R = Orbit radius in the body reference frame [m]

• ~unadir is the nadir direction in the LVLH reference frame, in particular

• ~unadir = k̂LV LH

where:

~unadir = − R

norm(R)
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Figure 3.2: ’Gravitational disturbance torque, 5 orbits simulation with T2S controller’
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3.2 Air drag disturbance
When the spacecraft is moving in orbit, it is hit by atmosphere particles which create a disturbance
air drag force ~FAero.
The assumption of ideal vacuum in space environment is not precise. First, a boundary of space
has to be defined: usually an height of 100 km, above sea level, is often used because, roughly,
at this altitude air particles are very rare and a normal vehicle should travel faster than orbital
velocity to get sufficient aerodynamic lift from the atmosphere to support itself [34]. At the
same time, altitude of 122 km was recognized as the space shuttle reentry boundary since at that
height level, atmospheric drag becomes a dominant force. At the altitude of 700 km the average
air density is very low (1× 10−16 g

cm3 ). There are two main reasons why such a small amount
of air can affect satellite attitude and trajectory. First, air drag effects accumulate for the whole
lifetime of a spacecraft. Then, objects orbiting the Earth has to travel with huge velocities (for
an altitude of 700 Km this velocity will be approximately 7,5 km/s); high relative speeds cause
significant momentum transfer between spacecraft and colliding air particles.

Classical fluid dynamics drag equation gives a good estimation of an atmospheric drag force
acting on a satellite. This force will act in the opposite direction to the spacecraft speed vector,
as shown in equation 3.2.

~FAero,k =

n∑
k=1

~FAero,k =

n∑
k=1

−1

2
CDAD,kρν

2
r

~νr
νr

(3.2)

Where n is the number of spacecraft cross sectional areas exposed to the ram direction AD,k.

~νr = ~νECI − ~ωE × ~rECI (3.3)

Moreover, it is observed that atmospheric drag can introduce torques if the spacecraft center of
pressure lies far from center of mass drag force:

τAero =

n∑
k=1

~rGCk × ~FAero,k (3.4)

where:

• ~ωE = Spacecraft orbital angular velocity

• ρ = Air density

• CD = 2.2 Drag coefficient dependent on the spacecraft shape

• ~νECI = Spacecraft tangential velocity

• ~rECI = Orbital satellite radius

• ~rGCk
= Vector from the center of mass to the area center of the kth surface in the ECI

frame.

Unfortunately this model is mainly too simple. For greater precision, at orbital altitudes, atmo-
sphere should be modeled as individual particles colliding with the spacecraft since the average
distance, traveled by gas particles before hitting other particles, is on the order of kilometers. This
approach is known as free-molecular flow model and in this case is more precise than conventional
continuum flow model but it has not been taken in account in this thesis.
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Figure 3.3: Air drag disturbance model, 5 orbits simulation with T2S controller

3.3 Residual dipole disturbance
All the spacecrafts generate an unwanted dipole, called residual dipole, which is caused by electric
currents and magnetic materials in the spacecraft. In particular, Eddy currents can be induced
by the movement of conducting parts inside the satellite, through the external magnetic field
and high-hysteresis materials inside the spacecraft can periodically magnetize and demagnetize,
influenced by spinning magnetic flux vector. Interactions among the Earth’s magnetic field and
the satellite residual magnetic dipole generate a magnetic disturbance torque τr modelled as
follows:

~τr = ~mr × ~B (3.5)

Where mr is the magnetic moment of the residual dipole and ~B is the Earth’s local magnetic field.
In case of magnetic torque, the magnetic moment m can be usually tuned easily; for example the
problem might be eliminated by adding permanent magnets to set the net moment to zero. Some
spacecrafts are even designed to take advantage of this torque, as it will be discussed in the next
chapter.
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Figure 3.4: ’Residual dipole disturbance model, 5 orbits simulation with T2S controller’
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3.4 Solar radiation pressure disturbance
Environmental radiations, near Earth space, come mainly from three sources. First of all, direct
radiations from the Sun, of average 1371 W/m2, are the main sources and the only one consid-
ered in this thesis. Then, about 30 % of sunlight is reflected from the Earth, the rest of the
solar radiations, which hit the Earth, is absorbed and emitted back as infrared radiations. It is
well-known that radiations cause a pressure on surfaces, due to their intrinsic corpuscular nature.
Each photon stores some momentum that is partially transferred on impact. Efficiency of this
transfer depends on reflection, surface’s absorption, and transmission features. The electromag-
netic radiations, coming from the Sun, generate a normal force FSolar, known as solar radiation
pressure, on the nth surface of the spacecraft with an inclination with respect to the sun vector
equal to θk, as it is shown in the next equation

~FSolar =

n∑
k=1

~FSolar,k (3.6)

~FSolar,k = −PsAkcos(θk)[(1− ε)ŝ|B + 2εcos(θk)n̂k|B ] (3.7)

Where:

• cos(θk) = ŝ|Bn̂k|B
• Ps = Solar radiation pressure near the Earth

• Ak =The kth Sun- exposed area of the CubeSat

• ŝ|B = The Sun direction vector in the body frame

• n̂k|B = The normal vector of the kth surface

• ε = The surface reflectivity

A solar pressure torque occurs if the pressure center is not coincident with the center of mass of
the spacecraft:

~τSolar =

n∑
k=1

~rGCk
× ~FSolar,k (3.8)

Where ~rGCk
is the vector from the center of mass to the area center of the kth surface in the

body frame. Another important phenomena is given by the "thermal trust". Spacecrafts cannot
dissipate heat produced by on-board electronics through thermal conduction, therefore, they
usually keep thermal balance by employing radiators. Those devices emit heat energy into space
in form of infrared radiations. Since photons have non-zero momentum, these radiations impose
additional forces on satellite. Anyway in this treatise it has not modelled for a sake of simplicity.
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Figure 3.5: Solar radiation disturbance model, 5 orbits simulation with T2S controller

3.5 Magnetorquer model

Magnetorquers are sets of electromagnets which are positionated on the spacecraft to generate an
asymmetric magnetic field over an extended area. This field is controlled by switching currents
which flow through the coils, under a certain computerized control. The magnets themselves are
mechanically attached to the spacecraft, so that any magnetic force they exert on the surrounding
magnetic field will lead to a mechanical reverse torque on the chaser. This magnetic field can be
exploited for many reasons, in this case it has been exploited for the detumbling of the spacecraft.
After the launch in fact, inertias make the spacecraft rotate with a certain angular rate so it has
to be detumbled in order to let the attitude control work. The originated magnetic field from the
magnetorquer interacts with the Earth magnetic field by generating a torque T~m which decreases
the angular rate of the spacecraft.

3.6 Magnetic field model

Assumptions:

• Dipole model approximation of the Earth magnetic field

• No Earth rotation

• No orbit precession

The magnetic field is computed in the LVLH reference frame as follows [4]:

~bLV LH =
µf
R3

 cos(nt)sin(i)
−cos(i)

2sin(nt)sin(i)

 (3.9)

Then it has been transformed in the ECI reference frame. Doing so, the magnetic torque in the
ECI reference frame can be computed as:

TECI = ~bECI × ~m = b̃m (3.10)

Then, an average magnetic field has been computed through the following formula:
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bavg =
1

T

∫ T

0

b̃b̃T dt =
µf
R3

cos(i)2 + 1
2sin(i)2 0 0

0 cos(i)2 + 2sin(i)2 0
0 0 5

2sin(i)2

 =

2.26210−5 0 0
0 3.13410−5 0
0 0 1.45210−5

 Tesla

Kgm2

(3.11)

Where:

• b̃ = skew matrix, earth magnetic field (measured by onboard magnetometers)

• µf = 7.91× 1015Wbm Earth’s magnetic moment constant

• i = orbit’s inclination with respect the geomagnetic equatorial plane

• ~bLV LH = Earth magnetic field in the orbit reference frame

• ~bECI = Earth magnetic field in the Earth centered inertial reference frame

• T = Orbit period for the satellite

• n = 2π
T mean motion of the satellite

• R = 6757Km mean radius of the orbit

• TECI = Torque in the Earth centered inertial reference frame

• ~m = magnetic dipole vector generate by the magnetorquers

• q = Orientation of the body with respect to the inertial reference frame

Then, the average Earth magnetic field in the body frame Bavg has been computed from the
average magnetic field ~bECI . Finally Bavg is made dependent on the Spacecraft attitude through
a basis transformation in order to achieve the magnetic field in the body reference frame B, shown
in figure 3.6.
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Figure 3.6: Earth magnetic field model
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3.7 B-dot control
As seen in [4], the aim of this control is to decrease the Kinetic Energy Ek of the spacecraft:

Ek =
1

2
Iω2 (3.12)

This means that the power d
dtEk has to be less than 0 to ensure a decreasing of the angular

velocity.

d

dt
Ek = T~mω < 0 (3.13)

The control magnetic momentum is generated through coils in which currents flow and its expres-
sion is the following:

~m = niA (3.14)

Where:

• n = Number of coils

• i = Current flowing in the coils

• A = Section of the coils

For control aims the requested amplitude magnetic momentum has been computed through the
following formula:

~m = −kdotḂavg (3.15)

Where:

kdot =
R3

µf
KDI3×3 (3.16)

So that the resultant torque T~m will be:

T~m = (−kdotḂavg)×Bavg (3.17)
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Chapter 4

Controllers deisgn

4.1 Introduction

Control theory is divided into two main areas: Linear control theory based on systems described
by linear differential equations which obey the superposition principle. A very common and im-
portant subclass is based on systems which, in addition, have constant parameters in time, called
linear time invariant (LTI) systems. These systems can be solved by classic frequency domain
mathematical techniques. Nonlinear control theory covers a wider and more real class of systems,
since all real control systems are nonlinear. These systems are often characterised by nonlinear
differential equations and they don’t obey the superposition principle (linearity and homogene-
ity). Moreover they may have multiple isolated equilibrium points, exhibit properties such as
limit cycle and chaos, and the may not present solution for all times. The related mathematical
techniques to handle this categories of systems are more rigorous and much less general, often
applied only to a small class of systems. If the cases of interest are only near stable points,
nonlinear systems can often be linearized by approximating linear systems, then linear techniques
can be used. Nonlinear systems are often analyzed using numerical methods on computers, for
example, by simulating their operation using a simulation language. Even if the plant is linear,
a nonlinear controller has interesting features such as simpler implementation, more accuracy,
reduced computing power or faster speed, which justifies the harder design procedure.

4.2 Attitude Control

In this section, the exploited attitude controllers will be explained. A closed loop feedback has
been used for the considered non-linear system. For the purpose of this thesis both a Twisting
second order Sliding mode (T2S) controller and an Linear parameter-varying controller (LPV) are
designed. Two variants of the considered T2S are taken in account, showing how the unwanted
chattering phenomena can be mitigated and ,in general, cancelled, exploiting slightly different
control laws.

4.2.1 Sliding mode Theory

Sliding mode control (SMC) is a well-established nonlinear control method which alters the dy-
namics of a nonlinear system by applying a discontinuous control signal, forcing the system to
"slide" along a desired trajectory [20]. It is characterized by solid mathematical bases, moreover
an important feature of this control method is the robustness against imprecise knowledge of the
plant to control and against disturbances. A so-called sliding surface is defined as subset of the
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state space, on which the trajectory of the plant is desired to lie. A feedback law is designed
to bring the plant trajectory on the sliding surface and, once there, to stay close to this surface.
Intuitively, sliding mode control exploits practically infinite gain to force the trajectories of a
dynamic system to slide along the restricted subspace. Since the control can be seen as switching
between two states it doesn’t need to be precise and it will not be sensitive to plant parameter
variations. Additionally, because the control law is not a continuous function, the sliding mode
can be reached in finite time.

4.2.2 First order Sliding mode
Consider the SISO nonlinear system affine in u:

ẋ = f(x) + g(x)u

y = h(x)
(4.1)

where x ∈ Rn is the state vector , u ∈ R is the command input, y ∈ R is the output, and f , g
and h are smooth functions of Rn . Defining the system output y(t) is required to track a desired
reference signal r(t). Define the following tracking error: ỹ = y− r, the control goal is to make it
as small as possible, and possibly, to make it converge to zero. The sliding surface is defined as:

S(t) = {x ∈ Rn : σ(t) = 0} (4.2)

Where the function σ is:

σ(x, t) = ỹγ−1 +Kγ ỹ
γ−2 + ...+K2ỹ (4.3)

Ki are chosen so that all the roots of the polynomial

P (γ) = λγ−1 +Kγλ
γ−2 + ...+K2 (4.4)

have negative real part. If the trajectory is confined to the sliding surface, then ỹ goes to 0
exponentially, according to the roots of P (λ). The control law u has to be computed so that the
sliding surface S is both invariant (if the trajectory is on S, it remains on it) and attractive (if the
trajectory is outside S, it is forced to move toward it). The motion of the system on the surface
is called sliding mode.

Figure 4.1: Sliding mode trajectory convergence [20]
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Supposing that at a certain time t the trajectory is on the sliding surface, this means that for
t :

σ(x(t), t) = 0 (4.5)
To guarantee that S is an invariant set:

σ̇(x(t), t) = 0

Recalling the definition of σ the equation 4.5 can be written as:

ỹγ +Kγy
γ−1 + ...+K2

˙̃γ = 0 (4.6)

Where:
ỹγ = rγ − yγ = rγ − a(x)− b(x)u (4.7)

Solving for u the following control law is obtained:

us =
1

b(x)
(rγ − a(x)Kγ + ỹγ−1 + ...+K2

˙̃γ = 0 (4.8)

To make S attractive a discontinuous term is added so that :

u = us +K1sign(σ) (4.9)

However this discontinuous term can cause a phenomenon called chattering, high frequency os-
cillation around the sliding surface. To avoid this problem, the sign can be approximated with a
sigmoid function where η is a design parameter which represents the slope of the approximated
sign.

sign(σ) ' tanh(ησ) (4.10)
However, the ultimate accuracy and robustness of the sliding mode can be partially lost. Recently
invented higher order sliding modes (HOSM) generalize the basic sliding mode idea acting on the
higher order time derivatives of the sliding surface. Keeping the main advantages of the original
approach, at the same time they reduce the chattering and provide even higher accuracy in
realization. The twisting controller with relative degree 2 has been chosen to be implemented in
the case of the analyzed spacecraft.

Figure 4.2: Chattering around the sliding mode trajectory [20]
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4.3 Twisting controller with relative degree 2
This controller is based on the same theory of a first order sliding mode but exploiting the second
derivative in time of the chosen sliding surface, as discussed in [17]. Defining a second-order
general sliding surface:

σ̈ = h(t, x) + g(t, x)u g(t, x) /= 0 (4.11)

where x are the states, u is the input and the general function h and g are computed respectively
as:

h(t, x) = |σ̈|u=0| g(t, x) =
∂σ̈

∂u
(4.12)

In order to achieve overall stability of the controlled system and the requested accuracy both the
functions h and g have to be bounded:

|σ̈|u=0| ≤ C 0 < Km ≤
∂σ̈

∂u
≤ KM (4.13)

The final control law is:

u = −r1sign(σ)− r2sign(σ̇) (4.14)

The gains r1 and r2 ∈ R3 have to be computed through the following system of equations:{
Km(r1 + r2)− C > KM (r1 − r2) + C

Km(r1 − r2) > C
(4.15)

This control law provides σ = σ̇ = 0 attracting the trajectory in finite time.

4.3.1 Case of study
For this control problem the sliding surface σ has been chosen as follows:

σ = ω̃ − k2q̃ = ω − ωd − k2q̃ (4.16)

The derivative in time of the chosen sliding surface is:

σ̇ = ω̇ − ω̇d − k2 ˙̃q = −J−1ω × Jω + J−1u− ω̇d +−k2
2

(q̃0ω̃ + q̃ × (ωd + ω)) (4.17)

The values C , Km and KM are computed through the second derivative of the sliding surface
which is the following expression:

σ̈ =
d(−J−1ω × Jω)

dt
− ω̈d + J−1u̇− k2

2
(q̃0 ˙̃ω + ˙̃q × (ωd + ω) + q̃ × d(ωd + ω)

dt
(4.18)

where:

d(−J−1ω × Jω)

dt
= −J−1ω̇ × Jω − J−1ω × Jω̇

˙̃q =
1

2
(q̃0ω̃ + q̃ × (ωd + ω))

ω̇ = −J−1ω × Jω + J−1u
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Practically, in order to compute the gain C the value|σ̈|u=0| has been computed and a vector
Cgain ∈ R3, important gain to tune the performances of the controlled system, has been added
to it in order to ensure the condition in the equation ??. The same has been done for both the
gains Km and KM : first ∂σ̈

∂u has been computed as follows:

∂σ̈

∂u
= −J−1 ∂ω̇

∂u
× Jω − J−1ω × J ∂ω̇

∂u
− J−1 ∂u̇

∂u
− k2

2
(q̃0

∂ω̇

∂u
+ q̃ × ∂ω̇

∂u
) (4.19)

where:

∂ω̇

∂u
= J−1

1 0 0
0 1 0
0 0 1

 (4.20)

Then in order to satisfy the condition ?? the equation 4.19 has been inverted in terms of the
variable ∂u̇

∂u ∈ R
3 so that ∂σ̈

∂u ∈ R
3×3 = 03×3, then an additive diagonal matrix K3 ∈ R3×3 has

been introduced as follows:

∂u̇

∂u
= J [J−1 ∂ω̇

∂u
× Jω + J−1ω × J ∂ω̇

∂u
− k2

2
(−q̃0

∂ω̇

∂u
+ q̃ × ∂ω̇

∂u
)] +K3 (4.21)

Then u̇ is computed through the following integral, both to avoid algebraic loops in the Simulink
scheme and to be consistent with the previous considerations:

u̇ =

∫
∂u̇

∂u
du (4.22)

A further integration over time has been performed in order to obtain the input command u ∈ R3

which has been exploited in the expression of σ̇. Finally, the resultant control law in eq. 4.14 can
be computed by considering the time varying vector gains r1 ∈ R3 and r2 ∈ R3 computed through
eq. 4.15. A variant of the classic control law in equation 4.14 has been exploited to cancel the
chattering phenomena: a smoother function (hyperbolic tangent with slope parameter η = 100)
has been exploited instead of the sign as follows:

u = −r1tanh(100σ)− r2tanh(100σ̇) (4.23)

4.3.2 LPV theory

Linear parameter-varying systems are a peculiar class of nonlinear systems, suitable for the control
of dynamical systems with parameter variations. LPV techniques provide a systematic design
procedure in order to achieve linear gain-scheduled controllers. This kind of problem has to be
simplified to a parameter dependent system, a linear system whose state-space definition are
known functions of time-varying parameters. The variation in time of each of the parameters is
not known in advance, but it can be measured in real time. This kind of control is very suitable
for disturbances and uncertainties rejection since a control parameter matrix is dedicated for this
aim. Moreover LPV theory is a very effective control technique to accommodate plants that
exhibit parameter-dependent dynamics,

4.3.3 LPV Model Formulation

In LPV control theory, the spacecraft dynamic has been modeled as an LPV system and a Gain-
Scheduled controller has been applied to this model using Linear Matrix Inequalities (LMIs), as it
has been done in [13], [25]. Due to the excess of the number of scheduling parameters in the LPV
system, the so called Parameter dependent coordinate transformation method has been exploited:
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a virtual state variable has been introduced together with a parameter-dependent coordinate
transformation. The original plant is transformed into a simple LPV model, with fewer vertices
than the original plant. The controller for this simple LPV model can be designed easily, due to
the small number of vertices; then through the coordinate transformation a controller has been
obtained for the original plant. In the proposed research the linearized plant is still dependent on
the reaction wheels angular velocity. Recalling equation 2.3 and 2.4 an LPV model for the 3-axis
attitude control of a spacecraft has been developed by exploiting reaction wheels. The equation
2.4 has been linearized through jacobian linearization around the equilibrium point (ωeq = 0

Ω̇ = 0 ) in order to achieve the following linearized state space representation of the spacecraft:

ẋ = Ae(ρ)x+Beu (4.24)

where:

Ae(ρ) =

[
J−1(PJRwΩ̇)× 03×3

1
2 (̃Q)(q) 03×3

]
(4.25)

Be =

[
−JRwJ−1P

03×4

]
(4.26)

Q̃(q) = q̃0I3×3 + q̃× (4.27)

The scheduling parameter vector is ρ = PΩ ∈ R3 and in this case the control input vector has
been chosen as u = Ω̇ while the state variables vector is x = [ω q̃]. The matrix Q̃ can be replaced
by a convex hull with scheduling parameter q̃ so that the equation 4.24 can be modeled as an LPV
system with 6 scheduling parameters and a total number of vertices for the convex hull equal to
64 (26). In this case the big number of vertices leads to a not easy system to handle for the design
of the controller. A Parameter-Dependent Coordinate Transformation (PDCT) matrix has been
exploited to delete the scheduling parameter q̃.

T =

[
I3×3 03×3

03×3 Q̃(q̃)−1

]
(4.28)

Then a virtual state β has been introduced so that β̇ = Q̃(q̃)−1 ˙̃q, in this case the simplified LPV
model is:

T ẋ = TAeT
−1Tx+ TBe (4.29)

Leading to the following general model:

˙̃x = Ãex̃+Beu (4.30)

where: x̃ = Tx = [ω β]. Due to the coordinate transformation matrix Ae can be written in the
following form:

Ãe =

[
A(ρ) 03×3
1
2I3×3 03×3

]
(4.31)

4.4 LPV controller design
The exploited gain scheduled controller, designed for the analyzed LPV model, guarantees stabil-
ity, robustness and good overall control performances for the plant in equation 4.30. The control
command has been computed as:
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u = −K̃x̃ (4.32)

As it has been said, the control problem has v = 8 vertices, so the LPV system can be expressed
by the following polytopic representation:

Ãe(ρ) =

{ υ∑
i=1

γi(ρ)Aei : γi(ρ) ≥ 0,

υ∑
i=1

γi(ρ) = 1

}
(4.33)

So that the related controller for the simple LPV model can be constructed as:

K̃(ρ) =

{ υ∑
i=1

γi(ρ)Ki : γi(ρ) ≥ 0,

υ∑
i=1

γi(ρ) = 1

}
(4.34)

The following generalized plant has been introduced:{
˙̃x = Ãex̃+Beu+ Ew

z = Cx̃+Du
(4.35)

Where E, C and D are design parameters: E is chosen so that a potential disturbance can be
rejected and its value is related to the amplitude of the disturbance itself; C and D are chosen so
that they satisfy the following conditions:

CTD = 0 DTD > 0 (4.36)

w and z are respectively the disturbance input vector and the performance output vector for the
LPV model in eq. 4.35. For the controller synthesis the following LMI problem has to be solved;
the unknown variables are W̃i, X̃ and Z̃ :[

ÃeiX̃ −BeW̃i + (ÃeiX̃ −BeW̃i)
T (CX̃ −DW̃i)

T

(CX̃ −DW̃i) −I

]
< 0 (4.37)[

X̃ E

ET Z̃

]
> 0 (4.38)

For all 1 < i < υ. Since the number of states is 6 and the control input u has dimension 4, the
matrix K̃ must have dimension 4x6. So if X̃ ∈R6×6 , consequently W̃i ∈ R4×6. Then the Schur
complement lemma has been used to find the dimensions of the matrices: E ∈ R6×3, Z ∈ R3×3

and I ∈ R10×10 in the equation 4.37. Exploiting the optimal solution X̃ and W̃i to the problem in
equation 4.37 and 4.38, the controller can be synthesized by substituting the υ obtained controllers
K̃i in equation 4.34. Once the controller gain K̃(ρ) has been found, the coordinate transformation
matrix has to be used again to adapt the obtained controller to the original plant in eq. 4.24 so
that:

u = −K̃(ρ)T (q)x (4.39)
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4.5 Position Control System Design

Spacecrafts have to orbit the Earth, maintaining a certain trajectory and especially in aerospace
field, the requested tolerances are very strict. Orbit and position control are crucial topics of inter-
est nowadays, especially in the case of rendezvous and docking maneuvers or in formation flights
problem, that’s why a relative position control has been considered in this thesis. Rendezvous
and docking maneuvers are crucial key technologies in many modern real missions. They consist
of a series of orbital maneuvers where the controlled spacecraft (chaser) capture a passive target
vehicle. The mission goal is reached when the chaser vehicle safely and efficiently approaches, with
very strict requirements in terms of position, velocity and with zero angular velocity [3]. When
the target is reached, the chaser has to remain stationary until the holding system mechanically
grabs and docks the target vehicle. The problem requires the control of both the relative position
and the relative attitude of the vehicles. Another very important innovation to consider, which
implies the relative position control, is the formation flight concept: Multiple satellites can be
coordinated together, in a determined formation, to accomplish the mission of one larger, and usu-
ally more expensive, satellite. Coordinating smaller satellites has many advantages with respect
single bigger satellites: quicker building times, simpler designs, cheaper replacement exploiting
higher redundancy and the possibility to research possible targets from multiple angles or at
multiple times. Moreover, sensitivity of scientific instruments can often be increased by expand-
ing the effective observation area (separation distances) by distributing the scientific instruments
over many separate satellites. Satellites has to react to each other and maintain a close proximity
without human intervention. Multiple position controls allow satellites to autonomously react
to each other’s orbit changes quickly and efficiently. Unique measurements can be obtained by
combining data from several satellites rather than mounting all the instruments on one costly
satellite. In this treatise cold gas thrusters are used as actuators: This cold gas propulsion system
is a type of rocket engine which exploits the expansion of a pressurized gas to generate thrust.
Since no combustion is needed, they have lower thrust and efficiency compared to conventional
monopropellant and bipropellant rocket engines. They are characterized by a very simple design,
for this reason, they are the cheapest, simplest, and most reliable propulsion systems available for
orbital maintenance, maneuvering and attitude control. CubeSat propulsion system development
has been mainly focused on cold gas systems since norms against pyrotechnics and hazardous
materials are very strict on this kind of satellites.

4.5.1 Plant model

Under the assumption of circular orbit about a central body, considered a point mass, a first
approximation of the relative motion of a chase spacecraft with respect to a target spacecraft
can be described by the Hill’s equations of motion, in the target reference frame. The x-axis is
along the unit vector pointing the Earth center from the target spacecraft, the z-axis is along the
angular momentum vector of the target spacecraft, and the y-axis completes the right handed
system. They are a simple and effective tool for preliminary analysis of spacecraft formations or
spacecraft rendezvous and docking maneuvers.
Hill’s equation can be written as follows:

ẍ =
Fx
mc

+ 2ωż

ÿ =
Fy
mc
− ω2y (4.40)

z̈ =
Fz
mc
− 2ωẋ+ 3ω2z
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The chaser mass is considered time-varying, according to Tsiolkovsky rocket equation, 4.41, as
follows:

ṁ =
F

gIsp
(4.41)

where:

• µ is the standard gravitation parameter

• F = norm(

FxFy
Fz

)

• Isp is the specific impulse of the the exploited actuators. It is the total impulse (or mo-
mentum variation) delivered per unit of consumed fuel. Basically, it is a measure of how
efficiently a rocket uses propellant and, since in this case cold gas thrusters are exploited,
the considered specific impulse has been chosen equal to 56 seconds.

• g is the nominal gravitational acceleration equal to 9.806 m
sec2

The orbit angular velocity ω, exploited by the CubeSat to remain in orbit, is computed through
the following equation:

ω =

√
µ

rt

3
(4.42)

where rt is the spacecraft orbital radius

4.5.2 First order Sliding mode position controller

For the position control of the exploited spacecraft model, a first order Sliding Mode controller
has been designed. Recalling the already considered Sliding mode theory, the exploited sliding
surface is the following:

σ = (v − vr) +Kp(r − rr) (4.43)

where:

• v =

ẋẏ
ż

 is the Spacecraft relative velocity in the target reference frame

• r =

xy
z

 is the Spacecraft relative position in the target reference frame.

• vr =

ẋrẏr
żr

 = is the desired velocity, which has to be followed by the spacecraft to respect

the approaching phase requirements, thorugh the control algorithm.

• rr =

ẋrẏr
żr

 = is the desired trajectory, which has to be tracked through the control algo-

rithm.

• Kp = is a design parameter to tune the controller.
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By recalling the already mentioned sliding mode theory, considering the Sliding surface σ of the
previous section, the control law can be achieved so that the sliding surface derivative in time
σ̇ = 0. Substituting equations 4.40 in equation 4.43, it is possible to achieve the following system
of equations:

Fx
mc

+ 2ωż − ẍr +Kp(x− xr) = 0

Fy
mc
− ω2y − ÿr +Kp(y − yr) = 0 (4.44)

Fz
mc
− 2ωẋ+ 3ω2z − z̈r +Kp(z − zr) = 0

Then the input force vector u =

FxFy
Fz

 is computed by inverting equation (4.44) in order to isolate

the single force components as follows:

Fx = mc(−2ωż + ẍr −Kp(ẋ− ẋr)) (4.45)

Fy = mc(ω
2y + ÿr −Kp(ẏ − ẏr)) (4.46)

Fz = mc(2ωẋ− 3ω2z + z̈r −Kp(ż − żr)) (4.47)

In order to make the sliding surface attractive, the discontinuous term sign(σ) has been added to
the achieved input vector. The resultant control law uf is the following:

uf = u−K1sign(σ) (4.48)

where K1 is a control parameter, chosen to tune the control performances.
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Chapter 5

Simulation results

Several simulations have been performed in this chapter: A real scenario has been chosen for what
concerns both attitude control and magnetorquer detumbling model. For the position control
problem instead, a less complete model is discussed, in order to test the behaviour and the
performances of the exploited controller. Simulations are conducted for attitude stabilization
problem to compare performances and robustness of the LPV controller and of both the two
variants of the T2S controller. The scientific observation of the Crab Nebula is considered for this
aim very strict pointing accuracy is needed even in presence of uncertain external disturbances or
plant variations. Attitude tracking simulations might be performed as well, in order to show the
effective performances of the exploited controllers, but a real scenario has been preferred.

5.1 Controllers parameters
It is very important to understand how the exploited gains have been chosen to comprehend
the following results. As it is possible to see in table 5.1 the two T2S controllers have been
tuned in different way. In fact, the gain k2, exploited in equation 4.16, gives the possibility
to increase the damping coefficient of the system, changing the resultant time response as well.
Gains KM,Km and C are design matrices exploited to respect conditions 4.13 , in order to achieve
the overall stability of the system, as already said in chapter 4, moreover transient performances
improve consistently, by increasing the gain vector Cgain. The Cgain value has been decided, so
that a balance between damping answer and good time responde. The constant matrix k3 is very
important in this treatise because it allows the designer to decrease the input entity to the system.
In the case of the T2S controller with sign control law, it is chosen equal to 350I3 so that the
chattering phenomena, strongly notable mainly on the angular velocity response, can be reduced,
leading to acceptable steady state tracking errors but slower responses. For the hyperbolic tangent
variant instead, since the chattering problem is cancelled a priori, it is small, in order to achieve
bigger inputs and, consequently, much better performances.

T2S (sign) T2S (tanh)
k2 0.52 I3 I3

KMgain 0.001 I3 I3
Kmgain 0.001 I3 I3
Cgain [7 7 7]’ [12 12 12]’

k3 350 I3 50 I3

Table 5.1: Exploited gains for the Twisting Slide mode controllers variants
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For what concerns the LPV controller, gains C and D are design parameters, chosen in order
to respect condition 4.4, and they are strictly related to the performances of the system. Ma-
trix E instead, is related to the uncertainty rejection and it is tuned to attenuate the proposed
disturbances.

C =

4.5I3 03×3

03×3 I3
04×3 03×3

 D =

[
06×4

0.006I4

]
E = 5

[
I3

03×3

]

5.2 Attitude control simulations

Figure 5.1: 1HOPSAT (1st-generation High Optical Performance Satellite)

The attitude control results are verified on the 1HOPSAT 12u CubeSat in Figure 5.1. An uncertain
time-varying component ∆J is added to the nominal inertia model J0 to test the robustness of the
proposed controllers against a real scenario plant variation: the inertia of the proposed spacecraft
model changes due to the solar panels extension to reach the final desired configuration.

J0 =

0.2853 0 0
0 0.2853 0
0 0 0.1467

Kgm
2

∆J =

0.0047 0 0
0 0.0127 0
0 0 0.0104

Kgm
2

Then two different disturbance sources have been added to test the controllers robustness: the four
modelled sources of disturbances, as it has been discussed in chapter two, have been exploited as
first source of uncertainty, then an initial angular velocity is taken in account to test the controllers
under a further instability condition.
The initial conditions for what concerns respectively quaternions and angular velocity are: q0 =
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[
1 0 0 0

]T and ω0 =
[
0.005 0.005 0.005

]T . The reference for the stabilization problem
has been chosen as: qd =

[
0.1029 0.0416 0.3725 0.9214

]T . The spacecraft is supposed to
be equipped with reaction wheels with 0.1 Nm maximum torque and 50 Nms maximum angular
momentum each, as it has been discussed in chapter two, exploiting the control scheme in figure
2.2 .
The exploited controllers are able to totally reject both the uncertainty on the plant and the
proposed external disturbance, in fact the overall stability of the control system has been kept
while the performances slightly change respectively in time and on the steady state tracking
error.
In this chapter, in order to deal with the analyzed results, the transient performances will be
treated by taking in account the time that the analyzed vector norm exploits to reach a value
below 0.05. For the steady state response instead, the norm, after a time equal to 5 times the
system time constant, is considered, as shown in table 5.2.
In particular, the quaternions result is shown in figure 5.2, in the case of the Sliding Mode
Controller with the "sign" control law.
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Figure 5.2: Quaternions result: T2S with "sign" control law

This is the worst result, as it is possible to see in table 5.2, for the presence of both a big
undershoot of quaternion q1 and an overshoot in quaternion q2, moreover both performances in
time and in steady state are not comparable with the other two attitude controllers. In this
case results are not satisfying because of the chattering phenomena, in fact, in order to achieve
acceptable outcomes, the input has been reduced in order to decrease the tracking error in steady
state, with consequent degradation of the performances, as it is possible to see in figure 5.3. The
maximum input is equal to 0.019 Nm and the system keeps this value for the whole simulation,
even if the tracking error settles approximately to 0.
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Figure 5.3: Inputs result: T2S with "sign" control law
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Figure 5.4: Angular velocity result: T2S with "sign" control law

Chattering is strongly present on the angular velocity as well, as shown in figure 5.4. On the
other hands, the stabilization goal is achieved, since the three components of the angular velocity
go to 0 in finite time.
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Figure 5.5: Quaternions result: T2S with "tanh" control law

Then the T2S control with tanh control law has been analyzed: in this case, the results are
effective, in fact both the external disturbances and plant uncertainty are totally rejected. The
initial angular velocity is damped in 8.485 sec with an error in steady state of 6.64×10−9, as shown
in figure 5.6, leading to a quaternions stabilization time of 8.7 sec, versus the 19,97 sec exploited
by the T2S controller with the "sign" law, as shown in figure 5.5. Moreover, the quaternions
steady state tracking error absolute value improves as well, reaching a value equal to 9.08× 10−8.
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Figure 5.6: Angular velocity result: T2S with "tanh" control law

Undershoots and overshoots problems are reduced with respect the previous analyzed case,
moreover chattering is totally deleted, as it is represented in figure 5.7, with a maximum input
amount |umax| = 0.147Nm and a value of torque in steady state which is much better than the
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previous analyzed case, reaching a maximum value of 1.16× 10−6Nm.
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Figure 5.7: Inputs result: T2S with "tanh" control law

The exploited sliding surface has been represented, for the two variants of the exploited T2S
controller, in figure 5.8. In particular, in the case of the T2S with tanh control law, the transient
time is 2.628 seconds while, for its variant with the sign, it is equal to 10.023 seconds. In steady
state in the first case a norm of 1.176×10−4 is achieved while in the second case the norm increases
to a value equal to 3.072× 10−3. The sliding surface derivative is shown in figure 5.9 for both the
sign and tanh variants. Transient performances are respectively 7.07 seconds and 12.003 seconds
while the steady state norm is respectively 2.855× 10−5 and 7.457× 10−4.
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Figure 5.8: Sliding surface results

42



Simulation results

0 20 40 60 80 100

time[s]

0.05

0.1

0.15

0.2

0.25

0.3 T2S (sign)

T2S (tanh)

Figure 5.9: Sliding surface derivative results

Finally, the last control law is analyzed: the LPV controller ensures better results than the
T2S controller with "sign" control law but it is less effective than the one with the "tanh" control
law, keeping the robustness properties which characterizes this three controls. Quaternion results
can be seen in figure 5.10, showing a steady state tracking error absolute value equal to 1.74×10−7

and a transient equal to 16.025 seconds.
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Figure 5.10: Quaternions result: LPV control

For what concerns the angular velocity results, shown in figure 5.12 a maximum steady state
tracking error of 8.578× 10−9 is reached with transient time equal to 11.12 sec.
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Figure 5.11: Inputs result: LPV control

In this case the system answer is smoother, the quaternions response presents a very smooth
shape with no overshoot on quaternion q2 and no undershoot on quaternion q1 on the contrary of
the other two cases.
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Figure 5.12: Angular velocity result: LPV control law

The maximum input amount is slightly bigger than the T2S controller, in fact |umax| =
0.223Nm while in steady state the maximum input norm is equal to 1.16× 10−6 as it is possible
to see in table 5.11.
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Controllers Steady precision Time [sec]
(|q̃|) |ω̃| (|q̃|, |ω̃|) ≤ (5e− 2,5e− 2)

T2S (sign) 4.98e-4 3.12e-3 (19.97, 17.39)
T2S (tanh) 9.08e-8 6.64e-9 (8.726, 8.485)

LPV 1.74e-7 8.578e-9 (16.025, 11.11)

Table 5.2: Simulation results
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5.3 Magnetorquer simulation
For the considered simulation taking in account a maximum possible magnetic momentum m =
0.6Am2 from the physical configuration of the used coils and assuming a starting velocity ω0 =[
1 1 1

]
rad
sec , the magnetorquer exploits about 15 hours to detumble the Spacecraft. The angular

velocity settles to a value below |0.0071| radsec , as it is possible to see in figure 5.13.

Figure 5.13: Angular velocity under Magnetorquer control

The results are acceptable, in fact the kinetic energy of the spacecraft is decreased considerably,
taking in account that 1 rad

sec , around every axis, is a quite dangerous and not common operative
situation. Therefore, this simulation shows the effectiveness and robustness of the b-dot control
even in hard operative conditions. Moreover it is important to highlight how the exploited reaction
wheels can be desaturated through this control, just exploiting the natural Earth magnetic field.
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5.4 Position control simulation

A three-degree-of-freedom simulation is considered to demonstrate the tracking performance of
the proposed sliding-mode controller. In this case the simulation doesn’t reflect a real mission,
but it is effective to show the performances of the exploited SMC controller. Considering the 12u
CubeSat 1HOPSAT, the simulation initial conditions assume that the chaser center of mass is
located at a distance of 10 m in the target reference frame.
The maneuver starts at space coordinates r0 =

[
10 10 10

]
[m] with an initial speed v0 =[

0 0 0
]

[ msec ] at an orbit altitude of 400 km, which is the same orbit of the target. The considered
initial mass m0 is assumed equal to 28 Kg, taking in account the maximum fuel mass.
The simulation is carried out for a total period of five orbits, by taking in consideration that one
orbit is correspondent to a simulation time of 310 seconds. The desired trajectory for the spacecraft
rd = 2.5

[
sin(0.01) sin(0.02) sin(0.03)

]
[m] has been chosen so that the chaser approaches the

target with a sinusoidal behaviour along the three axis. Consequently, the desired velocity is
vd =

[
0.25sin(0.1) 0.05sin(0.02) 0.075sin(0.03)

]
[ msec ]. The position evolution of the chaser is

shown in figures 5.14. Uncertainties are not taken in account, in fact this study is focused on the
performances of the exploited SMC rather than its robustness.
During the transient, the norm of the position vector goes below a value of 0.05 in 122.97 seconds,
showing a steady state tracking error norm equal to 1.535× 10−3.

0 200 400 600 800 1000 1200 1400 1600

time [s]

-5

0

5

10

P
o
s
it
io

n
 [
m

]

x

x
r

y

y
r

z

z
r

Figure 5.14: Position result: Sliding mode orbital control

The controlled Spacecraft tangential orbital velocity is shown in figure 5.15. The transient
time is considered so that the norm of the velocity tracking error vector is |r̃| ≤ 0.05 in 63.16
seconds.

47



Simulation results

Figure 5.15: Velocity result: Sliding mode orbital control

In steady state the maximum norm reaches a value of 3.31 × 10−4. A small chattering is
registered on the input forces but it doesn’t affect the overall result, as it is possible to find out
in figure 5.16.
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Figure 5.16: Input result: Sliding mode orbital control

As it is possible to see in figure 5.17, the fuel mass finishes after a time period of about
three orbits, reminding that during the simulation, an orbit time has been assumed equal to 310
seconds, in order to be coherent with all the exploited control quantities.
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Figure 5.17: Mass evolution

Finally, in figure 5.18 the related sliding surface has been shown: in this case it presents a
transient time equal to 12.031 seconds. The related norm in steady state reaches a value equal to
2.799× 10−4
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Figure 5.18: Orbital control sliding surface evolution

The exploited gains for this control have been chosen as follows: Kp = 0.05 and K1 = 1. This
values are chosen in order to achieve a good balance between transient and damping performances.
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Chapter 6

Conclusion & Future works

In conclusion, this treatise can be summed up in four main topics: Spacecraft model and Reaction
wheels actuator models, Attitude control, Magnetorquer model and Position control.
The exploited satellite plant has been modeled taking in account the quaternion kinematics and the
spacecraft dynamics through Euler’s equations, with a particular attention to the used reference
systems.
Then reaction wheels have been schematized taking in consideration both their inertia in the
spacecraft body reference frame, and their physical limitations. Results have been tested in the
overall control scheme, by performing the simulations in a more real scenario. The model reacts
well to the controller input, saturating the additional amount of angular momentum and torque.
A notable result of this section is how the single reaction wheels can be incorporated in a main
configuration (square pyramid configuration) and consequently treated as a single block able to
filter the input signal from the controller (maintaining the attention on the actuators bounds).
For addressing the spacecraft attitude control problem both an LPV controller and a Twisting
Second Order Sliding Mode controller have been designed. The classical sliding mode control law
(with the sign) has been compared with a slightly different control law (exploiting the hyperbolic
tangent instead of the sign) to highlight performances and chattering rejection.
The proposed controllers are robust and finite-time stable, in fact stability is kept even under plant
uncertainties and external disturbances. Performances slightly change due to plant variations with
negligible consequences for the overall performances. In particular, the T2S with the sign control
law presents performances in transient which are much less effective than the other two used
controllers: Respectively 50 % less than the T2S controller with tanh variant and the 20% less
than the LPV controller. For what concerns the performances in steady state, the T2S is only able
to reach a quaternion tracking error norm value equal to 4.98e− 4, which is an acceptable result
under these uncertainty conditions, but it is not comparable with other two exploited controllers
which are able to reach a steady state quaternion tracking error equal to 9.08e − 8 (T2S with
tanh) and 1.74e − 7 (LPV). These considerations allow us to conclude that the T2S controller
with sign control law presents the weakest performances while the best result is achieved with the
Twisting Sliding mode controller with the hyperbolic tangent control law. The third section of
this thesis deals with a b-dot control exploited to reduce the kinetic energy of the system through
a magnetorquer. The magnetorquer model shows real performances in time by making the overall
attitude control treatise complete. In fact, it is shown that both the detumbling operation of the
spacecraft and the desaturation of the reaction wheels are possible in real operational times. In
particular, it is shown that an initial velocity vector equal to 1 radsec in the three space directions,
is damped in 15 hours, by exploiting low cost instrumentation.
Finally, the control position problem has been discussed: the satellite plant has been modeled
through Hill’s equations, by describing the relative position of the analyzed spacecraft (chaser)
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with respect another orbiting target satellite in the target reference frame. By taking in account
the results seen in chapter 4, the exploited first order sliding mode controller is an efficient solution
for the position control of the studied satellite, tracking the desired reference in less than the half
of an orbit with a tracking error norm in steady state equal to 1.535e − 3. Cold gas thrusters
has supposed to be used as actuators, even if they have not been modeled in this work. The
performances of this control are effective, showing good results in terms of time, input amount
and realistic fuel consumption for a first order Sliding mode with this kind of actuators.
In this thesis the robustness of this position control has not been considered, even if the robustness
of the sliding mode controllers is well known.
The proposed objectives of this thesis have been reached, in fact a real attitude control, composed
by three different controller variants, for results comparison, has been achieved, taking in account
a b-dot control, related to a magnetorquer, for treatise completeness. For a future work, a suitable
environmental disturbance model has to be added to the already existing control position model, in
order to test the controller answer in a real scenario, by taking in account uncertainties rejection
and performances at the same time. In this thesis work in fact, only performances have been
take in account. Moreover, both the attitude and the position controls should be combined in a
single control scheme in order to find out any unmodeled/unexpected behaviors, in fact the two
controls may easily interfere with each other, leading both to a decrease of the performances and
robustness.
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