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Summary of Notation 
 
Mathematical operators 
 

Real-valued vectors are written in bold and in lower case while matrices are bold 
capitals. 

≈                         approximately equal  

≠                         not equal 

Ƥ[𝑋 = 𝑥]             probability that a random variable X takes on the value x 

𝑋~𝑝                    the random variable X is selected with distribution 𝑝(𝑥) = Ƥ[𝑋 =

𝑥]        

∑ 𝑓𝑖
𝑘
𝑖=𝑗                   summation of all the elements 𝑓𝑖, for i from j to k 

𝐸[𝑋]                    expectation of a random variable X  

∀                               for each, e.g. ∀ x 

∈                             is an element of, e.g. x ∈ X 

∃                             exists 

ℝ                         set of real numbers 

max 𝑓
𝑥

(𝑥)            maximum value of 𝑓 with respect to x 

max 𝑓
𝑥

(𝑥)            minimum value of 𝑓 with respect to x 

𝑎𝑟𝑔 max
𝑥

𝑓(𝑥)     a value of x at which 𝑓 takes its maximum value 

𝑙𝑜𝑔(𝑥)                 natural logarithm of x  

𝛼                         step size parameter 

𝛾                         discount factor  

𝜀                      probability of taking a random action in 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 (Chapter 2) 

𝛿                         temporal difference error (Chapter 2) 

𝛿𝑗                        backpropagation error of j-th layer (Chapter 1) 
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λ                         decay rate parameter for eligibility trace 

i.i.d                     independent and identically distributed 

𝜇                           features vector expectation 

𝜙                        features vector 

𝜔                        parameters vector of the reward function (from Chapter 2) 

In a Markov Decision Process: 

𝑠, 𝑠′                   states 

𝑎                       action 

𝑡                       discrete time step 

𝑇                      final time step of an episode 

𝑠𝑡 , 𝑎𝑡                 state and action at time step t 

𝒮                            set of all non terminal states 

𝒯                           transition matrix 

𝒜                     set of all available actions 

𝑟                       immediate reward 

ℛ                           reward function 

π(𝑠)                 action taken in state 𝑠 under a deterministic policy π    

π(𝑎|𝑠)              probability of taking action 𝑎 in state 𝑠 under stochastic policy π 

𝐺𝑡                     return (cumulative discounted reward) following time 𝑡 

𝐺𝑡
𝑛                    n-step return 

𝐺𝑡
𝜆                    𝜆-return 

𝑝(𝑠′, 𝑟|𝑠, 𝑎)     probability of going in state 𝑠′ with reward 𝑟 taking action 𝑎 in state 𝑠 

𝑣𝜋(𝑠)               value of state 𝑠 under policy π (expected return) 

𝑞𝜋(𝑠)              value of taking action 𝑎 in state 𝑠 under policy π  

π∗                    optimal policy 

𝑣∗(𝑠)               value of state 𝑠 under the optimal policy π∗ 

𝑞∗(𝑠)               value of taking action 𝑎 in state 𝑠 under the optimal policy π∗ 
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Acronyms 
 

ML               Machine Learning 

SL                Supervised Learning 

ANN            Artificial Neural Network 

DNN            Deep Neural Network 

MLP            Multilayer Perceptron 

SVM            Support Vector Machine 

UL               Unsupervised Learning 

RL               Reinforcement Learning 

IRL              Inverse Reinforcement Learning 

MDP            Markov Decision Process 

MRP            Markov Reward Process 

DP               Dynamic Programming 

PI                 Policy Iteration 

MC              Monte Carlo 

TD               Temporal Difference 

GPI              General Policy Iteration 

MSE            Mean Square Error 

DQN            Deep Q-Network 

QP               Quadratic Programming 

ACC            Adaptive Cruise Control 

ADAS         Advanced Driver Assistance Systems  

LKC            Lane Keeping Control 

EV               Ego Vehicle 

PV               Preceding Vehicle 
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Introduction 

 
This project has been developed in collaboration with my team co-worker Stefano D’Aiuto, 

a mechatronic engineering student, at Addfor S.p.A. and following the guidelines of our 

academic supervisor, Stefano Alberto Malan. The writing of the thesis has been divided as 

follows: I wrote chapters 1-3-6 while Stefano D’Aiuto wrote chapters 2-4-5, and the results 

achieved so far have been summarized in “Conclusions and future works”. 

In this thesis the analysis of the application of Inverse Reinforcement learning algorithms for 

the realization of Advanced Driver Assistance Systems (ADAS) has been performed. 

Automotive industries and research groups are spending a lot of financial and human 

resources to solve the complex problem of self-driving cars which is having a strong impact 

in the whole world during the last decades, but just recently, thanks to the big steps forward 

done in the artificial intelligence domain, it seemed possible to find a concrete solution. 

Nowadays the aim of scientists and engineers is to simplify the human daily routine by 

automatizing first the simplest everyday tasks and then also the complex ones, through 

robotics and Artificial Intelligence, two different fields who apparently must grow in parallel. 

Their effort is even devoted to the improvement of the human-machine interaction so that 

robots start to behave in every possible way to make human life much more comfortable and 

stop to regard human beings just as obstacles to avoid. 

As it has been already highlighted, among all the possible goals, “autonomous driving” is one 

of the most challenging, since it is a task performed by a huge amount of people everyday, 

and that is becoming more and more complex as the number of vehicles grows up during the 

years. The complexity of driving lies in the fact that a driving scenario is strongly 

unpredictable and unstructured, either in highways and especially in a city: pedestrians across 

the roads, overtaking maneuvers, traffic lights and road signals that must be respected, traffic 

congestion and so on. Furthermore, it has been shown that most of car accident causes can 

mostly be attributed to human-driver’s misjudgments or distractions. These are some of the 

reasons which led to the introduction of advanced driving-assistance systems (ADAS) in 
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modern urban cars, that assist the driver in some of the fundamental tasks that can be executed 

while driving (regulate the acceleration, parking, maintain the lane), but according to the 

Society of Automotive engineers (SAE) we are still far from the highest level of automation 

(Level 5) that indicates the ability of the car of driving by itself without any human input. At 

the moment, ADAS are implemented through classical control techniques, e.g. P.I.D, P.I or 

P.D., or using some advanced control theories like Model predictive control (MPC). 

Simultaneously, Artificial Intelligence (AI) has acquired a lot of importance, spreading in a 

wide range of engineering sectors since it provides solutions in a very efficient and clever 

manner; for example Computer Vision is a key point of mobile robotics and even of ADAS, 

as these systems have to receive in input every kind of information (2D-images, 3-D maps, 

presence of a leading vehicle etc.) coming from the surrounding environment. Anyway, 

Machine Learning (ML) is not only used to solve classification, regression or clustering 

problems as in supervised and unsupervised learning; indeed Reinforcement Learning (RL), 

another branch of ML, can effectively be involved as a decision-making problem solver, and 

it is just here that the control problem in autonomous driving meets machine learning. 

The focal point of RL is the Reward, a feedback signal able to show how good or bad are the 

taken actions, so RL is the right choice only if we are dealing with tasks that can be 

accomplished in a small environment requiring discrete state and action spaces, instead if the 

attention is focused on complex scenarios with continuous spaces, it leads to wrong result, 

since the correctness of the chosen reward cannot be guaranteed. Those limits opened the door 

to a new theory, introduced by Andre Ng and Russel in 2000s as inverse reinforcement 

learning, which aim is to find the unknown reward in the cases cited before. 

The objective of this thesis is to highlight the advantages and the limits of using the projection-

based method, an inverse reinforcement learning algorithm, to design the high level control 

of an adaptive cruise control and a lane keeping control, given a set of data provided by 

Addfor S.p.A., which describes the driving style of two different expert human drivers that 

our agent has to emulate.  

Eventually, the two controls are able to accomplish those tasks in a way as close as possible 

to a human manner. 
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The entire code has been written in MATLAB while the scheme containing the agent block, 

the vehicle dynamic block and the sensors blocks, has been realized in Simulink. Moreover, 

driving scenario Toolbox has been used to build a driving scenario ad hoc for the problem. In 

“Conclusions and feature works” the obtained results have been discussed and possible 

solutions have been provided to improve the proposed method.  
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Chapter 1 
 

 

 

1   Introduction to Artificial Intelligence 

 
In this chapter a general idea of Artificial Intelligence (AI) and Machine Learning (ML) is 

presented. It is important to note that many of explanations and demonstrations described in 

this first chapter are a reinterpretation and inspired mainly by Andrew Ng Standford course 

[3]. 

Machine Learning is a field focused on the construction of algorithms that make predictions 

based on data. A ML task aims to identify and learn a function f : X →Y that maps the input 

domain X (of data) onto output domain Y (of possible predictions) [1]. Functions f are chosen 

from different function classes, dependent on the type of learning algorithm that is being used. 

Different definitions of Machine Learning exist in bibliography. An older and informal 

definition is provided by Arthur Samuel that described it as:  

 

"the field of study that gives computers the ability to learn without being explicitly 

programmed.". 

  

Tom Mitchell provides a more modern and practical definition:  

 

"A computer program is said to learn from experience E with respect to some class of tasks 

T and performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E" [2]. 

 

 In this definition the performance measure P provides quantitatively how well a certain ML 

algorithm is performing. For a classification task, the accuracy of the system is usually chosen 
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as the performance measure, where accuracy is defined as the proportion for which the system 

correctly produces the output. E is the experience that Machine Learning algorithms learn 

through datasets containing a set of examples that are used to train and test these algorithms. 

 

Furthermore, ML is subdivided in two main fields, each one focusing on a specific task: 

Supervised and Unsupervised Learning. In Supervised Learning (SL) model, the algorithm 

learns and trains on a labeled dataset, the so called ground truth, that gives a priori knowledge 

of what the output values for the samples must be and the main goal is to build a mapping 

function from the input to the output that is able to predict well the output variable (i.e. 

assigning the correct label) when new input data are given. Whereas in Unsupervised 

Learning (UL) the goal is to infer the underlying or hidden structure within a set of input 

unlabeled data in order to learn more about data themselves.  

Moreover, another branch of ML is Reinforcement Learning (RL). The Reinforcement 

Learning algorithm strategy is based on a reward system, providing feedback from the 

environment in which the agent is dropped into, and proceeds based on trials and error logic. 

This RL topic is investigated and analyzed more in depth and further ahead in Chapter 2. 

 

 

1 .1   Supervised Learning 
 

The majority of applications related to Machine Learning falls into the Supervised Learning 

problem that is indeed the most common subbranch of ML today. SL algorithms are designed 

to learn by example and indeed the name “supervised” learning itself originates from the idea 

that training these algorithms is like to have an entity that behaves like a teacher that tells if 

an output is correct or not. Hence a labelled dataset is provided to the algorithm in which a 

“right answer” (ground truth) is given a priori and then the algorithm learns from this training 

data. Then once the algorithm is trained, it provides a “right” answers based on new data, 

where the output is unknown, finding a relationship between the input and the output. 
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Moreover, supervised learning problems are categorized into "regression" and "classification" 

problems.  

In a regression problem the aim is to predict results within a continuous output, this means 

mapping input variables to some continuous function.  

Instead in a classification problem, the aim is to predict results in a discrete output, and this 

means to classify data into one of two or more discrete number (classes or categories) 

mapping input variables into discrete categories. Some examples extracted from Andrew Ng’s 

course [3] are shown below 

 

• Classification examples 

 

o  A classification problem is when the output variable is a category, such as “red” 

or “blue” or “disease” and “no disease”. 

 

o Given a patient with a tumor, predict whether the tumor is malignant or benign. 

 

 

• Regression examples  

 

o  A regression problem is when the output variable is a real value, such as “value in 

dollars” or “weight” 

 

o On the basis of a given picture of a person, predict his/her age  

In order to going further into more technical explanations it is better to establish a common. 

The “input” variables are denoted with  𝑥(𝑖) that is generally called input features while for the 

predicted value is used 𝑦(𝑖) in order to indicate the target value or the “output”. The training 

example is the pair (𝑥(𝑖), 𝑦(𝑖)) with ⅈ = 1, . . . , 𝑚 is the training set. Furthermore, 𝑋 indicates 
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the input values space and 𝑌 the output values space. The aim of supervised learning is to learn 

a function ℎ: 𝑋 → 𝑌 given a training set (𝑥(𝑖), 𝑦(𝑖)) so that the learned function ℎ(𝑥) is a 

“good” predictor for the corresponding value of  𝑦 [3]. 

 

Then, the learning process is a regression problem when the predicted target variables y is a 

continuous variable. When the target y can take on only a small number of discrete values it 

is called classification problem. 

 
Figure 1.1: learning problem process 

 

Some popular examples of supervised ML algorithms are Linear Regression, Logistic 

Regression, Random Forest, Support Vector Machine and Neural Networks. 

It is also of primary importance to highlight that all these Machine Learning algorithms 

completely depend on optimization techniques, that are the process by which the optimal set 

of parameters are found. Here Gradient Descent will be discussed that is the simplest and used 

optimization technique. 

Other two important concepts are model complexity, and the bias-variance tradeoff that are 

related quantities. Model complexity refers to the complexity of the function that the 

algorithms is attempting to learn (similar to the degree of a polynomial). The proper level of 

model complexity is generally determined by the nature of the training data. If only a small 

amount of data is provided, or if the data are not uniformly spread throughout different possible 

scenarios, then the best choice is to opt for a low-complexity model. This is because a high-

complexity model will overfit if used on a small number of data points. Overfitting refers to 

learning a function that fits training data very well, but does not generalize to new and unseen 
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data points — basically in this case the algorithm is learning to produce the training data 

without learning the real underlying structure in the data that leads to this output.  

Therefore bias-variance tradeoff relates to model generalization and any model must be well-

balanced between bias, which is the constant error term, and variance, which is the amount by 

which the error may vary between different training sets. Note that bias and variance typically 

move in opposite directions from each other; increasing bias will usually lead to lower 

variance, and vice versa, so it is necessary to find the best trade-off suitable for the specific 

cases. 

1.1.1   Linear Regression and Gradient Descent 
 

In linear regression a linear relationship is assumed between the input variables 𝑥 and the 

single output variable 𝑦 and can be represented by the equation: 

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2+. . . +𝜃𝑛𝑥𝑛          (1.1) 

• 𝑦 is the predicted value 

• 𝜃0 is the bias term 

• 𝜃1 …𝜃𝑛 are the model parameters 

•  𝑥1 …𝑥𝑛 are the features values 

• 𝑛 is the number of features 
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Figure 1.2: Linear Regression 

 

Eq. (1.1) can be also re-written as 𝑦 = 𝜽𝑇𝒙  in which the 𝜽 is the vector parameter term 

including the bias and 𝒙 is the input features vector. 

The primary goal of ML algorithms is always to build a model, which is basically a hypothesis 

function which can be used to find an estimation for 𝑦  based on 𝒙 the input features: 

𝑦 = 𝜽𝑇𝒙    (1.2) 

The hypothesis function is:  ℎ(𝑥)  = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2+. . . +𝜃𝑛𝑥𝑛          (1.3) 

The ℎ(𝑥) takes in input the input features 𝑥 (the number of features is indicated with 𝑛) and 
gives as output the estimated value 𝑦. In order to measure the goodness and the accuracy of 
this hypothesis function a cost function is used.  The cost function is defined as: 

 “a function that maps an event or values of one or more variables onto a real number 

intuitively representing some “cost” associated with the event.” [4]. 

 

The cost function is defined as the average difference between all the results of the hypothesis 

and the actual predicted output 𝑦: 
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𝐽(𝜃0, 𝜃1, … , 𝜃𝑛) =
1

2𝑚
∑ (�̂�(𝑖) − 𝑦(𝑖))

2
𝑚

𝑖=1
 =  1

2𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2
𝑚

𝑖=1
.  (1.4) 

In the formula above 𝑚 is the number of training example (𝑥(𝑖), 𝑦(𝑖)) , 𝑥 are the input features 

and 𝑦 are the output “target” variable. This specific cost function is the Mean Square Error 

loss function (MSE (1.4) ) or also called Quadratic loss or L2 loss, that is basically the sum 

of squared distances between the target variable 𝑦𝑖 (ground truth) and predicted values �̂�𝑖 and 

this loss function is a way of measuring how well the model ℎ(𝑥) fits into the data. The 

difference between the predicted values and ground truth measures the error difference 𝑒𝑖 =

�̂�𝑖 − 𝑦𝑖. Other loss functions can be used: the Mean Absolute Error (MAE or L1 loss), Huber 

loss (Smooth Mean Absolute Error) and the Cross-entropy loss (or log-loss) and all of these 

provide a different measure of how good a prediction model does in terms of being able to 

predict the expected outcome. There is not a single loss function that works for all kind of 

dataset but each one can perform at their best in different cases. Then, once a proper loss 

function has been selected a common optimization method to find the minimum 𝑚ⅈ𝑛
𝜽

 𝐽(𝜽) is 

the Gradient Descent. 

The best fit line is considered to be the line for which the error between the predicted values 

and the observed values is minimum. It is also called the regression line and the errors are 

also known as residuals as shown in figure 1.3. Residuals can be visualized by the vertical 

lines from the observed data value to the regression line. 

 

Figure 1.3: Regressor Line and residual 

 

Optimization by definition is the process by which an optimum is achieved. The simplest and 

most popular optimization algorithm in Machine Learning is the Gradient Descent that is used 
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to update parameters in a model (parameters can vary according to the algorithms, such 

as coefficients in Linear Regression and weights in Neural Networks) that helps ML models 

to find out paths to a minimum value using repeated steps. 

Parameters update through gradient descent is made by taking the derivative (the tangential 

line to a function) of the cost function. The slope of the tangent is the derivative at that point 

and therefore it provides information about the direction in which the gradient is moving at 

each step. The size of each step is determined by the parameter α, which is called the learning 

rate [3].  For example, as shown in figure 1.4, the distance between each 'star' in the graph 

represents a step determined by the parameter α. A smaller α would result in a smaller step 

and a larger α results in a larger step. The direction in which the step is taken is determined 

by the partial derivative of J(θ). Figure 1.4 shows two different starting points that end up in 

two different places. 

 

Figure 1.4: Gradient Descent moving on a cost function case of only two features 3D plot 

 

The gradient descent algorithm is: 

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜽)         (1.5) 

Where 𝑗 = 0,1, … , 𝑛 represents the feature index number and the parameters 𝜃0, 𝜃1, … , 𝜃𝑛 

must be simultaneously updated at each iteration j. Then the process is repeated until 

convergence. 
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The repeated application of these gradient descent equations will lead the model to become 

more and more accurate. This method looks at every example in the entire training set on 

every step, and is called batch gradient descent [3]. Note that, while in general gradient 

descent can be susceptible to local minima, the optimization problem posed here for linear 

regression has only one global, and no other local, optimum. Thus, gradient descent always 

converges (assuming the learning rate α is not too large) to the global minimum since in this 

case J is a convex quadratic function. 

1.1.2   Classification and Logistic Regression 

Classification is the process of predicting the class of a given set of data points. Classes are 

sometimes called as targets, labels or categories. In a more formal way classification is the 

task of approximating a mapping function ℎ(𝒙) from input variables x to discrete output 

variables y. The output variables are often called labels or categories and the mapping function 

predicts the class or category for a given observation. Intuitively the classification problem 

seems just like the regression problem, except that the predicted values take on only a small 

number of discrete values. In the first place the binary classification problem will be treated, 

in which y can take on only two values, 0 and 1. Then it will be also generalized to the multi-

class classification case.  

Classification can answer questions like: 

• Find out which disease a patient is affected by, who has a number of symptoms. Then, 

attribute the set of symptoms from which the patient is affected to the correct disease  

• Check transactions in order to classify fraudulent ones  

In accordance with the previously established formalism,  𝑥(𝑖) represents the input features and 

𝑦(𝑖) the predicted value.  The aim in a classification problem is to learn a function ℎ: 𝑋 → 𝑌 

given a training set (𝑥(𝑖), 𝑦(𝑖)) so that the learned function ℎ(𝑥) is able to classify and assign 

new data to the correct classes. In binary classification y ∈ {0,1}. Notice that 0 is called the 
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negative class, and 1 the positive class, and they are sometimes also denoted by the symbols 

“-” and “+”.  

Since the classification problem is very similar to the regression problem it may seems a 

sensible choice to classify using linear regression and map all predictions greater than 0.5 as 

a 1 and all less than 0.5 as a 0. However, a linear model does not output probabilities, but it 

treats the classes as numbers (0 and 1) and fits the best hyperplane (for a single feature, it 

is a line) that minimizes the distances between the points and the hyperplane. So, it simply 

interpolates between the points, and its output cannot be interpreted as probability. A linear 

model also extrapolates and gives values below zero and above one so this method does not 

work well because classification is not actually a linear function as shown in figure 1.5.  

A solution for classification is Logistic Regression that is a statistical method for classifying 

dataset in which there are one or more independent variables determining an outcome (in case 

of binary classification it takes only two possible values). So Logistic regression models the 

probabilities for classification problems with two possible outcomes and it is an extension 

of the linear regression model for classification problems. Logistic regression is part of the 

so called “Discriminative Models” subgroup of ML methods like Support Vector Machines 

(SVM) and Perceptron in which linear equation are used as building blocks [3]. 

 

Figure 1.5:  Linear Regression and Logistic Regression for classification 

 

Instead of fitting a straight line or hyperplane, the logistic regression model uses the logistic 

function to compress the output of a linear equation between 0 and 1.  
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Intuitively, it also does not make sense for ℎ𝜃(𝑥) to take values larger than 1 or smaller than 

0 since the output y ∈ {0, 1}. Then the hypothesis function ℎ𝜃(𝑥) has to be bounded between 

0 ≤ ℎ𝜃(𝑥) ≤ 1 and this can be easily done plugging 𝜃𝑇𝑥 into the Logistic Function or the 

Sigmoid Function (figure 1.6):  

 ℎ𝜃(𝑥) = 𝑓(𝜃𝑇 )         (1.6) 

 𝑧 = 𝜃𝑇𝑥                     (1.7) 

                                                     𝑓(𝑧) =
1

1+ⅇ−𝑧
              (1.8) 

 

 
Figure 1.6: Logistic Function 

The sigmoid function f(z) maps any real number to the (0, 1) interval, making it useful for 

transforming an arbitrary-valued function like ℎ𝜃(𝑥) = 𝜽𝑇𝒙  into a function useful for 

classification purposes 𝑓(𝑧) =
1

1+ⅇ−𝜽𝑇𝒙
 , ℎ𝜃(𝑥) gives the probability that the output is 1.  

In order to get discrete 0 or 1 classification, the output of the hypothesis function behave as 

follows: 

ℎ𝜃(𝑥) ≥ 0.5 → y = 1              ℎ𝜃(𝑥) < 0.5 → y = 0 
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Therefore, the way the logistic function ℎ𝜃(𝑥) = f (𝜃𝑇𝑥) behaves is that when its input is 

greater than or equal to zero, its output is greater than or equal to 0.5 that in this case is the 

selected threshold: 

𝑓(𝑧) ≥ 0.5  𝑤ℎ𝑒𝑛  𝑧 ≥ 0  where  𝑧 = 𝜃𝑇𝑥 

ℎ𝜃(𝑥) = 𝑓(𝜃𝑇𝑥) ≥ 0.5      𝑤ℎ𝑒𝑛  𝜃𝑇𝑥 ≥ 0    ⇒ 𝑦 = 1        (1.9) 

ℎ𝜃(𝑥) = 𝑓(𝜃𝑇𝑥) < 0.5      𝑤ℎ𝑒𝑛   𝜃𝑇𝑥 < 0  ⇒ 𝑦 = 0        (1.10) 

The decision boundary is created by the model hypothesis function ℎ𝜃(𝑥) and it is the line 

that separates the area where y = 0 and where y = 1 (figure 1.7).  

 

Figure 1.7: Sigmoid Function and Decision boundary threshold 

 

As already seen in Linear Regression, the Gradient Descent optimization algorithm can be 

used in order to minimize the cost function and find the optimal parameters. However, the 

cost function used for linear regression cannot be reused in this case because Logistic 

Function will produce a wavy cost function with many local minima and therefore will not be 

a convex function. 

The loss function for Logistic Regression is defined as 

 

                       𝐽(𝜃) =
1

𝑚
∑ 𝐶𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖))

𝑚

𝑖=1
                 (1.11) 

Where :               𝐶𝑜𝑠𝑡1(ℎ𝜃(𝑥), 𝑦) =  − 𝑙𝑜𝑔(ℎ𝜃(𝑥))                 ⅈ𝑓 𝑦 = 1      (1.12)                   

                            𝐶𝑜𝑠𝑡0(ℎ𝜃(𝑥), 𝑦) =  − 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥))          ⅈ𝑓 𝑦 = 0     (1.13)     
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Eq. (1.11) can be rewritten in a single and more compact cost function as follows: 

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖)  𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) − (1 − 𝑦(𝑖)) 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))]

𝑚

𝑖=1
    (1.14) 

Based on the number of categories, Logistic regression can be classified as: 

1. Binary classification: target variable can have only 2 possible types: “0” or “1” which 

may represent “win” vs “loss”, “pass” vs “fail, etc. 

 

2. Multiclass classification: target variable can have 3 or more possible types which are 
not ordered (i.e. types have no quantitative significance) like “disease A” vs “disease 

B” vs “disease C”. 

 

In multiclass classification the classical One-vs-All technique is used in which one class is 

chosen and all the others are grouped together into a single second class. Then binary logistic 

regression for each case is applied repeatedly. Finally, the hypothesis function which returns 

the highest value is selected as the prediction. 

1.1.3   SVM - Support Vector Machine  

Support Vector Machines (SVMs) are an extremely powerful and modern model 

implementation of a classification technique and can be used in classification and regression 

problems. SVMs aim at finding decision boundaries that separate observations belonging to 

different membership classes and therefore SVM is a Discriminative Classifier formally 

defined by a separating hyperplane. 

This kind of classifier models are highly accurate and are able to compute and process the 

high-dimensional data and they are very flexible in modelling diverse types of data. 

Moreover, SVMs belong to the general category of kernel methods and thanks to the kernel 
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trick a non-linear classification boundary can be easily generated using a method designed 

for linear classifiers (Linear SVM). 

In the binary classification case, let (𝑥(𝑖), 𝑦(𝑖)) with ⅈ = 1, . . . , 𝑚 be the training dataset where 

𝑥(𝑖) are the feature vectors representing the observation and 𝑦(𝑖) ∈ {0,1} be the labels of the 

instances. Support vector learning is the problem of finding a separating hyperplane that 

separates the positive examples 

(labeled +1) from the negative examples (labeled -1) with the largest margin. The 

margin of the hyperplane is defined as the shortest distance between the positive 

and negative instances (training data sample) that are closest to the hyperplane. The intuition 

behind searching for the hyperplane with a large margin is that it is more resistant to noise 

than a hyperplane with a smaller margin [5]. The maximal margin classifier is the hyperplane 

for which the margin is the largest [6]. 

Formally, suppose that all the data satisfy the constraints 

𝝎 ⋅ 𝒙𝒊 + 𝑏 ≥ +1       𝑦𝑖 = +1 

𝝎 ⋅ 𝒙𝒊 + 𝑏 ≤ +1      𝑦𝑖 = −1 

𝝎 is the normal to the hyperplane and |𝑏|/‖𝜔‖ is the perpendicular distance from the 

hyperplane to the origin, and ‖𝜔‖  is the Euclidean norm of  𝝎.  

The two constraints above can be conveniently combined into the following 

𝑦𝑖(𝝎 ⋅ 𝒙𝑖 + 𝑏) ≥ 1      ∀ⅈ        (1.15) 

 

 

Figure 1.8: Hyperplane separating two classes with the maximum margin. 
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In figure 1.8 the circled samples (black circles are negative samples while the white ones are 

the positive instances) lying on the canonical hyperplanes are called support vectors. 

 

It can be shown that the maximum margin separating hyperplane can be constructed by 

solving the Primal optimization problem (1.16): 

𝑚ⅈ𝑛
𝝎∈𝐻

 
1

2
‖𝝎‖2    subject to    𝑦𝑖(𝝎 ⋅ 𝒙𝑖 + 𝑏) ≥ 1      ∀ⅈ          (1.16) 

Using the same formalism as in the other chapters, the Support Vector Machine cost function 

can be expressed like this: 

 

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖)  𝐶𝑜𝑠𝑡1(ℎ𝜃(𝑥), 𝑦)−(1 − 𝑦(𝑖)) 𝐶𝑜𝑠𝑡0(ℎ𝜃(𝑥), 𝑦)]

𝑚

𝑖=1
      (1.17) 

Notice that the newly 𝜽 parameters coincide with the previously defined parameters 𝝎.  

The SVM cost function is basically the same identical formula for logistic regression (1.14) 

with the only difference that now the 𝐶𝑜𝑠𝑡1(ℎ𝜃(𝑥), 𝑦) and 𝐶𝑜𝑠𝑡0(ℎ𝜃(𝑥), 𝑦) are Rectifier 

functions (ReLU) as shown in Figure (1.9) so that: 

 

𝜽𝑇𝒙 > 1    for   𝑦 = 1        (1.18) 

𝜽𝑇𝒙 < −1    for   𝑦 = 0        (1.19) 

 

 

 
 

Figure 1.9: ReLu,  𝐶𝑜𝑠𝑡1(𝜽
𝑇𝒙 ) on the right and 𝐶𝑜𝑠𝑡0(𝜽𝑇𝒙) on the left 
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Now the model must learn parameters 𝜽 such that 𝜽𝑇𝒙 > 1 for 𝑦 = 1 and 

𝜽𝑇𝒙 < −1    for   𝑦 = 0. This is related to the large-margin intuition. The overall objective 

for a SVM looks like: 

 

𝑚ⅈ𝑛
𝜃

 𝐶 ∑ [𝑦(𝑖) 𝐶𝑜𝑠𝑡1(𝜽
𝑇𝒙(𝑖) ) − (1 − 𝑦(𝑖)) 𝐶𝑜𝑠𝑡0(𝜽

𝑇𝒙(𝑖) )]
𝑚

𝑖=1
+

1

2
 ∑ 𝜽𝑗

2
𝑛

𝑖=1
     (1.20)  

Notice how 𝜆 (the regularization parameter which governs the trade-off between overfitting 

and the complexity of the model) has been replaced by another constant that plays the same 

role 𝐶 =  1
𝜆
.  

Examining equation (1.20) it is clear how a Support Vector Machine chooses a decision 

boundary which maximizes the margins from all the classes. For the purposes of this 

discussion, it is assumed that the SVM constant C is set to a very large value, 𝐶 → ∞.  A large 

value of C acts like a small value of 𝜆, this is like having SVM with no regularization, and 

this means that the model will be subject to overfitting.  

As C goes up, the penalty associated to the term with 𝐶𝑜𝑠𝑡1and 𝐶𝑜𝑠𝑡0 goes up, so the SVM 

is highly incentivized to make both the costs equal to 0 (i.e. make ‖𝜽𝑇𝒙 ‖ > 1). Then assuming 

a large value of C, Equation (1.20) can be reformulated as: 

min
1

2
𝜃

 ∑ 𝜽𝑗
2

𝑛

𝑖=1
     s.t   ‖𝜽𝑇𝒙(𝑖) ‖ > 1.    (1.21) 

Moreover, SVM is a very powerful tool thanks to the kernel trick that makes also possible to 

classify non linearly separable dataset. What the kernel trick does is to use some mapping 

function K(x), called kernels, that projects the data onto a higher-dimensional space where it 

is possible to find a linear decision boundary. 

Indeed, the basic idea with nonlinear SVMs is to map training data into a higher dimensional 

feature space via the kernel function K(x) and construct a separating hyperplane with 

maximum margin in the input space. It can be shown that a linear decision function in the 

feature space corresponds to a non-linear decision boundary in the original input space. 
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1.1.4   Artificial Neural Networks 

Artificial Neural Networks (ANN) are a powerful and universal tool, inspired by biological 

nervous system and the human brain, used mainly for pattern recognition, computer vision 

and function approximation. Indeed, when dealing with a complex, partially unknown and 

non-linear system ANN are the “perfect” tool for fulfilling the task of non-linear function 

approximator.  

 
Figure 1.10: Biological neuron model (Wikipedia image) in nature (left) and mathematical model (right) 

 

Non-linear decision boundary can be done mainly in two different ways: 

• Adding non-linear features (i.e. 𝑥1𝑥2, 𝑥1
2) 

 
• Using ANN modeling a non-linear decision boundary by internalizing the non-

linearity 

Neurons are computational units that take inputs (dendrites) as electrical inputs (called 

"spikes") that are connected to outputs (axons) as shown in figure 1.10. Dendrites are like the 

input features (𝑥0, 𝑥1 … , 𝑥𝑛) and the output is the result of the hypothesis function ℎ𝜃(𝑥) [3]. 

In neural networks a logistic or sigmoid activation function in often used: 𝑔 =  
1

1+ⅇ−𝝎𝑇𝒙
 . The 

𝝎 parameters are "weights" of the network. 

The simplest structure for a neural network is the Perceptron that is a simple binary 

classification algorithm proposed by Frank Rosenblatt in 1957. Its basic unit component is 

the so called artificial neuron. The perceptron structure is formed by an input layer, that stored 

the components of the input vector 𝒙, the channels of weights 𝝎 that connect the input layer 

to the neuron and finally the body of the neuron (soma) as shown in the figure 1.11. 
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                                                                               Figure 1.11: Perceptron structure 

 

As already said  (𝑥0, 𝑥1 … , 𝑥𝑛) are the components of the input vector  𝒙 , while 

(𝜔0, 𝜔1 … ,𝜔𝑛) are the ones of the weight vector. Notice that in this model the 𝑥0 input node 

is the “bias unit” whose corresponding weights 𝜔0 is always 1. The neuron works by 

confronting the input and weight vector via the scalar product 

𝑧 = ∑ 𝑥𝑖𝜔𝑖
𝑛
𝑖=1   (that is the weighted sum where n is the number of connections to the 

perceptron) outputting the answer via the activation function 𝑔 =  
1

1+ⅇ−𝝎𝑇𝒙
. The output is  𝑦 =

𝑔 (𝑧)  (or 𝑎𝑗
(𝑙) = 𝑔 (𝑧) if it is not the final output layer, indicating the activation neuron unit 

j in layer l) generating an output decision of “0” or “1”. 

The Perceptron learning process can be described as in the following steps: 

 

1. Perceptron takes the input, multiplies them by the weights and compute their sum. The 

weights allow the perceptron to evaluate the relative importance of each input.  

2. The bias factor is added. This procedure is needed in order to move the activation 

function and makes possible to fine-tune the numeric output of the perceptron. 

3. The neuron feeds the previously computed sum through the activation function (in this 

case a logistic or sigmoid function) that maps the input values to the required output 

values. Activation function help the learning process especially in case of a multi-layer 

perceptron (MLP). The non-linear properties of the activation function make possible 

to train complex neural networks. 

4. The perceptron output is a classification decision. In a feedforward neural networks 

the information always moves on one direction, from the input layer to the output. In 
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case of an MLP the output of one layer perceptron is the input of the next layer. The 

final layer is the output layer and its output is the final prediction. 

 

As anticipated before a multilayer perceptron (MLP) is a structure made by many 

perceptrons, stacked in several layers where each layer takes input from the previous and 

then signals to the next layer. The diagram in figure1.12 shows an MLP with three layers. 

Each perceptron in the first layer on the left (the input layer), sends outputs to all the 

perceptrons in the second layer (the hidden layer), and all perceptrons in the second layer 

send outputs to the final layer on the right (the output layer). 

 

 

Figure 1.12: Network diagram of a two-layer neural network 

 

Neural Networks algorithms learn by discovering better weights at every step that result in a 

more accurate prediction [7]. There are several algorithms for the fine tuning of the weights 

and the most common is the backpropagation that is a basic concept in modern neural network 

training and it belongs to supervised learning (meaning that the network is learning from pairs 

- input, expected output - of the training set). The Backpropagation training method for MLP 

is based on the gradient descent approach that iteratively adjust the network weights and 

gradually decreasing the error on the training set in an iterative procedure. To give a more in-

depth description on backpropagation, it is necessary to fix the formalism and architecture of 

a neural networks: 

• 𝑎𝑗
(𝑙)

is the “activation” of the unit j in layer l 

• 𝛺(𝑙)is the matrix of weights 𝜔 that controls function mapping from layer l to layer l+1 
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The value of each “activation” nodes is obtained for each unit j in a layer l as follows: 

𝑎𝑗
(𝑙+1)

= 𝑔(𝛺𝑗0
(𝑙)

𝑥0 + 𝛺𝑗1
(𝑙)

𝑥1+. . . +𝛺𝑗𝑛
(𝑙)

𝑥𝑛) = 𝑔(∑ 𝛺𝑗𝑖
(𝑙)

𝑥𝑖

𝑛

𝑖=0
)    (1.22) 

• j=1,..,n with n number on input features 

• l=1,…,L with L total number of layers in a network 

For example, for the activation of the first node in the second layer: 

𝑎1
(2)

= 𝑔(𝛺10
(1)

𝑥0 + 𝛺11
(1)

𝑥1+. . . +𝛺1𝑛
(1)

𝑥𝑛) 

Therefore, the computation of the activation nodes is done by using a 

 𝑠𝑙+1 × (𝑠𝑙 + 1)  matrix of parameters (where 𝑠𝑙 is the number of unit nodes in the layer l). 

This phase is called forward propagation in which all the activation value for every node in 

the network are computed. The hypothesis function output related to the output layer is the 

logistic function applied to the sum of the values of the activation nodes computed in the 

previous layer: 

 

ℎ𝛺(𝑥) = 𝑎𝑗
(𝐿)

= 𝑔(𝛺𝑗0
(𝐿−1)

𝑥0 + 𝛺𝑗1
(𝐿−1)

𝑥1+. . . +𝛺𝑗𝑛
(𝐿−1)

𝑥𝑛)     (1.23) 

for each unit j in the output layer (𝑗𝑜𝑢𝑡>1 in multiclass classification case) 

 

The cost function 𝐽(𝛺) for neural network is: 

−
1

𝑚
∑.

𝑛

𝑖=0

∑[𝑦(𝑖)  𝑙𝑜𝑔 (ℎ𝛺(𝑥(𝑖))
𝑘
) − (1 − 𝑦(𝑖)) 𝑙𝑜𝑔 (1 − ℎ𝛺(𝑥(𝑖))

𝑘
)] 

𝑚

𝑖=1

+
𝜆

2
∑ ∑∑ (𝛺𝑗𝑖

(𝑙)
)
2

𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝐿−1

𝑙=1

     (1.23) 

 

The goal is to compute the minimum of this loss function that means finding an optimal set 

of parameters 𝛺 that minimize the cost function 𝐽(𝛺): 

min 𝐽(𝛺)
𝛺

   (1.24) 
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Backpropagation is used in order to update the parameters 𝛺 and this will bring - after a 

certain number of back and forward iteration - to the optimal set of parameters. In this 

backpropagation phase the term 𝛿𝑗
(𝑙) is computed, for each node and in each layer, and it 

represents the error of node j in layer l. In other words 𝛿𝑗
(𝑙) term captures the error in the 

activation 𝑎𝑗
(𝑙)value computed in the feedforward phase, and is computed starting from the 

last layer. For example with reference to Figure (1.12) starting from the third and last layer, 

for each node j the error can be expressed as:  δj
(3)

= aj
(l) − yj  where yj is the actual value 

observed in the training example. So, for the output layer (L):  

δj
(L)

= aj
(L)

− yj  = ℎ𝛺(𝑥)𝑗 −  yj        (1.25) 

And backpropagating the error in the previous layer: 

𝛿𝑗
(𝐿)

=  (𝛺(𝐿−1))
𝑇
𝛿(𝐿) × 𝑔′(𝑧(𝐿−1))      (1.26) 

Where   𝑧(𝐿−1)=𝛺𝑗0
(𝐿−1)

𝑥0 + 𝛺𝑗1
(𝐿−1)

𝑥1+. . . +𝛺𝑗𝑛
(𝐿−1)

𝑥𝑛   and   𝑔′ is the first derivative of the 

activation function g. 

 

And it is possible to prove, ignoring regularization term λ that: 

𝜕

𝜕𝛺𝑗𝑖
(𝑙) 𝐽(𝛺)  =  𝑎𝑗

(𝑙)
𝛿𝑖

(𝑙+1)   (1.26) 

So, thanks to backpropagation the partial derivative needed for the minimization process of 

the cost function can be easily computed as show in the formula (1.26). 

Therefore, by iteratively executing the forward and backward propagation phases the set of 

optimal parameters 𝛺 minimizing the cost function is reached. Once the Artificial Neural 

Network is trained, it provides the “correct” predictions. It is also important to note that one 

of the most important hyperparameters for ANN is the learning rate α – mentioned in sub-

Chapter (1.1.1) for the gradient descent technique – that specifies how fast the learning 

process is performed. The learning rate parameter value lies between 0 and 1 and its correct 

setting is crucial to the success of the learning process and finding the optimal values 
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1 .2   Unsupervised Learning 
The second major problem type is Unsupervised Learning (UL) that allows to find and infer 

the underlying structure of the data by clustering the data based on relationships among the 

variables in the dataset. In unsupervised learning unlabeled data are provided and the aim is 

to find the underlying causes and identify the intrinsic structure and hidden pattern behind the 

data. Since in unsupervised learning there is no prior knowledge on what the “clusters” look 

like, in contrast with supervised learning, there is no feedback based on the prediction results 

since labelled data are not provided. So, the training dataset is made up as follows: {𝑥(𝑖)} with 

ⅈ = 1, . . . , 𝑚 where there is no presence of the target variable 𝑦(𝑖) (label). Therefore, 

unsupervised learning technique turns out to be very useful in all those cases where there is no 

clue of what the desired target output should be, such as – for example – the determination of 

a reference market for a new product that has to be put on the market by a company. 

Some other applications of Unsupervised Machine Learning techniques are: 

• Clustering: automatically split the dataset into groups according to similarity. 

However, can happen that cluster analysis overestimates the similarity between groups 

and does not treat data points as individuals. For this reason, cluster analysis is a poor 

choice for applications like customer segmentation and targeting. 

• Anomaly detection: automatically discover unusual data points in the dataset. This is 

useful in pinpointing fraudulent transactions, discovering faulty pieces of hardware, or 

identifying an outlier caused by a human error during data entry. 

• Latent variable models: are commonly used for data preprocessing, such as reducing 

the number of features in a dataset (dimensionality reduction and PCA- Principal 

Component Analysis). 

In this chapter will be analyzed only the clustering methods and specifically only the K-means 

algorithm as an example of these kind of algorithms. 
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1.2.1   K-means Clustering 
 

The fundamental idea behind Clustering is to group and categorize a set of objects into many 

subsets, called clusters, in such a way that the all the items inside one subset are most "similar" 

to each other. The way to distinguish between "similar" and "dissimilar" items is done through 

the use of some metrics to calculate the similarity. Several metrics are present and the research 

about which among the different measurements is the best is one of the challenges.  The most 

used metric is the Euclidean distance between points 𝒙𝟏 and 𝒙𝟐, that basically is the length of 

the line segment connecting them. In Cartesian coordinates, for two points 𝒙𝟏 = (𝑥1
(1), 𝑥1

(2), 

..., 𝑥1
(𝑛)) and 𝒙𝟐 = (𝑥2

(1), 𝑥2
(2), ..., 𝑥2

(𝑛))  their Euclidean distance is given by: 

𝑑(𝒙𝟏, 𝒙𝟐) = √∑ |𝑥1
𝑖 − 𝑥2

𝑖 |
𝑛

𝑖=1
             (1.27) 

where n is the dimension of a data point that is the number of features that characterize each 

data. 

K-means is one of the simplest unsupervised learning algorithms that solve the clustering 

problem. The main idea of K-means is to define "K" number of centroids that represents the 

number of clusters. Each element in the data set is assigned to a cluster center (centroid) to 

which it is closest, for example assigning a given sample of the dataset to the centroid with 

respect to which it has the minimum Euclidean distance. Provided that there is a suitable 

distance definition, then the algorithm is composed of the following steps: 

1. Place K points into the space represented by the objects that are being clustered. 

These points represent initial group centroids 

2. Assign each object to the group that has the closest centroid 

3. When all objects have been assigned, recalculate the positions of the K centroids 

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation 

of the objects into groups from which the metric to be minimized can be calculated. 
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These steps are iterated until the algorithm converges to one optimum value (most likely a 

local optimum). The choice of the K value has to be taken in accordance to the number of 

classes in which the data must be clustered, as shown in figure 1.13. 

 

Figure 1.13: K-means clustering example with 3 centroids 
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Chapter 2 

 

 
 

2 Reinforcement Learning 

 

 
In order to ensure a deep comprehension of what Reinforcement Learning is, it is necessary 

to think how a human being learns to accomplish a task during his life. Indeed, since birth a 

child starts to understand how to behave by interacting with the environment and waiting for 

a response, so that after a given number of attempts, he is able to choose the correct action to 

achieve the desired goal. This trial-and-error logic is exactly the one on which the 

Reinforcement Learning is built, in fact it is the only paradigm of ML that reflects the human 

and animal way of learning that can lead robots and/or cars to act as a real person would do. 

It is already easy to notice that RL is very far from Supervised Learning (SL) since it has no 

need of supervisors and so of a label dataset; all the information and all the correct answers 

are collected from the interaction with the external world. At first glance it could be classified 

as an Unsupervised Learning (UL) problem, but the difference between the two stands in the 

fact that, as discussed in chapter one, UL refers to clustering problems while RL is used to 

solve decision-making problems.                                                                                                                                                                                                                                                                                        

It is possible to distinguish four fundamental elements needed to describe a Reinforcement 

Learning (RL) problem: 

▪ Reward: it is a scalar feedback signal sent from the environment that can tell how good 

is doing the agent at step t. As claimed by Silver in his course, « all goals can be 

described by the maximization of expected cumulative reward » [8], in this sense in 

RL, feedback is delayed because an action can influence not only the next move but 

also the next n-moves and so the next collected rewards. Indeed, in many cases it is 

better to sacrifice a high reward at the current state rather than all the future states 
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rewards. Resuming the comparison with a human being, the reward is a biological 

stimulus that inflicts pain or pleasure based on the goodness/badness of the taken 

behavior.  

▪ Policy: it represents the agent behavior and can be deterministic, 𝑎 = π(𝑠) or 

stochastic, π(𝑎|𝑠) = Ƥ[𝒜𝑡 = 𝑎′|𝒮𝑡 = 𝑠′]. It is a map from state to actions. 

▪ Value function: it returns the expected cumulative discounted (the meaning of 

“discounted” is going to be clarified in paragraph 2.1) reward at state s taking into 

account all the collected rewards during the long run, i.e. it gives an estimate of the 

total reward that the agent would collect by taking that specific action in the current 

state. In this sense, even if ℛ (reward) is the focal point in RL, a value function is what 

we are interested on, but unfortunately it is often very difficult to compute, so it is of 

paramount importance to choose the RL strategy that leads to the best estimate of the 

value function in each state. 

▪ Model: it is the agent representation of the external environment but in the most 

challenging scenarios it is unknown. 

The two main characters playing in a RL systems are the agent and the environment. 

An agent has the aim of learning which is the best action to take in order to maximize the 

cumulative reward so, after receiving the immediate reward and observing the state inside the 

environment, it samples an action among all the possible ones giving much more importance 

to the future rather than the present. Of course, in order to pick the correct action at every time 

step, the agent must have in memory all the past states so that, when it reaches again one of 

them, it is sure of what move is the optimal one. Nevertheless, an agent cannot be stuck in 

this exploitation phase, because to find the best strategy it also has to do an exploration of the 

environment, by visiting unknown states. The same way of acting can be observed in people 

daily routines, for example when a driver wants to find the optimal path to reach a predefined 

location, he has to try all the different paths leading to that location and select the best one on 

the basis of his experience.   

How to handle the balance between exploration and exploitation is a problem that 

mathematicians are still trying to solve, since it affects in a very deep manner the  
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convergence of a RL algorithm.                                                                                                                                                                  

It is possible to classify three kinds of agents and their differences will be explained later: 

• Value based or critic → the policy is correlated to the value function 

• Policy based or actor → there is no value function 

• Actor-Critic → there is either a policy and/or a value function 

Even more in general, it can be distinguished between model-based agents, when there is a 

model representation of the environment, and model-free agents, if the dynamics of the 

environment is totally unknown.                                                                                                        

The environment is everything that surrounds an agent and the world in which it has to 

navigate; for example, in a robot the agent can be seen as the brain of the robot itself and it 

will perceive as environment not only the external world but also the entire robot structure.    

                          

Figure 2.1: Schematic representation of the system/agent interaction 
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2.1 Markov Decision Process 

 

 

 

After a general introduction of RL and its characterizing features, it has to be described from 

a purely mathematical side.                                                                                                 

The classical formalism used to represent most of the RL problems and whatever decision-

making problem is the Markov Decision Problem (MDP). In every MDP the learner is called 

agent and, like in RL, it has the job of collecting the highest reward by performing the right 

moves in each state. By referring to figure 2.1, at every discrete time step 𝑡1, 𝑡2, . . . , 𝑡𝑛 the 

agent gets an observation of the environment 𝑠𝑡, takes action 𝑎𝑡 and in the next time step it 

receives a scalar signal ℛ𝑡+1 provided by the environment. It arrives in the new state 𝑠𝑡+1, 

giving birth to a trajectory that is called history of the MDP, i.e. the sequence of the 

observations, actions and rewards, 𝐻𝑡 = 𝑠0, 𝑎0, ℛ1, 𝑠1, 𝑎1. . . , ℛ𝑛, 𝑠𝑛, 𝑎𝑛 .                                             

 A main role is played by the state, a great source of information, that can be written as a 

function of the history 𝑠𝑡 = 𝑓(𝐻𝑡) [8].  

Anyway, care must be taken for not making confusion between the environment state 𝑆𝑡
ⅇ and 

the agent state 𝑆𝑡
𝑎.  

𝑆𝑡
ⅇ is the exact environment representation, often invisible to the agent or containing a lot of 

useless information, whereas 𝑆𝑡
𝑎 is the internal agent representation of the environment and 

contains just the meaningful feature the agent uses to choose an action. Clearly, talking about 

Markov Process it is implicitly said that the environment state must be a Markovian state, and 

so it must synthetize all the relevant history information. 

By definition [8], a state 𝒮𝑡 is called information state (or Markov state) if and only if                                 

                                                       Ƥ[𝒮𝑡+1|𝒮𝑡] = Ƥ[𝒮𝑡+1|𝒮1, . . . , 𝒮𝑛]   ,      (2.1)  

 (Ƥ indicates a probability) meaning that the state 𝒮𝑡 is a sufficient statistic of the future since 

future does not depends on the past, given the present. When environment state and agent 

state coincide, the problem is called Markov Decision Process (𝑆𝑡
ⅇ = 𝑆𝑡

𝑎 = 𝑂𝑡 , where 𝑂𝑡 is 



32 
 

the observation), while if the two states are different a Partially Observable Markov Decision 

Process (POMDP) is defined and the agent must construct its own representation of the state. 

RL problems deal only with full observable MDP. 

From a mathematical point of view, it is called Markov Process (MP) a memoryless random 

process in which all the states are Markov states, and it is formalized as a tuple                 

ℳ=<𝒮, 𝒯> with 

• 𝒮 = {𝑠1, . . . , 𝑠𝑛} as the space of all possible states describing the environment 

• 𝒯: 𝒮 x 𝒮’ →ℝ as the transition matrix, where each element defines the probability of 

moving to the state s’ starting form state s. In this sense, 𝒯 contains the dynamic of the 

environment. 

Another example of MP is the Markov Reward Process (MRP), a tuple ℳ=<𝒮, 𝒯, ℛ,𝛾>, 

with  

• ℛ: 𝑆 𝑥 𝐴→ℝ as reward function, r(s, a) as the immediate reward when action a is taken 

in state s 

• 𝛾 ∈ [0,1) as the discount factor used in the expected cumulative reward computation 

 

in which the concept of return 𝐺𝑡 must be introduced to justify the fundamental role played 

by the value function in a RL algorithm. 

The return 𝐺𝑡 can be whatever function that the agent tries to maximize during its training, 

for example the sum of all the collected reward inside an episode 

                                                𝐺𝑡 = ℛ𝑡+1 + ℛ𝑡+2+. . . +ℛ𝑡+𝑇 ,                                     (2.2) 

where T is the final time step. Nevertheless, this return construction can work well only when 

the interaction agent-environment is split in experiments lasting for a finite number of time 

steps, which are called episodes. A task constituted by episodes is said episodic task. An 

episode always terminates in the same state, namely the terminal state, and no matter what 

happens in the end, it will always restart from the same initial state. The only outcome 

changing is the reward earned by the agent at terminal state on the basis of the chosen action, 
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as it happens when playing a videogame the match stops and you win or you lose depending 

on all the previous moves. 

As T approaches to ∞ , the computation of 𝐺𝑡 using (2.2) gets more and more heavier; this 

implies that for continuing tasks, i.e. tasks that last for an infinite time (the experiment is not 

divide into episodes), a new definition of the return 𝐺𝑡 must be formalized  

                            𝐺𝑡 = ℛ𝑡+1 + 𝛾ℛ𝑡+2 + 𝛾2ℛ𝑡+3+. . . = ∑ 𝛾𝑘ℛ𝑡+𝑘+1
∞
𝑘=0  ,               (2.3) 

where the discount factor 𝛾 is a parameter used to tell how much confidence there is on 

future predictions. If 𝛾 tends to zero the agent is said to be ‘myopic’ and in case of  𝛾 = 0 

the return collapses on the immediate reward, meaning that the action 𝑎𝑡 does not affect the 

future decisions. On the contrary, if it approaches to 1 is said ‘far sighted’ since it is giving 

a strong importance to the future rewards. It seems trivial to notice that the new return shape 

increases the complexity of the problem from a purely conceptual side while simplifying the 

mathematical computation. 

In order to adapt (2.3) to a reinforcement learning problem it makes sense to re-shape it by 

separating the immediate reward from the future time steps returns     

                              
𝐺𝑡 = ℛ𝑡+1 + 𝛾ℛ𝑡+2 + 𝛾2ℛ𝑡+3 + ⋯ = 

      = ℛ𝑡+1 + 𝛾(ℛ𝑡+2 + 𝛾ℛ𝑡+3+. . . ) = 

                                                       = ℛ𝑡+1 + 𝛾𝐺𝑡+1                                                       (2.4)  

           

that holds for all 𝑡 < 𝑇 . 

As it has been already mentioned, both (2.2) and (2.4) are needed since it has to deal with two 

different problems: episodic task and continuing task. For the first cited one, it has to be used 

a notation that make us able to discern among quantities related to different episodes, for 

example by adding a subscript as identifier of that particular episode (ℛ𝑡,𝑖, 𝒮𝑡,𝑖).  

However, since the reference is usually to a single episode this kind of notation 
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is not needed, but it is worth to write a single expression of the return that can be applied to 

both problems, to do so, the episodic task is schematized in figure 2.2 [9]. States are drawn 

as circles while the terminal state is a square with the function of absorbing state, since once 

it has been reached, the agent remains stuck in that state for all the next time steps until a new 

episode starts, and the reward collected will be all equal to 0. 

 

 

                                                         Figure 2.2: episodic tasks [9] 

 

It is trivial to understand that, giving a reward equal to +1 to all the intermediate states, the 

return 𝐺𝑡 will be 3 even if T is not finite and 𝛾 = 1. 

Thanks to this example, a new formulation of the 𝐺𝑡 can easily be derived,  

                                                 𝐺𝑡 = ∑ 𝛾𝑘−𝑡−1ℛ𝑘
𝑇
𝑘=𝑡+1   ,                                (2.5) 

containing both parameters T and 𝛾, paying attention to the fact that the two conditions 𝑇 =

∞ and 𝛾 = 1 cannot be true at the same time. 

At this point the Markov Decision Process (MDP) must be included [8], that is a tuple 

ℳ=<𝒮,𝒜,𝒯, ℛ,𝛾>, with 𝒜 = {𝑎1, . . . , 𝑎𝑝} as the space of all p actions that could be executed 

by the agent. Recalling the concept of policy, which tells the probability of choosing action a 

in state 𝑠𝑡, the state sequence 𝒮1, . . . , 𝒮𝑛 is a MP < 𝒮, 𝒯𝜋> and the state-reward sequence  

ℛ1,𝒮1, ℛ2,𝒮2, . . ., is a MRP < 𝒮, 𝒯𝜋 , ℛ𝜋 , 𝛾>. 
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All these considerations opened up the road to the comprehension of the elements that 

characterize almost all RL algorithms, the value function and the policy, given that a value 

function is always defined in according to a particular policy.  

By definition [9] «The value function of a state s under a policy 𝜋, denoted 𝑣𝜋(𝑠), is the 

expected return when starting in s and following 𝜋 thereafter», in other words it says how 

good is for the agent to be in state 𝑠𝑡 or more precisely how good is for the agent to execute 

a given action in that state. 

Mathematically, considering (2.5), the value function is expressed as 

                 𝑣𝜋(𝑠) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠 ] =  𝐸𝜋[∑ 𝛾𝑘ℛ𝑡+𝑘+1
∞
𝑘=0 |𝑆𝑡 = 𝑠 ]  , ∀ s ∈ 𝒮,   (2.6) 

that is an expected value of the returns computed starting from state 𝑠. In the terminal state 

the value function is always zero. Actually, 𝑣𝜋(𝑠) must be called state value function to avoid 

confusion with the state-action value function, which tells how convenient is for the agent to 

take action a in state s, under the policy 𝜋, 

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠 , 𝐴𝑡 = 𝑎] =  𝐸𝜋[∑ 𝛾𝑘ℛ𝑡+𝑘+1
∞
𝑘=0 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ]  , ∀ s ∈ 𝒮.    (2.7)        

As it has been done for the return 𝐺𝑡, in the same way a value function can be written as the 

sum of the immediate reward and the discounted value functions of the successor states, 

 

              𝑣𝜋(𝑠) = 𝐸𝜋[∑ 𝛾𝑘ℛ𝑡+𝑘+1
∞
𝑘=0 |𝑆𝑡 = 𝑠 ] = 𝐸𝜋[∑ 𝛾𝑘ℛ𝑡+𝑘+1

∞
𝑘=0 |𝑆𝑡 = 𝑠 ] =

                          = 𝐸𝜋[ℛ𝑡+1 + 𝛾ℛ𝑡+2 + 𝛾2ℛ𝑡+3+. . . |𝑆𝑡 = 𝑠 ] = 𝐸𝜋[ℛ𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠 ] =

                          = 𝐸𝜋[ℛ𝑡+1 + 𝛾𝑣(𝑆𝑡+1)|𝑆𝑡 = 𝑠 ]  ,                                                                 (2.8) 

 

and this holds for all the states.     

Now the Bellman equation can be introduced, showing how to compute a value function in 

every kind of RL or dynamic programming problems, which are going to be explained starting 

from paragraph 2.2.   

In figure 2.3 a tree-like scheme is reported [9], where the root represents the current state s, 

each of all the other circles indicates the successor state that the agent can occupy, according 
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to the action chosen through the policy 𝜋 and the dynamic of the system, instead the black 

dots represents the state-action pairs.  

By re-shaping (2.8) and by referring to figure 2.3a,     

 

                         𝑣𝜋(𝑠) = 𝐸𝜋[ℛ𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠 ] = 

                                    = ∑ 𝜋(𝑎|𝑠)𝑎 ∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑟 [𝑟 + 𝛾𝐸𝜋[𝐺𝑡+1|𝑆𝑡+1 = 𝑠′]] =𝑠′  

                                    = ∑ 𝜋(𝑎|𝑠)𝑎 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 + 𝛾𝑣𝜋(𝑠′)]  .                           (2.9)  

                                                        

                Figure 2.3: (a) bellman equation scheme, (b)bellman optimality equation scheme 

 

Although it has been discussed about policy only in the singular, in a decision-making 

problem the number of policies that the agent could follow is potentially infinite. For this 

reason, the optimal policy must be found in order to accomplish the task in the best way 

possible.  

By definition, the optimal policy, denoted by 𝜋∗, is the policy that leads to a value function 

𝑣∗(𝑠) > 𝑣𝜋(𝑠) for all 𝜋 ≠ 𝜋∗ and ∀ s ∈ 𝒮,with 𝑣∗(𝑠) as the optimal value function 

  

                                                                           𝑣∗(𝑠) = max
𝜋

𝑣𝜋(𝑠) ;                                     (2.10) 

 

simultaneously it must be also defined the optimal state-action value function  𝑞∗(𝑠, 𝑎) as 
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                                                                𝑞∗(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎) ,                              (2.11)  

that can be also re-written as function of 𝑣∗(𝑠), 

 

                                                  𝑞∗(𝑠, 𝑎) = 𝐸𝜋[ℛ𝑡+1 + 𝛾𝑣∗|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  ] .         (2.12) 

 

Note that a deterministic optimal policy can be found for any MDP, and knowing the 𝑞∗(𝑠, 𝑎) 

the optimal policy can easily be deduced. 

Being 𝑣∗(𝑠) a value function, it must satisfy the self-consistency condition expressed by the 

Bellman equation, leading to the formulation of the Bellman optimality equation,  

  

                                         𝑣∗(𝑠) = max
𝑎∈𝐴

𝑞𝜋∗
(𝑠, 𝑎) = max

𝑎
𝐸𝜋  [𝐺𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  ] =

                                                    =   max
𝑎

𝐸𝜋[ℛ𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  ] =

                                                    =    max
𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 + 𝛾𝑣∗(𝑠′)]                     (2.13) 

 

understandable thanks to the tree-like scheme in figure 2.3b.  

Finally, there are all the mathematical tools needed to afford the first decision-making 

problem, that is called dynamic programming. 
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2.2 Dynamic Programming 

 

The two terms Dynamic and Programming (DP) define a particular class of algorithms that 

can be used to solve decision-making problems in which the environment is modelled as a 

perfect MDP. In this perspective, they have not a strong impact in a practical sense, since 

most of the time it is not possible to have a perfect model of the environment. Nevertheless, 

it is worth to talk about DP, given that it is the theoretical basis on which all RL algorithms 

rely. As a matter of fact, in RL the aim is to find the optimal value function and state-action 

value function that satisfy the Bellman optimality equations and that lead to the optimal 

policy, as it happens in DP, but with a smaller computational complexity and neglecting the 

complete knowledge of the environment.  

Usually DP deals with discrete problems where the environment is a finite MDP and the sets 

𝒮, 𝒜, ℛ contain a finite number of states, actions and rewards respectively. For continuous 

systems DP ensures exact solutions only in a few cases, so it is convenient to discretize state, 

action and reward spaces to go back to the discrete case. 

The great advantage of DP is that it is a very general solution method for problems 

characterized by sub-optimal substructure, e.g. the principle of optimality applies, and that 

can be divided into overlapping sub-problems, so once one of them is solved, the solution can 

be stored and later reused, since they recur many times. The same two proprieties are 

completely satisfied by a MDP.  

To be specific, a DP algorithm is used to solve a problem in which the agent can do the 

computation and improve the policy with no kind of interactions, having the exact 
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representation of the external world. This problem is known as Planning and it can be divided 

in two parts: 

1. Prediction: given a MDP or MRP and a policy 𝜋 as input, the objective is to 

evaluate 𝜋, i.e. to demonstrate how good is the input policy. 

2. Control: given a MDP as input, the aim is to find the optimal state value 

function 𝑣∗(𝑠) or the optimal state-action value function 𝑞∗(𝑠, 𝑎) and the optimal 

policy 𝜋∗. 

The proposed solution for Prediction is the Iterative Policy Evaluation, an algorithm that 

applies and solves the Bellman expectation equation iteratively. Given a policy 𝜋 the first 

idea is to use (2.9) for every state 𝑠, but if the number of states is denoted by S, this would 

mean to solve a system of S equations in S unknowns, requiring too much effort in the 

computation. A better way is to use an iterative process in which first a random value function 

𝑣𝜋(𝑠) is set for each state, except for the terminal states that must have value function equal 

to zero, and then the Bellman equation is used to update 𝑣𝑘(𝑠) at each new time step k+1, 

knowing the successor states 𝑣𝑘(𝑠′) , 

                             

                                𝑣𝑘+1(𝑠) = ∑ 𝜋(𝑎|𝑠)𝑎 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 + 𝛾𝑣𝑘(𝑠′)].                  (2.14) 

Basically, (2.14) shows how for each state 𝑠, at time step k+1, the new value function is 

computed starting from the old value functions of the future states. It can be demonstrated 

that the algorithm goes to convergence, as k tends to ∞. 

The iterative policy iteration logic can be also explained graphically by figure 2.4 [8].  

 

Figure 2.4: Iterative Policy Evaluation 
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In a control problem, starting from a deterministic policy, the optimal policy can be obtained 

only by following two steps: the policy evaluation needed to evaluate how good is 𝜋 through 

the value function computation, and the policy improvement to enhance the policy by 

performing a greedy action on 𝑣𝜋(𝑠). The plan is to apply in state 𝑠 an action a not selected 

by 𝜋 so that 𝑞𝜋′(𝑠, 𝑎) > 𝑣𝜋(𝑠), then 𝑣𝜋′(𝑠) > 𝑣𝜋(𝑠) which means the new greedy policy is 

better than policy 𝜋. 

𝜋 can be upgraded substituting 𝜋(𝑠) with 𝜋′(𝑠), where [9] 

 

                       𝜋′(𝑠)    = 𝑎𝑟𝑔 max
𝑎

𝑞𝜋(𝑠, 𝑎)= 

                                     = 𝑎𝑟𝑔 max
𝑎

𝐸𝜋[ℛ𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ] .         (2.15) 

  

When the condition 𝑣𝜋′(𝑠) = 𝑣𝜋(𝑠) is achieved, it is sure that the new policy is as good as 

the previous one, 𝜋′ = 𝜋 and by (2.15) it can be written 

 

                                   𝑣𝜋(𝑠) = max
𝑎

𝐸𝜋[ℛ𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ] =  

                                               = max
𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 + 𝛾𝑣𝜋′(𝑠′)].                    (2.16) 

 

(2.16) is again the Bellman optimality equation, therefore it has been proved that 𝜋′ is the 

optimal policy.  

The policy iteration (PI) is an algorithm that applies iteratively the two steps in order to get 

𝜋∗. As soon as the policy 𝜋 is improved, the new policy 𝜋′ is improved again to obtain a new 
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better policy 𝜋′′. This procedure perpetuates until the optimal policy 𝜋∗ and the optimal 

value function 𝑣∗ are generated, giving birth to the chain in figure 2.5 [9]. 

 

                       

                                                                                                Figure 2.5:  

           E stands for Policy Evaluation performed by value function computation and I stands for Policy Improvement 

Actually, in many examples the number K of policy evaluation iterations, required to obtain 

the optimal policy, is smaller than the number of iterations needed to get the exact 

convergence, therefore the policy iteration algorithm can be improved by adding a stopping 

criteria to reduce k. Among all the possible choices it is smart to select just one iteration for 

PI, as in value iteration algorithm, by applying directly (2.13) like an update rule, 

 

                                    𝑣𝑘+1(𝑠) = max
𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 + 𝛾𝑣𝑘(𝑠′)] .                 (2.17) 

The cyclic nature of policy evaluation and policy improvement is denoted as General policy 

iteration (GPI) in the most general sense, characterizing not only DP, but also RL methods. 

The two processes interact with each other (figure 2.6 [9]), but at the same time they operate 

in opposite directions, indeed in policy improvement 𝜋 must be consistent with respect to the 

value function, while in policy evaluation 𝑣𝜋 must be coherent with the new greedy policy. 

The problem is that when the new greedy policy is obtained, the value function becomes 

inconsistent and when the value function is evaluated, the policy is no more greedy. 

Nevertheless, both algorithms converge to the same outcomes, 𝑣∗ and 𝜋∗, so that the policy is 

stable if the value function is stable, and vice versa.               
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                                                                                  Figure 2.6: Generalized Policy Iteration 

 

The discussed problems and all their relative DP solutions can be adequately summarized 

through the table 2.1, showed by Sutton and Barto in [9]. 

 

Problem Bellman Equation Solution 

Prediction Bellman expectation Equation Iterative Policy Evaluation 

Control Bellman expectation equation + 

Greedy Policy Improvement 

Policy Iteration 

Control Bellman optimality equation Value Iteration 

                                                                                                   Table 2.1 
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2.3 Reinforcement Learning for prediction 

 

In the previous section of this chapter it has been proved as DP could be a very powerful tool 

for the resolution of prediction and control problems, but its biggest limit lays in the fact that 

a fully knowledge of the environment is needed. Since most of the times it is impossible to 

acquire a model, e.g. the transition matrix, of the MDP, RL algorithms made their ways to 

provide a solution for the same two typologies of problem, but completely model-free, 

satisfying the information demand just through a real or simulated experience.  The 

cornerstones of all RL algorithms are Monte Carlo (MC) and Temporal difference (TD) in 

which the concept of episode, intended as the sequence from starting state to terminal state, 

is crucial.  
 

2.3.1 Monte Carlo for prediction 

 

When MC is used for prediction, again the aim is to evaluate a given policy by computing the 

value function, also called utility function 𝑈𝜋(𝑠). In according to (2.6), the utility is expressed 

as the expectation of the returns, but the first peculiarity of MC methods is that it is computed 

as the empirical mean over the number of visited states. Each occurrence of a state during the 

episode is called visit. The concept of visit is important because it permits to categorize two 

different MC approaches: 

1. First-Visit MC: 𝑈𝜋(𝑠) (from now on Patacchiola notation will be used) is defined as 

the average of the returns considering only the first visit to s, within a given episode. 

2. Every-Visit MC: 𝑈𝜋(𝑠) is defined as the average of the returns considering all the 

visits to s, within a given episode. 
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Basically, in first-visit MC the utility relative to each state is updated just once for an episode, 

neglecting all the other visits to the same state during the current episode, 

 

𝑁(𝑠) ← 𝑁(𝑠) + 1 

                                                                  𝑆(𝑠) ← 𝑆(𝑠) + 𝐺𝑡 

                                                                  𝑈(𝑠) ←
𝑆(𝑠)

𝑁(𝑠)
   ∀ 𝑠 ∈ 𝒮 ,         (2.18)                                     

 

where 𝑁(𝑠) indicates the number of first-visit in state s during all the episodes, 𝑆(𝑠) is the 

sum of returns 𝐺𝑡 computed at each first-visit, and 𝑈(𝑠) is the utility function in s.  

In every-visit MC the utility 𝑈(𝑠) is updated at each visit of the same state during one episode, 

therefore the steps of the algorithm are the same of (2.18), but 𝑁(𝑠) can be updated more than 

once during one epoch.  

Notice that MC is a good solution also for fully observable MDP, when DP would require too 

much effort in calculations. 

Another way to perform the updates in MC algorithms is the usage of incremental mean,  

 

                                                                𝑁(𝑠) ← 𝑁(𝑠) + 1 

                                                                  𝑈(𝑠)  ← 𝑈(𝑠) +
1

𝑁(𝑠)
(𝐺𝑡 − 𝑈(𝑠)), 

even if in non-stationary problem old states cannot be considered, 

 

                                                         𝑈(𝑠)  ← 𝑈(𝑠) + 𝛼(𝐺𝑡 − 𝑈(𝑠)),                            (2.19) 
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with 𝛼 as a step-size parameter called learning rate, that gives the name to this method, the 

𝛼 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑀𝐶. 

The rule of large number proves that 𝑈(𝑠) → 𝑈𝜋(𝑠) as 𝑁(𝑠) → ∞ in both cases. 

The greatest problem of MC is that it is necessary to wait for the ending of an episode to 

enable the agent to learn something and most of the times the experiments are very long, so 

delaying learning until the end can get too slow. Furthermore, the termination of the episode 

is not always guaranteed, in fact in MC there is no bootstrapping, meaning that the estimates 

for a state are independent on the other states. Temporal difference methods must be applied 

to have the possibility of performing an online update of the policy and consequently speeding 

up the process towards the convergence. 

 

2.3.2 Temporal difference 

 

Temporal Difference (TD) methods are constituted by a mixture of elements belonging to 

either MC and DP. Indeed, as in MC a TD method needs to learn from experience but like 

DP it has the bootstrapping propriety, so the estimate in state s depends on old states and it 

has not to wait for arriving at the terminal state to perform the updates.  

The general rule of TD is expressed by [10] 

 

            𝑛𝑒𝑤 𝑒𝑠𝑡ⅈ𝑚𝑎𝑡𝑒 ←  𝑛𝑒𝑤 𝑒𝑠𝑡ⅈ𝑚𝑎𝑡𝑒 +  𝛼 ∗ [𝑇𝑎𝑟𝑔𝑒𝑡 −  𝑜𝑙𝑑𝑒𝑠𝑡ⅈ𝑚𝑎𝑡𝑒] ,       (2.20)       

 

and the quantity [𝑇𝑎𝑟𝑔𝑒𝑡 −  𝑜𝑙𝑑𝑒𝑠𝑡ⅈ𝑚𝑎𝑡𝑒] is called estimation error δ. 

In (2.20) the parameter 𝛼 (step size), usually chosen constant, gives an idea on how much the 

action value is going in the direction of the estimate, in fact if 𝛼 is 0 the agent does not learn 

at all while if it is set to 1 the agent consider only the most recent information, neglecting the 

previous ones. By (2.19) it can be recognized that the MC target is equal to the return 𝐺𝑡, 
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computed starting from state s until the terminal state. In other words, all the states from s to 

terminal state must be involved for the target estimate. In TD the basic idea is to perform all 

the utilities update every time a new state is visited, hence the ending of the episode is not 

required to compute the new 𝑈(𝑠). 

In a sense, this makes TD a more powerful tool than MC, indeed it can be applied in 

continuous tasks as well (MC is applied just in episodic tasks) and the agent is able to learn 

online at every time step. 

The TD target is expressed as 

 

                                                     𝑇𝑎𝑟𝑔𝑒𝑡 = ℛ𝑡+1 + 𝛾𝑈(𝑆𝑡+1)                                       (2.21) 

 

giving the idea of the bootstrap concept as a guess from a guess. 

(2.20) can be re-written by substituting (2.21), 

 

                                    𝑈(𝑠) ← 𝑈(𝑠) + 𝛼(ℛ𝑡+1 + 𝛾𝑈(𝑠𝑡+1)  −  𝑈(𝑠)) ,                         (2.22) 

 

obtaining the update rule for the simplest TD algorithm known as TD(0) or one-step TD, a 

special case of TD(𝜆) that will be pointed out later. By summarizing, TD mixes the 

bootstrapping of DP and the sampling of MC and as result it shows a low variance with some 

bias, in contrast with MC that has no bias but high variance. Despite of all these differences, 

the bound between them can be clarified by introducing n-step return theory. 
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2.3.3 n-step return, TD(𝝀) and eligibility trace 

 

Until now only one-step TD has been analysed, where the target depends just on the estimate 

of the utility function at the next step, but nothing prevents us to look ahead for  

the n next steps to perform the update. In n-step TD, the target is computed as the n-step 

return, 

 

𝐺𝑡
𝑛 = ℛ𝑡+1 + 𝛾ℛ𝑡+2 + 𝛾2ℛ𝑡+3+. . . +𝛾𝑛−1𝑉(𝑠𝑡+𝑛), 

 

leading to a new update rule 

 

                                                          𝑈(𝑠) ← 𝑈(𝑠) + 𝛼(𝐺𝑡
𝑛 −  𝑈(𝑠)) .                                   (2.23) 

 

After that, it is trivial to observe how for 𝑛 → ∞ the 𝐺𝑡
𝑛 return becomes the MC return and 

(2.23) is the same of (2.19) proving the link between the two methods (figure 2.7), already 

anticipated. 

n-step return theory gives the chance to introduce the other TD method, denominated as 

TD(𝜆), where the 𝜆 parameter is a weight used to combine all the 𝐺𝑡
𝑛 returns giving as 

outcome the 𝜆 − 𝑟𝑒𝑡𝑢𝑟𝑛 

 

                                                      𝐺𝑡
𝜆 = (1 −  𝜆)∑ 𝜆𝑛−1∞

𝑛=1 𝐺𝑡
𝑛. 

 

Actually, 𝐺𝑡
𝜆 represents the target in forward-view TD(𝝀), since the utility is computed 

looking into the future, and as it happens in MC, it requires the ending of the episode. 

The other type of TD(𝜆) is called backward-view TD(𝝀) and it exploits the concept of 

eligibility trace.  

The idea of TD(𝜆) with eligibility trace is to update the utility function by considering not 

only the next step, but also the previous states visited during the current episode.  

In general, the eligibility function is defined as follow: 



48 
 

 

                                                      𝑒𝑡(𝑠) = {
𝛾𝜆 𝑒𝑡−1(𝑠)            ⅈ𝑓 𝑠 ≠ 𝑠𝑡

𝛾𝜆 𝑒𝑡−1(𝑠) + 1    ⅈ𝑓 𝑠 = 𝑠𝑡
                    (2.24) 

 

Employed to have a short memory of all the visited states until the terminal state. Here 𝛾 is 

the discount factor, a value between 0 and 1, and it is called trace-decay, while 𝜆 is the weight 

factor. With 0 < 𝜆 < 1 the traces decrease in time by a factor 𝛾𝜆 including all the previous 

state in the utility estimation, 𝜆 = 0 implies 𝑒𝑡(𝑠) = 1 𝑡ℎ𝑎𝑡 brings back to the TD(0) case 

where only the next state is involved in the update, while for 𝜆 = 1 TD(1) is defined and all 

the preceding predictions are equally updated. Notice that the estimation error accumulated 

in TD(1) is exactly the MC error, then if the updates are performed off-line TD(1) coincides 

with MC. 

 

        

                          

Figure 2.7: from one-step TD to MC [9] 
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The updated rule in backward TD(𝜆) is the following, 

 

                                                 𝑈(𝑠) ← 𝑈(𝑠) + 𝛼𝛿𝑒𝑡(𝑠) ,                                     (2.25)    

 

with estimation error  

 

                                              𝛿 = ℛ𝑡+1 + 𝛾𝑈(𝑠𝑡+1)  −  𝑈(𝑠) . 

 

The advantage of TD(𝜆) over TD(0) is that the convergence is achieved faster.  

All these concepts can be well resumed with table 2.2.    
 

Off-line updates 𝜆 = 0 0 < 𝜆 < 1 𝜆 = 1 

Backward view TD(0) 

 

TD(𝜆) TD(1) 

                

Forward view TD(0) Forward TD(𝜆) MC 

                                   

On-line updates 𝜆 = 0 0 < 𝜆 < 1 𝜆 = 1 

Backward view TD(0) 

 

TD(𝜆) TD(1) 

    

Forward view TD(0) Forward TD(𝜆) MC 

Table 2.2 
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2.4 Reinforcement Learning for control 

 

It has been already disclosed that in control problems the aim is to find the optimal 

policy and RL takes over DP when the MDP is unknown or is too big to be used. 

This implies that from now on, the concept of value function must be substituted with 

the state-action value function, which does not need the MDP to be defined, thus the 

policy improvement is performed [8], 

 

                                                   𝜋(𝑠|𝑎) = 𝑎𝑟𝑔 max
𝑎∈𝒜 

𝑄(𝑠, 𝑎) .                                  (2.26) 

 

All the algorithms defined in RL for control are based on the GPI concept. 

Moreover, two kinds of learning have been recognized  

1. On-policy learning: find optimal policy 𝜋∗ from experience sampled by 𝜋 

2. Off-policy learning: find optimal policy 𝜋∗ from experience sampled by 𝜇, another 

policy that is never updated. 

                                           

 

2.4.1 Monte Carlo for control 

 

As GPI claims, in control MC a part of the algorithms has to perform the policy evaluation 

process while the other part performs policy improvement. Here, the first problem shows up, 

since it is not sufficient to adopt a greedy policy improvement because of the trade-off 

between exploration and exploitation. To be sure that the provided policy is optimal, 
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exploration cannot be avoided since all the states of the environment must be visited, even if 

they do not return the highest immediate reward. 

The only way to ensure exploration is to apply an 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy improvement through 

the definition of a policy 𝜋 that assigns probability 1 − 𝜀 to a greedy action, and a 

probability 𝜀 to a non-greedy random action, 

 

𝜋(𝑠|𝑎) = {

𝜀

𝑚
+ 1 − 𝜀    ⅈ𝑓 𝑎∗ = 𝑎𝑟𝑔 max

𝑎∈𝒜 
𝑄(𝑠, 𝑎)

𝜀

𝑚
                𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒                       

                           (2.27) 

 

with 𝑚 equal to the number of possible actions. 

This strategy is implemented in GLIE (Greedy in the Limit with Infinite Exploration) Monte 

Carlo that by definition [8] converges to 𝑄(𝑠, 𝑎) =  𝑞
∗
(𝑠, 𝑎). 

Within one episode, for every state-action pair (𝑠𝑡 , 𝑎𝑡) 

 

 

𝑁(𝑠𝑡 , 𝑎𝑡) ← 𝑁(𝑠𝑡 , 𝑎𝑡) + 1 

             𝑄(𝑠𝑡 , 𝑎𝑡)  ← 𝑄(𝑠𝑡 , 𝑎𝑡) +
1

𝑁(𝑠𝑡 , 𝑎𝑡)
(𝐺𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡)), 

 

and the policy is improved with respect to the action-value function, 

 

𝜀 ←
1

𝑘
 

𝜋 ← 𝜀-greedy(Q) , 

 

k defines the k-th sampled episode. 

However, MC has many disadvantages if compared with RL algorithms for control derived 

by TD. 
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2.4.2 Sarsa 

 

To extend the TD methods to the control case (or active learning), since the new goal is to 

estimate the optimal policy starting by a random policy, as it has been done in MC for control, 

the action-value function must be invoked. 

In TD control the estimation is based on the tuple State-Action-Reward-State-Action which 

gives the name to the algorithm, SARSA. For each state there is an associated action and now, 

state-action transitions take the state transitions place since Q receives as input state-action 

pairs (figure 2.8). The update rule is obtained by (2.22) just replacing U with Q, 

 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(ℛ𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1)  −  𝑄(𝑠𝑡 , 𝑎𝑡)) .           (2.28) 

 

In the standard implementation of SARSA the previous states are ignored, while 

moving forward, the algorithm takes into account only the current state and the 

state at time instant t+1. Thanks to GLIE assumption, SARSA convergence is 

guaranteed as long as exploration is implemented by visiting all the state-action 

pairs an infinite number of times. 

The pseudo-code of this algorithm can be resumed in 4 steps [10]: 

1. Perform an action provided by policy 𝜋(𝑠𝑡) 

2. Observe 𝑠𝑡+1, 𝑎𝑡+1 and 𝑟𝑡+1 

3. Update state-action value function 𝑄(𝑠𝑡 , 𝑎𝑡) 

4. Improve policy 𝜋(𝑠𝑡) as 𝜋(𝑠𝑡) = 𝑎𝑟𝑔 max
𝑎 

𝑄(𝑠𝑡 , 𝑎𝑡) 

Here, from the practical point of view, 𝑄 is the state-action value function matrix that 

substitutes the utility matrix and contains the value of all the possible state-action pairs. 

Figure 2.8: 
SARSA 
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2.4.3 Q-learning 

 

SARSA gives an idea of what on-policy learning means, since the agent learns about policy 

𝜋 through experience sampled by policy 𝜋 itself. On the contrary, in off-policy learning 

(learning from observation) optimal policy is obtained by the observation of another policy 𝜇 

that is never updated. 

One of the biggest advantages that makes off-policy learning a very powerful tool, lies in the 

fact that it gives to the agent the ability of learning an optimal policy looking to the actions 

taken by another agent, for instance a robot, that follows a sub-optimal policy, or learning 

multiple policies. Furthermore, it opens the doors to the “experience replay” of deep learning 

strategies, where a part of information collected in the past is re-used to enhance the current 

policy. 

Q-learning is probably the most important off-policy learning TD algorithm. 

Its update rule is derived by (2.28), 

 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(ℛ𝑡+1 + 𝛾 max
𝑎 

𝑄(𝑠𝑡 , 𝑎𝑡)  −  𝑄(𝑠𝑡 , 𝑎𝑡)) ,           (2.29) 

 

where the only difference is the computed target. 

Q-learning procedure is synthetized by 4 steps, as it happens in SARSA, 

1. Perform an action provide by policy 𝜇(𝑠𝑡) 

2. Observe 𝑠𝑡+1 and 𝑟𝑡+1 

3. Update state-action value function 𝑄(𝑠𝑡 , 𝑎𝑡) 

4. Improve policy 𝜋(𝑠𝑡) as 𝜋(𝑠𝑡) = 𝑎𝑟𝑔 max
𝑎 

𝑄(𝑠𝑡 , 𝑎𝑡) 
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By step 1 and 4 it can be observed that, unlike SARSA, the updated policy is always 𝜋(𝑠𝑡), 

but actions are selected by a different policy, 𝜇(𝑠𝑡) and in step 2 the next action is no more 

taken in consideration. Leaving aside these aspects, the two algorithms are almost the same. 

 

2.4.4 Actor-critic 

 

Reinforcement learning and in general machine learning are strictly connected to 

neuroscience, by definition “a branch of the life sciences that deals with the anatomy, 

physiology, biochemistry, or molecular biology of nerves and nervous tissue and especially 

with their relation to behavior and learning”, so that a lot of algorithms are inspired from 

the idea of how the nervous systems works.  

By undergoing different species of mammals to experiments in which a go/no-go task had to 

be accomplished, receiving a particular stimulus as input and a negative or positive reward as 

output, it has been found out that in this kind of situations the brain response of the animal is 

activated through the dopamine, a neuromodulator produced by neurons inside two different 

brain areas, substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). 

Dopamine is involved in some of the most important processes in both human and animal 

brains. 

These two areas have direct projections to another area of the brain, the striatum. The striatum 

is divided in two parts, ventral striatum and dorsal striatum, whereas the output of the striatum 

is directed to motor areas and prefrontal cortex, and it is implicated in motor control and 

planning. It is possible to cluster all these brain sections in two different groups [10], 

▪ Group 1: Ventral striatum, substantia nigra, ventral tegmental area 

▪ Group 2: Dorsal striatum and motor areas 

Group 1 can evaluate the relevance of a stimulus on the basis of the reward coming from the 

external environment. Meanwhile, it can estimate the error measure between the result of the 

action and its direct consequences, and use this value to calibrate an executor. Group 1 is 
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labelled as critic. Group 2 can only provide an action, independently on the utility of the 

stimulus, it is the actor. 

All these concepts, very similar to the ones that has been studied and developed in RL, 

represent the invisible wire connecting neuroscience and ML, two science fields that just 

apparently have nothing in common. 

Group 1 and group 2 help defining two macro sets of RL algorithms, 

• Critic only, such as MC TD or DP based on the GPI mechanism → policy update and 

utility update are strictly connected, 

• Actor only → no need to update a utility function and so the policy, such as Genetic 

algorithms in which different policies are followed and the best among them is chosen 

at the end of all the experiments. 

The intersection between the sets gives the actor-critic algorithm (figure 2.9).  

 

 

Figure 2.9: RL algorithms sets [8] 
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In actor-critic (figure 2.10) the utility is computed using a TD(0) as the critic and the action-

value function is updated through the estimation error δ, a positive δ comes with a “good ” 

action because it brings the utility towards a higher value, whereas a negative δ gives the 

opposite result and helps to define a “bad” action. 

On the opposite, the action is chosen by the actor that can be realized in many ways, such as 

by a probability function (the softmax function, for example) or by an Artificial Neural 

Network (ANN) [9]. Anyway, there is no real update of a given policy. 

 

 

 

Figure 2.10: Actor-Critc scheme [10] 
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2.4 Function approximation 

 

All the algorithms introduced so far constitute the simplest and the most popular methods 

used to solve RL problems, that generally are applied in small environments with reduced 

states and action spaces. In the implementation either the state value function or the state 

action value function can be built as look-up tables or matrices. More precisely 𝑈(𝑠) must be 

intended as a matrix of N elements, with N equal to the number of states within the 

environment, while 𝑄(𝑠, 𝑎) is a 𝑁 ∗ 𝑚 matrix where m represents the number of possible 

actions for each state. The problem is that it is not possible to store all the values of 𝑈(𝑠) and 

𝑄(𝑠, 𝑎) when the laying MDP is too large (too many states and actions) or continuous. 

Therefore, it is necessary to approximate both through a function parametrized by a vector of 

weights 𝝎 ∈ ℝ𝒅, such that  �̂�(𝑠, 𝝎) ≈ 𝑈𝜋(𝑠) is the approximate value of state 𝑠, depending 

on 𝝎. This is beneficial since the number of 𝝎 components is smaller than the number of 

states, 𝑑 ≪ 𝑁. 

The two most accredited kinds of approximations are the linear function approximation, 

through which the function is written as a linear combination of the states, weighted by the 

components of vector 𝝎, and the non-linear function approximation performed with an 

artificial neural network. 

In both approaches, 𝝎 is the output of an iterative process, in which at each step the weights 

are updated on the basis of a target value and a cost function chosen properly. 

Function approximation is an instance of supervised learning and this becomes clear 

underlining the presence of an update rule and an error measure. 

As it has been pointed in Chapter 1, the most common way to define an error measure is the 

MSE. For this specific problem, it can be computed giving the optimal utility function 𝑈∗(𝑠) 

and its estimate �̂�(𝑠,𝝎) and introducing function 𝜇(𝑠),with 𝜇(𝑠) ≥ 0, that tells how much 

relevance is attributed to state s. 
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The new loss function is denoted as mean square value error [10], 

 

                                     𝑀𝑆𝑉𝐸(𝝎) =
1

𝑁
∑  𝜇(𝑠)[𝑈∗(𝑠)  −  �̂�(𝑠,𝝎)]2𝑠∈𝒮  .                            (2.30) 

 

For what concern the update rule, gradient descent is applied, so by (1.5), 

 

                                                    𝝎𝑡+1 = 𝝎𝑡  −
1

2
𝛼𝛻𝝎𝑀𝑆𝑉𝐸(𝝎)  .                                           (2.31) 

 

The real issue of function approximation is that 𝑈∗(𝑠) is unknown. Nonetheless, the obstacle 

can be avoided by constructing an approximated utility function 𝑈(𝑠) through MC or 

bootstrapping methods, and using it in (2.30) in place of 𝑈∗(𝑠).  
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2.5.1 Linear function approximation 

 

In linear approximation the state is expressed as a vector of features 𝑥(𝑠𝑡), where the features 

are the most relevant information about that state and of course they change depending on the 

problem.  

A linear approximator, that is the simplest case of linear combination, allows to write the 

utility function as a first order polynomial, so that the features are linearly combined through 

weights, 

 

                                              �̂�(𝑠,𝝎) =  𝝎𝑻𝒙(𝑠)                                                           (2.32) 

                                                             = 𝜔1𝑥1 + 𝜔2𝑥2+. . . +𝜔𝑁𝑥𝑁 ,                                 

with N equal to the number of features. 

By substituting (2.31) in (2.30), 

                                            𝑀𝑆𝑉𝐸(𝝎) =
1

𝑁
∑  𝜇(𝑠)[𝑈(𝑠)  − 𝝎𝑻𝒙(𝑠)]2𝑠∈𝒮 , 

 

and defining �̃�(𝑠) as the TD(0) target, the update rule is 

 

                          𝝎𝑡+1 = 𝝎𝑡  − 𝛼[𝑟𝑡+1 + 𝛾𝝎𝑻𝒙(𝑠𝑡+1) − 𝝎𝑻𝒙(𝑠)]𝛻𝝎 �̂�(𝑠, 𝝎),      (2.33)  

where it is very easy to prove that the gradient is 

                                                           𝛻𝝎 �̂�(𝑠,𝝎) = 𝑥1 + 𝑥2+. . . +𝑥𝑁 . 

(2.33) can be re-written as follows, 

                                 𝝎𝑡+1 = 𝝎𝑡  − 𝛼[𝑟𝑡+1 + 𝛾𝝎𝑻𝒙(𝑠𝑡+1) − 𝝎𝑻𝒙(𝑠)]𝒙(𝑠),            (2.34) 

showing the final update rule in the linear function approximation case. 
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Though, a linear approximator is limited by the fact that it does not take into consideration 

the dependencies that might be among the features, hence more complex approximators must 

be involved. For instance, a quadratic approximator lets the possibility to model the utility as 

a second order polynomial, 

                           �̂�(𝑠, 𝝎) = 𝜔1𝑥1 + 𝜔2𝑥1
2 + 𝜔3𝑥2 + 𝜔4𝑥2

2. . . +𝜔𝑀−1𝑥𝑁 + 𝜔𝑀𝑥𝑁
2. 

However, as it happens in supervised learning, attention must be taken in the bias-variance 

trade-off, since a too simple approximator might miss relevant information whereas 

approximators with a raised grade could not be general enough for the estimation of the utility 

in unvisited states.  

 

2.5.1 Non-linear function approximation and Deep     

Q-network 

 

Beside linear function approximation, non-linear function approximation is another 

instrument used in RL to estimate 𝑈(𝑠) 𝑎𝑛𝑑 𝑄(𝑠, 𝑎), when a look-up table would require a 

too large space in memory. 

The most powerful non-linear function approximator is a ANN, since its structure can be 

easily modified by adding multiple layers or by choosing different sigmoid functions. It 

follows that a ANN can shape any kind of utility from the simplest (it can coincide with the 

linear approximator) to the more complex one. 

A practical example of non-linear function approximation in the RL domain is the deep Q-

network (DQN) which overcomes the limits of Q-learning. 

As suggested by the name, in DQN the goal is to build the 𝑄(𝑠, 𝑎) as a  Deep Neural Network 

(DNN), but the main difference with respect to supervised learning is that here the inputs of 

the net are not a i.i.d. (e.g. independent and identically distributed) set and during the training 

the target value �̂�(𝑠, 𝑎;𝝎) is continuously variable. 
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In addition, once the weights of the DNN are updated at the end of one iteration, the estimate 

of 𝑄(𝑠, 𝑎) tries to move closer to the target, but it drags with it all the Q values in the 

neighborhood.  

All these factors make the training unstable. 

As a consequence, in order to stabilize the process, two concepts come into play, the 

experience buffer replay and the target network.  

Experience buffer replay consists of storing in memory a given number of past experiences 

and then sampling randomly a small sized mini-batch of those experiences, that will be used 

as stable input for the DNN. 

The target-network is a DNN used to create the target and make it constant for a definite 

number of iterations. Indeed, in a DQN algorithm there are always two DNN denoted by 

weights 𝝎 and 𝝎−, to create �̂�(𝑠, 𝑎;𝝎) and the target �̃�(𝑠, 𝑎;𝝎−) respectively. 

At the beginning of the algorithm 𝝎 and 𝝎− are set equal with a random initialization and 

thereafter 𝝎 is continuously updated while 𝝎− is kept constant. Just after C iterations a reset 

is executed, and again 𝝎− =  𝝎. 

Here, the loss function that must be minimized is ℒ𝑖(𝜔𝑖), 

 

                      ℒ𝑖(𝜔𝑖) = 𝐸𝑠,𝑎,𝑠′,𝑟~𝐷[(𝑟 + 𝛾 max
𝑎′ 

𝑄(𝑠′𝑡 , 𝑎′𝑡; 𝜔𝑖
−) − �̂�(𝑠, 𝑎; 𝜔𝒊))

2],          (2.35) 

 

where D is the dimension of the experience buffer. 
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Chapter 3  
 

 

 

 

3    Inverse Reinforcement Learning 
 

 

 

In this Chapter the problem of Inverse Reinforcement Learning (IRL) has been discussed, 

which is the inverse problem of the “forward” Reinforcement Learning (RL) examined in 

Chapter 2. Then, the causes that bring the need to face this type of problem will be explained, 

focusing on the importance of the reward function due to its great generalizability since it 

intrinsically defines the task to be performed. Moreover, different IRL methods and 

algorithms will be shown, highlighting the so called feature expectation based methods. 

 

 

3.1 The Inverse Reinforcement Learning       

Problem 
 

 

In MDP formalism and in Reinforcement learning process the implicit notion of “task” (or 

goal) is assumed to be encoded in a Markov decision process by means of the reward function. 

Therefore, assuming that the environment is equipped with a reward function, which is the 

feedback signal with which the agent actions are evaluated, then the reinforcement learning 

frameworks proposes a wide range of algorithms to estimate the optimal policy when the 

dynamics of the environment is unknown, as fully explained in Chapter 2. Indeed the MDP 
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formalism can be effectively applied in all the problems in which the reward can be specified 

more easily rather than directly indicate the optimal policy for a task. Unfortunately, many 

complex problems exist in which the design of a proper reward function is a difficult and 

time-consuming task, and this happens for example when dealing with unpredictable and 

dynamic scenarios or in not well-defined environments as it happens for autonomous driving. 

Indeed, for the driving task case, the human driver typically makes a trade-off between 

different objectives such as maintaining a desired speed and a certain safety distance from the 

leading vehicle while following correctly the lane and staying far from the pedestrians. So the 

reward function is frequently difficult to specify manually, in fact usually the starting point is 

to construct an hypothesized reward based on the information of the task to be performed that 

then is manually adjusted till the desired behavior is obtained. 

Therefore, the entire field of RL is founded on the presupposition that the reward function is 

[11]: 

 

“rather than the policy or the value function, is the most 

succinct, robust, and transferable definition of the task” 

 

indeed, the reward function provides a description and the underlying logic of the task, that 

can be used then in RL and optimal control algorithms. 

 

However, as it has been already said it is often an hard problem to define formally the task in 

a reward function form, in fact it is much more easier to define good performance on a specific 

task, for example using expert demonstration to extract a definition of the task. 

 

In this regards RL community has provided several contributions to solve the problem of 

learning from demonstrations, giving rise to the Imitation Learning (IL) framework. 

 

The main approaches solving IL problems are Behavioral Cloning (BC) [15] and Inverse 

Reinforcement Learning (IRL) [16]. BC recovers the demonstrated policy by learning the 

state-action mapping in a supervised learning way, while IRL aims to learn the reward 

function that makes the expert optimal. Behavioral cloning is a simple approach aiming at 
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imitate a movement from demonstration without learning a reward function, and it is usually 

achieved by learning a parametrized target policy or target trajectory using regression, but its 

main limitation is that it simply learns to replicate the observed policy. Moreover, BC method 

has several limitations: it requires a huge amount of data when the environment (or the expert) 

is stochastic [17]; it does not provide good generalization or a description of the expert goal. 

In IRL approach instead, the focus is on the direct learning and extraction of the unknown 

reward function for the purpose of generalization and transferability. 

Indeed, the reward function can be transferred to any new scenario or environment in which 

the features are well defined. As a consequence, IRL allows recovering the optimal policy a 

posteriori, even under variations of the environment. It is crucial to stress that the reward 

function is a much more powerful and compact information rather than the optimal policy. 

The transition model can change over time, due to external factors, as a consequence also the 

optimal policy might change, whereas the reward will remain the same. Knowing the reward, 

the optimal policy associated to the new MDP can be recomputed. Thus, it can be understood 

why the reward function is a transferable information (it can be plugged into new problems 

allowing learning the optimal policy). 

 

The problem of deriving a reward function from observed behavior, namely the Inverse 

Reinforcement Learning (IRL, Ng and Russell, 2000), seems one of the most promising 

method. 

 

The purpose of IRL is to develop a method to recover the reward function that led to the 

observed sequences of choices made by an expert agent acting in a high-dimensional, 

stochastic environments. Then, utility functions found through IRL process can be used to 

simulate decision-making policies in the original scenario but also in unseen and new scenario 

in which the logic to be adopted is the same. 

 

In the RL “forward” problem, the focus is in finding the optimal policy 𝜋* given the MDP. 

In the inverse problem (IRL) the notation is MDP\R, and the aim is to find this unknown 

reward, that has generated the policy 𝜋𝐸, through the data given by the expert demonstration 

𝜇𝐸. 
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This is equivalent to find the intent behind the demonstration rather than locally 

approximating the demonstrated trajectories as in behavioral cloning [15]. The main 

advantages of learning the reward functions, rather than  imitating the optimal policy, is that 

the agent can solve the forward problem with the learned reward function not only to imitate 

but also to predict the expert motion, in the sense that in unknown scenarios the trained agent 

will behave like the expert managing to generalize the behavior learned even in cases that are 

different w.r.t the ones seen from the expert.   

 

Among all IRL algorithms, there are the feature expectation-based methods which share a 

common structure presented as follows: 

1. Parametrize linearly the reward function as:  𝑅(𝑠) = 𝜔𝑇𝜙(𝑠)   (3.1) 

2. Initialize 𝜔 randomly 

3. Solve the forward problem (reinforcement learning) problem for the current reward 

parameters to get the current optimal policy 𝜋𝑖 

4. Compute the difference between the expert policy 𝜋𝐸 and the current optimal policy 

𝜋𝑖 

5. If the “error” is smaller than a threshold, the algorithms stops. Otherwise 𝜔 is update 

in a direction that reduces “error” then the algorithm iterates from step 3 onwards. 

 

IRL assumes a parametric approximation of the reward function 𝑅(𝜔):ℝ𝑘 → ℝ with 

parameter values 𝜔 ∈ ℝ𝒌. The set of states and action space are associated to with domain-

specific feature vectors   𝜙 = {𝜙𝑠,𝑎: 𝑆 × 𝐴 → ℝ},  where k is the number of features. For 

convenience the feature matrix 𝛟 over state-action space with dimensions |𝑆||𝐴| × |𝑘| is 

defined. 

The agent in IRL solve an optimization problem in order to find parameters for 𝑈𝜃 that induce 

behavior in the environment that matches expected expert feature expectation, 𝜇𝐸(𝜏) 

computed as an average over m trajectories: 

 

𝜇𝐸(𝜏(𝑖)) =
1

𝑚
∑  𝜏(𝑖)∈𝐷 ∑ 𝛟(𝑠𝑡

(𝑖)
, 𝑎𝑡

(𝑖)
)(𝑠𝑡,𝑎𝑡)∈𝜏(𝑞)     (3.2) 
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Where 𝐷 = {𝜏(𝑖)}
𝑖=1:𝑚

 is the set of trajectories (training data) in which 𝜏(𝑖) represent the ⅈ𝑡ℎ 

trajectory, composed by a sequence of state and actions made by an expert agent  𝜏(𝑖) =

((𝑠0
(𝑖)

, 𝑎0
(𝑖)), (𝑠1

(𝑖)
, 𝑎1

(𝑖)), . . . , (𝑠𝑁−1
(𝑖)

, 𝑎𝑁−1
(𝑖) )). 

 

The structure presented helps to better understand the algorithms that will be shown in this 

Chapter such as Max-Margin, Projection based and Maximum Entropy IRL. In paragraph 3.2 

the IRL Max Margin method proposed by Pieter Abbeel and Andrew Y. Ng [11] will be 

presented, and key concept such as feature expectation, policy mixing and the shortcomings 

of this method are discussed. Then in section 3.2.1 a simplification of the Max Margin 

method, called Projection-Based method, is shown. In conclusion in paragraph 3.3 is 

introduced the Maximum Entropy IRL which attempts to fix the problem raised in the Max 

Margin. 
 

3. 2    Max-Margin IRL 
 

The Inverse Reinforcement Learning (IRL) is based on the same mathematical formalism 

discussed in Chapter 2 when examined the “forward” RL, but in the IRL case a complete 

Markov Decision Process (MDP) is not provided, since the Reward function is unknown. We 

denote MDP\R and MDP without a reward function. 

In [12] it is assumed  some vector of features 𝜙 ∶  𝑆 → [0,1]𝑘 over states, and that there is 

some “true” reward  𝑅∗(𝑠) = 𝜔∗𝑇𝜙 (𝑠), where 𝜔∗ ∈ ℝ𝑘 with k number of features. It is also 

assumed  ‖𝜔∗‖1 ≤ 1  in order to have the rewards bounded by 1. In the driving domain as 

will be explained in more detail in Chapter 5, 𝜙 (𝑠)  is a vector of features indicating the key 

variable for the specific ADAS behavior implemented.  

 
A policy maps states over actions and the value function of a policy 𝜋 is  
 
                                   𝐸𝑠0

[𝑉𝜋(𝑠0)] =  𝐸[∑ 𝛾𝑡𝑅(𝑠𝑡)
∞
𝑡=0 |𝜋]                       (3.3) 

 
                                                        =  𝐸[∑ 𝛾𝑡𝜔𝑇𝜙 (𝑠)

∞

𝑡=0
|𝜋]                 (3.4) 
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                                                        =  𝜔𝑇 𝐸[∑ 𝛾𝑡𝜙 (𝑠)
∞

𝑡=0
|𝜋]                (3.5) 

 

The expected discounted accumulated feature value vector 𝜇(𝜋) called also feature 

expectations is defined as: 

 
 
 

𝜇(𝜋)  =  𝐸[∑ 𝛾𝑡𝜙 (𝑠)
∞

𝑡=0
|𝜋]  ∈ ℝ𝑘 .  (3.6) 

 

Making the assumption that the reward R is expressible as a linear combination of the features 

𝜙 (𝑠), the feature expectation previously defined basically is the expected sum of the 

discounted rewards following the policy 𝜋. 

Is assumed to have access to demonstrations by some expert agent 𝜋𝐸, which can be thought 

as the optimal policy under the unknown “true” reward 𝑅∗(𝑠) = 𝜔∗𝑇𝜙 (𝑠). The algorithm has 

to estimate the expert’s feature expectations  𝜇𝐸 = 𝜇(𝜋𝐸) and more specifically given a set of 

m trajectories {𝜏𝑜
(𝑖), 𝜏1

(�̇�), . . . , }
𝑖=1:𝑚

 generated by the expert. 

Is it possible to defined now the empirical estimate for 𝜇𝐸 by 

 

�̂�𝐸 =
1

𝑚
∑  𝑚

𝑖=1 ∑ 𝛾𝑡∞
𝑡=1 𝜙(𝑠𝑡

(�̇�)
).     (3.7) 

 

So the MDP\R problem is considered in which given a feature mapping 𝜙 and the expert’s 

feature expectation μE the aim is to find a policy whose performance is close to the expert 

policy on the unknown reward function 𝑅∗(𝑠) = 𝜔∗𝑇𝜙 (𝑠). In order to do this, the policy �̃� 

has to be found such ‖𝜇(�̃�) − 𝜇𝐸‖2 ≤ 𝜀 and for such a �̃� we have that for any 𝜔 ∈ ℝ𝑘 with 

‖𝜔‖1 ≤ 1 : 

 

|𝐸[∑ 𝛾𝑡𝑅(𝑠𝑡)
∞
𝑡=0 |𝜋𝐸] − 𝐸[∑ 𝛾𝑡𝑅(𝑠𝑡)

∞
𝑡=0 |�̃�]|     (3.8) 

 

= |𝜔𝑇𝜇(�̃�)−𝜔𝑇𝜇𝐸| 

 

   ≤ ‖𝜔‖2‖𝜇(�̃�) − 𝜇𝐸‖2 
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 ≤ 1 ⋅ 𝜀 = 𝜀     (3.9) 

 

Notice that the first inequality follows from the fact that |𝑥𝑇𝑦| ≤ ‖𝑥‖2‖𝑦‖2, and the second 

simply from ‖𝜔‖2 < ‖𝜔‖1 ≤ 1. Therefore, the problem is simply reduced to find a policy 

𝜇(�̃�) close to 𝜇𝐸. So, the Abbeel and Andrew Y. Ng [11] proposed “Apprenticeship 

Algorithm” is the following: 

 

1. A policy 𝜋(0) is randomly picked and compute (or approximate via Monte Carlo) 𝜇0 =

𝜇(𝜋(0)) , set i=1. 

2. Computing a new “guess” of the reward function by solving the following convex 

quadratic programming problem: 

 

                                                       𝑚ⅈ𝑛
𝜆,𝜇

‖𝜇𝐸 − 𝜇‖2          (3.10) 

s.t      ∑ 𝜆𝑗𝜇
(𝑗)𝑖−1

𝑗=0
= 𝜇 

𝜆 ≥ 0 

   ∑ 𝜆𝑗  =  1
𝑖−1

𝑗=0
 

 

            Set  𝑡(𝑖) = ‖𝜇𝐸 − 𝜇‖2, 𝜔(𝑖) =
𝜇𝐸−𝜇

‖𝜇𝐸−𝜇‖2
. 

 

 

3. If  𝑡(𝑖) ≤ 𝜀, then terminate. 

4. Using an RL algorithm in order to compute the optimal policy 𝜋(𝑖) for the MDP 

using the rewards  𝑅 = (𝜔(𝑖))
𝑇
𝜙 .     

5. Compute (or estimate)  𝜇𝑖 = 𝜇(𝜋(𝑖)) 

6. Set i=i+1, and go back to step 2. 

 

When the algorithm terminates the policy π̃ is obtained as a mixture of the policies found at 

each iteration {𝜋(𝑖): ⅈ = 0…𝑛}  (n number of iteration) combined with weights λi that attains 
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features count μ, which are within 𝜀 from the expert’s feature counts 𝜇𝐸. Indeed it is proven 

in [11] that given a set of policy 𝜋1, 𝜋2, . . . , 𝜋𝑑  a new policy can be found whose feature 

expectation vector is a convex combination of these policy thus creating a policy mixture: 

∑ 𝜆𝑖𝜇(𝜋𝑖)
𝑛
1  in which  𝜆𝑖 ≥ 0, ∑ 𝜆𝑖𝑖 = 1. Therefore, the initial set of policy can be mixed and 

the probability of picking  𝜋𝑖 is 𝜆𝑖. So fundamentally the algorithm is composed by two main 

phases: solving a convex optimization problem that provides the expected features closest to 

the expert’s policy in reward feature space amongst features counts achievable by using a 

mixture policy of the previously found policies 𝜋(0), . . . , 𝜋(𝑖−1) and setting the guessed reward 

weights 𝜔(𝑖). Then the new updated reward function 𝑅 = (𝜔(𝑖))
𝑇
𝜙  is then used in a RL phase 

for the computation of the successive optimal policy 𝜋(𝑖). 

 

It is shown in [12] that the same weights ω can be computed by solving the following 

quadratic programming problem:  

                                                  𝑚𝑎𝑥
𝑡,ω

  𝑡                                        (3.11) 

                                                   s.t         𝑗 = 1, … , ⅈ − 1             (3.12) 

                                                   𝜔𝑇𝜇𝐸 ≥ 𝜔𝑇𝜇(𝑖) + 𝑡 

            ‖𝜔‖2 ≤ 1                                 (3.13) 

 

From the constrain equation (2.9) it is evident that the algorithm is trying to find a reward 

function 𝑅 = (𝜔(𝑖))
𝑇
𝜙  on which the expert does better, by a “margin” of t, than any of the 

𝜋(𝑖) policies found previously. As can be noticed the equations (3.10), (3.11) and (3.12) are 

equivalent to the SVM problem in which the aim is to find the maximum margin hyperplane 

separating two set of sample points [12]. Due to this, this problem is called Max Margin 

IRL. The equivalence is obtained by associating label 1 with the expert’s feature expectation 

𝜇𝐸, and label -1 with the feature expectations  𝜇𝑖 computed at each step. 

 

Following the parallelism with SVM the vector 𝜔(𝑖) is the unit vector orthogonal to the 

maximum margin separating hyperplanes.  
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Figure 3.1: Graphic representing the Initial iteration of the max margin method 

 

So, besides a generic Quadratic Program (QP) solver, an SVM solver can be used in order to 

find 𝜔(𝑖). In figure 3.1 a geometrical intuition is given of what the first iterations of the 

algorithm looks like, showing the first three 𝜇(𝜋𝑖) computed and the relative 𝜔(𝑖). 

Now, suppose the algorithm terminates, with  𝑡(𝑛+1) ≤ 𝜀, then following the optimization 

formulation in Step 2 of the algorithm:  

 

∀ 𝜔 with ‖𝜔‖2 ≤ 1 ∃ⅈ s.t. 𝜔𝑇𝜇(𝑖)  ≥  𝜔𝑇𝜇𝐸 +  𝜀 
 

Since ‖𝜔∗‖2 < ‖𝜔∗‖1 ≤ 1, this means that there is at least one policy from the set returned 

by the algorithm, whose performance under 𝑅∗ is at least as good as the expert’s performance 

minus 𝜀. Thus, it is up to the agent designer to manually examine the policies found by the 

algorithm in order to pick the one with “acceptable” performance in the sense of desired 

behavior. 

 

On the other hand, the building of the policy �̃� can be automatized just solving the QP in step 

2 (Formula 3.8) of the original algorithm presented, with no need for human help. In this latter 

case the policy �̃� is obtained as a mixture of the policies {𝜋(𝑖): ⅈ = 0…𝑛}  with weights 𝜆𝑖 

taking into account the feature expectations which are within 𝜀 of the expert’s feature 

expectations 𝜇𝐸. 

Note that the algorithm presented here does not necessarily recover the underlying reward 

function correctly. The performance guarantees of the algorithm only depend on 

(approximately) matching the feature expectations, not on recovering the true underlying 

reward function [12].   
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The most important thing to note in SVM IRL is that we do not, in fact, learn the underlying 

reward function but rather the policies that allows us to match the feature expectation of the 

expert probabilistically. Moreover, there exist many policies that give the same return. It is 

not clear which among these policies should be preferred since we can only access the feature 

expectation of the expert through the structure of the IRL problem and not the exact trajectory 

itself [13]. Unfortunately, this IRL concept proposed by [12] suffers from this ambiguity 

linked to the fact that it is based on the match of the feature expectation. Indeed, each policy 

can be optimal for many reward functions and many policies lead to the same feature 

expectation. When sub-optimal behavior is demonstrated, that means if the expert agent does 

not show an optimal behavior but a sub-optimal one, then a mixture of policies is required to 

match the desired expert feature expectation. Therefore, similarly to what was said for policy 

and reward correspondence, many different mixtures of policies satisfy feature matching.  

So, in summary, while [11] shows that matching feature expectations is both necessary and 

sufficient in order to derive policies that emulate expert behavior in the MDP, the IRL 

problem of recovering reward functions under this constraint is underdetermined. That is, 

optimal policies where the utility function is all zeros may be recovered. Maximum entropy 

IRL was developed by [14] to address this problem. 

 

 

3.2.1   Projection based method 
 
The algorithm described in the previous section requires to solve in step 2 a Quadratic 

Programming (QP) problem in the case of the original posed algorithm (Formula 3.9) or a 

SVM problem in the case described in the equations (3.10), (3.11) and (3.12). It is possible to 

simplify the algorithm so that no QP solver is needed. Therefore, it is possible to replace the 

Max-Margin IRL method described in Section 3.2, with a new algorithm: the Projection 

method.  

With the Projection method at each step 2 no QP or SVM solver is needed, but the weights 

are updated just using a geometrical approach to the problem. So the maximization problem 

(3.9) in the Max-margin case is replaced, and now at each iteration i the orthogonal projection 
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�̅� of 𝜇(𝜋𝐸) on the line passing through the last two 𝜇(𝜋𝑖) found previously is computed 

instead. Then the distance  𝜇(𝜋𝐸)  −  �̅�(𝑖−1)  is taken as the new weights 𝜔. So, the Projection 

method replaces step 2 of the algorithm with the following equation:  

 

• Set 𝜇 = �̅�(𝑖−1) = �̅�(𝑖−2) +
(𝜇(𝑖−1)−�̅�(𝑖−2))

𝑇
 (𝜇𝐸−�̅�(𝑖−2))

(𝜇(𝑖−1)−�̅�(𝑖−2))
𝑇
(𝜇(𝑖−1)−�̅�(𝑖−2))

(𝜇(𝑖−1) − �̅�(𝑖−2))      (3.14) 

• Set  𝜔(𝑖) = 𝜇𝐸  −  �̅�(𝑖−1) 

• Set 𝑡′ = ‖𝜇𝐸 − �̅�(𝑖−1)‖
2
 

 

Notice that equation (3.14) computes the orthogonal projection of 𝜇𝐸 onto the line through 

�̅�(𝑖−2) and 𝜇(𝑖−1). In the first iteration, we also set  𝜔(1) = 𝜇𝐸  −  𝜇(0) and �̅�(0) = 𝜇(0). 

 

Figure 3.2: First three iterations of the projection version of the algorithm 

 

Convergence results for both the Max margin and the Projection methods are provided in 

[12]. This method shows the same criticalities of the original Max-Margin method discussed 

in the end of the previous section. A solution can be found in the Maximum Entropy IRL 

method. 
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3. 3    Maximum Entropy IRL 
 

 

As we have already pointed out, the IRL problem is in general ill-posed, since there exist an 

infinite number of reward functions for the same MDP that make the expert’s policy optimal. 

The [14] shows how to solve this ambiguity by leveraging on the maximum entropy principle 

[18]. The maximum entropy principle applies to a constrained probability estimation problem 

from data (like estimating the expert’s trajectory distribution subject to matching expert’s 

feature expectations). It states that the probability distribution that best represents the 

available data is the one with the largest entropy. In other words, with no constraint a uniform 

distribution can be selected, that is the distribution with maximum possible entropy, whereas 

under some constraints it can be proved [18] that it is necessary to resort to the maximum 

likelihood Boltzmann distribution. Like [11], it is assumed that the true reward function can 

be expressed as a linear combination of state features 𝜙 (𝑠). Given a trajectory τ ∈ D the 

feature expectation [13] can be define as in formula (3.1): 

𝜇(τ)  = ∑ 𝛾𝑡𝜙 (𝑠)
∞

𝑡=0
    ∀ τ ∈ D     (3.15) 

 

The return of trajectory τ can be computed, given a vector of the reward weights 𝜔, as 𝑅(τ) =

𝜔𝑇𝜇 (τ). Given a set of N expert’s trajectories the aim is to estimate the probability 

distribution of the demonstrated trajectories, named 𝑝𝜔 constrained to the fact that the feature 

expectation matches the average feature expectation: 

 

𝐸τ~𝑝𝜔 [𝜇(𝑠)]  =  �̅�,    (3.16) 

 

where  �̅� =
1

𝑁
∑ 𝜇 (τ)

𝑁

𝑡=0
 . The premises made so far are identical to those made for both the 

two algorithms previously seen, but now according to the maximum entropy principle [14] 

this is equivalent to finding the maximum likelihood Boltzmann distribution from the sampled 

trajectories that matches the average feature expectation �̅�:  
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𝑝𝜔(𝜏(𝑖)) =     ⅇ𝜔𝑇𝜇 (𝜏(𝑖))

∑ ⅇ𝜔𝑇𝜇 (𝜏(𝑖))𝑁
𝑗=1

 ,        i=1,2,..., N    (3.17) 

The equation (3.17) tells that the trajectories with the same return have the same probability 

while trajectories with larger return are exponentially preferred. One important benefit of this 

probabilistic approach is that we implicitly handle the uncertainty and noise in the observed 

trajectories, potentially leading to obtaining clearer or more robust reward functions. The 

equation (3.17) holds only for deterministic MDPs. In case of stochastic environments there 

is the need of more complex distribution and the whole treatment becomes much more 

complex and is reported in [13],[14] and [19]. 

 

 

So, following the equation (3.17) the paths with higher returns are exponentially preferred to 

those with lower total rewards. As described in [14] the maximum entropy objective function 

maximizes the likelihood of demonstrations according to: 

 

𝜔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 
𝜔

∑ 𝑙𝑜𝑔 𝑝𝜔(𝜏(𝑖))
𝜏(𝑖)∈ 𝐷

   (3.18) 

 
 
The maximum likelihood can be found using gradient descent, where the gradient of the 

likelihood function  𝐿(𝜔) =  𝑙𝑜𝑔 𝑝𝜔(𝜏(𝑖))  (this is the objective function in this case) is given 

by the difference between the expert feature expectation 𝜇𝐸 and the feature expectation for 

the current estimate of the reward function [13] (please note: the reward function is linear in 

the features): 

 

𝛻𝐿(𝜔) = 𝜇𝐸 − ∑  𝑠∈ 𝑆 ∑ 𝐸[𝜇(𝑠)]𝜋𝜔( 𝑎 | 𝑠 ) ϕ(𝑠, 𝑎)  =   𝜇𝐸  −
𝑎 ∈ 𝐴

 𝜇(𝜋𝑀𝑎𝑥−𝐸𝑛𝑡𝑟𝑜𝑝𝑦) (3.19) 

 

As seen and demonstrated in [13] and [14] the criticalities raised in the Max-Margin and 

Projection based IRL are solved. Indeed, the Max-Entropy IRL essentially initializes the 

parameters 𝜔 randomly and uses gradient descent to maximize the objective 𝐿(𝜔). Intuitively, 

maximizing the likelihood in equation (3.18) means that the goal is to find the parameters 𝜔 

of the reward function which maximizes the probability of seeing the demonstrations D while 

minimizing the probability of observing any other trajectory.  
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Since the Reward  𝑅(𝑠) = 𝜔𝑇𝜙 (𝑠)  is linear the gradient in equation (3.19) can be interpreted 

as the difference between the expert feature expectation 𝜇𝐸 and that of the current maximum 

entropy policy 𝜇(𝜋𝑀𝑎𝑥−𝐸𝑛𝑡𝑟𝑜𝑝𝑦). Indeed, it can be noticed that the objective function 𝐿(𝜔) is 

just the inner product of the parameters 𝜔 and 𝜇𝐸  −  𝜇(𝜋𝑀𝑎𝑥−𝐸𝑛𝑡𝑟𝑜𝑝𝑦):  

 

𝐿(𝜔) = 𝜔𝑇( 𝜇𝐸  −  𝜇(𝜋𝑀𝑎𝑥−𝐸𝑛𝑡𝑟𝑜𝑝𝑦)). 

 

 Clearly this objective function is increased when the length of projection of  𝜔 along the 

difference 𝜇𝐸  −  𝜇(𝜋𝑀𝑎𝑥−𝐸𝑛𝑡𝑟𝑜𝑝𝑦))  is increased. In Projection based methods (section 3.2.1), 

it is used a new weight equal to this difference, setting 𝜔(𝑖) = 𝜇𝐸  −  �̅�(𝑖−1) at each step, and 

try to reach the expert's feature expectation 𝜇𝐸 by mixing all the policies. In Maximum 

Entropy IRL, the difference to the current weight is added to push it towards the missing 

components in order to get closer to the expert's feature expectations [13],[14]. 
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Chapter 4 

 

 

 
4 ADAS and vehicle dynamics 
 
 

 

4.1 Introduction to ADAS 
 

Studies in the automotive fields proved that the majority of car accidents must be attributed 

to human driver misjudgments or distractions. On the basis of these results engineers 

introduced systems, that have been called Driving Assistance Systems (DAS), which aim is 

to improve vehicle safety assisting the driver during some critical events that can happen 

while driving.  

Among the most important DAS that nowadays can be found on any car, there are the Anti-

lock Braking System (ABS), the Electronic Stability Control (ESC) and Traction Control 

System (TCS). DAS are strictly linked to the use of proprioceptive sensors, which are able to 

measure most of the vehicle quantities, such as velocity, acceleration, wheel rotational speed 

and so on.  

Thereafter, in order to enhance even more the level of assistance given to the human driver, 

exteroperceptive sensors, i.e. sensors that acquire measurements from the external 

environment (road, other vehicles, traffic etc.), were introduced in a new kind of systems, the 

Advanced Driver Assistant Systems (ADAS). 

ADAS represent an evolution of DAS since they can help the human driver in performing 

either some critical tasks, such as an emergency braking, or the most common tasks, for 

instance maintaining a constant speed, parking and so on. 
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Indeed, the most known ADAS are: 

• Adaptive Cruise Control (ACC),  

• Lane keeping Control (LKC), 

• Park Assist (PA), 

• Autonomous Emergency Braking (AEB). 

ADAS constitute the first step towards the autonomous driving, in fact according to the SAE 

(Society of Automotive Engineers) standard (table 4.1), each one of these systems is an 

example of Level 1 automation, called “driver assistance”. In the case in which two or more 

ADAS work simultaneously on the car, the level 2 “partial automation” is achieved. 

Therefore, the idea is to update more and more these functionalities to reach Level 5, namely 

“full automation”, so that the car will be able to drive by itself without any human input. 

 

 

               Table 4.1: [20] 
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4.1.1 Generalities of ACC 
 

The ACC has been designed extending the CC functionalities. Indeed, CC is an automatic 

control, introduced by Mitsubishi in 1995, able to keep a constant speed, even in case of 

external disturbances such as wind and road slope. To be more specific, a CC controls the 

throttle valve in order to maintain the speed constant at the reference value set by the driver. 

One important issue is that the driver must take back the control of the car if another ahead 

vehicle is being approached. Furthermore, CC can work adequately only in highways 

scenarios (high speed) but it cannot still be used inside a city due to the presence of a very 

high number of vehicles. 

In case of free highway, the ACC behaves exactly as the CC, but in addition it can act either 

on the throttle valve and on the brakes to keep a desired safety distance from a preceding 

vehicle. 

Furthermore, the limits of the CC can be overcome with the ACC by adding the Stop and go 

feature, which gives the possibility to exploit all the functionalities also in the urban scenario, 

at low speed (< 30 𝑘𝑚/ℎ).  Indeed, ACC with Stop&Go ensures that the vehicle is able to 

stop when a leading vehicle performs sudden brakes and to restart from rest in traffic jam 

situations. 

The ACC can be made even more efficient introducing the V2V (vehicle to vehicle) 

communication, as in the cooperative adaptive cruise control (CACC), and the V2I (vehicle 

to infrastructure) communication. 

Radar and Lidar are the sensors adopted in the ACC to acquire information from the ego 

vehicle (EV, i.e the reference vehicle used in the experiments to evaluate the controller 

performances) and the preceding vehicle (PV). 

In figure 4.1 the basic ACC situation is shown. The EV (blue car) is approaching the PV (grey 

car). 

The yellow radius indicates the radar beam implicated in the measurements acquisition and 

the yellow arrows indicates the distance between the front edge position 𝑥ⅇ𝑣 of the EV and 
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the rear edge position 𝑥𝑝𝑣 of the PV. The sensor measures the relative distance 𝑑𝑟ⅇ𝑙 (or 

clearance) and the relative velocity 𝑣𝑟ⅇ𝑙  between the two cars, as 

                                                            𝑑𝑟ⅇ𝑙 = 𝑥𝑝𝑣 − 𝑥ⅇ𝑣 ,                       (4.1) 

                                                            𝑣𝑟ⅇ𝑙 = 𝑣𝑝𝑣 − 𝑣ⅇ𝑣  .                       (4.2) 

 

It is also possible to derive other two important variables, the time headway 𝑡ℎ and the time 

to collision 𝑡𝑐. 

 

Figure 4.1: ACC standard situation 

 

𝑡ℎ is the time needed by the EV to collide with the PV when the EV keeps constant its velocity 

and the PV suddenly stops, 

 

                                                                    𝑡ℎ =
𝑑𝑟𝑒𝑙

𝑣𝑒𝑣
                                   (4.3)                                      
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𝑡ℎ is also called time gap since it indicates how the two vehicles are distant in terms of time. 

𝑡𝑐 is the time required the EV to collide with the PV if they keep constant their velocities, 

proceeding on the same path, 

                                                                   𝑡𝑐 = 𝑑𝑟𝑒𝑙

𝑣𝑟𝑒𝑙
  .                                  (4.4) 

 

The ACC is implemented through a hierarchical architecture (figure 4.2) in which there are 

an upper level control and a lower level control in cascade. 

The upper level control receives the reference speed, the safety distance, expressed in terms 

of time headway 𝑡ℎ, and all the measurements coming from the sensors, as inputs and provides 

the desired acceleration 𝑎𝑑ⅇ𝑠 computed through two different control strategies, the velocity 

control or the spacing control. Depending on the situations, a switching logic selects one 

modality or the other.  

The lower level control receives 𝑎𝑑ⅇ𝑠 in input and computes the actuator commands, i.e. the 

throttle command or brakes command. 

 

 

Figure 4.2: [21] ACC hierarchical control scheme 
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It is possible to notice that the ACC design implies a deep knowledge of the longitudinal 

vehicle dynamics that is going to be discussed in paragraph 4.2.  

When the velocity control mode is selected, the aim of the ACC is to make 𝑣ⅇ𝑣 equal to the 

target speed 𝑣𝑡𝑎𝑟 set by the driver, and keep it constant. This modality is activated when the 

radar does not detect any vehicle ahead in the same lane. 

The control scheme is the one reported in figure 4.3a, where 𝐶𝑣ⅇ𝑙𝑜𝑐𝑖𝑡𝑦 is the control transfer 

function and 𝑒𝑣 = 𝑣𝑡𝑎𝑟 − 𝑣ⅇ𝑣 is the tracking error on the velocity. 

 

 

figure 4.3: (a) velocity control, (b) spacing control 

 

The spacing control is chosen when the radar detects a PV inside the lane. The aim is to ensure 

that the EV maintains a safety distance from the PV defined by the driver setting 𝑡ℎ,𝑡𝑎𝑟.  

The block scheme is in figure 4.3b. 𝑑𝑡𝑎𝑟 is the desired relative distance, 

 

                                                          𝑑𝑡𝑎𝑟 = 𝑑0 + 𝑡ℎ,𝑡𝑎𝑟𝑣ⅇ𝑣 ,                           (4.5) 

 

𝑑0 is the minimum relative distance that has to be guaranteed, and 𝐶𝑠𝑝𝑎𝑐𝑖𝑛𝑔 is the control 

transfer function. 
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4.1.2 Generalities of LKC 
 

Different surveys proved that a large percentage of fatal car accidents must be attributed to 

unintended lane departures. To improve the safety of vehicles systems performing lane 

keeping support functions have been provided.  

They are all based on the same working principle that consists of detecting the markings lane 

with a vision system, to establish the vehicle position inside the lane, intervening if the 

distance between the vehicle CoG (centre of gravity) and the lane centre exceeds a given 

threshold.  

Lane keeping assistance systems can offer different functionalities, such as warning functions, 

intervention functions and control functions. For instance, the Lane Departure Warning 

(LDW) alerts the driver by emitting an acoustic signal during a dangerous situation, the Lane 

Keeping Assist applies a limited steering action to help the human driver when the car goes 

off the lane. 

An important issue related to these systems is that they work well only if turns and overtaking 

are performed activating the turn indicator. In fact, if this not happens the systems perceives 

the manoeuvre as an unintentional behaviour and applies a counter torque with respect to the 

human driver action, generating a very risky situation. 

Instead, the Lane Keeping Control (LKC) can completely control the steering wheel of the 

vehicle. 

LKC can be used as an ADAS or it can be implemented in autonomous driving, making the 

car able to follow a predefined trajectory by itself, without any human control.  

A LKC is designed by taking into account the lateral dynamics of the vehicle, for simplicity 

modelled through a single track model (it is going to be explained in the following paragraph 

of this chapter) and it is usually applied in highway scenarios respecting the following 

hypothesis: flat road, curvature radius 𝑅 ≥ 500 𝑚, small steering angles and almost constant 

longitudinal velocity 𝑣𝑥. 
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By a technical point of view, a camera mounted on the EV detects the lane markings up to a 

given look-ahead distance L so that a lane detection procedure gives a linear approximation 

of the lane centreline 𝑦 (figure 4.4), 

                                     𝑦 = 𝑡𝑎𝑛(𝑚)𝑥 + 𝑞,                            (4.6) 

where 𝑡𝑎𝑛(𝑚) is the tangent of the angle m between the vehicle longitudinal axis and the 

centreline approximation, 𝑥 is the longitudinal distance, whereas q is the current lateral 

distance of the vehicle CoG from the centreline. 

 

Figure 4.4: [22] centreline linear approximation provided by the vision system 

 

Since 𝑚 is very small (4.6) can be rewritten as 

 

                                                                          𝑦 ≈ 𝑚𝑥 + 𝑞 .                                   (4.7) 

 

According to comfort requirements, the target of the LKC is to make equal zero not q, but the 

lateral distance 𝑦𝑓𝑏 at the look-ahead distance L, 

                                                                         𝑦𝑓𝑏 = 𝑚𝐿 + 𝑞 .                                (4.8) 

Figure 4.5 shows the general control scheme of a LKC where the control action is computed 

in order to follow the reference signal  𝑦𝑓𝑏,𝑟ⅇ𝑓 = 0. 
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Figure 4.5 [21] Conceptual block scheme of the LKC with vision system 

 

𝛿𝑠 is the steering angle provided by the actuator and 𝐾𝐿 is the road curvature that acts as a 

disturbance. 

The vision systems can be incorporated inside the plant state-space representation or for 

example in Matlab by adding the sensor fusion blocks in the scheme, as explained in chapter 

5.  

However, a LKC works well only if some requirements are not violated: 

• |𝑞| ≤ 𝑞𝑚𝑎𝑥, with 𝑞𝑚𝑎𝑥 ∈ [20 ÷ 40]𝑐𝑚, 

• lateral acceleration |𝑎𝑦| ≤ 𝑎𝑦,𝑚𝑎𝑥, with 𝑎𝑦,𝑚𝑎𝑥 ∈ [0.3 ÷ 0.4]𝑔. 

 

Note that g is a unity of measure adopted in automotive to indicate acceleration values in 

terms of the gravity acceleration g. 
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4.2 Vehicle Model 
 

In this section a brief explanation of the vehicle dynamics will be given because for the design 

of an ADAS control system and for autonomous vehicles it is necessary to have clear idea of 

the system under examination since autonomous driving car need to know the car model, i.e 

Kinematic and Dynamic models, in order to accomplish the function of path planning and 

control. Several mathematical models are available in the literature with different levels of 

complexity and accuracy according to the physical phenomena captured [23, 24, 25]. Models 

can consider different types of dynamics such as vertical, longitudinal, or lateral dynamics, 

or a combination of these. Depending on the purpose, a model must include representations 

of the appropriate vehicle systems. It may be necessary to model the effects of the suspension 

system, steering system, brake system or tires. The representations of these systems can be 

linear or non-linear depending on the accuracy required. Of course, the vehicle model used 

must be suitable for the maneuvers it will describe. Since in this thesis the aim is to implement 

an ACC and an LKC with high level (figure 4.2) control based on inverse reinforcement 

learning techniques, there is no need for an extremely detailed model since the focus is not 

on the stability controls realization. Specifically, the longitudinal dynamics will be presented 

in the case of the ACC and the lateral dynamics as regards the LKC as in this case it is 

important to verify the behavior of the vehicle when cornering. For the purpose of this thesis, 

a simple vehicle model will be examined, namely the two degrees of freedom or popularly 

known in the literature as a bicycle model. In the final section the model used in 

MATLAB/Simulink for the realization of this thesis project will be specifically presented. 

 

4.2.1 Longitudinal Vehicle Dynamics 
 

Vehicle motion is generally described in terms of the velocities: forward, lateral, vertical, 

roll, pitch and yaw in the vehicle-fixed coordinate system as referenced to an earth-fixed 

(inertial) reference frame, respectively u (longitudinal velocity), v (side velocity), w (normal 
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velocity), p (roll velocity), q (pitch velocity) and r (yaw velocity). A vehicle is modelled in 

two main parts: the unsprung mass that takes into account for the mass of the wheels, part of 

the suspension and other component directly connected to them, and the sprung mass that is 

basically the vehicle total mass supported by the suspension. The Society of Automotive 

Engineers (SAE) has introduced standard coordinates and a notation to describe vehicle 

dynamics that are widely used [23, 24] (figure 4.6). Here the earth-fixed reference frame’s 

axes are referred as X, Y and Z and the vehicle reference frame’s axes as x, y and z. The angles 

are roll (𝜃), pitch (𝜙) and yaw (𝜓 ). 

 

 

 

 

Figure 4.6: Vehicle Axis System (SAE) 

 

More specifically, referring to the bicycle model in figure 4.7 the key variables are: 

• u is the forward velocity 

• v is the lateral velocity 

• 𝜓 is the yaw angle  

• 𝛽 is the sideslip angle 

• 𝜌 = 1/𝑅 is the curvature radius where 𝑅 = 𝑂𝑂′̅̅ ̅̅ ̅ 
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Figure 4.7: Bicycle model 

 

The two major elements of the longitudinal vehicle model are the vehicle dynamics and the 

powertrain dynamics. The vehicle dynamics are influenced by longitudinal tire forces, 

aerodynamic drag forces, rolling resistance forces and gravitational forces. The study of this 

chapter is focused only in the vehicle dynamics. The longitudinal powertrain system of the 

vehicle consists of the internal combustion engine, the torque converter, the transmission and 

the wheels but this contribution will not be discussed here. 

 

Consider a vehicle moving on an inclined road as shown in figure 4.8. The external 

longitudinal forces acting on the vehicle include aerodynamic drag forces, gravitational 

forces, longitudinal tire forces and rolling resistance forces.  
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Figure 4.8: Longitudinal forces acting on a vehicle moving on an inclined road [24] 

 

 

The force balance along the vehicle longitudinal axis is: 

 

𝑚�̈� = 𝐹𝑥𝑓 + 𝐹𝑥𝑟 − 𝐹𝑎ⅇ𝑟𝑜 − 𝑅𝑥𝑓 − 𝑅𝑥𝑟 − 𝑚𝑔 𝑠ⅈ𝑛(𝜃)    (4.9) 

 

Where  

 

• 𝐹𝑥𝑓 is the longitudinal tire force at the front tires 
• 𝐹𝑥𝑟 is the longitudinal tire force at the rear tires 
• 𝐹𝑎ⅇ𝑟𝑜 = 

1

2
𝜌𝐶𝑑𝐴𝐹(𝑉𝑥 + 𝑉𝑤𝑖𝑛𝑑)2 is the equivalent longitudinal aerodynamic drag 

force 
• 𝜌 is the mass density of the air 
• 𝐶𝑑 is the aerodynamic drag coefficient  
• 𝐴𝐹 is the frontal area of the vehicle 
• 𝑉𝑥 is the longitudinal velocity 
• 𝑉𝑤𝑖𝑛𝑑 is the wind velocity 
• 𝑅𝑥𝑓 is the force due to rolling resistance at the front tires 
• 𝑅𝑥𝑟 is the force due to rolling resistance at the rear tires 
• 𝑚 is the mass of the vehicle 
• 𝑔 is the acceleration due to gravity 
• 𝜃 is the angle of inclination of the road on which the vehicle is traveling 

 

Ignoring the road gradient and wind speed, the longitudinal dynamics can be represented as: 
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𝑚𝑎𝑥 = 𝐹𝑥𝑓 + 𝐹𝑥𝑟 − 𝑅𝑥−𝐷𝑎𝑉𝑥
2       (4.10) 

 

Since there is neither braking nor throttle angle inputs, the longitudinal tire force under 

these conditions is small and can be assumed to be zero. The road is assumed to be level 

with  𝜃 = 0  and the wind velocity wind is assumed to be zero. Under these conditions, the 

longitudinal dynamics equation can be re-written as: 

 

−𝑚
𝑑𝑉𝑥
𝑑𝑡

= 𝐷𝑎𝑉𝑥
2 + 𝑅𝑥 

 

Notice that 𝐷𝑎 =
1

2
𝜌𝐶𝑑𝐴𝐹  is the aerodynamics drag coefficient. 

 

4.2.2 Lateral Vehicle Dynamics 

 
A “bicycle” model of the vehicle with two degrees of freedom is considered, as shown in 

figure 4.9. The two degrees of freedom are represented by the vehicle lateral position y and 

the vehicle yaw angle 𝜓. 

 

 

Figure 4.9: Lateral Vehicle Dynamics [24] 
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Applying Newton’s second law for motion along the axis:  

 

𝑚𝑎𝑦 = 𝐹𝑦𝑓 + 𝐹𝑦𝑟     (4.11) 

 

Where 𝑎𝑦 = 
𝑑2𝑦

𝑑𝑡2
  is the inertial acceleration of the vehicle at the Center of Gravity (CoG) in 

the direction of the y axis, 𝐹𝑦𝑓 and  𝐹𝑦𝑓 are the lateral tire forces of the front and rear wheels 

respectively. Two terms contribute to the 𝑎𝑦 that are the acceleration �̈� which is due to 

motion along the y axis and the centripetal acceleration 𝑉𝑥�̇� , hence: 

 

𝑎𝑦 = �̈�  +  𝑉𝑥�̇�         (4.12) 

 

Substituting the eq. (4.12) into eq. (4.11), the equation for the lateral translational motions 

of the vehicle is obtained:  

 

𝑚(�̈� + �̇�𝑉𝑥) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟       (4.13) 

 

Considering now the moment balance about the z axis, the equation for the yaw dynamics 

follows: 

 

𝐼𝑧�̈� = 𝑙𝑓𝐹𝑦𝑓  −  𝑙𝑟𝐹𝑦𝑟       (4.14) 

 

Where lf and lr are the distances of the front tire and the rear tire respectively from the CoG 

of the vehicle. 
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From experimental results it can be seen that lateral tire force of a tire is proportional to the 

“slip-angle” for small slip-angle, where the slip-angle of a tire is defined as the angle 

between the orientation of the tire and the orientation of the wheel (figure 4.10). The slip 

angles of the front and rear wheels are denoted as: 

 

𝛼𝑓 = 𝛿 − 𝜃𝑉𝑓         (4.15) 

𝛼𝑟 = −𝜃𝑉𝑟             (4.16) 

 

 

Figure 4.10: Slip angle 

 

The lateral tire force for the front wheels can therefore be written as: 

 

𝐹𝑦𝑓  =   2𝐶𝛼𝑓(𝛿 − 𝜃𝑉𝑓)      (4.17) 

 

Where the constant 𝐶𝛼𝑓 is the cornering stiffness of each front tire, 𝛿 is the front wheel 

steering angle and 𝜃𝑉𝑓 is the front tire velocity angle (factor 2 accounts for the fact that there 

are two front wheels). Similarly, for the rear wheels it can be written: 

 

𝐹𝑦𝑟  =   2𝐶𝛼𝑟(−𝜃𝑉𝑟)      (4.18) 

 

Where the 𝐶𝛼𝑟 is the cornering stiffness of each rear tire and  𝜃𝑉𝑟 is the rear tire velocity 
angle. 
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The front and rear tire velocity angle can be computed as follow: 

 

𝑡𝑎𝑛(𝜃𝑉𝑓) =
𝑉𝑦+𝑙𝑓�̇�

𝑉𝑥
         (4.19) 

 

𝑡𝑎𝑛(𝜃𝑉𝑟) =
𝑉𝑦−𝑙𝑟�̇�

𝑉𝑥
         (4.20) 

For small angles the eqs. (4.19), (4.20) can be simplified using small angle approximation 

(notice that 𝑉𝑦 = �̇�): 

 

                     𝜃𝑉𝑓 =
�̇�  +𝑙𝑓�̇�

𝑉𝑥
               (4.21) 

 

                    𝜃𝑉𝑟 =
�̇�  −𝑙𝑟�̇�

𝑉𝑥
               (4.22) 

Then substituting from eqs. (4.15), (4.16), (4.21), (4.22) into eqs. (4.13) and (4.14), the state 

space model can be found:  

 

𝑑

𝑑𝑡
[

𝑦
�̇�
𝜓

�̇�

]  =   

[
 
 
 
 
0 1 0 0

0 −
2𝐶𝛼𝑓+2𝐶𝛼𝑟

𝑚𝑉𝑥
0 −𝑉𝑥 −

2𝑙𝑓𝐶𝛼𝑓 − 2𝑙𝑟𝐶𝛼𝑟

𝑚𝑉𝑥

0 0 0 1

0 −
2𝑙𝑓𝐶𝛼𝑓 − 2𝑙𝑟𝐶𝛼𝑟

𝐼𝑧𝑉𝑥
0 −

2𝑙𝑓
2𝐶𝛼𝑓 − 2𝑙𝑓

2𝐶𝛼𝑟

𝐼𝑧𝑉𝑥 ]
 
 
 
 

   +  

[
 
 
 
 

0
2𝐶𝛼𝑓

𝑚

0
2𝑙𝑓𝐶𝛼𝑓

𝐼𝑧 ]
 
 
 
 

 𝛿 
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4.2.3 Simulink models 
 

In this project the vehicle dynamics has been realized in Simulink using the bicycle model 

inside the Vehicle Dynamics Blockset™. 

It implements a 3DOF (Degrees of Freedom) rigid single track vehicle model that 

approximates the longitudinal, lateral and yaw motion. 

 

 

Figure 4.11: Simulink vehicle body 3 degrees of freedom with external longitudinal force inputs 

 

In particular, for the ACC the bicycle model with force input has been chosen (figure 4.11), 

where the block receives as inputs the external longitudinal forces that are used to accelerate 

and brake the car and gives in output the lateral forces through the tire slip angles and the 

cornering stiffness.  

The info output is a bus containing all the information related to the vehicle dynamics, such 

as longitudinal and lateral position, longitudinal and lateral acceleration and so on. r stands 

for the yaw angle whereas psi indicates the yaw rate. 

Instead, for the LKC the choice fell on the bicycle model with velocity input (figure 4.12) that 

works with longitudinal acceleration approximately equal to 0 since, for simplicity, the 
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longitudinal velocity has been imposed constant. As output the block provides only the lateral 

forces.   

 

 

Figure 4.12: Simulink vehicle body 3 degrees of freedom with velocity input 

 

 

The equations to which the Matlab single track model refers can be written in the state-space 

representation as, 

 

𝑑

𝑑𝑡

[
 
 
 
 
𝑣𝑦

Ψ
Ψ̇
𝑣𝑥

𝑣�̇�]
 
 
 
 

=

[
 
 
 
 
 
 
 
 −

2𝐶𝑓 + 2𝐶𝑟

𝑚𝑣𝑥
0 −𝑣𝑥 −

2𝐶𝑓𝑙𝑓 − 2𝐶𝑟𝑙𝑟

𝑚𝑣𝑥
0 0

0 0 1 0 0

−
2𝐶𝑓𝑙𝑓 − 2𝐶𝑟𝑙𝑟

𝐼𝑧𝑣𝑥
0 −

2𝐶𝑓𝑙𝑓
2 + 2𝐶𝑟𝑙𝑟

2

𝐼𝑧𝑣𝑥
0 0

0 0 0 0 1

0 0 0 0 −
1

𝜏]
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑣𝑦

Ψ
Ψ̇
𝑣𝑥

𝑣�̇�]
 
 
 
 

+

[
 
 
 
 
 
 

2𝐶𝑓

𝑚
0

2𝐶𝑓𝑙𝑓

𝐼𝑧
0
0 ]

 
 
 
 
 
 

𝛿 +

[
 
 
 
 
 
0
0
0
0
1

𝜏]
 
 
 
 
 

𝑢 +

[
 
 
 
 

0
0
0

𝑣𝑦Ψ̇

0 ]
 
 
 
 

, 

 

where 𝑣𝑥 and 𝑣𝑦 are the longitudinal and the lateral acceleration respectively, Ψ̇ is the yaw 

rate, 𝛿 is the front steering angle and 𝑢 is the longitudinal acceleration input. All the other 

parameters have been set in the Matlab setup script. 
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Chapter 5  
 

 

 

5 IRL strategy for ACC and LKC  
 

This chapter, intended as the core of the thesis, contains all the clarifications and justifications 

for the procedures that have been followed to get an IRL agents able to replace the high level 

control of an Adaptive Cruise Control (ACC) and of a Lane Keeping Control (LKC). 

 

5.1 Problem presentation 
 

The primary goal of the project is to solve the control problem addressed by an ACC and a 

LKC, through RL algorithms. Nonetheless, as it has been claimed in chapter 3, some of the 

tasks that one can think to fulfil by RL techniques, are actually performed in too complex and 

strongly dynamical environments, setting the stage for all the limits that cannot be overcome 

by a pure RL theory. The discussed problem falls exactly inside that class. 

Indeed, the design of an ACC or a LKC requires to work with continuous physical quantities 

(velocities, distances, accelerations, steering angle and so on) changing inside a scenario 

deeply unstructured and very unpredictable. Thus, it seems truly unlikely to construct a 

handcrafted reward function embedding all the combinations of events that might occur. 

This is the reason that leads to choose the IRL strategy.  

Among all the approaches that have been studied through researches on the state-of-the-art, 

the choice fell on the projection-based method since, on the basis of the collected papers, it 

seems to be the most applied in real world experiments and moreover the simplest, from the 

implementation point of view. 
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All data needed for the application of the strategy has been provided by Addfor S.p.A. 

The entire code has been written in MATLAB 2019b and the agent design has been performed 

using the reinforcement learning toolbox. Simulink has been used to build all the 

environments in which the agent has been trained. Finally, Driving Scenario Designer has 

been employed for the construction of driving scenarios that are able to conglomerate the 

meaningful events occurring when the ACC or LKC functionality is activated.  

 

 

5.2 Data collection and processing 
 

The first part of the project has been devoted to the collection and reorganization of the data, 

so that they have been reformatted in order to avoid possible issues linked to the 

dimensionality and to neglect all the values made incorrect by the simulator.  

This was a crucial procedure since data have been used for the computation of the expert 

driver’s feature expectation 𝝁𝑬, that plays a key role in the applied IRL algorithm, as 

extensively clarified in chapter 3. 

Data were extracted by a simulation in which two human expert drivers drove the ego vehicle 

(EV) in a predefined map, adopting two driving styles, one more relaxed than the other. 

The map was divided in regions where the drivers must deal with different situations. 

For the LKC data, referring to regions in which straight road stretches and stretches with road 

curvature not equal to 0 are alternated, have been considered. Whereas, for the ACC the 

attention has been focused on the part of the simulation in which the EV was preceded by a 

preceding vehicle (PV). 

All the trajectories have been sampled following these guidelines, valid either for the ACC 

and the LKC, and have been truncated, so that they are all constituted by the same number of 

samples, thus satisfying one of the algorithm requirements. 
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In figure 5.1 a part of the code is shown, written to perform the described operations. 

N_samples indicates the number of samples by which every trajectory must be constituted, 

and it has been set equal to 300 in order to avoid of performing simulations that requires too 

much computational effort during the training phase. traj_truncated_list is a list that 

contains the truncated trajectories. 

 

 

Figure 5.1: code to perform trajectories truncation 

  

After the first step of data processing, features extraction has been performed separately for 

the two applications. 
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5.2.1 ACC features extraction 

 

In the data file there are many values related to quantities (velocities and accelerations, yaw 

rate, lane gap, curvature radius and so on) that characterize the EV, the PV and all the other 

actors involved in the simulation. Nevertheless, a great number of those quantities are not 

very significant for abstracting the ACC control problem and so they have been neglected.  

Taking into account the main physical quantities used to produce a classical ACC logic and 

to define the comfort requirements, the ACC features vector has been extracted, 

 

                             Φ𝐴𝐶𝐶 =

[
 
 
 
 
 

𝑣𝑥

𝑑𝑟ⅇ𝑙

𝑣𝑟ⅇ𝑙

𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

𝜑𝑟ⅇ𝑣ⅇ𝑟𝑠ⅇ

𝜑𝑠𝑎𝑓ⅇ𝑡𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐ⅇ]
 
 
 
 
 

    ,                                 (5.1) 

 

with 𝑣𝑥 as the longitudinal velocity of the EV, 𝑑𝑟ⅇ𝑙 and 𝑣𝑟ⅇ𝑙  as the relative distance and the 

relative velocity between the EV and the PV, respectively. 

The fourth component 𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 has been inserted to take into consideration potential crashes, 

so that if the crash happens 𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is set to 1, otherwise is equal to 0. The fifth component 

𝜑𝑟ⅇ𝑣ⅇ𝑟𝑠ⅇ was added a posteriori after that, at the end of the first simulations, the agent was not 

able to discern the real goal, i.e. to behave as if the ACC were activated, from the wrong target 

of maximizing the relative distance, fulfilled by inverting the direction of travel. 𝜑𝑟ⅇ𝑣ⅇ𝑟𝑠ⅇ 

associates a big penalty to this behaviour. The last component 𝜑𝑠𝑎𝑓ⅇ𝑡𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐ⅇ tells if the 

agent overcame the imposed safety distance. Like 𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛, also these last two features 

assume a value that can be 0, if the agent behaves correctly, or 1 if it performs the wrong 

action. Thereafter, all the components have been normalized (figure 5.2) in values between 0 

and 1 (with 0 and 1 included) so that ||𝝎||1 ≤ 1 is verified, where 𝝎 is the vector of weights 

used to build the reward function. 
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The normalization has been carried out choosing the minimum and the maximum value of 

each Φ𝐴𝐶𝐶  component as the extremes of the intervals to which the features belong. 

Then, every negative feature value has been turned to positive by adding the minimum of the 

related interval. 

As last step, each one of the new values has been divided by the corresponding interval 

amplitude. 

 

 

Figure 5.2: code to perform features normalization 
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5.2.2 LKC features extraction 

 

The same reasoning has been carried forward for the LKC features extraction. 

Thus, the LKC features vector is Φ𝐿𝐾𝐶, 

 

                                                     Φ𝐿𝐾𝐶 =

[
 
 
 
 
 
 

𝐾𝑅

Ψ̇
𝑎𝑦

�̇�𝑦

𝑞𝑙𝑎𝑛ⅇ

𝜑𝑙𝑎𝑛ⅇ_𝑑ⅇ𝑝𝑎𝑟𝑡𝑢𝑟ⅇ]
 
 
 
 
 
 

 ,                                      (5.2) 

 

where 𝐾𝑅 is the road curvature, Ψ̇ is the yaw-rate,  𝑎𝑦 is the chassis lateral acceleration, �̇�𝑦 is 

the jerk used for satisfying comfort requirements and 𝑞𝑙𝑎𝑛ⅇ is the lateral deviation of the 

vehicle CoG (centre of gravity) from the centre of the lane. 

The sixth component 𝜑𝑙𝑎𝑛ⅇ_𝑑ⅇ𝑝𝑎𝑟𝑡𝑢𝑟ⅇ has a job very similar to the 𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 in (5.1), because 

it can be either equal to 0, if the car remains inside the lane, or to 1 if there is a departure and 

the vehicle goes off-road. 

The structure of the code, and so the logic, developed to perform the features normalization 

is identical to that of the ACC. It has been sufficient to change consistently the parameters for 

the computation. 

For the LKC data processing a few more steps have been necessary, since among the 𝑞𝑙𝑎𝑛ⅇ 

values some of them were corrupted by simulation events which cannot occur in real life, 

such as the presence of road discontinuities between two different map regions. 

Therefore, all those values have been neglected to reduce the probability that the agent 

perceived as “good” some misbehaviour.  
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5.3 Main algorithm 

 

Inside the main script of the algorithm, three phases can be distinguished: 

1. Initialization phase, 

2. IRL phase, 

3. RL phase. 

In the initialization phase 𝝁𝑬, 𝝁𝟎 and 𝝎𝟎, three parameters used as inputs in the IRL phase, 

are computed.  

𝝁𝑬 ∈ ℝ𝒏  is the driver features expectation, computed as suggested by (3.2). Actually, in both 

the applications two 𝝁𝑬 have been derived, one for each driving style. The dimension n is 

equal to the number of selected features. 

 

 

Figure 5.3: 𝝁𝑬 computation 
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Paying attention, in figure 5.3 it can be noticed that from the truncated trajectories not all 

samples have been involved; this because data have a sampling time equal to 0.01 s then, in 

order to be coherent with the simulations running at 10 𝐻𝑧 (𝑇𝑠 = 0.1 𝑠), values have been 

collected after each tenth of second. The choice to select for the simulation a frequency   𝑓 =

10 𝐻𝑧 rather than 𝑓 = 100 𝐻𝑧 has been forced by the fact that it would have been required a 

too long simulation time and too much space in memory. 

From theory, it has been learned that the projection-based method demands vector 𝝁𝟎 to start 

the first iteration, that is the first feature expectation computed on-line during the agent 

simulation. 

Speaking of which, a first Simulink environment (it is going to be described in the following 

paragraph) has been constructed just for 𝝁𝟎. Here, the agent receives as input a totally random 

policy. 

At this point 𝝎𝟎, namely the implicit definition of the reward (ℛ = 𝝎𝑻𝚽) for the first IRL 

iteration, is easy to get, 

                                                                  𝝎𝟎 = 𝝁𝑬 − 𝝁𝟎. 

During the IRL phase a new �̅�𝒔𝒊𝒎 is computed at every iteration as the orthogonal projection 

of 𝝁𝑬 on 𝝁𝒔𝒊𝒎 in according to (3.14), where 𝝁𝒔𝒊𝒎 is the features expectation vector extracted 

from the agent simulation at the previous iteration. 

Afterwards, weights are updated through the comparison between 𝝁𝑬 and 𝝁𝒔𝒊𝒎 and then the 

condition 𝑡(ⅈ) ≤ 𝜀, 𝑡(ⅈ) = ||𝝎||2 is checked, as illustrated in figure 5.4. If it is respected, the 

algorithm stops, meaning that the desired reward function has been found. 

 

 

Figure 5.4: algorithm stop condition 
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For what concern the RL phase, it is fundamental to train the agent and so to find the optimal 

policy with respect to the current reward function. In this way, an iterative process is built, 

where the reward function of the IRL phase and the optimal policy coming from the RL phase 

improve each other until convergence.  

Here, the agent has been designed and all the training options have been set. 

 

5.3.1 Simulink environments 

 

It is well known that in RL the agent must gain information from the interaction with the 

surrounding environment. For this reason, it is compulsory to create a virtual environment in 

which the agent has to navigate, enhancing its optimal policy. 

In this experiment all the environments have been constructed in Simulink, since the code has 

been developed in Matlab, by modifying the already existing Simulink block schemes realized 

by Mathworks for the implementation of a classical ACC (figure 5.5) and a LKC with a MPC 

(figure 5.7). 

 

Figure 5.5: Adaptive cruise control block scheme 
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Inside the block “vehicle and environment” (figure 5.5) there is the classical ACC control 

(figure 5.6) that has been designed through a simple PD. 

 

 

Figure 5.6: ACC control block 

 

 

 

Figure 5.7: Lane Keeping Control with MPC 

 

For both applications three environments have been created, the first for 𝝁𝟎, the second for 

training and the third for agent testing. 
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Inside 𝑡ℎ𝑒 𝝁𝟎 block scheme no control and so no feedback signal is present since a selected 

random policy is directly provided as control action. At each time step, 𝚽 is sent to 

workspace, where 𝝁𝟎 is computed. 

The training environment has been obtained by replacing the ACC and LKC control blocks 

with the Matlab RL block that represents the agent. 

It receives 3 inputs, called observation, reward and isdone. 

Observation is the features vector that is acquired extracting at every time step the six features, 

coming from the vehicle dynamics and sensor fusion. As one can notice from figure 5.8, the 

features normalization has been done directly in Simulink. 

 

Figure 5.8: 

Simulink scheme realized for the features normalization in the ACC. Nevertheless, for the LKC the scheme has the same 
structure. 

 

The reward is provided by a Matlab function that implements equation (3.1), while isdone 

generally indicates a terminal condition but here it is not used, so this input has been 

connected to “ground”. Actually, since after some simulations of the ACC it has been 

observed that the agent learned to perceive a crash and a change of direction as undesired 

behaviours too slowly, the reward function has been further modified by assigning directly a 

big penalty in conjunction with those situations, as shown in figure 5.9.  
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Figure 5.9: modified Reward function 

 

At the end of the RL phase the agent is deployed on the simulation environment in order to 

test the learned policy. The only thing changing with respect to the training environment is 

that the features are collected and sent to the workspace for the 𝝁𝒔𝒊𝒎 computation, as it 

happens for 𝝁𝟎. 

 

5.3.2 Driving Scenario Designer 

 

It can be immediately understood how, for the addressed problem, sensors play a fundamental 

role since they collect data that are essential in this kind of application and perform computer 

vision. Driving Scenario Designer (DSD) is a Matlab application that permits to build a 

customized driving scenario, in which the EV can be tested, whereas the sensor fusion block 

allows to mount sensors on the EV, such as cameras and radars.  

In this project either for the ACC and for the LKC one driving scenario has been created using 

DSD. 

In figure 5.10 the ACC driving scenario is showed, where there are only two actors, the EV, 

controlled by the IRL agent, and the PV that follows a predefined trajectory, modifiable by 

adding or erasing waypoints, with a variable velocity. In figure 5.10, on the right it can be 

seen a list containing the coordinates x, y and z (in m) and the speed (in m/s) of the PV related 
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to each waypoint of the trajectory. The road has a curvature radius equal to infinite. On the 

EV a camera and a radar are mounted. For the whole duration of the simulation EV and PV 

follow always the same lane, since the aim is to verify that the agent learns to behave correctly 

in the presence of a leading vehicle. 

 

 

Figure 5.10: ACC driving scenario in Driving Scenario Designer 

 

In figure 5.11 the scenario for the LKC is presented. Here there is only one actor, the EV, 

whose speed has been set constant for simplicity. The vision system for the lane detection is 

realized by a camera from which all the lane information are extracted to estimate the vehicle 

position inside the lane. The road has been designed with an “S” shape so that the agent can 

be tested during either a right and a left turn. Again, the EV is controlled by the IRL agent. 
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Figure 5.11: LKC driving scenario 

 

 

5.3.3 Agent design 

 

The IRL agent has been designed in Matlab as a deep Q-network that receives the features 

and the action vectors as inputs and gives the control action as output.  

Despite acceleration (ACC) and steering angle (LKC) assume continuous values, in order to 

use a DQN it has been necessary to discretize them, obtaining two sets of actions among 

which the agent can choose. 

In particular, +2 𝑚/𝑠2 and −3 𝑚/𝑠2 have been taken as maximum and minimum 

acceleration values, while +15° and −15° are the maximum and minimum steering angle 

values, respectively. The acceleration interval has been divided into 51 segments with 

amplitude equal to 0.1 𝑚/𝑠2 and the steering angle interval into 31 segments with amplitude 

equal to 1°. Note that such stringent comfort requirements on the longitudinal acceleration 
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have been chosen just to be coherent with Data, in which those values have never been 

overcome. 

For both applications the critic network 𝑄𝑐𝑟𝑖𝑡𝑖𝑐  has been designed with 2 input layers, i.e. the 

features layer with 6 neurons and the action layer (51 or 31 neurons), a hidden layer with 90 

neurons and an output layer with just one neuron that provides the optimal control action. 

For what concern the agent options, a learning rate 𝛼 =  0.01 , a discount factor 𝛾 = 0.99, an 

experience buffer with a 10000 length have been set. To guarantee a suitable exploitation-

exploration trade off, policy is updated through 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦, where at the beginning 𝜀 is equal 

to 0.9 and then it is reduced by a decay rate of 0.05 at each new epoch, until the minimum 

value 𝜀𝑚𝑖𝑛 = 0.1 is achieved. 

The target network 𝑄𝑡𝑎𝑟𝑔ⅇ𝑡 is updated (𝑄𝑡𝑎𝑟𝑔ⅇ𝑡 = 𝑄𝑐𝑟𝑖𝑡𝑖𝑐) with update frequency equal to 4. 

At the end of the RL phase the agent is always saved, so that it can be trained again in the 

next IRL iteration. 
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6 Simulations and results 
 
In this chapter all the simulation results will be shown either for the Adaptive Cruise Control 

(ACC) and the Lane keeping Control (LKC), with the aid of some meaningful graphs acquired 

during the project development. All the quantities have been plotted with respect to time t in 

s (x-axis). 

 

6.1 ACC simulations 
 

In this section the simulation results of the ACC, implemented through the projection-based 

algorithm, during different training phases are shown and discussed, analysing the possible 

reasons that brought to undesired or expected performances.  

As it has been extensively clarified in chapter 5, the agent always performs actions with 

frequency 𝑓 = 10 𝐻𝑧 in according to the sampling time 𝑇𝑠 = 0.1𝑠. The simulations finishing 

time 𝑇𝑓 has been set equal to 30 𝑠 in order to guarantee that the number of samples collected 

by the sensors inside the driving scenario were equal to the number of samples composing the 

human driver trajectories. Thus, it has been possible to make a coherent comparison between 

the two datasets. 

All the graphs and results proposed are obtained from simulations in which the agent was 

tested inside the driving scenario constructed in the Driver Scenario Designer, as explained 

in chapter 5.  

The ACC scenario is made of a straight lane with the Ego Vehicle (EV) posed at a distance 

of 40 meters from the Leading Vehicle (LV), this latter travels at variable speed between 12 

and 17 𝑚 ∕ 𝑠2. 

In figure 6.1 the waveform representing the actions selected by the agent after the first IRL 

iteration of the algorithm has been reported. Here, the agent has been designed starting from 
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𝝁𝑬,𝟏_𝑨𝑪𝑪, namely the 𝝁𝑬 vector computed through data related to the first driver that showed 

a sport driving style, and with a reward function R that implements eq. (3.1). 

The agent training has been performed during the Reinforcement Learning (RL) phase, 

selecting a number of episodes (maxepisodes) equal to 25. 

From the graph it can be noticed that a single IRL iteration is not enough to let the agent 

behaves correctly, in fact the provided acceleration values are either +2 𝑚/𝑠2 or −3 𝑚/𝑠2. 

 

Figure 6.1: agent acceleration profile. On the y-axis acceleration values in 𝑚/𝑠2 are reported, on the x-axis time in s. 

              

In table 6.1 the values assumed by the vector of weights 𝝎 and the feature expectation 

vector 𝝁𝒔𝒊𝒎 have been reported for each feature at different IRL iteration. 

IRL iteration 𝒗𝒙 𝒅𝒓𝒆𝒍 𝒗𝒓𝒆𝒍 𝝋𝒄𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 𝝋𝒓𝒆𝒗𝒆𝒓𝒔𝒆 𝝋𝒔𝒂𝒇𝒆𝒕𝒚_𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 

1 𝝁𝒔𝒊𝒎 

                                 𝝎                                

                                  𝝁𝑬,𝟏 

 

0.5677 

-0.4078 

0.2890 

0.1589 

-0.7629 

0.0418 

0.5473 

0.015 

0.5527 

0 

-1 

0 

0 

0 

0 

1 

-1 

0 

            2               𝝁𝒔𝒊𝒎 

                               𝝎 

                              𝝁𝑬,𝟏 

0.5552 

-0.2930 

0.2890 

0.2700 

0.0001 

0.0418 

0.5605 

0.0130 

0.5527 

0 

0.0326 

0 

0 

0 

0 

0 

-1 

0 

            5               𝝁𝒔𝒊𝒎 

                               𝝎 

                              𝝁𝑬,𝟏 

0.5841 

-0.2896 

0.2890 

0.0865 

-0.0657 

0.0418 

0.5403 

0.0084 

 0.5527 

0 

-0.0003 

0 

1 

-0.0007 

0 

1 

-0.016 

0 

Table 6.1: Features expectation vector and weights related to three different iteration during a simulation of 25 RL 
episodes  
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By analysing the values in the table, it is possible to observe that at the end of the 1st iteration 

the agent does neither collide with the preceding vehicle nor go in reverse (negative speed), 

given that the two features 𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 and 𝜑𝑟ⅇ𝑣ⅇ𝑟𝑠ⅇ are equal to 0. 

On the contrary, 𝜑𝑠𝑎𝑓ⅇ𝑡𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐ⅇ equal to 0 indicates that the ego vehicle overcame the 

imposed safety distance. Weights 𝜔 related to the 4th and 6th features are negative as expected, 

since weights must guarantee that misbehaviours represented by those features are adequately 

penalized, whereas at the end of the 2nd iteration 𝜔𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 assumes wrongly a negative value. 

After the 5th IRL iteration it is easy to understand that the agent learned a bad policy since the 

last two features are equal to 1, even if the weights are still negative. The action waveform is 

reported in figure 6.2 showing that 𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 0 does not necessarily define a good policy, 

indeed in this case no collision happened just because the agent decelerated during all the 

simulation inverting the direction of travel. 

 

 

Figure 6.2: bad acceleration profile [𝑚 ∕ 𝑠2], the agent learns to go in reverse 

 

Similar results have been obtained by using 𝝁𝑬,𝟐_𝑨𝑪𝑪 as input of the algorithm.  

In order to avoid these situations, the reward function has been modified in both cases, by 

associating additional penalties (see chapter 5) to that provided by the corresponding features. 
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Graph in figure 6.3 shows the acceleration profile of the agent after one IRL iteration. 

 

 

Figure 6.3: acceleration profile [𝑚 ∕ 𝑠2] after the 1st IRL iteration within a simulation of 100 RL episodes  

The waveform is clearly better than the waveforms obtained from the previous simulations. 

For the first 10 s of simulation the acceleration oscillates, assuming values between the 

maximum and the minimum, and then the agent chooses to go at constant speed since the 

acceleration goes to 0.   

Figure 6.4 shows the evolution of the reward during a RL training with 100 episodes. 

 

 

Figure 6.4: Reward profile after 50 episodes during the 1st IRL iteration 
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Actually, it can be observed that after 50 iterations the reward reaches the convergence, but 

obviously the constructed reward is not good enough to guarantee acceptable behaviours. 

After 4 IRL iteration the results are better (figure 6.5), indeed the acceleration profile shows 

not too high jerks. 

Furthermore, comparing values in table 6.2 other differences between the two simulations 

can be highlighted. 

 

 

Figure 6.5: acceleration profile [𝑚 ∕ 𝑠2] after the 4th IRL iteration within a simulation of 100 RL episodes 

 

IRL iteration 𝒗𝒙 𝒅𝒓𝒆𝒍 𝒗𝒓𝒆𝒍 𝝋𝒄𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏 𝝋𝒓𝒆𝒗𝒆𝒓𝒔𝒆 𝝋𝒔𝒂𝒇𝒆𝒕𝒚_𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 

1 𝝁𝒔𝒊𝒎 

                                 𝝎   

                                    𝝁𝑬,𝟐   

0.7982 

-0.2421 

0.3429 

0.8746 

0.0127 

0.0815 

0.5388 

0.0132 

0.5528 

1 

0.0174 

0 

0 

0 

0 

1 

-1 

0 

            4               𝝁𝒔𝒊𝒎 

                               𝝎 

                                𝝁𝑬,𝟐 

0.5869 

-0.3539 

0.3429 

0.0814 

-0.7232 

0.0815 

0.5396 

0.0152 

0.5528 

0 

-1 

0 

0 

0 

0 

1 

-1 

0 

Table 6.2 Comparison between the feature expectation vectors and weights related to the acceleration profiles in 
figures 6.3, 6.5 

 

In the 1st iteration 𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 and 𝜑𝑠𝑎𝑓ⅇ𝑡𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐ⅇ are both at 1, while in the 4th iteration only 

𝜑𝑠𝑎𝑓ⅇ𝑡𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐ⅇ is equal to 1, meaning that crash did not happen but the EV did not respect 
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the safety distance. By comparing the 𝑑𝑟ⅇ𝑙 (in m) obtained in both iterations it is evident that 

in the 1st iteration the value is very far from 𝑑𝑟ⅇ𝑙 of the human driver (𝝁𝑬,𝟐, table 6.2). 

As underlined by graph in figure 6.6, 50 iterations do not always guarantee that the algorithm 

converges. 

 

 

Figure 6.6: Reward profile after 50 episodes during the 4th IRL iteration 

 

Only results relative to those two iterations have been reported because they are the most 

significant and at the 6th iteration Matlab session was killed due to the “out of memory” error. 

One of the biggest issues of the algorithm is the fact that a too large space in memory is 

required to perform a large IRL iterations number, since it is well known that each RL phase 

needs a very high number of episodes to guarantee that convergence is achieved and this is 

why maxsteps has been set to 50. Furthermore, the complexity of the Deep Q-Network (DQN) 

complicates even more the problem, since it receives as input an action vector with 21 

components and the experience buffer replay needs very high memory space. 
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Nevertheless, some good policies have been found during the experiments, such as the one 

shown in figure 6.7. A simulation inside the Driving Scenario Designer pointed out that this 

time the agent was able to follow the leading vehicle without executing any risky situation. 

 

 

Figure 6.7:  

agent acceleration profile [𝑚 ∕ 𝑠2] after 3 IRL iterations, with weights 𝜔 = [−0.4078;−0.7629; 0.015;−1; 0; −1] 

 

Nonetheless, figure 6.7 shows fast variations in the acceleration values that implicate high 

jerk, resulting in a very uncomfortable driving. In order to solve this issue, other two features 

have been added to (5.1), the longitudinal acceleration 𝑎𝑥 and the jerk �̇�𝑥. As a consequence, 

also to the 𝜇𝐸 the same two features have been added. Having modified in this way the reward 

function, better results have been achieved (figure 6.8) indeed a smoother change in the 

acceleration is appreciable. 𝜇𝐸 and 𝜇𝑠𝑖𝑚 of this simulation are reported: 

 

𝜇𝐸= [0.2886; 0.0428; 0.5521; 0.5986; 0.5002; 0; 0; 0] 
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𝜇𝑠𝑖𝑚= [0.5389; 0.5175; 0.5745; 0.5659; 0.4958; 0; 0; 0] 

 

Figure 6.8:                                                                                                                                                                                                

agent acceleration profile [ 
𝑚

𝑠2 ] after 3 IRL iterations, with weights 𝜔 = [-0.2369; -0.4469; -0.0261; -0.0041; 0.0116; -1; -1; -1] 

 

In addition, the trained agent has been also tested inside different scenarios with higher 

simulation times and where different initial conditions have been imposed for the preceding 

vehicle (initial position and initial velocity), proving that it can be able to adapt its behaviour 

not only to situations presented during the training. 

As it is possible to grasp, the IRL problem is very challenging, especially when it is applied 

to complex environment such as those of autonomous driving. However, in the last chapter 

“Conclusion and future works” some possible strategies are going to be suggested, in order 

to improve the current procedure and obtain better results 
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6.2       LKC Simulation 
 
In this section LKC results are presented, analysing the possible reasons that brought to 

undesired or expected performances as seen in the ACC case of study. 

Initially the same procedure was used as in the case of the ACC but the driving scenario 

constructed with the Driving Scenario Designer does not allow the RL Agent to learn 

significatively since the sensors placed on the ego vehicle (EV), once the car exits from the 

simulation lane, provide insignificant data. One of the possible thought solutions was to stop 

an episode as soon as the car goes out to leave the lane, but also in this case the training would 

have taken too long. Due to this problem, a simpler system has been used for the simulations. 

The observations provided to the RL agent are different compared to the features that make 

up the Reward function. In fact, the observations passed to the agent are: lateral offset, integral 

lateral offset, derivate of the lateral offset, yaw error (difference between the estimated yaw 

�̇� = 𝑣𝑥𝜌 and the yaw of the model), integral yaw error and the derivate of the yaw error 

(Figure 6.10). Furthermore, in the LKC Agent a prebuilt and already tested cost function has 

been used as the reward as explained in [26], in order to have a working reward function as 

example for extracting the IRL reward. This latter is always the linear combination 𝑅 =

(𝜔)𝑇𝜙  of the selected features as clarified in Chapter 5. 

Like in the ACC, also in the LKC case the Agent performs actions with frequency 𝑓 = 10 𝐻𝑧, 

in according to the sampling time 𝑇𝑠 = 0.1 seconds, and each episode last 𝑇𝑓 = 45 𝑠 as 

explained in the section 6.1.1 for consistency with the data collected from the expert driver in 

order to compare properly the 𝜇𝐸 of the human expert driver and the 𝜇𝑠𝑖𝑚 of the agent 

simulation. 

Then, for this reason a different path has been followed, simplifying the Simulink block 

scheme eliminating the driving scenario and using the model shown in figure 6.9. in which a 

bicycle model is used in the Ego Vehicle Dynamics block. 
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Figure 6.9 complete model with the RL LKC agent 

 
As explained in [26] 𝑒1 as the lateral deviation and 𝑒2 as the relative yaw angle are defined, 

as show in the figure 6.10: 

• The steering-angle action signal from the agent to the environment varies between -15 to +15 

degree. 

• The observations from the environment are the lateral deviation 𝑒1, relative yaw angle 𝑒2, 

their derivatives �̇�1  and �̇�2, and their integrals ∫ 𝑒1    and    ∫ 𝑒2 (figure 6.11). 

• The simulation terminates when lateral deviation |𝑒1| < 1 

• The reward 𝑟𝑡, provided at every time step t, is  𝑟𝑡 = −(10 𝑒1
2+5 𝑒2

2 +2𝛿𝑠+5 �̇�1
2+5 �̇�2

2 )  where 

𝛿𝑠 is the control input from the previous time step t-1. 



120 
 

 

Figure 6.10: Graph representing the 𝑒1 lateral deviation and 𝑒2 the relative yaw angle 

 

 

 

 

Figure 6.11: LKC agent observations in Signal Processing block 

 

The longitudinal vehicle dynamics is separated from the lateral vehicle dynamics and in 

addition the longitudinal velocity is assumed to be constant. Moreover, the Sensor Dynamics 
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block outputs the lateral deviation and relative yaw angle. The dynamics for relative yaw 

angle are �̇�2 = 𝜓 − 𝑉𝑥𝜌, where 𝜌 denotes the curvature and 𝜓 the yaw rate. The road 

curvature from the real expert driver data was used, showing firstly a left curve and then a 

right one (S curve). The dynamic for lateral deviation is �̇�1 = 𝑉𝑥𝑒2 + 𝑉𝑦 as in [26].  

So the idea was to train the RL agent using the observations defined previously, 𝑒1, 𝑒2, �̇�1, �̇�2, 

∫ 𝑒1  and  ∫ 𝑒2, but still updating the Reward function built as a linear combination of the 

features 𝜙, 𝑅 = (𝜔)𝑇𝜙  that is indeed different from the observations of the RL Agent except 

for the lateral distance and the yaw. Thus, the objective is always to update the parameters 𝜔 

in order to extract a better reward using, as always, the behavior of the driver 𝜇𝐸 as the target. 

It is worth to notice that in this case only the data relative to the second driver are used since 

the data of the other driver were corrupted due to road simulation discontinuity produced in 

the moment of the acquisition. Then the 𝜇𝑠𝑖𝑚_𝐿𝐾𝐶  is extracted from the simulation as shown 

in figure 6.11. 

At the end of the simulation promising results have been found. The expected features vectors 

of the simulation  𝜇𝑠𝑖𝑚_𝐿𝐾𝐶  and  of the expert human driver 𝜇𝐸_2_𝐿𝐾𝐶  are: 

 

𝜇𝑠𝑖𝑚_𝐿𝐾𝐶 = [0.5674;  0.8776;  0.5014;  0.5513;  0.5265;  0] 

𝜇𝐸_2_𝐿𝐾𝐶 = [0.5523;  0.5359;  0.4928;  0.5707;  0.7756;  0] 

 

The components of the two vectors take values fairly close to each other and it is important 

to underline that the agent never goes out the land markings since the last component of  

𝜇𝑠𝑖𝑚_𝐿𝐾𝐶  is equal to 0. 

The parameters ω extracted at the end of the IRL process are: 

 

ω = [−0.4614; −0.4489; −0.4723; −0.5113; −0.6530; −1] 

 

The last component is -1 since the reward must heavily penalize the agent when it exceeds 

the maximum limit on the lateral deviation set at 0.75m (i.e. for highway application). 
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Figure 6.12: Features Extraction for the Reward function  

 

In the figure 6.13 the steering angle profile can be observed, highlighting that the agent control 

action follows the data road curvature.  

 

 

Figure 6.13: steering angle [rad] Agent control action 
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In figure 6.14 the lateral deviation obtained is shown. As it can be observed, except for the 

initial transitory, 𝑞lane meets the requirements, which have been specified in chapter 4, such 

that the car never leaves the lane. 

 

Figure 6.14: Lateral Deviation 𝑞𝑙𝑎𝑛ⅇ  [m] related to the final simulation  

 

The relative yaw angle is reported in figure 6.15. 

 

Figure 6.15: relative yaw angle [rad] related to the final simulation  
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The next step was to newly train the RL agent replacing the defined cost function with the 

reward function obtained from the previous training. 

After only 80 episodes the agent is able to learn a good policy in which it never leaves the 

lane and never overcoming the lateral deviation threshold as can be seen in the figures 6.16.  

 

 

Figure 6.16: agent control steering angle [rad] using the extracted Reward function after 80 episodes 

 

Figure 6.17 shows the lateral deviation. It can be noticed a peak around T=30s due to a 

curvature road (figure 6.18) change that the agent is not able to face yet due to the policy that 

has found till now. 
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Figure 6.17: lateral deviation 𝑞𝑙𝑎𝑛ⅇ  [m] using the extracted Reward Function after 80 episodes 

 

 

 

Figure 6.18: curvature road profile [1/m] extracted form data  
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Several changes have been done to the reward function in order to obtain a smoother agent 

control action profile (steer) and consequently obtaining a contained lateral acceleration, 

going to encourage – with the reward thus modified – a behavior as similar as possible to 

that of a human driver. In figure 6.19 it can be observed that lateral acceleration, jerk, and 

also the derivate of the steer control action have been taken into account. 

 

 

Figure 6.19: Reward function Simulink block  

 

After these adjustments slightly better outcomes have been achieved as highlighted in 

figures 6.20, 6.21, 6.22. In fact, the steer profile in figure 6.20 is characterized by smoother 

variations with respect to the control action showed in figure 6.16 considering that the 

parameters of the two simulation are the same (maxepisodes = 80). 

The new expected feature vector of the simulation  𝜇𝑠𝑖𝑚_𝐿𝐾𝐶   is 

 

𝜇𝑠𝑖𝑚_𝐿𝐾𝐶= [0.5674; 0.8776; 0.5014; 0.5610; 0.5032; 0], 

 

while the parameters 𝜔𝐿𝐾𝐶  extracted are 

 

𝜔𝐿𝐾𝐶  = [-0.4335; -0.2429; -0.4837; -0.5359; -0.7151; -1]. 
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Figure 6.20: agent control steering angle [rad] using the modified Reward after 80 episodes 

 

Figure 6.21 proves that the Ego Vehicle is able to maintain the centreline during the whole 

simulation with 𝑞𝑙𝑎𝑛ⅇ  values between +0.08 and -0.036 meters. 

 

 

Figure 6.22: Lateral Deviation 𝑞𝑙𝑎𝑛ⅇ  [m] using the modified Reward after 80 episodes 
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In the next chapter “Conclusion and future works”, as it has been done for the ACC, some 

expedients are going to be suggested in order to enhance the proposed methods. 
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7. Conclusion and future works 
 
As it has been highlighted in the previous chapter through the final results, the approach used 

in this master thesis project to realize Advanced Driving Assistance Systems with Inverse 

Reinforcement Learning (IRL) techniques is very complex and requires more time to be 

corrected and then improved. 

In synthesis, the objective of this Master Thesis project is to solve the control problem 

addressed by an ACC and a LKC through IRL. Since the task is highly complicated, it is not 

possible to build an a priori reward function which is able to englobe all the possible events 

that may occur and to give an appropriate feedback. For this reason, the projection-based 

method has been applied, in which the reward function is defined (hypothesis) as a linear 

combination of features 𝑅 = 𝝎𝑻𝝓, where the features vector 𝝓 contains the relevant 

parameters related to the task that has to be accomplished. 

Initially, for the ACC 𝝓𝑨𝑪𝑪 is constituted by six components: longitudinal velocity 𝑣𝑥, relative 

distance 𝑑𝑟ⅇ𝑙, relative velocity 𝑣𝑟ⅇ𝑙 and three flags, 𝜑𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 to report collision events, 

𝜑𝑟ⅇ𝑣ⅇ𝑟𝑠ⅇ to check the velocity sign (the agent must not go in reverse) and 𝜑𝑠𝑎𝑓ⅇ𝑡𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐ⅇto 

check if the imposed safety distance has been overcome. 

Also 𝝓𝑳𝑲𝑪 is made by six components: the road curvature 𝐾𝑅, the yaw rate Ψ̇, the lateral 

acceleration 𝑎𝑦, the lateral jerk �̇�𝑦, the lateral deviation 𝑞𝑙𝑎𝑛ⅇ and 𝜑𝑙𝑎𝑛ⅇ_𝑑ⅇ𝑝𝑎𝑟𝑡𝑢𝑟ⅇ, a flag in 

order to check if lane departure events occur.      

The expert driver behaviours that the agents must emulate have been extracted from DATA 

provided by Addfor S.p.A. 

A large number of simulations has been performed in order to train the two agents, where a 

single simulation is composed by two phases: IRL phase and RL phase. In particular, at each 

IRL iteration an RL training is executed. 

For what concern ACC, from the first simulations some good policies have been obtained 

since the agent learned to follow the preceding vehicle without any crashes and respecting the 
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imposed safety distance. Anyway, from the acceleration profile (agent control action), too 

fast acceleration variations have been observed, meaning that jerk values did not respect 

comfort requirements. After these results 𝝓𝑨𝑪𝑪, and so the reward function, has been modified 

by adding two additional features: the longitudinal acceleration 𝑎𝑥 and the longitudinal jerk 

�̇�𝑥.  

The new simulations, performed in the same conditions (same number of IRL iterations and 

RL episodes) and same driving scenario, gave as outcome an acceleration profile 

characterized by smoother acceleration variation. Nevertheless, the agent behaviour is still far 

from that of a human driver. 

In the LKC case, initially the same procedure has been used. The agent was not able to learn 

any kind of policy since the task turned out to be more complex than the ACC one. For this 

reason, the system has been simplified by deleting the driving scenario built in the Driving 

Scenario Designer and replacing the 3DOF single track model (used to model longitudinal, 

yaw and lateral dynamics in both applications) with the 2DOF one. The same road curvature 

extracted from data has been given as input to the model.  

Even after these modifications the agent did not learn how to steer properly to stay inside the 

lane, so a different strategy has been followed. The RL agent has been trained on a predefined 

cost function, found in literature and used in a very similar problem. In parallel, during the 

simulation the initial weights to recover the IRL reward function have been extracted. Then, 

a further training has been performed, inserting the new reward in the IRL algorithm, giving 

promising results. As for the ACC, agents related to different IRL iterations have been saved 

and tested. Examining the steering angle profiles and the lateral deviation it has been possible 

to notice that some of the found policies were acceptable, since the vehicle was able to follow 

the road curvature, maintaining the centre of the lane. 

From the analysis of the collected results it can be highlighted that, even if during some IRL 

iterations good policies have been found, the agent behaviour is still far from an expert human 

driver driving style. 

Nonetheless, some positive outcomes have been obtained, suggesting that with appropriate 

modifications the algorithm could work. 
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For the ACC, first of all what can be done is to construct a more complex reward function 

including other features (square of the longitudinal velocity, square of the relative velocity 

and so on), as explained in chapter 6 where the longitudinal jerk has been added to avoid that 

the agent performs sudden acceleration (a) variations. 

Furthermore, as it has been already clarified, one important issue is linked to the use of the 

Deep Q-Network (DQN) to train the IRL agent. A key point of the DQN is the experience 

buffer replay, which requires a very large space in memory and indeed it often was the reason 

for which the algorithm stopped and never reached the convergence [11,12]. In fact, by 

solving the memory issues, convergence can be achieved by increasing the number of 

episodes in the RL phase. From the implementation point of view, it has even been proved 

that when the action input vector is constituted by many components, the DQN could not 

converge. Therefore, another strategy is to build the agent with a Deep Deterministic Policy 

Gradient (DDPG), a Q-learning algorithm that is specifically adapted to environment 

characterized by continuous action space. In this way there would be no need to select a 

discrete number of actions (acceleration for the ACC and steering angle for the LKC) making 

the agent behaviour closer to the human driver policy. Nevertheless, as for others Q-learning 

algorithms, convergence can be reached only stabilizing the training through the experience 

buffer replay. Thus, to reduce the amount of memory occupied by the buffer a possible 

solution is to fill it only with the last experiences, which are for sure the most significant ones 

since they are related to the last weight updates and so contain the most recent information. 

For what concerns the LKC, a possible path to follow in order to enhance this method is to 

make a more complex reward function inserting several different features, as explained for 

the ACC. In this specific case using for instance the yaw error, the yaw integral error, the yaw 

error derivative, the integral lane gap and its derivative similarly to the components used for 

the cost function. In this way, putting in the reward all the significative features that brings 

the meaningful information about the goals that has to be reached, through this IRL process 

the logic of the driver can be obtained. Thus, designing a control agent capable to generalize 

in every type of scenario, even in new and unseen ones. After these improvements the same 

IRL process implemented for the ACC can be followed. One of the main problems is that the 

complete steering wheel angle in real applications varies from -720 to +720 degrees, so 

assuming a resolution of 5 degrees the agent has to choose 1 among 289 available actions at 
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each step. Hence, since the actions number is too high, a possible solution can be again to 

create a DDPG agent in order to have no limits in the action space. 

If in the future, actualizing these strategies, the desired results will be obtained, one way to 

evaluate the goodness/badness of the two IRL ADAS is to compare them with the same 

systems realized with already known techniques, i.e. Proportional Integral Derivative control 

(PID) or Model Predictive Control (MPC). 

It can be interesting to make this comparison performing some statistical measurements. 

For instance, an idea is to use the Gaussian Mixture Model (GMM) to create three different 

distribution, the first representing data coming from the IRL agent, the second related to the 

standard ACC and LKC and the third to describe data collected by expert human drivers. 

Summarizing the obtained results are not optimal, anyway they prove that it is worth to 

examine more in depth and improve these strategies.  

If the experiment is successful in the long run, the IRL agent distributions will be much more 

similar to the expert driver one rather than the classical ADAS distributions. 
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