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Summary

Nowadays, General Purpose Graphic Processing Units (GPGPUs) are effective so-
lutions for high-demanding data processing applications. They are used in a lot of
application fields like multimedia and gaming, but they started to be used in safety
critical applications such as automotive, where reliability plays a significant role.

The aim of this thesis is to propose different implementations to increase fault
mitigation for the reference FlexGrip model, which represents a simplified version
of the NVIDIA GPU architecture. These solutions are not extensively included in
GPGPUs, due to the limited reliability requirements of the applications they were
originally intended for.

Three solutions have been developed and are presented in the thesis document:
- A Dynamically configurable self-repairing (BISR) mechanism aimed at reduc-

ing the impact of permanent faults in the Scalar Processor (SP) cores in GPGPUs.
This first solution mechanism is based on spare SP modules that can be used to
replace a possible faulty SPs when a fault affecting it is detected. In this architec-
ture there are some cold stand-by modules (Spare SPs, or SSPs) in parallel with the
existing SPs. Two switching units, based on meta-crossbar structures, targeting the
data-path input and output interconnections in the SPs are used. An instruction
specifically created allows to control the faulty SP and substitute it with a SSP.
This method is flexible because it does not require any change in the application
software. Experimental results show that the solution introduces a moderate area
overhead.
This strategy seems particularly suitable for long-term missions since it allows mit-
igating the effects of fault accumulation in the SP cores.

- A Dynamic duplication with comparison (DDWC) mechanism intended to
harden the Scalar Processor units in GPGPUs.
The second solution mechanism targets the detection of permanent faults that may
arise inside the SPs. The architecture has one additional SP unit to compute the
same operations of a selected SP. A reconfiguration instruction is used to dynami-
cally select the target SP to be monitored.
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Experimental results show that the proposed mechanism introduces a limited area
overhead while it provides a significant increase in the in-field fault detection capa-
bilities of the GPGPU.

Thanks to its flexibility, low hardware overhead, and moderate performance
degradation, this strategy could be effectively employed to increase the reliability
of GPGPUs when they are adopted in safety-critical applications.

- The combined solution merging dynamic self-repairing configuration (BISR)
and dynamic duplication with comparison (DDWC) aims to obtain a robust fault
mitigation solution.
This latter solution mechanism is based on the possibility to use both the BISR and
DDWC mechanism at the same time. In this architecture it is possible to define
the number, from 1 up to 8, of cold stand-by modules that can support both BISR
and DDWC mechanism, in parallel with the existing SPs.

Two switching units, based on meta-crossbar structures, targeting the data-path
for input and output interconnections in the SPs. Based on the configuration in-
struction it is possible to control the switching units and to implement the mecha-
nism. By comparison with the two previous architectures this is the most complete
and optimized one.
Experimental results show that the solution introduces a moderate area overhead
(up to 14.87% in the worst scenario) and a moderate performance degradation.
This strategy covers the mitigation effects of fault accumulation in the SPs cores
and increase the reliability of GPGPUs.
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Chapter 1

Introduction to FlexGrip

FlexGrip (FLEXible GraphIcs Processor) is an open-source GPGPU, which has
been optimized for FPGA implementation. The first model, developed by the
University of Massachusetts, was based on the NVIDA G80 microarchitecture and
optimized for Xlinx FPGA. It is also compatible with the CUDA programming
environment under SM_1.0 compatibility.[1]

1.1 FlexGrip General Architecture
GPGPUs have a many-core device architecture and possess substantial parallel
processing capabilities. They have a multicore architecture, based on an array of
streaming multiprocessor (SM), each one having a certain number of parallel scalar
processors (SP), which enable the device to execute more threads in parallel.

A thread block represents a collection of operations which can be performed in
parallel by each scalar processor simultaneously. The block scheduler is responsible
for schedule thread block in a round-robin fashion. CUDA instructions define the
kernel instructions and parameters (thread blocks, grid dimensions, etc.), data,
control and status that are stored and used by FlexGrip.

The number of thread blocks scheduled at the same time is determined by the
number of scalar processors in a streaming multiprocessor and the number of SMs.
After scheduling the thread blocks, the block scheduler signals the warp unit to
initiate scheduling the warps, which are contained within the respective thread
blocks. The maximum number of thread blocks that can be scheduled to a SM is
restricted by the available shared memory and SM registers.

1.1.1 Streaming Multiprocessor
The internal architecture of FlexGrip is based on the SIMT (Single-Instruction
Multiple-Thread) paradigm and exploits a custom SM core with a five stages
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Introduction to FlexGrip

Figure 1.1. Overview of a GPGPU architecture

pipeline (Fetch, Decode, Read, Execution/Control-flow and Write-back), as shown
in Figure 1.2.

In the SIMT paradigm, one warp instruction is fetched, decoded and distributed
to be processed on an independent SP within the SM. The Read and Write-back
stages load and store data operands from/to Register Files, shared, global or con-
stant memories. The constant memory is a read-only memory, which is initialized
by the host.

All pipeline stages output have a stall signal that is fed to the preceding stage.
This signal indicates that the stage is busy and not ready to accept new data.

Warp Unit

This special-purpose parallel processor executes the same instruction (warp instruc-
tion) for a set of threads. A warp is defined as a group of 32 threads, as shown
in Figure 1.3. Each warp includes a program counter (PC), a thread mask and
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1.1 – FlexGrip General Architecture

Figure 1.2. Block diagram details of the FlexGrip Streaming Multiprocessor

a state. The PC is used for each warp so they can follow their own conditional
path, the mask is used to prevent threads execution under wrong conditions and
the warp state indicates the status of the warp: Ready, Active, Waiting or Finished.
This latter mechanism is also called warp scheduler controller (WSC) for thread
management.

Figure 1.3. Register le configuration with 8 cores

Fetch and Decode Stage

This stage is responsible for fetching four or eight bytes CUDA binary instructions
from the system memory. The instruction bus of the system memory is 32-bit wide
and is possible to have 32- or 64-bit length instruction. To complete the stage,
the fetch stage take 1 or 2 cycles. After fetching the instruction, the PC value is
incremented (by 4/8 bytes) to point to the next instruction.
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Introduction to FlexGrip

The decode is a complex module that decodes the binary instruction to generate
several instructions depending on the opcode, predicate data, source and destina-
tion operands fields. There are 27 different instructions already implemented and
works correctly and also verified [2]

Read and Write Back Stage

In the Read stage, source operands are read from the vector register file or shared/-
global/constant memory blocks depending on the decoded inputs. All instructions
can include an optional predicate flag that controls conditional execution of the in-
struction (predicate instructions). The predicate register file is used to store these
predicate flags. The warp mask is updated by combining the current mask with
the predicated instruction.

The Write stage, instead, stores intermediate data in the vector register file,
memory addresses in the address register file and predicate flags in the predicate
register file. Output results are stored in the global memory.

Execute Stage

The Execution stage is the pivotal of the whole architecture, because it contains
the scalar processors with all the logic and arithmetic modules necessary required
to perform in parallel the operations supported by the Instruction Set Architecture
(ISA). So, the SPs are the real core of the system and without them any operations
will be possible inside one GPGPU.

The original design of the NVIDIA G80 architecture can have 8, 16 and 32 SPs,
also in FlexGrip the execution block have a hierarchical number of Scalar processors,
configurable in different ways as 8-16-32. It is worth nothing that the number of SP
in parallel increase the execution process, so for instance having 32 SP in parallel
is faster than having just 8, notable using one same testbench program in both the
cases.

It should be noticed that, results of the output of each SP could be affected by
errors coming from the logic or arithmetic blocks. These latter blocks are the most
important because without them it is not possible to perform any logic-arithmetic
operations. So, a fault affecting one SP-cores may cause output errors to the next
pipeline stage.

The input and output data channels are independent for each SP. In contrast, the
control-path connections are shared among all SPs because it deals with branches,
synchronization point settings, block barrier points and kernel return instructions.

As output, the SP produces the result (DST) signals and the changes of the
predicate flags.

6



1.2 – Instruction Format Support

Figure 1.4. A general scheme of the internal architecture of the integer SP core

The SPs process signed and unsigned integer operands and include hardware
modules for addition/subtraction (ADD/SUB), multiplication (ML), integer con-
version (ICON), comparison (COMP), shifting (SHF) and logic unit (LU) with
basic logical operations (AND, OR, XOR and NOT), as shown in Figure 1.4

1.2 Instruction Format Support

The supported assembly instructions supported (SASS) by FlexGrip, executable
under the CUDA programming environment under SM_1.0 micro-architectural
compatibility, are presented in the following tables. [3]

Table 1.1, 1.2 and 1.3 introduce the arithmetic and logic instructions, the data
handling and memory instructions and the control-flow instructions, respectively.
In Table 1.3, COMP_TYPE refers to comparison type and it depends on the
predicate flag generated by an arithmetic or logic operation. In Table 1.2, COND
parameters refer to predicate conditions. g[] and c[0x1][] correspond to shared
memory and constant memory locations respectively.
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Mnemonic Description The revised format in the improved version
MVC Load from constant memory MVC RX, c [0x1] []
GLD Load from global memory GLD.U32|U16|S16|U8|S8 RZ, global14[]
GST Store to global memory GST.U32|U16|S16|U8|S8 global14[], RX

MOV Move register to
register/load from
shared memory

MOV RZ, RX / g[]
MOV.U16 RZ(L|H), RX(L|H) / g[].(U16|U8)

MOV32 MOV32 RZ, RX / g[]
MOV32.U16 RZ(L|H), RX(L|H)

MVI Move immediate to
destination MVI RX, Imm

R2G Store to shared
Memory

R2G.U32.U32
R2G.U16.U16
R2G.U16.U8

R2A
Move general purpose
register to address
register

R2A AX, RX

A2R
Move address register
to general purpose
register

A2R RX, AX

Table 1.1. Supported data handling and memory SASS instructions

Mnemonic Description The revised format in the improved version

BRA Branch BRA CX.COND Imm
BRA Imm

BAR Barrier Synchronization BAR.ARV.WAIT b0, 0xFFF

RET Return from kernel RET
RET CX.COND

SSY Set Synchronization point SSY Imm

NOP No Operation NOP
NOP.S

Table 1.2. Supported control-flow SASS instructions

8



1.2 – Instruction Format Support

Mnemonic Description The revised format in the improved version

I2I Integer to Integer conversion

I2I.U32.U16/S16 RZ, RX(L|H) / g{[}{]}.U16
I2I.U32.S32 RZ, |RX| / -RX

I2I.U32.U16.BEXT RZ, RX(L|H) / g{[}{]}.U8
I2I.S32.S16.BEXT RZ, RX(L|H) / g{[}{]}.S8

IMUL IMUL.U16.U16 RZ, RX(L|H) / g{[}{]}.U16, RY(L|H)
IMUL.S16.S16 RZ, RX(L|H) / g{[}{]}.S16, RY(L|H)

IMUL32 Integer Multiplication IMUL32.U16.U16 RZ, RX(L|H) / g{[}{]}.U16, RY(L|H)

IMUL32I IMUL32I.U16.U16 RZ, RX(L|H), Imm
IMUL32I.S16.S16 RZ, RX(L|H), Imm

SHL Shift Left
SHL RZ, RX, RY / Imm
SHL RZ, g {[}{]}, Imm

SHL.U16 RZ(L|H), RX(L|H), Imm

SHR Shift Right

SHR.S32 RZ, RX, RY / Imm
SHR.S32 RZ, g {[}{]}, Imm

SHR.U16 / S16 RZ(L|H), RX(L|H), Imm
SHR RZ, g{[}{]}, Imm
SHR RZ, RX, RY / Imm

IADD
IADD RZ, RX / -RX, RY

IADD RZ, g{[}{]}, RX / -RX
IADD RZ, RX, c{[}0x1{]}{[}{]}

IADD32
Integer Add IADD32 RZ, RX, RY / -RY

IADD32 RZ, g {[}0x..{]}, RX / -RX
IADD32.U16 RZ(L|H), RX(L|H), RY(L|H) / -RY(L|H)

IADD32I IADD32I RZ, RX / -RX, Imm
IADD32I RZ, g{[}{]}, Imm

IMAD
IMAD.U16/ S16 RZ, RX(L|H), RY(L|H), RW

IMAD.U16/ S16 RZ, RX(L|H), c{[}0x1{]}{[}{]}, RY
IMAD. RZ, RX(L|H), c{[}0x1{]}{[}{]}, RY

Integer Multiply and Add
IMAD32 IMAD32.U16 RZ, RXL|H, RYL|H, RZ

IMAD32I IMAD32I.U16/ S16 RZ, RX(L|H), Imm, RZ

LOP Bitwise logical Operation

LOP.AND/OR/XOR/PASS_B RZ, RX/ g{[}{]}, RY
LOP.AND/OR/XOR/PASS_B RZ, RX, c{[}0x1{]} {[}{]}
LOP.U16.AND/OR/XOR/PASS_B RZ(L|H), RX(L|H),

RY(L|H)

ISET Integer Comparison

ISET RZ, RX, RY / c{[}0x1{]}{[}{]}, COMP_TYPE
ISET RZ, g{[}{]}, RX, COMP_TYPE

ISET.S32 RZ, RX, RY / c{[}0x1{]}{[}{]}, COMP_TYPE
ISET.S32 RZ, g{[}{]}, RX, COMP_TYPE

Table 1.3. Supported arithmetic and logic SASS instructions
9
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Chapter 2

Built-in Self Repair (BISR)

The first strategy presented is the Built-in self-repair (BISR) mechanism that aim-
ing to solve problems related to permanent faults effects, during the in-field op-
eration, inside the Streaming Multiprocessor of the GPGPU. The advantage of
this solution is the possibility to identify the presence of a permanent fault using
technique as Design for Testability (DfT) or Software-Based Self-Test (SBST).

2.1 State of the art

This BISR strategy is based on the Reconfigurable logic blocks (RLB), where there
are N identical functional units plus one additional backup (spare) block used to
replace the faulty functional unit.[4]

The architecture explored, shown in Figure 2.1, required switching element
blocks at inputs and outputs for re-configuration of the units. Some extra logic
is needed to control the switches. Multiplexer and De-multiplexer may be used for
the switching blocks.

In the past, BISR has been successfully applied to increase the reliability of digi-
tal design in memory blocks of processor-based systems or targeting data-path units
or functional units, using hardware, software and hybrid approaches. Hardware so-
lutions include Duplication with Comparison (DWC), Double and Triple Modular
Redundancy (DMR, TMR), ECC and the hardening of selective logic gates. [5]
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Built-in Self Repair (BISR)

Figure 2.1. Structure of a re-configurable logic block

2.2 Working on FlexGrip

The inclusion of additional fault tolerance and self-repair modules is needed to
implement the BISR technique. Particularly, the design of interconnections between
the existing SPs blocks and the SSPs spares, both for the input and for the output
part.

Figure 2.2 shows the original configuration of n SP in a Streaming Multiproces-
sor, inside the Execution Unit of the GPGPU. It should be noticed that each SP
has three input data operands SRC1, SRC2, SRC3 (32 bits length) and predicate
flags (4 bit-size) forming a data channel. SRC1, SRC2, and SRC3 are selected
depending on the instruction type, while some control signals select and configure
the SP.

14



2.2 – Working on FlexGrip

Figure 2.2. Original configuration of n-Scalar Processor

The proposed method to mitigate errors in data-path units, in the GPGPU
model, consider the addition of a Crossbar-type structure. This structure allows
the configurability of the Scalar Processors with one of the m additional passive
Spare Cores (SSP). The number n of spare cores should be set up by the designer.
It is worth noting that the number of Spares should not be higher because it affects
the area and consumption overheads, but also because this technique aims to switch
the Spare Core just in the case of a fault.

The switching structures was designed parametrically, in the worst-case using the
maximum reachable data and wires configuration with 32 cores, thus the structure
can easily be modified to add up to 32 Spare cores. Nevertheless, as commented
above the implementation is restricted to 8 additional SSP cores.

2.2.1 Input Crossbar Architecture

The purpose of the input crossbar is to deliver the correct input data based on
which scalar processor is active and substitute one of the original SP that pretend
to be switched off.

In order to have this scenario, there are different blocks that simulate this be-
havior. It should be noticed that the crossbar will be use just during the switch on
or the reset condition, otherwise some data dependencies problem make appear.

The input crossbar behaviour’s is to take all the input data-bus and take them
to the SPs and SSPs. This operation is done by means of the 11 bits instructions,
that will be introduced later in the text.

15



Built-in Self Repair (BISR)

Figure 2.3. Input Crossbar architecture

Entering more into design specification, will be report what each block does:

- Concatenation: this block is used to concatenate for each SP all the input
data sr1, sr2, sr3 and carry_in flag in a string of 100 bits length;

- Mux32: there are 3 of these blocks, that have in input all the 32 possible
output of the concatenation block. This block has also an enable, that based
on the selected Spare processor channel enables the mux, otherwise the mux is
switched off. More than that, there is the selector, the same of the next block,
that says which is the selected spare cores.

- Mux2_i: for each possible output of previous block, the original one (Con-
cOut_i) or for the spares one (MuxOut_3x), based on which is the selected
spare core enables just the correct mux, otherwise the output of the original
SP goes to ground;

- Bypass: this block is used whenever you want to use all the original configu-
ration (bypass=0) or the SSPs one;

16



2.2 – Working on FlexGrip

2.2.2 Output Crossbar Architecture v1

Because this structure connects the original SP plus the m spares, the output
crossbar was designed as the input one, but with some changes: the output data
for each of the n-1+m cores is concatenated, then goes into one multiplexer that has
(1+m spare) inputs and based on the controller, depending on the selected channel
and the selected spare, the correct output is selected. As the crossbar in, it has
the bypass block, according to the same bypass_signal. In this way the crossbar
output has n-1+m spare inputs and n-1 outputs, as the original design.

Figure 2.4. Output Crossbar architecture

Entering more into the design specification will be report what each block does:

- Concatenation: this block is used to concatenate, for each SP, all the output
data: carry out, overflow, sign, zero and result;

- Mux32: there are 32 of these blocks, that have in input one of the n-1 possible
output of the concatenation block of the original SP and the n outputs of the
m spare cores of the concatenation block.

This block has one selector, that has in input the selected channel and the
spare core wanting to be substitute.

- Bypass: this block is used whenever you want to use the original configuration
(bypass=0) or the the spares one (bypass=1);

17
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2.2.3 Output Crossbar Architecture v2
Since the whole designed proposed in this paper was synthesized for other purpose,
during this long phase, new version for the crossbar output was implemented and
verified.

This later configuration is a bit different compare to the version presented above.
The new one is smaller in term of number of cells and total cells area. Particularly,
there is just one mux8 to select the proper spare output signal and n mux2 to select
where the output of the SP plus SSP should go.

Figure 2.5. Output Crossbar architecture v2

Entering more into the design specification will be report what each block does:

- Concatenation: this block is used to concatenate, for each SP, all the output
data: carry out, overflow, sign, zero and result;

- Mux8: there is just one of this, that has in input all the n outputs of the
m spare cores. This block has one selector, based on the selected spare core
wanting to be switched on;

- Mux2_i: there are n-1 of this block, each one has for the first input the output
of the i concatenation block and as second input the output of the mux8. The
selector of each mux is based on the channel selected in the crossbar input;

- Bypass: this block is used to use the original configuration (bypass=0) or the
spares one (bypass=1);
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2.2.4 Complete Architecture
The BISR architecture is implemented in the Execution/Control Stage of the GPGPU,
it has N Scalar Processor in parallel with M Spare Core (SSP). The SSPs are cold
stand-by modules, that reducing the power consumption during inactivity.

The controller module is added to control SPs and SSPs in the system with
two switching unit based on meta-crossbar structure, that are used to control the
data-path signals, as shows in Figure 2.6.

Figure 2.6. Complete Architecture with Input and Output crossbar

The Figure above has an adapted, not equal, architecture described in other
works. Theory behind the crossbar structure is the same, but the implementation
is slightly different. [6]

One of the specification of the proposed solution is to have the same controller
for both input and output switching units. By this way is possible to select correctly
the channel of the selected SP, that pretend to be affected by a fault, and selecting
the spare cores that have to substitute in the configuration.
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2.3 BISR instruction
The dimension of the control signals was crucial for the creation of the instruction
used for switching between the SP and the spare SP.

Particularly, the instruction could be 32 or 64 bits long, it was chosen based on
the dimension of some signals bits as the bypass, the channel_sel and the spare_sel.

A 32-bits long instruction was implemented, knowing that bypass signal is just
one bit long, channel_sel and spare_sel signals are both 5 bits long, 4 bits for the
opcode and 2 more bits to say the instruction width and if the instruction is normal
or flow control.

Opcode Not Used Bypass Channel_sel Spare_sel Not Used flow(1) 32bit long(0)
4bit 9bit 1bit 5bit 5bit 6bit 1bit 1bit
31-28 27-19 18 17-13 12-8 7-2 1 0

Table 2.1. BISR Instruction Structure

The first problem was to find the unique opcode, not used yet, for the instruc-
tion. The method employed to solve was to insert 16 new random instructions,
each one with all the 16 different possible opcodes, and observing some signal of
the logic simulation. If the simulation stall, using one special opcode, means that
the opcode was not used yet, so it was discovered that there are 9 possible free
opcodes, but 4 are used yet with different control signal. Finally, the 5 possible
opcodes are: 0111-1001-1011-1100-1110, the selected one is 1001.

Once the structure from Table 2.1 was defined, the instruction was implemented
in the decode stage of the GPGPU description (pipeline_decode.vhd). Is noticed
that the purpose of the used bits:

- bits 31-28 are used for the opcode, this is univocally for my instruction;

- bit 18 is used for declaring if I use the normal configuration (0) or the spare
one (1);

- bits 17-13 used for selecting the proper channel of the pretended break SP;

- bits 12-8 used for selecting the new spare core that will be use;

- bit 1 is used for declaring that is a flow type instruction;

- bit 0 is used for declaring that is a 32-bit long instruction;

- bits 27-19 and 7-2 not used.
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2.4 Experimental Results

2.4.1 Hardware Overhead
This section is concerning the analyze the effect of BISR architecture implemented
on the FlexGrip model in its 3 configuration (8, 16 and 32) for the SP. For each
case, the number of introduced Spare SP is ranged from 0 to 7. The analyses were
performed comparing the original design of FlexGrip and the implemented one the
estimation of area and cells area overheads, using the ultra-compiler configuration
of Design Vision Tool by Synopsis .

Version SP
Cores SSPs Total Cell

in design
Area

Overhead (%)
Total SP cells
in the design

SP/SSP
core cells(%)

8 0 229,515 - 52,984 23.08
Original 16 0 280,132 - 105,968 37.82

32 0 386,100 - 211,936 54.89

Fault Tolerance

8

0 231,343 0.8 52,984 22.90
1 237,279 3.4 59,607 25.12
2 243,063 5.9 66,230 27.24
4 254,692 11.0 79,476 31.20
6 266,182 16.0 92,722 34.83
7 271,757 18.4 99,345 36.55

16

0 283,160 1.1 105,968 37.42
1 290,034 3.5 112,591 38.81
2 296,164 5.7 119,214 40.25
4 309,318 10.4 132,460 42.82
6 321,529 14.8 145,706 45.31
7 335,139 19.6 152,329 45.45

32

0 392,476 1.7 211,936 53.99
1 400,902 3.8 218,559 54.51
2 410,280 6.3 225,182 54.88
4 425,172 10.1 238,428 54.07
6 440,576 14.1 251,674 57.12
7 460,372 19.2 258,297 56.10

Table 2.2. Hardware overhead of the BISR strategy for multiple con-
figuration of GPGPU

The modules taking into account for implementing the BISR strategy are the
Decode, Read and Execution stages. The RT level of these modules are modified
and then the GPGPU model was synthesised at gate level.

Table 2.2 reports, for each configuration, the required number of cells and the
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percent of area overhead. The cost to implement the instruction, introduced by
BISR strategy, the switching modules and the switching controller. The 0 SSPs
configuration is used to estimate the cost in the BISR structure.

Figure 2.7. BISR Overhead (%) for all the configurations

The hardware overhead for this configuration represents a small percentage of
the whole hardware. For all the 3 configuration the hardware cost is in the range
from 0.8% to 1.7%, while the cost of the SSPs linearly grows with their number.
In fact, the cost for one SSP core is 6623 cells, that introduces an area overhead
greater then 3% in al Scalar processor configurations. The optimum choice of both
parameters depends on the design requirements. In any case, it is worth noting
that the hardware overhead remains below 20% for all the considered GPGPU
configurations.

The last two columns of the Table report some figures allowing the evaluation
of the relative size of the SPs with respect to the total size of the FlexGrip model.
From the results, it is shown that the percent area of the whole SM that can
be protected resorting to the BISR strategy ranges from about 25%, in the 8 SPs
configuration, to about 55% with 32 SPs. It is worth noting that the adopted BISR
mechanism was aimed to mitigate faults in the SP cores, only. Other solutions can
be used to mitigate faults in other modules.

In Figure 2.7 is show the percentage of area overhead comparison between each
configuration varying the number of SSPs.
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2.4.2 Performance and Power overhead
Since the BISR mechanism requires the introduction of the switching modules to in-
crease the flexibility of the interconnections, is clear that it impacts on the GPGPU
overall performance. Using the synthesis tool experimental analysis is performed.
The impact on the performance of the implemented BISR strategy has been eval-
uated by analysing the changes in the critical path delay for all configurations.

Results showed that the performance degradation reach up to 20% for a large
number of SSPs (6 or 7). This is mainly caused by the logic control of the two
switching modules. More in detail, for one SSP, the timing degradation is up to
15% and up to 16% for 2 SSPs. Moreover, any specific optimization was done to
reduce performance overhead.

The power overhead can be neglected for this BISR strategy due to the inactivity
of the SSPs, act as cold stand-by modules. Clearly in a real implementation only
static power by leakage current is consumed during operation and it depends on
the transistor technology. Thus, the final power overhead of the BISR strategy
is negligible in comparison with the dynamic power consumption produced in the
GPGPU.

2.5 Reliability Advantages
This strategy is performed on the device power-on or reset, so the fault detection
and location phases, as well as the reconfiguration one, can be executed without
any strict time and memory constraints

The aim of the BISR technique is to allow that the GPGPU continues is working
even if one or more fault arose inside the SPs. It is noticed that this strategy is
independent on which fault affect the SP core.

We want to determine which is the probability of proper execution using BISR
method (RBISR). Knowing that a GPGPU is composed of n SPs and m SSPs, the
execution of the system is correct if all thread instructions are operated without
failures in the available execution units of an SM, after a time t. Thus, because all
the units SPs and SSPs are identical and operate independently among them, so at
time t the probability of correct operation in the SPs (PSP (t)) and the number of
SSPs is equal. The probability of proper operation in the GPGPU can be described
as the probability of GPGPU failure, when at most (m+1) SPs or SSPs fail. In
this way, the probability of proper execution, using the BISR mechanism (RBISR),
follows a cumulative distribution function:

RBISR = qm+1
i=0 (n + m

i
)[PSP (t)]n+m−i[1 − PSP (t)]i

Moreover, there is a direct relationship between the number of SSPs (m) and
RBISR. As previously told, the number (m) of SSPs can not be higher than the
number (n) of SPs.
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Figure 2.8. Improvement in the reliability of the BISR structure for multiple
probabilities of correct execution under multiple configurations of the SSPs (m)

Figure 2.8 told us that the Probability of correct execution RBISR is dependant
on the values of m and the Probability of correct operation PSP .In fact, the maxi-
mum reliability peak can be use to select the number of SSPs considering the target
(RBISR).

Figure 2.9. Improvement in the reliability of the system RBISR with respect to
the probability of correct execution for various values of SSPs (m)

The graph in Figure 2.9 describes gained benefits in terms of reliability for
multiple BISR configurations. Increasing the number of m has a positive impact
in the reliability of target structure. Both the previous Figures 2.8 and 2.9 can be
used to reach a reliability target selecting the best trade-off among the parameters.
[7]
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Chapter 3

Dynamic duplication with
comparison (DDWC)

The second strategy presented is called Dynamic Duplication with Comparison
(DDWC), is a technique targeting the detection of permanent faults in the Exe-
cution Unit of FlexGrip. The idea is based on the adaptation of classical DWC
mechanism to protect the SP cores in a GPGPU. This solution introduces small or
null performance overhead and minimal modifications in the existing structures.

3.1 State of the art
The DDWC technique is based on the Redundant multithreading (RMT), that
is a transient error detection technique, that uses redundant copies of a thread
and compares results. To enable the comparison, both the original and redundant
thread must synchronize. [8]

This technique can be implemented on different level inside one GPGPU as
Software-based or hardware solutions. In the first one the synchronization is imple-
mented using the shared memory, modifying the kernel description and duplicating
the operation in the program. With this solution we increase the reliability of the
GPGPU, but the analysis of some trade off is crucial. This solution may use spa-
tial and timing redundancy, but performance degradation directly depends on the
behaviour of the application. [9]

Moreover, with hardware solutions the spatial redundancy and the the addition
of special modules is exploited. By this way is possible to increase the reliability by
allocating operations to redundant and independent modules. Although the fault
detection is done by a comparison between the original thread and the duplicated
one. This kind of mechanisms do not introduce high performance degradation, but
the area overhead is directly depending on the redundant modules included the
input and output interconnections.
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To sum up, the software mechanisms are developed, targeting the detection or
correction of faults. In contrast, the hardware structures are more complex to
develop and implement. Furthermore, the original design may require structural
modifications.

3.2 Implementing DDWC in FlexGrip

The DDWCmechanism is based on the addition of one spare SSP module in parallel
with the existing SPs. This cold stand-by module performs the same operations as
one of the original configuration and also monitoring the coherence of results.

Starting from the original configuration of n-Scalar processor, shown in Figure
2.2, two selector switches are implemented, one for the input and the other one for
the output.

DDWC employs the concept of sphere of redundancy, as show in Figure 3.1,
which is based on replicating a target module to increase the fault detection or to
mitigate the fault effect in a system.

A custom instruction was developed to control both the Switching units, that
identify the monitored modules.

Figure 3.1. general scheme of the concept DDWC redundancy applied to the SPs

The DDWC mechanism is completely trasparent to the programmer, so this
solution can be used for the in-field test just modifying the application code and
insert the new instruction.

This implemented DDWC structure is intended to be used during the in-field
operation of the GPGPU. So the redundant core should swap among the SPs of
the Streaming Multiprocessor.
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3.2.1 Input selector Switch
The purpose of this block is to duplicate the thread interconnection of one SPs
to the redundant Spare. In order to have this scenario, the input selector switch
is composed by one multiplexer that, based on the selected channel, connects the
interconnections of one SPs to the redundant block. The other Interconnections
are completely direct from the previous stage block to the input of each SPs.

Figure 3.2. Input Switch architecture

Entering more into the design specification will be report what each block does:

- Concatenation: this block is used to concatenate for each SP all the input data
sr1, sr2, sr3 and carry_in in one 100 bits string, useful instead of carrying 4
different signals in design part. The output of this block goes directly to the
SPs and also to the input of the Mux;

- Mux: this could be 8, 16 or 32 depending on the SP configuration, the output
of this mux is directly connected to the redundant block. This block has also
an enable controller, managed by the ad-hoc instruction, that switch off the
multiplexer and the SSP.

3.2.2 Output selector Switch
The aim of this block is to monitoring the behaviour of the selected SP with the
redundant SSP. In order to do that there is a xor comparator with two input, the
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first one is for the multiplexer, which inputs are the output of each SPs, while the
second one is the output of the SSP module. The output of the comparator signal
is crucial because it is connected directly with the host, that in case of a difference
between the threads switch off the application. Thus, with the method explain in
chapter 3.5 is possible to monitoring the system.

Figure 3.3. Output Switch architecture

Entering more into the design specification will be report what each block does:

- Concatenation: this block is used to concatenate, for each SP, all the output
data: carry out, overflow, sign, zero and result; The output of this block goes
to MuxOut and also to the next Module (Write Back)

- MuxOut: this could be 8, 16 or 32 depending on the SP configuration there is
just one of this, that has in input all the N outputs of the N spare cores. This
block has one selector that has in input the selected spare core that is wanting
to be monitored;

- Comparator: this block has as first input the Output of the MuxOut, while
on the second one the output of the Spare SSP. The Flag Out output signal
is the one monitored that perform the DDWC

3.3 DDWC Instruction
Strong as the work done on the BISR instruction, the selected opcode for the
DDWC instruction is chosen between the 4 remaining Opcodes, so it is chosen the
1011. Also in this case, the instruction is 32-bits long.
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The important bits of this instructions are the DWC_On and DWC_Off, the
Channel selected,the instruction width and if the instruction is normal or flow
control.

The particular of this instructions is that are present two bits for switching on
and off the instructions, when the DWC_Off bit is equal to ’1’ all the implemented
architecture where switched off, otherwise there is the DDWC.

Opcode Not Used DWC_On DWC_Off Channel_sel Not Used flow(1) 32bit long(0)
4bit 8bit 1bit 1bit 5bit 11bit 1bit 1bit
31-28 27-20 19 18 17-13 12-2 1 0

Table 3.1. DWC Instruction Structure

Once this structure, from Table 3.1 was defined, the instruction was implemented
in the decoder stage of the FlexGrip model. Is noticed that the purpose of the used
bits:

- bits 31-28 are used for the opcode, this is univocally for my instruction;

- bit 19 is used for activate the DWC instruction.

- bit 18 is used for deactivating the DWC instruction;

- bits 17-13 used for selecting the proper channel to be monitored;

- bit 1 is used for declaring that is a flow type instruction;

- bit 0 is used for declaring that is a 32-bit long instruction;

- bits 27-20 and 12-2 not used.

3.4 Experimental Results

3.4.1 Hardware overhead

With Design Vision, the original and the implemented DDWC architecture versions
have been synthesized. The obtaining data are present in Table 3.2, results in term
of size of cells and relative total area overhead is presented, these results do not
include cell costs of memories and file registers in FlexGrip.
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Modules SP Cores
Number of

cells Total Area
Overhead (%)FlexGrip DDWC

Decode 8/16/32 1,229 1,266 3.04
Read 32 142,397 142,545 0.10

Execution
8 60,309 65,959 9.37
16 113,293 118,739 4.81
32 219,261 226,822 3.45

All
8 229,515 235,964 2.81
16 280,132 286,360 2.22
32 386,100 394,516 2.18

Table 3.2. Hardware overhead of the DDWC strategy

Results show that the hardware overhead is relatively low. In the Decode stage
module, this overhead represents only 3%, while in the Read stage is irrelevant with
just 0.1%. Instead, in the Execution module, the overhead is inversely proportional
to the number of SPs. However, this overhead seems to be moderate (3.5-10%).

The total cost of hardware overhead for all SPs configurations is lower than
the 3%. With these results is possible to say that DDWC is an effective solution
to increase fault detection strategy without including high area overhead for the
GPGPU. With these results the initial intention of limiting hardware overhead are
respect.

3.4.2 Performance and Power overhead
As for the previous case Chapter 2.4.2, also in this case, after the logic simulation
and logic synthesis using design vision, the tool gives information regarding the
critical path delay.

As is possible to see from Table 3.3, that present performance overheads, the ad-
ditional structure in the Decode module added a percentage of performance degra-
dation of 2.90%.

The insertion of bypass in the Read module does not introduce any overhead.
In contrast, the performance degradation in the Execution module seems to be
directly affected by the number of SP cores.

When there is the configuration with the lowest number of SP cores, the critical
delay path is increased by 7.52%. The configuration of 16 SP cores seems to present
the maximum percentage of performance overhead with 14.79%. In contrast, the
overhead drops for the 32 SP cores with 13.56%.

It also possible to notice that the total delay overhead is higher in the 32 SPs
configuration, but it has the lowest performance degradation. This kind of be-
haviour is associated to the added SSP in parallel with the existing SPs. However,
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the most representative timing effect is related to the input and output selector
switch and the comparator.

Modules SP Cores
Time Delay in the
critical path (pS) Performance

degradation (%)FlexGrip DDWC
Decode 8/16/32 1.72 1.77 1.16
Read 32 3.65 3.65 0

Execution
8 6.51 7 7.52
16 6.69 7.68 14.79
32 7.52 8.54 13.56

All
8 11.88 12.42 4.54
16 12.06 13.1 8.62
32 12.89 13.96 8.3

Table 3.3. Performance overhead of the DDWC strategy

The power overhead can be neglected for this DDWC strategy due to the activity
just in case of monitoring the correctness of one or more SPs, one each time. When
it is not used DDWC, the implement hardware is seen as cold stand-by modules,
affecting by static power only. The In a real implementation leakage current is
consumed during operation and it depends on the transistor technology.

To sum up, under the inactive mode both the selector switch and the comparator
are unconnected to avoid unnecessary switching activity, so a reduction of dynamic
power during inactivity periods has been implemented.

3.5 Fault Detection
To evaluate the power of the DDWC, different benchmarks was employed. Firstly,
some faults were injected in the RTL version of the FlexGrip model, with and with-
out the implemented mechanism. Then single stuck-at fault has been considered.
When the output flag of the comparator was used as an observability mechanism
to detect faults. Experiments showed that for some case the detection capabilities
increased up to 40%.

3.5.1 Estimation of fault detection
The estimation of fault detection is an important topic because, as in the case of
DDWC, the mechanism found a fault just in the target inspection. Thus, during the
in-field execution several parameters may affect the detection capabilities. The most
important parameters are the switching, the detection time and the test patterns.
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This latter element is a sequence of values applied to the inputs of target elements,
SPs in this case, able to distinguish between the correctness or the faulty by excite
a fault and propagate it to output.

Considering the FlexGrip model architecture, the streaming multiprocessor is
not able to identify any permanent faults inside its n SPs. So, the detection ca-
pabilities is equal to zero. Instead using the DDWC the detection increase, and it
could be estimated knowing the relation between the require time to detect a fault
and the fault observability.

The fault observability (ObsSP (p)) in one Scalar Processor can be defines as the
ratio between the number of propagate test pattern and the number of all the test
patterns (P ), so the propagate (Np) and not propagate (Nnp) test pattern.

ObsSP (p) = Np

Np + Nnp

It could be clear that a fault (tt):

- arise in the system at time t=0;

- is excited by a pattern after a time t1;

- is propagated to the output after a time t2;

- is detected after a time t3

The time for fault detection (ETFD) in a continuous fault detection structure case
is
ETFDDW C(t,p) = Np + Nnp

Np

tt

The DDWC architecture strictly depends on:

- the time interval employed to switch among SP cores t4;

- the time required to execute the configuration instruction t5, proportional to
the number of instructions between two consecutive configuration instructions.

so, it is possible to express the time for fault detection (ETFD) in the n SPs using
the DDWC mechanisms as:

ETFDGP GP U(tt,p) = (Np + Nnp)(tt + qn
i=1(t4 + t5))

Np

This expression can be used to find an optimal trade-off between switching fre-
quency for the DDWC mechanism among the SPs and the performance degradation
in the application by the insertion of DDWC instructions.
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Figure 3.4. ETFD value for multiple frequencies of the DDWC_i instruction

Figure 3.4 shows the worst scenario for fault detection in an SP. Assumed that
a fault can be propagated by one test pattern, the switch between the SP and the
SSP is performed every 100, 200, 300 and 400 instructions in the program code.
Using a reference clock period of 10ns, 20 clock cycles for instruction execution and
fixed rate of 3 clock cycles for fault detection, the graph was evaluated. [10]
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Chapter 4

BISR and DDWC

The third and last solution presented is the combined solution merging dynamic self-
repairing configuration (BISR) and dynamic duplication with comparison (DDWC).
The purpose of this architecture is to obtain a robust fault mitigation of fault
accumulation in the SP cores and to increase the FlexGrip reliability.

4.1 Architecture
The BISR and DDWC mechanism is based on both the previous solutions, so on
the possibility to use both BISR and DDWC at the same time.

In this architecture there is the possibility to define the number,from 1 up to 8,
of cold stand-by modules (SSPs) in parallel with the existing SPs.

Even in this case the integrity of data-path is essential because a possible fault
in the interconnections can not be discovered without the implemented architec-
ture. So, the presence of two switching units structures, targeting the data-path for
input and output interconnections in the SPs and one comparator, that perform
the monitoring, is essential for the detection of faults.

The architecture implementation is performed in different part of the original
design:

- In the Decode module: the two instructions, one for the BISR and one for the
DDWC.

- In the Read module: the bypass signal for the next stage

- In the Execution module: the two switching units, some dedicated registers
to store signals for BISR and DDWC instructions and for the flag of the
comparator.
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4.1.1 Master input switch

The aim of this block is to connect the correct data of the existing SPs to the SSPs
based on the working instruction. In case just the BISR is active, the interconnec-
tion of the selected SPs is connected to the selected SSPs, for the DDWC, instead,
the interconnections of the selected SPs is connected to the SSPs. When both the
Instructions are switched on, the different interconnections of the two selected SPs
are connected to two different SSPs. Thus, to perform this mechanism the presence
of some multiplexers is essential:

- muxBISR: this multiplexer has for input all the interconnections for the SPs.
The output is a string of bits containing SRC1, SRC2, SRC3 and Flags data.
The control signal are the state of the BISR instruction (On/Off) and the
selected channel from the BISR instruction. To be noticed that the dimension
of this element is related to the configuration of the system, so for a 32 SP
configuration is a 32to1 multiplexer, same for the 16 and 8 cases.

- muxDDWC: same as the muxBISR, but using the DDWC instruction bits.

- mux2: one for each SP, the first input is original data, while the second one is
a string of all zeroes. This latter input is used to shut down the SPs and to
save power reducing the switching of not used SPs, the faulty one. The output
of these multiplexers is directly connected to the input of each SP. The control
signal of this Structure will be described in chapter 4.1.3.

- mux3: one for each SSP, this special multiplexer output is directly connected
to each SSPs, while it as three input: the output of muxBISR as first, the
output of muxDDWC as second and the all zeroes string as third. The control
signal of this Structure will be described in chapter 4.1.3.

Figure 4.1 show the complete architecture of the Master input switch. In the
figure is possible to identify the input data channels SPCin signals. The SPCs are
composed of 32 bit-size input data operands (SRC1, SRC2, and SRC3) and the
predicate flags (4 bit-size) coming from the previous pipeline stage.
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Figure 4.1. Master Input Switch

4.1.2 Master output switch
The aim of this block is to connect the output of SPs and SSPs with the next stage.
Also in this architecture the presence of multiplexers is essential:

- muxToComparator: this multiplexer has for input all the Output signal for all
the existing SPs and SSPs. The output of this block is used as element to be
compared to performing the monitoring of the system.

- mux8BISR: this multiplexer has for input all the SSPs output SSPCout, for
the existing SSPs. The output of this element is connected to the Mux2 mul-
tiplexers. This purpose is to have the right interconnections when performing
BISR. The controller of this multiplexer are the BISR state signal (On/Off)
and the selected channel with the BISR instruction.

- mux8DDWC: the input signals are the same as the mux8BISR, but the output
is the reference used to perform the comparison for monitoring the selected
SPs with the DDWC instruction bits.

- mux2: one for each SP, the first input is the output data from each SP, while
the second one is the output of the mux8BISR multiplexer. The output of
these multiplexers is directly connected to the next stage. The control signal
of this Structure will be described in chapter 4.1.3.
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Figure 4.2. Master Output Switch

4.1.3 Switch Controller
The two switching units have one controller essential to perform both the BISR
and the DDWC mechanisms.

The control bits of the controllers are coming from the instructions and store in
dedicated registers inside the execution module. These bits are fed at the same time
in both the switching units, so the functionality of the SPs plus SSPs continued.

Particularly the bits for the controller are the state of both the instructions
(BISR on/off and DDWC on/off), the selecting SPs for each BISR and DDWC
instructions, the selected SSP where the BISR or the DDWC are performed.

Input Controller

The controller output goes to all the multiplexer.

• MuxBISR: for this block the bits used are the BISR state and the selecting SP
use for the BISR mechanism. Thus, the state activate the multiplexer, while
the selecting SP is used to select the proper input channel.

• MuxDDWC: same as muxBISR, but using the DDWC instruction bits.

• mux2: the control bit of this multiplexer could be 0 or 1. If it is 0 the original
input data goes to SPs, instead when 1 the zeroes goes to the SPs.

38



4.1 – Architecture

- no BISR and no DDWC, all muxs are fed by 0.
- BISR case, all the muxs are fed by 0, but the selected SP of the BISR

instruction is fed by 1.
- DDWC case, all muxs are fed by 0.
- BISR and DDWC case, is the same case as BISR.

• mux3: the control bits of this multiplexer could be 00 for BISR, 01 for DDWC
or 10 for zeroes. These bits are fed in the proper way depending on the selected
SSPs of the instructions.

- no BISR and no DDWC, all the muxs are fed with 10.
- BISR case, all muxs are fed with 10, but the mux of the selected SSP is

fed with 00.
- DDWC case, same as BISR case, but the mux of the selected SSP is fed

with 01.
- BISR and DDWC case, it is no possible to use the same SSP for both

the instructions, so depending on the selected SSP of the BISR and DDWC
instructions the muxs are fed with 00 or 01 when activate. In case for some
reason the instructions have the same selected SSP, all the muxs are fed with
10, so all zeroes enter the SSPs.

Output Controller

The controller output goes to all the multiplexer and to the comparator.

• comparator: The DDWC state bits goes to this block, so is possible to save
power everytime the DDWC mechanism is not used.

• mux8BISR: for this block the bits used are the BISR state and the selecting
SSP use for the BISR mechanism. Thus, the state activate the multiplexer,
while the selecting SSP is used to select the proper spare channel.

• mux8DDWC: same as the mux8BISR, but using DDWC instruction bits.

• MuxToComparator: the control bits for this block is used to select the proper
channel to be compared in the comparator, so the BISR and DDWC state,
selected SP and the BISR selected SSPs is used to select it.

• mux2: the control bit of this multiplexer could be 0 or 1. If it is 0 the output
data of each SPs goes to the next stage, instead when 1, the output of the
BISR SSPs goes to the next stage.

- no BISR and no DDWC, all muxs are fed by 0.
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- BISR case, all the muxs are fed by 0, but the selected SP of the BISR
instruction is fed by 1.

- DDWC case, all muxs are fed by 0.
- BISR and DDWC case, same as BISR case.

4.2 Instructions
With this architecture is possible to use at the same time both the BISR and
DDWC mechanism. The difference between the two instructions in chapters 2.3
and 3.3 and the two used in this architecture are the purpose of the used bits.

For the BISR instruction, as is possible to see from Table 4.1 there are some
differences compared to the Table 2.1. In this architecture it is possible to have
from 1 up to 8 SSPs, while in the original design it could be possible to have 32 of
them. Some motivation of the wrongness was debate in above chapter and taking
into account for this implementation.

When we perform this method is possible to change the selected SP and SSP
with one direct instruction in the application program each time, BISR Rx, Ry
where Rx is the selected SP and Ry the selected SSP. For instance

BISR 5,0x20; with this operation the selected SP is the 5 and the selected SSP
is the 32, so the first SSP.

Instead using the immediate is possible to have process with loop and in the
program we change the variable contain the selected SP channel or the selected
SSP. So, is possible to use the existing hardware of the FlexGrip to use the value
store in the global memory.

Opcode Not Used Bypass BISR_SP BISR_SSP immediate Not Used flow(1) 32bit long(0)
4bit 9bit 1bit 5bit 3bit 1bit 7bit 1bit 1bit
31-28 27-19 18 17-13 12-10 9 8-2 1 0

Table 4.1. BISR Instruction

The DDWC instruction has the same configuration as the BISR except for the
opcode that is 1001 for BISR and 1011 for DDWC. So, what is is written above for
the BISR instruction is valid also for the DDWC, what it changes is the meaning
of the bits for each method and in the two switch controller.

Opcode Not Used Bypass DDWC_SP DDWC_SSP immediate Not Used flow(1) 32bit long(0)
4bit 9bit 1bit 5bit 3bit 1bit 7bit 1bit 1bit
31-28 27-19 18 17-13 12-10 9 8-2 1 0

Table 4.2. DWC Instruction
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4.3 Experimental results
This final part of this chapter is dedicated to the experimental result obtaining
after the logic synthesis using Design Vision Tool.

4.3.1 Hardware overhead
Table 4.3 show the Area of the original design of FlexGrip. In the first column is
possible to identify the different configuration for the SPs, in the middle column
there is the total cell area of the design, without the memories, finally in the third
column there is the cell size Of the FlexGrip Decode, Read and Execution modules.

SPs Total Cell Area Total cells in design
8 294170 123521
16 545908 229024
32 1065003 446799

Table 4.3. Original hardware for different configuration

Table 4.4 shows the area overhead of the FlexGrip plus BISR and DDWC im-
plemented version.

It is possible to identify which is the cost to implement the instructions, the
switching modules, with related controllers. It is shows for each configuration when
there are 0 SSPs and it is just few percentage (0.16 - 0.42) in terms of area over-
head, as well the total number of cells in the design is quite similar, less than 1%.
To be noticed that for the 32 SP configuration there are less cells, so as mentioned
this demonstrate that is the most optimize design between the proposed.

The hardware overhead for this configuration represents, depending on the con-
figuration a small percentage of the whole hardware. For the 32 SP configuration
the range of area overhead is from 2.33% up to 6.09%, this tell that the area over-
head, most introduced by the spare SSPs modules, is limited compare to the high
number of SPs. A similar situation is presented for the 16 SP configuration. Instead
for the 8 SP case, the cost of the SSPs linearly grows with their number. In fact,
the cost for one SSP core is 5229 cells, that introduces an area overhead greater
then 14% in al Scalar processor configurations.

Observing the last two columns, instead, is possible to notice that the total
number of cells that can be protected with this strategy ranges from about few
percentages (3.92%) with one SSPs in the 16 SP conf. up to 26.25% in the worst
case of 8 SP and 8 SSPs.

The optimum choice of both parameters depends on the design requirements.
In any case, it is worth noting that the hardware overhead remains below 15% for
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all the considered GPGPU configurations.

Comparing this data with Table 2.2, of BISR mechanism, it should be noticed
that all the overheads are reduced, so this configuration perform same method using
fewer area, but also it could perform the DDWC mechanism.

SPs SSPs Total Cell
Area

Area Overhead
(%)

Total Cells
in design

SP/SSP
cells (%)

8

0 295171 0.34 124437 0.74
1 302256 2.75 129666 4.97
2 308066 4.72 134678 9.03
3 312504 6.23 137627 11.42
4 316789 7.69 139886 13.25
5 322181 9.52 144616 17.08
6 327309 11.27 148205 19.98
7 331839 12.80 150438 21.79
8 337917 14.87 155941 26.25

16

0 548191 0.42 231171 0.94
1 556426 1.93 238000 3.92
2 556439 1.93 239175 4.43
3 568352 4.11 245571 7.23
4 573822 5.11 249843 9.09
5 578750 6.02 253768 10.80
6 583456 6.88 257213 12.31
7 588662 7.83 260996 13.96
8 595368 9.06 265496 15.92

32

0 1066661 0.16 446027 -0.17
1 1089812 2.33 466099 4.32
2 1093656 2.69 467914 4.73
3 1099485 3.24 472459 5.74
4 1106327 3.88 477684 6.91
5 1113275 4.53 481885 7.85
6 1118950 5.07 485506 8.66
7 1123588 5.50 486158 8.81
8 1129828 6.09 491657 10.04

Table 4.4. Hardware overhead for the fault tolerance implemented version
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4.3.2 Power Performance

The power overhead of the BISR plus DDWC mechanism theoretically is bigger
than the single BISR or DDWC methods, but also in this case the SSPs act as
cold stand-by modules if not used. The presence of comparator should increase the
switching activity.

Clearly in a real implementation only static power by leakage current is con-
sumed during operation and it depends on the transistor technology. Thus, the
final power overhead of the BISR strategy is negligible in comparison with the
dynamic power consumption produced in the GPGPU.

4.3.3 Performance overhead

Table 4.5 shows the performance overheads in all the three synthesized modules:
Decode, Read and Execution.

The additional structure in the Decode module increase the performance degra-
dation of almost 14-15% in all the configurations.

The insertion of the bypass in the Read module does not introduce any delay or
performance degradation.

In contrast, in the execution module, the performance degradation seems to
varying for each SSP insertion. This problem is related to the logic synthesizer
that every time performs the synthesis on the "fastest" critical path for him.

Performing the average on the performance degradation for each configuration,
we discover that the the average performance degradation is approximately 5.14%.
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Modules SPs SSPs Time Delay critical path(ps) Performance
Degradation (%)FlexGrip Fault Tolerance

Decode
8 -

0.93
1.06 13.98

16 - 1.06 13.98
32 - 1.07 15.05

Read
8 - 3.7 3.62 -2.16
16 - 3.89 4.07 4.63
32 - 3.03 3.03 0.00

Execution

8

0

7.4

7.36 -0.54
1 7.58 2.43
2 7.52 1.62
3 7.81 5.54
4 8.07 9.05
5 7.96 7.57
6 8.07 9.05
7 8.01 8.24
8 8.1 9.46

16

0

7.81

7.28 -6.79
1 7.93 1.54
2 7.47 -4.35
3 8.72 11.65
4 8.44 8.07
5 8.88 13.70
6 8.29 6.15
7 8.5 8.83
8 8.1 3.71

32

0

7.85

8.25 5.10
1 8.18 4.20
2 8.02 2.17
3 8.04 2.42
4 8.25 5.10
5 8.37 6.62
6 8.02 2.17
7 8.68 10.57
8 8.3 5.73

Table 4.5. Performance overhead for the fault tolerance implemented version
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Chapter 5

Conclusions

The object of this work was to implemented different solutions to increase fault
mitigation and reliability for the reference GPGPU FlexGrip model.

To achieve this results three solutions have been developed. All the proposed
mechanisms targets the permanent faults that may arise in the SPs.

The first solution, the Built-In Self Repair (BISR), is based on the addition
on some cold stand-by spare modules (SSPs) in parallel with the existing Spare
Cores (SPs). The importance of the data-path interconnections is crucial for this
mechanism. The insertions of two switching units, one for the input and the other
one for the output, controlled by a new Instruction specifically created aim to
substitute the faulty SP with one SSPs.

This strategy is performed on the device power-on or reset, so the fault detection
and location phases, as well as the reconfiguration one, can be executed without
any strict time and memory constraints.

Experimental results show that with this solution the hardware cost is in the
range from 0.8% to 1.7%, while the cost of the SSPs linearly grows with their
number. In fact the cost for one SSP core is 6623 cells, that introduces an area
overhead greater than 3% in all Scalar processor configurations. The optimum
choice of both parameters depends on the design requirements. In any case, it is
worth noting that the hardware overhead remains below 20% for all the considered
GPGPU configurations.

Also, considering performance compare to the original solution, results show
that the performance degradation reach up to 20% for a large number of SSPs (6
or 7). This is mainly caused by the logic control of the two switching modules.

The second solution, the dynamic duplication with comparison (DDWC), is
based on the addition of one spare module (SSP) and a comparator. The aim
of this mechanism is to harden the Scalar Processor units and also in this case
the integrity of data-path is crucial. The insertion of two selector switch, one for
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the input and one for the output of the SPs, is controlled by a new instruction
specifically created.

This implemented DDWC structure is intended to be used during the in-field
operation of the GPGPU. So the redundant core should swap among the SPs of
the Streaming Multiprocessor.

Experimental results show that the area overhead is relatively low, below the
3% for all SPs configurations. These results support the initial intention of limiting
the impact in the hardware overhead by the DDWC structures.

The performance overhead was done looking at the critical path delay. For a low
number of SP cores, the critical delay path is increased by 7.52%. The configuration
of 16 SP present the maximum percentage of performance overhead with 14.79%,
while, in contrast, the overhead drops for the 32 SP cores (13.56%). However, the
most representative timing effects are due to the added modules in the path. These
modules are the input and output switches and the comparator.

The third solution aims to obtain a robust fault mitigation mechanism, based
on the merging of the previous two solutions. Thus, is possible to use both the
BISR and the DDWC at the same time. In this architecture it is possible to define
the number of SSPs, from 1 to 8, in parallel with the existing SPs.

Two master switching units is used to connect the data-path for input and
output interconnections in the SPs. An instruction allows to control the faulty SP
and substitute with a SSP and monitoring the selected SPs/SSPs, with the presence
of a cold stand-by comparator.

Also in this case the second aim was to verify the area and performance over-
heads. So experimental results show that in the worst scenario, so with 8 SSP, for
all the configurations, there is a moderate area overhead 14.8% in the for the 8 SP
case, while it drops for the other two configuration, both in the worst scenario, 9%
for 16 SP and 6% for 32SP.

Instead in the performance degradation, considered the critical path delay, we
obtained that for the configuration with 8 SP the maximum critical delay is in-
creased by 9.54%, 13.7% for the 16 SP configuration, while in contrast just 6.62%
for the 32 SP case.

To sum up, different approaches have been implemented and with the experimen-
tal data is possible to say that paying a limited area overhead and few performance
degradation is possible to increase the FlexGrip GPGPU reliability.

46



Bibliography

[1] K. Andryc, M. Merchant, R. Tessier, FlexGrip: A Soft GPGPU for FPGAs.
[2] G. Roascio, "Analysis and extension of an open-source VHDL model of a

General-Purpose GPU, M.S. Thesis, Politecnico di Torino, Torino, Oct 2018.
[3] J. E. Rodriguez Condia, M. Sonza Reorda, An extended GPGPU model to sup-

port detailed reliability analysis.
[4] T. Koal, D. Scheit, H. T. Vierhaus, A Concept for Logic Self Repair.
[5] T. Koal, M. Ulbricht, H. T. Vierhaus, Combining Fault Tolerance and Self Re-

pair in a Virtual TMR Scheme.
[6] T. Koal, H. T. Vierhaus, Logic Self Repair Based on Regular Building Blocks.
[7] J. E. Rodriguez Condia, P. Narducci, M. Sonza Reorda, L. Sterpone, A dynamic

reconfiguration mechanism to increase the reliability of GPGPUs.
[8] M. Gupta, D. Lowell, J. Kalamatianos, S. Raasch, V. Sridharan, D. Tullsen, R.

Gupta, Compiler Techniques to Reduce the Synchronization Overhead of GPU
Redundant Multithreading.

[9] J. W. Sheaffer, D. P. Luebke, K. Skadron, A Hardware Redundancy and Recovery
Mechanism for Reliable Scientific Computation on Graphics Processors.

[10] J. E. Rodriguez Condia, P. Narducci, M. Sonza Reorda, L. Sterpone, A dy-
namic hardware redundancy mechanism for the in-field fault detection of cores
in GPGPUs.

47


	List of Tables
	List of Figures
	I Introduction
	Introduction to FlexGrip
	FlexGrip General Architecture
	Streaming Multiprocessor

	Instruction Format Support


	II Implementation
	Built-in Self Repair (BISR)
	State of the art
	Working on FlexGrip 
	Input Crossbar Architecture
	Output Crossbar Architecture v1
	Output Crossbar Architecture v2
	Complete Architecture

	BISR instruction 
	Experimental Results
	Hardware Overhead
	Performance and Power overhead

	Reliability Advantages 

	Dynamic duplication with comparison (DDWC)
	State of the art
	Implementing DDWC in FlexGrip
	Input selector Switch
	Output selector Switch

	DDWC Instruction
	Experimental Results
	Hardware overhead
	Performance and Power overhead

	Fault Detection 
	Estimation of fault detection


	BISR and DDWC
	Architecture
	Master input switch 
	Master output switch 
	Switch Controller

	Instructions
	Experimental results
	Hardware overhead
	Power Performance
	Performance overhead


	Conclusions
	Bibliography


