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Abstract 

This thesis is focused on the design and implementation of a 

Telecommand Satellite Radio System and it has been carried out 

with the Italian aerospace engineering company Argotec. 

A design of the digital signal processing part of the system is 

proposed, having as guideline for the definition of the 

specifications the Consultative Committee for Space Data 

Systems (CCSDS) Standard. 

The focus is mainly on the Physical and Coding layers of the 

architecture proposed by CCSDS. Simulations and performance 

analysis are carried out through the MATLAB Software. 

A research on an experimental coding scheme, able to provide 

significant coding gain, is presented and the theoretical results 

are verified in practice. 

The document ends with the implementation of the designed 

system, in C language, on a development board (equipped with 

a Xilinx Zynq-7000) used to test and validate the prototype. 
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CHAPTER 1 

1 Introduction 

1.1 BACKGROUND AND MOTIVATION 

One of the basic functions of any spacecraft is the ability to establish a connection 

with ground stations or with other spacecrafts to exchange information, 

commands, control data, etc. To this purpose, the spacecraft uses a transceiver 

that can be designed for a fixed type of communication (using analog 

components) guaranteeing no flexibility to the user, being incapable of adapting 

to new configurations. For this reason, the trend is to move most of the 

functionality of a conventional radio to the digital domain (using re-

programmable hardware logic) in which some of them are fully implemented in 

software. This new technology is the so-called Software Defined Radio (SDR). 

Usually, an SDR-based transceiver results in a compact, low power and flexible 

communication system at the expense of not exactly cheap high-performance 

components. However, in a satellite system the possibility to have a flexible 

device is very appealing, using a generic hardware design that can be used to 

address different communication needs, with varying characteristics. 

Applying this concept to small satellites can increase data throughput, add the 

possibility to perform software updates over-the-air and make it possible to reuse 

the hardware platform for multiple missions with different requirements [1]. 

The focus of the aerospace company Argotec in the production of nanosatellites 

for Deep Space applications led to interest in creating a collaboration for an all 

in-house design and implementation of an SDR. 
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Argotec is an aerospace engineering company based in Turin and founded by 

David Avino in 2008. Actually, Argotec is on the verge of integrate two platforms 

(ArgoMoon and LICIACube) which will fly with two different NASA missions 

in the years 2020 and 2021. 

As anticipated, the platform conceived by the company is based on the all in-

house concept. Starting from the ideas of Argotec’s engineers, a first design of the 

project is made. Then, the process of the realization and testing of all the 

subsystems up to their integration on the comprehensive platform is done in the 

internal laboratories.  

The main pillars of this thesis work are the needs of the company to expand its 

Portfolio with a deep-space radio for nanosatellites, the opportunity to 

implement an SDR that can be ported on a real flight system hardware and the 

will to research and develop new technologies that can improve the actual 

performance of a system which is experiencing an important period of growth. 

In a typical radio communication system, the basic data flow is made by 

Telemetry (TM) and Telecommand (TC) data, in downlink and uplink 

respectively. 

The work presented in this thesis, is focused on the design and implementation 

of the Telecommand System. It must reliably and transparently convey control 

information from an originating source (located on the Earth) to a remotely 

located physical device (i.e. satellite).  
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1.2 OBJECTIVES 

The goal of this master’s thesis work is to make a preliminary analysis on the 

feasibility of the project starting from a basic design of the Sub-System and to 

build a prototype of the system able to work as close as possible to realistic 

conditions. 

The object is to find the best solution that fits all the requirements. The first one 

is that the system must be compliant with the CCSDS Standard. Starting from it, 

the main objectives of the work are reported below: 

• Literature study of a Satellite Radio System focusing on the Receiver (Rx) 

structure; 

• Study of a Base Station Transmitter (Tx) to generate an Uplink signal, able 

to send realistic data; 

• Feasibility analysis of the proposed architecture through MATLAB 

simulations; 

• Implementation on a Development Board able to work in real-time; 

• Characterization of each block in order to evaluate which of them could 

benefit from a hardware implementation (e.g. in terms of performance, 

resource utilization etc.); 

• Test of the prototype simulating a real environment condition. 
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1.3 THESIS OUTLINE 

The thesis is organized as follow: 

• Chapter 2, Telecommand System Design, reports the study and the 

definition of the system requirements in order to have a guideline for the 

development. A functional block diagram of the receiver is proposed; 

• Chapter 3, Physical Layer Design, describes the functionalities of the 

physical layer. The receiver block diagram, defined in the previous 

Chapter, is implemented and simulated in MATLAB in order to study the 

feasibility of each block (understanding the functionalities and the various 

parameters) fitting them to the generated Tx signal and analyzing the 

trade-offs; 

• Chapter 4, Coding Layer Design, gives an overview of the 

Synchronization and Channel Coding Sublayer proposed by CCSDS is 

reported. The Frame Synchronizer and the Decoder implementations are 

shown with particular attention on their performance; 

• Chapter 5, LDPC Code, presents, theoretically and practically, a new 

coding scheme that can work with very low value of SNR; 

• Chapter 6, Prototype Testing, presents a real-time prototype. After the 

simulation model is validated, the MATLAB code is ported on a 

Development Board (C language) and the system is tested; 

• Chapter 7, Final Remarks, draws the conclusion, highlighting the final 

result obtained and giving a hint about future works;
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CHAPTER 2 

2 Telecommand System Design 

This chapter provides an overview of the project highlighting the characteristics of the 

transmitted signal, how it is simulated and what are the effects of the channel and of the 

non-ideal RF front ends on it. A high-level block diagram of the receiver adopted and the 

test set-up used are presented. 

2.1 PROJECT DESCRIPTION 

A space link is a communications link between a spacecraft and its associated 

ground system or between two spacecrafts. In the figure below is reported the 

typical configuration where the ground station sends telecommands to a 

spacecraft 

 

Figure 2.1 – Basic Scheme of Telecommand System 

The telecommands are encoded and modulated from a ground system and sent 

over the Radio Frequency (RF) Space Link. The task of the Spacecraft’s 

transponder is to receive the signal, demodulate it and extract the telecommand 

through a decoder. 
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The transponder on board the spacecraft is an SDR. It is a radio communication 

system that uses a minimum amount of analog/Radio Frequency components to 

down convert the RF signal from a digital format (and vice versa). Once analog 

data is digitized, all processing is performed using hardware logic. Typically, this 

processing includes filtering, modulation, up/down converting and 

demodulation.  

Concerning the architecture of the satellite subsystem the Recommendations 

proposed by the CCSDS, that has the purpose to promote interoperability and 

cross support among cooperating space agencies, are taken as a reference point. 

In Figure 2.2 are represented the CCSDS protocols  

 

Figure 2.2 – CCSDS Protocols [1] 

The focus will be mainly on: 

• Physical Layer: provides the RF channel and the techniques required to 

operate it (e.g. modulation, demodulation, bit synchronization);  

• Synchronization and Channel Coding Sublayer: provides functions 

necessary for transferring frames over a space link (e.g. error-control 

coding, synchronization, pseudo-randomizing, repeated transmissions). 
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2.2 PROJECT SPECIFICATION 

The typical structure of the transponder is reported in Figure 2.3 

 

Figure 2.3 – Typical Spacecraft Transponder 

This work does not deal with the RF Front-End block of the SDR but only the 

Digital baseband Signal Processing (DSP) of the signal. However, the 

impairments introduced by Tx and Rx front-ends are studied in detail. 

The choice to be compliant with CCSDS standards leads to an easier definition of 

initial specification about the Radio Frequency signal. In the following table are 

reported the characteristics of the transmitted signal. The scope of these choices 

is that the result of the project must be an SDR prototype that is compatible with 

real space application. The specifications are explained, more in details, in the 

Section 2.4 
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Table 2.1 System Specifications 

Specification Value 

Modulation Waveform BPSK 

Sub-carrier Waveform Sine Wave 

Sub-carrier frequency 𝑓𝑠𝑐 = 16 𝑘𝐻𝑧 

Sample Rate 𝑓𝑠 = 48 𝑘𝐻𝑧 

Data Rate 𝑅𝑠 = 1 𝑘𝑏𝑖𝑡/𝑠 

Decoding Scheme BCH / SEC Mode 

Physical Layer PLOP-2 

 

2.3 FUNCTIONAL BLOCK DIAGRAM 

The receiver designed in this Thesis is a coherent receiver. Coherent 

transmissions are transmissions where the receiver knows what type of data is 

being sent. Coherency implies a strict timing mechanism, because even a data 

signal may look like noise if the receiver looks at the wrong part of it [1]. 

More in general, a receiver must be able to demodulate and decode the received 

signal, but also it must recover as much as possible the impairments introduced 

by the channel and by the non-ideal components. A functional block diagram, 

taken as reference point, is reported in Figure 2.4 

 

Figure 2.4 – Block Diagram of Telecommand System 
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2.4 TRANSMITTER SETUP 

The transmitted signal, used as input for the receiver developed within the thesis 

context, is generated by a Workstation exploiting the software GNU Radio. It is 

a free & open-source software development toolkit that provides signal 

processing blocks to implement software radios. It can be used with readily-

available low-cost external RF hardware to create software-defined radios, or 

without hardware in a simulation-like environment [4]. Taking advantage of the 

blocks provided by the software, the signal is generated and sent to a binary file 

for MATLAB simulation. The generated flow will be then sent to the 

development board through a socket exploiting an Ethernet connection for the 

real-time test.  

In Figure 2.5 is reported a high-level GNU Radio’s block diagram 

 

Figure 2.5 – GNU Radio flow graph for Tx signal generation 

The specifications reported in Table 2.1 derive from CCSDS Recommendations. 

BPSK modulation is used since, it is considered the most robust modulation 

scheme in terms of noise immunity and it allows the highest level of distortion 

that can still successfully be modulated. A sinewave sub-carrier for telecommand 



2. Telecommand System Design 

 

10 

 

is chosen with a frequency of 16 kHz (PSK modulated). This allows to separate 

the data’s transmitted spectrum from the RF carrier. The subcarrier is totally 

suppressed. 

The Tx signal equation is reported below: 

𝑡𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = √2𝑃𝑡 𝑒𝑗2𝜋𝑓𝑐𝑡 ∑ 𝑎𝑛𝑠(𝑡 − 𝑛𝑇)

𝑛

𝑒𝑗2𝜋𝑓𝑠𝑐𝑡 

where 𝑃𝑡  is the total available transmitter power, 𝑎𝑛  are the sequence of 

constellation points, 𝑠(𝑡) is the shaping pulse, 𝑓𝑐 is the carrier frequency and 𝑓𝑠𝑐 

is the sub-carrier frequency. T is the data interval (𝑅𝑏 =  1
𝑇⁄  is the data rate). 

The response in time domain of the signal (no noise is present) is reported in 

Figure 2.6 

 

Figure 2.6 – Tx Signal in time domain (No Noise) 

The choice to work at 48 samples per symbol derives from the requirement to 

process the signal at the minimum possible frequency for simulation purpose. 

Since the CCSDS does not give any specification about the Carrier Tx frequency, 

is taken as reference 768 kHz. In order to satisfy Nyquist Theorem (in the RF front-
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end) the signal should be sampled at 32 kHz (twice the frequency of the Sub-

carrier). When data are present this sampling is not enough to assure anti-

aliasing, so the choice goes to the next integer divider of 768 kHz. Summarizing 

it is supposed that the Analog to Digital Converter (ADC) at the RF front-end, 

samples the received signal at 48 kHz in order to have an integer number of 

samples per symbol. 

When data are present, the BPSK modulation at the sub-carrier frequency is 

visible in the spectrum of the signal 

 

Figure 2.7 – Spectrum of the signal with data (No Noise) 

The Physical Layer Operations Procedures (PLOPs) specify the sequence of 

operations performed during a communications session. For recent missions, 

CCSDS requires that PLOP-2 is used. It defines three data formats: Acquisition 

Sequence, Communications Link Transmission Unit (CLTU) and Idle Sequence. 

The Acquisition Sequence provides initial symbol synchronization within the 

incoming stream of detected symbols and its pattern consists in alternating 

“ones” and “zeros”. The CLTU is a data structure that contains the data symbols 

that must be transmitted to the receiving end. The Idle Sequence is the data 
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structure which provides for maintenance of symbol synchronization in the 

absence of CLTUs and its pattern is the same of the Acquisition Sequence. In 

PLOP-2 the channel is not deactivated after each transmitted CLTU and for this 

reason, when there is a connection, the Acquisition Sequence is always present 

to ensures that the bit synchronization is maintained. Moreover, a minimum Idle 

Sequence of one octet is systematically inserted between each CLTU to eliminate 

the small but finite possibility of synchronization lockout [1]. 

2.5 RECEIVED SIGNAL 

Transmitter and Receiver RF Front-Ends introduce impairments to the Received 

signal due to their non-idealities. The objective of the digital baseband block is 

also to recover as much as possible these impairments. 

Considering only an Additive White Gaussian Noise (AWGN) introduced by the 

channel, the Rx signal at the RF Front End is in the form: 

r(𝑡) = √2𝑃𝑡  𝑒𝑗2𝜋𝑓𝑐𝑡 ∑ 𝑎𝑛𝑝(𝑡 − 𝑛𝑇)𝑒𝑗2𝜋𝑓𝑠𝑐𝑡 + 𝑛(𝑡)

𝑛

 

where 𝑎𝑛  are the sequence of constellation points used at the Tx, 𝑝(𝑡)  is the 

cascade of the Tx filter and the impulse response of the channel (𝑠(𝑡) ∗ 𝑐(𝑡)) and 

𝑛(𝑡) is the noise introduced by the channel.  

Typical quantities used to describe the relative power of noise in an AWGN 

channel are the Signal-to-Noise Ratio (SNR), the ratio of bit energy to noise 

power spectral density (
𝐸𝑏

𝑁0
) and the ratio of symbol energy to noise power 

spectral density (
𝐸𝑠

𝑁0
). The relation between the last two quantities (expressed in 

dB) is: 

𝐸𝑠

𝑁0
=

𝐸𝑏

𝑁0
+ 10 ∙ 𝑙𝑜𝑔10(𝑘) 
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where k is the number of information bits per symbol.  

In the considered system, k is influenced by the size of the modulation alphabet 

(M) and by the code rate (𝑅𝑐) and it is: 

𝑘 =  𝑅𝑐 ∙ 𝑙𝑜𝑔2(𝑀) 

Instead, the relationship between 
𝐸𝑠

𝑁0
 and the SNR (in dB), for a complex input 

signal, is: 

𝐸𝑠

𝑁0
= 10 ∙ 𝑙𝑜𝑔10 (

𝑇𝑠𝑦𝑚

𝑇𝑠𝑎𝑚𝑝
) + 𝑆𝑁𝑅 

where 𝑇𝑠𝑦𝑚 is the symbol time (
1

𝑅𝑠
) and 𝑇𝑠𝑎𝑚𝑝 is the sampling time (

1

𝑓𝑠
) [5]. 

The block that models the channel in GNU Radio requires the noise voltage as 

parameter for the AWGN noise. Knowing that the SNR is the ratio between the 

input signal power (𝑆) and the noise power (𝑁) it is possible to derives the noise 

voltage as the square root of 𝑁 exploiting the formulas above. The noise voltage 

is equal to: 

√𝑁 =
√

𝑆

𝐸𝑏

𝑁0
+ 𝑘 −

𝑇𝑠𝑦𝑚

𝑇𝑠𝑎𝑚𝑝

 

where all the quantities are considered in linear scale. Choosing a value of 
𝐸𝑏

𝑁0
 a 

corresponding noise voltage to model the AWGN channel is provided. 

In the received signal, also non-idealities are present and they are originated by 

amplifiers, mixers, A/D and D/A converters. 

Amplifiers introduce third-order distortion and additive thermal noise (that is 

AWGN). 
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Mixers (up and down convert the complex baseband signal that contains the 

useful information) with Local Oscillator (LO) introduce carrier frequency 

offset 𝜐(𝑡), phase noise 𝜃(𝑡) and IQ imbalance. 

ADC and Digital to Analog Converter (DAC) carry other impairments as 

sampling clock offset (𝜏) and sampling jitter (𝜏(𝑡)). 

After the analog RF front-end (at the digital baseband) the signal is affected by 

different types of impairments. Rx signal, with the RF impairments, is: 

𝑟𝐵𝐵(𝑡) = √2𝑃𝑡  𝑒𝑗(2𝜋𝜐(𝑡)𝑡+𝜃(𝑡)) ∑ 𝑎𝑛𝑝((𝑡 − 𝑛𝑇) − 𝜏(𝑡)) + 𝑤(𝑡)

𝑛

 

where 𝑤(𝑡) takes into account the noise introduced by the channel plus other 

thermal interferences. 

The presence of the subcarrier is ignored in the equation, but its contributions are 

still present and must be removed by the digital baseband block through the Sub-

Carrier Synchronization block.  
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2.6 TEST SET-UP 

As already anticipated, once the system is validated through MATLAB 

simulation, a porting of the project, in C language, is done and it is executed on 

a Development Board. The Set-up is shown below 

 

Figure 2.8 – Block Scheme of the test set-up 

In the Figure above the test Set-up is shown.  It is made by a transmitter that is a 

Workstation that generates the signal exploiting the software GNU Radio (see 

Chapter 2.4). In details, the Figure represents the connections to make the virtual 

link between the Workstation and the development board (ETHERNET), to 

program the Xilinx (PROG) and to print on terminal some control variables 

(UART). 

The signal is sent through a Gigabit Ethernet connection to a ZedBoard that is an 

evaluation and development board based on the Xilinx Zynq-7000 All 

Programmable SoC (Zynq-7000 SoC XC7Z020). It is composed of two major 

functional blocks: the Processing System (PS) and the Programmable Logic (PL). 

The ARM Cortex-A9 CPUs are the heart of the processing system and also 

include on-chip memory, external memory interfaces, and a rich set of peripheral 

connectivity interfaces [6] 
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Figure 2.9 – Zynq-7000 SoC Architectural Overview 

From the main characteristics it is known that the CPU maximum frequency is 

667 MHz and the total amount of DDR3 memory is 512 Mb. The processor also 

has two USB 2.0, Gigabit Ethernet and other interfaces as the UART that allows 

the ZedBoard to interact with the Workstation. 

The PL offers the designer the ability to implement their own custom logic which 

can work alongside the software running on the processor cores. The two areas 

of the device, PS and PL, are linked by a series of interfaces which adhere to the 

AXI4 interconnect standard. These interfaces allow the designer to implement 
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custom logic in the PL which can be connected to the PS and extend the range of 

peripherals which are available and visible in the processor’s memory map. 

This technology is used to create a block of custom logic in the PL, and then add 

control and status monitoring capabilities by using memory mapped registers 

which the processors can access via the AXI4 interconnect [7]. 

During the study of each receiver blocks will be evaluated the possibility to 

exploit this functionality and, eventually, exporting the block in hardware logic 

with the purpose to improve and speed up the implementation and the software. 
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CHAPTER 3 

3 Physical Layer Design 

The following chapter will explain in detail the functionalities of the physical layer. For 

each block, different possible designs are discussed evaluating the trade-off focusing on 

the implementation of the chosen one. Then simulation and performance results are 

presented.  

3.1 RF AND MODULATION SYSTEMS 

The Physical Layer is responsible to activate and deactivate the physical 

connection between the transmitter and the receiver. The subsystem modulates 

the CLTUs onto the RF carrier. As discussed in Chapter 2.4, PLOP-2 is chosen 

and the Carrier Modulation Modes (CMM) are reported in the following diagram 

 

Figure 3.1 – Carrier Modulation Modes (PLOP-2) 
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The CMMs consist of different states of data modulation which creates the 

physical telecommand channel. 

With PLOP-2, CMM-1 is in charge of establishing and maintaining the RF 

connection so, in this state no telecommand modulation is present. CMM-2 is 

concerned to transmit the Acquisition Sequence to enable the receiving end to 

acquire bit synchronization. CMM-3 deals with the transmission of one CLTU 

while CMM-4 takes care to send the Idle Sequence between CLTUs in order to 

maintain the modulation part of the physical connection. 

In the next Sections are explained the blocks that makes up the physical layer 

(Figure 2.4). For each block is shown the possible designs evaluating the trade-

off focusing on the implementation of the chosen one. Then simulation and 

performance results are presented. 

3.2 AUTOMATIC GAIN CONTROL 

In order to adjust the receiver signal strength to a certain desired value an 

Automatic Gain Control (AGC) block is implemented. The AGC should process 

the signal and provide a feedback to the RF chain. If the input power is high, it 

can decide to reduce the signal strength to minimize the distortion due to 

nonlinearity or, if the input power is low, it can increase the gain to reduce the 

noise figure and boost the SNR. 

Since this project concerns the digital baseband processing part, the AGC is 

implemented as first block in the chain with the purpose to bring the signal to a 

reference value. 
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3.2.1 Block Design and Trade-off analysis 

The response time plays an important role when designing the AGC. There is 

usually a compromise between having the loop that replies quickly to 

undesired input level fluctuations vs. having it undesirably modify amplitude 

modulation on the signal. The reason is to be sought in the fact that large and 

abrupt changes in the input level of the signal may lead to unacceptable 

recovery behavior.  

In some transponders, the AGC is designed to keep constant the average of the 

absolute value of the voltage at the AGC output. In other transponders, the 

AGC is designed to keep constant the Root Mean Square (RMS) voltage at the 

AGC output [8]. 

The following block diagram reports the first of the two possible solutions 

 

Figure 3.2 – AGC Absolute value block diagram 

In the diagram above a recursive algorithm for updating the AGC value (G) is 

applied: 

𝐺𝑘+1 = 𝐺𝑘 + 𝛼 (𝑟𝑒𝑓 − 𝐸{|𝑟|}) 



3. Physical Layer Design 

 

21 

 

where 𝛼 is the updating step size, ref is the reference value to which the average 

absolute value of the signal must be brought and 𝐸{|𝑟|} is the average over N 

samples of the Rx signal. The output is the multiplication of each new received 

sample by the AGC Gain value. For both the AGC it is supposed that the Gain is 

equal for both real and imaginary part of the signal. 

The second AGC computes the average RMS level of the signal and then 

divides the signal by this value. The result is obtained using a single-pole IIR 

filter: 

𝑝𝑘+1 = (1 − 𝛼)𝑝𝑘 + 𝛼|𝑥𝑘|2  ,        𝑟𝑘 = √𝑝𝑘 

where 𝑥𝑘  is the input signal, 𝑝𝑘  is the averaged power and 𝑟𝑘  is the RMS. The 

diagram in Figure 3.3 summarizing the block implementation 

 

Figure 3.3 – AGC RMS block diagram 

The filter has a single design parameter, which is the decay value 𝛼  and the 

response is analogous to the response of an electronic low-pass filter. The decay 

value 𝛼 is related to the time constant 𝜏. For example, with 𝛼 = 0.01, the time 

constant 𝜏 = −
1

ln(1−𝛼)
≈ 99.5. Since the sampling frequency 𝑓𝑠 = 48 𝑘𝐻𝑧, the time 

constant is around 2 𝑚𝑠 as it is possible to see in the figure below 
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Figure 3.4 – Effect of AGC RMS to Rx Signal 

In the next subsection, a choice on the ACG type is done evaluating the 

performance in a real time implementation of the blocks. 

3.2.2 Simulation results 

Exploiting a real signal, simulations of the two different implementations are 

done. 

For what concern the first design, it is necessary to reach a compromise on how 

many samples are taken for the average. Since, from specification, the samples 

per symbol are 48, for the received signal mean are taken 𝑁 = 256 samples that 

results in a reasonable trade-off because it means that the signal is observed on 

an interval of around 0.5 seconds. 

In Figure 3.5 is reported the trend of the G parameter at different step size 𝛼. The 

simulations are done simulating once the AWGN samples and adding them each 

time to the same portion of the Rx signal. 𝛼 is taken from 10−6 up to 10−2 since 

other values do not give interesting results. 
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As it is easy to see, the variance of the AGC gain parameter arises as 𝛼 increases. 

However, higher values of 𝛼 lead to a faster convergence of the results, in fact, 

for 𝛼 = 10−6 it is hard to see where the value converges after 1 second. When the 

parameter increases so much, the system diverges (for 𝛼 = 10−6 AGC gain goes 

to −∞). 

The good compromise is to take the value around 10−4 where the variance of the 

result is small and the convergence is quite fast 

 

Figure 3.5 – AGC Gain Value for different α (AGC absolute value) 
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The same simulations made for the first AGC are performed for the second one 

(same conditions hold). 

Also in this case is possible to see the trend of the Gain at the various step size. 

The variance of the curves is almost equal to the previous case and the choice of 

the 𝛼 parameter does not change 

 

Figure 3.6 – AGC Gain Value for different α (AGC RMS) 

Both AGCs are implemented in C language and executed, as already anticipated, 

on the Xilinx board.  
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The results, changing the parameter α, are as expected. For what concerned the 

performance in terms of clock cycles needed to perform the operation of updating 

the gain parameter, obviously the first AGC performs worse. 

3.2.3 Optimization and Performance results 

An optimization is adopted regarding the calculation of averaging N samples. 

Instead of iterating every time on all the considered samples, an accumulator that 

contains the average value is initialized and, when a new sample enters, it is 

added to the accumulator (averaged on N samples) while the oldest one is 

removed from it. This avoid looping always on the vector containing the 

incoming signal and the clock cycles needed to perform the operation is 

consistently reduced.  The performances are reported below 

Table 3.1 – AGC Performance 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

AGC 1 647 1.94 48000 9.31 

AGC 1 mod. 131 0.39 48000 1.87 

AGC 2 80 0.24 48000 1.15 

 

In the table are reported, for each implemented AGC, the clock cycles needed 

from the instant in which a new sample enters in the loop to the time in which 

the AGC gain value is given. For all the performance analysis, from now on, a 

value of CPU utilization (in percentage), of the Zynq-7000, is calculated, 

considering the number of time that the operation is done in one second. Since 

the sampling frequency is 48 kHz, and the AGC calculates the gain every new 

sample, the operation is repeated 48000 times per second. 

As it can be noticed from Table 3.1, the performance of the modified version of 

the first AGC (AGC 1 mod.) is comparable with the second AGC implementation 

(AGC 2), but it is still worse in terms of computational needs. For this reason, 
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AGC 2 is chosen for the final implementation. Just one note on the choice of α 

must be done since, in the real implementation, it is derived that a slightly 

different value must be used to reach the same result as in simulation 

environment. 

3.3 SUB-CARRIER SYNCHRONIZER 

In order to remove the presence of the sub-carrier, the baseband signal is simply 

multiplied with a local oscillator that (ideally) generates a pure single frequency 

sine wave. 

The PSD of the signal, in which the presence of the subcarrier is evident, is 

reported in the following picture 

 

Figure 3.7 – PSD of Rx Signal 

The real process leads to the impairments described before that must be 

recovered. The phase of the sub-carrier generated by the local oscillator must be 

aligned to the phase of the incoming signal and the phase noise makes the job 

more difficult. 
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If the oscillator was ideal, its frequency response could be represented with a 

Dirac function at the carrier frequency 𝑓𝑐, but the real one presents a kind of bell 

due to the phase noise profile 

 

Figure 3.8 – Ideal (Left) vs Real (Right) Oscillator frequency response 

The phase noise 𝜃(𝑡) is described in the frequency domain by its PSD in dBc/Hz. 

It is the ratio between the noise power measured in 1 Hz bandwidth, at a 

frequency offset 𝑓𝑚, and the power of the carrier [9]. 

3.3.1 Design and Trade-off analysis 

The best estimate of the unknown phase 𝜃 based on the observation, over an 

interval, is the phase maximizing the log-likelihood function (ML). The use of the 

open loop ML estimator suffers from two main drawbacks. The first one is that 

the phase estimate is available only at the end of the observation interval. This 

leads to the second drawbacks where the data received in this interval have to be 

stored in order to postpone every decision about them. 

The solution is to use an iterative procedure. Assume that at the end of the k-th 

carrier period an estimation 𝜃𝑘 of the carrier phase is available, so it can be used 

as starting value to be updated according to the received signal observation in 

the next carrier period. Since maximizing the log-likelihood ratio is equivalent to 

require that its derivative be zero, it can be conditioned by the value 𝜃𝑘 obtained 
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in the previous interval. At the end of the training phase it is reasonable to 

assume that 𝜃𝑘 ≈ 𝜃 . Its sign gives information on whether the estimation is 

smaller or greater than the real phase value.  

The recursive algorithm adopted to update the estimation is: 

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐸{𝑒(𝜃𝑘)} 

The new phase estimation is equal to the old one minus a coefficient that multiply 

the average of the error. The ensemble average 𝐸{∙} can be substituted by a time 

average. 

A practical implementation can be obtained through the Phase Locked Loop 

(PLL). The adopted solution is reported in Figure 3.9 

 

Figure 3.9 – PLL Block Diagram 

What is represented in the block diagram is that the received signal in baseband 

is multiplied by a signal at the subcarrier frequency, generated by the Virtual 

Controlled Oscillator (VCO), plus a phase offset given by the feedback loop. The 

loop calculates the instantaneous phase of the signal 𝑥𝑘 as: 

𝜃𝑘 = 𝑡𝑎𝑛−1 (
𝐼𝑚(𝑥𝑘)

𝑅𝑒(𝑥𝑘)
) 
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where Re and Im are the real and imaginary components of the signal 

respectively. This value is used like an error 𝑒(𝜃𝑘) to change the frequency of the 

VCO and, if the Loop Filter is not present, the PLL is of the First Order (the error 

enters directly in the VCO). After the multiplication by the subcarrier, the 

components are filtered in order to remove residual high frequency terms and 

for the reasons reported in Section 3.4. 

The choice of the discriminator is a trade-off between performance of the PLL 

and required hardware resources, as well as complexity [10].  

The optimum compromise is to use as discriminator the error signal reported in 

the formula above. Looking at the Figure 3.10 (left), considering a constellation 

point in the complex domain, the angle 𝜃 can be estimated as described  

 

Figure 3.10 – PLL Discriminator 

The ratio between Real and Imaginary part is the 𝑡𝑎𝑛 (𝜃)  so the angle is 

represented by the 𝑡𝑎𝑛−1(∙) . Moreover, the ratio allows to remove the data 

dependency since they are present in both parts. The output of the discriminator 

is a limited function, Figure 3.10 (right), between −
𝜋

2
 and 

𝜋

2
, so it is possible to 

have the control of the VCO input. 
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The PLL can be of different orders. As already anticipated, if the error signal is 

input to the VCO without further filtering, the PLL is of the first order. The block 

diagrams are shown below 

 

Figure 3.11 – First Order PLL (up) – Second Order PLL (down) 

The transfer function of the first order PLL is: 

𝐻𝑒𝑞(𝑠) =
𝐴𝑘1

𝑠 + 𝐴𝑘1
 

where 𝐴 and 𝑘1 are the gains of the loop. 

The drawback of the first order PLL is that residual offset in phase will be a 

function of the offset in frequency 

 

Figure 3.12 – Steady-state errors of first order PLL 

As is possible to see, the PLL is able to completely recover the phase offset with 

the response in Figure 3.12 (left). If it is present a constant frequency offset, it 
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translates in a constant phase offset (center). Finally, if a non-constant frequency 

offset is present, the PLL phase error goes to infinite (right). 

For this reason in this project is implemented a second order PLL that is not only 

able to track the phase, but also to track the frequency offset. If the frequency 

offset is non-constant, the phase is recovered with a constant residual error. 

In the following table are summarized the steady-state errors of a PLL 

Table 3.2 – Steady-state errors of a PLL 

Errors 1-st order PLL 2-nd order PLL 3-rd order PLL 

Phase Offset 0 0 0 

Constant  

Freq. Offset 
Constant 0 0 

Non-Constant 

Freq. Offset 
∞ Constant 0 

 

The case of a third order PLL is reported, but it is not implemented since the 

complexity of the system grows. Moreover, increasing the tracking capability of 

the PLL lead to put more noise in the system since the equivalent bandwidth of 

the PLL will increase. Lastly, a fine phase recovery loop of the first order is 

inserted in the block diagram of the receiver and this translates in increasing the 

order loop bandwidth. 

From Figure 3.11 is possible to describe the system with the following transfer 

function: 

𝐻𝑒𝑞(𝑠) =
4𝜍𝜋𝑓𝑛𝑠 + (2𝜋𝑓𝑛)2

𝑠2 + 4𝜍𝜋𝑓𝑛𝑠 + (2𝜋𝑓𝑛)2
 

where 𝑓𝑛 =
1

2𝜋
√

𝐴𝑘1

𝜏1
 is the natural frequency, 𝜍 =

𝜏2

2
√

𝐴𝑘1

𝜏1
 is the damping factor and 

𝐻(𝑠) =
1+𝑠𝜏2

𝑠𝜏2
 is the frequency response of the filter. 
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These are the three most important parameters in a PLL design and they will be 

analyzed in detail later. 

In order to convert the model from continuos to discrete time is possible to use 

the Bilinear Transform [11] that allows to easily substitute to the variable s the 

following approximation: 

𝑠 ←
2

𝑇

𝑧 − 1

𝑧 + 1
 

where T is the sampling frequency. The result, after some algebric operations, is: 

𝐻𝑒𝑞[𝑧] =  
(

4
𝑇 𝜍𝜔𝑛 + 𝜔𝑛

2) 𝑧2 + 2𝜔𝑛
2𝑧 + 𝜔𝑛

2 −
4
𝑇 𝜍𝜔𝑛

(
4

𝑇2 +
4
𝑇 𝜍𝜔𝑛 + 𝜔𝑛

2) 𝑧2 + (2𝜔𝑛
2 −

8
𝑇2) 𝑧 +

4
𝑇2 −

4
𝑇 𝜍𝜔𝑛 + 𝜔𝑛

2
 

Consequently, because 𝐻𝑒𝑞(𝑠) is a second-order analog filter, 𝐻𝑒𝑞[𝑧] is a second-

order digital filter. From the formula above it is possible to represent the system 

in the following form: 

𝐻𝑒𝑞[𝑧] =
𝑏0 + 𝑏1𝑧−1 + 𝑏0𝑧−2

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2
 

 where 𝑏0, 𝑏1 and 𝑏2 are the feed-forward coefficients and 𝑎1, 𝑎2 are the feedback 

coefficients. The functional block diagram is reported in the figure below (𝑧−1 

represents a single sample delay) 

 

Figure 3.13 – IIR Biquad Filter 
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A final observation should be done on the design of the VCO. The signal, in 

practice, can be generated using the ‘math.h’ library. The generated sin and cos 

have a high accuracy, but the process is quite expensive in terms of clock cycles 

(see 3.3.2). An alternative method is to use a Lookup Table (LUT) with a 

Numerically Controlled Oscillator (NCO). Internally, the NCO keeps track of 

the phase of the sine wave it produces, and it increments this phase at each 

sample point [12]. Obviously, losses in precision of the result are presents, but 

they can be alleviated by exploiting some tricks (saving the error computed at 

each iteration) and by choosing an acceptable dimension for the LUT. For each 

value of phase, three different values are sufficient to represent the sinusoid since 

the sampling frequency is three times the subcarrier frequency. 

3.3.2 Simulation and Performance results 

Considering the second order PLL (IIR Biquad Filter) and fixing the gain loop 

parameters, 𝜏1 and 𝜏2 is possible to verify the step response and the stability of 

the system exploiting MATLAB 

 

Figure 3.14 – Step response (Left) – Nyquist diagram (Right) with 𝝇 = 𝟎. 𝟐𝟑𝟕 and 

𝝎𝒏 = 𝟑𝟏𝟔. 𝟐𝟑 

In the first case, fixing the mentioned values, the result is the one reported in 

Figure 3.14. From the Nyquist diagram is possible to see that the system is stable 

https://en.wikipedia.org/wiki/Numerically_controlled_oscillator
https://en.wikipedia.org/wiki/Instantaneous_phase
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Instantaneous_phase
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since the plot is far from the critical value -1. The overshoot in the step response 

is due to the low value of 𝜍 . Implementing the solution in the MATLAB 

simulation of the Receiver, the result reflects the study just done. The output 

phase in time is shown below 

 

Figure 3.15 – Estimated Phase in Rx simulation – First test 

The system can be brought to a slower convergence modifying the parameters. 

In the following test is possible to see the difference with the first case. The 

overshoot is smaller and the step response is slower since the dumping factor is 

slightly higher and the cutoff frequency is low 
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Figure 3.16 – Step response (Left) – Nyquist diagram (Right) with 𝝇 = 𝟎. 𝟕𝟓 and   

𝝎𝒏 = 𝟏𝟎 

Also in this case, verifying the solution in the Rx simulation, the phase has the 

following trend 

 

Figure 3.17 – Estimated Phase in Rx simulation – Second test 



3. Physical Layer Design 

 

36 

 

It is possible to notice that now, the system response is slower to converge to a 

constant value and it is only present one overshoot. In the box is reported a zoom 

of a portion of the plot where it can be seen that the phase value oscillates. This 

effect is due to the fact that the phase is recovered and the PLL is working 

correctly. 

Porting the simulation in C language, the result is not the expected one since the 

error oscillates between its limit values and so, the PLL is not able to track the 

phase. The reason is that, when matched filtering is used, the subcarrier 

synchronizer must work at the optimum sampling instant, since it must know 

the period on which it must integrate the result. Moreover, for what concerns the 

choice of the loop bandwidth  𝜔𝑛, the smaller it is, the smaller is the tracking error 

but the smaller is the frequency offset that the PLL can follow. For this reason, a 

good compromise is reached by increasing its value. The coefficients of the IIR 

filter are calculated in MATLAB fixing the sampling time to 1 ms (duration of one 

symbol), the damping factor to 
√2

2
 (that is the typical value) and 𝜔𝑛 = 110 𝑟𝑎𝑑/𝑠. 

In Figure 3.18 is reported the corresponding Bode Diagram, that shows the 

frequency response of the system in magnitude and phase 

 

Figure 3.18 – Bode Diagram with 𝝇 = 𝟎. 𝟕𝟎𝟕, 𝝎𝒏 = 𝟏𝟏𝟎 and 𝑻𝒔 = 𝟏 𝒎𝒔 
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The step response has an overshoot and the system converges to the final value 

quite fast 

 

Figure 3.19 – Step response with 𝝇 = 𝟎. 𝟕𝟎𝟕, 𝝎𝒏 = 𝟏𝟏𝟎 and 𝑻𝒔 = 𝟏 𝒎𝒔 

An important parameter is the noise equivalent bandwidth of the PLL that, for 

a second order PLL and for this system, is: 

𝐵𝑒𝑞 = 𝜋𝑓𝑛√𝜍 +
1

4𝜍
= 56.64 𝐻𝑧 

From experimental results it is derived that, as in theory, the larger is the noise 

equivalent bandwidth, the more is the additive noise in the system. However, if 

the bandwidth is large, more is the frequency offset that the loop can track. 

A problem arises in the real implementation of the IIR filter. It is demonstrable 

that, systems containing non-linearities and feedback loops are always prone to 

autonomous oscillations or limit cycles also if floating-point numbers are used 
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[13]. To avoid the problem, the estimated phase is clipped from 0 to 2𝜋 , but 

another undesired effect is shown in Figure 3.20   

 

Figure 3.20 – Estimated Phase (Left) – Scattering Diagram after PLL (Right) 

For these reasons, the final implementation of the PLL is slightly different from 

Figure 3.13, but the same study, just done, holds. 

As already anticipated in the design subsection, an NCO is implemented. In the 

following table is shown the difference between removing the presence of the 

subcarrier multiplying the incoming signal by a signal generated by the ‘math.h’ 

library and using a LUT 

Table 3.3 – Subcarrier removal Performance 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

math.h 501 1.50 48000 7.20 

LUT 134 0.40 48000 1.92 

 

As expected, the gain in using the Lookup Table is consistent. The trade-off to be 

reached is in the dimension of the LUT since, larger it is, better is the accuracy of 

the result, but higher is the occupied memory. Some tricks to reduce the size of 

the LUTs can be used as exploiting the same table for the sine and the cosine since 

they are related in some way. 
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The CPU utilization of the Sub-Carrier Synchronizer (to be summed with the 

value on Table 3.3) is very low. It is executed once per symbol and the 

performance is reported in the following table 

Table 3.4 – Sub-Carrier Synchronizer Performance 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

Sub-Carrier 

Synchronizer 
212 0.64 1000 0.06 

 

Summarizing, the stability study plays the important role in the design of a PLL. 

More in general, some of the key pieces that must to be known are reported in 

the following list: 

• The convergence’s speed depends mainly on the damping factor, smaller 

it is, faster is the convergence of the PLL, but more overshoots are present; 

• Smaller is the Loop Bandwidth, smaller is the tracking error, but also 

smaller is the frequency offset that the PLL can follow; 

• Larger is the Noise equivalent bandwidth (it depends on the damping 

factor and on the PLL loop bandwidth), higher is the additive noise in the 

system; 

• When matched filtering is used, the PLL must know the period on which 

integrates the result; 

• When the PLL is locked, the estimated phase continuously oscillates in a 

small range; 

• In the implementation of a PLL, cycle sleep are present and they must be 

solved changing a little bit the structure of the block. 
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3.4 FILTER 

The Rx filter is a filter perfectly matching the one used at the Tx side. The filter 

used at the Tx is called shaping pulse, instead the one used at the Rx is called 

matched filter. They have the purpose to shape the spectrum by limiting the 

effective bandwidth of the signal, to reduce the effect of the noise. More in 

general, the system should not have Intersymbol Interference (ISI), so it must 

satisfy the Nyquist criterion. When multiple symbols are transmitted, the 

impulse response of the channel causes a transmitted symbol to be spread in the 

time domain and at the receiving end they result overlapped. Nyquist theorem 

translates the time domain condition in a frequency domain condition providing 

a method to construct band-limited functions. 

Two different kind of filter are provided theoretically and they are implemented 

in practice showing in what they differ. 

3.4.1 Design and Trade-off analysis 

The first filter used at the Tx is a rectangular pulse with length equal to the 

symbol length (Figure 3.21) 

 

Figure 3.21 – Shaping pulse at the Tx in time 

In order to match the filter at the Tx, a Moving Average (MA) filter is used at the 

Rx. It is a Low Pass Finite Impulse Response (FIR) filter that takes N samples of 

input at time, takes the average and produce a single output point 
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Figure 3.22 – FIR filter Block Diagram 

In Figure 3.22, it is reported the typical representation of a FIR filter where 𝑢𝑛 are 

the taps of the filter, 𝑟[𝑛] is the signal to be filter, 𝑧−1 represent a single delay line 

and 𝑦[𝑛] is the filtered signal. The output is described as the convolution between 

the input signal and the impulse response of the filter that, in the discrete domain, 

is: 

𝑦[𝑛] = ∑ 𝑟[𝑛 − 𝑘] − 𝑢[𝑘]

𝑘=𝑁−1

𝑘=0

 

Neglecting the noise, the output to the filter is reported in the following plot 

 

Figure 3.23 – Rx Signal filtered (MA) – No Noise 
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The second type of filter is the Square Root Raised Cosine (SRRC). It is a 

particular case of Nyquist filter and its impulse response is defined as follow: 

ℎ(𝑡) =
2𝛽

𝜋√𝑇

cos [
(1 + 𝛽)𝜋𝑡

𝑇 ] +
sin [(1 − 𝛽)𝜋𝑡/𝑇]

4𝛽𝑡/𝑇

1 − (4𝛽𝑡/𝑇)2
 

where T is the symbol time and β is the rolloff factor that is a measure of the 

excess bandwidth of the filter, i.e., the bandwidth occupied beyond the Nyquist 

bandwidth of  1 2𝑇⁄  [14]. 

 

Figure 3.24 – SRRC Impulse Response at different roll-off 

The impulse response at the different rolloff factor is reported in the plot above. 

The filter, theoretically, has an infinite number of taps so it has infinite 

attenuation in the stop band. However, in implementation, its length should be 

reduced to a finite value.  

Smaller rolloff gives narrower bandwidth, however, its side lobes increase so 

attenuation in stop band is reduced. In other words, low values of β allow for a 

more efficient use of the spectrum but increase the ISI. 
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In Figure 3.24, the filter is represented using 8 sample per symbol and its response 

is cut at 6 symbols. This trade off is reached in order to compare the MA filter 

with the SRRC ones taking into account the same number of taps. In this way the 

complexity of the filtering stage is not increased and a reasonable number of side 

lobes is considered. From now on, all the following blocks must work at lower 

samples per symbol, so the resolution of the result is lower and a trade-off must 

be reached. 

The downsampling of the Rx signal, at this stage, is simply done by taking one 

sample every six: 

𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑓𝑠

𝑓𝑠,𝑑𝑜𝑤𝑛
=

48000

8000
= 6 

Performance analysis are presented in the next subsection. 

3.4.2 Simulation and Performance results 

A useful tool for the evaluation of the combined effects of channel noise 

and ISI on the performance of a baseband pulse-transmission system is the Eye 

Diagram. It is an oscilloscope display in which a digital signal from a receiver is 

repetitively sampled and applied to the vertical input, while the data rate is used 

to trigger the horizontal sweep.  

Several system performance measures can be derived by analyzing the display. 

An open eye pattern corresponds to minimal signal distortion. Distortion of the 

signal waveform due to ISI and noise appears as closure of the eye pattern [15] 

https://en.wikipedia.org/wiki/Intersymbol_interference
https://en.wikipedia.org/wiki/Oscilloscope
https://en.wikipedia.org/wiki/Digital_signal_(electronics)
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Distortion
https://en.wikipedia.org/wiki/Waveform
https://en.wikipedia.org/wiki/Noise_(physics)
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Figure 3.25 – Eye diagram with MA filter (Left) – Scattering Diagram (Right) -      

Eb/N0 = 25 

In the figure above is reported the eye diagram after the MA filter with a value 

of 𝐸𝑏 𝑁0 = 25⁄ . Also the scattering diagram at the same 𝐸𝑏 𝑁0⁄  is shown in the 

figure (right). 

The filtered signal with the SRRC filter is shown in Figure 3.26 

 

Figure 3.26 - Rx Signal filtered (SRRC, rolloff = 0.25) – No Noise 
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A rolloff of 0.25 is used at the Tx and Rx sides. The difference between the MA 

filter is that the signal is rounded and the Subcarrier Synchronizer was able to 

completely recover the phase of the signal. 

Using a large rolloff, the eye diagram is completely open, this means, if the 

sampling instant is the perfect one there is not ISI and a small sampling instant 

time error produce small ISI. Instead, if the rolloff used is small, a small sampling 

instant time error produces a large ISI. 

In the implementation on the development board, the MA filter is implemented 

(SRRC filter implementation is demanded as Future Work) and the taps chosen 

are all equal in order to generate the impulse response of the filter in Figure 3.21. 

As already anticipated, one of the objectives of the project is to find some blocks 

that can be exported in hardware implementation. From performance analysis 

results that the FIR filter is very expensive in terms of CPU utilization since, every 

time one new sample of the signal enters in the system, a loop must be performed 

to multiply all the taps of the filter by the incoming signal. 

The following table shows the gaining in CPU utilization between the two 

implementations 

Table 3.5 – Filter Performance 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

Filter 1 1888 5.67 48000 27.22 

Filter 2 603 1.81 48000 8.69 

 

Filter 1 represents the software implementation of the filter, instead, Filter 2 is its 

hardware implementation that results in an improvement of about three times in 

terms of clock cycles needed to perform the filtering of one sample. The hardware 

implementation of the block will be discussed in detail in Chapter 6.5. 
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3.5 CLOCK RECOVERY 

The ADC delimits the boundary between the analog and digital parts of the 

signal processing chain and it provides to the DSP block a sequence of samples 

at a certain rate (~N samples per symbol). Clock recovery is required to determine 

the optimum sampling instant in order to down-sample the signal to 1 sample 

per symbol. 

Moreover, the clocks used to sample the signal are not ideal and introduce error 

on the sampling time which manifests itself as noise and can limit the system 

performance. This timing error is known as jitter and is expressed in seconds. 

3.5.1 Design and Trade-off analysis 

The optimum sampling instant is the one that maximizes the power of the 

discrete signal (independently from the data). This translates in finding the 

likelihood of the sampling time offset (τ): 

Λ(𝜏) = 𝐸[|𝑟(𝑛𝑇 + 𝜏)|2] 

The likelihood of τ is the average value of the power, of the received signal, 

sampled at time τ. In other words, the best possible sampling instant is when the 

output sequence, after sampling, has the maximum possible power. 

This kind of Clock recovery is an Open Loop Estimation. In order to calculate τ 

it is needed a window of length L samples and so this block introduces delay in 

the processing. 

Once the optimum sampling instant is found, it is needed an interpolation 

because it can be among two samples. This increases the complexity of the 

system, but it could not be necessary if there is not downsampling after the 

filtering stage. 
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There are different kind of interpolator, the less complex is the linear one that 

provides a very rough interpolation between samples 

 

Figure 3.27 – Linear interpolation between 4 samples 

In the figure above there is an example of the linear interpolator where 4 samples 

per symbols are taken into account. 

About that, if the filter used at the receiver is the MA (it works with 48 samples 

per symbol) the error computed in using the nearest sample to τ is negligible. 

In this project, the Open Loop Timing estimation is performed once in the 

receiver chain and when the symbol clock synchronization is lost. Every time the 

symbol lock is acquired, another kind of estimation is done and it is a Closed 

Loop Timing estimation. 

This technique takes the derivative of the likelihood (derivative of the power of 

the observation with respect to τ): 

𝑑Λ(τ)

𝑑𝜏
= 𝑅𝑒(𝑟∗(𝑘𝑇 + 𝜏)𝑟′(𝑘𝑇 + 𝜏)) 

The derivative can be calculated replacing it with a finite difference: 

𝑟′(𝑘𝑇 + 𝜏) = 𝑟(𝑘𝑇 + 𝜏 + 𝑇/2) − 𝑟(𝑘𝑇 + 𝜏 − 𝑇/2) 
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The loop is called Delay Locked Loop (DLL) and, in particular, the error 

calculated as above, that takes the sample at the actual time (𝑧2𝑘), at time 𝜏 +
𝑇

2
 

(𝑧2𝑘+1) and 𝜏 −
𝑇

2
 (𝑧2𝑘−1), is called Early late correlator. 

The block diagram is reported in Figure 3.28 

 

Figure 3.28 – Delay Locked Loop for Timing estimation 

The circuit updates the error made in the calculation of the clock timing offset 

and only needs 2 samples per symbol. The initialization is done using the 

optimum sampling instant derived from the open loop. The error is computed by 

taking the product of the middle tap (complex conjugate) times the difference of 

the previous and the next. The error is used to update τ with a gradient algorithm: 

𝜏𝑘+1 = 𝜏𝑘 + 𝛾𝑒𝑘 

This is a first order loop and the drawback is the error propagation. 

Since it is not possible to have the sample at the time 𝜏 +
𝑇

2
, the derivative can be 

calculated delaying the correlator by 𝑇 2⁄ , obtaining the Gardner correlator that 

is the one implemented in the project. 
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3.5.2 Simulation and Performance results 

There are not particular problems in the implementation of the Open Loop 

Timing on the Xilinx board. The only trade-off to be reached here is finding the 

right number of symbols that allows to find the optimum sampling instant.  

It can be demonstrated that, with a number of symbols less than 50, some errors 

can appear if the signal-to-noise ratio is low. Taking 100 (or more) symbols gives 

a good estimation of the optimum sampling instant at which the incoming signal 

must be sampled. Obviously, the higher is the number of symbols taken into 

account, the higher is the delay introduced in the processing chain. 

The prove that the Open Loop Timing provides the correct sampling instant is 

shown below 

 

Figure 3.29 – Signal’s Energy sampling at different τ 
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Figure 3.29 illustrates the signal’s energy calculated sampling the signals at 

different sampling instants (shifting the signal by one sample each time). 

The energy is calculated by squaring the real part of the filtered signal (since on 

the imaginary part, after the PLL, there is no more information) over a fixed 

period of time. The highest value of the energy is in the optimum sampling 

instant, when no further delay is added in the signal. Farther more, a bad effect 

caused by sampling at not the right τ can be seen in the scattering diagram. The 

two constellation points coming closer to each other gradually the delay increases 

and they collapse in a unique one when the signal is sampled with 𝜏 =
𝑁

2
=

24 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (the energy is equal to zero). 

In real implementation, after the Open Loop Timing estimation there is a Closed 

Loop implementation that is able to follow some variation in the incoming signal 

due to the different rates between the sample clocks of the transmitter and 

receiver. 

The Channel Model in GNU Radio is able to simulate this jitter in the timing in 

order to allow the user to be in a more real environment. The problem of 

implementing a Closed Loop timing is the tuning of the parameter 𝛾. 

Its value is dependent from the SNR: the lower the Signal-to-noise ratio is, the 

lower should be the step size, since the noise reduces the stability of the loop. 

However, from real simulation it can be seen that noise can help the loop to get 

out from some minima (since it is a gradient algorithm). When SNR is high and 

𝛾 is too small, variations in the timing are not followed by the loop. 

The acceptable trade-off can be reached by tuning the parameter starting from a 

very low value (𝛾 = 10−6) and increasing it bringing the loop near the instability. 

A value similar to the one extract from MATLAB simulation is chosen. 
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The performance of the two kinds of loop, above described, are reported here 

Table 3.6 – Clock Recovery Performance 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

Open Loop 135429 406.69 1 0.04 

Closed Loop 140 0.42 1000 0.04 

 

In the table above it is supposed that the Open Loop Timing is done once in a 

second. In reality, it is performed every time the Symbol Lock is lost. The reason 

to have a Symbol Lock detector is that, when the clock recovery is not able to find 

the optimum sampling instant (e.g. SNR is too low, timing jitter is too high, etc.), 

the receiver should be able to signal the event. 

In literature there are different kind of symbol lock detectors that performs quite 

well if they are implemented in this project. The main problem is to make the 

detector independent from the SNR and from all the blocks of the receiver (e.g. 

independent from AGC). 

One detector is reported briefly here showing some optimization in the real 

implementation. The detector described here, requires only two samples per 

symbol (the same used by the Gardner timing recovery), it has good performance 

with BPSK and it works well in AWGN [16]. The algorithm is: 

• Calculate the error in the optimum sampling instant (the same of 

Gardner): 𝑢(𝑘) = 𝑟(𝑘𝑇 + 𝜏 − 𝑇/2) ∙ [𝑟(𝑘𝑇 + 𝜏) − 𝑟(𝑘𝑇 + 𝜏 − 𝑇)] ; 

• Calculate the error moving by half a symbol (at midway sample): 𝑤(𝑘) =

𝑟(𝑘𝑇 + 𝜏) ∙ [𝑟(𝑘𝑇 + 𝜏 + 𝑇/2) − 𝑟(𝑘𝑇 + 𝜏 − 𝑇/2)]; 

• Take the expectation of both errors and make the difference: 𝐷𝑖𝑓𝑓 =

𝐸{|𝑤(𝑘)|} − 𝐸{|𝑢(𝑘)|}. 
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The working principle can be understood better by tracing the S-curves of the 

two errors. Shifting τ, moving away from the optimum sampling instant, the two 

expectations are equal with opposite sign 

 

Figure 3.30 – Timing Error Detector S-curves for Strobe and Midway samples 

From the plot is easy to see that when the Diff goes to zero the symbol lock can 

be definitely declared. Obviously, this method works well when the Acquisition 

Sequence is present, but when data are sent the errors increase. Also, if the 

expectation of the error (over a reasonable interval) is taken, when the data 

sequence is too long, the error increases too much. So, the practical 

implementation is not very appeal because, also, it results to be very sensitive to 

the SNR. 

The detector can be slightly modified taking also into account the sign of the 

sample in the optimum sampling instant [17]. Only the error calculated by the 

Gardner is needed and it seems to perform well in the condition of the 

presented project. 

In order to declare the symbol lock, a lookup table can be deduced, at different 

SNR, to set a threshold to be looked by the detector at each optimum sampling 

instant. The performances are reported in Table 3.7 

Table 3.7 – Symbol Lock Detector Performance 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

Symbol Lock 

Detector 
176 0.53 1000 0.05 

Get threshold 

from LUT 
113 0.34 1 0.00 
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3.6 PHASE RECOVERY 

Tx and Rx carrier frequencies are slightly different so, after frequency down-

conversion, at the receiving end, the signal will have a residual frequency offset. 

Distinct estimations between frequency and phase offsets are necessary when the 

first one is very high. However, since a frequency offset translates into a linear 

phase variation (in time), only a phase recovery loop can be implemented when 

the frequency offset is small. In the Subcarrier Synchronizer block a PLL is 

already implemented, so here a similar one is explained that works directly on 

the symbol making a decision on it. 

3.6.1 Design and Trade-off analysis 

The block implemented here is a Costas Loop. It has a Frequency Discriminator 

Device (FDD) that is a non-linear device returning an error signal proportional 

to the frequency of the input. The error is calculated by setting to zero the 

derivative of the log-likelihood of the estimated phase. The result is: 

𝑒𝑘 = 𝐼𝑚{𝑎𝑘
∗ 𝑥𝑘𝑒−𝑗�̂�𝑘} 

where 𝑎𝑘 is the hard decision taken on the entering symbol 𝑥𝑘. At this point it is 

assumed that all the information about the bit is on the real part of the signal, so 

the decision is taken only looking at it. Hard decision means that the value of 

the symbol is chosen comparing it with a threshold, if the symbol is above the 

threshold it is demodulated as 1, otherwise as 0. The symbols are passed to the 

layer above (Coding Layer). 
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Figure 3.31 – Costas Loop Block Diagram 

The updated value of the phase is given by a gradient algorithm and is equal to: 

𝜃𝑘+1 = 𝜃𝑘 + 𝛾𝑒𝑘 

where 𝛾 is the VCO sensitivity.  

The Costas Loop is a PLL able to track doppler shift of the carrier. The Doppler 

effect is a phenomenon that modifies the received signal frequency as a function 

of the relative motion between transmitter and receiver. If constant Doppler shift 

is present, in absence of the Costas Loop, the scattering diagram looks as follow 

 

Figure 3.32 – Scattering Diagram in                                                                                      

presence of Doppler Shift 
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Since the Costas Loop is a first order PLL, the study done in the Section 3.3 is 

valid here as well. Varying the step size  𝛾, the estimated phase at the output of 

the block is reported here 

 

Figure 3.33 – Phase Estimated by Costas Loop with different 𝜸 

As expected, increasing the VCO sensitivity, the response of the loop is faster, 

but it becomes more unstable. 

3.6.2 Simulation and Performance results 

As anticipated, the Costas Loop works at one sample per symbol, that is the one 

taken at the optimum sampling instant (given by Clock Recovery block). The 

performance in terms of clock cycles needed by the loop are reported here 

Table 3.8 – Costas Loop Performance 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

Costas Loop 410 1.23 1000 0.12 

 

The loop processes 1000 symbols in one second and the CPU utilization is 0.12%. 

Also in this case, in the C implementation a little modification on the 𝛾 parameter 

is needed in order to obtain the same results of the simulation. 
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CHAPTER 4 

4 Coding Layer Design 

This Chapter describes the Synchronization and Channel Coding Schemes used with the 

Telecommand space data link protocol. The data format, the coding scheme and the frame 

synchronizer block used are explained with particular attention to their performances. 

4.1 TC SYNCHRONIZATION AND CHANNEL CODING 

The CCSDS specifies a method for synchronizing codewords using a data unit 

called CLTU (already mentioned in the previous Chapter), which consists in a 

Start Sequence, a Bose–Chaudhuri–Hocquenghem (BCH) codeword, and a Tail 

Sequence. 

The CLTU is made by two fixed data patterns at the start and at the end. The Start 

Sequence provides the synchronization pattern and delimits the beginning of the 

first BCH Codeblock. After N BCH Codeblocks, the Tail Sequence is placed and 

it marks the end of the CLTU 

 

Figure 4.1 – Format of a CLTU [18] 

The Reception Logic adopted, at the receiving end, can be represented by the 

following state diagram  
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Figure 4.2 – CLTU Reception State Diagram [18] 

The Inactive state (S1) is the first state in which the Physical Layer is not sending 

any bits to the Coding Layer because it does not have bit synchronization of an 

RF signal. When it achieves the synchronization, after an event signaling, it sends 

the demodulated bits to the Coding Layer. The Coding Layer switches to the 

Search state (S2) in which it looks for the Start sequence. When the sequence is 

found, the Decode state (S3) is enabled and the next received bits are decoded 

until an End sequence or an uncorrectable word is found. All the events of the 

state machine are described in the following table 

Table 4.1 – Events and States of Coding Layer  

 Inactive (S1) Search (S2) Decode (S3) 

Channel 

Activation (E1) 
Go to Search / / 

Channel 

Deactivation (E2) 
/ Go to Inactive Go to Inactive 

Start Sequence 

Found (E3) 
/ Go to Decode / 

Codeblock 

Rejection (E4) 
/ / Go to Search 

 

In next Sections, the two main blocks of the Sublayer are described in detail, 

showing, in particular, the characteristics of the CLTU and of the BCH coding 

scheme.  
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4.2 FRAME SYNCHRONIZER 

When Coding Layer is in Search state, it is looking for the Start Sequence in order 

to synchronize the receiver with the CLTU. 

To this purpose, the Start sequence is designed in order to provide low 

autocorrelation side lobes, thereby reducing the probability that the receiving 

end will mistakenly identify the pattern. In fact, it is clearly distinguishable from 

the Idle Sequence.  

The sequence is composed by 16 bits and the pattern is EB 90 (in hexadecimal). 

Its autocorrelation is reported here 

 

Figure 4.3 – BCH Start Sequence Circular Autocorrelation 

The autocorrelation is the correlation of a signal with a delayed copy of itself as 

a function of delay. In the plot above, the autocorrelation starts with a delay of 

half of the sequence length (shift = 8 samples means that the sequence is perfectly 

aligned with itself). 

https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Signal_(information_theory)
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4.2.1 Design and Trade-off analysis 

Considering the properties of the start sequence, the easiest and most intuitive 

way to implement the CLTU Synchronizer is to perform the correlation with the 

incoming symbols bit by bit. The incoming signal is considered in chunk of length 

equal to the length of the Start sequence and the cross correlation is defined as: 

(𝑠 ∗ 𝑥)[𝑛] ≜  ∑ 𝑠[𝑚]𝑥[𝑚 + 𝑛]

𝑚=∞

𝑚=−∞

 

where s is the start sequence, x is the incoming signal and n is the shift in samples.  

For example, the cross correlation of the Start sequence with the Idle sequence is 

shown in the following figure 

 

Figure 4.4 – Cross Correlation between BCH Start Sequence and Idle Sequence 

For the Frame synchronizer just described, it is supposed that the decision on the 

symbol at the Physical layer, is a hard decision (Section 3.6.1). However, the 

decision can be a Soft Decision, meaning that the soft information coming from 

the channel is exploited. Soft-decision decoders are often used in Viterbi decoders 

that are used for decoding convolutional codes, so with the BCH coding scheme 
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this system is not used. This kind of correlation is described in Chapter 5 when a 

convolutional code is presented. 

Since the Physical layer (due to the modulation scheme used) is not able to 

resolve the data ambiguity, the value of the cross correlation is also used to this 

purpose. Data ambiguity means that there is a shift in phase of 180° of the 

incoming signal. When the Frame Synchronizer is looking for the Start sequence, 

it tries to find it or its inverse (the correlation has the opposite value). If the Start 

of the CLTU is found and it is reversed, all the next bits are inverted until the 

Coding layer does not go again to the state S2. 

Lastly, the Recommended Standard [1] specifies two options for the reception of 

the CLTU regarding the Start Sequence. The first one is that the CLTU is accepted 

only if the Start Sequence perfectly match the expected bit pattern (no errors are 

allowed in the sequence). The second one is that the CLTU is accepted also if the 

Start Sequence differs of 1 bit from the expected pattern (1 error is allowed). As 

will be presented in the next subsection, since a decoder in a single error 

correcting mode is used, the Recommendation suggests to use the second option 

since it results in a better performance.  
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4.3 DECODER 

The Synchronization and Channel Coding Sublayer encodes the Frames to be 

transmitted with a BCH block code and generates a set of BCH Codeblocks. The 

format of a BCH Codeblock is reported in the following Figure 

 

Figure 4.5 – Format of a BCH Codeblock [18] 

The Information bits are used as input to the encoding process that generates 

seven Parity bits. The Filler bit is always set to zero. 

This code is called systematic since the information word is unchanged by the 

encoding process. The error control field is characterized by a generating 

polynomial and each information word is mapped into it (multiplying them). For 

systematic codes, all the possible error control fields have an even number of bits 

equal to one (Parity code). This property is exploited at the receiver side since it 

is possible to detect any odd number of errors. 

The code is an expurgated Hamming code, derived from a basic (63,57) 

Hamming code. The basic Hamming code can be improved by limiting it to the 

even-parity codewords. The resulting code has only 256 codewords so it has an 

information word of 56 bits and 7 check bits. The generator polynomial is: 

𝑔(𝑥) = 𝑥7 + 𝑥6 + 𝑥2 + 1 

The modified BCH code has a minimum distance of four meaning that each 

codeword differs from every other codeword in at least four bits position.  
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In Figure 4.6, is shown the BCH encoder, and it is briefly explained, since it is 

implemented for the performance measurements in Chapter 4.4 

 

Figure 4.6 – BCH(63,56) Encoder [1] 

The shift registers are initialized to zero and the switches are in position one 

while the 56 Information bits enter to the encoder. The Syndrome is updated at 

each new bit and, after the information bits, the switches move in position two. 

The seven parity bits are calculated and changed in sign and, for the 64-th bit 

(filler bit), the switches are in position three. 

4.3.1 Design and Trade-off analysis 

The decoder can be used either in error-detecting or error-correcting mode. In the 

first case, it can detect up to three errors and it can also detect any odd number 

of errors. In the second case, it can detect up to two errors and correct a single 

error. 

The solution adopted at the Rx, as reported in the Specification, is the Decoder in 

Single Error Correction (SEC) mode 
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Figure 4.7 – Implementation of Error Correction Mode Decoder [18] 

The decoder operates as follows: the Even Odd Detector (EOD) and the 

Syndrome Register (SR) are all set to zero before receiving a new BCH Codeblock. 

When the Coding layer switch to the Decoding state, the next 63 bits are input to 

the Buffer Register (BR), SR and EOD. 

After the 63 bits, the BR is full, SR contains the syndrome and EOD is 1 if the 

parity is odd and 0 if it is even. 

The seven switches close momentarily to transfer the contents of the SR to the 

Position Location Register (PLR) and to transfer the output of the EOD to the 

XOR gate and to the Hold device. This is done to save the result and to allow the 
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decoder to calculate the syndrome of another incoming BCH Codeblock while it 

tries to correct the actual one. 

As the next BCH Codeblock is shifted into the buffer BR, the current one is shifted 

out and, if there is an error, it is corrected at the output XOR gate. This correction 

occurs when the contents of the PLR register are ‘000001’ and the Hold output is 

‘1’. 

The decisions on whether the Codeword is correct, is rejected or must be 

corrected are summarized in the following table 

Table 4.2 – Codeblock Decision for BCH Decoder (SEC) 

DECISION EOD SB 

‘No Errors’ 0 0 

‘Codeword Rejection’ 0 1 

‘Codeword Rejection’ 1 0 

‘Correction of single error’ 1 1 

 

The Decoding process, as already specified in Table 4.2, stops when an 

uncorrectable Codeword is found. The Tail Sequence in the CLTU has the same 

length of a BCH Codeword and it has a particular pattern (C5 C5 C5 C5 C5 C5 C5 

79 in hexadecimal) that makes it different from a valid or correctable Codeblock. 

The performances of the code are report in the next subsection and another type 

of Coding Scheme is presented in Chapter 5.  
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4.4 SIMULATION AND PERFORMANCE RESULTS 

In order to calculate the performance of the BCH SEC mode decoder, a MATLAB 

simulation is executed. 

A BCH(63,56) encoder is implemented in MATLAB environment in the ways 

explained previously. In the simulation, a certain number of random bits are 

encoded, modulated and sent over an AWGN Channel. 

At the receiver side, the bits are demodulated and decoded with the BCH SEC 

Mode Decoder described in the previous Paragraph. Bit Error Rate (BER) and 

Codeword Error Rate (CER) are calculated as function of 
𝐸𝑏

𝑁0
. 

The BER is calculated by comparing the transmitted sequence of bits to the 

received bits and counting the number of errors. It is defined as: 

𝐵𝐸𝑅 =  
𝑁𝐸𝑟𝑟−𝑏𝑖𝑡𝑠

𝑁𝑇𝑥−𝑏𝑖𝑡𝑠
 

It is the ratio between the number of erroneous received bits and the number of 

total transmitted bits. In the same way, the CER is the number of erroneous 

received codewords over the number of total transmitted codewords. 

For the simulation, 
𝐸𝑏

𝑁0
 is incremented by a value of 0.5 𝑑𝐵 every time a number of 

500 erred codewords are received. Obviously, the more 
𝐸𝑏

𝑁0
 increases, the more 

time the simulation requires to obtain a reliable value of BER and CER since is 

more difficult to reach a so high number of errors and so the simulation is 

stopped before BER and CER become very small. In the next Figures are 

illustrated the results comparing the BCH with a system where no coding scheme 

is used. To obtain the performance of an uncoded system, the same MATLAB 

simulation, without exploiting the encoder and the decoder, is used 
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Figure 4.8 – BER versus 𝑬𝒃 𝑵𝟎⁄  with BCH and without Coding 

 

Figure 4.9 – CER versus 𝑬𝒃 𝑵𝟎⁄  with BCH and without Coding 
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As it is possible to see from the plots, the BCH decoder, that is able to correct one 

single error, gains about 2 dB with respect to an uncoded system. For example, 

to have a Bit Error Rate of 10−4 an 
𝐸𝑏

𝑁0
 of 7 dB is needed. The same 

𝐸𝑏

𝑁0
 results in a 

higher value of CER, since the decoder in not able to correct multiple error. The 

capabilities of detecting odd number of errors is not considered here.  

The curves will be compared with the real-time execution of the system in which 

all the other blocks, described in the previous Section, are implemented in the 

receiver. To anticipate the results, the simulation is quite similar to the real-time 

prototype (see Section 6).  

 



 

68 

 

CHAPTER 5 

5 LDPC Code 

In this Chapter a different type of coding scheme is presented. It provides higher coding 

gain with respect to the BCH code, presented in the previous Chapter. However, its 

implementation is more expensive so, pros and cons will be analyzed here. 

5.1 OVERVIEW 

Low-Density Parity-Check (LDPC) Codes are one of the most powerful of 

channel coding scheme [19]. They are block codes with very sparse parity check 

matrix (small number of ones), that is a matrix that describes the linear relations 

that the components of a codeword must satisfy. These codes can be: 

• Regular LDPC: have same number of edges leaving each node (same 

number of 1’s in each column and same number of 1’s in each row of the 

parity check matrix). They have good performance but a little worse than 

turbo codes; 

• Irregular LDPC: the degree of each node is allowed to vary and they are 

competitive with turbo codes. 

The parameters of the binary linear block code (C) are: 

• k    → number of information bits; 

• n    → number of code bits; 

• 𝑅𝑐 =
𝑘

𝑛
  → coding rate; 

•  𝑑𝑚𝑖𝑛    → minimum distance. 
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The block code can be described by different method, such as, Codebook, Parity 

check matrix (H) or generator matrix (G) and by graphical representation through 

a bipartite graph (Tanner Graph). 

5.2 ENCODER 

Encoding of LDPC, in general, has a non-negligible complexity. Two LDPC codes 

are specified by CCSDS Standard with codeword lengths (𝑛 = 128, 𝑘 = 64) and 

(𝑛 = 512, 𝑘 = 256). 

Different types of encoder are present in literature which can provide high 

performance simplifying enormously the computation of the codeword. 

However, this project regards the implementation of the receiver structure and 

the encoding process is done by a Workstation. For this reason, this work does 

not investigate the different encoders but only the classic method (𝑢 ∗ 𝐺 encoder) 

is described since it is implemented to be used by the transmitter. 

For any linear block code C(n, k), encoding can be performed by collecting the 

information bits into a k-bit information vector 𝒖 = (𝑣1, … , 𝑣𝑘), and obtaining the 

n-bit codeword 𝒄 = (𝑐1, … , 𝑐𝑛) as 𝒄 = 𝒖𝑮 where 𝑮. 

The generator matrix 𝑮 can be obtained by the equation 𝑮𝑯𝑻 = 𝟎𝑘𝑥𝑟 where 𝟎𝑘𝑥𝑟 

is the all-zero matrix and 𝑯  is the parity check matrix that is given by the 

Standard. For the short block length code, it is equal to 

 

Figure 5.1 – Parity Check Matrix of LDPC(128,64) 
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where 𝐼𝑀 and 0𝑀 are the M×M identity and zero matrices, respectively, and Φ is 

the first right circular shift of 𝐼𝑀.  That is, Φ has a non-zero entry in row i and 

column j if 𝑗 = 𝑖 + 1  mod M. It should be noted that Φ2  is the second right 

circular shift of 𝐼𝑀 , etc., and Φ2 = 𝐼𝑀 . The operator ⊕  indicates modulo-2 

addition [1]. 

The type of encoding just described is called systematic since the first k-bit of the 

codeword are equal to the information vector. 

The short code is the one chosen for the implementation since, LDPC(512,256) 

would add too much complexity to the Rx. 

The CLTU, as for BCH coding, has the same structure (Start Sequence, LDPC 

block, End Sequence) and nothing changes in the reception procedure. The length 

of the Start and End Sequences changes with respect to the BCH case. For 

LDPC(128,64), the CLTU is illustrated in Figure 5.2 

 

Figure 5.2 – CLTU Structure for LDPC(128,64) code 

The Start Sequence is composed by 64 bits and has the pattern 0347 76C7 2728 

95B0 (in hexadecimal). Its autocorrelation is reported in Figure 5.3 
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Figure 5.3 – LDPC Start Sequence Circular Autocorrelation 

Instead, the cross correlation between Start and Idle Sequences is reported below 

 

Figure 5.4 – Cross Correlation between LDPC Start Sequence and Idle Sequence 
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What it is easy to see is that the cross correlation gives lower values with respect 

to the BCH case where the mean value is 0.25, while the autocorrelation presents 

some side lobes (but there are not the two peaks of Figure 4.3). This was expected 

since the length of the Start Sequence if four times longer. 

The properties of the sequence are preserved looking at the cross correlation of it 

with its noisy version. Simulating an 
𝐸𝑏

𝑁0
= 4 the results is the following one 

 

Figure 5.5 – LDPC Start Sequence Autocorrelation (
𝑬𝒃

𝑵𝟎
= 𝟒) 

The peak is still highly distinguishable from the side lobes so, in order to test 

the system implementing an LDPC decoder, the start sequence can be easily 

recognizable performing, at the Rx side, a cross correlation with the incoming 

signal and comparing the result with a threshold that can be between 0.4 up to 

0.8. 

As for the BCH CLTU, after the start sequence there are N LDPC Codewords. 

Two observation must be done for the encoding process of these blocks. The 
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first one is that, if the frame that should be transferred does not fit exactly 

within an integral number of LDPC codewords, then fill bits must be appended 

to the last LDPC Codeword. The pattern of the fill consists in alternating ones 

and zeros (starting with a one). 

The second observation is that LDPC coding, by itself, cannot guarantee 

sufficient bit transitions to keep receiver symbol synchronizers in lock. For this 

reason, a randomizer should be added in the Rx chain (see 5.3). 

Lastly, an End Sequence is present after the last Codeword. In reality, this is an 

optional decision since it can be neglected relying to the ability of the decoder to 

exit from the decoding state when a non-correctable codeword is found. This 

reduces the complexity at the receiver stage and increases the throughput since 

the CLTUs can be transferred one back the other without sending the End 

Sequence in between. In this project, for completeness, the end sequence is 

introduced in the CLTU and the decoder looks for a non-correctable codeword 

until signaling the Coding Layer to switch to the Search state. The sequence has 

the pattern C5C5 C5C5 C5C5 C579 (in hexadecimal). 

5.3 RANDOMIZER 

In order to maintain bit (or symbol) synchronization with the received 

communications signal, every data capture system at the receiving end requires 

that the incoming signal must have a minimum bit transition density. Since, as 

said in the previous Paragraph, LDPC encoding does not guarantee sufficient bit 

transition, a Randomizer must be used. 

The Randomizer is a block used to increase randomness of the Tx binary 

sequence. A random binary sequence is a sequence of equi-probable             

(𝑝(0) = 𝑝(1) =
1

2
) and statistical independent bits.  
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The properties of a random binary sequence of length N are: 

• No 0/1 bias   → 
𝑁

2
 bits are 0 and 

𝑁

2
 are 1; 

• Transition density  → for any bit there is the probability of  
1

2
 of having a  

                                        transition (from 0 to 1 and viceversa); 

• Autocorrelation  → the sequence is ‘orthogonal’ to all its shifted         

                                        versions. This means that when comparing it with  

                                        cyclically shifted version, 
1

2
 bits are equal and 

1

2
 bits         

                                        differ; 

• Run distribution  → probability of finding long run (sequence of same       

                                        bit) is very small. 

A Randomizer is a (digital) device able to output a pseudo-random binary 

sequence, i.e., a sequence with nearly optimal randomness properties. How the 

Randomizer works is illustrated in the following Figure 

 

Figure 5.6 – How Randomizer works – Tx side (Up) – Rx side (Down) 

The Randomizer is based on a Linear Feedback Shift Register (LFSR), that is a 

shift register whose input bit is a linear function of its previous state. The LFSR, 

given a starting seed (initial value of the registers), produces a periodic binary 

sequence with period 𝑁 = 2𝑀 − 1 where 𝑁 is the number of shift registers used. 
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The period corresponds to all possible binary configurations (states), but all zero 

state must be avoided. 

The properties of a random binary sequence are maintained, but the correlation 

is not exactly 0 as it should be. However, the difference is very small and becomes 

negligible when period N increases. Moreover, the autocorrelation properties are 

very good only when the entire period is used. When only a segment is used, out 

of phase autocorrelation may show quite high peaks. 

The LFSR proposed by the CCSDS has 8 shift registers, so the max period is 𝑁 =

28 − 1 = 255 

 

Figure 5.7 – LFSR proposed by CCSDS [1] 

The   generator polynomial is: 

ℎ(𝑥) = 𝑥8 + 𝑥6 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 

The Standard specifies how to generate the random sequence and how it must be 

applied to the transfer frames. Every time a new CLTU starts, the LFSR is reset. 

For this reason, in order to do not add complexity to the receiver, the sequence is 

generated once and put in a lookup table. This simplifies a lot the operation since 

the Rx does not have to make a lot of shifting and ex-or operations at every 

received CLTU. 
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5.4 DECODER 

LDPC Decoder exploits ‘soft symbols’ to decode a Codeword. Soft decision 

decoding is a class of algorithms that takes a stream of bits or a block of bits and 

decodes them by considering a range of possible values that they may take. It 

considers the reliability of each received pulse to form better estimates of input 

data. This is opposite to the hard decision used by the BCH decoder where the 

bits are compared with a threshold and they are, definitely, considered as ‘1’ or 

‘0’. 

Summarizing, the Phase Recovery block (Chapter 3.6) does not make a decision 

on the received bits, but it transfers them to the Coding Layer as they are and it 

does not trunk the information about the channel carrying by the bits. This, 

theoretically, provides a performance improvement of about 2-3 dB. 

Nothing is specified in the Standard about the type of decoder to be used. In 

literature, there are different kind of LDPC Decoders, as specified in [20], and 

some of them are presented here. 

In particular, three decoders are briefly presented here, with particular attention 

to one of them that is the one that is actually exported in C language and executed 

on the development board. 

The decoders are listed here: 

• The iterative Sum-Product Algorithm (SPA); 

• The iterative Min-Sum (MS) Algorithm; 

• The iterative Normalized Min-Sum (NMS) Algorithm. 

The SPA works on the Tanner graph, by implementing an iterative exchange and 

update of reliability values concerning each received bit. 
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As already anticipated, the matrix H can be represented by a bipartite graph, 

where n nodes correspond to codeword bits (message nodes, on the left) and r 

nodes corresponds to redundancy bits (check nodes, on the right). 

Variable nodes and check nodes are connected each other (a 1 in H matrix 

corresponds to an edge) and they exchange some probabilistic information. 

𝑞𝑖→𝑗(𝑥) is the information sent by the i-th variable node to the j-th check node 

and it is the probability that the bit takes the value 𝑥, with 𝑥 ∈ {0,1}. In the same 

way, 𝑟𝑗→𝑖(𝑥) is the information sent by the j-th check node to the i-th variable 

node 

 

Figure 5.8 – Tanner Graph (left) – H matrix (right) 

An LDPC code can be decoded by the belief propagation decoding algorithm, 

that directly matches the code bipartite graph. After variable nodes are initialized 

with the channel messages, the decoding messages are iteratively computed by 

all the variable nodes and check nodes and exchanged through the edges 

between the neighboring nodes. 

The implementation of the algorithm is done in the Log-Likelihood Ratio (LLR), 

that is, for each received bit the log of the ratio between the probability that the 

bit is 1 and the probability that the bit is 0 is calculated. The LLR is reported on 

each edge and a Belief Propagation algorithm is applied. The iterative decoding 
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updates the value of the LLR at each iteration in order to calculate the syndrome. 

Once the syndrome is zero the decoder stops. 

The LLR of a random variable 𝑈 is defined as: 

𝐿(𝑈) = 𝑙𝑛 (
𝑃(𝑈 = 0)

𝑃(𝑈 = 1)
) 

where 𝑃(𝑈 = 𝑥) is the probability that 𝑈 takes the value 𝑥. In the LLR-SPA, the 

messages sent between the nodes are: 

Γ𝑖→𝑗(x𝑖) = 𝑙𝑛 (
q𝑖→𝑗(0)

q𝑖→𝑗(1)
) ,            Λ𝑗→𝑖(x𝑖) = 𝑙𝑛 (

r𝑗→𝑖(0)

r𝑗→𝑖(1)
) 

For the iterative decoding, these values are initialized to Γ𝑖→𝑗(x𝑖) = 𝐿(x𝑖)  and 

Λ𝑗→𝑖(x𝑖) = 0, where for a BPSK, the value 𝐿(x𝑖) is equal to: 

𝐿(x𝑖) = 𝑙𝑛 (
𝑃(x𝑖 = 0 | y𝑖)

𝑃(x𝑖 = 1 | y𝑖)
) =

2 y𝑖

𝜎2
 

where 𝑃(x𝑖 = 𝑥 | y𝑖) is the probability that the i-th transmitted bit takes the value 

x, conditioned on the received symbol  y𝑖  and on the variance of the noise 𝜎2. 

This is done for each pair of nodes. The value sent from the check nodes to the 

variable nodes is updated as: 

Λ𝑗→𝑖(x𝑖) = 2 ∙ 𝑎𝑡𝑎𝑛ℎ {∏ 𝑡𝑎𝑛ℎ [
1

2
Γ𝑖→𝑗(x𝑖)]} 

Then, the message sent from the variable nodes to the check nodes is updated as: 

Γ𝑖→𝑗(x𝑖) = 𝐿(x𝑖) + ∑ Λ𝑗→𝑖(x𝑖) 

At the same time is calculated the value of Γ𝑖(x𝑖)  and an estimation of the 

transmitted bit is given by: 

�̂�𝑖 = {
0    𝑖𝑓    Γ𝑖(x𝑖) ≥ 0 

1    𝑖𝑓    Γ𝑖(x𝑖) < 0
 



5.  LDPC Code 

79 

 

If the estimated codeword satisfies all the parity check matrix constraints, the 

decoding stops and the decoded codeword is given as output. Otherwise, the 

process listed above is repeated until a maximum number of iterations. If, after 

the last iteration, the estimated codeword still does not satisfies the constraint, 

the codeword is considered non-correctable and the coding layer skips to the 

search state. 

The algorithm just explained is quite expensive in terms of performance since it 

requires some hard operations, such as 𝑎𝑡𝑎𝑛ℎ(∙) , 𝑒𝑥𝑝(∙) , 𝑚𝑜𝑑(∙), updating of a 

matrix, etc. However, it is suitable for an eventual hardware implementation. 

Since the load of the Rx described in this work is not so high, the SPA can be 

implemented in software without particular performance bottleneck. 

Other types of decoders, making use of some mathematical approximations, are 

present. The MS algorithm consists in applying the Max-Log approximation in 

the computation of the messages between variable and check nodes. The NMS 

algorithm is based on the same principle, but it introduces a normalizing factor 

on the LLR values in order to improve the Min-Sum algorithm. 

They have similar performance with the one of SPA, but they introduce a small 

loss in the result. 

5.5 SIMULATION AND PERFORMANCE RESULTS 

In order to compare the performance of the different decoders a MATLAB 

simulation is performed.  

The same kind of simulation in Chapter 4.4 is executed. Random bits are encoded 

with the classical method, described in Section 5.2, modulated and sent over an 

AWGN Channel. At the receiver side, the bits are demodulated and decoded 
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with the 3 different decoders just presented. BER and CER are calculated as 

function of 
𝐸𝑏

𝑁0
. 

For the simulation, 
𝐸𝑏

𝑁0
 is incremented by a value of 0.5 𝑑𝐵 every time a number of 

20 erred codewords are received. The Randomizer is not implemented in this test 

and a maximum number of 20 decoding iteration is considered. Obviously, a 

smaller number of points are extracted since the decoding process requires more 

time with respect to the BCH one.  

In the next Figures, the results are illustrated 

 

Figure 5.9 – BER versus 𝑬𝒃 𝑵𝟎⁄  with different LDPC decoder 
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Figure 5.10 – CER versus 𝑬𝒃 𝑵𝟎⁄  with different LDPC decoder 

The SPA decoder has the best performance in terms of BER and CER at very low 

value of SNR. From 
𝐸𝑏

𝑁0
= 4 𝑑𝐵, NMS algorithm gives better results. This will be 

analyzed in detail as future work, when all the decoders will be implemented on 

the Zedboard. The results can be justified from the fact that the simulation is 

stopped before obtaining a confident value of error rate. 

NMS algorithm (a normalization factor of 0.8 is used) seems to perform slightly 

better than MS, but Sum-Product Algorithm is the best one. However, MS and 

NMS are a good trade-off between complexity of the implementation and 

performance of the result. 

Now, the performances of the SPA decoder (considered since it is the one 

implemented in practice), are compared with the performances of the BCH 

decoder, already presented. The same graphs of BER and CER are extrapolated, 

increasing the number of points for the SPA decoder 
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Figure 5.11 – BER versus 𝑬𝒃 𝑵𝟎⁄  – Comparison between Coding Schemes 

 

Figure 5.12 – CER versus 𝑬𝒃 𝑵𝟎⁄  – Comparison between Coding Schemes 
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With these plots, it is possible to see better the difference between LDPC and BCH 

coding schemes. It was already anticipated that, with LDPC code is possible to 

achieve a gain of about 2-3 dB with respect to the BCH code. This is visible in the 

graph where LDPC has the best performance. 

For example, considering an acceptable value of BER (10−4), the result is that 

LDPC is able to achieve it at around 4.5 dB of 
𝐸𝑏

𝑁0
, instead, BCH needed a value of 

7 dB.  These results will be compared with the practical system implementation. 

Using a complex coding scheme, such as the one described in this Chapter, with 

respect to use the BCH code, can make an important difference when working 

with very low values of SNR. Other types of simpler decoders will be 

investigated as future task, in order to make the implementation of the Rx 

simpler. 
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CHAPTER 6 

6 Prototype Testing 

This Section describes the set-up used to test the receiver architecture designed and 

simulated in the previous Chapters. All the receiver blocks are assembled together in order 

to write a software able to process a real-time signal. Improvement to the system and 

performance analysis are made to obtain a prototype that can be upgraded with future 

work. 

6.1 TESTING OVERVIEW 

The goal of this Chapter is to implement the functional baseband receiver 

designed in the previous Chapters, able to receive a signal and processing it to 

extract the information that it carries (Telecommand data). The test set-up used 

was already described in Section 2.6 and shown in Figure 2.8. 

Recalling the Scheme, the Ethernet link is exploited to send the signal generated 

by the Workstation and it also used by the Zedboard to send back some useful 

variables that can be observed through graphical representation in the GNU 

Radio environment. 

An example of the interface is reported in Figure 6.1. It can be observed that some 

parts of the screen are dedicated to the visualization of the transmitted signal and 

an Options tab is present to control its generation. The third part is dedicated to 

shown the signal processed by the receiver chain 
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Figure 6.1 – GNU Radio Interface 

More in detail, once the program is running is possible to see: the spectrum of the 

Tx signal, the shape of the signal in time and a ‘Option’ panel that can be used to 

modify the parameters. For example, is possible to add a delay in time to the 

signal, to add a frequency offset, to change the value of 
𝐸𝑏

𝑁0
 (modeled by the 

channel model block) and to add phase noise. 

Other plots are used to shows the processing on the signal by the receiver that 

sends back some data. For example, the filtered signal and also the scattering 

diagram after the PLL is shown in Figure 6.2. 

For what concern the receiver part, the Xilinx chip is programmed with the C 

code written exploiting all the information, about the blocks, derived by the 

MATLAB simulations. Using the UART interfaces is possible to print, also here, 
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some control variables on the terminal to check the correct execution of the 

software. 

With the set-up just described, each block is tested and the obtained results are 

compared with the ones extracted in the MATLAB simulation. 

6.2 CPU UTILIZATION 

The results in terms of clock cycles needed to each block of the Physical Layer to 

perform its operation, is already given in Chapter 3. The Physical Layer and the 

Coding Layer are implemented in the software as two separated Finite State 

Machine (FSM).  

The CPU utilization of the Coding Layer depends on the coding scheme used in 

the receiver. Considering the BCH Decoder, the following table summarizing the 

performance 

Table 6.1 – Performance of Coding Layer FSM (with BCH Decoder) 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

Frame Sync. 532 1.6 1000 0.16 

Decoder 817 2.45 1000 0.25 

 

Here, it is supposed that the Frame Synchronizer performs the correlation every 

time a new symbol enters the block (1000 bits at second). Also for the BCH 

Decoder is supposed that it must decode 1000 bits in one second and it must 

decode and correct one bit on each received frame. These are usual operations 

that the decoder does every time a new start sequence is detected. So, the two 

blocks never work simultaneously and the CPU utilization must be summed to 

the one of the Physical Layer. As it can be notice, the Rx is not very complex at 

this stage, so the utilization of a more complex decoding scheme is reasonable. 
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To this purpose, the performance of the Coding Layer FSM, considering the 

LDCP encoder, is reported below 

Table 6.2 – Performance of the Coding Layer FSM (with LDPC Decoder) 

Type Clock Cycles Elapsed Time [µs] Repetitions CPU [%] 

Frame Sync. 1300 3.9 1000 0.39 

Decoder 194412 583.82 8 0.47 

 

The same approach as for the BCH Coding Layer is followed. Obviously, the 

Frame Synchronizer requires more resources since the correlation is performed 

on 128 bits instead of 16. For the Decoder are considered the clock cycles needed 

to decode one frame (128 bits) with only one iteration. In one second, the decoder 

decodes around 8 frames. The performances are slightly worse than the BCH 

decoder, but not so high to exclude the utilization of the LDPC coding scheme on 

the Receiver. However, the difference can be seen at lower SNR where the 

Decoder must perform more than one iteration to decode the frames. 

Considering a maximum number of iterations of 20 and supposing that the 

decoder makes them for all receiver frames, the CPU utilization increases to 

9.34 %. 

Summarizing, the CPU utilization, distinguishing the case in which BCH and 

LDPC decoders are used, is shown in the following pie charts (the worst case for 

LDPC decoder is taken into account, i.e. it must perform the highest number of 

iterations) 
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Figure 6.2 – CPU utilization by the two FSM 

The utilization is calculated considering the number of time that each operation 

is performed in one second of execution. The CPU is always used at its maximum 

frequency (667 MHz), the L1 and L2 Caches are enabled by default and the 

software is running on a single core. 

For what concern the Physical Layer, the percentage is the sum of all the 

contributions described in Chapter 3 and it is equal to 15.05 %. 

More in detail, the chart in Figure 6.3 represents how the utilization is subdivided 

between each block 
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Figure 6.3 – CPU utilization by Physical Layer’s blocks 

Despite MA filtering and signal’s variance are moved in hardware, they are the 

main contribution in the processing chain. 

Instead, the two Coding Layers exploit the CPU as shown in Figure 6.4 

 

Figure 6.4 – CPU utilization by Coding Layer’s blocks 
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6.3 BCH SEC DECODER 

This Paragraph verifies the performance, in terms of BER and CER, of the BCH 

Decoder. First of all, the system is tested making a CLTU without coding the 

information bits. The comparison between the codeword error rate simulated in 

MATLAB and the one obtained the implemented software is shown below 

 

Figure 6.5 – CER of uncoded system 

It can be seen how the two curves are, as expected, almost similar. So, the physical 

layer of the system is working properly, providing a hard decision of the 

processed symbols. 

To test the BCH Decoder, a series of CLTUs, containing real NOOP Commands 

(the spacecraft does not use this TC, they are only used for test), are sent to the 

Receiver. As already seen in simulation, the Decoder works with very low BER 

at 
𝐸𝑏

𝑁0
 above 8 dB. Supposing this limit value, where in simulation the BER was 

around 10−5 , at least one error per Codeword is observed and correct as is 



6. Prototype Testing 

91 

 

possible to see in the Xilinx Vitis Terminal (Figure 6.6). In the left part of the 

Image, the scattering diagram at the output of the PLL is shown 

 

Figure 6.6 – BCH Decoder  (
𝑬𝒃

𝑵𝟎
= 𝟖 𝒅𝑩) 

Reducing 
𝐸𝑏

𝑁0
 to 7 dB, some Codeword present an even number of errors (they are 

rejected) or they present odd numbers of errors, but only one is corrected, so the 

Codeword is erred. 

6.4 LDPC SPA DECODER 

To test the LDPC Decoder (SPA), a C program is written that is able to create a 

CLTU by: 

• Placing the Start Sequence; 

• Encoding frames by means codifying characters, passed as input 

parameters to the code, in ASCII; 

• Closing the last frame adding fill bits as a sequence of ones and zeros; 

• Placing the Start Sequence. 
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The generated sequence is sent through the Ethernet interface exploiting the 

software GNU Radio that translates the bits into the signal that will be process 

by the Receiver. 

As expected, the performance of LDPC Coding are better that the BCH one. At 

the same values of 
𝐸𝑏

𝑁0
 the LDPC decodes the signal with only one iteration and 

with no errors. 

At lower SNR, the LDPC start to increase the number of iterations and at 
𝐸𝑏

𝑁0
=

5 𝑑𝐵, its mean is around 3. From simulation results that this value gives a BER 

quite similar to the one obtained from BCH at 
𝐸𝑏

𝑁0
= 8 𝑑𝐵. So, the gain of 2-3 dB is 

also confirmed here. In the test, the alphabet is sent more times in separated 

CLTUs. After the character ‘Z’ a sequence of ‘U’ is present (in ASCII, it 

corresponds to the fill pattern ‘01010101’). The number next to each frame 

represents the number of iterations performed by the SPA to decode it 

 

Figure 6.7 – LDPC Decoder (
𝑬𝒃

𝑵𝟎
= 𝟓 𝒅𝑩) 

Reducing 
𝐸𝑏

𝑁0
 to 4 dB, the constellation points are almost a unique one. The mean 

number of iterations increases and some uncorrected Codeword appears. In 
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Figure 6.8, one frame in the first CLTU is not corrected by the Decoder. This 

means that the decoder performed the maximum number of iterations, but the 

parity check conditions are not verified so, the decoder rejects the Codeword and 

the Coding Layer goes in Search state 

 

Figure 6.8 – LDPC Decoder (
𝑬𝒃

𝑵𝟎
= 𝟒 𝒅𝑩) 

To better see the performance of the SPA decoder implemented on the Zedboard, 

a CER curve is extracted and compared with the one derived from the MATLAB 

simulation. In the figure is also reported the CER of the uncoded system is 

highlighted 
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Figure 6.9 – SPA decoder CER performance on Zynq-7000 

As it can be seen, the decoder’s performance is quite similar to the theoretical 

one. Considering the same value of 
𝐸𝑏

𝑁0
 a penalty smaller than 1 dB is present, that 

is still a good reason to use LDPC code with respect to the BCH one. The 

calculation of the CER becomes very difficult for a value of  
𝐸𝑏

𝑁0
 greater than 5 dB, 

since it will be really small and, probably, closer to the theoretical behavior of the 

decoder at high SNR. 

A last interesting observation is done on the maximum possible data rate that the 

system can achieve with LDPC code. 

Starting from a data rate of 1 𝑘𝑏𝑖𝑡/𝑠  up to 4 𝑘𝑏𝑖𝑡/𝑠  the codeword error rate 

curves are reported in Figure 6.10 
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Figure 6.10 – SPA decoder CER performance at different data rates 

It is evident how for a data rate greater or equal to 3 𝑘𝑏𝑖𝑡/𝑠 the system is unusable 

since the CER goes near (but also exceeds) the performance of an uncoded 

system. The reasons why this happens are different and most of them must be 

attributed to the physical layer. As seen in the design, all the blocks are be tuned 

to work at 1 𝑘𝑏𝑖𝑡/𝑠. In order to obtain a valid result, the study performed for each 

block should be done for the different data rates and the software must adapt 

them in a suitable way. 

A really final observation regards the fact that increasing the data rate translates 

in a decreasing in the number of samples per symbol. First of all, this means that 

the data rate cannot physically increase up to a certain value and secondly, in the 

choice of the optimum sample a higher error is made since the system is 

implemented without making interpolation between samples. Obviously, the 

performance seen in Figure 6.10 can be increased taking into account these 

remarks.  
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6.5 CUSTOM IP CORE 

This last paragraph provides an overview about the development flow of 

accelerators IP cores to implement in hardware, within the Zynq programmable 

logic, part of the architecture previously discussed. 

As already anticipated in Chapter 2.6, the Programmable Logic of the Zedboard 

is based on the Xilinx 7-Series FPGA fabric and offers the designer the ability to 

implement their own custom logic which can work alongside the software 

running on the processor cores [7]. 

For designing and testing custom IP blocks, the Xilinx Vivado tool suite is used. 

A block of custom logic, in the PL, can be created, adding control and status 

monitoring capabilities by using memory mapped registers which the processors 

can access via the AXI4 interconnect. 

The AXI4 signals are completely flexible from the point of view of the VHDL 

design. During the creation of a Xilinx IP block, the Vivado tools can be used to 

map each AXI signal onto the signal name that the designer used when creating 

the IP. 

The first block implemented in hardware is the MA Filter. This thesis does not 

treat how the implementation in VHDL is done, but some observations are 

reported here. 

First of all, the logic followed in the filter implementation is not the same as for 

the software one (Figure 3.22). If the same logic is used, the output of the filter 

can be obtained in one shot (only 1 clock cycle) since it is possible to use N 

multipliers and 1 adder with N inputs simultaneously (N is the number of filter 

taps). However, the resource utilization associated with this extremely parallel 

architecture would impact significantly the chip utilization. 
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For this reason, the logic followed is to use the same number of multipliers, but 

more adders with less inputs. In this way, more clock cycles are required, but less 

resources are wasted. As already seen in the performance results of the filter 

implementation, the hardware implementation is much faster than the software 

one. 

In the previous Paragraph, it was given a reference of the importance to have an 

estimation of the SNR and it was said that the calculation of the signal’s variance 

is essential. The calculation of the variance of a complex signal is quite expensive 

in terms of operations that must be executed. For this reason, also this block is 

implemented in hardware, resulting in a significant reduction of clock cycles 

needed to perform the operation. The same logic used for the software 

implementation is used here. 

Lastly, an overview on how to add the two blocks in a simple architecture is 

given. 

In the following picture is shown a basic block design in Vivado to which, the 

two peripherals are inserted  

 

  Figure 6.11 – Block Design with Vivado tool 
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In the block design, the Processing system is essential and it must be connected 

in some way to the custom peripherals. After, these blocks are added, running 

the Connect Automation command, the AXI Interconnect and the PS Reset are 

automatically added and connected to the PS and to the peripherals. These blocks 

are needed to properly interface the Zynq PS with the AXI4 peripherals. 

After this important step, the design must be Validated, Synthetized, 

Implemented and, finally, the Bitstream can be generated [21]. 

At the end of the design process, it is possible to export the hardware platform, 

which can be used in Xilinx Vitis tool that is the environment used to write the 

application to be run on the Zedboard and to provide software drivers for the 

hardware configuration just presented. 
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CHAPTER 7 

7 Final Remarks 

This last Chapter summarizes the objectives of the thesis focusing on achieved results. 

Then, a list of topics that could be farther analyzed and studies in deep are presented as 

future work. 

7.1 CONCLUSIONS 

In this thesis work the implementation of a Software Defined Radio for a Satellite 

Radio System has been presented. The main goal to achieve was to obtain a 

Receiver prototype able to receive, process and decode a signal that is as close as 

possible to a real one. 

At this purpose, a Receiver architecture has been analyzed and the design was 

adapted to the specifications that are chosen for the prototyping. 

Simulation analysis, for each block of the receiver chain, were made performing 

simulations in MATLAB environment, creating a first implementation that was 

not able to work with a real-time signal, but able to process a signal having some 

specific characteristics. 

Finally, a prototype was implemented on a development board with good 

results, which are very near to the ones extracted from the design phase. The 

prototype was tested and validated providing a solid basis for future 

developments. 
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Here, it is reported a summary of the objectives proposed in Chapter 1.2 focusing 

on the obtained results: 

• Literature study of a Satellite Radio System focusing on the Receiver 

structure: the study on a typical coherent satellite receiver gave 

information about its architecture. Following the CCSDS Standard, a 

series of specification about the transmitted signal in a TC system are fixed 

and they were a guideline in the modeling of the initial proposed Rx 

architecture; 

• Study of a Base Station Transmitter to generate an Uplink signal, able to 

send realistic data: it was chosen to use the software GNU Radio in order 

to model the transmitted signal basing on the fixed specification. This 

choice allowed to make a flexible transmitter structure that is able to save 

the signal as a stream of bits in a file, for the first part of simulation in 

MATLAB, but also to send the signal in real-time exploiting different 

interfaces for next implementation on the development board; 

• Feasibility analysis of the proposed architecture through MATLAB 

simulations: MATLAB was used as simulation environment. The receiver 

chain is implemented, optimizing each block and tuning their parameters 

for adapting them to the transmitted signal. A study on their performance 

has been done, choosing the best solution in the design process; 

• Implementation on a Development Board able to work in real-time: once 

the architecture has been frozen, all the designed blocks were 

implemented in C language on a development board; 

• Performance measurements of each block finding which of them can be 

implemented in hardware: two blocks that required too much resources, if 

implemented in software, were exported in hardware; 
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• Test of the prototype simulating a real environment condition: the 

prototype was tested and validated through performance analysis. The 

receiver is also tested in harsh conditions, changing the SNR and adding 

some impairments to the transmitted signal. 

7.2 FUTURE WORK 

The test campaign of the Receiver prototype is still on-going and it is needed to 

assess in a more defined way the system performance and the system 

specifications. 

When the specifications of the system will be defined in detail, the structure of 

the Telecommand System can be frozen for a future realization of the RF part of 

the receiver. This will allow to study the behavior of the baseband part of the 

receiver with the real impairments added by non-idealities of the RF front-end. 

After that, following the same steps for the design and implementation of the TC 

system, the Telemetry system will be taken into account. Transmitter structure, 

MATLAB simulations, performance measurements and implementation on a 

development board will be performed. 

The two projects will be merged together in order to have a complete satellite 

transponder prototype.
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