
POLITECNICO DI TORINO
Master’s degree course in Computer Engineering

Master’s Degree Thesis

Test Fragility: An exploratory
assessment study on an

Open-Source Web Application

Supervisors
Assistant Prof. Luca Ardito
Research Assistant. Riccardo Coppola
Prof. Morisio Maurizio

Candidate
Huang Shijie

Student Number: s233098

Academic Year 2019-2020

This work is subject to the Creative Commons Licence

Abstract
Context: With the explosive growth of web applications in the last two
decades, web application testing is an integral part of the web application
development process. Frequent web application testing can minimize the
chance of bugs ruining the customer experience and it also gives you a bet-
ter overall idea about how your app performs, what its strengths are, and
where the weak points are hidden. Automating web application testing is a
highly automated process for testing web applications, and manual testing
is not suitable for critical and complex applications in terms of both human
resources and time, so automation testing has been introduced to overcome
manual testing problems. Automation is a must in the interests of effective-
ness and efficiency.

Goal: The objective of this thesis is to understand the automated web
application testing techniques for web applications, and analyze the main
fragility (i.e., need for maintenance of existing cases) causes of web applica-
tion tests. This evaluation has been performed by means of an exploratory
experiment. The test fragility results are evaluated for two different auto-
mated testing technologies.

Method: This article makes an exploratory assessment of web applica-
tions and their related vulnerability causes. Firstly a small test suite (five
test cases) has been analyzed - four automated web application testing tools
(SeleniumIDE-is open-source without writing code and allows for record and
replay; Selenium-is an open-source framework and allows for writing code or
scripts; TestComplete-automation testing tool with a hybrid object and vi-
sual recognition engine, and has script or scriptless flexibility; EyeAutomate-
visual GUI Testing with intelligent image recognition technique) are applied
- for Polito web application. Then introduced the concept of vulnerability in
the computer field. Next, Selenium WebDriver and eyeAutomate do testing
on the Dolibarr web application - The iterative process was used under 19
test cases in a test suite, then the cause of all test corruption is recorded.
Moreover, the experimental results record (compute the percentage of mod-
ified tests under a test suite of one version and compute the percentage of
each modified test case among the 8 versions) of Dolibarr under the Sele-
nium/EyeAutomate test are summarized.

Results: Throughout the exploratory research, by comparing the modi-
fied LOC/instruction, the advantages and disadvantages of the two test tools
for Dolibarr were compared and analyzed. The data gathered on the appli-
cation Dolibarr in the test report largely show that applying the Selenium

i

automated testing tool is much more stable than EyeAutomate. Moreover,
the summary of the main fragility cause of Dolibarr under Selenium testing
gives that the most frequent causes of fragility were changes in the DOM
Tree.

Conclusion: According to the results of these experiments, it is evident
that fragility happens frequently on a typical open-source web application
project, and that the changes in the DOM structure or graphic changes may
invalidate many test cases during the evolution of a web app. These results
can be used by developers and practitioners to understand which modifica-
tions can lead to much-required maintenance effort in their test cases.

ii

Acknowledgements

I would like to thank Assistant Prof. Luca Ardito Research Assistant. Ric-
cardo Coppola and Prof. Morisio Maurizio, who advised the project. It
makes me discover the universe of web application testing research and dedi-
cates me all the time I needed and answers all of my questions and concerns.
I am extremely thankful to Research Assistant. Riccardo Coppola, who man-
aged and administrated my research activities. I am extremely thankful to
Assistant Prof. Luca Ardito and Prof. Morisio Maurizio, for supporting me
well throughout my research work. I would like to thank them for guiding
me throughout this journey, and I am very grateful to have received this
opportunity. Their advice, discussion, and effective comments were always a
source of motivation. This work would not have been possible without them.

I would like to thank my parents for encouraging me, motivating me and
believe in me, this thesis would not have been possible without them. I
would not have reached this stage without the support, love, and prayers of
my family and friends.

iii

Abbreviations

CSRF Cross-Site Request Forgery

API Application Program Interface

GUI Graphical User Interface

BDD Behavior-Driven Development

AI Artificial Intelligence

HTML Hypertext Markup Language

CSS Cascading Style Sheets

QA Quality Assurance

URL Uniform Resource Locator

DLL Dynamic-Link Library

XML Extensible Markup Language

ERP Enterprise Resource Planning

CRM Customer Relationship Management

DOM Document Object Model

LOC Lines Of Code

iv

Contents

Abstract . i
Acknowledgements . iii
Abbreviations . iv

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 5
2.1 Web applications . 5
2.2 Testing . 6

2.2.1 Test plan . 6
2.2.2 Test case . 7
2.2.3 Test script . 7
2.2.4 Test coverage . 7
2.2.5 Black-Box Testing . 8
2.2.6 White-Box Testing . 8
2.2.7 Grey-Box Testing . 8
2.2.8 Manual testing . 9
2.2.9 Automation testing . 9

2.3 Exploration of web-based testing techniques 10
2.4 Selenium IDE . 13

2.4.1 SetUp . 13
2.4.2 How it works . 13
2.4.3 Example test suite with SeleniumIDE 14

2.5 Selenium . 17
2.5.1 SetUp . 18
2.5.2 How it works . 19

v

2.5.3 Example test suite with Selenium 20
2.6 TestComplete . 24

2.6.1 SetUp . 25
2.6.2 How it works . 26
2.6.3 Example test suite with TestComplete 29

2.7 EyeAutomate . 33
2.7.1 SetUp . 33
2.7.2 How it works . 34
2.7.3 Example test suite with EyeAutomate 35

3 Empirical Evaluation 43
3.1 Fragility concept . 43
3.2 Object of study: Dolibarr . 46
3.3 Experiment . 47
3.4 Test case definition . 48

4 Results 51
4.1 Experiment results . 51

4.1.1 Result Under Selenium WebDriver 52
4.1.2 Summary of Dolibarr Change Types under Selenium . 52
4.1.3 Report on Dolibarr Test Cases under Selenium 59
4.1.4 Result Under EyeAutomate 64
4.1.5 Summary of Dolibarr Change Types under EyeAutomate 64
4.1.6 Report on Dolibarr Test Cases under EyeAutomate . . 71
4.1.7 Comparison between Selenium and EyeAutomate . . . 76

4.2 Fragility of Dolibarr . 79

5 Conclusion and Future Work 83

Bibliography 85

vi

List of Tables

2.1 Description of Usage Scenarios 12
3.1 Description of Dolibarr Usage Scenarios 49
4.1 Report on V3 of Dolibarr, with Selenium 59
4.2 Report on V4 of Dolibarr, with Selenium 60
4.3 Report on V5 of Dolibarr, with Selenium 60
4.4 Report on V6 of Dolibarr, with Selenium 61
4.5 Report on V7 of Dolibarr, with Selenium 61
4.6 Report on V8 of Dolibarr, with Selenium 62
4.7 Report on V9 of Dolibarr, with Selenium 63
4.8 Report on V10 of Dolibarr, with Selenium 63
4.9 Report on V3 of Dolibarr, with EyeAutomate 71
4.10 Report on V4 of Dolibarr, with EyeAutomate 72
4.11 Report on V5 of Dolibarr, with EyeAutomate 73
4.12 Report on V6 of Dolibarr, with EyeAutomate 73
4.13 Report on V7 of Dolibarr, with EyeAutomate 74
4.14 Report on V8 of Dolibarr, with EyeAutomate 74
4.15 Report on V9 of Dolibarr, with EyeAutomate 75
4.16 Report on V10 of Dolibarr, with EyeAutomate 76
4.17 Count changed LOCs with Selenium for Dolibarr 78
4.18 Count changed instructions with EyeAutomate for Dolibarr . . 79
4.19 Main causes of fragilities in broken test cases 81

vii

List of Figures

2.1 Login . 11
2.2 Drop-Down List . 11
2.3 Operate Video . 11
2.4 Print Certificate . 12
2.5 Write Email . 12
2.6 Login with Selenium IDE . 14
2.7 Drop-down List with Selenium IDE 15
2.8 Operate Video with Selenium IDE 15
2.9 Print Certificate with Selenium IDE 16
2.10 Write Email1 with Selenium IDE 16
2.11 Write Email2 with Selenium IDE 17
2.12 Login with Selenium . 21
2.13 Drop-down List with Selenium 21
2.14 Operate Video with Selenium 22
2.15 Print Certificate with Selenium 23
2.16 Write Email with Selenium . 24
2.17 Recording Menu . 27
2.18 Adjust Action with TestComplete 28
2.19 Adjust Action2 with TestComplete 29
2.20 Login with TestComplete . 30
2.21 Drop-down List with TestComplete 30
2.22 Operate Video with TestComplete 31
2.23 Print Certificate with TestComplete 32
2.24 Write Email with TestComplete 32
2.25 EyeStdio Workstation . 34
2.26 Login with EyeStdio . 35
2.27 Drop-down List with EyeStdio 36
2.28 Polito Starting with EyeStdio 37
2.29 Operate Video with EyeStdio 38
2.30 Print Certificate with EyeStdio 39

viii

2.31 Write Email1 with EyeStdio 40
2.32 Write Email2 with EyeStdio 41
3.1 Taxonomy . 45
3.2 Dolibarr Navigation . 46
4.1 Modifications needed on various versions of Dolibarr, with Se-

lenium . 52
4.2 HTML code for T2 in V2.9.0 53
4.3 HTML code for T2 in V3.9.4 53
4.4 Java code for T2 between V2.9.0 and V3.9.4 54
4.5 HTML code for T6 in V2.9.0 54
4.6 HTML code for T6 in V3.9.4 55
4.7 Java code for T6 between V2.9.0 and V3.9.4 55
4.8 Capture Dolibarr for T14 between V2.9.0 and V3.9.4 55
4.9 Java code for T8 between V2.9.0 and V3.9.4 56
4.10 Capture Dolibarr for T3 between V2.9.0 and V3.9.4 56
4.11 Capture Dolibarr for T19 in V2.9.0 57
4.12 Capture Dolibarr for T19 in V3.9.4 58
4.13 Capture Dolibarr for T12 between V2.9.0 and V3.9.4 58
4.14 Java code for T14 between V2.9.0 and V3.9.4 58
4.15 Java code for T2 between V4.0.6 and V5.0.7 59
4.16 Modifications needed on various versions of Dolibarr, with

EyeAutomate . 64
4.17 ClickName Change of Dolibarr, with EyeAutomate 65
4.18 ClickID Change of Dolibarr, with EyeAutomate 65
4.19 SelectText Modification of Dolibarr, with EyeAutomate 66
4.20 Images Reposition of Dolibarr, with EyeAutomate 66
4.21 Image Substitution of Dolibarr, with EyeAutomate 66
4.22 Command-Image Conversion of Dolibarr, with EyeAutomate . 67
4.23 ClickText Change of Dolibarr, with EyeAutomate 67
4.24 ClickCss Change of Dolibarr, with EyeAutomate 68
4.25 SelectValue Modification1 of Dolibarr, with EyeAutomate . . . 68
4.26 SelectValue Modification2 of Dolibarr, with EyeAutomate . . . 69
4.27 Element Deletion of Dolibarr, with EyeAutomate 70
4.28 Element addition of Dolibarr in V2.9.0 70
4.29 Element addition of Dolibarr in V3.9.4 71
4.30 Percentage of Modified Tests with Selenium 76
4.31 Percentage of Modified Tests with EyeAutomate 77
4.32 Example of Pure Graphic Fragilities 80
4.33 Example of Widget Arrangement Fragilities 81

ix

Chapter 1

Introduction

With the explosive growth of web applications in the last two decades, web
application testing is an integral part of the web application development
process. We know testing web applications can be more challenging than
testing traditional software. Software testing has been an effective approach
to ensuring the quality of web applications, [1, 2].

If the web app development is done with Agile principles applied, it’s
important to “mix” the web app testing phase with the development phase
properly. It could be summarised into 6 steps.

1. Functionality Testing
With web functional testing, it should guarantee that all clients’ require-
ments are met and make sure that the web application is functionally
correct. In detail, Functionality testing checks the database connection,
all links in the web pages, cookies, forms used for submitting and/or get-
ting info from the user, etc. Once you perform a set of tasks whatever
automatically or manually to test a web app, you should compare re-
sults with the expected output. This should be done several times with
different data input to make sure the level of accuracy, then it could
consider the web app is functionally correct. It should be done early in
the developing stages to speed up the whole app-building process and it
reduces risks toward the end of the cycle.

2. Usability testing
Usability testing is about how to test the website, includes test the nav-
igation and controls, Content checking, Check for user intuition. Nor-
mally, It is divided into 4 phases to complete this testing:

1

1 – Introduction

(a) It develops a test strategy by examining all functions of the web
application (including navigation, content).

(b) Recruiting the internal or external test participants (External testers
can do usability testing through simulating your expected user base,
or internal testers can do the testing by the developers themselves).

(c) The team of experts runs usability testing.
(d) Analyzing the results and doing web app adjustment. It helps to

overcome the usability issues then make the web app better and
eyes-catching.

3. Interface testing
Interface testing not only verifies all interaction between the app server
and the webserver run correctly, but also care about displaying of error
messages, and it also is used to determine whether the interruptions by
the server and/or by the user are handled properly.

4. Compatibility testing
Compatibility testing should guarantee Browser compatibility such as
Chrome, Internet Explorer, Safari, Firefox, Operating system compat-
ibility such as Windows, Mac, Linux, and is compatible with various
devices like a notebook, mobile, etc.

5. Performance testing
Normally, Checking performances to verify the responsiveness and sta-
bility of the web apps are under various load conditions.Performance
testing includes testing under different internet speeds such as under
normal speed, peak speeds. There are some performance testing types
as described below.
Load testing: It measures business-critical transactions and monitors
the load on the database, application server, etc.
Stress testing: It discovers the web app’s breaking point and determines
how the web app recovers if the current load goes well above the upper
limit capacity.
Soak testing: It’s also called endurance testing. It tests the system
parameters under continuous expected load then determine the relatively
good one.

2

1 – Introduction

Spike testing: It suddenly increases the number of users by a very large
amount and measures the performance of the system. It aims at whether
the system can sustain the workload.

6. Security testing
The last step verifies web app security such as data theft, unauthorized
access, and other malicious actions. This testing will point out the
web app’s weak points, one way is normally applied which is serious
of fabricated malicious attacks to test how the app response performs
under these situations. Once a security issue is detected, testers try their
best to overcome them.

Here some of the techniques to verify the security level of the web applica-
tion are listed: Injection, Broken Authentication and Session Management,
Cross-Site Scripting, Insecure Direct Object References, Security Misconfig-
uration, Sensitive Data Exposure, Missing Function Level Access Control,
Cross-Site Request Forgery (CSRF), Using Components with Known Vul-
nerabilities, Unvalidated Redirects and Forwards.

So when the application testing runs smoothly, the web app is ready to be
released. Under software testing, Manual testing is not suitable for critical
and complex applications in terms of both human resources and time. So
it is not a practical choice anymore. So Automation testing has been in-
troduced to overcome manual testing problems. Automating the execution
phase of the software testing cycle is particularly the most popular way in
the automation field and No human intervention required, it improves the
effectiveness, efficiency, and coverage of software testing. Automated testing
includes functional automated testing and automated performance testing.

The most efficient way to perform test automation for web applications is
to adopt a pyramid test strategy. This pyramid test strategy includes three
different levels of automated testing. Unit testing represents the cardinality
and maximum percentage of this test automation pyramid. Next is the ser-
vice layer or API testing. Finally, GUI testing is at the top. But Automated
web application testing offers its own unique set of challenges nowadays. One
of the Challenges is that automatically test on multiple Browsers (and possi-
bly multiple versions of each Browser); test on different devices/form factors
(where mobile views may differ from standard desktop views); be able to
reuse test cases, or partial test scenarios, etc. Hence, tool support for web
test automation exists necessarily. We will take a look at some of the web ap-
plication testing tools such as Zephyr, TestLink, PractiTest, TestComplete,

3

1 – Introduction

Selenium, HP UFT, Tricentis, BugZilla, etc. For example, to facilitate easy
test case creation without writing code, a popular option is to employ tools
that allow for record and replay such as Selenium IDE, [3], which is free
and open-source. In cases where writing code or scripts, while still leverag-
ing some external tooling, is a viable option, several open-source frameworks
also exist such as Selenium WebDriver, [4]. Moreover, TestComplete, claim
that the Easiest-to-Use Automated UI Testing Tool with Artificial Intelli-
gence leverages the industry’s first automation testing tool with a hybrid
object and visual recognition engine to test every desktop, web, and mobile
application with native BDD-style Gherkin syntax and script or scriptless
flexibility. EyeStore has tools for visual GUI Testing, Automate any app on
any platform using intelligent image recognition. This is possible due to a
combination of image recognition and AI. In this report, those 4 automated
web application testing tools that I did research will be introduced in the
next chapters in detail.

The remainder of this report is organized as follows: The background
section presents the rationale of the web application, testing, and imple-
menting some basic tests on the web application: https://www.polito.it. It
uses 4 different automated web application testing tools and introduces those
open source automation tools. The experiment section discusses the fragility
concept, explains our testing procedure on an open-source web application:
Dolibarr using Selenium WebDriver and EyeAutomate technique, and the
definition of test cases for this experiment. The results section reports the
result of the experiment section. In the last chapter, the conclusion has been
provided for the thesis.

4

Chapter 2

Background

2.1 Web applications
Web applications (such as online auction, webmail, word processors, online
forms, spreadsheets, file conversion, etc) are ubiquitous in our life. The web
application is a client-server computer application program that is stored on
a remote server and delivered over the internet through a browser interface.
It means users can access the web application through a network on a web
browser such as Firefox, Safari or Google Chrome. Therefore users don’t need
to install web applications anymore. It is friendly to the business and end-
user, and it can run on multiple platforms regardless of operating systems or
computers, but a compatible browser must be guaranteed.

Most web applications are written in JavaScript, HTML5, or Cascading
Style Sheets (CSS). Client-side programming executed on the browser builds
front-end to present information to users by using those above languages,
Server-side programming executed on the server typically utilizes Python,
java, Ruby language to create scripts (PHP, ASP, JSP, etc) which a web
application will use to handle the storage and retrieval of the information.

A web application works as below.

1. The user triggers a request to the webserver over the Internet, either
through a web browser or the application’s user interface. It is called a
client-side request.

2. Web servers manage client-side requests, so web servers will forward the
client-side request to the web application server.

3. The web application server performs the requested task such as querying

5

2 – Background

the database or processing the data, then generates the result of the
requested data as a response to the webserver.

4. The web server transfers the response to the client, then the response
shows on the browser to the user.

2.2 Testing
According to the ANSI/IEEE 1059 standard, Testing means that evaluating
the features of a system or its component (s) and detect any defects, errors,
or missing requirements contrary to the actual requirements. Testing can be
done at all stages of module development: requirements analysis, interface
design, algorithm design, implementation, and integration with other mod-
ules. Testing is performed by the testing team, after that, the testing team
will report to the developer team to debug.

Testing is so important. When the Quality of the product is user-friendly,
powerful, and useful, customers will have confidence in the team and the
organization. If software results in failures, It would be very expensive to fix
in the future or the later stages of the development even worse is required to
redesign. Testing helps to identify web applications weak points and increase
app work for several times. Testing is necessary because it can point out the
defects and errors that were made during the development phases. Ignoring
testing as a critical part of the success of your project will only lead to failed
projects and significantly impactful issues in production. We should pay
more attention to it.

Firstly, we need to know different testing type roles depended on the
project and the organization, such as QA manager who has to control and
manage the tests, QA Analyst with a profile who usually manage to design
the tests, tester who is in charge of executing test cases, Professionals with
more technical profiles who can automate tests or performance tests.

Before going further into details of software testing, here few terms related
to software testing are being explained.

2.2.1 Test plan
“A test plan is an artifact that expresses the objectives, scope, technique,
approach, and focus of a software testing effort”, [5]. Typically the Quality
Assurance Team Lead will write a Test Plan. A test plan includes:
1. Introduction to the Test Plan document

6

2.2 – Testing

2. Assumptions when testing the application

3. Test cases list

4. List of features to be tested

5. When you test software, you should think about what sort of approach
to use

6. The list of deliverables that need to be tested

7. What resources are allocated for testing

8. Risks during the testing process

9. A schedule of tasks and milestones to be achieved

2.2.2 Test case
“A test case is an artifact that delineates the input, action and expected
output corresponding to that input”, [6]. A fundamental part of software
testing is a test-case generation. There are many types of test cases such
as functional, negative, error, logical test cases, physical test cases, UI test
cases, etc. Test cases are used to expose faults within the web app and they
are written to keep track of the testing coverage of a software. Furthermore,
creating more test cases requires more resources.

2.2.3 Test script
“A test script is a combination of test cases to test a particular function or
component of the system”, [6].

2.2.4 Test coverage
Testing could be endless, and we use coverage in which we implement a pro-
gram to determine how thoroughly a test suite exercises it. Test coverage is
a technique to measures the amount of testing performed by a set of tests.
It could determine all the decision points and paths used in the application,
then create additional test cases to increase coverage, it also can find a re-
quirement area but not implemented by a set of test cases. Test coverage
helps us identify meaningless test cases that don’t increase coverage and a

7

2 – Background

quantitative measure of test coverage which is an indirect method for qual-
ity check. In the meantime, test coverage has some disadvantages. Most of
the task in test coverage is no way to automate, then we need more effort
to analyze the requirements and create test cases. Even you can count test
coverage features and measure against several tests, but judgment error still
could happen.

2.2.5 Black-Box Testing
The black-box testing technique is based directly on specified functional re-
quirements and has no concern considering the ultimate program structure,
[9]. Black box testing is also known as data-driven testing, input/output-
driven testing, [7], or requirements-based testing, [8]. As in black box test-
ing, no more than the functionality of the software module is of use, it is
also referred to as functional testing - a testing method emphasizing to exe-
cute the functions and examine their input and output data, [9]. The tester
doesn’t take into account the system architecture and does not have access
to the source code. Typically, while performing a black-box test, a tester will
interact with the system’s user interface by providing inputs and examining
outputs without knowing how and where the inputs are worked upon.

2.2.6 White-Box Testing
White Box Testing can also be termed as glass box testing, clear box test-
ing, and structural testing,[7, 8]. Contrary to black-box testing, The tester
needs to know the source code and find out which unit/chunk of the code is
behaving inappropriately. It helps in optimizing the source code.

2.2.7 Grey-Box Testing
Grey-Box Testing seems a mix of Black Box and White Box and offers com-
bined benefits of black-box and white-box testing wherever possible. Unlike
black-box testing, where the tester only tests the application’s user inter-
face; for grey-box testing, the tester has permission to design documents and
the database. Grey-Box Testing can take the ease-of-use, straightforward
approach of Black Box testing and leverage it against the in-depth, code tar-
geted testing of White Box. Grey-Box Testing is done from the point of view
of the user and not the designer.

8

2.2 – Testing

2.2.8 Manual testing

Manual testing doesn’t use any automated tool or any script. The tester
tests the software to identify any unexpected behavior or bug. Testers use
test plans, test cases, or test scenarios to test software, this ensures the
completeness of testing. There are many stages for Manual testing such as
unit testing, integration testing, system testing, and user acceptance testing.

2.2.9 Automation testing

Automation of software testing is the process of creating a program (test
script) that simulates the manual test case steps in whatever program-
ming/scripting language, [10, 11] with the help of other external automation
helper tool, [12, 13]. Automation can reduce time and costs. Automation is
generally supportive while managing recurring responsibilities like unit test-
ing and regression testing, where test cases are carried out whenever modifi-
cations are completed, [14]. In contrast to manual testing, automated testing
is inappropriate for tasks in which there is little repetition, [15], such as ex-
plorative testing or late development verification testing. Manual testing is
more suitable for these activities as building automation is an extensive task
and feasible only if the case is repeated several times, [15]. Overall, the main
drawbacks of testing automation are the costs such as implementation costs,
maintenance costs, and training costs. Implementation costs include direct
investment costs, time, and human resources. The correlation between these
tests automation costs and the effectiveness of the infrastructures have been
discussed in literature, [16].

The following tools can be used for automation testing: 1, HP QuickTest
Professional 2, Selenium IDE 3, EyeAutomate 4, IBM Rational Functional

1https://selenium.dev/
2https://www.tutorialspoint.com/qtp/index.htm
3https://selenium.dev/selenium-ide/
4https://eyeautomate.com/eyeautomate/

9

2 – Background

Tester 5, SilkTest 6, TestComplete 7, LoadRunner 8, Visual Studio Test Pro-
fessional 9, WATIR 10.

I will introduce some of them later.

2.3 Exploration of web-based testing tech-
niques

At first, an exploration of the different testing techniques that are available
for web-apps has been conducted. As the software object for the exploration,
the official web app of Polito has been selected. In Figure 2.1-2.5, 5 screen
captures of the web app are shown. This app allows students or profes-
sor/researchers to log in and access a set of specific features: your personal
data, lectures timetable, info about mailbox, info about education resources
(include course videos online), info about language studying resources, info
about jobs, info about tuition fees and certificates, info about thesis topics,
info about the career and the possibility of booking exam calls, etc.

5https://www.ibm.com/us-en/marketplace/rational-functional-tester
6https://www.microfocus.com/en-us/products/silk-test/overview
7https://smartbear.com/product/testcomplete/free-trial/
8https://www.microfocus.com/en-us/products/loadrunner-professional/overview
9https://visualstudio.microsoft.com/vs/test-professional/

10http://watir.com/

10

2.3 – Exploration of web-based testing techniques

Figure 2.1. Login

Figure 2.2. Drop-Down List

Figure 2.3. Operate Video

11

2 – Background

Figure 2.4. Print Certificate

Figure 2.5. Write Email

4 automated web app testing tools (selenium, selenium IDE, TestCom-
plete, EyeAutomate) were used to develop test suites for the Polito web
application. The main usage scenarios of the app were exercised with five
different test cases, listed in Table 2.1.

Table 2.1. Description of Usage Scenarios

Name Description
T1 Student login
T2 Check list in email
T3 Check video
T4 Check certificate print
T5 Check email writing

12

2.4 – Selenium IDE

For more details please see the next section.

2.4 Selenium IDE
Selenium IDE is a Chrome and Firefox add-on as an open-source record and
playback test automation tool for the web. It helps generate and main-
tain site automation, tests, and achieve the goal which removes the need to
manually step through repetitive operations. Once records finish, generated
recorded test scripts can be exported to C#, Java, and Ruby or Python pro-
gramming languages. Then those exported scripts can be used by Selenium
RC (Deprecated) or Selenium WebDriver.

2.4.1 SetUp
Setting up selenium IDE means that installing the extension on the browser.

1. Open Chrome or Firefox web store on the web browser

2. Search Selenium IDE, then click the button to add it into
Chrome/Firefox

3. Close and restart the Chrome/Firefox browser

4. Launch Selenium IDE by clicking its icon from the menu bar in the
browser

5. Upon launching the Selenium IDE will be presented with a welcome
dialog

2.4.2 How it works
Once I launch Selenium IDE, Firstly, According to the demands to select
one option in the welcome dialog. For the first time to use, I select the
first one. After that name this new project and fill one base URL which
is https://www.polito.it/. As mentioned above, a new browser window will
open, load the base URL, and start recording. Next, Selenium IDE interacts
with the web page and each of the actions will be recorded. Finally, Stopping
recording with the red icon, so I need to switch to the IDE window, then
steps of operation using selenium IDE commands are shown.

13

2 – Background

2.4.3 Example test suite with SeleniumIDE

Each SeleniumIDE command line is composed of a tuple: <Command, Tar-
get, Value>. Command indicates either an event (such as click, select, type)
that is performed on the user interface during the recording process or action
specific to Selenium’s control of the replay process. When the user interacts
with interface elements (input fields, drop-down lists, etc), Target indicates
the interface elements during the recording process. A value indicates that
the user types a value in the specified locator, such as the value that the user
selected in the drop-down list or the value typed in the text field.

Figure 2.6. Login with Selenium IDE

Figure 2.6 shows the login process. It clearly shows that a click operation
is performed on the “id=j_password” of the HTML element, and then the
typing operation is performed on the same id. Furthermore, there also is
the usage of CSS and linkText in Target to point out the positions of the
elements.

14

2.4 – Selenium IDE

Figure 2.7. Drop-down List with Selenium IDE

In Figure 2.7, Line 12 does a select operation for the target element which
id is “rcmlistfilter”, and executes to select the label is “Cancellato”.

Figure 2.8. Operate Video with Selenium IDE

In Figure 2.8, Line 13 simulates a user hovering a mouse over the element
indicating by id=btnPlay. Line 16 simulates the user moving the mouse
pointer away from the element with id=video62072.

15

2 – Background

Figure 2.9. Print Certificate with Selenium IDE

Select window: Selects a popup window using a window locator. Once
a pop-up window has been selected, all commands will go to that window.
Window locators use handles to select windows. Therefore, line 12 shows the
selection of a window that is represented by a variable window handle. Line
15 chooses OK on the next confirmation affects the next confirmation alert.
This command will accept Line 17 assert confirmation and Confirm that a
confirmation has been rendered. Line 18 WebDriver chooses OK on visible
confirmation: Affects a currently showing confirmation alert. This command
instructs Selenium to accept it. So the certificate will be printed successfully.

Figure 2.10. Write Email1 with Selenium IDE

16

2.5 – Selenium

Figure 2.11. Write Email2 with Selenium IDE

For write emails procedure (see Figure 2.10, Figure 2.11), we can see the
selenium commands work on elements identified by id. Line 10 wait for
element not present: Wait for a target element to not be present on the
page. The target element is identified by linkText=Webmail, It is designed
to disappear from web pages containing webmail elements and display the
next page after 20 milliseconds.

2.5 Selenium
In selenium WebDriver, robust, browser-based regression automation suites
and tests and scale and distribute scripts across many environments could be
created. In detail, Selenium WebDriver could create and execute test cases
because it provides a programming interface. Test scripts are written to
identify web elements on a web page and then perform the required actions
on those elements.

Selenium WebDriver can drive a browser natively either locally or on re-
mote machines, it depends on how you use it. Selenium WebDriver supports
Internet Explorer, Mozilla Firefox, Google Chrome, Safari, and supports
many programming languages to write tests, such that java, C#, JavaScript,
PHP, Ruby, Pearl, Python, etc. In this report, I will use java programming.
It is especially important to pay attention to detail about the driver, Web-
Driver has a built-in Firefox driver (Gecko Driver) implementation. For other
browsers, you need to insert their browser-specific drivers to communicate
and run tests. A browser-specific driver is for creating a secure connection
between WebDriver and browser. You will see its specific operation in the
next content. Moreover, Selenium-WebDriver was developed to better sup-
port dynamic web pages where elements of a page may change without the
page itself being reloaded. WebDriver’s goal is to supply a well-designed
object-oriented API that provides improved support for modern advanced
web-app testing problems.

17

2 – Background

2.5.1 SetUp
To install Selenium means to set up a project in development so write a
program using Selenium.

Here I use java language as an example to describe the whole procedure
of work.

There are 4 steps to setup WebDriver.

1. Download and install java 8 or higher version

Download the newest JDK version with this link: http://www.oracle.
com/technetwork/java/javase/downloads/index.html, then set
path or environment variable.

2. Download and configure Eclipse IDE or choose other Java IDE

Open this website: https://www.eclipse.org/downloads/, then find
and download “Eclipse IDE for Java Developers”, choose one according
to my current operating system version.

3. Download Selenium WebDriver Java client

Open this website: https://docs.seleniumhq.org/download/, find
“Selenium Client&WebDriver Language Bindings” and then choose
download link about java client driver.

4. Configure selenium web driver

(a) Launch Eclipse IDE

(b) Create a new java project named Demotest (Demotest is as a test
suite)

(c) Create a new class named First (First.java) under src folder

(d) Right-click Demotest folder, then select “properties”. After opening
the property of Demo test window, choose “Java Build Path” prop-
erty, switch to “Libraries” option at the right panel, then click “Add
External JARs” button, then find all selenium jar files we download
at step 3, finally click “Apply and Close” button.

Now it configures successfully.

18

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/
https://docs.seleniumhq.org/download/

2.5 – Selenium

2.5.2 How it works
Here it uses java language as an example to describe the whole procedure of
work. Here the first selenium automated test script is created. It aims to
implement those actions below:

1. Call Chrome browser

2. Open www.google.com

3. Click Google search text box

4. Type keywords: politecnico di torino

5. Press “Enter” key

Here a test case is created step by step to understand each component.

1. Launch Eclipse IDE and open the Demo test project created in the last
section. Then start to compile First.java. Firstly, Instantiating a driver
object:
WebDriver driver = new ChromeDriver ();

Pay attention: ChromeDriver is maintained/supported by the
Chromium project itself. WebDriver works with Chrome through the
Chromedriver binary (found on the Chromium project’s download page).
You need to have both Chromedriver and a version of the chrome browser
installed. Chromedriver needs to be placed somewhere on your system’s
path for WebDriver to automatically discover it. The Chrome browser it-
self is discovered by Chromedriver in the default installation path. These
both can be overridden by environment variables.

2. Then, fetching www.google.com web page
driver.get (“https://google.com/”);

3. Next, You need to add unique identifiers to network elements such as
Google search text boxes to automate the logo through test scripts.
These unique identifiers are configured with some commands/grammar
to form a locator. Enables the locator to locate and identify specific
network elements in the context of the web application.
The method for finding a unique identifier element involves checking
the HTML code. The Java syntax for locating elements by “name” in
Selenium WebDriver is given below.

19

2 – Background

driver.findElement (By.name (<element ID>));
so do
WebElement element = driver.findElement (By.name(“q”));

4. Now try to type the keyword that you want to search, for example,
Politecnico di Torino.
element.sendKeys (“politecnico di torino”);

5. Finally, submit our request.
element.submit ();

The complete sample code is as follows:
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.By;
import org.openqa.selenium.WebElement;
public class First {
public static void main (String[] args) {

String projectlocation=System.getProperty (“user.dir”);
System.setProperty (“webdriver.chrome.driver”,projectlocation+“/lib/web

drivers/chromedriver.exe”);
WebDriver driver=new ChromeDriver ();
driver.get (“https://google.com/”);
WebElement element = driver.findElement (By.name (“q”));
element.sendKeys (“politecnico di torino”);
element.submit ();
}
}
Until now, I have created the first test script for implementing selenium

automation. I can verify it by running it in Eclipse IDE now.

2.5.3 Example test suite with Selenium
Figure 2.1 depicts the user interface in the Polito web app used to log in and
contains (from top to bottom) text fields, a submit button. This test script
has at least 20 lines of code. Selenium web driver test script screen capture
for this web page please see Figure 2.12.

20

2.5 – Selenium

Figure 2.12. Login with Selenium

For username and password and submit button elements can be identi-
fied by id locator which belongs to attribute-based locators, login element is
identified by CSS selector which belongs to hierarchy-based locators, logout
element is detected through its textual description.

Figure 2.2 shows the use of a drop-down list in an email web page. This
test script has at least 25 lines of code. SeleniumWebDriver test script screen
capture for this web page please see Figure 2.13.

Figure 2.13. Drop-down List with Selenium

Firstly, clicking “Posta” in the navigation of the main page to go to the
mailbox, here I used for a loop because of loading times, besides, X of element
text “Posta X” will change with the arrival of new mail, so use partialLink-
Text locator to search “Posta X”. Second, The drop-down list is identified

21

2 – Background

by id locator, use Xpath locator with content “Cancellato” when select one
option from the drop-down list. Third, The other drop-down list also is iden-
tified by id locator, use a CSS selector to locate an option. Finally, the save
button is identified by the id locator.

Figure 2.3 shows an operation process to watch the instructional video.
This test script has at least 31 lines of code. Selenium WebDriver test script
screen capture for this web page please see Figure 2.14.

Figure 2.14. Operate Video with Selenium

Once there is student main webpage, Scroll down the screen then locate
the video element text “Corso di lingua italiana per stranieri - A0” using
linkText locator, next select one of videos by linkText locator, Then CSS
selector selects video download in the download mode. For Action class, the
user-facing API for emulating complex user gestures. Using this class rather
than using the Keyboard or Mouse directly.

Figure 2.4 shows an operation process to print the certificate. This test
script has at least 30 lines of code. Selenium WebDriver test script screen
capture for this web page please see Figure 2.15.

22

2.5 – Selenium

Figure 2.15. Print Certificate with Selenium

First, click “Segreteria online” in the navigation of the main page by link-
Text locator, Next linkText locator identifies “Stampa autocertificazioni”,
there will be a newly launched window corresponding to a new window han-
dle, I use the window handle to simulate windows switching operation. Next,
select the content you wanna print identifying by id and Cssselector locators.
Finally, a unique identifier can be used for the detection of the print button,
It will pop up an alert box to confirm the print operation, here I used Alert
class to implement it.

Figure 2.5 shows an operation process to write an email. This test script
has at least 31 lines of code. Selenium WebDriver test script screen capture
for this web page please see Figure 2.16.

23

2 – Background

Figure 2.16. Write Email with Selenium

First, come to the mailbox homepage, but loading time is required, here I
use the WebDriver Wait class to wait for an element in the home page to be
visible, then I will write a new email. For Recipient, Bcc, Object elements,
and text field, unique identifiers are used in id locator. For attaching a file
element, here it is identified by name locator. Finally, an id locator is used
to implementing save functionality.

2.6 TestComplete
TestComplete is an automated UI testing tool with Artificial Intelligence,
that makes it fast and easy to create, maintain, and execute functional tests
across desktop (these applications are executed on desktop computers run-
ning the Windows operating system), web (these applications are executed
in web browsers (including those web browsers that are embedded into desk-
top applications), and mobile (these applications are executed on Android
or IOS devices) applications. With TestComplete, Scaling your automated
testing efforts and maximizing test coverage. It is easy to integrate with test
automation and continuous testing applications, frameworks, and controls
you already use.

TestComplete provides special features for automating test actions, cre-
ating tests, defining baseline data, running tests, and logging test results.
For example, it includes a special “recording tests” feature that lets you cre-
ate tests visually. You just need to start recording, perform all the needed

24

2.6 – TestComplete

actions against the tested application and TestComplete will automatically
convert all the “recorded” actions to a test. TestComplete also includes spe-
cial dialogs and wizards that help you automate comparison commands (or
checkpoints) in your tests.

TestComplete supports various testing types and methodologies such as
unit testing, functional and GUI testing, regression testing, distributed test-
ing and others.

TestComplete basic features as described below:

1. Test any application using object recognition with AI
We can accurately find dynamic UI elements Because TestComplete ob-
ject recognition combines property-based and AI-powered visual recog-
nition. And it should be quick and easy.

2. Build and maintain automated GUI tests faster than ever
The customizable object repository has Record&Replay capabilities, so
it can create automated UI tests in seconds. And the TestComplete intel-
ligent recommendation system would help you keep up with application
updates and test maintenance.

3. To script or not to script; Do both with a flexible test automation tool
You have the flexibility to choose between scripting or scriptless testing
because TestComplete has capabilities about writing script with five
languages (VBScript, JavaScript, Python, DelphiScript, JScript) or you
also can generate keyword-driven tests by using it.

4. Automate business requirements with native support for BDD syntax
TestComplete has native support for Gherkin’s Given-When-Then sce-
narios, so non-technical and technical stakeholders can quickly convert
business requirement specifications written in plain English into auto-
mated tests, It is friendly to start their full-blown Behavior-Driven De-
velopment. TestComplete does not need additional plug-ins, can build
and convert features files into automated UI functional tests. And an
IDE, a Gherkin interpreter, a test runner, and reporting insights they
are all in TestComplete.

2.6.1 SetUp
1. Firstly, download the TestComplete executable file by clicking

the link below: https://smartbear.com/product/testcomplete/

25

https://smartbear.com/product/testcomplete/free-trial/
https://smartbear.com/product/testcomplete/free-trial/

2 – Background

free-trial/

2. Find downloaded TestComplete_xxxxx.exe in the local file directory,
double-click on it, The installation will start.

3. To enable the Intelligent Quality add-on, on the next page, click the link
to read the third-party license agreement. If license terms are agreed,
leave the Intelligent Quality Add-on check-box enabled and click Next.

4. On the next page, select a folder path for installing TestComplete.

5. Click Install to start the installation.

6. After the installation completes, I do click operation to Start a 30-Day
Trial in the dialog and wait until TestComplete activates the trial license.
After the activation is over, the TestComplete working window is shown.

2.6.2 How it works
Now let’s explain how to record and playback a simple web test in TestCom-
plete. In my explanations, I will use Google search Politecnico di Torino, the
same as applying other automated web application testing tool.

So the basic steps are below:

1. Launch chrome browser

2. Open www.google.com web page

3. Type “Politecnico di Torino” in Google text search box

In TestComplete, To create tests in two ways:

1. Create tests manually - It requires you have good experience in creating
tests. You type all the needed commands and actions via script objects
or keyword test commands. This approach is helpful when you need to
create very powerful and flexible tests. However, creating tests manually
could meet various problems. For example, you are familiar with the
classes and names of your application objects, so it can work well.

2. Record tests - It will create tests easily. You create a test visually using
the Recording function of TestComplete, It means that TestComplete
will automatically recognize these actions, you record the performed
actions to a script or keyword test directly. This approach does not
require much experience in creating tests.

26

https://smartbear.com/product/testcomplete/free-trial/
https://smartbear.com/product/testcomplete/free-trial/

2.6 – TestComplete

So I as a beginner will use keyword tests to understand the working prin-
ciple.

The recording procedure describes as below:

1. Starting recording by selecting Test > Record > Record Keyword Test
from the TestComplete main menu (It also can start recording by click-
ing “RecordTest” on the Start Page). Then TestComplete will switch to
the recording mode and display the Recording toolbar (see Figure 2.17)
on the screen. The toolbar is collapsed by default and shows only the
most commonly used commands during the recording. Then perform-
ing additional actions during the recording by expanding the toolbar,
like Pause or Stop recording, and change the type of the recorded test
(keyword test, script code, or low-level procedure).

2. After starting the recording, perform the desired test actions: launch the
tested application (Our example is launch Chrome browser), then open
https://www.google.com web page (wait until the selected web browser
starts and navigates to the main page of the google), Click in the Search
text box and type Politecnico di Torino, then type enter key. Close the
web browser by clicking the X button on its caption bar. Those actions
will be recorded by TestComplete.
Pay attention: (close Chrome browser before starting to record)

Figure 2.17. Recording Menu

3. After all the test actions are over, stop the recording by pressing Stop
from the Recording toolbar. TestComplete will process the recorded test
commands and save them to a test.

Until now, I have finished the keyword testing, Please return the TestCom-
plete window. TestComplete shows the recorded keyword in the Keyword
Test editor.

A noteworthy little detail is that we need to study how to refine the
Recorded Test. You can run the recorded test directly, but we suggest to
adjust the test to make it more stable. For instance, When you record

27

2 – Background

user actions, like mouse clicks, TestComplete records coordinates where the
mouse click is performed. Coordinates that TestComplete records for one
browser window size will become incorrect when you run your test for another
browser window size. To simulate all click actions in the top left corner
of the appropriate controls, So we will modify click operations (see Figure
2.18) in keyword editor. Firstly, find the operation is Click then click the
ellipsis button in the Value column, it will open the Operation Parameters
dialog. Secondly, In the dialog (see Figure 2.19), fill “1” as ClientX and
ClientY’s parameter separately, this means one click at the top left corner
of the control. If you wanna fill “-1” as ClientX and ClientY’s parameter
separately, this means one click the center of the control. Finally, save your
setting operation.

Figure 2.18. Adjust Action with TestComplete

28

2.6 – TestComplete

Figure 2.19. Adjust Action2 with TestComplete

2.6.3 Example test suite with TestComplete

There are the test area Screenshots of five test cases applying the TestCom-
plete testing tool.

29

2 – Background

Figure 2.20. Login with TestComplete

Figure 2.20 shows the Polito web app login procedure. For a grouping
node: “pageX509mixedLogin”, Firstly I try to use a wrong password oper-
ation to verify the login page, so it did not load a new page successfully
(It shows the window named “pageUserpasswordlogin”). Next, I set correct
username and password operations, It shows the window named “pageSso”.

Figure 2.21. Drop-down List with TestComplete

30

2.6 – TestComplete

Figure 2.21 shows the procedure of checking drop-down lists in the mail-
box. For a grouping node “pageMailStudentiWebmailPostaInAr”, We apply
“ClickItem” on drop-down list object “selectRcmlistfilter” to select “Cancel-
lato” option.

Figure 2.22. Operate Video with TestComplete

Figure 2.22 shows the procedure for opening a course video. For a group-
ing node: “pageSviluppoVideolezinoi”, I do click operation on “linkVideo”
object. This action corresponds to the click “Video” operation.

31

2 – Background

Figure 2.23. Print Certificate with TestComplete

Figure 2.23 shows the procedure for opening a course video. For a grouping
node: “pageCertificatiOnline”, I do click operation on object “panelBlocco2”,
then do ClickButton operation on object “buttonStampa”. The actions cor-
respond to select “Career” then click “Stampa” button.

Figure 2.24. Write Email with TestComplete

Figure 2.24 shows the procedure for opening a course video. For
a grouping node: “pageMailStudentiWebmailPostaInAr”, firstly I enter

32

2.7 – EyeAutomate

“1372937384@qq.com” using “Keys” operation as the content of the re-
ceiver object “textareaDestinatario”. Then click on object “linkCcLink” for
adding other receivers, so I also enter “s233098@studenti.polito.it” in object
“textareaCc”. Next, I write “welcome to Italy” in object “textboxOggetto”
but apply “SetText” operation. Finally, I enter the content “Hi,everybody”
in the object “textareaComposebody”.

2.7 EyeAutomate

EyeStore includes many tools for visual GUI testing, such as EyeAutomate,
EyeStudio, EyeServer, etc. I will focus on the EyeAutomate and EyeStudio
tools for the papers. EyeAutomate is a visual script runner. Its character-
istics describe as follows: This technology can work on all apps (desktop,
web, and mobile) that have a graphical user interface. EyeAutomate fits in
the system test phase and acceptance test phase. EyeAutomate does not
depend on any third-party libraries, can be used on any system that sup-
ports Java from Oracle, and all commands in EyeAutomate are implemented
in java. You can see commands are loaded and displayed in the command
menu of EyeStudio workstation. EyeAutomate features the image recogni-
tion algorithm. It combines pixel- and vector-based image recognition with
AI.

Pay attention: A license is required when EyeAutomate does not run from
the Studio.

I will apply EyeStudio - a visual scripter editor, so let us move on to un-
derstand it. EyeStudio helps create and maintain your visual scripts. When
editing a script, it could be manual, or semi-automatic, or automatic opera-
tion. When running the visual script directly from EyeStudio or standalone
using the EyeAutomate script runner or the EyeServer script runner service.

2.7.1 SetUp

At the beginning, I follow this link to download EyeAutomate and Eye-
Studio (they are in one .jar named SetupEyeAutomate2.X.jar): https:
//eyeautomate.com/download-eyeautomate/.

I already have installed Java 8 and downloaded SetupEyeAutomate2.X.jar,
so I directly install them by clicking their executable file.

33

 https://eyeautomate.com/ download-eyeautomate/
 https://eyeautomate.com/ download-eyeautomate/

2 – Background

2.7.2 How it works
Now I start to create the first test script when I launch EyeStudio.jar.
I will create a test script about opening the Chrome browser and typing
www.google.com and searching “Politecnico di Torino” in Google text search
box.

First, we need to know:

Figure 2.25. EyeStdio Workstation

EyeStdio window separates five components: (see Figure 2.25)

1. Menu bar

2. Toolbar

3. Test script editor pane

4. Execution log, Test log pane

5. Commands pane

I could create a new test case through File > new in the menu bar or
New in the Toolbar, and named First.txt. Next, launch a chrome browser
using the command: OpenBrowser “Chrome” (call OpenBrowser command
from Commands pane). Then, call the website we wanna go: GetUrl
“http://www.google.com/” (call GetUrl command from Commands pane).
Once we find the name of a search text box after inspecting the website
HTML code. Then I do click operation: ClickName “q” (call ClickName
command from Commands panel), The Mouse cursor will focus on the search

34

2.7 – EyeAutomate

text box, then try to type keywords: Type “Politecnico di Torino [ENTER]”
(call Type command from Commands pane).

There are different ways to write this test, such that combine images,
text commands, data, and widgets. Above is just one example of commands
usage.

2.7.3 Example test suite with EyeAutomate
A script in EyeAutomate is visually readable and consists of commands,
images, data, and widgets. A visual script may consist of four types of files:

• Scripts (.txt extension)

• Images (.png extension)

• Data (.csv extension)

• Widgets (.wid extension)

Figure 2.26. Login with EyeStdio

The login script (see Figure 2.26) mainly uses commands, images.

35

2 – Background

Figure 2.27. Drop-down List with EyeStdio

Before checking the drop-down list (see Figure 2.27), I have already logged
in in the enterPolitostart.txt script (see Figure 2.28), which means that it
first executes enterPolitostart.txt and then proceeds to the next command.
It uses the SelectIndex command to perform the selection operation of the
drop-down list.

36

2.7 – EyeAutomate

Figure 2.28. Polito Starting with EyeStdio

37

2 – Background

Figure 2.29. Operate Video with EyeStdio

This test firstly executes the enterPolitostart.txt script(see Figure 2.28).
During opening a video (see Figure 2.29), here I use the MouseScroll com-
mand to simulate scrolling the screen operation.

38

2.7 – EyeAutomate

Figure 2.30. Print Certificate with EyeStdio

This test firstly executes the enterPolitostart.txt script (see Figure 2.28).
The WaitId command here is used to wait until you see an element with
id=navbar on the new page (see Figure 2.30).

39

2 – Background

Figure 2.31. Write Email1 with EyeStdio

40

2.7 – EyeAutomate

Figure 2.32. Write Email2 with EyeStdio

Here (see Figure 2.31, Figure 2.32) it combined commands and images in
EyeStudio for writing an email.

41

42

Chapter 3

Empirical Evaluation

3.1 Fragility concept
In a simple, fragility means that quality becomes easily broken or damaged.
We can see the meaning in the dictionary.

It is the direct responsibility of the software tester to sniff out fragility.
1. Software is “great” in size can suffer from fragility because one crisis can

send the house of cards toppling down.

2. We can identify a fragile software by its inability to deal with stress.
For software systems, the business is in a constantly changing environ-
ment and the software needs to adapt to the business needs quickly.
Otherwise, it is obsolete. Apart from development time challenges, there
are also runtime challenges for software systems too. Consequently, they
are under stress by end-users and other systems. Then fragility could
happen. Imagine a software project if it is not easy to extend, modify
and deploy to the production environment. Or a system that is not able
to handle unexpected user inputs or external system failures and breaks
easily.
That’s a fragile system that is harmed by stress and penalized by change.

3. On the other hand, overoptimization also could be a reason for fragile
software. The world of software testing is obsessed with automated
checking, “green” results don’t mean everything of software is fine, we
can’t ignore the fact that randomness is the rule, not the exception.

4. Changing would make software fragile when one line of code is changed,
automation designed to find old forms of failure could be ineffective.

43

3 – Empirical Evaluation

Test case robustness is one decisive factor of test quality. A test case
is believed to be fragile when a small change in the application layout
causes test cases to fail. To meet new requirements, add new func-
tionalities, fix bugs, etc, developers usually apply changes to their web
applications. Leotta et al, [17] defines two types of changes that can be
applied over web applications: (1) Structural changes and (2) Logical
Changes.
Structural changes refer to all the changes that modify the page lay-
out and structure such as restyling or changing a web element’s locator
(There are multiple types of locators: ID, name, CSS selectors, XPath,
DOM locators, etc.). Web element locators have emerged as the main
cause of fragility of tests, confirming previous anecdotal findings, [18, 19].
Researchers have discussed and studied the fragility of web element lo-
cators, [20, 21, 22, 23]. Montoto et al. Logical changes refer to all the
changes modifying the logic of the web application under test such as
functionality addition, functionality modification, functionality deletion,
etc, [17].

5. Besides, test cases created for one particular browser can easily break
when executed on a different web browser.

Apart from this, Researchers adopt taxonomies to summary the cause
of test case fragility. Researchers have presented various fault taxonomies.
Bruning et al. [24] present a fault taxonomy for service-oriented architec-
tures. Hayes [25] provides a fault taxonomy for NASA software requirements.
Mariani [26] presents a taxonomy for component-based software systems.
Chan et al. [27] provide a taxonomy for web service compositions. Hum-
mer et al. [28] present a taxonomy for event-based systems. None of these
taxonomies consider web applications.

A few papers present fault taxonomies for web applications. Ocariza et al.
[29, 30] characterize the classes of error messages output by JavaScript in web
applications and the classes of faults found in JavaScript. Ricca and Tonella
[31] present a preliminary fault taxonomy for web applications, consisting
of a single level of general fault categories. Marchetto et al. [32] present
a taxonomy of web application faults. None of these papers consider test
breakages.

To our knowledge, a paper that provides a detailed classification of how
tests of web applications may break is by Mouna Hammonudi [33] and Figure
3.1 presents a graphical view of his taxonomy of causes of test breakages.

44

3.1 – Fragility concept

Figure 3.1. Taxonomy

Figure 3.1 points out the major test breakage causes are related to locators
(50.42% is attribute-based locators and 23.19% is structure-based locators).
The author gives the taxonomy which focuses on the proximal causes of test
breakages. His taxonomy classifies the causes of test breakage that most
nearly impact the test code and does not attempt to categorize the types of
changes associated with the evolution of the web application code.

We can also talk about fragility from another side, which is tool fragility.
The different types of tools to test web applications can be applied. First-
generation testing tools rely on on-screen coordinates to locate and manipu-
late web elements of the web application. Screen resolution and window size
will be related as the major reason for fragile test suites. Second-generation
testing tools offer simple web element selection mechanisms to counterbal-
ance the drawbacks of first-generation ones. The web element of interest is

45

3 – Empirical Evaluation

located according to its position within the DOM tree of the web page un-
der the test, [34]. Tests that are created using second-generation tools are
fragile as well, given that their execution is dependent on the DOM tree of
the web page under test, [34]. Simple changes in the DOM tree of a web
application could cause fragile testing. Third-generation testing tools base
on image recognition of web elements within the user interface of the web
application. Tests created using third-generation tools are fragile as well,
because simple changes (the size and the color of the web element) to visual
appearance could cause fragile testing.

As mentioned above, fragility is inevitable in the world. By studying
fragility, we can better serve test repair and better develop testing tools and
it can help engineers avoid the need for test repairs by alerting them to
changes that may break tests, etc.

3.2 Object of study: Dolibarr
Dolibarr ERP&CRM uses a software package to manage your businesses such
as CRM/Sales, Human Relationship, CMS/Website/E-Commerce, Prod-
uct and Stock, Finance and Billing, Marketing, Productivity, Integra-
tion/Development (see Figure 3.2). Whatever is your business management
needs (sales, human resources, logistic, stock, invoicing, accounting, man-
ufacturing, e-mailings, etc), you can set up the application to match your
needs, and only one thing you need to do is to enable the feature you expect.

Figure 3.2. Dolibarr Navigation

Dolibarr ERP&CRM provides default modules (business or technical mod-
ules) with standard distribution (see Figure 3.2). You also can implement
enhancements or personalization by adding third parties external modules.
You can find them on the official market place of external addons (DoliStore),
they may be free or charged.

Dolibarr ERP&CRM is an open-source and free model, serves as my ex-
perimental object for selenium WebDriver automated testing using java in
several versions.

46

3.3 – Experiment

Now the number of releases/commits of Dolibarr is 102 until version 10.0.2.
But I did have to exclude some. I only retain the last minor for each major
release. The number of selected versions list as below:

• 2.9.0

• 3.9.4

• 4.0.6

• 5.0.7

• 6.0.8

• 7.0.5

• 8.0.6

• 9.0.4

• 10.0.2

In my experiment, I use a systematic and iterative procedure for Dolibarr.
First, I install its initial version, V2.9.0, and familiarize ourselves with all of
the functionalities provided by the application. Next, a test suite T is created
for version V2.9.0. Then I execute that suite on the next version V3.9.4
and note each instance in which a test broke. The next step is followed by
manually repairing each of the tests that were repairable. This is an iterative
process because repairing one test breakage might allow that test to proceed
further and break again later. The foregoing process was repeated for each
selected version of Dolibarr until each had been tested and the causes of all
test breakages had been noted. While I follow this process, try to repair the
tests for a current version V, No attempt is made to check the next version
until the repair process is complete.

3.3 Experiment
I have endeavored to implement the testing procedure on Dolibarr and carried
out experiments. The implementation is on windows 10. The browser is
Chrome 76 and uses corresponding ChromeDriver 76.0.3809.126.

Since the application requires an authentication phase, tests are intended
to run sequentially, so just one authentication has to be performed.

47

3 – Empirical Evaluation

There is an order relationship between some test cases: T7 had to be
executed after T14; T11 had to be executed after T12, T13. T14 will create
a new project and this new project is necessary as a test element in T7. T12
will create a financial account and T13 will create a bank account number,
they all are necessary as test elements in T11.

For each selected version of the application, 19 tests are implemented, thus
implementing a total of 171 tests for Dolibarr.

Each test case has been implemented in an automated test script using
Selenium WebDriver and EyeAutomate. Among them, in particular, there
are some special situations here, I need to explain here. When T7 of V2.9.0
has been checked the validity on V3.9.4, I found that all test elements in T7
are totally different and not applicable anymore for the next version V3.9.4
but keep the same functionality. So I decide to fix all elements of the test
script for V3.9.4 but with the same scenario. Another thing is that T12 and
T13 in V2.9.0 are processed in their respective web pages. But in the next
version, they are integrated on the same page. But I can add a “modify”
element to T13 to achieve the same effect.

3.4 Test case definition

Nineteen test cases are created to test Dolibarr. Table 3.1 shows the sample
of test cases with their description.

48

3.4 – Test case definition

Table 3.1. Description of Dolibarr Usage Scenarios

Test Case ID Description
T1 User cannot login due to invalid credentials
T2 Fill a company/foundation info
T3 Create a new third party in third party module
T4 Create a new product in products/services module
T5 Create a new service in products/services module
T6 Create a new warehouse in products/services module
T7 Create a new contact in commercial module
T8 Create a new customer’s order in commercial module
T9 Create a new intervention in commercial module
T10 Create a new donation in financial module
T11 Create a new trips and expenses in financial module
T12 Create a new financial account in bank/cash module
T13 Create a new bank account number in bank/cash module
T14 Create a new project in projects module
T15 Create a new task in projects module
T16 Set up member types in members module
T17 Create a new member in members module
T18 Log in authentication in point of sale module
T19 Create a new action/task in agenda module

49

50

Chapter 4

Results

4.1 Experiment results

In this part, I will discuss how the tests have been written for the individual
versions of the application, and the defects and fragilities I have found for
each one of them (see Figure 4.1). Besides, I also show the testing result by
using the EyeAutomate automated testing tool (see Figure 4.16). These two
graphs do not include release 2.9.0, for which the test cases were first defined
and hence were all executable. The remainder of the part, I will highlight
which test cases applied to subsequent versions and, on the converse, what
changes have had to be made to adapt them.

To better describe these modifications between different versions, after
referencing the literature, [33], I summarized the experimental results to a
certain extent, as described below for Selenium and EyeAutomate separately.
Throughout this part, let V be a version of Dolibarr, let t be a test created
and executed on V, and let V’ be a new version of V.

51

4 – Results

4.1.1 Result Under Selenium WebDriver

Figure 4.1. Modifications needed on various versions of Dolibarr, with Selenium

4.1.2 Summary of Dolibarr Change Types under Sele-
nium

Based on the results of this experiment, some classifications were made in
conjunction with Selenium.

• Name Attribute->Name/ID Attribute
The modification would arise in a situation When t attempts to locate
a web element e via a name attribute value that functioned (led to e)
in V, but no longer functions in V’. For example, When T2 of V2.9.0
(see Figure 4.2) locates “Zip” “Town” text field in the application, they
are altered in V3.9.4 such that name=“cp” is now name=“zipcode”,
name=“ville” is now name=“town” in HTML code shown in Figure 4.3.
When T2 of v2.9.0 locates “Country” drop-down list, because of the non-
existence of the name attribute in HTML code, it is altered in v3.9.4 such

52

4.1 – Experiment results

that name=“pays_id” is now id=“s2id_selectcountry_id” in java code
(Figure 4.4).

Figure 4.2. HTML code for T2 in V2.9.0

Figure 4.3. HTML code for T2 in V3.9.4

53

4 – Results

Figure 4.4. Java code for T2 between V2.9.0 and V3.9.4

• Element in DOM Tree Change

The modification is caused when t attempts to locate an element e via a
hierarchy-based locator l that functioned (led to e) in V, but no longer
functions in V’. The causes of the modification mostly an ancestor of
e in the DOM tree occur addition, deletion, modification, even totally
change. For example, When T6 of V2.9.0 (see Figure 4.5) applies Select
class which provides select and deselects options to test item “Country”
(but above can’t work in V3.9.4), so substitutes it with XPath locator in
the current release (see Figure 4.6). Besides, for the Comment element,
because the DOM tree structure changed (see Figure 4.7), usage of name
locator has substituted by the usage of frames switching.

Figure 4.5. HTML code for T6 in V2.9.0

54

4.1 – Experiment results

Figure 4.6. HTML code for T6 in V3.9.4

Figure 4.7. Java code for T6 between V2.9.0 and V3.9.4

• Link Text Change
The modification would arise in a situation When t attempts to locate
a link l via a href attribute value that functioned (led to l) in V, but no
longer functions in V’. It could link text change, link deletion, addition,
etc. For example, when T14 locates a link via the content “Valid” in
V2.9.0 but is altered to “Validate” in V3.9.4 (see Figure 4.8). T8 of
V2.9.0 attempts to locate a link via the content “Customer’s order”, but
the link is deleted in V3.9.4 (see Figure 4.9).

Figure 4.8. Capture Dolibarr for T14 between V2.9.0 and V3.9.4

55

4 – Results

Figure 4.9. Java code for T8 between V2.9.0 and V3.9.4

• Element Addition
When I try to submit a webpage, the submission fails because some ele-
ments in the webpage are required. This means that you must add these
elements to the current version. For example, the “Supplier” drop-down
list in T3 of V2.9.0 may need to select one option “No” for adapting to
V3.9.4, this item is necessary to add in V3.9.4 (see Figure 4.10) otherwise
this web page can’t be submitted.

Figure 4.10. Capture Dolibarr for T3 between V2.9.0 and V3.9.4

• Element Deletion
If there is no web page element e in V’, then the test t of V will fail in
V’. Therefore, I need to remove this element in version V’. For example,
in T19, We can locate one web element “Type” via name attribute “ac-
tioncode” in V2.9.0 (see Figure 4.11), but this web element is deleted

56

4.1 – Experiment results

in V3.9.4 (see Figure 4.12). Locating a web element “Action affected
to” via name attribute “affectedto” in V2.9.0 (see Figure 4.11), this web
element also is deleted in V3.9.4 (see Figure 4.12).

Figure 4.11. Capture Dolibarr for T19 in V2.9.0

• Element Text Change

The modification is caused when t attempts to locate an element e via
its text/value, using a text string that functioned correctly (led to e)
in V, but no longer functions in V’. For example, when T12 of V2.9.0
(see Figure 4.13) locates the "Status" element, in the drop-down list
option, the option text was changed from “Opened” to “Open” to fit the
subsequent new version.

• ID Attribute->ID Attribute

The modification would arise in a situation When t attempts to locate
a web element e via an ID attribute value that functioned (led to e) in
V, but no longer functions in V’. For example (see Figure 4.14), when
T14 of V2.9.0 locates the “Date start” text field in the application, it is
altered such that id=“project” is id=“projectstart” in V3.9.4.

57

4 – Results

Figure 4.12. Capture Dolibarr for T19 in V3.9.4

Figure 4.13. Capture Dolibarr for T12 between V2.9.0 and V3.9.4

Figure 4.14. Java code for T14 between V2.9.0 and V3.9.4

58

4.1 – Experiment results

• Indices of Element Change
The modification is caused when t attempts to locate an element e via
index-based locator l that functioned (led to e) in V, but no longer
functions in V’. This could occur when elements add or delete to/from the
web page that satisfies the same locator strategy of an element in V, but
cause a change in the index of the element that t was intended to select.
For example, for T2 of V5.0.7 (see Figure 4.15), from “Country” drop-
down list to select “Italy(IT)” option, because the addition of elements
to the web page that satisfies the same locator strategy of an element
in V4.0.6, but causes a change in the index of the element that T2 was
intended to select. So it is substituted from “//*[@id=“select2-results-
1”]/li[108]” to “//*[@id=“select2-results-1”]/li[109]”.

Figure 4.15. Java code for T2 between V4.0.6 and V5.0.7

4.1.3 Report on Dolibarr Test Cases under Selenium
• Dolibarr V3.9.4

All of the test cases of V2.9.0 needs to fix on this version of the app,
except T1: the authentication test.

Table 4.1. Report on V3 of Dolibarr, with Selenium

Situation Occurred Test Case
Name Attribute->Name/ID Attribute T2,T3,T4,T5,T6,T8,T9,T10,T11,T12,T13,T14,T17,T19

Element in DOM Tree Change TT2,T3,T4,T5,T6,T8,T9,T10,T11,T12,T14,T16,T17,T19
Link Text Change T8,T11,T13,T14,T15,
Element Addition T3,T11,T18
Element Deletion T3,T4,T5,T6,T8,T10,T11,T19

Element Text Change T4,T5,T6,T12
ID Attribute->ID Attribute T14,T17
Indices of Element Change NULL

• Dolibarr V4.0.6

59

4 – Results

Four tests out of nineteen need to fix in this version of the app. All tests
written for V3.9.4 are compatible with this version, except T6: create
a new warehouse in products/services module and T10: create a new
donation in financial module and T16: set up member types in members
module.

Table 4.2. Report on V4 of Dolibarr, with Selenium

Situation Occurred Test Case
Name Attribute->Name/ID Attribute T3

Element in DOM Tree Change NULL
Link Text Change T10,T16
Element Addition NULL
Element Deletion NULL

Element Text Change T6
ID Attribute->ID Attribute NULL
Indices of Element Change NULL

• Dolibarr V5.0.7
Six tests out of nineteen need to fix in this version of the app. All
tests written for V4.0.6 are compatible with this version, except T2:
fill a company/foundation info And T6: create a new warehouse in
products/services module and T12: create a new financial account in
bank/cash module and T16: set up member types in members module
and T17: create a new member in members module and T19: create a
new action/task in agenda module.

Table 4.3. Report on V5 of Dolibarr, with Selenium

Situation Occurred Test Case
Name Attribute->Name/ID Attribute T16

Element in DOM Tree Change NULL
Link Text Change NULL
Element Addition NULL
Element Deletion NULL

Element Text Change T6,T19
ID Attribute->ID Attribute T6
Indices of Element Change T2,T6,T12,T17

• Dolibarr V6.0.8

60

4.1 – Experiment results

Fourteen tests out of nineteen need to fix in this version of the app.
T1: User cannot log in due to invalid credentials and T4: create a new
product in products/services module and T5: create a new service in
products/services module and T15: create a new task in projects module
and T18: login authentication in point of sale module are completely
compatible with the ones written for release V5.0.7.

Table 4.4. Report on V6 of Dolibarr, with Selenium

Situation Occurred Test Case
Name Attribute->Name/ID Attribute T12,T16

Element in DOM Tree Change T12
Link Text Change T2
Element Addition NULL
Element Deletion NULL

Element Text Change T6
ID Attribute->ID Attribute T2,T3,T6,T7,T8,T9,T10,T11,T12,T14,T17,T19
Indices of Element Change NULL

• Dolibarr V7.0.5
Thirteen tests out of nineteen need to fix in this version of the app.
T1: User cannot log in due to invalid credentials and T4: create a new
product in products/services module and T5: create a new service in
products/services module and T13: create a new bank account number
in bank/cash module and T16: set up member types in members module
and T18: login authentication in point of sale module is completely
compatible with the ones written for release V6.0.8.

Table 4.5. Report on V7 of Dolibarr, with Selenium

Situation Occurred Test Case
Name Attribute->Name/ID Attribute T2,T15

Element in DOM Tree Change T2,T3,T6,T7,T8,T9,T10,T11,T12,T14,T15,T17,T19
Link Text Change T2
Element Addition NULL
Element Deletion NULL

Element Text Change T11
ID Attribute->ID Attribute T2,T3,T6,T7,T7,T8,T9,T10,T11,T12,T14,T17
Indices of Element Change NULL

• Dolibarr V8.0.6

61

4 – Results

Nine tests out of nineteen need to fix in this version of the app. T1:
User cannot log in due to invalid credentials and T4: create a new
product in products/services module and T5: create a new service in
products/services module and T6: create a new warehouse in prod-
ucts/services module and T11: create a new trips and expenses in fi-
nancial module and T12: create a new financial account in bank/cash
module and T16: set up member types in members module and T17: cre-
ate a new member in members module and T18: login authentication in
point of sale module and T19: create a new action/task in agenda mod-
ule are completely compatible with the ones written for release V7.0.5.

Table 4.6. Report on V8 of Dolibarr, with Selenium

Situation Occurred Test Case
Name Attribute->Name/ID Attribute T2

Element in DOM Tree Change NULL
Link Text Change T2,T3,T10,T13,T14
Element Addition NULL
Element Deletion T15

Element Text Change T7,T8,T9,T15
ID Attribute->ID Attribute T3
Indices of Element Change NULL

• Dolibarr V9.0.4

Six tests out of nineteen need to fix in this version of the app. All tests
written for V8.0.6 are compatible with this version, except T3: create a
new third party in third party module and T7: create a new contact in
commercial module and T8: create a new customer’s order in commercial
module and T9: create a new intervention in commercial module and
T14: create a new project in projects module and T15: create a new
task in projects module.

62

4.1 – Experiment results

Table 4.7. Report on V9 of Dolibarr, with Selenium

Situation Occurred Test Case
Name Attribute->Name/ID Attribute T3

Element in DOM Tree Change NULL
Link Text Change T14
Element Addition NULL
Element Deletion NULL

Element Text Change T7,T8,T9,T15
ID Attribute->ID Attribute NULL
Indices of Element Change NULL

• Dolibarr V10.0.2

Seventeen tests out of nineteen need to fix in this version of the app. T1:
User cannot log in due to invalid credentials and T18: login authenti-
cation in point of sale module are completely compatible with the ones
written for release V9.0.4.

For T2, T3, T4, T5, T6, T7, T9, T10, T11, T13, T14, T16, T17, T19
occur scroll screen situations. For T2, T3, T4, T5, T8, T10, T12, T13,
T14, T15, T16, T17, T19 click the remove button in the footer of the
web page to enable test case running successfully.

Table 4.8. Report on V10 of Dolibarr, with Selenium

Situation Occurred Test Case
Name Attribute->Name/ID Attribute NULL

Element in DOM Tree Change T5,T14
Link Text Change NULL
Element Addition NULL
Element Deletion T3

Element Text Change T7,T9,T15
ID Attribute->ID Attribute NULL
Indices of Element Change NULL

63

4 – Results

4.1.4 Result Under EyeAutomate

Figure 4.16. Modifications needed on various versions of Dolibarr,
with EyeAutomate

4.1.5 Summary of Dolibarr Change Types under Eye-
Automate

In EyeAutomate, I mainly applied selenium commands and image recognition
technology. Between successive versions, the various types of corrections that
appear are as follows:

• ClickName Change
It would occur when t locates an element via ClickName command value
that functioned (led to e) in V, but no longer functions in V’. There are
many causes of such a change, such as an element value modification
or change to locate an element via ClickID command. For example
(see Figure 4.17), T2 of V2.9.0 tries to locate the “Zip” “Town” text
field in the application using Selenium commands, but they are altered

64

4.1 – Experiment results

from ClickName “cp” to ClickName “zipcode”, ClickName “ville” to
ClickName “town” for successive V3.9.0.

Figure 4.17. ClickName Change of Dolibarr, with EyeAutomate

• ClickID Change

It would occur when t locates an element via ClickID command value
that functioned (led to e) in V, but no longer functions in V’. There are
many causes of such a change, such as an element value modification.
For example (see Figure 4.18), T14 of V2.9.0 tries to locate the “Date
start” text field in the application, but they are altered from ClickId
“project” to ClickId “projectstart” for successive V3.9.4.

Figure 4.18. ClickID Change of Dolibarr, with EyeAutomate

• SelectText Change

It would occur when t locates an element via its text from the drop-
down list, using a text string that functioned (led to e) in V, but no
longer functions in V’. For example (see Figure 4.19), in T4 of V2.9.0,
There are two elements (Status (Sales), Nature) using ClickName and
SelectText commands, but text content has changed from “Obsolete”
“First Material” to “For sale” “Raw Material” separately. So I have to
modify the text value for V3.9.4.

65

4 – Results

Figure 4.19. SelectText Modification of Dolibarr, with EyeAutomate

• Image Change
EyeAutomate works well on any platform using intelligent image recog-
nition. But sometimes the image is not recognized to a certain extent.
So here I list the common situations that I met. The first (I set T9 of
V4.0.6 as an example) is that the image has not changed, but cannot be
identified in V5.0.7, and the image needs to reselect target position or re-
gion using the mouse (see Figure 4.20). The second (I set T18 of V2.9.0
as an example, see the left side of Figure 4.21) is that the content in the
image has indeed changed, making it fail to run successfully in V3.9.4.
The third scenario is that a web element can’t continue to use the sele-
nium command. At this time, it is better to use image recognition (see
Figure 4.22).

Figure 4.20. Images Reposition of Dolibarr, with EyeAutomate

Figure 4.21. Image Substitution of Dolibarr, with EyeAutomate

66

4.1 – Experiment results

Figure 4.22. Command-Image Conversion of Dolibarr, with EyeAutomate

• ClickText Change
It would arise in a situation When t attempts to locate a link l via a href
attribute value that functioned (led to l) in V, but no longer functions in
V’. It could be link text change, link deletion, addition, etc. For example
(see Figure 4.23), T8 of V2.9.0 attempts to locate a link via the content
“Customer’s order”, but the link is deleted in V3.9.4. Attempt to locate
a link via the content “Customer”, but the link is deleted in V3.9.4.
Attempt to locate a link via the content “Add order”, but the link is
deleted in V3.9.4.

Figure 4.23. ClickText Change of Dolibarr, with EyeAutomate

• ClickCss Change
It would occurs when t locates an element e via Css that functioned (led
to e) in V, but no longer functions in V’. There are many causes of such
a change, such as an ancestor of e in DOM tree modification, addition,
deletion. For example (see Figure 4.24), T9 of V2.9.0 attempts to locate
“Create draft” button, Css value is altered in V3.9.4 from “.button:nth-
child(2)” to “#id-right > div > form > div.center > input”.

67

4 – Results

Figure 4.24. ClickCss Change of Dolibarr, with EyeAutomate

• SelectValue Change

It would occur when t locates an element e via its value from the drop-
down list, using a value string that functioned (led to e) in V, but no
longer functions in V’. For example, T11 in V6.0.8 (see Figure 4.25) at-
tempts to locate “Payment type” via ClickId “selectpaymenttype” then
select the option via SelectValue command. For the second command,
it is altered from SelectValue “6” to SelectValue “LIQ” for successive
V7.0.5 (see Figure 4.26).

Figure 4.25. SelectValue Modification1 of Dolibarr, with EyeAutomate

68

4.1 – Experiment results

Figure 4.26. SelectValue Modification2 of Dolibarr, with EyeAutomate

• Element Deletion

In one case, an element in the Dolibarr webpage exists in the current
version and does not exist in subsequent versions. Therefore, this el-
ement must be removed to fit the version being tested. For example
(see Figure 4.27), T3 of V2.9.0 has an element “Prefix” but not exist in
V3.9.4.

69

4 – Results

Figure 4.27. Element Deletion of Dolibarr, with EyeAutomate

• Element addition

There is a situation here, some already exist web elements (even here
newly added elements in successive version), once it is not filled, then
when you click the submit button, the application will notify you with an
alert message. So these elements need to be added to our test case (see
Figure 4.28 and 4.29), element “Date of payment” “Account” “Payment
type” doesn’t exist in V2.9.0, but must be added to test case of V3.9.4.

Figure 4.28. Element addition of Dolibarr in V2.9.0

70

4.1 – Experiment results

Figure 4.29. Element addition of Dolibarr in V3.9.4

4.1.6 Report on Dolibarr Test Cases under EyeAuto-
mate

• Dolibarr V3.9.4
All of the test cases of V2.9.0 needs to fix on this version of the app,
except T1: the authentication test.

Table 4.9. Report on V3 of Dolibarr, with EyeAutomate

Situation Occurred Test Case
ClickName Change T2,T3,T4,T5,T6,T8,T9,T10,T11,T12,T13,T14,T15,T17,T19

ClickID Change T2,T14
SelectText Change T4,T5,T6,T12

Image Change T2,T3,T4,T5,T6,T8,T9,T10,T12,T14,T15,T16,T17,T18,T19
ClickText Change T8,T11,T14
ClickCss Change T3,T9

SelectValue Change NULL
Element Deletion T3,T4,T5,T6,T8,T10,T11,T13,T15,T19
Element addition T3,T11,T15,T18

• Dolibarr V4.0.6
Seven tests out of nineteen need to fix in this version of the app. All tests
written for V3.9.4 are compatible with this version, except T4: create a

71

4 – Results

new product in products/services module and T5: create a new service
in products/services module and T6: create a new warehouse in prod-
ucts/services module and T9: create a new intervention in commercial
module and T10: create a new donation in financial module and T14:
create a new project in projects module and T16: set up member types
in members module.

Table 4.10. Report on V4 of Dolibarr, with EyeAutomate

Situation Occurred Test Case
ClickName Change NULL

ClickID Change NULL
SelectText Change T6

Image Change T4,T5,T14
ClickText Change T10,T16
ClickCss Change T9

SelectValue Change NULL
Element Deletion NULL
Element addition NULL

• Dolibarr V5.0.7

Eight tests out of nineteen need to fix in this version of the app. All
tests written for V4.0.6 are compatible with this version, except T3:
create a new third party in third party module and T4: create a new
product in products/services module and T5: create a new service in
products/services module and T7: create a new contact in commercial
module and T6: create a new warehouse in products/services module
and T9: create a new intervention in commercial module and T16: set
up member types in members module and T19: create a new action/task
in agenda module.

72

4.1 – Experiment results

Table 4.11. Report on V5 of Dolibarr, with EyeAutomate

Situation Occurred Test Case
ClickName Change T16

ClickID Change NULL
SelectText Change T6,T19

Image Change T3,T4,T5,T7,T9
ClickText Change NULL
ClickCss Change NULL

SelectValue Change NULL
Element Deletion NULL
Element addition NULL

• Dolibarr V6.0.8

Twelve tests out of nineteen need to fix in this version of the app. T1:
User cannot log in due to invalid credentials and T3: create a new
third party in third party module and T9: create a new intervention
in commercial module and T13: create a new bank account number in
bank/cash module and T14: create a new project in projects module and
T15: create a new task in projects module are completely compatible
with the ones written for release V5.0.7.

Table 4.12. Report on V6 of Dolibarr, with EyeAutomate

Situation Occurred Test Case
ClickName Change T2,T12,T16

ClickID Change NULL
SelectText Modification T6

Image Change T2,T4,T5,T6,T7,T8,T10,T12,T16,T17,T18,T19
ClickText Change T2
ClickCss Change NULL

SelectValue Modification NULL
Element Deletion NULL
Element addition NULL

• Dolibarr V7.0.5

Seventeen tests out of nineteen need to fix in this version of the app. T1:
User cannot log in due to invalid credentials and T13: create a new bank

73

4 – Results

account number in the bank/cash module are completely compatible
with the ones written for release V6.0.8.

Table 4.13. Report on V7 of Dolibarr, with EyeAutomate

Situation Occurred Test Case
ClickName Change T2

ClickID Change NULL
SelectText Change NULL

Image Change T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T14,T15,T16,T17,T18,T19
ClickText Change T2
ClickCss Change T10,T11

SelectValue Change T11
Element Deletion NULL
Element addition NULL

• Dolibarr V8.0.6
Fifteen tests out of nineteen need to fix in this version of the app. T1:
User cannot log in due to invalid credentials and T5: create a new service
in products/services module and T11: create new trips and expenses in
the financial module and T16: set up member types in members module
are completely compatible with the ones written for release V7.0.5.

Table 4.14. Report on V8 of Dolibarr, with EyeAutomate

Situation Occurred Test Case
ClickName Change T2

ClickID Change NULL
SelectText Change NULL

Image Change T2,T3,T6,T7,T8,T9,T10,T12,T14,T15,T17,T18,T19
ClickText Change T2,T3,T10,T13,T14
ClickCss Change NULL

SelectValue Change NULL
Element Deletion T15
Element addition NULL

• Dolibarr V9.0.4
Eight tests out of nineteen need to fix in this version of the app. All
tests written for V8.0.6 are compatible with this version, except T3:
create a new third party in third party module and T7: create a new

74

4.1 – Experiment results

contact in commercial module and T8: create a new customer’s order
in commercial module and T9: create a new intervention in commercial
module and T12: create a new financial account in bank/cash module
and T14: create a new project in projects module and T15: create a new
task in projects module and T19: create a new action/task in agenda
module.

Table 4.15. Report on V9 of Dolibarr, with EyeAutomate

Situation Occurred Test Case
ClickName Change T3

ClickID Change NULL
SelectText Change NULL

Image Change T3,T7,T8,T9,T12,T15
ClickText Change T14
ClickCss Change NULL

SelectValue Change NULL
Element Deletion NULL
Element addition NULL

• Dolibarr V10.0.2

Eighteen tests out of nineteen need to fix in this version of the app.
Only T1: User cannot log in due to invalid credentials is completely
compatible with the ones written for release V9.0.4.

In this version, there are two special points that need to be pointed out.

1. Once we open the webpage of the application, a toolbar will always
appear at the bottom of the webpage, which prevents the script from
running smoothly, so we need to eliminate this toolbar by clicking
the cancel button. This situation occurs at T2, T3, T4, T5, T7, T8,
T10, T11, T12, T13, T14, T15, T16, T17, T19.

2. In this version, we must scroll the long web pages, otherwise the
script will fail to run. This situation occurs at T2, T4, T6, T7, T9,
T10, T11, T12, T13, T14, T16, T19.

In addition to the above, there is a report about the V10 of the Dolibarr
experiment result under EyeAutomate.

75

4 – Results

Table 4.16. Report on V10 of Dolibarr, with EyeAutomate

Situation Occurred Test Case
ClickName Change NULL

ClickID Change NULL
SelectText Change NULL

Image Change T3,T5,T7,T8,T9,T14
ClickText Change NULL
ClickCss Change NULL

SelectValue Change NULL
Element Deletion T3,T5
Element addition NULL

4.1.7 Comparison between Selenium and EyeAuto-
mate

In Figure 4.30 I show the percentage of modified test cases for the whole test
suite for each version of Dolibarr (see the last column) and the percentage
of modified test cases for the whole corresponding test cases among versions
of Dolibarr (see the last row). It works with Selenium. I do the same with
EyeAutomate in Figure 4.31.

Figure 4.30. Percentage of Modified Tests with Selenium

76

4.1 – Experiment results

Figure 4.31. Percentage of Modified Tests with EyeAutomate

The data gathered on the application Dolibarr in this test report largely
mirror that applying Selenium automated testing tool is much more stable
than EyeAutomate. EyeAutomate testing tool bases on image recognition
of web elements within the user interface of the web application. According
to the experiment result, Tests created using EyeAutomate is fragile, be-
cause simple changes (the size and the color of the web element) to visual
appearance could cause fragile testing.

In Table 4.17 and Table 4.18, It shows that some of the Lines of Code
(LOC) of a test case have changed from version N-1 to version N of Dolibarr
(The changes include deletion, addition, modification). For example, T2
applying Selenium changed 9 line codes in V2 into 11 line codes in V3. T19
applying EyeAutomate didn’t fix line codes/instructions/commands from V3
to V4. So T19 is compatible between v3 and v4.

77

4 – Results

Table 4.17. Count changed LOCs with Selenium for Dolibarr

V2>V3 V3>V4 V4>V5 V5>V6 V6>V7 V7>V8 V8>V9 V9>V10
T1 0->0 0->0 0->0 0->0 0->0 0->0 0->0 0->0
T2 9->11 0->0 1->1 3->3 8->7 6->6 0->0 0->9
T3 21->24 1->1 0->0 2->2 4->3 1->1 2->2 12->12
T4 12->13 0->0 0->0 0->0 0->0 0->0 0->0 2->8
T5 11->11 0->0 0->0 0->0 0->0 0->0 0->0 5->6
T6 12->13 2->2 3->3 3->3 4->3 0->0 0->0 0->5
T7 49->29 0->0 0->0 8->8 12->12 1->1 1->1 1->6
T8 18->16 0->0 0->0 2->2 3->3 1->1 1->1 0->1
T9 7->8 0->0 0->0 4->4 7->6 1->1 1->1 2->6
T10 18->18 1->1 0->0 2->2 5->4 1->1 0->0 2->10
T11 19->21 0->0 0->0 2->2 6->5 0->0 0->0 0->7
T12 16->17 0->0 1->1 7->8 15->10 0->0 0->0 0->1
T13 5->4 0->0 0->0 0->3 0->0 1->1 0->0 1->10
T14 8->8 0->0 0->0 1->1 5->4 1->1 1->1 1->5
T15 1->1 0->0 0->0 0->0 4->2 3->1 1->1 1->2
T16 2->4 1->1 1->1 2->2 0->0 0->0 0->0 1->4
T17 18->19 0->0 1->1 2->2 4->3 0->0 0->0 11->17
T18 1->3 0->0 0->0 0->0 0->0 0->0 0->0 0->0
T19 23->16 0->0 1->1 5->5 7->4 0->0 0->0 0->6

78

4.2 – Fragility of Dolibarr

Table 4.18. Count changed instructions with EyeAutomate for Dolibarr

V2>V3 V3>V4 V4>V5 V5>V6 V6>V7 V7>V8 V8>V9 V9>V10
T1 0->0 0->0 0->0 0->0 0->0 0->0 0->0 0->0
T2 4->8 0->0 0->0 4->3 6->5 4->4 0->0 0->2
T3 14->15 0->0 1->1 0->0 3->5 2->2 3->3 11->6
T4 7->6 1->1 2->2 2->2 2->2 1->1 0->0 2->4
T5 6->5 2->2 2->2 2->2 2->2 0->0 0->0 6->5
T6 7->8 4->4 1->1 2->2 3->4 1->1 0->0 0->2
T7 39->21 0->0 1->1 3->3 7->8 7->7 3->3 4->6
T8 12->10 0->0 0->0 3->5 5->5 3->3 1->1 2->3
T9 5->6 2->2 1->1 0->0 3->3 2->2 1->1 3->5
T10 10->10 1->1 0->0 2->1 5->5 1->1 0->0 0->4
T11 7->14 0->0 0->0 0->0 3->3 0->0 0->0 0->3
T12 6->12 0->0 0->0 7->6 7->7 4->5 1->1 0->2
T13 3->2 0->0 0->0 0->0 0->0 1->1 0->0 0->2
T14 5->5 2->2 0->0 0->0 1->1 1->1 1->1 1->3
T15 2->3 0->0 0->0 0->0 5->5 4->2 1->1 0->1
T16 1->1 1->1 1->1 2->2 1->1 0->0 0->0 0->3
T17 9->11 0->0 0->0 1->2 1->2 1->1 0->0 5->6
T18 4->7 0->0 0->0 4->4 1->1 3->3 0->0 2->2
T19 10->9 0->0 1->1 1->1 5->5 1->1 1->1 3->7

4.2 Fragility of Dolibarr

This section reports the detected defects and fragilities during the execution
of the test cases on all the available releases of the Dolibarr based on Selenium
and EyeAutomate testing.

One non-deterministic test failure was found by executing the devel-
oped test suites under Selenium testing, related to issues in perform-
ing a scroll operation on the web page of the app (example: Test re-
port of T2 in V10.0.2 pointed out that Exception in thread “main”
org.openqa.selenium.ElementClickInterceptedException: element click inter-
cepted: Element <input name=“capital” id=“capital” class=“minwidth100”
value=“ ”> is not clickable at point (632, 551). Other element would receive
the click: <div class=“phpdebugbar-header”>...</div>). It occurs mostly

79

4 – Results

in v10.0.2 and only T13 in v6.0.8. It is spotted that the element is not click-
able anymore, click on another position coordination. Once I add a scroll
screen operation to the element, Selenium could recognize the element. Ac-
cording to the report of the EyeAutomate experiment part, this situation
also occurred here.

Based on the analysis of test fragilities induced by the evolution, as dis-
cussed in the Selenium testing experiment result, I classified the causes of
the fragilities that were observed in the study.

Identifier change: When the test case is invalidated by changes in one of
the element attributes.

Text change: An element is not provided with a unique identifier, but is
based on the text detected by their textual description. Text-based locator
is fragile because a single different character is sufficient to invalidate a text-
based locator based on String comparison.

Deletion or addition: Between two consecutive releases of the same appli-
cation, an element may be removed or added.

Structure of DOM tree change: The fragilities are caused when the class or
type of the elements change between two consecutive releases of the same ap-
plication. Many locators were based on the name of the class of the elements,
that was subject to change in different releases.

Based on the experimental results of the EyeAutomate test, I introduced
the other causes of the fragilities observed in the study, which is derived from
the taxonomy defined in one article, [35].

Graphic Change: As stated before, image recognition testing techniques
applied in the EyeAutomate testing tool. When a new arrangement of the
elements in the graphical layout - or even just a simple modification in the
style of the application - this type of change in the Dolibarr is as expected as
the primary cause of fragility for the Visual test suite. Examples of Graphic
Change fragilities, related to the drop-down list option, are reported in Figure
4.32.

Figure 4.32. Example of Pure Graphic Fragilities

80

4.2 – Fragility of Dolibarr

Widget Arrangement Change: This situation will occur when the relative
position on the screen of the widgets to interact is changed between two
different releases of the app. This fragility is experienced in one test case,
which is reported as examples in Figure 4.33. In release 5.0.7 the arrangement
of the widgets in a layout is changed.

Figure 4.33. Example of Widget Arrangement Fragilities

Table 4.19 reports the main causes of the encountered fragilities during
the execution of Selenium test cases. It also reports the percentage of main-
tenance in each version. For example, (see 14/19 in the table) there are 14
of 19 test cases that occur identifier modification in V3.9.4 compared with
V2.9.0.

Table 4.19. Main causes of fragilities in broken test cases

Cause V3.9.4 V4.0.6 V5.0.7 V6.0.8 V7.0.5 V8.0.6 V9.0.4 V10.0.2
Identifier
change 14/19 1/19 1/19 2/19 13/19 2/19 1/19 0/19

Text
change 5/19 3/19 2/19 2/19 1/19 6/19 2/19 0/19

Deletion
or Ad-
dition

12/19 0/19 0/19 0/19 0/19 1/19 0/19 1/19

Structure
of DOM
tree
change

14/19 0/19 4/19 12/19 13/19 3/19 3/19 5/19

Starting from the fragility found when adapting the test cases to different
versions of the same application, I give some indications about practices

81

4 – Results

leading to fragility, that may be useful for the creation of guidelines for
programmers aimed at avoiding such problems for the testing phase.

82

Chapter 5

Conclusion and Future
Work

The primary objective of this research was to do automated testing of web
applications with a variety of automated testing tools and discuss the fragility
of the web application.

Firstly, I analyzed 4 distinct web application automated testing tools and
practiced them on the Polito website.

Then, I specifically selected a web application, Dolibarr, which is open-
source on GitHub, and used Selenium, EyeAutomate to do detailed auto-
mated testing of their various versions. Between different versions, each test
case is tested and verified by a systematic and iterative procedure, and vari-
ous fragility events appearing during the test web application are also found.

The main objective of my exploration was to discover and identify the
relative main causes and characteristics of fragility.

Moreover, according to the results of these experiments, give indications
to testers about how to avoid or at least minimize applying fragility test
codes when they do test definitions for the web applications.

As possible extensions, this thesis can be replicated on other software do-
main (e.g., mobile or hybrid mobile/web applications) to evaluate the fragility
issue in typologies of applications that are similar to typical web ones.

As well, the experiment can be replicated on multiple web applications,
possibly written with different technologies, to extend its transferability and
external validity.

83

84

Bibliography

[1] Giuseppe A. Di Lucca&Anna Rita Fasolino (2006): Testing Web-based
Applications: The State of the Art and Future Trends. Information
and Software Technology 48(12), pp. 1172–1186, doi:10.1016/j.infsof.
2006.06.006.

[2] A. Stout (2001): Testing a Website: Best Practices. The Revere Group.
[3] Selenium IDE, https://www.seleniumhq.org/projects/ide/, 2017
[4] SeleniumWebDriver, http://www.seleniumhq.org/projects/webdriver/,2017.
[5] R. T. Futrell, L. I. Shafer, and D. F. Shafer, Quality Software Project

Management, Prentice Hall PTR,2001
[6] A. Ahmed, Software Testing as a Service, Auerbach Publications, New

York:2009
[7] G.J.M yers. The Art of Software Testing, John Willey& Sons,Inc, New

York, USA, 1979.
[8] W. C. Hetzel, The Complete Guide to Software Testing, 2nd ed.

Publication info: Wellesley, Mass.:QED Information Sciences,1988.
ISBN:0894352423

[9] M. Kumari, A. Sharma and V. Kamboi, Replacement of S/W Inspection
with S/W Testing, International Journal of Information Technology and
Knowledge Management July-December 2009,Volume 2, No. 2,pp. 257-
261

[10] S.Thummalapenta, S.Sinha, N.Singhania and S.Chandra, “Automating
Test Automation,” 34th International Conference on Software Engineer-
ing (ICSE), 2012.

[11] T. Kanstrén, “A Review of Domain-Specific Modelling, Software Test-
ing,” The Eighth International Multi-Conference on Computing in the
Global Information Technology, 2013.

[12] A.Jain and S.Sharma, “An Efficient Keyword Driven Test Automation
Framework for Web Applications," International Journal of Engineering
Science&Advanced Technology, vol. 2, no. 3, pp. 600-604, 2012.

85

Bibliography

[13] S.H.Trivedi, “Software Testing Techniques,” International Journal of Ad-
vanced Research in Computer Science and Software Engineering, vol. 2,
no. 10, pp. 433-439, 2012.

[14] Z. Huang and L. Carter. Automated Solutions: Improving the Efficiency
of software Testing, The International Association for Computer Infor-
mation Systems(IACIS) Conference, (IACIS 2003)Las Vegas October
4,2003.

[15] S.Berner, R.Weber and R.K.Keller, Observations and Lessons Learned
From Automated Testing, in Proceedings of the 27th International Con-
ference on Software Engineering(ICSE ’05), pp. 571-579, St. Louis, Mo,
USA, May 2005

[16] J.Kasurinen, O.Taipale,and K.Smolander, Software Test Automation in
Practice: Empirical Observations,Advances in Software Engineering,vol.
2010,Article ID 620836,18 pages,2010.doi:10.1155/2010/620836.

[17] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Reducing web test cases
aging by means of robust xpath locators. In Software Reliability Engi-
neering Workshops (ISSREW), 2014 IEEE International Symposium on,
pages 449–454, Nov 2014.

[18] Brett Daniel, Qingzhou Luo, Mehdi Mirzaaghaei, Danny Dig, Darko
Marinov, and Mauro Pezzè. 2011. Automated GUI Refactoring and Test
Script Repair. In Proceedings of First International Workshop on End-
to-End Test Script Engineering (ETSE ’11). ACM, 38–41.

[19] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2016.
Approaches and Tools for Automated End-to-End Web Testing. Advances
in Computers 101 (2016), 193–237.

[20] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. pro-
grammable web testing: An empirical assessment during test case evolu-
tion. In Reverse Engineering (WCRE), 2013 20th Working Conference
on, pages 272–281, 2013.

[21] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-based
web locators: An empirical study. In Proceedings of the International
Conference on Web Engineering (ICWE), pages 322–340. Springer, 2014.

[22] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[23] P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. Lapez. Automating nav-
igation sequences in Ajax websites. In Proceedings of the International
Conference on Web Engineering (ICWE), volume 5648, pages 166–180.
Springer, 2009.

86

Bibliography

[24] S. Bruning, S. Weissleder, and M. Malek, “A fault taxonomy for service-
oriented architecture,” in IEEE High Assurance Systems Engineering
Symposium, 2007, pp. 367–368.

[25] J. H. Hayes, “Building a requirement fault taxonomy: Experiences from
a NASA verification and validation research project,” in International
Symposium on Software Reliability Engineering, 2003, pp. 49–60.

[26] L. Mariani, “A fault taxonomy for component-based software,” in Inter-
national Workshop on Test and Analysis of Component-Based Systems,
2003, pp. 55–65.

[27] K. S. M. Chan, J. Bishop, J. Steyn, L. Baresi, and S. Guinea, “A fault
taxonomy for web service composition,” in Service-Oriented Computing
- ICSOC 2007 Workshops, ser. Lecture Notes in Computer Science, E.
Di Nitto and M. Ripeanu, Eds. Springer, 2009, vol. 4907, pp. 363–375.

[28] W. Hummer, C. Inzinger, P. Leitner, B. Satzger, and S. Dustdar, “De-
riving a unified fault taxonomy for event-based systems,” in ACM Inter-
national Conference on Distributed Event-Based Systems, Jul. 2012, pp.
167–178.

[29] F. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript errors in the
wild: An empirical study,” in International Symposium on Software Re-
liability Engineering, 2011, pp. 100–109.

[30] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empir-
ical study of client-side JavaScript bugs,” in International Symposium
Empirical Software Engineering and Measurement, 2013, pp. 55–64.

[31] F. Ricca and P. Tonella, “Web testing: A roadmap for empirical re-
search,” in International Symposium on Web Site Evolution, 2007.

[32] A. Marchetto, F. Ricca, and P. Tonella, “Empirical validation of a web
fault taxonomy and its usage for fault seeding,” in International Work-
shop on Web Site Evolution, 2007, pp. 31–38.

[33] Hammoudi,Mouna, “Why Do Record/Replay Tests of We-
bApplication Break?”(2016). Computer Science and En-
gineering: Theses, Dissertations, and Student Re-
search.100.http://digitalcommons.unl.edu/computerscidiss/100

[34] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. pro-
grammable web testing: An empirical assessment during test case evolu-
tion. In Reverse Engineering (WCRE), 2013 20th Working Conference
on, pages 272–281, Oct 2013.

[35] R. Copola, M. Morisio, and M. Torchiano. 2018. Maintenance of An-
droid Widget-Based GUI Testing: A Taxonomy of Test Case Modi-
fication Causes. In 2018 IEEE International Conference on Software

87

Testing, Verification and Validation Workshops (ICSTW). 151-158.
https://doi.org/10.1109/ICSTW.2018.00044

88

	Abstract
	Acknowledgements
	Abbreviations
	List of Tables
	List of Figures
	Introduction
	Background
	Web applications
	Testing
	Test plan
	Test case
	Test script
	Test coverage
	Black-Box Testing
	White-Box Testing
	Grey-Box Testing
	Manual testing
	Automation testing

	Exploration of web-based testing techniques
	Selenium IDE
	SetUp
	How it works
	Example test suite with SeleniumIDE

	Selenium
	SetUp
	How it works
	Example test suite with Selenium

	TestComplete
	SetUp
	How it works
	Example test suite with TestComplete

	EyeAutomate
	SetUp
	How it works
	Example test suite with EyeAutomate

	Empirical Evaluation
	Fragility concept
	Object of study: Dolibarr
	Experiment
	Test case definition

	Results
	Experiment results
	Result Under Selenium WebDriver
	Summary of Dolibarr Change Types under Selenium
	Report on Dolibarr Test Cases under Selenium
	Result Under EyeAutomate
	Summary of Dolibarr Change Types under EyeAutomate
	Report on Dolibarr Test Cases under EyeAutomate
	Comparison between Selenium and EyeAutomate

	Fragility of Dolibarr

	Conclusion and Future Work
	Bibliography

