
Politecnico di Torino

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Implementation of an automated repairing
mechanism for GUI test scripts for mobile

applications

Supervisor:
Prof. Luca Ardito

Co-supervisor:
Prof. Maurizio Morisio

Candidate:
Marilyn Fulgione

Academic year 2019/20
Torino

Abstract

Context : In the field of Mobile Application Development, testing practices can
be very expensive and time-consuming - especially in an industrial setting. One of
the main causes of this phenomenon is the constant evolution of the GUIs aspect,
leading to frequent breakages of layout-based test cases.

Goal : The aim of this thesis’ work is building a tool that repairs layout-based test
cases that break in the transition from an application release to the immediately
following one. In particular, the tool tries to find in the newer release the widget
that is most similar to the one the test located in the previous release, and it con-
sequently replaces the related method calls.

Method : The tool works on Android applications developed in Java and it focuses
on repairing Espresso test cases containing calls to some methods of the ViewMatch-
ers class. The most similar widget in the newer release has been selected as the one
with the highest matching rate with the one located in the previous version of the
app. This value was computed considering the most characterizing attributes of
the View class and some of its subclasses, and assigning a weight to each of them
based on how much that attribute is prone to changes in the evolution of Android
applications layouts.

If the matching rate is equal or above 65%, the widget is considered equivalent
to the one located in the previous version and the user is asked whether they want
to proceed with the test class refactoring using that widget attribute values.

Results: We tested our tool on three different applications and a total of 30 test
cases, including 40 different method calls. The tool succeeded in repairing 80% of
them with the truly equivalent widget of the newer version of the app.

Conclusions: The tool proved to be successful to fulfill the goal it was developed
for. It can also be easily extended to Kotlin based applications and other test tools,
to enlarge its field of applicability. Few changes could be made with regards to
the precision of the computation of the matching rate between widgets – mainly
considering a larger set of widget attributes.

Contents

List of Figures iv

List of Tables v

1 Background and related works 1
1.1 Introduction to mobile testing . 1

1.1.1 Approaches for automated GUI testing of Android applications 2
1.1.2 Categories of mobile applications 3

1.2 The challenges of mobile applications testing 4
1.2.1 The cost of application testing 7

1.3 Test breakage avoidance and prevention 8
1.4 Goals . 8

1.4.1 Notes on refactoring and fragility of GUIs 8
1.5 State of the art and existing tools . 10

1.5.1 SAFIRA . 10
1.5.2 ReAssert . 12
1.5.3 VISTA . 14
1.5.4 ATOM . 16
1.5.5 CHATEM . 19

2 Architecture and design 21
2.1 Analysing the evolution of Android projects layouts 23

2.1.1 Proposed metrics . 27
2.1.2 About this preliminary analysis 29

2.2 Finding the root cause of test breakage 29
2.2.1 JavaParser . 30
2.2.2 From the test file to the layout file 31

ii

2.3 Building a layout object representation 32
2.3.1 The Page Object Pattern . 32
2.3.2 Layout parser . 33

2.4 Finding the most similar widget in the current version of the project . 36
2.4.1 Minimum matching threshold 37

2.5 Repairing a broken test case . 37
2.5.1 Analysing the broken test case error log 38

3 Experiment and results 41
3.1 Preliminary research results . 41

3.1.1 Collected data on Android applications layouts evolution . . . 41
3.1.2 Computation of the minimum matching threshold for test

refactoring . 44
3.2 Experimental results of the tool . 47

3.2.1 Widgets and results display format 47
3.2.2 Handling test breakage caused by widget id 56

4 Threats to validity 59

5 Conclusions 63
5.1 Summary of the results . 64
5.2 Future work . 64

Bibliography 67

iii

List of Figures

1.1 ReAssert’s repair process. 13
1.2 Example of ESM as a finite state machine. 17

2.1 Modular representation of the developed tool. 22
2.2 Class diagram of a JSON file built from the analysis of a layout file

found in the /res/layout folder. 34
2.3 Screenshot of the main activity of the last release of OmniNotes. . . . 34
2.4 Object diagram of the main activity of the last release of OmniNotes. 35

3.1 DIFF distribution over all considered attributes. 42
3.2 ACQ, ACR and ACP distribution over all considered attributes. . . . 42
3.3 Matching percentage of widgets across consecutive releases 45
3.4 Box Plot for matching percentage . 46
3.5 Main activity of Lazy Cafe’ in versions A and B 49
3.6 Main activity of Glucosio in versions A and B 52
3.7 Main activity of TodoList in versions A and B 55

iv

List of Tables

1.1 GUI frailties and how they affect different testing approaches 9
1.2 Refactoring categories affecting the application interface 10
1.3 Data from previous studies on test script repair automation 11

2.1 Some of the attributes of the View class and of its subclasses consid-
ered in this work. 25

2.2 Possible method calls of class ViewMatchers causing errors in Espresso
test files . 38

2.3 Possible error outputs caused by errors in method calls shown in Table
2.2 . 39

3.1 Attribute change metrics and attribute weights to compute widget
similarity rate . 43

3.2 Mean and median values of matches found in this phase for the anal-
ysed applications. 46

3.3 Widgets added to versions A and B of the app Lazy Cafe’ 50
3.4 Method calls causing test breakage in version B of Lazy Cafe’ and

their refactored versions . 50
3.5 Refactored test cases success and equivalence to the broken ones for

the app Lazy Cafe’ . 51
3.6 Widgets added to versions A and B of the app Glucosio 52
3.7 Method calls causing test breakage in version B of Glucosio and their

refactored version . 53
3.8 Refactored test cases success and equivalence to the broken ones for

the app Glucosio . 53
3.9 Widgets added to versions A and B of the app TodoList 55

v

3.10 Method calls causing test breakage in version B of TodoList and their
refactored version . 56

3.11 Refactored test cases success and equivalence to the broken ones for
the app TodoList . 57

5.1 Tool results on the selected applications and built test cases. 64

vi

Chapter 1

Background and related works

1.1 Introduction to mobile testing

The testing activity is a fundamental phase in software development, especially to
guarantee its quality and to ensure that no crashes and no undesired behaviors
happen during a typical execution (Coppola et al., 2017) since that would lead to
poor user experience and would cause the users to feel dissatisfied and immediately
uninstall the application.

The modern development practices and the continuous integration of the software
in the existing systems brought to the need to have automatic test execution and
therefore to write specific scripts for this purpose.

A test script is a sequence of actions, each of them characterized by a widget lo-
cator and an event trigger: the widget locator is used to retrieve a widget (element)
inside an activity that satisfies the specified criteria, while the event trigger can be
either the interaction of the user with the widget itself or come from external input.
Each event generally involves two screens: the one currently shown and the target
screen, that becomes active in response to the event (Chang et al., 2018).

As mobile applications are mainly focused on giving visual feedback to the user
possibly after every interaction with them, GUI testing becomes a fundamental step
in mobile application development, especially since mobile applications GUIs change
so rapidly release after release, making them prone to GUI testing fragility.

1

1 – Background and related works

Writing test scripts is effective both in the exploitation of time and resources
but also requires to overcome some challenges for the maintenance of said scripts:
the evolution of the System Under Test (SUT) brings to test breakage caused by the
modifications done on the system. For this reason, we need the test suite to evolve
together with the system, or at least that the developer can identify the reason that
brought to test breakage - i.e. if that is due to system evolution or just to a bug in
the code’s implementation or algorithm logic.

The changes that can lead to test breakage can be logical or structural: logical
changes deal with modifications in the logic of the code or in functionalities that
can be added, removed or modified, while structural changes deal with the layout
and structure of the application. (Imtiaz et al., 2019)

We can also consider refactoring as a source of possible test breakage, but we’ll
focus on it further on.

Discarding broken test cases highly affects the quality of the regression test suite
and therefore it can be an expensive task, since we then need to work a lot on
realigning previous tests script with the application GUI and possibly new function-
alities, to avoid a drastic drop of the test suite quality - especially considering that,
in terms of lines of code, GUI testing can be an important portion of the project
during its lifecycle, if compared to the number of LOCs of program code.

1.1.1 Approaches for automated GUI testing of Android ap-
plications

As far as automated testing is concerned, Linares-Vásquez (2015) lists four different
approaches for testing the GUIs of Android apps:

• Random / fuzzy testing: first we create a model of the user interface and then
we apply random testers (e.g. Monkey)1 to distribute the input given to the
interface more cleverly.

• Model-based testing: this type of testing starts with the modeling of the GUI

1https://developer.android.com/studio/test/monkey.html

2

1.1 – Introduction to mobile testing

as a finite state machine or an event-flow graph. Test cases are generated by
navigating the GUI model.

• Capture and replay testing: this approach consists of recording sequences of
actions performed on the GUI, that automatically generated the corresponding
repeatable test code sequences.

• Scripted and white box testing: this kind of testing requires a deep knowl-
edge of the code and some effort for writing down testing code sequences of
operations to be performed on the Application Under Test (AUT).

1.1.2 Categories of mobile applications

Regarding mobile applications, we can distinguish between three different categories:
native, web-based and hybrid applications.

• Native apps are developed using specific SDKs for the destination platform
(Coppola et al., 2019), have easy access to the device hardware resources and
support all user interfaces and interactions that the operating environment has
available.

Java is generally used to develop native applications for the Android market,
while Objective C is used for iOS and the .NET framework for Windows Phone.

• Web-based apps - also called mobile web applications - are typically devel-
oped with HTML-like languages, CSS and JavaScript, and are engineered to
be loaded in the browsers of mobile devices. They try to mimic the behavior
of a native app but in reality, they execute their code in a web browser on
the host platform. According to Jobe (2013), mobile web apps can be further
categorized into:

1. Hardware intensive apps, mainly used for content creation, and

2. Apps that don’t need access to hardware resources, mainly for content
consumption

• Hybrid apps exploit some native components to embed content that is cre-
ated through web development technologies.

3

1 – Background and related works

The study by Jobe highlighted that performances of native apps are generally
superior to mobile web apps, especially when access to hardware resources is required
(e.g. GPS location).

On the other hand, mobile web applications need less time and investment to be
developed and are also significantly less complex. The cited study also underlined the
idea that hybrid apps could be a valuable alternative to achieve good performances
and functionalities reducing the cost of development.

1.2 The challenges of mobile applications testing

Developing mobile applications is already a pretty challenging task by itself, for the
following reasons:

- mobile applications are event-driven, so they get their input not only from
the user but also from external contexts (e.g. position sensors, NFC devices,
screen orientation changes, etc.);

- limited energy, memory and bandwidth of the host device;

- constant interruptions caused by system and communication events (notifica-
tion, incoming messages or calls, etc.);

- the need for the interface to adapt to different screen sizes and resolutions;

- very high multitasking and interaction with other apps.

When it comes to testing mobile applications, other challenges arise, making
developers prefer manual testing approaches instead of automated ones. Let’s see
them more in details, starting from the list made by Linares-Vásquez et al. (2017):

• Fragmentation. This phenomenon is mainly due to the presence of many
different configurations obtained taking into account several devices, versions
and operating systems. The high number of configurations makes it very
difficult to test the application in each of them - also for the high cost that it
would require.

A possible solution to this challenge could be moving the testing phase on
cloud/crowd-based services that provide developers with the ability to test
applications on a huge number of virtual and physical devices, or with a mul-
titude of users with different kinds of devices. Anyway, this kind of service

4

1.2 – The challenges of mobile applications testing

is generally expensive and requires more time than it would fit in Agile and
DevOps practices.

• Test flakiness. Testing applications that rely also on back-end servers or
services add up other challenges, related to lack of connection, availability of
the AUT’s back-end, timeout, delays, memory usage and data integrity. All of
that brings to non-deterministic app behaviors and consequently to possible
test failure.

One of the possible ways to face this challenge is using the testing tool Espresso2:
it solves the problems with delays, only executing the tests when the GUI is
in idle state, reducing the risk of test failures.

• Lack of history awareness in test cases. Some attempts have been made
to implement execution history awareness within test cases, for example with
event-flow graphs (EFG) or finite state machines - so handling the event flow
as if it were a language - in which the events correspond to the transitions
among the different states.

EFGs don’t have a specific memory mechanism but navigating the graph we
can derive a history aware execution. Language-based models, instead, ex-
plicitly implement memory using a conditional probability distribution, that
is focused on generating the following event in the sequence based on previous
ones.

Furthermore, the possibility to generate history aware tests is negatively af-
fected by the problem of test flakiness we mention before.

• Difficulties in evolving and maintaining GUI scripts/models. This
problem comes from the fact that many test scripts are closely tied to widgets
positions within the GUI layout - and that these positions can vary a lot also
based on the device characteristics - and to the actions that can be performed
on said widgets.

The model should evolve together with the application and updated test cases
should be continuously generated starting from the updated model: by the

2 https://developer.android.com/training/testing/espresso/

5

 https://developer.android.com/training/testing/espresso/

1 – Background and related works

way, this approach wastes the potentially useful information and knowledge
coming from previously generated models.

• Absence of mobile-specific testing oracles. Several options have been
explored for mobile application oracles implementation. Some of those are
based on the status of the GUI or on the raising of exceptions and errors to
establish if a test has failed or not. The absence of specific oracles is still an
open issue: approaches that rely on exceptions raised by the app are useful to
detect crashes and unexpected errors but cannot identify errors occurring on
the GUI and vice versa.

For this reason, oracles are still implemented and updated manually, meaning
they still are a very expensive voice in the testing activities.

• Missing support for multi-goal automated testing. The most part of
testing activities and the currently used approaches are focused on destruc-
tive testing, so aimed at eliciting failures. Other types of important testing
categories - such as functional, regression, performance, energy and security
testing - lack of a stable support tool.

Other challenging aspects of mobile application testing include (Joorabchi et al.,
2013):

- limited unit testing support for mobile-specific features (e.g. sensors, rotation,
navigation, etc.);

- missing tools to monitor, measure and visualize application metrics such as
memory management, battery consumption, CPU usage and network perfor-
mances;

- emulators and simulators lack appropriate support to mimic real environments,
as well as access to features outside the application which could be part of a
test case;

- usability testing: usability can make or break the success of an app - as the
most common type of feedback on usability is the application download and
rates on the app store - so there is a significant need for tools allowing this
kind of testing.

6

1.2 – The challenges of mobile applications testing

1.2.1 The cost of application testing

Testing, seen as test scripts development and their maintenance is - as previously
stated - a very expensive activity.

For applications having a big number of screens and possibly thousands of total
widgets and visual elements, test automation has a fundamental role in cost reduc-
tion for testing itself. At the same time though, putting more effort in test script
writing is key when tests need to be run repeatedly to determine if the application
followed the correct or expected behavior.

To have an idea about the costs we are talking about, just think that only in
Accenture the cost due to manual maintenance and test script evolution varies from
50 to 120 million US dollars. About the tools, we can, for example, talk about
Quick Test Pro (QTP), a very widely used tool which license has a price of over ten
thousand US dollars.

For this reason, and to investigate the real need to buy and use tools to support
the testing activities, Grechanik et al. (2009) have conducted a study observing a
group of 45 employees with different studies background and also different experi-
ences with the world of application testing.

They observed that test engineers obtained almost the same level of productivity
both using QTP and a manual approach. Furthermore, QTP has shown to be very
useful in supporting test scripts writing and repairing for those that didn’t have
prior knowledge on testing, while the experienced employees still obtained better
performances with the manual approach.

The authors then recommend organizations to supply their programmers with
testing tools to make test repairing faster but not to provide testers with expensive
tool licenses since they still are more efficient if they fix things manually.

Maintenance cost is mainly affected by design choices and the strategies used to
implement the tests themselves, missing documentation and the too few guidelines
available to create tests that can be easily maintainable and reusable (Berner et al.,
2005). Alégroth et al. (2016) also demonstrated with a case study that in company
environments where there is a considerable need for test scripts maintenance, the
use of automated testing brings to a Return Of Investment (ROI), even if it’s on the

7

1 – Background and related works

long run. In that case study, developed in Saab, there would be a ROI in a range
from 180 (best case) to 532 weeks (worst case) since the adoption of test repairing
automation mechanisms.

The value of the ROI and even the chance to get to it are strongly influenced
by the weight the company gives to the Verification and Validation (V&V) phase of
the development process.

1.3 Test breakage avoidance and prevention

For what concerns widget location inside activities, some tips can be helpful to
prevent test case breakage such as:

• Having elements IDs that are descriptive and not automatically generated,
so that it’s less likely that they are frequently changing with the application
evolution;

• Using resource names to define widget properties like text, color, margins and
others, since modifying files in the values folder won’t affect the test cases.

1.4 Goals

The aim of this thesis work is to provide an automated solution to repair test scripts
that are broken due to refactoring or widget properties modifications.

In particular, an example of use case can be described as following: a test case
involves a widget on the screen that is located using its text; in the following release,
the test case breaks because the text contained in the widget is changed, so the
locator doesn’t return any valid widget. We want to provide a way to select the
correct widget on which we need to perform the action - i.e. the widget that in the
current release corresponding screen is most similar to the one from the previous
release.

1.4.1 Notes on refactoring and fragility of GUIs

Daniel et al. (2011) states that "GUI refactoring only changes the aspects of a GUI
(and correspondingly the view and the controller parts of the code that implement
the GUI) but not the way it behaves, so not the underlying model".

8

1.4 – Goals

There are two possibilities when it comes to refactoring: either it has no effects
on the interface - because it doesn’t change the output of GUI related methods, or
some methods or parts of them are simply moved - or it does. In the latter case,
refactoring alters the state of relevant elements, causing the test not being able to
find them when needed.

The main ways in which we can identify a view inside an activity - and therefore
its properties that are most likely to cause test breakage if changed - are its ID and
text. Also choosing a different property to identify the views may cause the same
problem in layout-based test scripts.

Visual-based test scripts, based on graphic recognition, can also fail due to
the modification of colors, animations, transparency, sizes and position of widgets.
Coppola et al. (2017)

Table 1.1 shows the main types of frailties that can affect different testing ap-
proaches, where the ’x’ means that an approach is affected by a given fragility issue
(Coppola et al., 2019).

Type of fragility Layout-based Visual-based
Text changes x x
Graphic changes x
Widget substitution x
Application behavior change x
Widget addition / removal x x

Table 1.1. GUI frailties and how they affect different testing approaches

It’s very clear at this point that these kinds of changes can affect the written test
cases, especially if visual-based; so the cited study by Daniel et al. came up with
the idea of a tool that could automate the repair of GUI test scripts, refactoring
them based on the changes done on the GUI. This is based on the assumption that
the refactoring tool knows how to map each GUI method to the corresponding one
after the code has been refactored.

Table 1.2 shows the refactoring categories affecting the interface according to
Gao et al. (2015).

9

1 – Background and related works

Refactoring category Subcategory Affects interface?

Adding element
Adding parameter yes
Adding verification condition no
Adding method yes

Removing element
Removing parameter yes
Removing method yes

Adjusting element

Reorganizing method no
Simplifying code no
Moving element yes
Changing access purview yes
Changing access path yes
Replacing element yes
Disassembling element yes
Renaming element yes
Combining elements yes

Table 1.2. Refactoring categories affecting the application interface

1.5 State of the art and existing tools

The study by Imtiaz et al. (2019) highlights the main trends in the field of studying
test scripts repairing automation. Table 1.3 presents the results of the 41 papers
selected for that study. Please note that one paper can be inserted in one or more
categories for some of the selected research questions.

In the following, we give an overview on the existing tools for test repairing for
web, desktop and mobile applications.

1.5.1 SAFIRA

When performing changes on an application GUI, it can be really difficult to under-
stand if said changes are going to affect the application’s behavior, and therefore if
and how these modifications will cause tests to break. The challenge is even harder
considering Java not so trivial semantics, especially with regards to inheritance.

While compilation errors introduced by the refactorings are easily detected in
IDEs, behavioral changes may pass unnoticed. That’s why Mongiovi (2011) proposes

10

1.5 – State of the art and existing tools

Research question Category Papers

Type of research method
Solution proposal 12
Validation research 23
Evaluation research 6

Test framework

ROBOT 2
JUnit 14
QTP 2
Selenium 6
Others 17

Target platform

Desktop 29
Web 8
Mobile 2
Other 2

Automation level
Manual 10
Semi-automated 19
Automated 12

Type of approach for test repair

Model-based 15
Search-based (metaheuristic) 5
Heuristic-based 8
Computer vision-based 1
Symbolic and concolic-based 14

Table 1.3. Data from previous studies on test script repair automation

SAFIRA as a practical approach to automatically generate test cases focused only
on the entities that are affected by the changes.

More in detail, SAFIRA generates a series of methods to exercise directly or
indirectly the impacted entities (e.g. widgets). The set of all impacted entities is
defined as the union of the sets impacted by each change. If the generated test cases
reveal a result that’s different from the expected one (namely, the behavior before
the changes), SAFIRA reports the transformation as not behavior preserving.

In this way, SAFIRA builds a set of tests that pass successfully on the base
version of the app (V1) but fail on the target version (V2). If this set is empty,
the developer is more confident about the fact that the transformation is behavior
preserving; otherwise, the test cases will show behavior changes.

11

1 – Background and related works

SAFIRA vs SAFEREFACTOR

In the cited study, Mongiovi compares SAFIRA’s results with those found with
another similar tool called SAFEREFACTOR.

They discovered that SAFEREFACTOR, developed by Soares et al. (2009) re-
quires a greater time limit to detect the behavioral changes than SAFIRA, and
it also takes more time to analyze the transformation because it generates a larger
test suite: SAFEREFACTOR generates many unnecessary test cases while SAFIRA
focuses on test cases for the impacted entities only.

1.5.2 ReAssert

ReAssert has been presented by Daniel et al. (2009, 2010) as a tool that automati-
cally generates repair suggestions for test cases in Java, allowing the user to accept
them, and therefore immediately repair the test case, with just a single mouse click,
reducing the effort required to fix broken test cases. It works with both manually
written and automatically generated test cases.

The main difference between ReAssert and refactoring tools is that the first one
requires to analyze also runtime execution and it suggests repairs that can change
the behavior of the test code making the failing test cases pass, while refactoring
tools preserve code behavior making structural code changes.

To determine the possible repairs, ReAssert records the variables’ actual values
during test execution and replaces the wrong expected ones. The steps followed by
the tool are shown in Figure 1.1 - taken from Daniel et al. (2009).

This kind of approach works quite well with assertions involving simple-typed
variables - such as Integer and String - but it can get a lot slower when using
assertEquals on objects of complex nested types/classes.

The main limitations of this tool are of course the time needed to repair all
broken tests (a time limit should be set by the user) and the limited number of
strategies it can apply to try to repair a test case: if none of them can be applied,
the test has to be manually checked and repaired.

Also, since this tool tries to change as little as possible the application code, of
course, it will not be able to repair all broken test cases.

12

1.5 – State of the art and existing tools

Figure 1.1. ReAssert’s repair process.

Some of the strategies ReAssert tries to apply are briefly described in the follow-
ing list.

• Replace assertion method: an assertion that failed is replaced with one that
passes or that can be repaired using a different strategy - so it’s used as a
preprocessing phase;

• Invert relational operator: works well with comparable objects, it inverts the
operator in the argument of an assertion;

• Replace literal in an assertion: takes the literal value of a simple-typed
variable, computed at runtime, and replaces the expected value for it with the
computed one - making it the expected side of an assertion;

• Replace with related method: this strategy applies when the argument to
assertTrue or assertFalse is a call to a common library method that is closely

13

1 – Background and related works

related to another;

• Trace declaration-use path: used when we have helper methods containing
several assertions that are called many times in the code. This technique needs
to track back the call chain and the arguments of the method that caused the
test to fail;

• Accessor expansion: replaces a single assertEquals on a complex object with
as many assertions as are the fields of the complex class the object is an
instance of;

• Surround with try-catch: used when we need to check that a specific exception
was thrown.

ReAssert also provides an extended API that can be used to build other repair
strategies, custom made by the developers based on their application requirements,
allowing to repair specific failures or tests written in a custom test framework.

1.5.3 VISTA

The Graphical User Interface of an application is the one that allows user interaction
and that is, therefore, the main focus of testers inspections oriented to test script
writing. VISTA is proposed by Stocco et al. (2018a, 2018b) as a tool that keeps
track of the visual elements of the interface, instead of just focusing on the code as
other previously in use tools did.

The main fragility of web applications is locators (Hammoudi et al., 2016), that
let the elements on the screen be identified based on their properties - like ID, path,
text or other DOM properties. For example, test breakage can occur simply moving
an element inside the page or changing its text: the repairing phase has then to
be triggered on the test and not directly on the application because these trivial
modifications don’t result in bugs while building and executing the source code.

To find the root cause of test breakage and a possible solution, we need to inspect
the test case until we find the GUI element involved in the statement that caused
the test to stop: this is the first big challenge of web applications test repair.

14

1.5 – State of the art and existing tools

Another challenge, as we can expect, is the needed time: this is mainly because
the used tools don’t offer adequate support to quickly discover the root cause of
test breakage and in particular, they don’t provide information on the modifications
done on the app that brought to it.

The idea behind VISTA is to check the actions executed on the GUI and to
validate them runtime, checking possible deviation from the expected or correct
behavior. In this way, VISTA supports automation of test repairing in case of
locator breakage using the visual information obtained from test execution.

All of this is based on the assumption that the GUI doesn’t undergo major
changes in its visual structure between two consecutive releases; the DOM, on the
other hand, can be updated much more frequently.

The architecture of VISTA

VISTA is written in Java and executes Selenium test cases using Eclipse as an IDE:
it follows test cases execution from a visual point of view and it’s able to find out
at runtime the presence of any locator breakage together with possible solutions,
reported to the user for further inspection.

VISTA is composed of two modules that we analyze in the following.

Visual Execution Tracker. In the first phase, the statements contained in the
test we are executing are mapped to the corresponding involved DOM locators and
the visual aspect of the associated GUI components. All of this is done on a correctly
working version of the application (V1). The Visual Execution Tracker integrates
another tool that is able to intercept calls to methods contained in the Selenium
WebDriver library and that automatically creates visual representations of locators,
that uniquely identify each element on the screen that is involved in the current test
case.

At the end of test execution, the complete mapping is saved in a json file that
will be the input of the next VISTA component.

Visual-Augmented Test Runner. The second phase is executed in the updated
version of the application (V2).

15

1 – Background and related works

First, it looks for a corresponding DOM level locator in the new version of the
application (V2): if this search has a result, VISTA checks that the returned locator
is equivalent to the original one, and in that case, the examined statement is also
validated visually.

By the way, there may be some discrepancies between the DOM locator and the
visual one: in this case, we call it mis-selection, and the tester will have to manually
select the correct locator if any.

Another cause of test breakage can be that no locator is found neither following
the DOM criteria nor the visual one. VISTA then tries to find equivalent locators
in different screens that are at least one level far from the current one and it adds
a new transition and a new statement in the test case, if needed, to reach the other
screen. If all of this fails, VISTA assumes that the element we’re searching has been
deleted and suggests the user to remove the corresponding statement in the test
case.

1.5.4 ATOM

In the area of mobile applications, the GUI is for sure the component that’s most fre-
quently modified and updated to give the user the best possible experience: therefore
many test cases involving the GUI become obsolete very quickly and their mainte-
nance is a really expensive task, worth a lot of effort. Furthermore, the development
cycle of mobile applications is short and feedback oriented, leaving little time to
dedicate to testing practices and test scripts maintenance.

Introduced by Li et al. (2017), ATOM is a tool for automated maintenance of
test scripts for mobile applications. To perform this task, ATOM uses two different
models: an Event Sequence Model (ESM) and a Delta ESM (DESM), that respec-
tively represent a possible event sequence and the possible changes done on the GUI
transitioning from a version of the application to the next one.

The ESM and the DESM can be represented as finite state machines but they
lack explicit start and final states, as shown in Figure 1.2 (Li et al., 2017).

Receiving the ESM and the DESM as inputs, ATOM automatically updates the
tests that were written for the base version of the application (represented by the
ESM), trying to find alternative mappings in case of absence of references to the
searched elements in the updated model.

16

1.5 – State of the art and existing tools

Figure 1.2. Example of ESM as a finite state machine.

In the maintenance phase, ATOM merges the ESM and the DESM, producing
the ESM of the updated version of the application. This will be used ad input for
the following cycle of execution of ATOM.

Even though building the two models may be an expensive task, the authors
consider the overhead to be acceptable since the ESM is built only the first time
that ATOM is executed on the app, and each DESM can be simply built from the
current ESM because they just represent small variations of it.

How ATOM works

To make the building phase easier, in the ESM we only take into account the status
in which the GUI elements are and which are the events that can be performed
on each of them; a DESM, on the other hand, specifies the changes related to the
application screens in their visual appearance and to the connections between them,
triggered by a specific event. In particular:

• the modification of a connection in a DESM is associated with two connections,
the removed one and the added one;

• the screens associated with at least one modified transaction are going to be
the states of the DESM.

The ESM of the updated version of the app can be computed as ESM⊕DESM .

17

1 – Background and related works

A test script consists of a series of actions, each of them characterized by a type
and a target descriptor that indicates the widget on which the action is executed.
Each event in the ESM is mapped to the corresponding action through a relationship
described in the configuration file.

The maintenance of the test script described in Li et al. (2017) (Algorithm for
maintaining an ESM path) can be easily divided into two phases:

1. Identification of changes and development of a new simulation: this is done
by updating, in order, the elements present in the previous simulation;

2. Mapping the events that caused the changes to a test script action. In partic-
ular, if an event p is eliminated, ATOM looks for an intermediate state to be
able to connect the previous and subsequent path to p that would otherwise
be disconnected.

Results and weaknesses

The ATOM implementation presented by Li et al. (2017) relates to scripts based
on the Robot Framework and uses Appium for test automation: this can be seen
as a limitation of the tool itself. However, the authors indicate the possibility of
extending support to other frameworks by simply defining the mapping between the
actions performed in the tests and the connections present in the ESM.

Performance-wise, ATOM is proved to be fast, managing to update the tests of
each of the applications in less than a second.

Experimental results demonstrated that "ATOM is effective in achieving high
screen and connection coverage [...] and high test action preservation when main-
taining test scripts".

Some weaknesses or suggestions for improvement of ATOM as a tool are listed
below.

- automatic test generation techniques could be integrated into ATOM to im-
prove the code coverage provided by the tests;

18

1.5 – State of the art and existing tools

- the possible errors in implementing the tool are for sure ATOM’s biggest weak
point;

- the applications chosen by the authors to experiment with the tool may have
introduced bias in the study, in particular relating to the appearance and
characteristics of the GUI, as they have all been selected from the Chinese
Android market.

1.5.5 CHATEM

CHATEM has been developed by Chang et al. (2018) and takes some hints from
ATOM to implement change-based testing. In practice, taking two different ver-
sions of the same application (e.g. two consecutive releases) it’s able to extract the
changes between the two GUIs and to generate maintenance actions for each change,
combining them to create repair actions for the broken test scripts.

How CHATEM works

Differently from ATOM, CHATEM takes as input the two ESMs of the base and
updated version (V1 and V2, using the same notation as before) and a set of test
scripts that passed successfully on V1.

From there, it automatically extracts the changes and identifies their impact on
the test cases, generates and directly applies the repair actions to update affected
test scripts.

The main difference concerning ATOM’s approach is that the ESMs are built
using automated model extraction combined with manual confirmation from the de-
veloper. By the way, the cited study shows that as far as performances are concerned,
the two considered tools are almost equivalent in finding and repairing broken test
cases considering a trade-off between time and number of repaired test cases.

Equivalence and derivation relations

CHATEM provides us with a useful hint that we also used in this thesis work to
implement our automated test repairing tool. CHATEM defines two relations that
are used to locate the widgets involved in a test case (Chang et al., 2018).

• Equivalence relation: two widgets w1 and w2 (where w1 belongs to a screen
s1 and w2 belongs to screen s2 derived [see below] from s1) are considered

19

1 – Background and related works

equivalent if and only if all their properties have the same values, they trigger
the same set of events, and their event handlers for each event transit the app
to screens with matching IDs

• Derivation relation: given two widgets w1 and w2 (where w1 belongs to a
screen s1 and w2 belongs to screen s2 derived from s1), CHATEM considers
w2 to be the derivation of w1 if:

1. w1 and w2 are not equivalent and

2. the majority of their locator properties have comparable values 3

We used the concept of derivation as a "majority criterion" to identify cor-
responding locators in different versions of the applications GUI if an equivalent
widget - namely the same one without modifications - is not found.

The remainder of this thesis is structured as follows:

• Chapter 2 will cover the development process of the tool, together with the
description of some used tools and patterns;

• Chapter 3 presents the results of some needed preliminary analysis done on
the evolution of Android applications layouts (Section 3.1) and the results of
the tool’s usage in a few real applications (Section 3.2);

• Chapter 4 covers the threats to the validity of the developed tool;

• Chapter 5 shows the conclusions and hints for further improvement of the tool.

3Two String-typed values v1 and v2 are comparable if and only if they have at least half of the
words in common, while two values of other types are comparable if and only if they are equivalent

20

Chapter 2

Architecture and design

Our tool has been developed to support refactoring in case of test breakage due to
the impossibility to locate the widget involved in the test case because the attribute
used to locate it, for example, the id of the widget or the text inside it, has changed.
The tool is written in Java and takes as its main input, files from two different
folders:

- one containing the last release of the project, including the test class where all
test cases pass successfully (later referred to as version A)

- the other containing the release that is currently under development (later
referred to as version B): this folder also contains the same test class present
in version A, but some of its tests don’t pass in version B due to layout changes.

The last input of the tool is the log file of the test class of version A executed on
version B, listing the errors that caused test breakages.

Figure 2.1 shows the modular structure of the tool. In particular, we have:

1. Error Parser and Evaluator. The Error Parser takes as input the execu-
tion error log of the test class and it produces 2 outputs: the test class path
and a list of pairs (in blue in the figure) - one for each broken test case -
indicating the type of error - i.e. the possible method(s) - and the argument
of the call causing the error itself.

The Evaluator part internally analyses each pair provided by the parser and
produces all possible method calls (in red) that may have caused the breakage.
Each method call will be then searched in the test class for possible refactoring.

21

2 – Architecture and design

Figure 2.1. Modular representation of the developed tool.

Another output of the error evaluation phase is the possible attribute-value
pairs (in green) we have to look for in the layout file of version A to find the
referenced widget in that release (so it serves also as an input of the Widget
Matcher module).

2. Layout Finder. It looks for the Activity Under Test and finds its layout in
the /res/layout folder of the current release (as described in Section 2.2.2):
this is done using JavaParser, a tool that can analyze Java code to retrieve
its Abstract Syntax Tree, compute statistics on it and also provides methods
to refactor code (see Section 2.2.1);

3. The third phase compares versions A and B of the activity layout, to find the
most similar widget:

(a) The Layout Parser creates a simplified version of the layout files, assum-
ing that they have the same name in the two versions (Section 2.3.2). For
this part we took some concepts from the Page Object Pattern (Section
2.3.1);

(b) Then, the Widget Matcher searches, in version B of the layout, for the

22

2.1 – Analysing the evolution of Android projects layouts

widget with the highest match with the one that was involved in the test
case - located in version A (Section 2.4).

The widget with the highest match is being selected comparing the wid-
gets attribute values, looking for equivalences and similarities. To do this,
we computed some metrics to understand which widget attributes are
more subject to modifications throughout the application releases, and
consequently assigned a weight to each attribute: the ones that change
more often have a lower weight since they are less reliable for this purpose.

Finally, a widget can be selected as equivalent to the one of version A if
and only if its matching rate, computed following the previously described
metrics, is above a threshold value set, in our case, to 65% (see Section
2.4.1).

4. Lastly, the Test Refactorer module performs the repairing/refactoring of the
test file according to the results provided by the previous steps (Section 2.5):
this is done only after having asked the user/developer whether they want the
refactoring to be performed automatically or not.

2.1 Analysing the evolution of Android projects lay-
outs

The first step towards this thesis goal was to understand how much the layouts of
the applications change with the evolution of the project. To do this we analyzed
705 GitHub projects and searched for the differences in layout files found in the
/res/layout folder in each couple of consecutive releases from the first one to the last
one available. It was all done through a bash script, run on a Windows subsystem
for Linux that ran Ubuntu 16.04 LTS.

All the projects involved in this phase have at least two tagged releases.

To start, we used the command git tag to obtain the tags of all releases of the project
from the git log file. The command git checkout was then used to realign the project
to a given tagged release.

For the sake of simplicity, from now on we will consider just two consecutive ver-
sions of a given project: let’s call them r1 and r2, where r2 chronologically follows r1.

23

2 – Architecture and design

We looked for layout files in the /res/layout folder of each of the two releases, and
first of all compared layout files having the same name in both, using the command
cmp. If the files were different (meaning cmp had produced some output), then the
analysis phase started1.

Then, we executed the diff command passing as arguments each pair of files
with the same name (f1 and f2, where f1 belongs to r1 and f2 belongs to r2) and in
particular, we computed the number of lines in the diff command output related to
some relevant attributes of the widgets contained in the layout files.

Said attributes are those of the View class - which is extended by all widgets -
and of its main subclasses such as textView, button and others.

Since the complete list of attributes of the View class2 and all its subclasses is
really long, we considered just a subset of them, selected through a visual analysis
of the XML layout files of some of the applications involved in this first phase. An
extensive list of the considered attributes is shown in Table 2.1.

In this table, the strings in the left column are the ones we searched for in the diff
and layout files, however, looking for that word also brought up results for other
attributes having a similar name, such as the ones we listed in the right column.

Next, we took into account the chance that, in the evolution of the project from
r1 to r2, one of the layout files has just been renamed: this case has been evaluated
according to the algorithm described in the following.

Let s1 be the set of layout files which (names) are present in r1 but not in r2
(files that may have been removed) and s2 be the set of layout files which are present
in r2 and were not present in r1 (files that may have been added).

1cmp produces output even if one of the two files passed as arguments doesn’t exist, so we had
to check if both the requested files existed before calling cmp.

2https://developer.android.com/reference/android/view/View.html

24

https://developer.android.com/reference/android/view/View.html

2.1 – Analysing the evolution of Android projects layouts

Searched string Corresponding widget attributes found

android:background
android:background, android:backgroundTint,
android:backgroundTintMode

android:clickable android:clickable
android:focusable android:focusable, android:focusableInTouchMode
android:id android:id
android:layout_height android:layout_height

android:layout_margin

android:layout_margin, android:layout_marginBottom,
android:layout_marginEnd, android:layout_marginLeft,
android:layout_marginRight, android:layout_marginStart,
android:layout_marginTop

android:layout_width android:layout_width
android:longClickable android:longClickable
android:onClick android:onClick

android:padding

android:padding, android:paddingBottom,
android:paddingEnd, android:paddingHorizontal,
android:paddingLeft, android:paddingRight,
android:paddingStart, android:paddingTop,
android:paddingVertical

android:scroll

android:scrollIndicators, android:scrollX, android:scrollY,
android:scrollbarAlwaysDrawHorizontalTrack,
android:scrollbarAlwaysDrawVerticalTrack,
android:scrollbarDefaultDelayBeforeFade,
android:scrollbarFadeDuration, android:scrollbarSize,
android:scrollbarStyle, android:scrollbarThumbHorizontal,
android:scrollbarThumbVertical,
android:scrollbarTrackHorizontal,
android:scrollbarTrackVertical, android:scrollbars

android:src android:src
android:text android:text, android:textAlignment, android:textDirection

Table 2.1. Some of the attributes of the View class and of its subclasses
considered in this work.

We computed the diff between each file in s1 with every single file in s2 to find
out if there is the chance than they are just the same file - maybe with minor changes
- and the one in s2 simply has a different name. In that case, we considered the
two files when computing the global differences between r1 and r2, otherwise, we

25

2 – Architecture and design

discarded them.
In case the two files are identical and the newer version just has a different name,

we don’t consider it as changed, while we do if up to 10% of the lines appear in the
diff command output.

To make it simple, if a file has just been renamed and no other modifications
were made on it, it is not considered as one added and one removed file from r1, and
not even as changed, as it doesn’t comply to our analysis criteria. While if some
minor modifications were made on it, we increment by one the counter of modified
files in the transition from r1 to r2.

To scale the measured values, the script also computes the total number of lines
containing each attribute in both files, so we can easily see the percentage of lines
involved in changes, additions or deletions for each considered widget attribute.

The collected data have been stored in a .csv file3 with the following column
headers:

- package 4

- tag of release r1
- tag of release r2
- number of layout files in release r1
- number of added files from r1 to r2
- number of removed files from r1 to r2
- number of modified files from r1 to r2
- number of lines containing a given attribute (one column for each searched
string from Table 2.1) summed over all layouts (ALL id, ALL text, etc.)

- number of lines containing a modification for a given attribute (one column
for each searched string from Table 2.1) summed over all layouts (DIFF id,
DIFF text, etc.)

3 https://figshare.com/articles/
Evolution_of_Android_applications_layouts_Thesis_Appendix_1_/11777727

4Due to the parsing strategy applied to the Manifest file to retrieve the package name, we
printed the package name in the csv file only when the code line containing its name matched the
specific pattern we were searching for (i.e. the keyword "package" and its value are on the same
line and the information about the package name is the only one in said line).

26

 https://figshare.com/articles/Evolution_of_Android_applications_layouts_Thesis_Appendix_1_/11777727
 https://figshare.com/articles/Evolution_of_Android_applications_layouts_Thesis_Appendix_1_/11777727

2.1 – Analysing the evolution of Android projects layouts

To make the analysis faster, we searched for attributes in the layout files using
rg (ripgrep)5 instead of grep, since it’s been proved that it can be up to 10 times
faster than grep itself.

2.1.1 Proposed metrics

Our study revealed that around the 37,3% of releases have at least one change on
the layout for one of the attributes we examined with respect to the immediately
previous release. We also computed some other metrics to have a better understand-
ing of the collected data. To better visualize the results we found, we computed four
different metrics and we displayed them in a couple of histograms. Each column rep-
resents the computed value for each of the widget attributes we considered in our
analysis, namely the strings in the first column of Table 2.1, without the "android:"
prefix. The metrics we computed are described in the following.

1. Absolute number of modified lines over all releases of all projects
(DIFF). This metric has been computed as the sum of all lines containing
modifications over all releases of all considered projects.

In symbols:

DIFFattr =

pnX
project=p1

masterX
release=r1

diff_linesattr (2.1)

where n in our case is equal to 705 and attr is any of the attributes listed
before.

2. Attribute Change Quantity (ACQ). This value has been computed, for
each attribute, as the percentage of lines changed over all transition of each
project, averaged on the number of releases of each project and then averaged
over the total number of projects. The column ’any’ shows that on average we
have changes on 6,8% of lines in layout files when transitioning from a release
to the immediately following one.

5 https://github.com/BurntSushi/ripgrep

27

 https://github.com/BurntSushi/ripgrep

2 – Architecture and design

In symbols:

ACQattr =

Ppn
project=p1

Pmaster
release=r1

diff_linesattr
all_linesattr

#releasesp

#projects
(2.2)

where #releasesp is the total number of releases available for project p and
#projects is 705 in our case.

3. Attribute Change Rate (ACR). For this metric, we computed for each
project and each attribute, the percentage of transitions between two consecu-
tive releases in which there is at least one line that has been modified (meaning
changed, added or deleted) involving that specific attribute. This value has
been averaged on the number of releases of each project and then on the total
number of analyzed projects.

In symbols:

ACRattr =

Ppn
project=p1

Pmaster−1
release=r1

xattr

#releasesp

#projects
(2.3)

where xattr is equal to 1 if there is at least one line in the diff between the lay-
outs of release r and the consecutive one, involving attribute attr, 0 otherwise.

master-1 simply indicates the release that immediately precedes the master
(last release available).

4. Attribute Change Presence (ACP). This value represents, for each at-
tribute, the percentage of projects having at least one changed line for that
attribute over all releases. The column ’any’ represents the number of projects
having at least one change in the layout for any of the considered attributes,
in their evolution from the first to the lats release: in our case, this value is
around 37,3%.

In symbols:

ACPattr =

Ppn
project=p1

yattr

#projects
(2.4)

where yattr for a project is equal to 1 if there is at least a couple of consecutive
releases having xattr (computed as previously defined for ACR) equal to 1, 0
otherwise.

28

2.2 – Finding the root cause of test breakage

The data collected in this phase have been reported in Chapter 3 (Section 3.1)
since they are already a preliminary result of this thesis work and in the field of
Android applications layouts evolution. The concept behind this analysis was de-
termining those attributes that change most frequently in the layout evolution: an
attribute that is changing its value very frequently from a release to another would
be of course less reliable as a reference when trying to identify a widget inside an
activity layout.

2.1.2 About this preliminary analysis

This preliminary analysis was done to discover which of the most common attributes
of layout widgets are most subject to changes during the evolution of the project.

This will be very useful for the following phases of this thesis work since it will
help us build a criterion to associate each widget of a release to its corresponding
widget of the immediately following one using a majority rule: the corresponding
widget will be the one that has the most similarities with the one from the previous
release.

Similarities will be weighed using data collected in this first phase and, in partic-
ular, the more an attribute is prone to frequent changes during the evolution of the
application, the less weight it will have when computing the similarity rate between
a widget and the corresponding one in the following release.

2.2 Finding the root cause of test breakage

As previously stated, in this work we are focusing on test breakage caused by the
impossibility to find a widget inside an activity layout because the attribute used
to locate the widget involved in the test case has changed its value with respect
to the one that is used in the test code (e.g. using methods such as withId() and
withText()).

To pursue our aim of repairing a broken test case, starting from the test file
itself, we need to find out which widget caused the test to break, but before that we
should find the layout file containing it. To do this, we used JavaParser 6.

6https://github.com/javaparser/javaparser

29

https://github.com/javaparser/javaparser

2 – Architecture and design

Note: In this section, we won’t explain the step-by-step procedure followed to
build the tool, but the top-down logical approach that was lying under the building
process itself. This is done to make it simpler to understand the thought process
behind it and how the tool works.

The procedure follows the steps described at the beginning of this chapter.

2.2.1 JavaParser

JavaParser is a set of tools to parse, analyze, transform and generate Java code7,
and it’s what we used to perform all the steps that will be described in this section,
following the guidelines found on the presentation provided by Tomassetti et al.
(2017).

It can parse Java code to get the Abstract Syntax Tree (AST) of it, but it also
can generate code starting from a given AST: combining these two features, we can
perform refactoring on existing code.

It also includes a library called JavaSymbolSolver, that is used to resolve symbols
in the AST to retrieve their type and declaration starting from a reference, calcu-
lating the result type of an expression, and many other tasks.

Let’s see the main features more in detail.

• Support for code generation: JavaParser can be used to avoid writing
boilerplate code, to build transpilers, DSLs and so on. This is done very easily
thanks to some specific methods that can be applied to a CompilationUnit ob-
ject that will later be transformed to code simply calling the method toString()
on the CompilationUnit ;

• Support for code analysis: in particular, support for code metrics com-
putation, for checking if quality standards are met, and even for performing
some simple queries to familiarize with the code we are working with;

• Support for code refactoring: these features can be used when in need
to modernize a huge codebase, to update dependencies, or to change usage
patterns.

7 https://javaparser.org/

30

 https://javaparser.org/

2.2 – Finding the root cause of test breakage

2.2.2 From the test file to the layout file

We considered two different ways to locate the corresponding layout file from the
test file:

1. From the test class constructor: in this case, the needed class name is found as
one of the arguments of the call to the constructor of the super class (namely
as super([. . . ,] SomeActivity.class [, . . .]);

2. From the declaration of anActivityTestRule<T> object, annotated with@Rule:
the needed class name in this case is simply T ;

In both cases, after this step, we should have found the name of the class to
which the test case applies.

Analyzing the imports of the test class and its containing package, we can find
the complete path of the class of the Activity Under Test, starting from the main
app code folder.

The Activity Under Test is then analysed to find its onCreate() method and, in
its body, the call to setContentView() which has a layout resource as parameter.

The layout resource is generally specified using the syntax R.layout.some_name.xml :
this shows that the layout file we are looking for can be found under the /res/layout
folder of the project.

Once we’ve found the XML file used as activity layout in the current version of
the project, we look for its respective version in the last working release. Knowing
which method call(s) could have caused the breakage, we look for the reference
widget in the previous release (i.e. the one that was correctly located by the test
case then). When we find it, we start searching for the widget in the current version
of the project with the highest matching percentage.

To search more easily for a matching widget (one with the most similarities to
the one on which the test passed in the previous working release), we built a JSON
file containing a simplified version of the layout tree, and this has been done as
described in Section 2.3.

31

2 – Architecture and design

2.3 Building a layout object representation

In the second phase, we parsed the layout file to identify each widget and map it
to a simplified version of itself. To do this we took some principles from the Page
Object Pattern.

2.3.1 The Page Object Pattern

The Page Object Pattern has been developed in the field of web applications to lower
the level of coupling between the test code and the application code. Specifically,
building a page object for each page of the application provides a new level of
abstraction to the developer, except when writing the page object code itself.

A page object is a representation of the web page, and it provides some methods
to access the page structure and data. Page objects are generally written in the
same programming language used to write test code.

A study by Leotta et al. (2013) showed that using the Page Object Pattern re-
duces by a factor of three the amount of time needed to repair web test cases and by
a factor of ten the number of lines of code that need to be modified when repairing
said test cases: these results are a consequence of the fact that, with this pattern,
we don’t have to add explicit references to the actual page implementation inside
test case because all the details describing the page are encapsulated inside the page
object that represents it.

In this way, when we need to repair test cases, changes are concentrated within
the page object rather than the test code. Changes in the actual test cases may be
needed as well if the web application under test undergoes major evolution or needs
radical maintenance actions.

It has also been observed that this pattern doesn’t reduce the test cases fragility,
it just makes repairing easier - and faster.

32

2.3 – Building a layout object representation

2.3.2 Layout parser

Based on the Page Object Patter approach, we tried to develop something similar
for mobile applications, building an object representing each activity and its wid-
gets in a way that would make test cases easier to be repaired in case a valid widget
locator was not found for a given test action.

The activity layout file found in the /res/layout folder of the analyzed project
was read using a java application that used the method parse of the java class
DocumentBuilder.

This XML file has been parsed to create a corresponding JSON file containing all
the widgets with just the attributes we considered in phase one of this work (Table
2.1). Also, we kept the hierarchical structure of the layout adding the attribute
"children" to nodes that were also containers for other widgets (e.g. a button con-
taining both an image and some text), and the attribute "container" in each child
node: its value has been set to the container id - if present - or to the container class
name (e.g. RelativeLayout) if the id was not specified.

Figure 2.2 shows the class diagram of JSON file as it has been built.

In practice, we used the classDocumentBuilder found in the package javax.xml.parsers
and in particular its method parse. Then we also wrote a custom method that re-
cursively visited the layout tree in pre-order, and setting the "container" attribute
in each child as a simple string, while the children have been represented in the
container as a list of JSON objects.

Figures 2.3 and 2.4 show the main activity of a note-taking application called
OmniNotes8 and its class diagram / UML representation based on the previously
described criteria.

The associations indicate the container-child node relationship: the child node
has its container id or class as the value of the "container" attribute, while the root
of the layout tree has "root" as an arbitrary value for the "container" attribute.

Using the JSON format and keeping only selected attributes for each widget has
made it easier to build the layout objects again when needed in the following steps.

8https://github.com/federicoiosue/Omni-Notes

33

https://github.com/federicoiosue/Omni-Notes

2 – Architecture and design

Figure 2.2. Class diagram of a JSON file built from the analysis of a layout file
found in the /res/layout folder.

Figure 2.3. Screenshot of the main activity of the last release of OmniNotes.

34

2.3 – Building a layout object representation

Figure 2.4. Object diagram of the main activity of the last release of OmniNotes.

35

2 – Architecture and design

2.4 Finding the most similar widget in the current
version of the project

Let’s consider two consecutive releases, we will call them version A and B: A is the
last working release, on which the test case passed, and B is the current release. Let’s
also imagine that the activity layout file is called some_activity.xml. As previously
described in this chapter, both versions A and B of the layout file have been used
to build the corresponding simplified JSON files representing them.

Let jA be the JSON representation of some_activity.xml in version A and jB the
JSON representation of the layout file having the same name in version B.

Each widget in jA can be mapped to the one of jB that is most similar to it with
respect to the values of the considered attributes, weighed on the data previously
collected about how often these attributes change values over releases and projects
(shown in Figures 3.1 and 3.2).

The weight given to each attribute (or group of attributes) i in this step is shown
in Table 3.1 and it has been computed as:

Weighti =

1
AvgiP
i

1
Avgi

× 100 (2.5)

where
Avgi =

ACPi + ACQi + ACRi

3
(2.6)

In this way, the more frequently an attribute value changes - i.e. the higher its
values for ACQ, ACP and ACR are - the less weight it has, because a frequently
changing attribute is, of course, less reliable for our purpose.

Finally, the matching rate between the reference widget in version A and each
of those present in the corresponding layout of version B has been computed as

match =

Pan
attribute=a1

(weighta × xa)Pan
attribute=a1

weighta
× 100 (2.7)

where a represents each attribute in Table 2.1 that has a value for both widgets
and xa is equal to 1 if the two widgets have the same value for attribute a, 0
otherwise.

Weights for each attribute have been computed as shown in Equation 2.5, so

36

2.5 – Repairing a broken test case

taking into account the values of the metrics that we proposed for this purpose.

The output of this mapping step is the id of the widget having the highest match
with the one that was located in version A and made the test pass then. In a real
case, version A would be the last available release while version B would be the one
currently being developed.

In case the widget we were looking for didn’t have an id, we would identify it
using its contained text or content description.

2.4.1 Minimum matching threshold

Notice that if a matching percentage is too low, we can imagine that the widget we
are trying to map to a widget of the newest release has been removed so it is no
longer present, or that the navigation dynamics of the application changed, hence it
could be possibly found in another layout file - and not necessarily in the one with
the same name we are searching in.

For this reason, we analyzed a few Android applications and their layout evolution
to establish a minimum matching threshold value to consider the widget found in
version B worthy of being used to refactor the test case.

The complete analysis, explained in details in Section 3.1.2, brought the value
for this threshold to be set to 65%

2.5 Repairing a broken test case

Up to this point, we covered the first 3 steps described at the beginning of this
chapter, therefore we found the widget in the current version that’s most similar to
the one we were looking for. So now it’s time to repair the test case and possibly
the other ones that would be affected by the same kind of breakage because they
involved the same widget in the last working release.

What we will do is an advanced version of refactoring: in particular, we will be
replacing, inside the broken test case, the old content description or text with the
one of the most similar widget in the current release.

For example, if the widget contained text is what changed (from version A to version

37

2 – Architecture and design

B) and caused the test to break, we will look for the string withText("Text in version
A") inside the test class and replace it with withText("Text in version B").

Using a regular expression, we also have to consider the possible spaces before
and after the brackets, when searching these strings in the test code.

2.5.1 Analysing the broken test case error log

The last step in the development of this tool has been the analysis of the error log
when a test case fails because we can’t locate the widget on which we a test action
has to be performed.

In particular, we considered 4 of the ViewMatchers class methods - withId, with-
Text, withContentDescription and withHint - and 3 possible types of arguments:
an id resource, a string resource and a quoted string9. Examples of method calls
are shown in Table 2.2: the reference case number is a way to link this table with
Table 2.3, where the obtained outputs are listed for each possible method-argument
combination.

Method Argument Call example
Reference

case number

withId
id resource withId(R.id.button) 1a

string resource withId(R.string.send) 1b

withText
id resource withText(R.id.button) 2a

string resource withText(R.string.send) 2b
quoted string withText("Hello") 3

withContentDescription
id resource withContentDescription(R.id.button) 4a

string resource withContentDescription(R.string.send) 4b
quoted string withContentDescription("Hello") 5

withHint
id resource withHint(R.id.button) 2c

string resource withHint(R.string.send) 2d
quoted string withHint("Hello") 6

Table 2.2. Possible method calls of class ViewMatchers causing errors
in Espresso test files

9with the exception of the method withId, that doesn’t have an implementation accepting a
quoted string.

38

2.5 – Repairing a broken test case

Reference
case number

Output in case of error
(No views in hierarchy found matching: ...)

1a with id: [file path]:id/[resource name]
1b with id: [file path]:string/[resource name]

2 (a, b, c, d) with string from resource id: <[resource number]>[resource name]
3 with text: is [quoted string]

4 (a, b) with content description from resource id: <[resource number]>[resource name]
5 with content description: is [quoted string]
6 with hint: is [quoted string]

Table 2.3. Possible error outputs caused by errors in method calls shown in Table 2.2

As we can see in the tables, outputs having the same format can be obtained with
different method-argument type combinations: this means that we have to possibly
replace each possible call that caused the error with another one using, in the best
case, the same method.

Let’s take an example: let’s assume that the method call that caused the error
is of type [4], so with a call to withContentDescription, but in the current ver-
sion of the project, the most similar widget doesn’t have a value for the attribute
android:contentDescription. In this case, we looked for values of one of the other at-
tributes (android:id, android:text and android:hint): in case none of these is present,
the method call causing the error is not going to be refactored.

39

40

Chapter 3

Experiment and results

3.1 Preliminary research results

The starting point of this thesis work was, as previously mentioned, analyzing the
evolution of Android applications layouts and, in particular, how much a widget
attribute changes its value across all the application releases.

We studied a set of 705 GitHub projects and computed the values of each pro-
posed metric on this set. To do this, we considered some of the most common
attributes of the View class, since all widget elements are extensions of it. In par-
ticular, we selected the attributes listed in Table 2.1, based on a visual analysis of
the XML layout files.

3.1.1 Collected data on Android applications layouts evolu-
tion

Proposed metrics

For what concerns the DIFF metric, computed as defined in (2.1), the values are
shown in Figure 3.1: the sum of the values of each column adds up to 118.623 for
705 analysed projects.

The values for ACQ, ACR and ACP have been calculated as defined in (2.2),
(2.3) and (2.4) respectively and can be seen in Figure 3.2

.
We would expect ACP for ’any’ attribute to be close to 100% but that is not

41

3 – Experiment and results

Figure 3.1. DIFF distribution over all considered attributes.

Figure 3.2. ACQ, ACR and ACP distribution over all considered attributes.

the case: this may be caused by the fact that many of the considered projects have
a few or just two available releases and therefore no actual changes on the layout
files, but presumably, there should be changes regarding functionalities.

As we expected, the widget attributes involving text are often subject to changes
over all the releases of a project.

42

3.1 – Preliminary research results

Our analysis also highlights the fact that aside attributes regarding the size
of widgets and their spacing from other widgets and the whole screen layout it-
self (namely height, width, margin and padding related attributes), widget ids and
background have a high value for each of the proposed metrics.

Attribute weights for matching widget search

The values computed for the proposed metrics have then been reported also in Table
3.1 and used to compute the weight each considered attribute has when looking for
the matching widget in the current release - as defined in (2.5).

The Average of attribute i (Avgi) column is just the average of the ACQ, ACR
and ACP values (2.6); Inverse average for the attribute i is computed as 1

Avgi
. The

Weight represents the percentage of that Inverse average value over the sum of the
Inverse average column.

Attribute(s) ACQ ACR ACP Average Inverse average Weight (%)
android:background 6,4 18,7 42,0 22,38 4,47 2,31
android:clickable 2,7 5,8 15,0 7,85 12,74 6,59
android:focusable 2,9 5,5 13,0 7,12 14,04 7,26
android:id 6,4 31,8 60,0 32,73 3,06 1,58
android:margin 7,2 22,0 47,0 25,38 3,94 2,04
android:height 5,9 30,7 59,0 31,86 3,14 1,62
android:width 5,3 13,6 58,0 25,64 3,90 2,02
android:longClickable 0,9 1,0 1,0 0,98 101,88 52,71
android:onClick 3,7 7,4 16,0 9,05 11,04 5,71
android:padding 7,2 19,7 43,0 23,30 4,29 2,22
android:scroll 2,3 3,5 11,0 5,62 17,80 9,21
android:src 4,8 10,8 27,0 14,21 7,04 3,64
android:text 8,7 28,7 57,0 31,47 3,18 1,64

Table 3.1. Attribute change metrics and attribute weights to compute
widget similarity rate

As previously stated, the more frequently an attribute value changes the less
weight it has when computing the matching percentage between two widgets.

43

3 – Experiment and results

3.1.2 Computation of the minimum matching threshold for
test refactoring

We analysed a few github projects (Glucosio1, K9-MailClient2, MiMangaNu3, Omni-
Notes4 and PassAndroid5) having between 9 and 128 tagged releases to find the
matching threshold under which a match would not be considered relevant for our
purpose.

For all couples of consecutive releases, and for all their layouts, we applied the
algorithm previously described in Section 2.4, to find the widget with the highest
match in the following release.

All the collected data have been stored into a .csv file with the following format:

- App name

- Tag of release A

- Tag of release B

- Layout file name

- Widget id in version A

- Widget id in version B

- Widget text in version A

- Widget text in version B

- Widget contentDescription in version A

- Widget contentDescription in version B

- Match percentage

For the sake of this analysis, we discarded all the widgets having the three
attributes android:id, android:text and android:contentDescription not set or null in
version A: this was done because it’s impossible to identify a widget inside a layout
if it doesn’t have a value for any of these attributes.

1 https://github.com/Glucosio/glucosio-android
2 https://github.com/k9mail/k-9
3 https://github.com/raulhaag/MiMangaNu
4 https://github.com/federicoiosue/Omni-Notes
5 https://github.com/ligi/PassAndroid

44

 https://github.com/Glucosio/glucosio-android
 https://github.com/k9mail/k-9
 https://github.com/raulhaag/MiMangaNu
 https://github.com/federicoiosue/Omni-Notes
 https://github.com/ligi/PassAndroid

3.1 – Preliminary research results

The output of this step has been stored in a .csv file 6

Out of 81223 lines (all widget of all layouts in all releases of all the previously listed
5 apps):

- 77914 lines (95,9%) have a 100% match;
- 1379 lines (1,7%) have a match between 90% (included) and 100% (excluded);
- 213 lines (0,26%) have a match lower than 10% (out of which, 205 have a 0%
match, so we can assume those cases, the widget has been removed - or moved
to another activity - within a transition between two consecutive releases);

- The average match is of 98,8%;
- The median value of matches percentages is 100%.

The distribution of matches percentages from 10 to 100 (excluding the upperpl ex-
treme of the interval) is shown in Figure 3.3, while Table 3.2 shows the mean and
median values of matches computed on different subsets.

Figure 3.3. Matching percentage of widgets across consecutive releases

The rightmost column of Table 3.2 contains the values we used as a starting
point for deciding the threshold value. In particular, we started from the mean

6 https://figshare.com/articles/
Widgets_mapping_and_matching_rate_over_consecutive_releases_Thesis_Appendix_2_/11777730

45

 https://figshare.com/articles/Widgets_mapping_and_matching_rate_over_consecutive_releases_Thesis_Appendix_2_/11777730
 https://figshare.com/articles/Widgets_mapping_and_matching_rate_over_consecutive_releases_Thesis_Appendix_2_/11777730

3 – Experiment and results

Figure 3.4. Box Plot for matching percentage

All matches Without 100% matches
Mean value 98,8% 71,1%
Median value 100% 87,1%

Table 3.2. Mean and median values of matches found in this phase for
the analysed applications.

match value when not considering the 100% matches, and we lowered it a bit - to
65% - to take into account possible valid matches that are under 70%: this means
that matches under this threshold are not going to be considered valid matches by
our tool.

To support this computation, we can observe that above the threshold, the 71,3%
of the mappings (2214 out of 3104, not having a 100% match) have the same id, the
same text or the same content description.

46

3.2 – Experimental results of the tool

3.2 Experimental results of the tool

We conducted our experiment on three different applications: Lazy Cafe’ 7, Gluco-
sio8, and TodoList9. The following criteria hold for each of them:

• We ran our tool working with two different folders: the first one containing
the last working release (version A of the project, where all test cases passed
successfully), while the second one contains the current release (the one under
development, version B of the project, where some tests are broken);

• We analyzed the error log from running a single test class containing 10 test
cases;

• The test cases have been custom-built using method calls taken among those
in listed in Table 2.2, to cover all possible errors with a reference case number
from 2 to 6 (see Table 2.3). The test cases tried to locate widgets that have
been added to the main activity layout of each application, to be able to test
our tool more easily than inspecting all releases to find test cases that suited
our purpose - so covering each possible test breakage caused addressed in this
Section.

• Case number 1 will be further discussed in Section 3.2.3. For this reason, the
ids of the widgets involved in the tests have not been modified from version A
to version B;

• Each time an equivalent widget was found in version B of the application, the
refactoring was always performed, even in case the wrong widget was selected
by our tool: we’ve done this to observe the tool’s ability to locate the widgets
correctly.

3.2.1 Widgets and results display format

To better analyze the data and the results of the experimental part, we created some
tables. In particular, for each selected application, we’ll have the following:

7 https://github.com/BankkokBank/final_project_android/tree/master/LazyCafe
8 https://github.com/Glucosio/glucosio-android
9 https://github.com/seifane/TodoApp

47

 https://github.com/BankkokBank/final_project_android/tree/master/LazyCafe
 https://github.com/Glucosio/glucosio-android
 https://github.com/seifane/TodoApp

3 – Experiment and results

1. Widgets table: it contains the information about the widgets added to ver-
sions A and B of the app, together with their values for the attributes an-
droid:id, android:text, android:contentDescription and android:hint.

- widgets with number 1-3 are of class EditText, while those with number
4 and 5 are instances of the Button class;

- widgets identified with "a" or "b" belong to version A or B of the appli-
cation, respectively.

- widgets numbers can be seen in the applications screenshots, also included
in this section;

- A dash (-) in an attribute column means that that attribute does not
have a value for that given widget.

2. Method calls table: it’s a table containing all the test cases method calls
and their refactored version after running the tool. This table also shows the
reference case number for each method call (as defined in Table 2.2);

- A dash (-) in the Refactored method call(s) column means the call has
not been affected by our tool, so it remained as it was before refactoring.

- As each test case should locate one or two widgets inside the activity
layout, the last column of a Widgets table shows the numbers of the test
cases that should locate each widget. In this way, the test case number
can be seen as a foreign key pointing to one of the rows of the respective
Method calls table: with this information, we can double-check the results
achieved by our tool.

3. Results table: this kind of table contains, for each method call on the previ-
ous table, the information on whether the method call makes the test pass or
not in version B before and after the refactoring, together with its equivalence
with the broken test case method call - i.e. if the two method calls can locate
equivalent widgets in the two versions of the app (namely those having the
same id, since we haven’t changed ids in this experiment)

Any other information specific to one of the selected applications and/or its
written test cases will be given in its dedicated part.

48

3.2 – Experimental results of the tool

Lazy Cafe’

The aspect of the main activity of this app in versions A and B is shown in Figure
3.5.

Figure 3.5. Main activity of Lazy Cafe’ in versions A and B

Table 3.3 describes the added widgets in terms of the considered 4 attributes
values.

Note that, in this case, we mainly changed the values of the attributes involved
in the test cases method calls when creating version B of the app.

As shown in Table 3.4 all the method calls causing test breakage have been refac-
tored, since the tool succeeded each time in finding a widget having a matching
percentage higher than our threshold.

Eventually, we observe that if the test case contained two method calls that
would cause test breakage, the test case execution stops after the first one: for how

49

3 – Experiment and results

Widget
#

android:id android:text android:contentDescription android:hint
Should be
located in
test case(s)

1a @+id/input1 - "Input field 1" "Type something here"
1b @+id/input1 - "Input field one" "Enter text"

[8, 9]

2a @+id/input2 - "Input field 2"
@string/
com_facebook_send
_button_text

2b @+id/input2 - "Input field two" @string/cancel_login
[2, 4, 6]

3a @+id/input3 @id/input1 "Input field 3" @id/share
3b @+id/input3 @id/like "Input field 3" @id/detail

[1, 3, 10]

4a @+id/share "Trial text"
@string/
com_facebook_share
_button_text

-

4b @+id/share "Something else"
@string/
com_facebook_loading

-
[5, 7]

5a @+id/like
@string/
com_facebook_like
_button_liked

@id/input1 -

5b @+id/like
@string/
common_open_on_phone

@id/input2 -
[2, 6]

Table 3.3. Widgets added to versions A and B of the app Lazy Cafe’

Test #
Reference

case
number

Method call(s)
(version A)

Refactored method call(s)
(version B)

1 2a withText(R.id.input1) -

2
2b

withText(R.string.
com_facebook_like_button_liked)

withText(R.string.
common_open_on_phone)

5 withContentDescription("Input field 2") withContentDescription("Input field two")
3 2c withHint(R.id.share) -

4 2d
withHint(R.string.
com_facebook_send_button_text)

withHint(R.string.cancel_login)

5 3 withText("Trial text") withText("Something else")

6
4a withContentDescription(R.id.input1) -
5 withContentDescription("Input field 2") withContentDescription("Input field two")

7 4b
withContentDescription(R.string.
com_facebook_share_button_text)

withContentDescription(R.string.
com_facebook_loading)

8 5 withContentDescription("Input field 1") withContentDescription("Input field one")
9 6 withHint("Type something here") withHint("Enter text")
10 3 withText("false") -

Table 3.4. Method calls causing test breakage in version B of Lazy Cafe’
and their refactored versions

50

3.2 – Experimental results of the tool

Test #
Reference

case number
Does the method call pass

on version B?
Does the refactored method

call pass on version B?
Do the two calls locate
equivalent widgets?

1 2a yes yes yes
2b no yes yes

2
5 - yes yes

3 2c yes yes yes
4 2d no yes yes
5 3 no yes yes

4a yes yes yes
6

5 no yes yes
7 4b no yes yes
8 5 no yes yes
9 6 no yes yes
10 3 yes yes yes

Table 3.5. Refactored test cases success and equivalence to the broken
ones for the app Lazy Cafe’

we built the test cases we have been lucky and - as can be seen in test number 2 - the
call to withContentDescription was refactored anyway since the same call appeared
in test case number 6, where it leads to test breakage.

As shown in Table 3.4, we considered just one method at a time, and all the test
cases have been successfully repaired maintaining the same method calls: this was
possible because each widget kept a value for the attribute we were trying to locate
it with.

With the next two applications, we tried to change the type of value assigned to
each widget - changing from version A to version B - and also removing the attribute
from a widget, so that it had to be located using another method. This was mainly
done to test out all the features of our tool, described in Section 2.5.1.

Glucosio

Figure 3.6 shows the aspect of the main activity of Glucosio in versions A and B.
In addition to the changes reported in Table 3.6, we need to list that - when

transitioning from version A to version B of the layout:

- Button 8a had android:textColorHint="@color/colorPrimaryDark" (blue),
while in 8b the same attribute has value "@color/dark_red" (dark red);

- Button 9a had android:background="@color/colorPrimaryDark" (blue), while

51

3 – Experiment and results

Figure 3.6. Main activity of Glucosio in versions A and B

Widget
#

android:id android:text android:contentDescription android:hint
Should be
located in
test case(s)

6a @+id/input6 - "Input field 6" "Type something here"
6b @+id/input6 - @string/assistant "Type something"

[18, 19]

7a @+id/input7 - "Input field 7" @string/action_feedback
7b @+id/input7 - - @string/action_settings

[12, 14, 16]

8a @+id/input8 @id/input6 "Input field 8" @id/credits
8b @+id/input8 - "Input field 8" @id/credits

[11, 13, 20]

9a @+id/credits "Trial text" @string/about_credits -
9b @+id/credits "Random text" @string/about_donate -

[15, 17]

10a @+id/no_data @string/a11y_no_data @id/input7 -
10b @+id/no_data @string/about_contribute @id/credits -

[12, 16]

Table 3.6. Widgets added to versions A and B of the app Glucosio

in 9b the same attribute has value "@color/dark_red" (dark red).

We did this to change up the widgets a little bit more and see if the tool was
still able to associate them with one another across the two versions.

52

3.2 – Experimental results of the tool

Test #
Reference

case
number

Method call(s)
(version A)

Refactored method call(s)
(version B)

11 2a withText(R.id.input6) withId(R.id.input8)

12
2b withText(R.string.a11y_no_data) withText(R.string.about_contribute)
5 withContentDescription("Input field 7") withId(R.id.input7)

13 2c withHint(R.id.credits) -
14 2d withHint(R.string.action_feedback) withHint(R.string.action_settings)
15 3 withText("Trial text") withText(R.string.about_contribute)

16
4a withContentDescription(R.id.input7) -
5 withContentDescription("Input field 7") withId(R.id.input7)

17 4b withContentDescription(R.string.about_credits) withContentDescription(R.id.credits)
18 5 withContentDescription("Input field 6") withContentDescription(R.string.assistant)
19 6 withHint("Type something here") withHint("Type something")
20 3 withText("false") -

Table 3.7. Method calls causing test breakage in version B of Glucosio and
their refactored version

Test #
Reference

case number
Does the method call pass

on version B?
Does the refactored method call

pass on version B?
Do the two calls locate
equivalent widgets?

11 2a no yes yes
2b no yes yes

12
5 - yes yes

13 2c yes yes yes
14 2d no yes yes
15 3 no yes no

4a yes yes yes
16

5 no yes yes
17 4b no yes no
18 5 no yes yes
19 6 no yes yes
20 3 no no -

Table 3.8. Refactored test cases success and equivalence to the broken
ones for the app Glucosio

Note that the modifications of widget number 6 (content description went from
a quoted string in 6a to a string resource in 6b) and 7 (content description no longer
present in 7b) were made to check if the tool was still able to identify the equivalent
widgets and change the type of method call needed to identify them in the test cases
- which happened successfully, as shown in Table 3.8.

Lastly, we notice that modifying widget 8 text attribute value, that was an id
resource in 8a and is no longer set in 8b, made test number 20 impossible to be
repaired: in fact, none of the widgets present in the activity layout in version B

53

3 – Experiment and results

has text equal to false or to an id resource - which we observed would behave as a
"false" value while running the same test case on Lazy Cafe’ (see test case number
10 in Table 3.4).

For the same reason, the first method call of test case number 16 passes success-
fully, even though there is no widget inside the layout having @id/input7 as content
description.

As shown in Table 3.8, this time our tool succeeded in refactoring 8 method calls
causing breakage, but two of those ended up not being equivalent to the original
calls.

We can imagine that this happened because we also changed the background
color of widget 9 (from 9a to 9b, as previously written): this modification, together
with the ones done on the attribute values we used to try to locate the button inside
the activity layout, made button 10b the most similar to 9a, due to its consistent
colour10.

It is also very likely that if the background color was the only attribute value
we changed, the tool would have picked widget 9b as the most similar to 9a and
therefore repaired the test cases with other method calls able to locate the equivalent
widgets.

TodoList

The aspect of the main activity of this app in versions A and B is shown in Figure
3.7.

Table 3.9 describes the added widgets in terms of the considered 4 attributes
values. When transitioning from version A to version B, this time changed values
to all three reference attributes.

As shown in Table 3.10, some of these test cases involve two widgets and, in
particular, both of the method calls would cause test breakage but that isn’t shown
in the log output since, as stated before, the first breakage makes the test case
execution stop.

This means that on the first run of our tool, some method calls will not be

10This can be seen looking at the weights we gave to each attribute (Table 3.1), where the
background had a weight that’s bigger than those of id and text.

54

3.2 – Experimental results of the tool

Figure 3.7. Main activity of TodoList in versions A and B

Widget
#

android:id android:text android:contentDescription android:hint
Should be
located in
test case(s)

11a @+id/input11 - "Input field 11" "Type something here"
11b @+id/input11 - "Input field eleven" "Enter text"

[21, 23]

12a @+id/input12 - "Input field 12" @string/hint_content
12b @+id/input12 - "Input field twelve" @string/hint_date

[21, 25,
29, 30]

13a @+id/input13 @id/set_done "Input field 13" @id/input11
13b @+id/input13 @id/input12 "Input field thirteen" @id/set_done

[22, 24, 26]

14a @+id/select_date "Choose a day"
@string/
mdtp_select_day

-

14b @+id/select_date "Choose a year"
@string/
mdtp_select_year

-
[22, 24, 28]

15a @+id/set_done
@string/
notification_set_done

@id/select_date -

15b @+id/set_done
@string/
time_ago_now

@id/input13 -
[23, 25,
26, 27]

Table 3.9. Widgets added to versions A and B of the app TodoList

55

3 – Experiment and results

Test
#

Reference
case

number
Method call(s)

Refactored method call(s)
(those refactored after the second run are

signaled with [*] and in bold)

21
5 withContentDescription("Input field 11") withContentDescription("Input field eleven")
2d withHint(R.string.hint_content) [*] withHint(R.string.hint_date)

22
2a withText(R.id.set_done) -
4b withContentDescription(R.string.mdtp_select_day) withContentDescription(R.string.mdtp_select_year)

23
4a withContentDescription(R.id.select_date) -
6 withHint("Type something here") withHint("Enter text")

24
2c withHint(R.id.input11) -
3 withText("Choose a day") withText("Choose a year")

25
2b withText(R.string.notification_set_done) withText(R.string.time_ago_now)
5 withContentDescription("Input field 12") [*] withContentDescription("Input field twelve")

26
5 withContentDescription("Input field 13") withContentDescription("Input field thirteen")
4a withContentDescription(R.id.select_date) -

27 3 withText("Set As Done") -
28 5 withContentDescription("Seleziona mese e giorno") -
29 6 withHint("Content") -
30 6 withHint("false") -

Table 3.10. Method calls causing test breakage in version B of TodoList
and their refactored version

repaired: after the first ones discovered have been repaired by our tool, we need to
run the test class again on the app and use the output of this second execution as
input for the second iteration of our tool.

That’s why the second method call of test cases number 21 and 25 have been
refactored only on the second iteration.

Method calls of test cases 27-29 couldn’t be repaired: we were trying to locate the
widgets using the quoted string values found in the values/strings.xml file - while
the widget attribute values were defined as R.string.resource_name (as shown in
Table 3.9). This makes it impossible for our tool to correctly locate the widgets in
version A and, consequently, to not repairing the test cases in version B.

3.2.2 Handling test breakage caused by widget id

A test case involving the value of the android:id attribute can break in two ways:

(a) The test case may not even compile because the id we are looking for is no
longer present in the whole project.

(b) or it may run to completion but breaking because the widget having that id
has been moved to another activity.

56

3.2 – Experimental results of the tool

Test #
Reference

case number
Does the method call pass

on version B?

Does the method call
pass on version B after the

[second] refactoring?

Do the two calls locate
equivalent widgets?

5 no yes yes
21

2d - [yes] yes
2a yes yes yes

22
4b no yes yes
4a yes yes yes

23
6 no yes yes
2c yes yes yes

24
3 no yes yes
2b no yes yes

25
5 - [yes] yes
5 no yes yes

26
4a - yes yes

27 3 no no yes
28 5 no no yes
29 6 no no yes
30 6 yes yes yes

Table 3.11. Refactored test cases success and equivalence to the broken
ones for the app TodoList

In case (a) the compiler output would be something like error: cannot find sym-
bol variable resource_name: we can parse this output to find the reference widget
in version A, but we don’t have any additional information on the type of resource
- id, string or others - we should look for.

In case (b), the output of the execution would look like the one that can be found
in Table 2.2, in particular with reference case number 1a: we’d then have to extend
our search for a matching widget in all layout files, then either communicate to the
user that the widget has been moved to a different screen or repairing the test case
making it perform some actions to navigate to the activity containing the moved
widget and run the remaining of the test case afterward. This would be of course a
complicated task, and it has not been implemented in this first version of the tool.

57

58

Chapter 4

Threats to validity

This tool has been developed to repair test cases broken by the change of some
attribute values inside its layouts. However, during the implementation phase, we
made some assumptions on the Android projects we were trying to repair and this
may have led to a restriction of its field of applicability.

Threats to Internal validity

Internal validity threats concern the variables used in the experimental section of
the study and the conclusions that are based on them.

We defined a widget as equivalent to another - in the same screen but differ-
ent versions of the app - based on how similar their attribute values were. More
specifically, the matching percentage between two widgets was calculated as shown
in Equation 2.7 (Section 2.4).

The Attribute Change metrics, proposed in Section 2.1.1, have been computed
for all attribute categories listed in Table 2.1, and for a sample set of 705 Android
projects found on GitHub. Their computation could have been more precise by
extending the list of considered attributes and using a larger sample of projects,
but it is not proved in any way to be the best way to compute the equivalence rate
between widgets.

59

4 – Threats to validity

Threats to External validity

External validity threats concern the generalizability of the conducted study to other
domains or experimental subjects.

Our tool works only for applications developed in Java, but it could be in theory
extended to those written in Kotlin. If we wanted to use our tool on a Kotlin based
app, the modules of the tool regarding layout parsing could be kept as they are,
since the layout files would still be written in XML format. Similarly, the Test
Refactoring module (Figure 2.1) would just need some adjustment to comply with
Kotlin syntax.

As JavaParser doesn’t work on Kotlin, the only thing that would need some real
effort to make our tool work on Kotlin projects, would be having an appropriate
parser to analyze the code of the Activity Under Test when looking for its respective
layout resource name.

The applications we used to test our tool belong to the same Utilities cate-
gorization (McMillan et al., 2011), but in general there should be no structural
contraindications in using apps belonging to any other category.

Threats to Construct validity

Construct validity threats regard possible errors in the computational steps and in
the construction of the experimental core of the study. The ones related to our tool
are listed in the following.

• When comparing the layout files in the two consecutive app releases, we made
the assumption that the file has the same name in both releases, but that may
not be the case, so further inspection of the tested activity is needed in case
this assumption does not hold;

• The tool considers only two different ways of retrieving the Activity Under Test
(see Section 2.2.2), so it may fail in case said activity is declared or used in a
different way (for example, in Espresso tests, with the method getActivity(), we
could retrieve the current activity after an action has started another activity);

60

4 – Threats to validity

• If the class is not found in any of these ways, we should try to see if the test
class extends another one.

• Our tool doesn’t take into account the chance that a layout or parts of it are
imported from another layout file (e.g. toolbars, navigation drawers, menus,
card layouts for recycler views, etc.): if the widget we are looking for in version
A is from an imported (included) layout, it will not be found directly in the
containing layout;

• For how this is coded inside the tool, in case two widgets in version B have
the same matching rate with the reference widget in version A, we select the
last one that goes through the computeMatching() method - that computes
the matching percentage as defined in Equation 2.7.

61

62

Chapter 5

Conclusions

Test classes maintenance can be a very high invoice in the application development
process, especially in an industrial setting. Due to the constant evolution of the
graphical user interface from a release of the app to the following one, many layout-
based test cases are broken in the transition.

This thesis proposes a tool to improve automated GUI testing procedures and in
particular to repair broken layout-based Espresso test cases - but the same approach
could be extended to other testing tools and techniques.

In case the test is broken because a widget can’t be located in the current activity
layout using the value of one of its attributes - because this value has changed since
the last release where the test passed successfully - the tool tries to find in the
current release the widget that is most similar to the one the test located in the
previous release.

This search is done based on a matching criterion between the previously located
widget and those currently present in the activity layout file. The matching per-
centage between two widgets is computed considering the main android: attributes
of the View class, where each of them has a weight computed based on how much
that attribute changes during the evolution of the application.

63

5 – Conclusions

5.1 Summary of the results

We built 30 test cases on three different applications to test our tool’s features and
ability to repair several breakages that could happen when transitioning to a new re-
lease of an app. The test cases were custom-built to cover all possible combinations
between the 4 selected ViewMatchers method calls and the 3 possible arguments
these methods would accept - all listed in Table 2.2.

Out of the total 40 method calls contained in these tests, only 30 needed refac-
toring, 24 (80%) of these were correctly repaired - i.e. the repaired method call
makes the test case pass successfully and is equivalent to the previous one since it
locates the widget with the same android:id in the current layout. Detailed results
are shown in Table 5.1.

Application
Method calls

that needed

refactoring

Method calls

correctly

refactored

Tool success

rate on

method calls

Test cases

that needed

refactoring

Test cases

correctly

refactored

Tool succes

rate on

test cases

Lazy Cafe’ 8 8 100% 7 7 100%

Glucosio 10 7 70% 9 7 77,78%

TodoList 12 9 75% 9 6 66,67%

Total 30 24 80% 25 20 80%

Table 5.1. Tool results on the selected applications and built test cases.

We also noticed that, based on how many broken widget locators are present in
a test case, we may need more that one iteration of our tool to be able to correctly
refactor all the broken method calls.

5.2 Future work

In the following, we list a few improvement points for this tool. These can be aimed
towards increasing its precision in locating equivalent widgets or simply ideas for
possible additional features.

• To compute the matching percentage between two widgets, we analyzed only
the most common widget attributes based on a visual analysis of the layout
files (listed in Table 2.1): by the way, it would be possible to make a more

64

5.2 – Future work

extensive analysis on actually all the possible layout widget attributes (so those
of the View class and of all of its subclasses);

• Extending the tool to take into account the chance of imported/included lay-
outs within other layout files, to avoid a Construct threat to the tool’s validity;

• Having a deeper knowledge of JavaParser and its implementation, we could
make the user choose if they want to repair a single test case instead of the
whole test class;

• In case the wrong widget was selected for refactoring and the user discards
it, we could also consider the widget with the second-highest matching. This
feature would have correctly repaired a few method calls that the tool wasn’t
able to, such as test cases number 15 and 17 performed on the Glucosio app
(as we can see in Table 3.8);

• If a test class does not compile because an id or string resource is no longer
present in the project, as written in Section 3.2.2, we can parse the compiler
output to retrieve the resource name that can’t be found in version B, look for
the reference widget in version A and then run our tool looking for a matching
widget - possibly on all layout files inside the project;

• Handling the case of a widget that has been moved from an activity layout to
another. It could be done asking the user if they want to extend the search to
other activities layouts (in case no widget with a match above the threshold
is found - or in general, because the same widget may just have been moved,
with no modifications to the values of its attributes).

65

5 – Conclusions

66

Bibliography

Alégroth, E., Feldt, R., & Kolström, P. (2016). Maintenance of automated test
suites in industry: An empirical study on visual gui testing. Information and
Software Technology , 73 , 66–80.

Berner, S., Weber, R., & Keller, R. K. (2005). Observations and lessons learned
from automated testing. In Proceedings of the 27th international conference
on software engineering (pp. 571–579).

Chang, N., Wang, L., Pei, Y., Mondal, S. K., & Li, X. (2018). Change-based test
script maintenance for android apps. In 2018 ieee international conference on
software quality, reliability and security (qrs) (pp. 215–225).

Coppola, R., Ardito, L., & Torchiano, M. (2019). Fragility of layout-based and
visual gui test scripts: an assessment study on a hybrid mobile application. In
Proceedings of the 10th acm sigsoft international workshop on automating test
case design, selection, and evaluation (pp. 28–34).

Coppola, R., Morisio, M., & Torchiano, M. (2017). Scripted gui testing of android
apps: A study on diffusion, evolution and fragility. In Proceedings of the 13th
international conference on predictive models and data analytics in software
engineering (pp. 22–32).

Daniel, B., Gvero, T., & Marinov, D. (2010). On test repair using symbolic execu-
tion. In Proceedings of the 19th international symposium on software testing
and analysis (pp. 207–218).

Daniel, B., Jagannath, V., Dig, D., & Marinov, D. (2009). Reassert: Suggesting
repairs for broken unit tests. In 2009 ieee/acm international conference on
automated software engineering (pp. 433–444).

Daniel, B., Luo, Q., Mirzaaghaei, M., Dig, D., Marinov, D., & Pezzè, M. (2011).
Automated gui refactoring and test script repair. In Proceedings of the first
international workshop on end-to-end test script engineering (pp. 38–41).

67

Bibliography

Gao, Y., Liu, H., Fan, X., Niu, Z., & Nyirongo, B. (2015). Analyzing refactorings’
impact on regression test cases. In 2015 ieee 39th annual computer software
and applications conference (Vol. 2, pp. 222–231).

Grechanik, M., Xie, Q., & Fu, C. (2009). Experimental assessment of manual versus
tool-based maintenance of gui-directed test scripts. In 2009 ieee international
conference on software maintenance (pp. 9–18).

Hammoudi, M., Rothermel, G., & Tonella, P. (2016). Why do record/replay tests
of web applications break? In 2016 ieee international conference on software
testing, verification and validation (icst) (pp. 180–190).

Imtiaz, J., Sherin, S., Khan, M. U., & Iqbal, M. Z. (2019). A systematic literature
review of test breakage prevention and repair techniques. Information and
Software Technology , 113 , 1–19.

Jobe, W. (2013). Native apps vs. mobile web apps. International Journal of
Interactive Mobile Technologies , 7 (4).

Joorabchi, M. E., Mesbah, A., & Kruchten, P. (2013). Real challenges in mobile app
development. In 2013 acm/ieee international symposium on empirical software
engineering and measurement (pp. 15–24).

Leotta, M., Clerissi, D., Ricca, F., & Spadaro, C. (2013). Improving test suites
maintainability with the page object pattern: An industrial case study. In
2013 ieee sixth international conference on software testing, verification and
validation workshops (pp. 108–113).

Li, X., Chang, N., Wang, Y., Huang, H., Pei, Y., Wang, L., & Li, X. (2017).
Atom: Automatic maintenance of gui test scripts for evolving mobile appli-
cations. In 2017 ieee international conference on software testing, verification
and validation (icst) (pp. 161–171).

Linares-Vásquez, M. (2015). Enabling testing of android apps. In 2015 ieee/acm
37th ieee international conference on software engineering (Vol. 2, pp. 763–
765).

Linares-Vásquez, M., Moran, K., & Poshyvanyk, D. (2017). Continuous, evolu-
tionary and large-scale: A new perspective for automated mobile app testing.
In 2017 ieee international conference on software maintenance and evolution
(icsme) (pp. 399–410).

McMillan, C., Linares-Vasquez, M., Poshyvanyk, D., & Grechanik, M. (2011). Cate-
gorizing software applications for maintenance. In 2011 27th ieee international

68

Bibliography

conference on software maintenance (icsm) (pp. 343–352).
Mongiovi, M. (2011). Safira: a tool for evaluating behavior preservation. In Oopsla

companion (pp. 213–214).
Soares, G., Cavalcanti, D., Gheyi, R., Massoni, T., Serey, D., & Cornélio, M. (2009).

Saferefactor-tool for checking refactoring safety. Tools Session at SBES , 49–
54.

Stocco, A., Yandrapally, R., & Mesbah, A. (2018a). 12 vista: Web test repair
using computer vision. In Proceedings of the 2018 26th acm joint meeting on
european software engineering conference and symposium on the foundations
of software engineering (pp. 876–879).

Stocco, A., Yandrapally, R., & Mesbah, A. (2018b). Visual web test repair. In
Proceedings of the 2018 26th acm joint meeting on european software engi-
neering conference and symposium on the foundations of software engineering
(pp. 503–514).

Tomassetti, F., Smith, N., Maximilien, C., & Kirsch, S. (2017). Javaparser.

69

	List of Figures
	List of Tables
	Background and related works
	Introduction to mobile testing
	Approaches for automated GUI testing of Android applications
	Categories of mobile applications

	The challenges of mobile applications testing
	The cost of application testing

	Test breakage avoidance and prevention
	Goals
	Notes on refactoring and fragility of GUIs

	State of the art and existing tools
	SAFIRA
	ReAssert
	VISTA
	ATOM
	CHATEM

	Architecture and design
	Analysing the evolution of Android projects layouts
	Proposed metrics
	About this preliminary analysis

	Finding the root cause of test breakage
	JavaParser
	From the test file to the layout file

	Building a layout object representation
	The Page Object Pattern
	Layout parser

	Finding the most similar widget in the current version of the project
	Minimum matching threshold

	Repairing a broken test case
	Analysing the broken test case error log

	Experiment and results
	Preliminary research results
	Collected data on Android applications layouts evolution
	Computation of the minimum matching threshold for test refactoring

	Experimental results of the tool
	Widgets and results display format
	Handling test breakage caused by widget id

	Threats to validity
	Conclusions
	Summary of the results
	Future work

	Bibliography

