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Abstract 
This thesis presents the control of a Cart Inverted Pendulum system, starting from the modelling 
and design of a test bench. The Cart Inverted Pendulum system is actuated via a DC Motor and a 
transmission mechanism composed by a screw and a linear guide. The electric motor is controlled 
by a servo drive system and a PLC. Matlab and Simulink are used to asses the performance of the 
system in the presence of different controllers: PID controllers in cascade and parallel 
architectures, Static State feedback via pole placement or LQR. 

The first part of the thesis deal with the definition of a mathematical model of the system. It is 
implemented by Simulink in a block diagram representation. Different techniques are used to 
control the system, basing on PID and Static State Feedback control theories. The PID controllers 
are implemented in two different architectures, cascade and parallel. The cascade architecture is 
obtained through two loop, inner and outer. The inner loop stabilizes the pendulum angle, using 
the first PID, while the outer one stabilizes the position of the cart, using the second one. The 
parallel architecture is obtained by two parallel loop, that separately stabilize the pendulum angle 
and the position of the cart; the parallel architecture provides an input to the plant, using the sum 
of the outputs of the two PID controllers. The Static State Feedback control theory is based on a 
negative feedback branch; the states of the system are multiplied by a gains matrix [𝐾]  and then 
they are fed back to the control input. The considered ways, in which the gains matrix [𝐾] can be 
computed, are the pole placement and the LQR. Moreover in the Static State Feedback technique, 
an asymptotic observer is needed due to the limited number of the available measurements 
(states). The observer is able to provide an estimation of all the states, basing on the measurements 
of the input and only one output. Afterwards, the same control techniques are applied to a 
Simulink model based on a real test bench designed and built at the Laboratory of the Politecnico 
di Torino described in [4], that uses a pneumatic actuation. All the controllers are computed  in 
order to guarantee the specifications on the time response and the physical constraint of the plant 
(supply voltage in the electrical actuation and internal chamber pressure on the pneumatic one). 

Finally, the last chapter presents the comparison between the proposed control techniques and 
between the two different types of actuation. Principally, the comparisons highlighted opposite 
behaviours in the two types of actuation; the pneumatic actuation allows a very low values of 
settling time in the response of the cart position, causing, however, an oscillating behaviour of the 
tilt angle of the pendulum, while the electrical actuation provides a smooth trend in both output 
responses with high values of settling time. All the results are commented to guarantee a detailed 
report on the entire study, carried out on this classical control theory problem. 

The entire development of this dissertation is carried out in parallel by both students, Vittorio 
Cordasco and Andrea Di Maggio. However, the draft chapters 1, 4 and 5 is accomplished by 
Andrea Di Maggio, while the draft chapters 2 and 3 is realized by Vittorio Cordasco.  
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Introduction 
In 1990, the International Federation of Automatic Control Theory Committee (IFAC) identified 
several practical problems useful to compare new and existing control methods, so that a 
meaningful comparison can be derived. The federation decided to highlight these problems as 
“benchmark control problems”, like the Cart Inverted Pendulum Control problem. It was defined 
as a highly unstable and under-actuated system, with a non-minimum phase rotation. 
The complexity of this control problem increases with the number of links constituting the 
systems. For these reasons, the Cart Inverted Pendulum proves to be a challenging control 
problem. The relevance of this problem is due to the fact that it can be associated with practical 
applications: 

− Robotics: the vertical stabilization of humanoid robots used in domotics and industrial 
application 

− Construction industry: buildings behaviour and resistance under earthquake phenomena 
− Transports: automatic transports like overboard, segway, bicycle, pendulum robot, e.g. 
− Aerospace: control of the attitude in rocket launching 

 

 

As it can be seen from figure a, the simplest type of inverted pendulum is constituted by a 
translating cart which is connected through a cylindrical hinge to a rod which presents a mass on 
its extremity. As already mentioned, the goal of the control algorithm is to maintain the pendulum 
rod in vertical position. 

Fig. a Actual industry applications of the inverted pendulum 
control theory 
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To do this, it is necessary to compensate for the inherent limitations of the system: 

− Instability: the inverted vertical position is the unstable equilibrium point of the system 
− Non-linearity: the dynamic equations describing the inverted pendulum have non-linear 

terms 
− Non-minimum phase: looking at the transfer functions, they contain non-minimum phase 

zeros (positive value), which affect the stability margins, including the robustness, and 
influence the time response of the systems 

− Under-actuated: there are two control variables and only one control input, that is the 
force applied to the cart. This means that the system has a lower number of actuators than 
the degrees of freedom. Differently from other mechanical systems like segways or 
overboards that can exploit any arbitrary trajectory for their stabilization, the cart of the 
inverted pendulum can employ only a limited and linear trajectory to get stability 

Moreover, depending on the application and the selected actuation system can be many other 
issues, like the space constraints of the designed system or the physical constraints of the used 
actuation. Looking at literature, there are two types of actuation, pneumatic and electrical. The 
pneumatic actuation is obtained by a cylinder that can extend and retract its rod, that is directly 
connected to the cart of the pendulum (in same cases the cylinder rod is linked to a connection 
plate, that mounts on the top a hinge connected to the pendulum rod). The electrical actuation is 
obtained through an electric motor (commonly DC motor) with a rotational outer shaft connected 
through different types of motion transmission systems to the connection plate and the hinge of 
the inverted pendulum (linear guide with different type of transmission systems, like screw-screw 
nut or belt-pulley assemblies [3] ). The motor provides the torque to the motion transmission 
system, that converts the torque into linear force used to move the inverted pendulum cart. In both 
cases, the draw backs are due to the physical (supply pressure in pneumatic cylinder and supply 
voltage/current in the electric motor) and inherent (e.g., low dynamics) limitations of the actuation 
systems. These contributes render the control problem even more complex. 

Firstly, this thesis considers the design of a control system for a cart inverted pendulum test bench 
using an electric motor as actuator and a screw-screw nut linear guide to control the position of 
the cart. The control algorithms adopted here in can be broken down in two different control 
strategies: 

− PID controllers with cascade and parallel architectures 
− Static state feedback control with a gain feedback obtained by pole placement technique 

or by LQR algorithm 

Afterwards, the same techniques are applied to a system that employs a pneumatic actuation [4]. 
Finally,  the last part of the work presents the comparison of considered control techniques by 
highlighting pros and cons of each method. 
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Current trends 
The state-of-art inverted pendulum systems boast many design models, which differ principally 
in the available physical controller and in the actuation and motion transmission systems. Before 
beginning the analysis of the problem presented in this dissertation, an explanation of the models 
taken as reference is needed to understand which are the basis of our study. 

[1] and [2] are the texts taken as reference for everything concerning the control theory, from the 
analysis and the definition of a model to the stability topics (stability criteria, frequency response, 
controller design). Text [3] provides the needed knowledge to the definition of the model used in 
the simulation environment. Here, the implemented system is composed by an electric motor 
connected to the inverted pendulum cart thanks to a belt-pulley transmission system. The control 
techniques applied to this system are 

− PID compensators in cascade architecture 

− Frequency design: loop shaping technique 

− Static state feedback: pole-placement technique 

All these control strategies have proved to be very powerful in terms of output response and 
robustness. These performances have been taken as reference to test the reliability of the 
techniques  used in this dissertation. 

The information about the model with pneumatic actuation, that is considered in section 3.3, was 
taken from [4]. The data provided by [4] are used to apply the control techniques adopted in the 
model with electrical and pneumatic actuations and, in chapters 4 and 5, to compare the two types 
of actuations. Moreover, this dissertation provides the description of the real test bench, preserved 
in Lab DIMEAS of the Politecnico di Torino, built by the authors. The test bench is composed by 
a cart integrated with an inverted pendulum. These are mounted on plate (of a linear guide) and 
are directly connected to a translating rod of a pneumatic cylinder. The double acting cylinder is 
used as a pneumatic actuator, that is activated by a series of simple on-off 2/2 ways electro-
pneumatic valves (AP − 7211 − LR2_U7), modulated by PWM signal, while the controller is 
implemented by a PLC code. The control strategy considered in [4] is a PID compensators in 
cascade architecture. Firstly, a classical control theory criterion (Nyquist criterion, like in our 
study) is chosen to verify the achieved stability considering the linearized model of the plant. 
Then, the software Amesim is used to perform a non-linear analysis of the system and to set up 
the final controllers. 

Another control applied to the same test bench that exploits different simulation’s software is 

presented in [5]. The designed control system is composed by two PID compensators placed into 
two-parallel loop in order to individually control the tilt angle of the pendulum and the position 
of the cart. The system simulation is carried out using DSHplus and Matlab/Simulink 
environments. 
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The same control architecture and model with pneumatic actuation of text [4] are analyzed in [6]. 
However, the controller implementation is different because an Arduino board is adopted, instead 
PLC, using a PWM generation technique programmed by Fuzzy logic. This choice leads to a very 
good control performances, in terms of output response, and to low costs because of 
implementation of the control algorithm on Arduino. 

Regarding to the other control techniques used in our dissertation, several papers have been 
analyzed to understand the state-of-art modelling of the plant and to learn about the techniques 
adopted for control purposes. The [7] introduces another control method, the Static State 
Feedback using pole placement technique, that has proven to be very powerful in terms of output 
response. Moreover, this paper is useful to solve the practical issue of the available output 
measures, because the Static State Feedback control needs the feedback of all the states to respect 
the assigned control law (the states defined in the state vector of the system, using the State Space 
Representation). So, the asymptotic state observer is used to solve this problem, estimating all the 
states by knowing only one of them (from real measurement) and the control input of the 
considered plant. Therefore, the final control architecture is composed by a Static State Feedback, 
with pole placement technique, and by an asymptotic state observer, that estimates all the states. 
The results show that the proposed controller provides excellent performances. Also, the system 
presents a good robustness, it can overcome any external disturbances on cart or on pendulum 
rod. 

The [8] and [9] exploit the design of the two parallel-loop PIDs’ architecture and, in particular, 

the [8] shows the implementation of the PID controllers to allow the stabilization and the tracking 
control of three types of inverted pendulum 

− Inverted pendulum with one Degree of Freedom (DOF), the cart can freely move only in 
one direction (x-axis) 

− Inverted pendulum with two DOF, the cart can freely move in a plane (x-y plane) 
− Inverted pendulum with three DOF, the cart is freely to move in the three-dimensional 

space (x-y-z) 

Simulation results prove that the way to design the PID controllers is very simple and effective. 
Although the system design can realize stabilization and tracking control of three types of inverted 
pendulum, also it provides robustness to outer large and fast disturbances. Conversely to [8], the 
[9] considers only the one DOF inverted pendulum model, but two control technique have been 
applied that are an innovative double PID control method and a modern LQR (liner quadratic 
regulator) control method. Dynamic and steady state performances are investigated and compared 
in the two types of controllers. This paper proves that the LQR controller can guarantee a faster 
and smoother stabilizing process for the inverted pendulum, providing better robustness and less 
oscillations than the double PID controller. 

Finally, the [10] describes a test bench composed by an electric DC motor, as actuator, and a belt-
pulley mechanism, as motion transmission system, to control the cart inverted pendulum. Here, 
several complex algorithms are designed and implemented into a PC with a PCI-1711 card.  
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The control algorithms, presented in [10], can be resumed as 

− Systematic algorithm for weight selection of LQR state feedback 
− Two-loop PID controller designed by pole placement approach. The design is based on 

dominant LQR poles. This leads to an improvement in the cart response with damped 
oscillations 

− State feedback control design by sub-optimal LQR subjected to H∞ constraint 
− Integral Sliding Mode (ISM) via pole placement algorithm in order to provide better 

robustness on the output channel and superior cart position response than LQR 

Looking at the obtained simulation and at the experiments, the ISM exhibits a good robustness in 
presence of output channel gain perturbations. The efficiency of the developed techniques is 
tested in numerical simulations. It has been also observed that the two-loop PID controller yields 
satisfactory response of cart position and robust property. In the event of sensor fault, the ISM 
provides best performance out of all the techniques. 
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1 The Test bench 
The test bench was designed using the SolidWorks environment. This chapter provides a 
description of the test bench components. All the parts were designed in order to provide an easy 
assembly between them and to respect the specifications in terms of length of the path (500 𝑚𝑚) 
and angle amplitude of the pendulum (±25° respect the vertical axis). 

Looking at figure 1-1, the seven notes indicate the most important assemblies, that creates the 
overall test bench. The components of the test bench can be subdivided in three different branches 
related to the application environment of the system (mechanical, actuation and electrical). In the 
mechanical environment there are the pendulum system "1" and the cart system "2". Regarding 
to the actuation environment there are the motion transmission system "3" and the motor "4". 
Finally, the PLC "5" and the servo drive system "6" constitute the electrical environment, while 
the element "7" is the panel designed to fulfil the assembly of all components.  

 

 

In the next sections, the design of the pendulum and cart assembly and the other test bench 
components are described. 

 

Fig. 1-1 The Test bench 
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1.1 Cart Inverted Pendulum 
In this section, the design and assembly methods of the components, releated to the mechanical 
environment, are provide. The technical drawings of the described components are presented in 
Appendix A. 

 

1.1.1 Pendulum design 

The pendulum system, shown in figure 1.1-2, is designed in order to provide the variation of the 
rod length and of the mass weight, and to guarantee its integration with the cart. 

 

Fig. 1.1-1 Pendulum system 
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As it can be seen in figure 1.1-1, the length can be modified thanks to the telescopic property of 
the rod design, that consists of element "2" and "3", that are the internal and external parts of the 
rod. The rod length can assume values between 400 𝑚𝑚 and 700 𝑚𝑚 by increments of 20 𝑚𝑚 
(choosing the suitable coupling holes of "2" and "3"). The pendulum mass can be modified using 
the coupling between "2" and "5" (internal rod and tip cylinder), that gives the possibility to 
change the number of weights fixed at the end of the pendulum "4". The separation of the 
pendulum system from the cart system (explained in the next section) is allowed by the threaded 
coupling between "2"  and "1"  (internal rod and two-axis joint). In order to accomplish the 
concentrated mass hypothesis the pendulum was built in a light aluminium structure. 

 

1.1.2 Cart assembly design 

The cart system, shown in figure 1.1-2, provides the way in which the pendulum system is 
connected to the motion transmission system. 

 

 

The connection plate "2" is designed to connect the plate of the linear guide "1" to the two bearing 
supports "3" and the mounting bracket "6" for the angular sensor "7". The pendulum system is 
connected to the cart using by the two bearing supports "3" and the shaft "4". The assembly "3"-
"4" with the element "1" (of the pendulum system) forms the rotational joint used to allow the 
rotation of the pendulum. Finally the joint "5" provides an elastic coupling between the shaft "4" 
and the angular sensor "7", in order to compensate alignment offset. 

Fig. 1.1-2 Cart system 



10 
 

1.2 Actuation system and sensors 
An overview on the components specifications, that constitute the actuation environment and the 
electrical one, is given in the next sections. 

 

1.2.1 Motor 

The actuation used in this system is provided by SIEMENS with the product code  
SIMOTICS S-1FK2104-4AK10-1MA0, shown in figure 1.1-3. 

It is a permanent-magnet synchronous motor connected to the linear guide shaft by a coupling 
flange with bearings. The motor is able to provide the information about the angle position of the 
shaft thanks to its absolute encoder 22 bit. The information about the shaft position allows the 
position computation of the cart by the transmission ratio provided by the linear guide. The table 
1.2-1 summarizes some of the motor specifications. 

  

   Static torque 1.27 𝑁𝑚 
   Static current 2.4 𝐴 
   Rotor moment of inertia 0.430 𝐾𝑔𝑐𝑚2 
   Rated speed 3000 𝑟𝑝𝑚 
   Rated torque 1.27 𝑁𝑚 
   Rated current 2.4 𝐴 
   Rated power 0.40 𝐾𝑊 
   Torque constant 0.53 𝑁𝑚/𝐴 
   Armature resistance 1,7 Ω 

Table 1.2-1 Motor specifications 

Fig. 1.2-1 The motor 
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1.2.2 Servo drive system 

The linking element between the motor and the PLC is the servo drive system provided by 
SIEMENS with the product code SINAMICS S210, shown in figure 1.2-2. 

 

 

The motor, the PLC and the servo drive system create the overall electrical actuation (straddling 
the actuation environment and the electrical one of the test bench, mentioned before). The servo 
drive system is a converter that gives a communications interface between the controller unit 
(PLC) and the physic actuation (motor), allowing a complete motion control and an easy plug-
and-play commissioning with one-cable connection. 

  

Fig. 1.2-2 The servo drive system 
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1.2.3 PLC 

Also the used controller, shown in figure 1.2-3, is provided by SIEMENS with the product code 
SIMATIC S7-1200, the version is the one with the CPU 1214C DC/DC/DC. 

 

 

The table 1.2-2 summarizes the main specifications of the PLC. 

  

Fig. 1.2-3 The PLC 

   CPU code 𝐶𝑃𝑈 1214 𝐷𝐶/𝐷𝐶/𝐷𝐶 

   Digital input ports 14 

   Fast digital input ports 6 (𝑜𝑓 𝑡ℎ𝑒 14 𝑑𝑖𝑔𝑖𝑡𝑎𝑙) 

   Digital output ports 10 

   PWM output ports 4 (𝑜𝑓 𝑡ℎ𝑒 10 𝑑𝑖𝑔𝑖𝑡𝑎𝑙) 

   Analog input ports 2 (0 ÷ 10 𝑉𝐷𝐶) 

   Supply voltage 24 𝑉𝐷𝐶 

Table 1.2-2 PLC specifications 
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1.2.4 Linear guide 

The adopted motion transmission system is provided by AUTOMATIONWARE with the product 
code ML120PRO-22, shown in figure 1.2-4. The transformation from the rotational motion of the 
motor to the linear motion of the cart is allowed by the screw-screw nut mechanism of the 
transmission system. The linear guide is connected to the motor thanks to a coupling flange with 
bearings, and, on the other side, the cart is connected to the transmission system using its plate 
(element "1" in figure 1.1-2). 

The table 1.2-3 summarizes the main specifications of the linear guide. 

  

Fig. 1.2-4 The linear guide 

   Screw standard 𝐼𝑆𝑂 7 

   Screw specifications ⊘10𝑚𝑚 −  𝑝 10𝑚𝑚 

   Carts number 2 

   Path 520 𝑚𝑚 

   Output shaft ⊘ 10 𝑚𝑚 

   Maximum velocity 1.2 𝑚/𝑠 

   Maximum acceleration 20 𝑚/𝑠2 

Table 1.2-3 Linear guide specifications 
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1.2.5 Angular sensor 

Finally, the angular sensor used for the tilt angle measurements of the pendulum is provided by 
VISHAY with the product code Model 981 HE Series, it is a single turn hall effect type and it is 
shown in figure 1.2-5. 

 

 

The table 1.2-4 summarizes the main specifications of the angular sensor. 

 

 

  

Fig. 1.2-5 The angular sensor 

   Type 𝑆𝑖𝑛𝑔𝑙𝑒 𝑡𝑢𝑟𝑛 𝐻𝑎𝑙𝑙 𝑒𝑓𝑓𝑒𝑐𝑡 

   Supply voltage 5 𝑉𝐷𝐶 ± 10% 

   Supply current 10 𝑚𝐴 / 16 𝑚𝐴 𝑚𝑎𝑥 

   Output signal 𝐴𝑛𝑎𝑙𝑜𝑔 𝑟𝑎𝑡𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐, 10% 𝑡𝑜 90% 𝑜𝑓 𝑉𝑠𝑢𝑝𝑝𝑙𝑦 
𝑃𝑊𝑀, 1𝐾𝐻𝑧 10% 𝑡𝑜 90% 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 

   Electrical angle 90°, 120°, 180°, 270°, 360° 

   Output shaft ⊘ 10 𝑚𝑚 

   Maximum velocity 1.2 𝑚/𝑠 

   Maximum acceleration 20 𝑚/𝑠2 
Table 1.2-4 Angular sensor specifications 
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2 Mathematical model 
The implementation of the mathematical model of the system represents the first step for the 
design of its controller. Once the model is done, the transfer functions, that describe the behaviour 
of the system in time domain, are obtained. The goal of the controllers is the stabilization of the 
transfer function between the input u and the outputs of the system. Referring to this case of study, 
the armature voltage Va of the motor is chosen as command input, while a suitable choice of the 
outputs is the position of the cart x and the angle α between the rod of pendulum and the vertical 

axis. These variables can be directly measured by the motor encoder and the angular sensor, 
respectively. According to this choice, the system becomes SIMO (single-input multiple-output) 
but, as can be seen in next chapters, the entire system will be approximated as SISO when the 
static state feedback control is used. The goal is the stabilization of the cart position x in the center 
of the linear guide (like the cascade control model of the pneumatic actuation studied in [4] ). 

Therefore, the first step to obtain the model of the whole system is to writing down the equilibrium 
and kinematic equations of each component. Matlab and Simulink are used to implement the 
model and to validate and test the system as software in the loop. For practical reasons, the whole 
system can be subdivided into two different subsystems 

− the Inverted Pendulum that is the controlled plant. 
− the Actuation Systems constituted by the motor and the transmission system (screw-

screw nut). 

Next sections describe the equations constituting the model of each subsystems. 

 

2.1 Inverted pendulum 
Figure 2.1-1 shows a typical configuration of the system 

 

 

Fig. 2.1-1 Classical representation of the cart inverted pendulum system 
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As shown in figure 2.1-1, the system is constituted by a mass linked to a rod which is hinged at 
one end, while the other one presents a concentrated mass 𝑚𝑝. The rod is freely to rotate around 
the hinge connected to a cart. The cart is constrained to move backward and forward along a 
limited horizontal axis. Once defined the kinematic constraints, let’s write down the dynamic 
equation that describes the system. Figure 2.1-2 shows the free body diagram of the pendulum 
rod 

 

 

From now on, let’s consider the following hypothesis 

− mass of the rod negligible 
− mass of the system (rod and final mass) concentrated in the top extremity of the pendulum 
− no friction forces 

The table (2.1-1) resumes the list of variables and parameters used to create the model 

�̈� Linear acceleration of the cart 𝑚/𝑠2 

𝛼 Angle of the rod with respect to the vertical axis 𝑟𝑎𝑑 

�̈� Angular acceleration of the rod 𝑟𝑎𝑑/𝑠2 

𝐶𝑢 Torque generated by the linear acceleration of the cart 𝑁𝑚 

𝐽𝑝 Moment of inertia of the mass with respect to fulcrum 0,05 𝑘𝑔𝑚2 
𝑚𝑝 Concentrated mass of the pendulum 0,2 𝑘𝑔 

𝑔 Gravity acceleration 9,8 𝑚𝑠2 
𝑙𝑝 Rod length of the pendulum 0,5 𝑚 

Table 2.1-1 Variables and parameters of the inverted pendulum 

 

Fig. 2.1-2 Free body diagram of the pendulum 

T 

T 

N 

N 
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With these approximations, the equilibrium of the torques at the hinge is 

𝐽𝑝�̈�(𝑡) = 𝑚𝑝𝑔𝑙𝑝 sin𝛼(𝑡)⏟          
(1)

+ 𝐶𝑢(𝑡)⏟  
(2)

       (2.1-1) 

The right term represents the time derivative of the angular momentum of the mass 𝑑𝐿𝑝
𝑑𝑡
= ∑ 𝐶𝑖

𝑛
𝑖=1  

and is equal to the product of the angular acceleration of the rotational system and the inertia 
moment 𝐽𝑝 = 𝑚𝑝𝑙𝑝2 . 

The right terms, (2.1-1) and (2.1-2), are 

− 𝑚𝑝𝑔𝑙𝑝 sin 𝛼(𝑡) , torque produced by the gravity, that is equal to the product of the 
gravitational force 𝑚𝑝𝑔 and its arm 𝑙𝑝 sin𝛼(𝑡) 

− 𝐶𝑢, torque produced by the acceleration of the cart 

Explicating the torque 𝐶𝑢 in terms of the linear acceleration of the cart 

𝐶𝑢(𝑡) = −𝑚𝑝�̈�(𝑡)𝑙𝑝 cos 𝛼(𝑡)        (2.1-2) 

The equation obtained, substituting the relation (2.1-2) in equation (2.1-1), is 

𝐽𝑝�̈�(𝑡) = 𝑚𝑝𝑙𝑝
2�̈�(𝑡) = 𝑚𝑝𝑔𝑙𝑝 sin 𝛼(𝑡) − 𝑚𝑝�̈�(𝑡)𝑙𝑝 cos 𝛼(𝑡)    (2.1-3) 

Collecting in the terms on the right the factors 𝑚𝑝𝑙𝑝 and simplifying them, the equation (2.1-3) 
becomes 

𝑙𝑝�̈�(𝑡) = 𝑔 sin𝛼(𝑡) − �̈�(𝑡) cos 𝛼(𝑡)       (2.1-4) 

The function that relates the torque induced by the gravity with respect to the angle 𝛼 is nonlinear 
(there are the sin and cos functions). This nonlinearity can be neglected by considering only small 
values at the angle 𝛼. Therefore, under this assumption, 𝛼 stays near the unstable equilibrium 
point 𝛼 = 𝛼0 = 0. The same approximation lays for the position 𝑥 = 𝑥0 = 0. In this way, the 
nonlinear terms of the equation (2.1-4) becomes 

sin 𝛼(𝑡) ∼  𝛼(𝑡) 

cos𝛼(𝑡) = 1 

Finally, the equation that describes the linearized system of the pendulum is 

𝑙𝑝�̈�(𝑡) = 𝑔𝛼(𝑡) − �̈�(𝑡)         (2.1-5) 
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2.2 Electromechanical System 

The Electromechanical system is composed by the actuation and transmission system represented 
by motor, linear guide and his screw-screw nut mechanism, as can be seen in figure 2.2-1. 

 

 

In the table (2.2-1), the variables and parameters of the transmission system are shown 

 

Fig. 2.2-1 Electromechanical system diagram 

electrical side 
mechanical side 

𝑥 Position of the cart 𝑚 

�̇� Linear velocity of the cart                                                                               𝑚/𝑠2 

𝜃 Angular position of the motor shaft 𝑟𝑎𝑑 

�̇� Angular velocity of the motor shaft 𝑟𝑎𝑑/𝑠 

n Angular velocity of the motor shaft 𝑟𝑝𝑚 

𝑝 Pitch of the screw 10 𝑚𝑚 

𝜂 Efficiency of the transmission system 0,96 
Table 2.2-1 Variables and parameters of the transmission system 
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This is a linear equation, that depends on the two constant parameters p and η and on the 

transformation between the respective units of measurement, rpm and rad/s 

𝑛(𝑡)[𝑟𝑝𝑚] =
30 �̇�(𝑡)[𝑟𝑎𝑑 𝑠⁄ ]

𝜋
        (2.2-1) 

�̇�(𝑡) =
𝑛(𝑡) 𝑝

60∙1000
=

𝑝

2𝜋∙1000
�̇�(𝑡)        (2.2-2) 

The transmission system also imposes the relation between the torque generated by the motor and 
the linear force applied to the cart, that generates the linear acceleration �̈� . This relation depends 
on the parameter 𝜂 , that represents the efficiency of the transmission. The relation is 

𝐶𝑝(𝑡) = 𝐹𝑝(𝑡)
𝑝

2𝜋𝜂
 ,     𝑤𝑖𝑡ℎ     𝐹𝑝(𝑡) = 𝑚𝑝𝑥�̈�(𝑡)     𝑎𝑛𝑑     𝑥𝑝(𝑡) = 𝑙𝑝 sin(𝛼)  (2.2-3) 

The other part of the handling system is the motor, that constitutes the effective actuator of the 
whole system. In the table 2.2-2 the variables and parameters of the actuation system are shown 

 

The electric motor type is a synchronous brushless motor with permanent magnet, as presented 
in the previous chapter. From now on, the following assumptions are considered for the derivation 
of the model of the plant 

1. Magnetic circuit of the electric motor is linear 
2. Magnetic power losses in the iron are negligible 
3. Friction forces in the motor are neglected 
4. The armature inductance 𝐿𝑎, and all the transients are neglected in the model of the motor 
5. Torque constant 𝑘𝑡 equal to the back EMF constant 𝑘𝑒, and so 𝐾 = 0,53𝑁𝑚/𝐴 is used 

𝑉𝑎 Armature voltage of the motor (command) 𝑉 

𝐸 Back EMF (electromotive force) by self-inductance 𝑉 

𝐼𝑎 Armature voltage of the motor 𝐴 

𝐶𝑚 Output torque generated by the motor 𝑁𝑚 

𝐹𝑝 Horizontal component of constraint reaction transmitted by pendulum to cart 
(due to the relative motion) 𝑁 

𝑅𝑎 Armature resistance 1,7 Ω 

𝐾 Torque constant 0,53 𝑁𝑚/𝐴 

𝐽𝑡𝑜𝑡 Total inertia moment of the system with respect to the motor 1,4727 ∙ 10−4 𝐾𝑔𝑚2  

𝑙𝑝 Rod length of the pendulum 0,5 𝑚 
Table 2.2-2 Variables and parameters of the actuation system 
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With these assumptions, the output torque of the DC motor linearly depends by the current 
armature 𝐼𝑎 by the torque constant 𝐾 through the following equation 

𝐶𝑚(𝑡) = 𝐾𝐼𝑎(𝑡)         (2.2-4) 

Thanks to the hypothesis 1, 2 and 3, the electric power of the input can be entirely converted into 
mechanical power by the electromechanics coupling. 

Considering these assumptions, the following power balance can be derived 

𝐸(𝑡)𝐼𝑎(𝑡) = 𝐶𝑚�̇�(𝑡) ⇒ 𝐸(𝑡)𝐼𝑎(𝑡) = 𝐾𝐼𝑎(𝑡)�̇�(𝑡)     (2.2-5) 

𝐸(𝑡) = 𝐾�̇�(𝑡)          (2.2-6) 

Therefore, thanks to the hypothesis 5, the proportional constant 𝐾, between torque and current, is 
worth also for the relation between the back EMF 𝐸 and the angular velocity of the rotor shaft �̇�. 
In this way, the equations that represent the electrical side, of the electromechanical system, are 

𝑉𝑎(𝑡) = 𝑅𝑎𝐼𝑎(𝑡) + 𝐸(𝑡)        (2.2-7) 

𝐸(𝑡) = 𝐾�̇�(𝑡)          (2.2-8) 

𝐶𝑚(𝑡) = 𝐾𝐼𝑎(𝑡)         (2.2-9) 

On the other hand, the mechanical side, of the electromechanical system, can be modeled by the 
rotational force balance at the output shaft by the Euler formula: 

𝐶𝑚(𝑡) − 𝐽𝑡𝑜𝑡�̈�(𝑡) = 𝐶𝑝(𝑡)        (2.2-10) 

with 𝐶𝑝(𝑡) = 𝐹𝑝(𝑡)
𝑝

2𝜋∙1000∙𝜂
= 𝑚𝑝�̈�𝑝(𝑡)

𝑝

2𝜋∙1000∙𝜂
     (2.2-11) 

The parameter 𝐽𝑡𝑜𝑡 is derived as 

𝐽𝑡𝑜𝑡 = 𝐽𝑚 + 𝐽𝑣 + 𝐽𝑐𝑎𝑟𝑡         (2.2-12) 

The right terms, in equation (2.2-12) are respectively 

− 𝐽𝑚 = 4.3 ⋅ 10
−4 𝐾𝑔𝑚2, moment of inertia of the rotor shaft 

− 𝐽𝑣 =
𝑚𝑣𝑟𝑣

2

2
= 9,92 ⋅ 10−5 𝐾𝑔𝑚2, moment of inertia of the transmission system (𝑚𝑣, 𝑟𝑣 

mass and radius of the screw) 

− 𝐽𝑐𝑎𝑟𝑡 = (𝑚𝑐 +𝑚𝑝) ⋅ (
𝑝

2𝜋∙1000
)
2
= 5,066 ∙ 10−6 𝐾𝑔𝑚2 , moment of inertia of the 

assembly of the cart and pendulum components with respect to rotational axis of the 
electromechanical system, that is constituted by motor shaft and the screw 
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Finally, inserting the relation (2.2-11) in (2.2-10) and assuming 𝑥𝑝(𝑡) = 𝑙𝑝sin (𝛼) ≅ 𝑙𝑝𝛼(𝑡) 
(considering the unstable equilibrium point, 𝛼 = 𝛼0 = 𝑥 = 𝑥0 = 0, as initial condition), the final 
equation of the mechanical side is 

𝐶𝑚(𝑡) − 𝐽𝑡𝑜𝑡�̈�(𝑡) = (𝑚𝑝
𝑝

2𝜋∙1000∙𝜂
) �̈�𝑝(𝑡) = (𝑚𝑝𝑙𝑝

𝑝

2𝜋∙1000∙𝜂
) �̈�(𝑡)    (2.2-13) 

 

2.3 State space representation 
With the equations obtained in the section 2.2, the problem can be traced to the solution of the 
following pair of linear systems differential equations, using the state space representation 

�⃗̇�(𝑡) = [𝐴]�⃗�(𝑡) + [𝐵]𝑢(𝑡) 

�⃗⃗�(𝑡) = [𝐶]�⃗�(𝑡) + [𝐷]𝑢(𝑡) 

The vector �⃗�(𝑡) = [ 𝛼 �̇� �̇� 𝑥 �̇� ]
𝑇 is defined as the vector that contains the state variables of the 

system, while �⃗̇�(𝑡) is its time derivative. On the other hand, the term 𝑢(𝑡) = 𝑉𝑎(𝑡) is the input 
vector and �⃗⃗�(𝑡) = [ 𝛼 𝑥 ] the vector that contains the outputs 𝑥 and 𝛼 of the systems (this choice 
is understandable because these two quantities are directly measured with sensors). The matrices 
[A], [B], [C] and [D] are obtained by writing in matrix form the equations computed in the 
previous section, that are resumed below 

𝑙𝑝𝑙𝑝�̈�(𝑡) = 𝑔𝛼(𝑡) − �̈�(𝑡)        
 (2.3-1) 

�̇�(𝑡) =
𝑝

2𝜋∙1000
�̇�(𝑡)         (2.3-2) 

𝑉𝑎(𝑡) = 𝑅𝑎𝐼𝑎(𝑡) + 𝐸(𝑡)        (2.3-3) 

𝐸(𝑡) = 𝐾�̇�(𝑡)          (2.3-4) 

𝐶𝑚(𝑡) = 𝐾𝐼𝑎(𝑡)         (2.3-5) 

𝐶𝑚(𝑡) − 𝐽𝑡𝑜𝑡�̈�(𝑡) = (𝑚𝑝𝑙𝑝
𝑝

2𝜋∙1000∙𝜂
) �̈�(𝑡)      (2.3-6) 

The matrices [A] and [B] are obtained by the relation of �⃗̇�(𝑡). Firstly, using the equations 
2.3-1 → 6, the relation of each state derivative is obtained as function of the states and input. Once 
that all the relations, for each state derivative, are computed, they are organized in order to 
highlight the coefficients that multiply the states and the input. The computed coefficients 
represent the matrices [A] and [B]. 
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𝐴 =

[
 
 
 
 
 
 
 

 

0 1 0 0 0
𝑔

𝑊𝑐
0

𝑊𝑎∙𝐾
2

𝐽𝑡𝑜𝑡∙𝑅𝑎∙𝑊𝑐
0 0

𝑔

𝑊𝑎∙𝑊𝑑
0

𝑙𝑝∙𝐾
2

𝑊𝑎∙𝑊𝑏∙𝑊𝑑∙𝑅𝑎
0 0

0 0 0 0 1
𝑔

𝑊𝑑
0 −

𝑙𝑝∙𝐾
2

𝑊𝑏∙𝑊𝑑∙𝑅𝑎
0 0

 

]
 
 
 
 
 
 
 

   𝐵 =

[
 
 
 
 
 
 

 −

0

−
𝑊𝑎∙𝐾

𝐽𝑡𝑜𝑡∙𝑅𝑎∙𝑊𝑐
𝑙𝑝∙𝐾

𝑊𝑎∙𝑊𝑏∙𝑊𝑑∙𝑅𝑎

0
𝑙𝑝∙𝐾

𝑊𝑏∙𝑊𝑑∙𝑅𝑎

 

]
 
 
 
 
 
 

 

 

Instead, computing the relation of each output as function of states and input, the matrices [C] 
and [D] can be obtained 

𝐶 = [ 
1 0 0 0 0
0 0 0 1 0

 ]  𝐷 = [ 0 ] 

 

The parameters 𝑊𝑎 ,𝑊𝑏 ,𝑊𝑐 and 𝑊𝑑 are 

𝑊𝑎 =
𝑝

2𝜋 ∙ 1000
 

𝑊𝑏 =
𝑚𝑝 ∙ 𝑙𝑝 ∙ 𝑊𝑎

𝜂
 

𝑊𝑐 = 𝑙𝑝 −
𝑊𝑎 ∙ 𝑊𝑏
𝐽𝑡𝑜𝑡

 

𝑊𝑑 = 1 −
𝑙𝑝 ∙ 𝐽𝑡𝑜𝑡
𝑊𝑎 ∙ 𝑊𝑏

 

 

This is the most useful representation that describes a system in terms of input (armature voltage 
𝑉𝑎) and output (position 𝑥 and pendulum angle 𝛼). 

However, at this point, a clarification is necessary. The state space representation, as mentioned 
above, is a useful mathematical representation of a system because it offers a description of the 
system in terms of the defined states and input. Therefore, the stability analysis can be initially 
performed by looking at the eigenvalues of matrix [A] and in this case it is called “Internal 

Stability” and it describes the behavior of a system neglecting any kind of external input. The 

state space representation is useful because it allows to study contemporarily the “Internal 

Stability” and the “External stability” by looking at the matrix [B] that multiplies the input of the 

system (the forced response). An Internal Stability analysis of the obtained state space 
representation has been carried out. 
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The eigenvalues 𝜆𝑖 of [A] matrix, shown in table 2.3-1, are the poles of the system 

The position of the eigenvalues, in the complex plane, determines if an eigenvalue can make the 
system stable or not. If at least one of the eigenvalues, of matrix [A], has a positive real part so 
this eigenvalue makes the system not internally stable. As can be seen in figure 2.3-1, one 
eigenvalue has real part greater than zero, so the stability condition is not verified and the system 
results unstable. 

In the next section, the transfer functions of the system are obtained from the state space 
representation and they describes the behavior of the system in terms of forced response by 
analyzing the outputs in presence of a given input (and so not considering the initial conditions 
for the states). However, it is important to remember that the transfer functions representation of 
a system is equal to the state space one if and only if the system is represented in minimal form 
and so only the minimal amount of variables that could describes the system’s behavior is 

considered. The minimal form of the state space representation can be obtained by the Matlab 
command ‘minimal’ applied to the command ‘ss’ that gives to the designer the minimal 
realization of a system. 

  

Fig. 2.3-1 Eigenvalues of the A matrix. Zoom on the right 

𝜆1 0 + 𝑖0 

𝜆2 0 + 𝑖0 

𝜆3 −1126 + 𝑖0 

𝜆4 −4,427 + 𝑖0 

𝜆5 +4,472 + 𝑖0 

Table 2.3-1 A matrix eigenvalues 
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2.4 Simulink model and validation 
Once compute the constitutive equations and obtained the state space representation, the Simulink 
model has been obtained. Figure 2.4-1 shows the block diagram of the system, obtained from 
equations 2.3-1 to 2.3-6. 

The system transfer functions can be obtained from the state space representation, using the 
relation 𝐻(𝑠) = [𝐶](𝑠[𝐼] − [𝐴])−1[𝐵] + [𝐷]. The 𝐻 terms gives the possibility to evaluate the 
transfer functions between the input 𝑢 and any of the outputs 𝑦 (𝐻 = 𝑦/𝑢). In this case, the 
transfer functions between the input 𝑉𝑎 and the outputs 𝛼 and 𝑥 are important because they model 
the device’s outputs for each possible input and they are used to design the proper controller that 
will stabilize the overall controlled system. Moreover it is possible to obtain the same results by 
using the Simulink command called ‘Model linearizer’ (in APPS section) that automatically 
evaluates the transfer function from a desired input to a desired output. The transfer functions 
𝐺𝑉𝑎𝛼 and 𝐺𝑉𝑎𝑥 are 

𝐺𝑉𝑎𝛼 = 
(2𝜋1000𝐾𝑝2𝜂)𝑠

(𝑚𝑝𝑝
3𝑙𝑝𝑅𝑎−𝐽𝑡𝑜𝑡(2𝜋1000)

2𝜂𝑙𝑝𝑝𝑅𝑎)𝑠
3−((2𝜋1000)2𝜂𝑙𝑝𝑝𝐾

2)𝑠2+(𝐽𝑡𝑜𝑡(2𝜋1000)
2𝜂𝑔𝑝𝑅𝑎)𝑠+((2𝜋1000)

2𝑔𝐾2𝑝𝜂)
 = 

= −
6,7629𝑠

(𝑠 + 1126)(𝑠 + 4,427)(𝑠 − 4,427)
 

𝐺𝑉𝑎𝑥 = 
(2𝜋1000𝐾𝑝2𝜂)𝑠

(𝑚𝑝𝑝
3𝑙𝑝𝑅𝑎−𝐽𝑡𝑜𝑡(2𝜋1000)

2𝜂𝑙𝑝𝑝𝑅𝑎)𝑠
3−((2𝜋1000)2𝜂𝑙𝑝𝑝𝐾

2)𝑠2+(𝐽𝑡𝑜𝑡(2𝜋1000)
2𝜂𝑔𝑝𝑅𝑎)𝑠+((2𝜋1000)

2𝑔𝐾2𝑝𝜂)
∙
𝑔−𝑙𝑝𝑠

2

𝑠2
 = 

=
3,3815

𝑠 (𝑠 + 1126)
 

Fig. 2.4-1 Simulink model of the inverted pendulum system with electrical actuation 
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The analytical steps performed to evaluate 𝐺𝑉𝑎𝛼  and 𝐺𝑉𝑎𝑥 , are shown in Appendix C. 
In the next chapter a set of control techniques are used to stabilize and control the system. The 
transfer function 𝐺𝛼𝑥  was necessary to obtain the cascade control architecture. It is obtained 
through the relation  𝐺𝑉𝑎𝑥/𝐺𝑉𝑎𝛼 and its zero-pole gain form is 

𝐺𝛼𝑥 =
𝐺𝑉𝑎𝑥

𝐺𝑉𝑎𝛼
=
𝑔 − 𝑙𝑝𝑠

2

𝑠2
= −

0,5 (𝑠 + 4,427)(𝑠 − 4,427)

𝑠2
 

The Bode diagrams of the 𝐺𝑉𝑎𝛼, 𝐺𝑉𝑎𝑥 and 𝐺𝛼𝑥 are shown in figures 2.4-2 and 3. 

 

Fig. 2.4-2 Bode diagram of 𝐺𝑉𝑎𝛼 

Fig. 2.4-3 Bode diagram of 𝐺𝑉𝑎𝑥 



26 
 

 

After this, to prove that the model and its constitutive equations are correct a validation test was 
performed. Looking at the Simulink model, in figure 2.4-1, there are three gains that contain the 
information about sign (- or +), this means that the test validation executes the check of the model 
in an inverted configuration. The validation Simulink model is shown in figure 2.4-5. 

 

Fig. 2.4-4 Bode diagram of 𝐺𝛼𝑥 

Fig. 2.4-5 Simulink model of the classical pendulum system with electrical actuation 
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The sign change leads to modify the constitutive equations (2.3-1 and 2.3-6) 

 

𝑙𝑝�̈�(𝑡) = −𝑔𝛼(𝑡) + �̈�(𝑡) 

𝐶𝑚(𝑡) − 𝐽𝑡𝑜𝑡�̈�(𝑡) = −(𝑚𝑝𝑙𝑝
𝑝

2𝜋 ∙ 1000 ∙ 𝜂
) �̈�(𝑡) 

 

 and so the pendulum configuration, where the rod is under the cart like in figure 2.4-5. 

As can be seen in figure 2.4-6, the test is done using an impulsive input 𝑉𝑎 of 20𝑉 for one second, 
that acts at time zero. 

Fig. 2.4-6 Classical pendulum diagram for the test validation 

Fig. 2.4-7 Test validation with impulsive input 𝑉𝑎 of 20𝑉 at time zero 
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The model results correct because, in the absence of friction forces, the pendulum moves along 
the 𝑥 axis until the input returns to zero and so the rod stars to swing along the vertical axis in a 
perpetual motion. 

This validation can be used also on the real Test bench. These types of experimental simulations 
allow to characterize the real damping of the pendulum. 
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3 Controllers design 
Once obtained (state space and transfer functions) the mathematical representation of the system 
is obtained in Laplace domain a proper controller was designed in order to modify the whole 
transfer function and to control the behavior of the system. The goal is to suitably changes the 
value of poles in the transfer function (the roots of the denominator). Knowing the control stability 
theory,  the characteristic polynomial of matrix [A] is stable if and only if its polynomial, on the 
denominator, is Hurwitz (the denominator has roots lying on the left half of the s-plane, practically 
all their real parts must have values equal or less than zero [1]). For the purpose of this work, this 
criterion and the Nyquist criterion were sufficient. The Nyquist criterion is used to obtain the final 
goal of this dissertation: the stabilization of the system. The following section allows a better 
comprehension of this stability criterion. 

 

3.1 Nyquist stability criterion 
In control theory and stability theory, the Nyquist’s stability criterion is a graphical technique for 
determining the stability of a dynamical system. This criterion is very powerful because of its 
case of application. It is a graphical criterion that doesn’t need an explicit computation of the 
poles and zeros of both the closed-loop or open-loop transfer functions of the system. A brief 
overview of this principle is explained in this section. For further explanations refer to control 
theory texts like [1]. 

This criterion is based on the Cauchy’s argument principle applied to a specific transfer function 

of the form 

𝐹(𝑠) = 1 + 𝐺(𝑠) 

where 𝐺(𝑠) represents a generic transfer function. In this case, 𝐺(𝑠) is the transfer function of the 
plant. 𝐹(𝑠) represents the polynomial at denominator of the closed loop transfer function of  
𝐺(𝑠), that has the form 

𝑊(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)
 

Therefore, the roots of 𝐹(𝑠) coincide with the poles of the closed loop system 𝑊(𝑠), while the 
roots of 𝐹(𝑠) coincides with the poles of the open loop system that are the poles of 𝐺(𝑠). By 
applying now the principle of the argument and noting that the Nyquist path of the 𝐹(𝑠) is the 
function 𝐺(𝑠) translated in (1, 𝑖0), the following relation can be obtained 

𝑁−1
↷ = 𝑍𝑃 − 𝑃𝑃 

where 𝑁−1↷  specifies the number of clockwise encirclements of the critical point (1, 𝑖0) done by 
the directed Nyquist path of the function 𝐺(𝑠), while 𝑍𝑃 and 𝑃𝑃 represent the number of closed 
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loop ( 𝐻(𝑠) ) and open loop ( 𝐺(𝑠) ) poles with positive real part. Negative values of 𝑁−1↷  
corresponds to counterclockwise encirclements. 

Nyquist’s stability criterion states that, given a transfer function 𝐺(𝑠), if its transfer function of 
the closed loop system is stable if and only if the following relationship exists 

𝑁−1
↷ = −𝑃𝑃 

or alternatively, imposing that the closed loop system must has only poles with negative real part, 
the above equation becomes 

𝑁−1
↶ = 𝑃𝑃 

that is equivalent to say that a system is stable in closed loop if the Nyquist diagram of the open 
loop transfer function of the controlled system performs a number of counterclockwise 
encirclements about the critical point (1, 𝑖0)  equal to the number of poles with a positive real 
part of the open loop transfer function of the uncontrolled system. 

The following sections describe the application of this criterion on the pendulum transfer 
functions, in order to demonstrate the stabilization of the controlled system. 

 

3.2 Controllers of electrical actuation model 
Once that the stability criterion was chosen, different control techniques were tested in order to 
control the inverted pendulum system. The next sections present the architecture of the proposed 
control algorithms: PID and Static State feedback. 

 

3.2.1 PID design: a brief introduction 

The Proportional-Integrative-Derivative control (PID) is a negative feedback system widely used 
in industrial applications because of its simple integration and calibration in real systems, like 
PLC or microcontrollers. The controller acquires the value of the difference between a reference 
value and a measured one of the physical parameters that have to be controlled (commonly called 
tracking error). The controller reacts to positive or negative error by forcing it to asymptotically 
tend to zero. Moreover, the calibration of this compensator is easy and it is regulated by some 
empiric methods, like Ziegler-Nichols presented in the following sections. The classical form of 
the PID controllers is 

𝐶 = 𝐾𝑝 + 𝐾𝑖
1

𝑠
+ 𝐾𝑑

𝑁

1 + 𝑁
1
𝑠
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where 𝐾𝑝, 𝐾𝑖  and 𝐾𝑑  are the Proportional, Integrative and Derivative coefficient, respectively. 
The N terms is called pre-Filter coefficient and it is needed because of the reliability of the 
derivative terms (originally the derivative term introduce a zero in the compensator transfer 
function but it is an unreliable controller because it has an improper transfer function). 

The following sections (3.2.2 and 3.2.3) explain how these coefficients can be found. The final 
form of the controller was achieved thanks to the PID tuning tool of Simulink, being careful both 
on the physical limits (motor angular velocity) of the actuator and on the frequency response of 
the entire system (Bode diagrams), in terms of bandwidth and phase margin. For clearance of 
contents, let’s remember that the stability margins are indexes able to express the robustness of a 

design control system from outer disturbances not considered in the initial model. They can be 
graphically evaluated from the Nyquist plot of 𝐺(𝑗𝜔) considering the “distance” (in terms of 

linear distance along the real axis and in terms of angular phase) from the critical point (−1; 0).  

In this case of study, the desired gain margin has been fixed around 500 rad/s (for 𝐶𝛼 calibration) 
or 1÷10 rad/s (for 𝐶𝑥 calibration) and the desired phase margin at least equal to 40°. 

 

3.2.2 PID design: cascade architecture 

The system to be implemented needs a double control, 𝐶𝑥 and 𝐶𝛼, on the two measured output, 
that are the pendulum angle and the cart position. The transfer function, that are implemented in 
the inner and outer loops, are 𝐺𝑉𝑎𝛼 and 𝐺𝛼𝑥. The problem can be solved by providing a suitable 
constant acceleration to the cart, to stabilize the unbalance by its inertial reactions. This principle, 
brilliantly exploited in the case of the Segway, requires an infinite trajectory, but in this case the 
available path before that the cart collides with the end of the linear guide, is 500 mm. 

Therefore, the design of the controllers starts with the stabilization of the angle alpha. That 
constitutes the inner control loop of the whole final architecture. Whereas the position transfer 
function will be considered for the outer loop. Before starting, let’s assume the cart is in the middle 
of the linear guide and the pendulum is perfectly vertical, (𝑥 = 0, 𝛼 = 0), that is the unstable 
equilibrium point of the system. 

 

 

Looking at the figure above (3.2-1) when the pendulum is in vertical position, the error at the 
input of the first compensator (𝑃𝐼𝐷𝑥) is zero, and such as the output from the same block. The 

Fig. 3.2-1 PID cascade architecture of the control model 
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output of 𝑃𝐼𝐷𝑥 is called 𝛼𝑟𝑒𝑓 and it constitutes the reference signals for the inner loop, that has 
to stabilize the pendulum angle 𝛼. The signal 𝛼𝑟𝑒𝑓 is compared with that one coming from the 
angular transducer in order to compute the resulting error, that is compensated by 𝑃𝐼𝐷𝛼. The 
output of 𝑃𝐼𝐷𝛼 will be the command 𝑢 = 𝑉𝑎 for the motor. Consequently, whenever there is a 
position error on the cart (𝑥𝑟𝑒𝑓 − 𝑥𝑓𝑒𝑒𝑑 ≠ 0) there will be a resulting error on the input of the 
inner loop 𝛼𝑟𝑒𝑓 ≠ 0. In this condition the rod position is modified to restore its vertical position, 
thus achieving 𝑥𝑟𝑒𝑓 − 𝑥𝑓𝑒𝑒𝑑 = 0 and therefore 𝛼𝑟𝑒𝑓 = 0. 

Design of the inner loop: angle compensation 

Hence, knowing the generalities of the cascade control and considering the inner loop of the 
architecture let’s control the transfer function 𝐺𝑢𝛼. The poles of the transfer function are 

𝐺𝑢𝛼 has one pole with a positive real value, that proves the instability of the uncontrolled system. 
Looking at the figure 3.2-2, the Nyquist path of 𝐺𝑢𝛼 does not present encirclements around the 
critical point (−1; 0), and, since it presents an unstable pole, the closed loop stability condition 
is not satisfied. 

 

 

The relationship 𝑁−1↷ = −𝑃𝑃 = −1 must be satisfied to stabilize the system, so that given a 
controller 𝐶𝛼, the Nyquist path of 𝐶𝛼𝐺𝑢𝛼 performs a counterclockwise encirclement around the 
critical point (−1; 0). 

𝑝1 = −1126 

𝑝2 = +4.427 

𝑝3 = −4.427 

 

 

Fig. 3.2-2 Nyquist diagram of 𝐺𝑢𝛼  
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Starting with a P compensator, 𝐾𝑝, let’s analyze the Nyquist’s path deformation of the open loop 
transfer function 𝐾𝑝𝐺𝑢𝛼. Figure 3.2-3 shows several Nyquist path for different values of 𝐾𝑝. 

 

 

As can be seen in figure 3.2-3, it is impossible to achieve the system stability with only the 
proportional coefficient 𝐾𝑝. The same occurs with a PD compensator. As it can be seen in figure 
3.2-4, in the second case, two clockwise encirclements are obtained instead of one 
counterclockwise. 

 

Fig. 3.2-3 Nyquist diagram of 𝐾𝑝𝐺𝑢𝛼 for different values of 𝐾𝑝 

Fig. 3.2-4 Nyquist diagram of 𝐶𝐾𝑝𝐾𝑑𝐺𝑢𝛼 , with 𝐾𝑝 = −200000, 𝐾𝑑 = −650 and 𝑁 = 550000, 
on the left. Zoom around the critical point −1 + 𝑖0, on the right 
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The same problem can be observed using a PI compensator, 𝐶𝐾𝑝𝐾𝑖, that generates a clockwise 
encirclement of the critical point as can be seen in figure 3.2-5. 

 

 

These tests reveal that a PID compensator is necessary. The final values of the three coefficients, 
𝐾𝑝, 𝐾𝑑 and 𝐾𝑖 are chosen thanks to the PID tuning tool of Simulink, and so the final form of the 
controller is 

𝐶𝛼 = −13061.51 −
204997.97

𝑠
+ 60.47

215.97𝑠

𝑠 + 215.97
 

Fig. 3.2-5 Nyquist diagram of 𝐶𝐾𝑝𝐾𝑖𝐺𝑢𝛼 , with 𝐾𝑝 = −200000, 𝐾𝑖 = −3250000, on the left. 
Zoom around the critical point −1 + 𝑖0, on the right 

Fig. 3.2-6 Nyquist diagram of 𝐶𝛼𝐺𝑢𝛼 , on the left. Zoom around the critical point −1 + 𝑖0, on the right 
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As can be seen in figure 3.2-6, the PID compensator is able to modify the Nyquist path in order 
to circulate the critical point one time in the counterclockwise direction. This fact is the proof of 
the system stability but, remembering the angle transfer function 

𝐺𝑢𝛼 =
−6.7629𝑠

(𝑠 + 1126)(𝑠 + 4.427)(𝑠 − 4.427)
 

and multiplying 𝐺𝑢𝛼 by the PID compensator, 

𝐶𝛼 = −13061.51 −
204997.97

𝑠
+ 60.47

215.97𝑠

𝑠 + 215.97
 

the controller pole in 0 simplifies the root in zero at the numerator of 𝐺𝑢𝛼. This cancellation could 
compromise the stability. Therefore is necessary to analyze the poles of the closed loop transfer 
function of 𝐶𝛼𝐺𝑢𝛼 

All the poles have negative real part, so the system is asymptotically stable. Looking at the Bode 
diagrams of the open loop transfer function 𝐶𝛼𝐺𝑢𝛼, the frequency response, in terms of stability 
margins, can be evaluated (see figure 3.2-7). 

 

 

𝑝1 = −1145 

𝑝2 = −89.5756 − 𝑖89.0353 

𝑝3 = −89.5756 + 𝑖89.0353 

𝑝4 = −17.834 

 

 

Fig. 3.2-7 Bode diagrams of 𝐶𝛼𝐺𝑢𝛼 
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As can be grasp from the Bode diagrams, the system achieves good performances in terms of 
frequency response. The system presents a good phase margin (55,3°) and an optimal gain margin 
(23,3𝑑𝐵) at 473 𝑟𝑎𝑑/𝑠. The obtained results respect the specification presented in section 3.2.1. 

Design of the outer loop: position compensation 

Once the inner loop is stabilized, the outer loop transfer functions have to be stabilized. The first 
step is to substitute the inner loop with the respective closed loop transfer function 𝐺𝑢𝛼𝑐𝑙, that will 
multiply the transfer function 𝐺𝛼𝑥 as can be seen in the Simulink model presented in 3.2-8. 

 

 

The outer closed loop transfer function 𝐶𝛼𝐺𝑢𝛼 can be compute by using the Matlab command 
‘feedback’  

𝐺𝑢𝛼𝑐𝑙 =
𝐶𝛼𝐺𝑢𝛼

1 + 𝐶𝛼𝐺𝑢𝛼
=
8.6112 ∗ 10−11(𝑠 + 2.37 ∗ 1017)(𝑠 + 14.63)

(𝑠 + 1145)(𝑠 + 17.83)(𝑠2 + 179.2 + 14330)
 

Therefore, the plant transfer function for the outer loop has to be computed and it is done 
multiplying 𝐺𝑢𝛼𝑐𝑙 by 𝐺𝛼𝑥 

𝐺𝑢𝑥𝑜𝑙 = 𝐺𝑢𝛼𝑐𝑙𝐺𝛼𝑥 =
−4.3065 ∙ 10−11(𝑠 + 2.37 ∗ 1017)(𝑠 + 14.63)(𝑠 + 4.427)(𝑠 − 4.427)

𝑠2(𝑠 + 1145)(𝑠 + 17.83)(𝑠2 + 179.2 + 14330)
 

The poles of the new transfer function are 

Fig. 3.2-8 Uncontrolled outer loop architecture 

𝑝1 = −1145 

𝑝2 = −89.5756 − 𝑖89.0353 

𝑝3 = −89.5756 + 𝑖89.0353 

𝑝4 = −17.834 

𝑝5 = 0 

𝑝6 = +5,616 ∙ 10
−13 
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Although 𝑝6  is very close to zero, it is a pole with positive real part and so it could create 
instability in the new plant 𝐺𝑢𝑥𝑜𝑙. A proof is the Nyquist path of 𝐺𝑢𝑥𝑜𝑙in figure 3.2-9. 

 

 

As confirmed by the Nyquist path, the stability criterion is violated, because the path circulates 
two times clockwise around the critical only one time in the counterclockwise direction, thus a 
PID compensator is needed. 

The PID coefficients are chosen in order to guarantee the frequency response specification (gain 
margin at 1÷10rad/s and a phase margin equal or greater than 40°). A controller, stabilizing the 
plant transfer function and to respect the frequency specification, is obtained by the PID tuning 
tool of Simulink and it has the form 

𝐶𝑥 =
0.073639(𝑠 + 0.06284)(𝑠 + 0.05082)

𝑠(𝑠 + 0.9375)
 

with the PID coefficients equal to 

The Nyquist path of the new open loop transfer function 𝐶𝑥𝐺𝑢𝑥𝑜𝑙 and its relative Bode diagrams 
are presented in 3.2-10 and 3.2-11, respectively. 

𝐶𝑥𝐺𝑢𝑥𝑜𝑙 =
−3.1 ∙ 10−13(𝑠 + 0.0628)(𝑠 + 0.0528)(𝑠 + 4.427)(𝑠 − 4.427)(𝑠 + 14.63)(𝑠 + 2.376 ∙ 1017)

𝑠3(𝑠 + 0.9375)(𝑠 + 1145)(𝑠 + 17.83)(𝑠2 + 179.2 + 14330)
 

Fig. 3.2-9 Nyquist diagram of 𝐺𝑢𝑥𝑜𝑙 

𝐾𝑝 = 8.6599 ∙ 10
−3  𝐾𝑑 = 69.3088 ∙ 10

−3  
𝐾𝑖 = 250.8324 ∙ 10

−6  𝑁 = 937.5267 ∙ 10−3  
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𝑝1 = −1145  𝑝5 = −0.9375  

𝑝2 = −89.5756 − 𝑖89.0353  𝑝6 = 0  

𝑝3 = −89.5756 + 𝑖89.0353  𝑝7 = 0  

𝑝4 = −17.834  𝑝8 = 0  

 

Fig. 3.2-10 Nyquist diagram of 𝐶𝑥𝐺𝑢𝑥𝑜𝑙  

Fig. 3.2-11 Bode diagrams of 𝐶𝑥𝐺𝑢𝑥𝑜𝑙  
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Looking at figure above (3.2-10), the stability of the system is achieved because the Nyquist path 
presents two encirclement, respectively clockwise and counterclockwise, that result in zero 
encirclements of the critical point, according with the number of unstable poles presented in the 
open loop transfer function. Moreover, also the frequency response specifications are achieved as 
can be seen in figure 3.2-11. 

 

3.2.3 PID design: parallel architecture 

As declared in the previous chapters, different control techniques have been tested for the plant 
transfer function. The next architecture is the parallel one. 

In the parallel architecture, two loops compare the 𝛼𝑓𝑒𝑒𝑑 and 𝑥𝑓𝑒𝑒𝑑 (output feedbacks) with 𝑥𝑟𝑒𝑓 
and 𝛼𝑟𝑒𝑓  (reference signals). Therefore, the two resulting errors (𝛼𝑒𝑟𝑟 and 𝑥𝑒𝑟𝑟 ) become the 
inputs of the PID controllers and their outputs are summed to generate the input command 𝑢 of 
the plant. In this way, the characteristic equations of the control scheme are necessary to find the 
PID constants 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑. 

The Simulink model of the parallel architecture is shown in figure 3.2-12. 

 

 

Let’s call the PID controllers as 𝐶𝛼 and 𝐶𝑥 , the relations between the inputs of the controllers and 
the plant input 𝑢 are presented below 

𝑢𝛼 = 𝐶𝛼 ∙ 𝛼𝑒𝑟𝑟    (3.2.3-1) 

𝑢𝑥 = 𝐶𝑥 ∙ 𝑥𝑒𝑟𝑟    (3.2.3-2) 

𝑢 = 𝑢𝑥 + 𝑢𝛼    (3.2.3-3) 

Fig. 3.2-12 PID parallel architecture of the control model 
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with 𝛼𝑒𝑟𝑟 = 𝛼𝑟𝑒𝑓 − 𝛼𝑓𝑒𝑒𝑑 = −𝛼𝑓𝑒𝑒𝑑 and 𝑥𝑒𝑟𝑟 = 𝑥𝑟𝑒𝑓 − 𝑥𝑓𝑒𝑒𝑑. Remembering the plant transfer 
functions  

𝐺𝑢𝛼 =
𝛼𝑓𝑒𝑒𝑑(𝑆)

𝑢(𝑆)
    (3.2.3-4) 

𝐺𝑢𝑥 =
𝑥𝑓𝑒𝑒𝑑(𝑆)

𝑢(𝑆)
    (3.2.3-5) 

and substituting the equations 3.2.3-4 and 5 in the equation 3.2.3-3, the relation that expresses the 
input 𝑢 as a function of the two references is obtained  

𝑢 =
𝐶𝛼𝛼𝑟𝑒𝑓+𝐶𝑥𝑥𝑟𝑒𝑓

1+𝐶𝛼𝐺𝑢𝛼+𝐶𝑥𝐺𝑢𝑥
   (3.2.3-6) 

A system with two references is considered as MIMO system (multiple-input multiple-output), 
that is difficult to stabilize with common control techniques. For this reason, an useful assumption 
was done to reduce the complexity of the control problem. A constant reference for the 𝛼 loop is 
considered and it is set to zero (𝛼𝑟𝑒𝑓 = 0 is the pendulum equilibrium point). In this way, the 
system become a SIMO system, and its input is 𝑥𝑟𝑒𝑓. 

Therefore, using the equations 3.2.3-5 and 3.2.3-6 and assuming 𝛼𝑟𝑒𝑓 = 0 , the closed loop 
transfer function between 𝑥𝑟𝑒𝑓 and 𝑥𝑓𝑒𝑒𝑑 is 

𝐺𝑥𝑐𝑙 =
𝑁𝑐𝑙

𝐷𝑐𝑙
=

𝐶𝑥𝐺𝑢𝑥

1+𝐶𝛼𝐺𝑢𝛼+𝐶𝑥𝐺𝑢𝑥
  (3.2.3-7) 

The characteristic equations of the parallel architecture are useful to understand the PID 
coefficients selection process. A good starting point is the design of the controller 𝐶𝛼, considering 
the loop shown in figure 3.2-13. 

 

 

The scheme shown in figure 3.2-13 is equal to the inner loop of the cascade control studied in the 
previous section. For simplicity, the same controller is adopted in this case and its form is 

𝐶𝛼 = −13061.51 −
204997.97

𝑠
+ 60.47

215.97𝑠

𝑠 + 215.97
 

Fig. 3.2-13 Simulink scheme for 𝐶𝛼 design 
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Now, considering only the controller 𝐶𝛼 , let’s analyze the open loop transfer function of the 

uncontrolled system for x, that is 

𝐺𝑥𝑜𝑙,𝑢𝑛 =
𝑁𝑜𝑙,𝑢𝑛

𝐷𝑜𝑙,𝑢𝑛
=

𝐺𝑢𝑥

1+𝐶𝛼𝐺𝑢𝛼
  (3.2.3-8) 

In this way, the stability problem is related to the roots of 𝐷𝑜𝑙,𝑢𝑛, that represent the poles of the 
uncontrolled system 𝐺𝑥𝑜𝑙,𝑢𝑛 

Looking at the poles, 𝐺𝑥𝑜𝑙,𝑢𝑛 has a pole in zero, that could compromise the stability. A proof is 
the Nyquist path of 𝐺𝑥𝑜𝑙,𝑢𝑛in figure 3.2-14. 

 

Looking at the Nyquist path in figure above, 𝐺𝑥𝑜𝑙,𝑢𝑛 results unstable because the presence of 𝑝5 
creates an clockwise encirclement about the critical point (−1; 0), that makes the system unstable 
on the basis the Nyquist criterion. 

Therefore, the goal of the PID controller 𝐶𝑥 is to moves all the poles, of the closed loop transfer 
function 𝐺𝑥𝑐𝑙, to the left half of the s-plane in order to guarantee stability. 

𝑝1 = −1145 

𝑝2 = −89.5756 − 𝑖89.0353 

𝑝3 = −89.5756 + 𝑖89.0353 

𝑝4 = −17.834 

𝑝5 = 0 

Fig. 3.2-14 Nyquist diagram of 𝐺𝑥𝑜𝑙,𝑢𝑛 
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Noting that the closed loop transfer function 𝐺𝑥𝑐𝑙 can be stabilized by a proportional coefficient 
𝐾𝑝 < 0, this coefficient can be found with the aid of Ziegler-Nichols method. 

The Ziegler-Nichols method is a heuristic technique used for the PID controllers tuning. It was 
developed by John G. Ziegler and Nathaniel B. Nichols and it is performed by setting the 𝐾𝑖 and 
𝐾𝑑 gains to zero. The 𝐾𝑝 gain is then increased (from zero) until it reaches the ultimate critical 
gain 𝐾𝑐 which is the largest gain at which the output of the control loop has stable and consistent 
oscillations. Higher gains, than the critical one 𝐾𝑐, have diverging oscillation and the oscillation 
period 𝑇𝑐 is then used to set the 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 coefficients, depending on the controller type used 
and the desired behavior. The table below shows the Ziegler-Nichols relation between 𝐾𝑝, 𝐾𝑖, and 
𝐾𝑑 with 𝐾𝑐 and 𝑇𝑐. 

Therefore, following the procedure explained above, several attempts have been carried out for 
values of 𝐾𝑐 ∈ {0,−∞} thanks to the simulation environment of Matlab/Simulink. The value of 
the critical gain is reached around   𝐾𝑐 = −24000. Using this value, the output response of the 
system performs constants oscillation with a period  𝑇𝑐 = 0.15 𝑠, the resulting coefficients for the 

controller 𝐶𝑥 are 

The resulting controller is able to stabilize the closed loop transfer function 𝐺𝑥𝑐𝑙 

𝐺𝑥𝑐𝑙 =
2.7593 ∙ 105(𝑠 + 4.427)(𝑠 − 4.427)(𝑠 + 10.99)(𝑠 − 76.09)(𝑠 + 216)

(𝑠 + 182.3)(𝑠2 + 0.2934𝑠 + 19.46)(𝑠2 + 24.07𝑠 + 403.2)(𝑠2 + 1491𝑠 + 6.833 ∙ 105)
 

A graphical proof is given by the Nyquist path in figure 3.2-15, of the open loop transfer function 
of the controlled system 

𝐺𝑥𝑜𝑙 =
𝐶𝑥𝐺𝑢𝑥

1 + 𝐶𝛼𝐺𝑢𝛼
=
2.7593 ∙ 105(𝑠 + 4.427)(𝑠 − 4.427)(𝑠 + 10.99)(𝑠 − 76.09)(𝑠 + 216)

𝑠2(𝑠 + 355.6)(𝑠 + 1145)(𝑠 + 17.83)(𝑠2 + 179.2𝑠 + 1.443 ∙ 104)
 

Controller type 𝐾𝑝 𝑇𝑖 𝑇𝑑 𝐾𝑖 𝐾𝑑 

P 0.5𝐾𝑐  - - - - 

PI 0.45𝐾𝑐  𝑇𝑐/1.2 - 𝐾𝑝/𝑇𝑖 - 

PD 0.8𝐾𝑐  - 𝑇𝑐/8 - 𝐾𝑑𝑇𝑑 

PID 0.6𝐾𝑐  𝑇𝑐/2 𝑇𝑐/8 𝐾𝑝/𝑇𝑖 𝐾𝑑𝑇𝑑 
 Table 3.2-1 Ziegler-Nichols parameters for the desired controller type 

𝐾𝑝 = −14400  𝐾𝑑 = 270  

𝐾𝑖 = −192000  𝑁 = 355.5556  
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𝑝1 = 0 

𝑝2 = 0 

𝑝3 = −89.5756 − 𝑖89.0353 

𝑝4 = −89.5756 + 𝑖89.0353 

𝑝5 = −17.834 

𝑝6 = −355.56 

𝑝7 = −1145 

Fig. 3.2-15 Nyquist diagram of 𝐺𝑥𝑜𝑙  

Fig. 3.2-16 Bode diagrams of 𝐺𝑥𝑜𝑙 
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As can be seen in figure 3.2-15, there are no encirclements of the critical point −1 + 𝑖0 and so 
the system results stable for the Nyquist criterion. 

So, let’s have a look on the Bode diagrams of 𝐺𝑥𝑜𝑙 in order to verify if the specifications are 
achieved with the Ziegler-Nichols control. As can be seen in figure 3.2-16, the controller 𝐶𝑥 is 
not able to achieve good performances in terms of frequency response, due to low stability 
margins. An optimal controller, able to achieve the desired specifications, can be obtained using 
the PID tuning tool of Simulink. The resulting final controller 𝐶𝑥, the Nyquist and Bode diagrams 
of the open loop transfer function are 

𝐶𝑥 = −19875.018 −
4067.0793

𝑠
+ 7058.012

2.816𝑠

𝑠 + 2.816
 

 

Fig. 3.2-17 Nyquist diagram of 𝐺𝑥𝑜𝑙 , on the left. Zoom around the critical point −1 + 𝑖0, on the right 

Fig. 3.2-18 Bode diagrams of 𝐺𝑥𝑜𝑙 
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3.2.4 Static state feedback design: a brief introduction 

Before starting to design a static state feedback control, some clarifications, on how this technique 
can be applied to a continuous time system, must be provide. Let’s resume the state space 

representation of the system presented in chapter 2.3 

�⃗̇�(𝑡) = [𝐴]�⃗�(𝑡) + [𝐵]𝑢(𝑡) 

�⃗⃗�(𝑡) = [𝐶]�⃗�(𝑡) 

with �⃗�(𝑡) = [ 𝛼 �̇� �̇� 𝑥 �̇� ]
𝑇 the states vector and 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×1 and 𝐶 = ℝ2×𝑛, with 𝑛 =

5, the state space matrices (in this case [𝐷] = 0 is imposed). This particular representation of a 
system is very useful for control design purposes, the state space representation concerns a 
description of the time behavior for a dynamic system in term of matrices A, B, C and the available 
output variables. These equations can be translated in Simulink’s block scheme as shown in figure 
3.2-19. 

 

 

Here a question comes. Can the poles be modified, in terms of their location on the s-plane, in 
order to modify the behavior of a system? Or even, can a system, initially unstable, be forced to 
a stability condition through a modification of its poles? The static state feedback, using the pole 
placement technique, help us to solve this design problem. This control strategy is based on a 
negative feedback branch, the states of the system are fed back, as the name implies, to the control 
input 𝑢, and they are multiplied by a gains matrix 𝐾 computed in order to force the closed loop 
poles to lie in the desired positions. With this assumption, the control law of the architecture 
becomes 

𝑢(𝑡) = −[𝐾]�⃗�(𝑡) = −(∑𝐾𝑖𝑋𝑖(𝑡)

𝑛

𝑖=1

) 

The 1 × 𝑛 matrix 𝐾 is called state feedback gain matrix. 

Fig. 3.2-19 Simulink block's scheme of the state space representation 
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Initially, let’s assume that all state variables are available for feedback. Before starting the design 
phase, some considerations on the state space representation must be done. Firstly, the system, as 
it’s defined, contains five states, but looking the equations described in section 2.3, it easily be 
noted that only four variables are independent. Two variables, the position of the cart 𝑥 and the 
angular velocity of the motor �̇�, are linearly dependent due to the coefficient induced by the 
transmission mechanism between the motor and the cart-pendulum system. A confirmation of 
that can be achieved by the attribute ‘minimal’ applied to the command ‘ss’ of Matlab that 
gives to the designer the minimal realization of a system. Once clarified that, let’s start the design 

phase. 

Now a second question comes. Is it always possible to force the poles of a system in a desired 
position? Naturally the answer to this question is negative in fact arbitrary pole placement for a 
given system is possible if and only if the system is completely state controllable. The 
controllability condition can be summarized as follows, a system is completely controllable if and 
only if  the controllability matrix defined as 

𝑄𝑐 = [ 𝐵  𝐴𝐵… 𝐴
𝑛−1𝐵 ] 

has 𝜌(𝑄𝑐) = 𝑛, with 𝜌 the rank of 𝑄𝑐 matrix. If the system is not completely state controllable, 
there are eigenvalues of the matrix (𝐴 − 𝐵𝐾)  that cannot be controlled by state feedback, 
otherwise all the eigenvalues of A can be arbitrarily placed. 

However, this technique implies that all the states are available for feedback (all the states can be 
measured), but in this case, as described in chapter 1, only two states are available from outputs 
measurement, the position 𝑥 and the angle 𝛼. This problem can be solved by using an asymptotic 
state observer. In real applications it is difficult to measure all the states, but an estimation of them 
can be achieved. The state observer, or estimator, is a dynamical system that estimates the state 
variables using the input signal and the output data of the plant as inputs to its system. A typical 
block diagram of the observer is shown in figure 3.2-20. 

 

Fig. 3.2-20 Typical block's scheme of the asymptotic state observer 
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The method presented below is referred to the Luenberger observer design. Considering a plant 
described by a state space representation in minimal form (so the system is completely 
observable), the observer representation can be written in the following form 

 �̇̃� = [𝐴]�̃� + [𝐵]𝑢 + [𝐿](𝑦 − �̃�) 

�̃� = [𝐶]�̃� 

with �̃� the estimated states vector, �̃� the output computed by �̃� and 𝐿 a gain matrix. Now, let’s 
perform a subtraction between the state space equations of the plant and observer 

(�̇� − �̇̃�) = [𝐴](𝑥 − �̃�) − [𝐿](𝑦 − �̃�)  (3.2.4-1) 

(𝑦 − �̃�) = [𝐶](𝑥 − �̃�)    (3.2.4-2) 

These equations describe the error between the real and estimated values of the states and the 
output. Substituting 3.2.4-2 in 3.2.4-1 

(�̇� − �̇̃�) = ([𝐴] − [𝐿][𝐶])(𝑥 − �̃�) → 𝑒�̇� = ([𝐴] − [𝐿][𝐶])𝑒𝑥 

(𝑦 − �̃�) = [𝐶](𝑥 − �̃�) = [𝐶]𝑒𝑥 

Therefore, the error dynamics equations are obtained and they must converge to zero as the time 
evolves. The zero convergence in the equations is achieved if the values of design variable matrix 
𝐿 is chosen so that the eigenvalues of the state matrix ([𝐴] − [𝐿][𝐶]) have negative real parts or, 
in other words, to make it asymptotically stable. Moreover, the observation error must converge 
to zero faster than the closed-loop response (the observer system must have poles faster than the 
closed loop poles). As the case of state feedback, is it always possible to estimate the matrix 𝐿 so 
that ([𝐴] − [𝐿][𝐶]) has eigenvalues of arbitrarily choice? Like in the previous case, the answer is 
yes if and only if the system is completely observable. The observability condition for a system 
can be summarized as follows, a system is completely observable if and only if  the observability 
matrix defined as 

𝑄𝑜 = [𝐶
𝑇  𝐴𝐶𝑇 … 𝐴𝑇𝑛−1𝐶𝑇 ] 

has 𝜌(𝑄𝑐) = 𝑛 , with 𝜌  rank of matrix 𝑄𝑜.  In other words, a given state description can be 
transformed to an observer canonical form if (and only if) the observability matrix 𝑄𝑜 is non-
singular (full rank).  

Another powerful control technique, related to the static state feedback, is the Linear Quadratic 
Regulator LQR control that belong to the optimal control family. The idea is that the desired 
performances on the system output can be achieved thanks to two design parameters chosen to 
minimize the following cost function, along a time interval ∆𝑡 = 𝑡𝑓 − 0, 

𝐽 = 𝑖𝑛𝑓𝑢(𝑡)∈𝐿(0,𝑡𝑓)∫ 𝑥𝑡(𝜏)𝑄𝑥(𝜏) + 𝑢(𝜏)𝑅𝑢(𝜏)
𝑡𝑓

0

𝑑𝜏 
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The parameters 𝑄 ≥ 0 and 𝑅 ≥ 0 are chosen to reflect the relative importance of the states 𝑥𝑖, in 
terms of “error loss”, and the “energy loss” of the actuation command 𝑢  (𝑉𝑎  in case of the 
electrical actuation model), respectively. 𝑄 and 𝑅 are the weighting matrices that penalize certain 
states and the control inputs of the system. 𝑄 is a positive semi-definite matrix, while 𝑅 is a 
positive definite matrix. If this system is disturbed and loses the zero state condition, the control 
input 𝑢 should return the system to the zero state condition while, at the same time, 𝐽 is minimal 
[7]. This condition is achieved if the following control law is applied to the system 

𝑢(𝑡) = −𝑅−1𝐵𝑇𝑃𝑥(𝑡) = −𝐾𝑥(𝑡) 

𝐾 = 𝑅−1𝐵𝑇𝑃 , with 𝑃 = 𝑃𝑇 > 0 constant symmetric positive definite matrix 

and 𝑃 satisfies the following algebraic Riccati equation 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇 + 𝑄 = 0 

Once that the matrix 𝑃 is obtained, the feedback gain 𝐾, that stabilizes the system, is finally 
achieved. The algebraic Riccati equation may be solved numerically for given values of 
𝐴, 𝐵, 𝑅 and 𝑄. 

In conclusion, the static state feedback control needs at least a simulator (in this case Simulink), 
where the dynamic system response can be evaluated in order to choose the best parameters 𝐾𝑖 
and guarantee the best output performances. 

 

3.2.5 Static state feedback design: pole placement 

The design of the controlled system, following the rules described in the previous section, is 
shown in figure 3.2-21. 

 

The control law of the designed system is 

𝑢(𝑡) = −𝐾𝑥(𝑡) + 𝑁𝑟(𝑡) 

Fig. 3.2-21 Simulink's block scheme of the static state feedback control with asymptotic observer 
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where 𝑁 is a filter coefficient that multiplies a reference signal 𝑟(𝑡), (𝑥𝑟𝑒𝑓), 𝑁 is chosen to make 
unitary the dc-gain of the controlled system in order to obtain, besides asymptotic stability, good 
damping and rapidity properties of the transient. In this case 𝑟(𝑡) is a step reference signal. Using 
this architecture, it’s possible to stabilize the response by placing the poles of the closed loop 
system in the left-half s-plane. The desired pole location are 

𝑝𝑑𝑒𝑠 = [ −10 − 6 − 10 − 0.0046 ] 

that are used to calculate the static state feedback gain 𝐾, using the command ‘acker’ in Matlab. 
The resulting value of 𝐾 is 

𝐾 = acker(A,B,pdes) = [ −35.4775 − 8.3793 − 0.0416 − 342.0771 ] 

The 𝑁 filter coefficient is computed as follows and its value is 

𝑁 = [𝐶(𝐼 − (𝐴 − 𝐵𝐾))−1)𝐵]−1 = −13.5288 

The value of the parameter 𝑁  depends on matrices 𝐴 , 𝐵  and 𝐶 , but in presence of some 
uncertainty in these matrices the asymptotic tracking error couldn’t converge to zero. The same 

results holds when a (step) disturbance is summed to either the input or the output. To solve this 
issue, it is possible to introduce, within the system equations, the information of a continuous time 
integral of the tracking error  

�̇�(𝑡) = 𝑞(𝑡) + 𝑇(𝑟(𝑡) − 𝑦𝑖(𝑡)) = 𝑞(𝑡) + 𝑇𝑒(𝑡) 

lim
𝑡→∞

𝑇𝑒(𝑡) = 0 

In this way, a variable is controlled by an integrator filter in an outer loop. This variable constitutes 
the input for an inner closed loop controlled by static state feedback. The chosen variable, that is 
controlled by the integrator, is the position of the cart 𝑥 because of limited path, otherwise the 
cart starts to move until it collides at end of the available path. The final Simulink scheme, 
including the integral action, is shown in figure 3.2-22. 

 

Fig. 3.2-22 Simulink's block scheme of the static state feedback control 
with integral action and asymptotic observer 



50 
 

In this way the system can be approximated to a SISO one. By adding to the system states the 
continuous time integrator of the tracking error, an augmented state is introduced and so the new 
state vector �⃗�𝑡𝑜𝑡 and the new state space matrices 𝐴𝑡𝑜𝑡, 𝐵𝑡𝑜𝑡 and 𝐶𝑡𝑜𝑡 are defined as follows 

 

�⃗�𝑡𝑜𝑡(𝑡) = [
𝑞(𝑡)

�⃗�(𝑡)
] 

𝐴𝑡𝑜𝑡 = [
11×1 −𝑇𝐶𝑥
0𝑛×1 𝐴

] ,     with 𝐶𝑥 = [ 0 0 1 0] second row of 𝐶 matrix 

𝐵𝑡𝑜𝑡 = [
0
𝐵
] 

𝐵𝑟 = [
𝑇
0
] 

𝐶𝑡𝑜𝑡 = [01×1 𝐶] 

 

and the system equations becomes 

 

�⃗̇�𝑡𝑜𝑡(𝑡) = 𝐴𝑡𝑜𝑡�⃗�𝑡𝑜𝑡(𝑡) + 𝐵𝑡𝑜𝑡𝑢(𝑡) + 𝐵𝑟𝑟(𝑡) 

𝑦(𝑡) = 𝐶𝑡𝑜𝑡�⃗�𝑡𝑜𝑡(𝑡) 

 

The selected control law is modified as 

 

𝑢(𝑡) = −𝐾�⃗�𝑡𝑜𝑡(𝑡) = −[𝐾𝑖  𝐾𝑜]�⃗�𝑡𝑜𝑡(𝑡) = −[𝐾𝑖  𝐾𝑜] [
𝑞(𝑡)

�⃗�(𝑡)
] 

 

with 𝐾𝑖  and 𝐾𝑜  the gain coefficients for the integral action and the static state feedback. The 
resulting parameters 𝐾𝑖 and 𝐾𝑜 to obtain the  𝑝𝑑𝑒𝑠 placements of poles are computed as follows 

 

𝑝𝑑𝑒𝑠 = [ −10 − 8 − 6 − 4 − 0.0046 ] 

𝐾 = place(Atot,Btot,pdes) = [55.3452 − 76.8162  − 17.3672  − 55.2119 − 359.1657] 

𝐾𝑖 = [55.3452] 

𝐾𝑜 = [−76.8162  − 17.3672  − 55.2119 − 359.1657] 
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The Matlab scripts used to support the Simulink environment are shown in Appendix B1. The 
resulting system is stable and provides good performances. Figures 3.2-23 and 24 show the 
Nyquist and Bode diagrams of the obtained open loop system. 

 

 

  

Fig. 3.2-23 Nyquist diagram of the open loop system obtained by static 
state feedback control and integral action 

Fig. 3.2-24 Bode diagrams of the open loop system obtained by static 
state feedback control and integral action 
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3.2.6 Static state feedback design: LQR 

This control technique is similar to the previous case. The LQR control technique is an algorithm 
that is useful to force the closed loop poles to lie in the stable region of the s-plane (negative real 
side). Moreover, it provides an important improvement on the stability achieving. This technique 
allows to stabilize the system accordingly to the specified parameters 𝑄 and 𝑅, that are useful to 
understand which states or command need to be penalized, by weights, in order to achieve best 
output performances. The Simulink block’s scheme used by this control architecture is shown in 
figure 3.2-25. 

 

Also in this case, an integral action on the outer loop is needed. The controlled system is not able 
to guarantee an asymptotic zero tracking error in presence of disturbances or step input signals. 

Once that the weighting matrices are assigned, the closed loop poles are computed using the 
command ‘lqr’. Then, the gain 𝐾 can be computed thanks to the Matlab command ‘place’, 
as shown in Appendix B1. 

The values of 𝑄 and 𝑅 that guarantee best output performances are 

𝑄 = [ 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ] , ∈ ℝ𝑛×𝑛 

𝑅 = [ 1 ] , ∈ ℝ1×1 

The resulting gain matrix 𝐾, obtained with these assigned parameters, is 

𝐾 = [𝐾𝑖  𝐾𝑜] = [ 531.83 − 1915.3 − 432.61 − 531.82 − 862.30 ] 

The obtained control systems achieves the stability with very good performances in terms of time 
and frequency behavior. The Nyquist and Bode diagrams of the open loop system are shown in 
figures 3.2-26 and 27, while the time responses are presented in the chapter 4. 

Fig. 3.2-25 Simulink block's scheme of the static state feedback control with integral action and 
asymptotic observer, using the LQR optimal control algorithm 
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Fig. 3.2-26 Nyquist diagram of the open loop system obtained by LQR control and integral action 

Fig. 3.2-27 Bode diagrams of the open loop system obtained by LQR control and integral action 
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3.3 Controllers of pneumatic actuation model 
The mathematical model obtained with the pneumatic actuation is studied in [4], where a cascade 
PIDs’ cascade architecture is designed to control the system. The mathematical model is 
reclaimed in order to study the same techniques realized for the model with electrical actuation. 

Initially, the transfer functions 𝐺𝑢𝛼 and 𝐺𝑢𝑥 are translated into the Simulink’s block scheme so 
that the simulation model is obtained like in figure 3.3-1. 

 

 

The transfer functions of the system are 

 

𝐺𝑢𝛼 =
(𝐾𝐴𝐴𝐴 +𝐾𝐵𝐴𝐵)𝑠

(𝑀𝑐 +𝑀𝑃)𝑙𝑠
4 + (𝑏𝑐 + 𝑏𝑃)𝑙𝑠

3 − (𝑚 +𝑀𝑐 +𝑀𝑝)𝑔𝑠
2 + (𝐴𝐴𝐶𝐴 + 𝐴𝐵𝐶𝐵)𝑙𝑠

2 − (𝑏𝑐 + 𝑏𝑃)𝑔𝑠 − (𝐴𝐴𝐶𝐴 + 𝐴𝐵𝐶𝐵)𝑔
= 

=
796.33𝑠

(𝑠 + 4.449)(𝑠 − 4.442)(𝑠2 + 9.902𝑠 + 202.3)
 

𝐺𝑢𝑥 =
(𝐾𝐴𝐴𝐴 + 𝐾𝐵𝐴𝐵)𝑠

(𝑀𝑐 +𝑀𝑃)𝑙𝑠
4 + (𝑏𝑐 + 𝑏𝑃)𝑙𝑠

3 − (𝑚 +𝑀𝑐 +𝑀𝑝)𝑔𝑠
2 + (𝐴𝐴𝐶𝐴 + 𝐴𝐵𝐶𝐵)𝑙𝑠

2 − (𝑏𝑐 + 𝑏𝑃)𝑔𝑠 − (𝐴𝐴𝐶𝐴 + 𝐴𝐵𝐶𝐵)𝑔

𝑙𝑠2 − 𝑔

𝑠2
= 

=
398.16(𝑠 + 4.427)(𝑠 − 4.427)

𝑠(𝑠 + 4.449)(𝑠 − 4.442)(𝑠2 + 9.902𝑠 + 202.3)
 

 

Moreover, another useful transfer function is the one that connects the state 𝑥 with the state 𝛼 

 

𝐺𝛼𝑥 =
𝐺𝑢𝑥
𝐺𝑢𝛼

=
𝑙𝑠2 − 𝑔

𝑠2
=
0.5(𝑠 − 4.427)(𝑠 + 4.427)

𝑠2
 

 

Fig. 3.3-1 Simulink model of the inverted pendulum system with pneumatic actuation 
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In the table 3.1-1, the experimental values of the model variables are shown. 

Once that the model is obtained in the Simulink environment, let’s start with the design phase of 

the controllers but, for clarity of the contents, also the PIDs’ cascade architecture obtained in [4] 
is presented in the next section. 

 

3.3.1 PID design: cascade architecture 

Knowing that this architecture is equal to the one shown in section 3.2.2, this section shows the 
results obtained in [4]. The final controllers 𝐶𝛼 (inner loop) and 𝐶𝑥 (outer loop), that are able to 
stabilize the plant with pneumatic actuation, are 

 

𝐶𝛼 = 2.09 +
6.31

𝑠
+

0.103𝑠

0.000875𝑠 + 1
 

𝐶𝑥 = −0.000802 +
−4.68 ∗ 10−6

𝑠
−

0.0306𝑠

0.00875𝑠 + 1
 

 

The resulting system provides good performances in terms of frequency response, as shown in 
figures 3.3-2 and 3.3-3. 

𝑙 rod length 0.5 𝑚 

𝑚 pendulum mass 0.2 𝑘𝑔 

𝑀𝑐  cart mass 1.8 𝐾𝑔 

𝑀𝑝 piston mass 0.4 𝐾𝑔 

𝑏 viscous damping coefficient 20.83 𝑁
𝑠

𝑚
 

𝐴𝐴 area of the rear piston chamber 2.01 ∙ 10−4 𝑚2 

𝐴𝐵 area of the front piston chamber 1.73 ∙ 10−4 𝑚2 

𝐶𝐴 
𝐴𝐴𝑝𝑠𝑢𝑝𝑝𝑙𝑦

2𝑉𝐴0
 1200000

𝑃𝑎

𝑚
 

𝐶𝐵 
𝐴𝐵𝑝𝑠𝑢𝑝𝑝𝑙𝑦

2𝑉𝐵0
 1200000

𝑃𝑎

𝑚
 

𝐾𝐴 
𝑝0
2𝜌0

𝐾𝑝𝑠𝑢𝑝𝑝𝑙𝑦

2𝑉𝐴0
 2177000

𝑃𝑎

𝑠𝑉
 

𝐾𝐵  
𝑝0
2𝜌0

𝐾𝑝𝑠𝑢𝑝𝑝𝑙𝑦

2𝑉𝐵0
 2534000

𝑃𝑎

𝑠𝑉
 

Table 3.3-1 Experimental values of the model variables 
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Fig. 3.3-2 Nyquist diagram of the pneumatic model controlled by the PIDs’ cascade architecture, 
on the left. Zoom around the critical point −1 + 𝑖0, on the right 

Fig. 3.3-3 Bode diagrams of the pneumatic model controlled by the PIDs’ cascade architecture 
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3.3.2 PID design: parallel architecture 

Knowing that this architecture is equal to the one shown in section 3.2.3 the same considerations 
are still valid. Therefore, also the hypothesis of SIMO system are considered in this case that leads 
to the computation of the open loop and closed loop transfer functions, of the overall model, as 
follows 

𝐺𝑥𝑜𝑙 =
𝑁𝑜𝑙
𝐷𝑜𝑙

=
𝐶𝑥𝐺𝑢𝑥

1 + 𝐶𝛼𝐺𝑢𝛼
 

𝐺𝑥𝑐𝑙 =
𝑁𝑐𝑙
𝐷𝑐𝑙

=
𝐶𝑥𝐺𝑢𝑥

1 + 𝐶𝛼𝐺𝑢𝛼 + 𝐶𝑥𝐺𝑢𝑥
 

 

Like in section 3.2.3, the controller 𝐶𝛼 is equal to the one that is able to stabilize the inner loop of 
the PIDs’ cascade architecture (section 3.3.1), therefore let’s start to analyze the open loop transfer 
function of the uncontrolled system (without the controller 𝐶𝑥) 

 

𝐺𝑥𝑜𝑙,𝑢𝑛 =
𝑁𝑜𝑙,𝑢𝑛
𝐷𝑜𝑙,𝑢𝑛

=
𝐺𝑢𝑥

1 + 𝐶𝛼𝐺𝑢𝛼
=

398.16(𝑠 + 4.427)(𝑠 − 4.427)(𝑠 + 1143)

𝑠(𝑠 + 1143)(𝑠 + 5.306)(𝑠 + 0.8142)(𝑠2 + 3.716𝑠 + 237.6)
 

 

 

In this way, the stability problem is related to the roots of 𝐷𝑜𝑙,𝑢𝑛, that represent the poles of the 
uncontrolled system 

 

 

𝑝1 = 0 

𝑝2 = −1143 

𝑝3 = −1.8581 − 𝑖15.3 

𝑝4 = −1.8581 + 𝑖15.3 

𝑝5 = −0.8142 

𝑝6 = −5.306 
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Looking at the poles, the uncontrolled system has a pole in zero, that could compromise the 
stability. A proof is the Nyquist path of 𝐺𝑥𝑜𝑙,𝑢𝑛in figure 3.3-4. 

 

 

Looking at the Nyquist path in figure above, 𝐺𝑥𝑜𝑙,𝑢𝑛 results unstable because the presence of 𝑝1 
creates a clockwise encirclement of the critical point (−1; 0), that makes the system unstable 
violating the Nyquist criterion. 

Luckily, also this transfer function (𝐺𝑥𝑜𝑙,𝑢𝑛) can be stabilized using only a proportional coefficient 
𝐾𝑝 < 0, so the Ziegler-Nichols empiric method can be used to improve the stability performances. 
Initially, the critical gain 𝐾𝑐  must be determined and in this case it is reached at −0.6. The 
resulting critical oscillation period is  𝑇𝑐 = 4.15𝑠  (but evaluating the output performances, of the 
overall controlled system, a value of 5 is successively chosen). 

So, assuming 𝐾𝑐 = −0.6 and 𝑇𝑐 = 5𝑠, the resulting coefficients for the controller 𝐶𝑥 are 

The resulting controller is able to stabilize the closed loop transfer function 𝐺𝑥𝑐𝑙 

𝐺𝑥𝑐𝑙 = −
1098.9(𝑠 + 4.427)(𝑠 − 4.427)(𝑠 + 1143)(𝑠2 + 1.433𝑠 + 0.5565)

(𝑠 + 1143)(𝑠 + 1.335)(𝑠2 + 2.019𝑠 + 1.312)(𝑠2 + 9.041𝑠 + 34.13)(𝑠2 + 8.108𝑠 + 200.6)
 

 

Fig. 3.3-4 Nyquist diagram of 𝐺𝑥𝑜𝑙,𝑢𝑛 

𝐾𝑝 = −0.36  𝐾𝑑 = −0.225  

𝐾𝑖 = −0.144  𝑁 = 0.0938  
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A graphical proof is given by the Nyquist path in figure 3.3-5, of the open loop transfer function 
of the controlled system 

𝐺𝑥𝑜𝑙 = −
1098.9(𝑠 + 4.427)(𝑠 − 4.427)(𝑠 + 1143)(𝑠2 + 1.433𝑠 + 0.5565)

𝑠2(𝑠 + 10.67)(𝑠 + 5.306)(𝑠 + 0.8142)(𝑠 + 1143)(𝑠2 + 3.716𝑠 + 237.6)
 

 

 

 

As can be seen, there are no encirclements of the critical point (−1; 0) and so the system results 
stable for the Nyquist criterion. 

Fig. 3.3-6 Bode diagrams of 𝐺𝑥𝑜𝑙  

Fig. 3.3-5 Nyquist diagram of 𝐺𝑥𝑜𝑙, on the left. Zoom around the critical point −1 + 𝑖0, on the right 
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Unlike the electric case, the using of the PID tuning tool is not necessary because the system 
achieves good performances with the PID computed by Ziegler-Nichols approach. As can be seen 
in figure 3.3-6, the Bode diagrams show a gain margin of 5.77𝑑𝐵 at 5.98𝑟𝑎𝑑/𝑠 and a phase 
margin of 40°, so the final PID coefficients for the simulations has been assigned accordingly the 
Ziegler-Nichols method. 

 

3.3.3 Static state feedback design: pole placement 

The same consideration and approximation considered in sections 3.2.5 holds also for the 
pneumatic model. The reader is invited to consult the Appendix B2 for an exhaustive and 
complete understanding of the procedures and calculations done in the Simulink environment. 

The final architecture, that uses the pole placement technique, is equal to the one shown in figure 
3.2-22, which is the static state feedback architecture (inner loop) with integral action (outer loop) 
and asymptotic observer. 

Knowing that the control law used in this type of architecture is equal to 

𝑢(𝑡) = −𝐾�⃗�𝑡𝑜𝑡(𝑡) = −[𝐾𝑖  𝐾𝑜]�⃗�𝑡𝑜𝑡(𝑡) = −[𝐾𝑖  𝐾𝑜] [
𝑞(𝑡)

�⃗�(𝑡)
] 

the resulting parameters 𝐾𝑖 and 𝐾𝑜 are computed starting with the choice of 𝑝𝑑𝑒𝑠 

 

𝑝𝑑𝑒𝑠 = [ −10 − 10 − 10 − 10 − 10 − 4.6 ] 

𝐾 = acker(Atot,Btot,pdes) = [ 121.7804  52.8375  11.9164  2.0988 ∙ 10−5  − 61.0605 − 22.1997 ] 

𝐾𝑖 = [121.7804] 

𝐾𝑜 = [ 52.8375  11.9164  2.0988 ∙ 10
−5  − 61.0605 − 22.1997 ] 

 

The command ‘acker’ is used instead of ‘place’ because it supports a repeating value for the 
pole locations. 

Therefore, adopting the previous results of 𝐾𝑖 and 𝐾𝑜, the system results stable, providing good 
performances. Figures 3.3-7 and 8 show the Nyquist and Bode diagrams of the obtained open 
loop system. 
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Fig. 3.3-7 Nyquist diagram of the open loop system obtained by static 
state feedback control and integral action 

Fig. 3.3-8 Bode diagrams of the open loop system obtained by static 
state feedback control and integral action 
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3.3.4 Static state feedback design: LQR 

The control architecture used in this section is equal to the one shown in figure 3.2-25, which is 
the static state feedback architecture (inner loop) with integral action (outer loop) and asymptotic 
observer, using the LQR optimal control algorithm. 

In this case the values of 𝑄 and 𝑅 that guarantee best output performances are 

 

𝑄 =

[
 
 
 
 

 

10 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 100 0
0 0 0 0 1

 

]
 
 
 
 

 , ∈ ℝ𝑛×𝑛 

 

𝑅 = [ 1 ∙ 109 ] , ∈ ℝ1×1 

 

Unlike the electrical actuation model, different weights are assigned to the states. A high 
importance is given to the 𝛼 state (multiplicative factor of 10) and to the 𝑥 one (multiplicative 
factor of 100). Moreover, a very huge weight for the input signal is assigned and it is equal to 
1 ∙ 109. 

The resulting gain matrix 𝐾, obtained with these assigned parameters, is 

 

𝐾 = [𝐾𝑖  𝐾𝑜] = [ 385.07  249.85  56.3763  5.74 ∙ 10
−5  − 257.13 − 101.71 ] 

 

The obtained control systems achieves the stability with very good performances in terms of time 
and frequency behavior. The Nyquist and Bode diagrams of the open loop system are shown in 
figures 3.3-9 and 10, while the time responses are presented in the chapter 4. 
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Fig. 3.3-9 Nyquist diagram of the open loop system obtained by LQR control and integral action 

Fig. 3.3-10 Bode diagrams of the open loop system obtained by LQR control and integral action 
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4 Numerical simulations 
This chapter presents the numerical simulations performed on the controlled system, taking into 
account the control techniques described in chapter 3 (cascade, parallel and LQR control 
architectures). The simulations were performed in order to observe the time response of the 
system, providing as inputs different signals (step, square and sine waves). 

Moreover, the system was modified, in terms of rod length 𝑙𝑝 and pendulum mass 𝑚𝑝, in order 
to highlight differences in the behaviour of the step responses. These parameters modifications, 
𝑚𝑝 and 𝑙𝑝, do not involve any modification in the PID controllers for the cascade and parallel 
architecture, but, in the LQR control technique, a change in the state space representation implies 
a change on the desired eigenvalues needed for the computation of 𝐾𝐿𝑄𝑅. Therefore, the parameter 
changes involve different computations for the gain 𝐾𝐿𝑄𝑅, in order to achieve the stability of the 
system. 

The performances of the step responses can be classified in terms of settling time and over/under 
shoot. The settling time represents the amount of time required by the step response to reach and 
stay within the ± 𝛽 % ( 𝛽 = 5% in this case) of the steady state value 𝑦∞ (output value at infinite 
time). While, the over/under shoot represent the maximum, positive or negative, deviation from 
𝑦𝑟𝑒𝑓 (reference signal for the output one). 
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4.1 Step response 
Firstly, a step input signals, of 200mm amplitude, was imposed to the controlled system. The step 
responses were performed on three different configurations of the system, taking into account 
three couples of different values of 𝑚𝑝 and 𝑙𝑝 (180gr-550mm, 180gr-400mm and 550mm-1Kg, 
respectively). 

4.1.1 Step response: electrical actuation model 

In this section the step responses of the electrical model are analyzed. Let’s have a look at the step 
responses shown in figure 4.1-1, of the system controlled by the PIDs’ cascade architecture. 

 

 

Fig. 4.1-1 Step responses of the electrical model controlled by the PIDs’ cascade architecture. 
In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. Fig. a 𝑚𝑝=180gr and 𝑙𝑝 = 550𝑚𝑚. 

Fig. b 𝑚𝑝=180gr and 𝑙𝑝 = 440𝑚𝑚. Fig. c 𝑚𝑝=1Kg and 𝑙𝑝 = 550𝑚𝑚. 

a) b) 

c) 
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The system reacts to the changes, on 𝑚𝑝 and 𝑙𝑝, in the same way for the three configurations. 
Although there is a difference on 𝑚𝑝 around 800 gr and on 𝑙𝑝 around 100 mm, the PID cascade 
control is able to generates the same time response. This means that the cascade architecture 
results very robust about changes in the rod length and pendulum mass. 

The values related to settling time and over/undershoot of the responses in figure 4.1-1 are 
resumed in table 4.1-1. 

  

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 10.20 0.260 -0.009 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.017 -0.004 

𝑙𝑝 = 400𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 10.18 0.261 -0.007 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.018 -0.004 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 1𝐾𝑔 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 10.10 0.260 -0.009 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.017 -0.004 
Table 4.1-1 Values of settling time and over/undershoot of step responses in figure 4.1-1 
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Figure 4.1-2 shows the step responses related to the system controlled by the PIDs’ parallel 
architecture. 

 

 

As can be seen in figure 4.1-2, also in the parallel architecture as in the cascade one, for all the 
configurations the system reacts in the same way to the step input signal. The same overshoot, 
undershoot and settling time are performed by the system response in each graph. 

  

Fig. 4.1-2 Step responses of the electrical model controlled by the PIDs’ parallel architecture. 
In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. Fig. a 𝑚𝑝=180gr and 𝑙𝑝 = 550𝑚𝑚. 

Fig. b 𝑚𝑝=180gr and 𝑙𝑝 = 440𝑚𝑚. Fig. c 𝑚𝑝=1Kg and 𝑙𝑝 = 550𝑚𝑚. 

a) b) 

c) 
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The values related to settling time and over/undershoot of the responses in figure 4.1-2 are 
resumed in table 4.1-2. 

  

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 9.07 0.234 -0.024 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.047 -0.012 

𝑙𝑝 = 400𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 9.06 0.235 -0.016 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.045 -0.011 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 1𝐾𝑔 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 9.04 0.234 -0.024 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.047 -0.012 
Table 4.1-2 Values of settling time and over/undershoot of step responses in figure 4.1-2 
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Moreover, the step responses performed on the system controlled by the LQR architecture are 
shown in figure 4.1-3. 

 

 

Although some low differences in the overshoots of the 𝑥 time response, the graphs a), b), and c) 
in figure 4.1-3 are very similar. 

The results obtained prove that the electrical actuation system, regardless of the control used, is 
able to react  in the same way against changes in the rod length and pendulum mass. 

  

Fig. 4.1-3 Step responses of the electrical model controlled by the LQR architecture. In each 
figure, from top to bottom, the time responses of 𝑥 and 𝛼. Fig. a 𝑚𝑝=180gr and 𝑙𝑝 = 550𝑚𝑚. 

Fig. b 𝑚𝑝=180gr and 𝑙𝑝 = 440𝑚𝑚. Fig. c 𝑚𝑝=1Kg and 𝑙𝑝 = 550𝑚𝑚. 

a) b) 

c) 
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The values related to settling time and over/undershoot of the responses in figure 4.1-3 are 
resumed in table 4.1-3. 

  

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.38 0.264 -0.004 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.016 -0.012 

𝑙𝑝 = 400𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.27 0.253 -0.002 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.019 -0.009 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 1𝐾𝑔 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.39 0.264 -0.004 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.015 -0.013 
Table 4.1-3 Values of settling time and over/undershoot of step responses in figure 4.1-3 
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4.1.2 Step response: pneumatic actuation model 

The step responses shown in section 4.1.1 were also performed in the case of the pneumatic 
model. 

In figure 4.1-4, the step responses of the system controlled by the PIDs’ cascade architecture are 

shown. 

 

 

Unlike the electrical model, in this case some response differences are present in the three 
configurations. As can be seen in figures 4.1-4 a) and c), the time responses of 𝑥 and 𝛼 are very 
similar, so the difference of 820 gr in the pendulum mass doesn’t involve a change in the reaction 

Fig. 4.1-4 Step responses of the pneumatic model controlled by the PIDs’ cascade architecture. 
In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. Fig. a 𝑚𝑝=180gr and 𝑙𝑝 = 550𝑚𝑚. 

Fig. b 𝑚𝑝=180gr and 𝑙𝑝 = 440𝑚𝑚. Fig. c 𝑚𝑝=1Kg and 𝑙𝑝 = 550𝑚𝑚. 

a) b) 

c) 
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of the system to the step signal. However, looking at figure 4.1-4 b), the time responses of 𝑥 and 
𝛼 exhibits more oscillations than in figures 4.1-4 a) and c). This means that a shortest rod length 
causes an hardest scenario for the control problem. 

The values related to settling time and over/undershoot of the responses in figure 4.1-4 are 
resumed in table 4.1-4. 

  

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.56 0.251 -0.030 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.012 -0.059 

𝑙𝑝 = 400𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.65 0.250 -0.026 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.031 -0.073 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 1𝐾𝑔 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.60 0.250 -0.030 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.014 -0.060 
Table 4.1-4 Values of settling time and over/undershoot of step responses in figure 4.1-4 
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Let’s have a look at the step responses shown in figure 4.1-5, of the system controlled by the 
PIDs’ parallel architecture. 

 

 

Also in this case, like in the cascade control (figure 4.1-4), the most important difference is in 
figure 4.1-5 b) that highlights an oscillated overshoot in both time responses of 𝑥 and 𝛼, while in 
figures 4.1-5 a) and c), although some very low differences are present, the time responses are 
practical the same. Also in this case a shortest rod length involves some oscillations in the time 
response. 

 

Fig. 4.1-5 Step responses of the pneumatic model controlled by the PIDs’ parallel architecture. 
In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. Fig. a 𝑚𝑝=180gr and 𝑙𝑝 = 550𝑚𝑚. 

Fig. b 𝑚𝑝=180gr and 𝑙𝑝 = 440𝑚𝑚. Fig. c 𝑚𝑝=1Kg and 𝑙𝑝 = 550𝑚𝑚. 

a) b) 

c) 
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The values related to settling time and over/undershoot of the responses in figure 4.1-5 are 
resumed in table 4.1-5. 

  

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 4.40 0.273 -0.076 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.056 -0.160 

𝑙𝑝 = 400𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 4.60 0.262 -0.063 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.070 -0.186 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 1𝐾𝑔 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 4.45 0.270 -0.078 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.059 -0.164 
Table 4.1-5 Values of settling time and over/undershoot of step responses in figure 4.1-5 
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Figure 4.1-6 shows the step responses related to the system controlled by the LQR architecture. 

 

 

As can be seen in figure 4.1-6, the LQR control architecture is able to perform a good time 
response in all the configurations a), b) and c). Unlike the cascade and parallel architectures 
scenario shown in figures 4.1-4 and 5, in this case, there are no differences in the three step 
responses because the LQR control architecture manages the variations on 𝑚𝑝 and 𝑙𝑝 in a better 
way than the cascade and parallel ones. 

  

Fig. 4.1-6 Step responses of the pneumatic model controlled by the LQR architecture. 
In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. Fig. a 𝑚𝑝=180gr and 𝑙𝑝 = 550𝑚𝑚. 

Fig. b 𝑚𝑝=180gr and 𝑙𝑝 = 440𝑚𝑚. Fig. c 𝑚𝑝=1Kg and 𝑙𝑝 = 550𝑚𝑚. 

a) b) 

c) 
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The values related to settling time and over/undershoot of the responses in figure 4.1-6 are 
resumed in table 4.1-6. 

  

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 2.49 0.211 -0.037 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.043 -0.082 

𝑙𝑝 = 400𝑚𝑚 
𝑚𝑝 = 180𝑔𝑟 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 2.35 0.205 -0.026 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.052 -0.094 

𝑙𝑝 = 550𝑚𝑚 
𝑚𝑝 = 1𝐾𝑔 

𝑥𝑜𝑢𝑡𝑝𝑢𝑡 2.49 0.212 -0.038 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.043 -0.082 
Table 4.1-6 Values of settling time and over/undershoot of step responses in figure 4.1-6 
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4.2 Square wave response 
Another set of the performed numerical simulation concerns a square wave as input signal for the 
controlled system. The providing input signals is a square wave with a peak amplitude of 100 mm 
and a variable period of 10 s and 2.5 s, in order to analyze the behaviour of the system changing 
the frequency of the wave. As in the step response case, all the control architectures (cascade, 
parallel and LQR) are tested for these two type of input signals. 
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4.2.1 Square wave response: electrical actuation model 

In this section the square wave responses of the electrical model are analyzed. Let’s have a look 

at the square wave responses shown in figure 4.2-1, of the system controlled by the PIDs’ cascade 

architecture. 

 

 

In both configurations (𝑇 = 10 𝑠  and 𝑇 = 2.5 𝑠 ) the system immediately reacts against the 
change of the signal. Looking at the time response of the position 𝑥 in both the configurations 
(figure 4.2-1 a) and b) ), when the blue line, that represents the reference signal for the position 
(𝑥𝑟𝑒𝑓), changes its direction, the red line (𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signal) quickly follows the path change. Unlike 
the similar behaviour for the two configuration about the rapidity of the system to follow the input 
signal, a change in the period of the square wave highlights a difference in the two 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signals. 
In the case of a square wave with 𝑇 = 10 𝑠 (figure 4.2-1a), the 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signal (red line) exceeds 
the peak value of the 𝑥𝑟𝑒𝑓 signal; while in the case at 𝑇 = 2.5 𝑠 (figure 4.2-1b), the red line is not 
able to reach the peak value of the blue line. This means that, a decreasing value of the period 
(increasing frequency), around 2.5 s, implies that the output signal will not reach the reference 
signal but it will quickly able to follow the direction change of the reference signal. 

The peak values related to the responses in figure 4.2-1 are resumed in table 4.2-1. 

a) b) 
Fig. 4.2-1 Square wave responses of the electrical model controlled by the PIDs’ 

cascade architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Peak value [𝑚] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.137 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.015 
Table 4.2-1 Peak values of the step responses in figure 4.2-1 
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In figure 4.2-2, the square wave responses of the system controlled by the PIDs’ parallel 

architecture are shown. 

 

 

Unlike the previous case (figure 4.2-1), the parallel architecture gives the possibility to the system 
to reach the peak value of the reference signal 𝑥𝑟𝑒𝑓 also in the case at 𝑇 = 2.5 𝑠 (figure 4.2-2 b). 
Although there is a low difference between the peaks of the blue and red lines, the peak value of 
the 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signal (red) is very close to the reference one (blue, 𝑥𝑟𝑒𝑓). Therefore, the parallel 
architecture proves to be quicker than the cascade one to follows the reference signal in terms of 
time and amplitude. 

The peak values related to the responses in figure 4.2-2 are resumed in table 4.2-2. 

  

a) b) 
Fig. 4.2-2 Square wave responses of the electrical model controlled by the PIDs’ 

parallel architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Peak value [𝑚] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.13 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.08 
Table 4.2-2 Peak values of the step responses in figure 4.2-2 
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Also the system controlled with the LQR architecture was tested with a square wave input signals, 
and its time responses are shown in figure 4.2-3. 

 

 

As in the cascade architecture, also in this case the LQR architecture doesn’t provide to the system 

the ability to reach the peak value of the reference signal at low value of the period (figure 4.2-3 
b) ). 

The peak values related to the responses in figure 4.2-3 are resumed in table 4.2-3. 

  

a) b) 
Fig. 4.2-3 Square wave responses of the electrical model controlled by the LQR 
architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 

Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Peak value [𝑚] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.15 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.04 
Table 4.2-3 Peak values of the step responses in figure 4.2-3 

 



82 
 

4.2.2 Square wave response: pneumatic actuation model 

In this section the numerical simulation with a square wave input signal are repeated for the 
pneumatic actuation model. 

Figure 4.2-4 shows the square wave responses of the system controlled by the PIDs’ cascade 

architecture. 

 

 

As can be seen in figure 4.2-4 a) and b), although there are some oscillations in the time responses 
of 𝑥 and 𝛼, the system has a similar behaviour like the one in figure 4.2-1 in terms of time and 
amplitude. Like in the electrical model, also in the pneumatic one the cascade architecture doesn’t 

provide to the system the ability to follows the reference signal in terms of amplitude. Looking at 
figure 4.2-4 b), the red line (𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signal) approximately reaches the half amplitude of the blue 
line (𝑥𝑟𝑒𝑓 signal), before 𝑥𝑟𝑒𝑓 changes direction. 

The peak values related to the responses in figure 4.2-4 are resumed in table 4.2-4. 

  

a) b) 
Fig. 4.2-4 Square wave responses of the pneumatic model controlled by the PIDs’ 

cascade architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Peak value [𝑚] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.14 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.06 
Table 4.2-4 Peak values of the step responses in figure 4.2-4 
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The square wave responses of the system controlled by the PIDs’ parallel architecture are shown 

in figure 4.2-5. 

 

 

In this case the behaviour of the system (figure 4.2-5 b) ) gives the proof about the ability of the 
parallel architecture to provide a quick response, in terms of time and amplitude, like in the 
electrical model controlled by this type of control technique. 

The peak values related to the responses in figure 4.2-5 are resumed in table 4.2-5. 

  

a) b) 
Fig. 4.2-5 Square wave responses of the pneumatic model controlled by the PIDs’ 

parallel architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Peak value [𝑚] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.17 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.22 
Table 4.2-5 Peak values of the step responses in figure 4.2-5 
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Let’s have a look at the square wave responses shown in figure 4.2-6, of the system controlled by 
the LQR architecture. 

 

 

Like in the previous case (figure 4.2-5), also with the LQR architecture the system output signal 
(𝑥𝑜𝑢𝑡𝑝𝑢𝑡) is able to follow the reference one (𝑥𝑟𝑒𝑓) as it shown in figure 4.2-6 a) and b). Moreover, 
as can be seen in figure 4.2-6 a), the LQR architecture provides a better response, in terms of 
overshoot and settling time, than the parallel one. 

The peak values related to the responses in figure 4.2-6 are resumed in table 4.2-6. 

  

a) b) 
Fig. 4.2-6 Square wave responses of the pneumatic model controlled by the LQR 
architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 

Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Peak value [𝑚] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.13 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.14 
Table 4.2-6 Peak values of the step responses in figure 4.2-6 
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4.3 Sine wave response 
The last set of the performed numerical simulation concerns a sine wave as input signal for the 
controlled system. The providing input signals is a sine wave with a peak amplitude of 100 mm 
and a variable period of 10 s and 2.5 s, like the square wave signals in section 4.2. As in the 
previous cases, all the control architectures (cascade, parallel and LQR) are tested for the sine 
wave input signals. 

  



86 
 

4.3.1 Sine wave response: electrical actuation model 

Let’s have a look at the sine wave responses shown in figure 4.3-1, of the system controlled by 
the PIDs’ cascade architecture. 

 

 

Unlike the square wave responses, the sine wave ones gives an easy understanding about the time 
response delay. Looking at figure 4.3-1 a), the 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signal (red line) has a time delay around 
two seconds respect to  the 𝑥𝑟𝑒𝑓 signal (blue line). As can be seen in figure 4.3-1 b), this delay 
increases by decreasing the period of the wave signal. In the case at 𝑇 = 2.5𝑠, the delay produces 
a sort of phase inversion between the two signals (𝑥𝑟𝑒𝑓 and 𝑥𝑜𝑢𝑡𝑝𝑢𝑡). 

The time delay values related to the responses in figure 4.3-1 are resumed in table 4.3-1. 

  

a) b) 
Fig. 4.3-1 Sine wave responses of the electrical model controlled by the PIDs’ cascade 

architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Time delay [𝑠] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 2.1 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 1.1 
Table 4.3-1 Time delay values of the step responses in figure 4.3-1 
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In figure 4.3-2, the sine wave responses of the system controlled by the PIDs’ parallel architecture 

are shown. 

 

 

Also in the parallel architecture the time delay between 𝑥𝑟𝑒𝑓 and 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 is present, but looking 
at figure 4.3-2 it is lower than the time delay caused by the cascade architecture. However, the 
parallel architecture, contrary to the cascade one, provides to the system the ability to almost reach 
the peak amplitude of the 𝑥𝑟𝑒𝑓 signal thanks to the low time delay of 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signal. 

The time delay values related to the responses in figure 4.3-2 are resumed in table 4.3-2. 

  

a) b) 
Fig. 4.3-2 Sine wave responses of the electrical model controlled by the PIDs’ parallel 

architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Time delay [𝑠] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 1.1 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 1.0 
Table 4.3-2 Time delay values of the step responses in figure 4.3-2 
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The sine wave responses of the system controlled by the LQR architecture are shown in figure 
4.3-3. 

 

 

At high values of the wave period (𝑇 = 10 𝑠, figure 4.3-3 a), the LQR architecture provides to 
the system a good capability to follow the reference signal, producing a short time delay between 
𝑥𝑟𝑒𝑓 and 𝑥𝑜𝑢𝑡𝑝𝑢𝑡. However, in the case at 𝑇 = 2.5 𝑠 (figure 4.3-3 b), the time delay of 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 
signal becomes really high, because it results in a phase inversion between the reference and the 
output signals. 

The time delay values related to the responses in figure 4.3-3 are resumed in table 4.3-3. 

  

a) b) 
Fig. 4.3-3 Sine wave responses of the electrical model controlled by the LQR 

architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Time delay [𝑠] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 1.1 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 1.5 
Table 4.3-3 Time delay values of the step responses in figure 4.3-3 
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4.3.2 Sine wave response: pneumatic actuation model 

Like in the sections 4.1 and 4.2, the responses are performed also on the pneumatic model. 

Figure 4.3-4 shows the sine wave responses of the system controlled by the PIDs’ cascade 

architecture. 

 

 

Looking at figures 4.3-4 a) and b), the 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signals (red lines) have more or less the same 
behaviour shown in figures 4.3-1 a) and b) of the electrical model controlled by the PIDs’ cascade 

architecture. There is a time delay between the two signals (𝑥𝑟𝑒𝑓 in blue and 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 in red), that 
increases by decreasing the value of the wave period. Moreover, also in the case at 𝑇 = 2.5 𝑠 the 
output signals doesn’t reach the peak amplitude of the reference one, before 𝑥𝑟𝑒𝑓  changes 
direction. 

The time delay values related to the responses in figure 4.3-4 are resumed in table 4.3-4. 

  

a) b) 
Fig. 4.3-4 Sine wave responses of the pneumatic model controlled by the PIDs’ cascade 

architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Time delay [𝑠] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.9 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 1.0 
Table 4.3-4 Time delay values of the step responses in figure 4.3-4 
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In figure 4.3-5, the sine wave responses of the system controlled by the PIDs’ parallel architecture 

are shown. 

 

 

As can be seen in figures 4.3-5 a) and b), the parallel architecture provides the system with a good 
capability to follow the reference signal, producing a very short time delay between 𝑥𝑟𝑒𝑓 and 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡. Moreover, looking at figure 4.3-5 b), the red line (𝑥𝑜𝑢𝑡𝑝𝑢𝑡) is able to reach and exceed 
the maximum amplitude of the blue line (𝑥𝑟𝑒𝑓) due to the low time delay between the output and 
reference signals. 

The time delay values related to the responses in figure 4.3-5 are resumed in table 4.3-5. 

  

a) b) 
Fig. 4.3-5 Sine wave responses of the electrical model controlled by the PIDs’ parallel 

architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Time delay [𝑠] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.3 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.7 
Table 4.3-5 Time delay values of the step responses in figure 4.3-5 
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The last simulation is shown in figure 4.3-6, that concerns the sine wave responses of the system 
controlled by the LQR architecture. 

 

 

Figures 4.3-6 a) and b) highlight the optimal control properties of the LQR architecture. As can 
be seen, the time delay of the output signals is very low in both cases, period equal to 10 and 2.5 
s respectively. Moreover, the 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 signals respects the amplitude value provided by the 𝑥𝑟𝑒𝑓 
signals. 

The time delay values related to the responses in figure 4.3-6 are resumed in table 4.3-6. 

  

a) b) 
Fig. 4.3-6 Sine wave responses of the electrical model controlled by the LQR 

architecture. In each figure, from top to bottom, the time responses of 𝑥 and 𝛼. 
Fig. a 𝐴 = 100𝑚𝑚 and 𝑇 = 10𝑠. Fig. b 𝐴 = 100𝑚𝑚 and 𝑇 = 2.5𝑠. 

  Time delay [𝑠] 

𝑇 = 10𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.7 

𝑇 = 2.5𝑠 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 0.7 
Table 4.3-6 Time delay values of the step responses in figure 4.3-6 
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5 Results 
The aim of this chapter is to give multiple comparisons between the used control techniques 
(cascade, parallel and LQR) and between the used actuations in the two models (electrical and 
pneumatic). 

Initially, in section 5.1, the comparison between the control techniques in the model with electrical 
actuation is provide, while the same comparison is done in section 5.2 for the model with 
pneumatic actuation. Finally, in section 5.3 a comparison between the two actuation is shown. All 
the comparisons use the results of the step responses presented in chapter 4, in particular, only the 
configuration with 𝑚𝑝 = 180 gr  and 𝑙𝑝 = 550 𝑚𝑚 is considered. 

The performances of the step responses can be classified in terms of settling time and over/under 
shoot. 
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5.1 Control techniques comparison in electrical actuation 
Figure 5.1-1 shows the step responses of the model, with electrical actuation, controlled by PIDs’ 

cascade and parallel architectures and by the LQR one. 

Looking at the 𝑥 step responses, the technique that performs the best settling time is the LQR, 
while in the worst case is the cascade one. On the other hand, 𝛼 responses, the technique that 
performs the best settling time is the parallel architecture, while in the worst case is the LQR one. 

The results changes in terms of over/under shoot, the LQR and the parallel technique create the 
highest overshoots in the 𝑥 response and in the 𝛼 response, respectively. While the lowest peaks 
are created by the parallel technique in the 𝑥  response and by the LQR technique in the 𝛼 
response. The values related to settling time and over/undershoot of the responses in figure 5.1-1 
are resumed in table 5.1-1. 

Fig. 5.1-1 Step responses of the system with electrical actuation controlled 
by the three techniques. Top, the 𝑥 response. Bottom, the 𝛼 response. 

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Cascade 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 10.20 0.260 -0.009 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.017 -0.004 

Parallel 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 9.07 0.234 -0.024 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.047 -0.012 

LQR 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.38 0.264 -0.004 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.016 -0.012 
Table 5.1-1 Values of settling time and over/undershoot of step responses in figure 5.1-1 
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5.2 Control techniques comparison in pneumatic actuation 
Figure 5.1-1 shows the step responses of the model with electrical actuation controlled by PIDs’ 

cascade and parallel architectures and by the LQR one. 

Looking at figure above (5.2-1), the LQR technique provides the best settling time performances 
for both responses, 𝑥 and 𝛼 respectively, while the worst cases are performed by the cascade 
technique, that also performs some oscillations in both responses. 

On the other hand, the parallel technique performs the highest over/under shoots in the 𝑥 and 𝛼 
responses, in contrast to the LQR and cascade ones that perform the lowest over/under shoots for 
the 𝑥 and 𝛼 responses, respectively. 

The values related to settling time and over/undershoot of the responses in figure 5.2-1 are 
resumed in table 5.2-1. 

Fig. 5.2-1 Step responses of the system with pneumatic actuation controlled 
by the three techniques. Top, the 𝑥 response. Bottom, the 𝛼 response. 

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Cascade 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.56 0.251 -0.030 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.012 -0.059 

Parallel 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 4.40 0.273 -0.076 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.056 -0.160 

LQR 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 2.49 0.211 -0.037 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.043 -0.082 
Table 5.2-1 Values of settling time and over/undershoot of step responses in figure 5.2-1 
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5.3 Electrical and pneumatic actuation comparison 
Once that the control techniques are separately compared in the systems controlled by the 
electrical and pneumatic actuation, the two system are compared between them in order to 
highlight the best features of the two actuation types. So, let’s start to analyze the step responses 

of the systems, with the two actuations, controlled by the PIDs’ cascade architecture. 

 

Figure 5.3-1 highlights the smooth behaviour of the time responses of the system with electrical 
actuation, in contrary to the oscillating behaviours provided by the one with pneumatic actuation. 
Despite the oscillating behaviour, however, the pneumatic actuation provides to the system a 
lower settling time than the one obtained by the electrical actuation. 

The values related to settling time and over/undershoot of the responses in figure 5.3-1 are 
resumed in table 5.3-1. 

  

Fig. 5.3-1 Step responses of the systems with electrical and pneumatic actuation 
controlled by the PIDs' cascade architecture 

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Electrical 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 10.20 0.260 -0.009 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.017 -0.004 

Pneumatic 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.56 0.251 -0.030 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.012 -0.059 
Table 5.3-1 Values of settling time and over/undershoot of step responses in figure 5.3-1 
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The step responses of the systems, with the two actuations, controlled by the PIDs’ parallel 

architecture are shown in figure 5.3-2. 

 

As can be seen in figure 5.3-2, also the parallel architecture, like the cascade one, provides to the 
system with pneumatic actuation faster settling time than the system with electrical actuation for 
both the time responses, 𝑥 and 𝛼 respectively. However, the electrical system controlled by the 
parallel architecture performs a very smooth behaviour in the 𝑥 and 𝛼 responses, providing less 
oscillation and lower over/under shoots than the pneumatic actuation. 

The values related to settling time and over/undershoot of the responses in figure 5.3-2 are 
resumed in table 5.3-2. 

  

Fig. 5.3-2 Step responses of the systems with electrical and pneumatic actuation 
controlled by the PIDs' parallel architecture 

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Electrical 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 9.07 0.234 -0.024 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.047 -0.012 

Pneumatic 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 4.40 0.273 -0.076 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.056 -0.160 
Table 5.3-2 Values of settling time and over/undershoot of step responses in figure 5.3-2 
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Finally, figure 5.3-3 provides the step responses of the systems, with the two actuations, 
controlled by the LQR architecture. 

 

Looking at figure 5.3-3, the system with pneumatic actuation performs, thanks to the LQR 
technique, good value of settling time (2 seconds after the activation of 𝑥𝑟𝑒𝑓), that is lower than 
the one performed by the system with electrical actuation (around 12 seconds after the activation 
of 𝑥𝑟𝑒𝑓). However, the fast behaviour of the system, with pneumatic actuation, causes higher 
over/under shoots, in the 𝛼 response, than the system with electrical actuation. 

Looking at figures 5.3-1, 2 and 3, the same behaviour is more or less repeated, the fast time 
response of the cart position 𝑥, of the system with pneumatic actuation, causes an oscillating 
behaviour in the time response of the pendulum angle 𝛼, while the electrical system provides a 
smooth behaviour of the time response of the angle 𝛼, producing higher value of settling time for 
the position 𝑥 than the system with pneumatic actuation. 

The values related to settling time and over/undershoot of the responses in figure 5.3-3 are 
resumed in table 5.3-3. 

Fig. 5.3-3 Step responses of the systems with electrical and pneumatic actuation 
controlled by the LQR architecture 

  Settling time 5% [𝑠] Overshoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Undershoot 
𝑥[𝑚], 𝛼[𝑟𝑎𝑑] 

Electrical 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 5.38 0.264 -0.004 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.016 -0.012 

Pneumatic 
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 2.49 0.211 -0.037 

𝛼𝑜𝑢𝑡𝑝𝑢𝑡 − 0.043 -0.082 
Table 5.3-3 Values of settling time and over/undershoot of step responses in figure 5.3-3 
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Figure 5.3-4 provides support to what mentioned before, it shows the behaviours of the velocities 
and accelerations of the systems carts, with electrical and pneumatic actuation, controlled by the 
PIDs’ cascade architectures. 

 

 

As can be seen, the smooth responses of 𝑥 and 𝛼 (black lines in figure 5.3-1), in the system with 
electrical actuation, are allowed thanks to a very relaxed behaviours of the velocities and 
accelerations of the cart (black lines), as shown in figure 5.3-4. Just after considerable undershoots 
in the trends of the velocity and the acceleration, these responses gently approach the zero value, 
that represents the equilibrium condition of the system. In contrary to this case, the oscillating 
responses of 𝑥 and 𝛼 (red lines in figure 5.3-1), in the system with the pneumatic actuation, are 
caused by oscillating behaviours in the velocities and accelerations trends (red lines in figure 
5.3-4), that undulating approach to the equilibrium condition. 

  

Fig. 5.3-4 Velocities (top) and accelerations (bottom) of the systems carts, with electrical and 
pneumatic actuation, controlled by the PIDs' cascade architecture 
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Conclusions and future works 
The dissertation describe the use of several control techniques, applied to an inverted pendulum 
system: PIDs’ cascade and parallel architectures and Static State Feedback with Pole placement 
or with LQR. These methods successfully achieve the stabilization of the system by satisfying the 
physical constraints of the plant. The aim of this is to compare the adopted control techniques and  
the performance of actuations, electrical and pneumatic. 
Regarding the variations of the pendulum mass and rod length, the three control techniques 
exploiting electrical actuation show the same performances exhibiting a good robustness. On the 
other hand, pneumatic actuation presents similar performance only in the LQR technique.  
Further considerations on the controller performance can be made on the basis of the system 
response to square wave. The 𝑥 output signal of the system has been compared with the square 
wave reference signals, that have been generated with two different periods, 10 and 2.5 s. This 
simulations have been done to understand if the system is fast enough to reach the peak value of 
the reference signal when the square wave period is 10 𝑠 and when the period is 2.5 𝑠.  The peak 
value of the square wave reference signal is reached by the parallel architecture with the electrical 
actuation and by the LQR one with the pneumatic actuation, even if the wave period change 
between 10  and 2,5  seconds. On contrary, the same feature is not achieved by the cascade 
technique applied to both actuations and by the LQR technique applied to the electrical actuation. 
Moreover, considerations about the time delay between the output signal and the reference one 
can be made on the basis of the system response to sine wave. The pneumatic system exhibits a 
very low time delay for all the considered techniques. Conversely the electrical one exhibits a low 
time delay only with the parallel architecture. 
For all these reasons, the comparison between the two types of actuation can be resumed as 

− the pneumatic actuation exhibits very low values of settling time in the response of the 
cart position, but this generates permanent oscillations of the tilt angle of the pendulum 

− the electrical actuation provides a smooth trend in both output responses due to high 
values of settling time 

These considerations can be justified by analyzing the nature of the used actuation signals. The 
pneumatic system is based on the binary logic implemented by the opening and closure of the 
control valves, this mechanism causes oscillations in the rapid achievement of the steady state 
conditions. On the other hand given the reference signal, the electrical actuator is slower but it 
makes it possible to obtain a “smoother control" of 𝑥 and 𝛼 than the pneumatic cylinder. This 
“smoother control” can be attributed to the lower dynamics of the electric motor. 
All the developed control methods are applied to the linear model of the system with electrical 
and pneumatic actuation. Future developments of the present study can be 

- the analysis and adaptation of these control methods also for the non-linear system, 
considering in the mathematical model new elements like: nonlinear functions of the 
pendulum dynamics (𝑠𝑖𝑛 and 𝑐𝑜𝑠), friction forces in all the movable parts, transients in 
plant dynamics and generally all other features that makes the system increasingly like 
the real plant 

- the considered compensators could become digital controller thanks to the used of PC-
based algorithm or by Microcontrollers implemented on evaluation boards, that allow the 
design of more complex algorithms. 
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Appendix A 

A Technical drawings 
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Appendix B 

B Matlab scripts 

B1 System with electrical actuation 
Model, state space representation and transfer functions 
 
s = tf('s');        % declaration transfer function 's' 

 

% MoI = Moment of Inertia 

 

%% Model data (Electrical Actuation) 

mp   = 0.2;        % [kg]    Concentrated mass of the pendulum 

lp   = 0.5;        % [m]     Rod length of the pendulum 

Jp   = mp*(lp^2);       % [kgm^2] MoI of mp wrt fulcrum 

g    = 9.8;        % [ms^2]  Gravity acceleration 

p    = 10;        % [mm]    Pitch of the screw 

Ra   = 1.7;        % [Ohm]   Armature resistance 

K    = 0.53;        % [Nm/A]  Torque constant 

mv   = 3.1;        % [kg]    Screw mass 

r    = 0.008;        % [m]     Screw radius 

mc   = 1.8;        % [kg]    Cart mass 

Jm   = 4.3e-5;            % [kgm^2] MoI of the rotor shaft 

Jv   = (mv*(r^2))/2;           % [kgm^2] MoI of the transmission system 

X    = 2*pi*1000;       % [-]     Auxiliary variable 

Jcar = (mp+mc)*((p/X)^2);      % [kgm^2] MoI (mp+mc) wrt rotational axis 

Jtot = Jm+Jv+Jcar;       % [kgm^2] Total MoI of the system wrt the motor 

eta  = 0.96;        % [-]     Efficiency of the transmission system 

  

%% Integrators initial condition for the Simulink Model 

x0 = [0 0 0 0 0]; 

 
%% State Space representation 

 

load('sistema_raggiungibile.mat')     % State Space, controllable,   4 states 

SYS_r = ss(sistema_raggiungibile); 

FDT_r = minreal(zpk(tf(SYS_r)),1e-06); 

A_r = SYS_r.a; 

B_r = SYS_r.b; 

C_r = SYS_r.c; 

D_r = SYS_r.d; 

 

load('sistema_NONraggiungibile.mat')     % State Space, uncontrollable, 5 states 

SYS_Nr = ss(sistema_NONraggiungibile); 

FDT_Nr = minreal(zpk(tf(SYS_Nr)),1e-06); 

A_Nr = SYS_Nr.a; 

B_Nr = SYS_Nr.b; 

C_Nr = SYS_Nr.c; 

D_Nr = SYS_Nr.d; 

 

%% Controllable   SYS transfer functions 

 

Galpha_r = zpk(FDT_r(1));     % alpha/Va transfer function 

Gx_r     = zpk(FDT_r(2));     % x/Va     transfer function 

 

%% Uncontrollable SYS transfer functions 

 

Galpha_Nr = zpk(FDT_Nr(1));     % alpha/Va transfer function 

Gx_Nr     = zpk(FDT_Nr(2));     % x/Va     transfer function 

Galpha_x_Nr = minreal(zpk(Gx_Nr/Galpha_Nr),1e-06);  % x/alpha  transfer function 
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Script of the PIDs’ cascade architecture for the Electrical model 
 
%% PID for the INNER LOOP of the PIDs’ cascade architecture 

%% P CONTROLLER 

for kp_alpha = [-100000 -130000 -160000 -190000 -200000] 

figure(6), nyquist(kp_alpha*Galpha_Nr), legend('Kp= -100000','Kp= -130000','Kp= -

160000','Kp= -190000','Kp= -200000'),hold on 

end 

%% PD CONTROLLER 

kd_alpha = -650; 

Nd_alpha = 550000; 

% PD_G_ol = open   loop tf of the inner loop with PD controller 

PD_G_ol = minreal(zpk(-(200000+((kd_alpha*Nd_alpha*s)/(s+Nd_alpha)))*Galpha_Nr)); 

poles_PD_G_ol = pole(PD_G_ol); 

figure(7), nyquist(PD_G_ol) 

% PD_G_cl = closed loop tf of the inner loop with PD controller 

PD_G_cl = minreal(zpk(PD_G_ol/(1+PD_G_ol))); 

poles_PD_G_cl = pole(PD_G_cl); 

%% PI CONTROLLER 

ki_alpha = -3250000; 

% PI_G_ol = open   loop tf of the inner loop with PI controller 

PI_G_ol = minreal(zpk((-200000+(ki_alpha/s))*Galpha_Nr)); 

poles_PI_G_ol = pole(PI_G_ol); 

figure(8), nyquist((-200000+(ki_alpha/s))*Galpha_Nr) 

% PI_G_cl = closed loop tf of the inner loop with PI controller 

PI_G_cl = minreal(zpk(PI_G_ol/(1+PI_G_ol))); 

poles_PI_G_cl = pole(PI_G_cl); 

 

%% PID CONTROLLER for the inner loop, using PID tuning tool parameters 

kp_alpha_PID = -13061.5181780994; 

ki_alpha_PID = -204997.97380483; 

kd_alpha_PID = 60.4766490604993; 

N_alpha_PID  = 215.976221913899; 

Calpha = kp_alpha_PID+(ki_alpha_PID/s)+((kd_alpha_PID*N_alpha_PID*s)/(s+N_alpha_PID)); 

 

%% PID for the OUTER LOOP of the PIDs’ cascade architecture 

%% PID CONTROLLER for the outer loop, using PID tuning tool parameters 

kp_x_PID = 0.00865988352689662; 

ki_x_PID = 0.000250832346456376; 

kd_x_PID = 0.0693087704565265; 

N_x_PID  = 0.937526767376307; 

Cx = kp_x_PID+(ki_x_PID/s)+((kd_x_PID*N_x_PID*s)/(s+N_x_PID)); 

  

%% Stability Analysis of inner and outer loops, PIDs’ cascade architecture 

%% open   loop transfer function of the inner loop 

FDT_ol_il = minreal(zpk(Calpha*Galpha_Nr),1e-06);   

p_ol_il = pole(FDT_ol_il); 

figure(1), nyquist(FDT_ol_il) 

% magnitude and phase margin of the open loop FDT_ol_il 

figure(2), margin(Calpha*Galpha_Nr), grid on 

%% closed loop transfer function of the inner loop 

FDT_cl_il = minreal(zpk(FDT_ol_il/(1+FDT_ol_il)),1e-06); 

p_cl_il = pole(FDT_cl_il); 

%% open   loop transfer function of the outer loop 

figure(9), nyquist(FDT_cl_il*Galpha_x_Nr) 

FDT_ol_el = minreal(zpk(Cx*FDT_cl_il*Galpha_x_Nr),1e-06); 

p_ol_el = pole(FDT_ol_el); 

figure(3), nyquist(FDT_ol_el) 

% magnitude and phase margin of the open loop FDT_ol_el 

figure(4), margin(Cx*FDT_cl_il*Galpha_x_Nr), grid on 

%% closed loop transfer function of the outer loop 

FDT_cl_el = minreal(zpk(FDT_ol_el/(1+FDT_ol_el)),1e-06); 

p_cl_el = pole(FDT_cl_el); 
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Script of the PIDs’ parallel architecture for the Electrical model 
 
%% PID CONTROLLER for the alpha/Va transfer function,  using PID tuning tool parameters 

 

kp_alpha_PID = -13061.5181780994; 

ki_alpha_PID = -204997.97380483; 

kd_alpha_PID = 60.4766490604993; 

N_alpha_PID  = 215.976221913899; 

Calpha = kp_alpha_PID+(ki_alpha_PID/s)+((kd_alpha_PID*N_alpha_PID*s)/(s+N_alpha_PID)); 

 

%% PID CONTROLLER for the total parallel architecture 

 

%% PID CONTROLLER for the total parallel architecture, using Ziegler-Nichols method 

  

% proportional gain stable limit for Ziegler-Nichols optimization 

kc = -24000; 

% oscillation period [seconds] at P = -24279 

Pc = 0.15; 

% Ziegler-Nichols method 

kp_x_ZN = 0.6*kc; 

Tr      = Pc*0.5; 

ki_x_ZN = kp_x_ZN/Tr; 

Td      = Pc/8; 

kd_x_ZN = -kp_x_ZN*Td; 

Tf_x_ZN = 0.15*Td; 

N_x_ZN  = Tf_x_ZN^-1; 

 

Cx_ZN = kp_x_ZN+(ki_x_ZN/s)+((kd_x_ZN*s)/((Tf_x_ZN*s)+1)); 

 

%% PID CONTROLLER for the total parallel architecture, using PID tuning tool parameters 

 

kp_x_PID = -19875.0181340588; 

ki_x_PID = -4067.07933875287; 

kd_x_PID = 7058.0119971262; 

N_x_PID  = 2.81595131067379; 

 

Cx_PID = kp_x_PID+(ki_x_PID/s)+((kd_x_PID*N_x_PID*s)/(s+N_x_PID)); 

  

%% Stability Analysis for the alpha/Va tf and the total parallel architecture 

  

%% open   loop transfer function of the alpha/Va tf 

FDT_ol_al = minreal(zpk(Calpha*Galpha_Nr)); 

p_ol_al = pole(FDT_ol_al); 

figure(1), nyquist(FDT_ol_al) 

  

%% closed loop transfer function of the alpha/Va tf 

FDT_cl_al = minreal(zpk(FDT_ol_al/(1+FDT_ol_al))); 

p_cl_al = pole(FDT_cl_al); 

  

%% open   loop transfer function of the total parallel architecture 

figure(3), nyquist((Gx_Nr)/(1+(Galpha_Nr*Calpha))) 

FDT_ol_tl = minreal(zpk((Gx_Nr*Cx_ZN)/(1+(Galpha_Nr*Calpha))));      % Cx_ZN or Cx_PID 

p_ol_tl = pole(FDT_ol_tl); 

figure(2), nyquist(FDT_ol_tl) 

% magnitude and phase margin of the open loop FDT_ol_tl 

figure(4), margin(FDT_ol_tl), grid on 

  

%% closed loop transfer function of the total parallel architecture 

FDT_cl_tl = minreal(zpk(FDT_ol_tl/(1+FDT_ol_tl))); 

p_cl_tl = pole(FDT_cl_tl); 
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Script of the Static State feedback architecture for the Electrical model 
 
%% Controllability condition 

Mr     = ctrb(A_r,B_r); % Controllability matrix 

rho_Mr = rank(Mr);  % Rank of controllability matrix 

  

%% Observability   condition 

Mo     = obsv(A_r,C_r); % Observability   matrix 

rho_Mo = rank(Mo);  % Rank of observability   matrix 

 

%% Observer design 

others_obsv     = -100; 

lambda_obsv_des = [others_obsv others_obsv]; 

C_r_SO = [0 0 1 0];  % second row of system matrix C, referred to x 

L      = acker(A_r',C_r_SO',lambda_obsv_des)'; 

  

SYS_obsv = ss(A_r-L*C_r_SO,[B_r L],eye(4),zeros(4,2)); 

  

x0_hat = [0 0 0 0];  % Observer initial condition for the Simulink Model 

 

%% STATIC-STATE-FEEDBACK: Pole placement, N-K 

  

% continuous time requirements and eigenvalues 

s_hat = 0.1;                                             % max overshoot 

zeta  = abs(log(s_hat))/(sqrt(pi^2+(log(s_hat))^2));     % damping coefficient 

t_s_1 = 1;                                               % 1% settling time 

wn    = 4.6/(t_s_1*zeta);                                % natural frequency 

sigma = -zeta*wn;                                        % eigenvalue real and 

omega = wn*sqrt(1-zeta^2);                               % imaginary part tau=-1/sigma 

tau   = 1/(zeta*wn);                                     % time constant 

% discrete time eigenvalues for control law 

lambda_1 = sigma+j*omega; 

lambda_2 = sigma-j*omega; 

lambda_3 = sigma; 

  

% state feedback gain K 

others_K1  = -10; 

others_K2  = -6; 

lambda_des = [others_K1 others_K2 others_K1 0.001*lambda_3]; 

K = acker(A_r,B_r,lambda_des); % ‘acker’ for equal values of poles 

  

% gain correction N 

N = inv(C_r_SO*inv(eye(4)-(A_r-B_r*K))*B_r); 

 

%% Stability Analysis of Pole placement, N-K 

%% open loop transfer function 

load('OpenLoopTF_StaticStateFeedback.mat') 

SYS_OL_ssf = ss(OpenLoopTF_StaticStateFeedback); 

FDT_OL_ssf = minreal(zpk(tf(SYS_OL_ssf)),1e-06); 

poles_FDT_OL_ssf = pole(FDT_OL_ssf); 

figure(1), nyquist(FDT_OL_ssf) 

% magnitude and phase margin of the open loop 

figure(2), margin(FDT_OL_ssf), grid on 

%% closed loop transfer function 

load('ClosedLoopTF_StaticStateFeedback.mat') 

SYS_CL_ssf = ss(ClosedLoopTF_StaticStateFeedback); 

FDT_CL_ssf = minreal(zpk(tf(SYS_CL_ssf)),1e-06); 

poles_FDT_CL_ssf = pole(FDT_CL_ssf); 

figure(3), nyquist(FDT_CL_ssf) 

% magnitude and phase margin of the open loop 

figure(4), margin(FDT_CL_ssf), grid on 
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%% STATIC-STATE-FEEDBACK: Pole placement with integral action, Ki-Ko 

 

% State Space representation with the augmented state, n=5 

Atot = [1 -C_r_SO; zeros(4,1) A_r]; 

Btot = [0;B_r]; 

 

lambda_IntAct_des  = [-10 -8 -6 -4 0.001*lambda_3]; 

K_IntAct = place(Atot,Btot,lambda_IntAct_des); % ‘place’ for different values of poles 

Ki = K_IntAct(1); 

Ko = K_IntAct(2:5); 

 

%% Stability Analysis of Pole placement with integral action, Ki-Ko 

%% open loop transfer function 

load('OpenLoopTF_StaticStateFeedback_IntAct.mat') 

SYS_OL_ssf_Ia = ss(OpenLoopTF_StaticStateFeedback_IntAct); 

FDT_OL_ssf_Ia = minreal(zpk(tf(SYS_OL_ssf_Ia)),1e-06); 

poles_FDT_OL_ssf_Ia = pole(FDT_OL_ssf_Ia); 

figure(5), nyquist(FDT_OL_ssf_Ia) 

% magnitude and phase margin of the open loop 

figure(6), margin(FDT_OL_ssf_Ia), grid on 

%% closed loop transfer function 

load('ClosedLoopTF_StaticStateFeedback_IntAct.mat') 

SYS_CL_ssf_Ia = ss(ClosedLoopTF_StaticStateFeedback_IntAct); 

FDT_CL_ssf_Ia = minreal(zpk(tf(SYS_CL_ssf_Ia)),1e-06); 

poles_FDT_CL_ssf_Ia = pole(FDT_CL_ssf_Ia); 

figure(7), nyquist(FDT_CL_ssf_Ia) 

% magnitude and phase margin of the open loop 

figure(8), margin(FDT_CL_ssf_Ia), grid on 

 

%% STATIC-STATE-FEEDBACK: LQR with integral action, Ki-Ko 

 

% Weighting matrices Q and R 

Q = [ 1   0   0   0 ; 0   1   0   0 ; 0   0   1   0 ; 0   0   0   1 ]; 

R =   1; 

[K,S,CLP] = lqr(SYS_r,Q,R); % lqr command for closed-loop-poles computation 

CLP_LQR = [CLP]; 

 

% State Space representation with the augmented state, n=5 

C_r_SO = [0 0 1 0]; 

Atot = [1 -C_r_SO; zeros(4,1) A_r]; 

Btot = [0;B_r]; 

 

lambda_LQR_des = [CLP_LQR' 0.001*lambda_3]; 

K_LQR = place(Atot,Btot,lambda_LQR_des); % ‘place’ for different values of poles 

Ki_LQR = K_LQR(1); 

Ko_LQR = K_LQR(2:5); 

 

%% Stability Analysis of LQR with integral action, Ki-Ko (lqr) 

%% open loop transfer function 

load('OpenLoopTF_LQR.mat') 

SYS_OL_LQR = ss(OpenLoopTF_LQR); 

FDT_OL_LQR = minreal(zpk(tf(SYS_OL_LQR)),1e-06); 

poles_FDT_OL_LQR = pole(FDT_OL_LQR); 

figure(1), nyquist(FDT_OL_LQR) 

% magnitude and phase margin of the open loop 

figure(2), margin(FDT_OL_LQR), grid on 

%% closed loop transfer function 

load('ClosedLoopTF_LQR.mat') 

SYS_CL_LQR = ss(ClosedLoopTF_LQR); 

FDT_CL_LQR = minreal(zpk(tf(SYS_CL_LQR)),1e-06); 

poles_FDT_CL_LQR = pole(FDT_CL_LQR); 

figure(3), nyquist(FDT_CL_LQR) 

% magnitude and phase margin of the open loop 

figure(4), margin(FDT_CL_LQR), grid on 
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B2 System with pneumatic actuation 
Model, state space representation and transfer functions 
 
s = tf('s');        % declaration transfer function 's' 

 

%% Model data (Pneumatic Actuation) 

 

l   = 0.5;                % [m]     Rod length of the pendulum 

m   = 0.2;                % [kg]    Concentrated mass of the pendulum 

M_c = 1.8;                % [kg]    Cart mass 

M_p = 0.4;                % [kg]    Piston mass 

b   = 21.8;               % [N*s/m] Viscous damping coefficient 

A_a = 2.01*10^-4;         % [m^2]   Area of the rear  piston chamber 

A_b = 1.73*10^-4;         % [m^2]   Area of the front piston chamber 

C_a = 1200000;            %         A_a*P_supply/(2*Va0) 

C_b = 1200000;            %         A_b*P_supply/(2*Vb0) 

K_a = 2177000;            %         (p0/(2*rho0))*(k*P_supply/Va0) 

K_b = 2534000;            %         (p0/(2*rho0))*(k*P_supply/Vb0) 

g   = 9.8;                % [m/s^2] Gravity acceleration 

 

%% Integrators initial condition for the Simulink Model 

 

x0 = [0 0 0 0 0 0]; 

 

%% State Space representation 

 

load('sistema_raggiungibile.mat')     % State Space, controllable,   5 states 

SYS_r = ss(sistema_raggiungibile); 

FDT_r = minreal(zpk(tf(SYS_r)),1e-06); 

A_r = SYS_r.a; 

B_r = SYS_r.b; 

C_r = SYS_r.c; 

D_r = SYS_r.d; 

 

load('sistema_NONraggiungibile.mat')     % State Space, uncontrollable, 6 states 

SYS_Nr = ss(sistema_NONraggiungibile); 

FDT_Nr = minreal(zpk(tf(SYS_Nr)),1e-06); 

A_Nr = SYS_Nr.a; 

B_Nr = SYS_Nr.b; 

C_Nr = SYS_Nr.c; 

D_Nr = SYS_Nr.d; 

 

%% Controllable   SYS transfer functions 

 

Galpha_r = zpk(FDT_r(1));     % alpha/u transfer function 

Gx_r     = zpk(FDT_r(2));     % x/u     transfer function 

 

%% Uncontrollable SYS transfer functions 

 

Galpha_Nr = zpk(FDT_Nr(1));     % alpha/u transfer function 

Gx_Nr     = zpk(FDT_Nr(2));     % x/u     transfer function 

Galpha_x_Nr = minreal(zpk(Gx_Nr/Galpha_Nr),1e-06);  % x/alpha transfer function 
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Script of the PIDs’ cascade architecture for the Pneumatic model 
 
%% PID for the INNER LOOP of the PIDs’ cascade architecture 

 

%% PID CONTROLLER for the inner loop, using PID tuning tool parameters 

kp_alpha = 2.09; 

ki_alpha = 6.31; 

kd_alpha = 0.103; 

Tf_alpha = 0.000875; 

N_alpha  = Tf_alpha^-1; 

  

Calpha = kp_alpha+(ki_alpha/s)+((kd_alpha*s)/((Tf_alpha*s)+1)); 

 

%% PID for the OUTER LOOP of the PIDs’ cascade architecture 

 

%% PID CONTROLLER for the outer loop, using PID tuning tool parameters 

kp_x = -0.000802; 

ki_x = -4.68e-06; 

kd_x = -0.0306; 

Tf_x = 0.00875; 

N_x  = Tf_x^-1; 

  

Cx = kp_x+(ki_x/s)+((kd_x*s)/((Tf_x*s)+1)); 

  

%% Stability Analysis of inner and outer loops, PIDs’ cascade architecture 

 

%% open loop transfer function of the inner loop 

FDT_ol_il = minreal(zpk(Calpha*Galpha_Nr),1e-06); 

p_ol_il = pole(FDT_ol_il); 

figure(1), nyquist(FDT_ol_il) 

% magnitude and phase margin of the open loop FDT_ol_il 

figure(2), margin(Calpha*Galpha_Nr), grid on 

 

%% closed loop transfer function of the inner loop 

FDT_cl_il = minreal(zpk(FDT_ol_il/(1+FDT_ol_il)),1e-06); 

p_cl_il = pole(FDT_cl_il); 

 

%% open loop transfer function of the external loop 

figure(8), nyquist(FDT_cl_il*Galpha_x_Nr) 

FDT_ol_el = minreal(zpk(Cx*FDT_cl_il*Galpha_x_Nr),1e-06); 

p_ol_el = pole(FDT_ol_el); 

figure(3), nyquist(FDT_ol_el) 

% magnitude and phase margin of the open loop FDT_ol_el 

figure(4), margin(Cx*FDT_cl_il*Galpha_x_Nr), grid on 

 

%% closed loop transfer function of the external loop 

FDT_cl_el = minreal(zpk(FDT_ol_el/(1+FDT_ol_el)),1e-06); 

p_cl_el = pole(FDT_cl_el); 
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Script of the PIDs’ parallel architecture for the Pneumatic model 
 
%% PID CONTROLLER for the alpha/Va transfer function,  using PID tuning tool parameters 

 

kp_alpha = 2.09; 

ki_alpha = 6.31; 

kd_alpha = 0.103; 

Tf_alpha = 0.000875; 

N_alpha  = Tf_alpha^-1; 

  

Calpha = kp_alpha+(ki_alpha/s)+((kd_alpha*s)/((Tf_alpha*s)+1)); 

 

%% PID CONTROLLER for the total parallel architecture 

 

%% PID CONTROLLER for the total parallel architecture, using Ziegler-Nichols method 

  

% proportional gain stable limit for Ziegler-Nichols optimization 

kc = -0.6; 

% oscillation period [seconds] at P = -0.6 

Pc = 3.15; % 5 for optimization 

% Ziegler-Nichols method 

kp_x_ZN = 0.6*kc; 

Tr      = Pc*0.5; 

ki_x_ZN = kp_x_ZN/Tr; 

Td      = Pc/8; 

kd_x_ZN = -kp_x_ZN*Td; 

Tf_x_ZN = 0.15*Td; 

N_x_ZN  = Tf_x_ZN^-1; 

 

Cx = kp_x_ZN+(ki_x_ZN/s)+((kd_x_ZN*s)/((Tf_x_ZN*s)+1)); 

 

%% Stability Analysis for the alpha/Va tf and the total parallel architecture 

  

%% open   loop transfer function of the alpha/Va tf 

FDT_ol_al = minreal(zpk(Calpha*Galpha_Nr)); 

p_ol_al = pole(FDT_ol_al); 

figure(1), nyquist(FDT_ol_al) 

  

%% closed loop transfer function of the alpha/Va tf 

FDT_cl_al = minreal(zpk(FDT_ol_al/(1+FDT_ol_al))); 

p_cl_al = pole(FDT_cl_al); 

  

%% open   loop transfer function of the total parallel architecture 

figure(3), nyquist((Gx_Nr)/(1+(Galpha_Nr*Calpha))) 

FDT_ol_tl = minreal(zpk((Gx_Nr*Cx_ZN)/(1+(Galpha_Nr*Calpha)))); 

p_ol_tl = pole(FDT_ol_tl); 

figure(2), nyquist(FDT_ol_tl) 

% magnitude and phase margin of the open loop FDT_ol_tl 

figure(4), margin(FDT_ol_tl), grid on 

  

%% closed loop transfer function of the total parallel architecture 

FDT_cl_tl = minreal(zpk(FDT_ol_tl/(1+FDT_ol_tl))); 

p_cl_tl = pole(FDT_cl_tl); 
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Script of the Static State feedback architecture for the Pneumatic model 
 
%% Controllability condition 

Mr     = ctrb(A_r,B_r); % Controllability matrix 

rho_Mr = rank(Mr);  % Rank of controllability matrix 

  

%% Observability   condition 

Mo     = obsv(A_r,C_r); % Observability   matrix 

rho_Mo = rank(Mo);  % Rank of observability   matrix 

 

%% Observer design 

others_obsv     = -100; 

lambda_obsv_des = [others_obsv others_obsv]; 

C_r_SO = [0 0 0 1 0];  % second row of system matrix C, referred to x 

L      = acker(A_r',C_r_SO',lambda_obsv_des)'; 

  

SYS_obsv = ss(A_r-L*C_r_SO,[B_r L],eye(5),zeros(5,2)); 

  

x0_hat = [0 0 0 0 0];  % Observer initial condition for the Simulink Model 

 

%% STATIC-STATE-FEEDBACK: Pole placement, N-K 

  

% continuous time requirements and eigenvalues 

s_hat = 0.1;                                             % max overshoot 

zeta  = abs(log(s_hat))/(sqrt(pi^2+(log(s_hat))^2));     % damping coefficient 

t_s_1 = 1;                                               % 1% settling time 

wn    = 4.6/(t_s_1*zeta);                                % natural frequency 

sigma = -zeta*wn;                                        % eigenvalue real and 

omega = wn*sqrt(1-zeta^2);                               % imaginary part tau=-1/sigma 

tau   = 1/(zeta*wn);                                     % time constant 

% discrete time eigenvalues for control law 

lambda_1 = sigma+j*omega; 

lambda_2 = sigma-j*omega; 

lambda_3 = sigma; 

  

% state feedback gain K 

others_K   = -5; 

lambda_des = [others_K lambda_3]; 

K = acker(A_r,B_r,lambda_des); % ‘acker’ for equal values of poles 

  

% gain correction N 

N = inv(C_r_SO*inv(eye(5)-(A_r-B_r*K))*B_r); 

 

%% Stability Analysis of Pole placement, N-K 

%% open loop transfer function 

load('OpenLoopTF_StaticStateFeedback.mat') 

SYS_OL_ssf = ss(OpenLoopTF_StaticStateFeedback); 

FDT_OL_ssf = minreal(zpk(tf(SYS_OL_ssf)),1e-06); 

poles_FDT_OL_ssf = pole(FDT_OL_ssf); 

figure(1), nyquist(FDT_OL_ssf) 

% magnitude and phase margin of the open loop 

figure(2), margin(FDT_OL_ssf), grid on 

%% closed loop transfer function 

load('ClosedLoopTF_StaticStateFeedback.mat') 

SYS_CL_ssf = ss(ClosedLoopTF_StaticStateFeedback); 

FDT_CL_ssf = minreal(zpk(tf(SYS_CL_ssf)),1e-06); 

poles_FDT_CL_ssf = pole(FDT_CL_ssf); 

figure(3), nyquist(FDT_CL_ssf) 

% magnitude and phase margin of the open loop 

figure(4), margin(FDT_CL_ssf), grid on 
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%% STATIC-STATE-FEEDBACK: Pole placement with integral action, Ki-Ko 

 

% State Space representation with the augmented state, n=5 

Atot = [1 -C_r_SO; zeros(5,1) A_r]; 

Btot = [0;B_r]; 

 

lambda_IntAct_des  = [-10 -10 -10 -10 -10 lambda_3]; 

K_IntAct = acker(Atot,Btot,lambda_IntAct_des); % ‘acker’ for equal values of poles 

Ki = K_IntAct(1); 

Ko = K_IntAct(2:6); 

 

%% Stability Analysis of Pole placement with integral action, Ki-Ko 

%% open loop transfer function 

load('OpenLoopTF_StaticStateFeedback_IntAct.mat') 

SYS_OL_ssf_Ia = ss(OpenLoopTF_StaticStateFeedback_IntAct); 

FDT_OL_ssf_Ia = minreal(zpk(tf(SYS_OL_ssf_Ia)),1e-06); 

poles_FDT_OL_ssf_Ia = pole(FDT_OL_ssf_Ia); 

figure(5), nyquist(FDT_OL_ssf_Ia) 

% magnitude and phase margin of the open loop 

figure(6), margin(FDT_OL_ssf_Ia), grid on 

%% closed loop transfer function 

load('ClosedLoopTF_StaticStateFeedback_IntAct.mat') 

SYS_CL_ssf_Ia = ss(ClosedLoopTF_StaticStateFeedback_IntAct); 

FDT_CL_ssf_Ia = minreal(zpk(tf(SYS_CL_ssf_Ia)),1e-06); 

poles_FDT_CL_ssf_Ia = pole(FDT_CL_ssf_Ia); 

figure(7), nyquist(FDT_CL_ssf_Ia) 

% magnitude and phase margin of the open loop 

figure(8), margin(FDT_CL_ssf_Ia), grid on 

 

%% STATIC-STATE-FEEDBACK: LQR with integral action, Ki-Ko 

 

% Weighting matrices Q and R 

Q = [ 10 0 0 0 0 ; 0 1 0 0 0 ; 0 0 1 0 0 ; 0 0 0 100 0 ; 0 0 0 0 1 ]; 

R =   1e9; 

[K,S,CLP] = lqr(SYS_r,Q,R); % lqr command for closed-loop-poles computation 

CLP_LQR = [CLP]; 

 

% State Space representation with the augmented state, n=5 

C_r_SO = [0 0 1 0 0]; 

Atot = [1 -C_r_SO; zeros(5,1) A_r]; 

Btot = [0;B_r]; 

 

lambda_LQR_des = [CLP_LQR' lambda_3*1e01]; 

K_LQR = place(Atot,Btot,lambda_LQR_des); % ‘place’ for different values of poles 

Ki_LQR = K_LQR(1); 

Ko_LQR = K_LQR(2:6); 

 

%% Stability Analysis of LQR with integral action, Ki-Ko (lqr) 

%% open loop transfer function 

load('OpenLoopTF_LQR.mat') 

SYS_OL_LQR = ss(OpenLoopTF_LQR); 

FDT_OL_LQR = minreal(zpk(tf(SYS_OL_LQR)),1e-06); 

poles_FDT_OL_LQR = pole(FDT_OL_LQR); 

figure(1), nyquist(FDT_OL_LQR) 

% magnitude and phase margin of the open loop 

figure(2), margin(FDT_OL_LQR), grid on 

%% closed loop transfer function 

load('ClosedLoopTF_LQR.mat') 

SYS_CL_LQR = ss(ClosedLoopTF_LQR); 

FDT_CL_LQR = minreal(zpk(tf(SYS_CL_LQR)),1e-06); 

poles_FDT_CL_LQR = pole(FDT_CL_LQR); 

figure(3), nyquist(FDT_CL_LQR) 

% magnitude and phase margin of the open loop 

figure(4), margin(FDT_CL_LQR), grid on 
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Appendix C 

C Computation of 𝐺𝑉𝑎𝛼, 𝐺𝑉𝑎𝑥 and 𝐺𝛼𝑥 transfer functions 

This Appendix provides the computation steps used to obtain 𝐺𝑉𝑎𝛼, 𝐺𝑉𝑎𝑥 and 𝐺𝛼𝑥, starting from 
the equations (2.3-1), 2), 3), 4), 5) and 6) shown in section 2.3, which are repeated here 

𝑙𝑝�̈� = 𝑔𝛼 − �̈�     (1) 

�̇� =
𝑝

2𝜋∙1000
�̇�     (2) 

𝑉𝑎 = 𝑅𝑎𝐼𝑎 + 𝐸     (3) 

𝐸 = 𝐾�̇�     (4) 

𝐶𝑚 = 𝐾𝐼𝑎     (5) 

𝐶𝑚 − 𝐽𝑡𝑜𝑡�̈� = (𝑚𝑝𝑙𝑝
𝑝

2𝜋∙1000∙𝜂
) �̈�  (6) 

Summarizing, the equation (1) describes the linearized model of the inverted pendulum, the 
equation (2) gives the ratio of the transmission system, the equations (3), (4) and (5) are the 
constitutive equations that describes the motor and, finally, the equation (6) is the torques balance 
at the output shaft of the motor. 

Applying the Laplace transform to these equations, the new relations become 

𝑙𝑝�̅�𝑠
2 = 𝑔�̅� − �̅�𝑠2    (s1) 

�̅� =
𝑝

2𝜋∙1000
�̅�     (s2) 

𝑉�̅� = 𝑅𝑎𝐼�̅� + �̅�     (s3) 

�̅� = 𝐾�̅�𝑠     (s4) 

𝐶𝑚̅̅ ̅̅ = 𝐾𝐼�̅�     (s5) 

𝐶𝑚̅̅ ̅̅ − 𝐽𝑡𝑜𝑡�̅�𝑠
2 = (𝑚𝑝𝑙𝑝

𝑝

2𝜋∙1000∙𝜂
) �̅�𝑠2  (s6) 

Let’s assume, from now on, the marked variables equal to the ones that are time-dependent, in 
order to simplify the next writing procedures. 
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Considering the equation (s1) and isolating the 𝑥 and 𝛼 terms, the transfer function obtained is 

𝐺𝛼𝑥 =
𝑥

𝛼
=
𝑔 − 𝑙𝑝𝑠

2

𝑠2
 

Starting from equation (s3) and substituting, for 𝐼𝑎 and 𝐸, the equations (s4) and (s5) the follow 
relation is obtained 

𝑉𝑎 = 𝑅𝑎
𝐶𝑚

𝐾
+ 𝐾𝜃𝑠    (A) 

Others substitution can be applied to the relation (A), the following steps describe the procedure 
to obtain the 𝐺𝑉𝑎𝛼 transfer function, highlighting the needed substitutions 

(s2) - (s6) → (A) 𝑉𝑎 =
𝑅𝑎

𝐾
((𝑚𝑝𝑙𝑝

𝑝

2𝜋∙1000∙𝜂
) 𝛼𝑠2 + 𝐽𝑡𝑜𝑡𝜃𝑠

2) +
𝐾2𝜋1000

𝑝
𝑥𝑠    (B) 

(s1) - (s2) → (B) 𝑉𝑎 =
𝑅𝑎

𝐾
((𝑚𝑝𝑙𝑝

𝑝

2𝜋∙1000∙𝜂
) 𝛼𝑠2 +

𝐽𝑡𝑜𝑡𝐾2𝜋1000

𝑝
𝑥𝑠2) +

𝐾2𝜋1000

𝑝
(
𝑔−𝑙𝑝𝑠

2

𝑠2
)𝛼𝑠  (C) 

(s1) → (C)  𝑉𝑎 =
𝑅𝑎

𝐾
((𝑚𝑝𝑙𝑝

𝑝

2𝜋∙1000∙𝜂
) 𝛼𝑠2 +

𝐽𝑡𝑜𝑡𝐾2𝜋1000

𝑝
(
𝑔−𝑙𝑝𝑠

2

𝑠2
)𝛼𝑠2) +

𝐾2𝜋1000

𝑝
(
𝑔−𝑙𝑝𝑠

2

𝑠2
)𝛼𝑠 (D) 

Simplifying the relation (D) and highlighting 𝛼 in the right side, the 𝐺𝑉𝑎𝛼 can be obtained. The 
relation becomes 

𝐺𝑉𝑎𝛼 =
(2𝜋1000𝐾𝑝2𝜂)𝑠

(𝑚𝑝𝑝
3𝑙𝑝𝑅𝑎 − 𝐽𝑡𝑜𝑡(2𝜋1000)

2𝜂𝑙𝑝𝑝𝑅𝑎)𝑠
3 − ((2𝜋1000)2𝜂𝑙𝑝𝑝𝐾

2)𝑠2 + (𝐽𝑡𝑜𝑡(2𝜋1000)
2𝜂𝑔𝑝𝑅𝑎)𝑠 + ((2𝜋1000)

2𝑔𝐾2𝑝𝜂)
 

Knowing 𝐺𝑉𝑎𝛼 and 𝐺𝛼𝑥, the 𝐺𝑉𝑎𝑥 transfer function is computed as follows 

𝐺𝑉𝑎𝑥 = 𝐺𝑉𝑎𝛼𝐺𝛼𝑥 =
(2𝜋1000𝐾𝑝2𝜂)𝑠

(𝑚𝑝𝑝
3𝑙𝑝𝑅𝑎 − 𝐽𝑡𝑜𝑡(2𝜋1000)

2𝜂𝑙𝑝𝑝𝑅𝑎)𝑠
3 − ((2𝜋1000)2𝜂𝑙𝑝𝑝𝐾

2)𝑠2 + (𝐽𝑡𝑜𝑡(2𝜋1000)
2𝜂𝑔𝑝𝑅𝑎)𝑠 + ((2𝜋1000)

2𝑔𝐾2𝑝𝜂)
∙
𝑔 − 𝑙𝑝𝑠

2

𝑠2
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