
Implementation and evaluation of a tool for translating
Layout-based to Visual android tests

Chaudhary Robin

Master Degree in
Communication and Computer Network Engineering

Politecnico di Torino
Academic Year: A.Y. 2019-2020

Supervisors:
ARDITO LUCA
COPPOLA RICCARDO

Contents

1 INTRODUCTION 5
1.1 Mobile Application Testing . 5

1.1.1 Mobile Application Development Life cycle 5
1.1.2 Types of Mobile Application Testing 6
1.1.3 Types of Testing Tools . 6

1.2 Motivation . 7
1.3 Layout Based to Visual based Translation of Test Scripts 8

1.3.1 Creating Layout Based Test Cases: 8
1.3.2 Data Collection: . 8
1.3.3 Translation Program Implementation: 8
1.3.4 Data Generation for Visual Test Cases: 8
1.3.5 Execution of Visual Test Cases: 9

2 BACKGROUND 9
2.1 ANDROID APP STRUCTURE 9
2.2 ANDROID APPLICATION TESTING 13

2.2.1 Layout Based Testing: . 14
2.2.2 Visual GUI Based Testing 15

2.3 ANDROID TESTING ISSUES 16

3 TOOL ARCHITECTURE 20
3.0.1 Layout Based Test Script Creation: 21
3.0.2 Parser Program: . 21
3.0.3 Update Layout Test Cases: 23
3.0.4 Capturing Screenshots: 23
3.0.5 Resize Screenshots: . 24
3.0.6 Action List Extraction: 24
3.0.7 Convert to GUI based Keywords: 25
3.0.8 Creating Visual Test Cases: 26
3.0.9 Executing GUI Test Cases: 27

4 EVALUATION 27
4.1 Definition of the Experiment: . 27
4.2 Interaction Log Data: . 28
4.3 Attempts for Translation . 30
4.4 Issues faced in Translation: . 31
4.5 Time Taken For Translation: . 34
4.6 Execution Attempts: . 35
4.7 Test Suites and Apps Used: . 35
4.8 Results: . 39

4.8.1 Omni Notes Test Script Example 40
4.8.2 Calculator App Test Script Example 40
4.8.3 Unit Converter Test Script Example 41

1

5 Threats to Validity: 42
5.1 Threats to External Validity: . 42
5.2 Threats to Internal Validity: . 42
5.3 Threats to Construction Validity: 43

6 CONCLUSION 43
6.1 Conclusion of Experiment . 43
6.2 Expected Future Work . 44

Appendices 45

A Omni Notes Application 45
A.A Omni Notes Text Script 1 . 45
A.B Omni Notes Text Script 2 . 46
A.C Omni Notes Text Script 3 . 46
A.D Omni Notes Text Script 4 . 47
A.E Omni Notes Text Script 5 . 48
A.F Omni Notes Text Script 6 . 48
A.G Omni Notes Text Script 7 . 49
A.H Omni Notes Text Script 8 . 50
A.I Omni Notes Text Script 9 . 51
A.J Omni Notes Text Script 10 . 51

B Calculator Application 52
B.A Calculator App Test Script 1 . 52
B.B Calculator App Test Script 2 . 53
B.C Calculator App Test Script 3 . 54
B.D Calculator App Test Script 4 . 55
B.E Calculator App Test Script 5 . 56
B.F Calculator App Test Script 6 . 57
B.G Calculator App Test Script 7 . 58
B.H Calculator App Test Script 8 . 59
B.I Calculator App Test Script 9 . 60
B.J Calculator App Test Script 10 . 61

C Calculator Application 62
C.A UnitConverter App Test Script 1 62
C.B UnitConverter App Test Script 2 63
C.C UnitConverter App Test Script 3 64
C.D UnitConverter App Test Script 4 65
C.E UnitConverter App Test Script 5 66
C.F UnitConverter App Test Script 6 67
C.G UnitConverter App Test Script 7 68
C.H UnitConverter App Test Script 8 69
C.I UnitConverter App Test Script 9 70
C.J UnitConverter App Test Script 10 71

2

List of Figures

1 Block Diagram for Translation 8
2 Android App Structure . 10
3 Layout to Visual Tool Architecture 20
4 Sikuli Input Text File . 26
5 Sikuli Tool UI . 27
6 Omni Notes Interaction Table . 28
7 Calculator App Interaction Table 29
8 Unit Converter Interaction Table 29
9 Attempts for Translation Table 30
10 Discarded Image 1 . 31
11 Accepted Image 1 . 32
12 Discarded Image 2 . 32
13 Accepted Image 2 . 32
14 Discarded Screenshots By Apps 33
15 Similar Image Issue . 34
16 Execution Attempts Passed . 35
17 Omni Notes Application UI . 37
18 Calculator Application UI . 38
19 Unit Converter Application UI 39

3

ABSTRACT

Context:Mobile testing tools can be categorized in three classes, which are
first generation(coordinate based), second generation (layout based) or third
generation (visual based). All of them have their own advantages and disad-
vantages, but these shortcomings could be overcome by using a mixed approach
where automated scripts can be translated from one generation to another one.
Using a mixed approach for testing will improve the productivity of tests scripts
development, and mitigate the issues like fragility and maintainability. since,
some graphical aspects of the application could result in failure while performing
visual GUI based testing but could be recovered with layout based ones. There
is a possibility to create Visual scripts from existing available layout based test
scripts
Goal: The aim of this work is to implement a tool that can automatically trans-
late second generation layout based test scripts in the third generation visual
GUI based test scripts which may be Sikuli or Eyeautomate
Method: A software project in Eclipse IDE is created using java language with
support of selenium framework to achieve the above mentioned goal and then an
experiment was conducted, to evaluate the success rate of the translated scripts.
The experiment consisted in translating layout test scripts, developed for three
open source mobile applications (Omni Notes, Calculator and Unit Converter
Application), into Sikuli GUI based scripts.
Results: The translation was completed with very high success rate for all
the test cases for all three applications (30 out of 30 test cases successfully
translated), while the execution of those scripts showed less success rate com-
paratively
Conclusion: The experiment concluded that the translation from second gen-
eration (layout based) to third generation (visual based) test scripts is feasible
in the mobile domain, and it reduces the efforts required for generating visual-
based test cases. However more work is required to extend the proposed tool
and experiment it in industrial environment, as well as to measure its capability
of reducing fragility and maintenance effort for visual-based test suites.

4

1 INTRODUCTION

The experiment is the translation of layout based test scripts into GUI based
test scripts. It was performed with help of different tools and using different
concepts related to mobile testing.Before explaining about the actual experiment
performed, we need to understand the concept of mobile testing in general and
why there is a need to perform this experiment and how it is may be useful
for the industrial use. This chapter introduces the project with its prerequisite
knowledge and provides the motivation

1.1 Mobile Application Testing

Mobile application testing is a process by which application software developed
for handheld mobile devices is tested for its functionality, usability and con-
sistency. Mobile application testing can be an automated or manual type of
testing. Mobile applications either come pre-installed or can be installed from
mobile software distribution platforms.

1.1.1 Mobile Application Development Life cycle

There are different phases in development of a mobile application:

1. Planning - Planning is one of the most important aspects of every de-
velopment it is the creation of mobile apps. one need to know answer
of questions like, aim of the mobile application, kind of audience it will
target, time required to develop the application and finally,platform on
which the app will be developed

2. Design - It is advised to develop the designs and the mobile app devel-
opment methodology (agile or waterfall, as per the requirement) in this
phase only. Prototypes are the early sketches that help determine the flow
of mobile app development in respect to app creation and designing.

3. Coding - The coding of an application is the most important stage as it
involves all the technicalities to address.

4. Testing - It is important to identify all the bugs prior to the official
app release. Apps with lots of bugs is never going to create the kind of
impression that is required. Therefore, it is essential to test the application
before its official release.

5. App Launch - It is the final stage in the entire mobile app development
procedure. As your application is ready to be launched, it is now time for
you to register it over different App Stores. Besides the two main App
Stores that we know as Google Play and Apple App Store, mobile apps
can also be stored on a range of other platforms too including the Amazon
App Store.

5

1.1.2 Types of Mobile Application Testing

There are different types of mobile application testing:

• Functional testing - It ensures that the application is working as per
the requirements. Most of the tests conducted for this is driven by the
user interface and call flow.

• Laboratory Testing - It is usually carried out by network carriers, is
done by simulating the complete wireless network. This test is performed
to find out any glitches when a mobile application uses voice and/or data
connection to perform some functions.

• Performance Testing - It is undertaken to check the performance and
behavior of the application under certain conditions such as low battery,
bad network coverage, low available memory, simultaneous access to the
application’s server by several users and other conditions. Performance
of an application can be affected from two sides: the application’s server
side and client’s side. Performance testing is carried out to check both.

• Memory leakage testing - Memory leakage happens when a computer
program or application is unable to manage the memory it is allocated
resulting in poor performance of the application and the overall slowdown
of the system. As mobile devices have significant constraints of available
memory, memory leakage testing is crucial for the proper functioning of
an application

• Usability Testing - It is carried out to verify if the application is achiev-
ing its goals and getting a favorable response from users. This is impor-
tant as the usability of an application is its key to commercial success (it is
nothing but user friendliness). Another important part of usability testing
is to make sure that the user experience is uniform across all devices.

• Load Testing - When many users all attempt to download, load, and
use an app or game simultaneously, slow load times or crashes can occur
causing many customers to abandon your app, game, or website. In-
country human testing done manually is the most effective way to test
load.

• Crowd-sourced Testing - A global community of testers provides easy
access to different devices and platforms. A globally distributed team can
also test it in multiple locations and under different network conditions.

1.1.3 Types of Testing Tools

1. Coordinate Based Testing Tools - These are First generation testing
tools which identify elements in the layout through their coordinates. This
technique is not much used due to its fragility

6

2. Layout or Property Based Testing Tools - They are also called Sec-
ond generation testing tools. These allows them to identify a component
based on its label or ID or a property as the text contained. This type
of test is more robust of the previous one but does not check the actual
aspect of the GUI and has an high maintenance cost

3. Visual GUI Testing Tools - These are third generation testing tools
that identify elements through image recognition algorithms, which cap-
ture the actual appearance of the elements as displayed to the user.

1.2 Motivation

The pace of mobile application development is at the record high in today’s
time, every business wants to come on a mobile platform and wants to interact
with the users. since, mobile application testing should also develop with the
same pace and most of the projects are developed with agile approach where
development and testing occurs in parallel stages. Although the market is full of
different mobile application testing tools. Layout based testing techniques and
tools are the most in use. While visual GUI based testing tools were not so suc-
cessful comparatively because of their lack of robustness and performance. Even
if there are evidence of applicability, feasibility and usefulness of Visual GUI
testing tools they are less commonly used than the Layout-based. But Layout-
based testing tools cannot fully emulate human user as interactions through
GUI properties do not verify the system’s appearance as shown to the human
user. Most researches aimed to compare the two techniques have concluded
that a mixed approach is required where both kind of testing tools are used in
parallel by the testers. The first advantage of a mixed approach is that it allows
re-usability of already existing Visual tests suites. This would reduce the devel-
opment effort for the test scripts and increase the productivity. Also, the layout
based test scripts can be converted to visual test scripts automatically, and that
too without manually recapturing the images. This is what we have tried to
achieve in this experiment. By collecting screenshots of particular elements on
the screen, which are required to execute the layout based test script, while
same screenshots are passed on to GUI based tool for execution. This way, it
would help to mitigate the fragility [1] issues also, since layout based testing is
sensitive to code changes and visual testing is sensible to GUI changes. Also, if
the layout based test cases does not work, than it is possible to recover them
from visual test cases and vice versa, which reduces the maintenance cost also.

7

1.3 Layout Based to Visual based Translation of Test Scripts

Figure 1: Block Diagram for Translation

1.3.1 Creating Layout Based Test Cases:

The initial stage is to create Layout based test cases. we have created our test
case using java language in selenium framework using Eclipse IDE

1.3.2 Data Collection:

A parser java program taken an input file which is a layout based test script
and parse through it, to collect all the necessary data from each line code which
performs an interaction with the mobile application. The data collected are the
locator, container, attribute, value, action performed

1.3.3 Translation Program Implementation:

A java program takes an input file which is a layout based test script, reads
every line, add a functionality to take screenshot of the element under execution
through a function, and writes the updated file as another java file.

1.3.4 Data Generation for Visual Test Cases:

The java file created in previous step is run for every layout based updated test
script one by one. So, every time an element is interacted on the mobile screen,
before that, the screenshot of that element is taken and saved at a location in
the system. On other hand the same java program goes through the layout test
case and collect all the action performed on all the elements in the test case, to
create an updated text file for Visual text case.

8

1.3.5 Execution of Visual Test Cases:

The screenshots collected in previous step and text file generated, is used an
input for the visual test cases. These GUI based test cases are than executed
using visual testing tool - Sikuli

2 BACKGROUND

In this section, we are going to discuss about a generic android application
structure. We are discussing the structure with the help of a mobile application
development tool, which is Android Studio. We will also discuss about the
Android Application testing techniques available and about the issues present
and and how they can be mitigated.

2.1 ANDROID APP STRUCTURE

Below are some important files/folders, and their significance is explained for
the easy understanding of the Android studio work environment.

9

Figure 2: Android App Structure

1. AndroidManifest.xml:Every project in Android includes a manifest file,
which is AndroidManifest.xml, stored in the root directory of its project
hierarchy. The manifest file is an important part of our app because it
defines the structure and metadata of our application, its components,
and its requirements. This file includes nodes for each of the Activities,
Services, Content Providers and Broadcast Receiver that make the ap-
plication and using Intent Filters and Permissions, determines how they
co-ordinate with each other and other applications. A typical Android-
Manifest.xml file looks like:

10

2. Java: The Java folder contains the Java source code files. These files are
used as a controller for controlled UI (Layout file). It gets the data from
the Layout file and after processing that data output will be shown in the
UI layout. It works on the back end of an Android application.

3. drawable: A Drawable folder contains resource type file (something that
can be drawn). Drawables may take a variety of file like Bitmap (PNG,
JPEG), Nine Patch, Vector (XML), Shape, Layers, States, Levels, and
Scale.

4. layout: A layout defines the visual structure for a user interface, such
as the UI for an Android application. This folder stores Layout files that
are written in XML language. You can add additional layout objects or
widgets as child elements to gradually build a View hierarchy that defines
your layout file. Below is a sample layout file:

11

4. mipmap: Mipmap folder contains the Image Asset file that can be used
in Android Studio application. You can generate the following icon types
like Launcher icons, Action bar and tab icons, and Notification icons.

5. colors.xml: colors.xml file contains color resources of the Android appli-
cation. Different color values are identified by a unique name that can be
used in the Android application program. Below is a sample colors.xml
file:

6. strings.xml: The strings.xml file contains string resources of the Android
application. The different string value is identified by a unique name that
can be used in the Android application program. This file also stores
string array by using XML language. Below is a sample strings.xml file:

12

7. styles.xml: The styles.xml file contains resources of the theme style in
the Android application. This file is written in XML language. Below is
a sample styles.xml file:

8. build.gradle(Module: app): This defines the module-specific build
configurations. Here you can add dependencies what you need in your
Android application.

2.2 ANDROID APPLICATION TESTING

Android applications can be tested through layout or property based application

13

tools or visual GUI based tools. Both kind of tools has been explained below:

2.2.1 Layout Based Testing:

These are the testing tools which do the automation mobile testing based on
written scripts or code using tools. The most famous tool used is Appium.
Appium is an open-source tool for automating native, mobile web, and hybrid
applications on iOS mobile, Android mobile, and Windows desktop platforms.
Native apps are those written using the iOS, Android, or Windows SDKs. Mo-
bile web apps are web apps accessed using a mobile browser (Appium supports
Safari on iOS and Chrome or the built-in ’Browser’ app on Android). Hybrid
apps have a wrapper around a ”webview” – a native control that enables inter-
action with web content. Projects like Apache Cordova or Phonegap make it
easy to build apps using web technologies that are then bundled into a native
wrapper, creating a hybrid app. Importantly, Appium is ”cross-platform”: it
allows you to write tests against multiple platforms (iOS, Android, Windows),
using the same API. This enables code reuse between iOS, Android, and Win-
dows test suites. Few of the concepts which are necessary for these testing tools
are:

(a) Client/Server Architecture: Appium is at its heart a web server that ex-
poses a REST API. It receives connections from a client, listens for com-
mands, executes those commands on a mobile device, and responds with
an HTTP response representing the result of the command execution. The
fact that we have a client/server architecture opens up a lot of possibil-
ities: we can write our test code in any language that has a http client
API, but it is easier to use one of the Appium client libraries. We can put
the server on a different machine than our tests are running on. We can
write test code and rely on a cloud service like Sauce Labs to receive and
interpret the commands.

(b) Session: Automation is always performed in the context of a session.
Clients initiate a session with a server in ways specific to each library,
but they all end up sending a POST /session request to the server, with
a JSON object called the ’desired capabilities’ object. At this point the
server will start up the automation session and respond with a session ID
which is used for sending further commands.

(c) Desired Capabilities: Desired capabilities are a set of keys and values
(i.e., a map or hash) sent to the Appium server to tell the server what
kind of automation session we’re interested in starting up. There are also
various capabilities which can modify the behavior of the server during
automation. For example, we might set the platformName capability to
iOS to tell Appium that we want an iOS session, rather than an Android
or Windows one. Or we might set the safariAllowPopups capability to
true in order to ensure that, during a Safari automation session, we’re

14

allowed to use JavaScript to open up new windows. See the capabilities
doc for the complete list of capabilities available for Appium.

(d) Appium Server: Appium is a server written in Node.js. It can be built
and installed from source or installed directly from NPM: The beta of
Appium is available via NPM with npm install -g appium@beta. It is
the development version so it might have breaking changes. Please unin-
stall appium@beta (npm uninstall -g appium@beta) before installing new
versions in order to have a clean set of dependencies.

(e) Appium Clients: There are client libraries (in Java, Ruby, Python, PHP,
JavaScript, and C) which support Appium’s extensions to the WebDriver
protocol. When using Appium, you want to use these client libraries
instead of your regular WebDriver client. You can view the full list of
libraries here.

2.2.2 Visual GUI Based Testing

There are two types of interfaces for a computer application. Command Line
Interface is where you type text and computer responds to that command. GUI
stands for Graphical User Interface where you interact with the computer using
images rather than text. GUI testing is defined as the process of testing the
system’s Graphical User Interface of the Application Under Test. GUI testing
involves checking the screens with the controls like menus, buttons, icons, and all
types of bars - toolbar, menu bar, dialog boxes, and windows, etc. To generate
a set of test cases, test designers attempt to cover all the functionality of the
system and fully exercise the GUI itself. The difficulty in accomplishing this
task is twofold: to deal with domain size and with sequences. In addition, the
tester faces more difficulty when they have to do regression testing. The second
problem is the sequencing problem. Some functionality of the system may only
be accomplished with a sequence of GUI events. For example, to open a file a
user may have to first click on the File Menu, then select the Open operation,
use a dialog box to specify the file name, and focus the application on the
newly opened window. Increasing the number of possible operations increases
the sequencing problem exponentially. This can become a serious issue when
the tester is creating test cases manually. Regression testing is often a challenge
with GUIs as well. A GUI may change significantly, even though the underlying
application does not. A test designed to follow a certain path through the GUI
may then fail since a button, menu item, or dialog may have changed location
or appearance. Another method of generating GUI test cases simulates a novice
user. An expert user of a system tends to follow a direct and predictable path
through a GUI, whereas a novice user would follow a more random path. A
novice user is then likely to explore more possible states of the GUI than an
expert.

There are two main activities whcih are need to be done during GUI based
testing:

15

(a) Mouse position capture: A popular method used in the CLI environment is
capture/playback. Capture playback is a system where the system screen
is “captured” as a bit mapped graphic at various times during system test-
ing. This capturing allowed the tester to “play back” the testing process
and compare the screens at the output phase of the test with expected
screens. This validation could be automated since the screens would be
identical if the case passed and different if the case failed. Using cap-
ture/playback worked quite well in the CLI world but there are significant
problems when one tries to implement it on a GUI-based system. The
most obvious problem one finds is that the screen in a GUI system may
look different while the state of the underlying system is the same, mak-
ing automated validation extremely difficult. This is because a GUI al-
lows graphical objects to vary in appearance and placement on the screen.
Fonts may be different, window colors or sizes may vary but the system
output is basically the same. This would be obvious to a user, but not
obvious to an automated validation system.

(b) Event Capture: To combat this and other problems, testers have gone
‘under the hood’ and collected GUI interaction data from the underlying
windowing system. By capturing the window ‘events’ into logs the inter-
actions with the system are now in a format that is decoupled from the
appearance of the GUI. Now, only the event streams are captured. There
is some filtering of the event streams necessary since the streams of events
are usually very detailed and most events aren’t directly relevant to the
problem. This approach can be made easier by using an MVC architecture
for example and making the view (i. e. the GUI here) as simple as possible
while the model and the controller hold all the logic. Another approach
is to use the software’s built-in technology, to use an HTML interface or
a three-tier architecture that makes it also possible to better separate the
user interface from the rest of the application. Another way to run tests
on a GUI is to build a driver into the GUI so that commands or events
can be sent to the software from another program.This method of directly
sending events to and receiving events from a system is highly desirable
when testing, since the input and output testing can be fully automated
and user error is eliminated.

2.3 ANDROID TESTING ISSUES

There are many key challenges for mobile application testing. Some of the
common issues are discussed below. While two specific issue fragility and main-
tainability are also discussed after them, which are important for our project
in particular, because we are doing translation from one type of text scripts to
another. The most common issues during mobile application testing are:

• Diversity in Mobile Platforms:There are different mobile operating systems
in the market. The major ones are Android, iOS, and Windows Phone.
Each operating system has its own limitations.

16

• Device availability:Access to the right set of devices when there is an ever-
growing list of devices and operating system versions is a constant mobile
application testing challenge. Access to devices can become even more
challenging if testers are spread across different locations.

• Scripting: The variety of devices makes executing a test script (scripting)
a key challenge. As devices differ in keystrokes, input methods, menu
structure and display properties single script does not function on every
device.

• Compatibility:It is necessary to test the compatibility; suppose an appli-
cation can work on the high resolution and it doesn’t work on the lower
resolution.

• Variety of mobile devices:Mobile devices differ in screen input methods
(QWERTY, touch, normal) with different hardware capabilities.

The two main issues for android application testing which are important for
our project also are:

(a) Fragility:Fragility [1] is defined as the quality of being easily broken or
damaged, if we go by the dictionary meaning of the word. In terms of
automated test cases it refers to non functionality of test cases, means
being broken, when there is some change in the GUI of the application.
Fragility of GUI tests is considered as a big problem for developers to
not select GUI testing because even a small changes in the user interface
may break entire test suites. Identification of test fragility in software
projects manually has been proved a time consuming process and required
a careful inspection of different version of the test code together with the
application production code. For this reason, an automatic classification
approach is used - which says, anytime a pre existent method of GUI test
class is modified we assume the change is due to test fragility Fragility
Metrics: With an automatic inspection of test code, information about
modified methods and classes can be obtained. Based on this collected
data, fragility of test suites can be approximated. The number of modified
classes with modified methods can be different from the total number of
modified classes in three different cases.

I When the modifications performed to the classes involve non-significant
portions of code like comments, imports, declarations.

II when the changes made to the classes include only additions of test
methods.

III when the modifications performed to the classes involve only removal
of test methods.

Addition and removal of test methods are thought to be the result of a
new functionality or a new use case of applications, since they are not
considered as an evidence of fragility of test classes. on the other hand,

17

modifications of test methods may be strictly linked with fragility. The
fragility of the tests can be estimated with two metrics based on the raw
count of classes and methods modied. There is a need to mitigate the
issues caused by fragility

(b) Maintainability: Maintainability [1] is the process of testing the system’s
ability to update, modify the application if required. This is very impor-
tant part as the system is subjected to changes all through the software life
cycle. Checking of how easily it is to maintain a system is the main aim
of this testing type. The system or application support involves analysis,
modification, and testing the product.f Categories of product maintain-
ability are:

I Corrective maintenance:It is about fixing the problems. The sys-
tem maintaining may be specified in the context of time, spent for
diagnostics and errors removal, detected in the system.

II Perfective maintenanceThis is related to the system’s modifications.
The maintaining may be measured by the number of efforts which
are necessary for performing the required system improvements.

III Adaptive maintenance This includes adaptiveness to the changes in
the special environment. The maintaining may be defined by the
number of forces which are required for the system adaptiveness.

IV Preventive maintenanceIt discuss about the actions for reducing ex-
penditures, needed for system support.

Maintaining the cost of testing artifacts is also an issue. Difculties in
Evolving and Maintaining GUI Scripts/Models is a concern, since, Of the
available approaches for automated testing of mobile apps, test scripts
recorded manually or written with automation APIs/Frameworks are the
most vulnerable to app evolution and fragmentation. Generating test
scripts is time consuming. As an application evolves, test scripts need to
be updated when changes modify the GUI (or GUI behavior) as expected
in the scripts (e.g.,, the id of a component is modied or a component is
removed from a window). Automation APIs like Espresso allow for declar-
ing GUI events partially decoupled from device characteristics, but, the
scripts are coupled to change-prone component ids. As of today there is
no current approach for automatically evolving scripts written or recorded
using Automation APIs. There is a need to mitigate this issue also.

18

19

3 TOOL ARCHITECTURE

Figure 3: Layout to Visual Tool Architecture

20

3.0.1 Layout Based Test Script Creation:

The initial stage is to create Layout based test cases. we have created our test
case using java language in selenium framework using Eclipse IDE. Every test
case has more than five interactions within the mobile screen. Most of the test
cases include an assert statement to check the presence of particular text. Since,
we have done the experiment on three different mobile applications, in total we
created 30 test cases, 10 for each application.

The corresponding desired capabilities are defined.

3.0.2 Parser Program:

The second task is to write a parser program, which takes any already written
Layout based java test code for mobile testing, and generate an excel sheet
showing all the attributes from a code line. For that we need to know the
action functionality list, means a list of all the operations that can be done by
on an element. for example, operations like, click or input text, or whatever
which we can translate to third generation. we have to look at a single line code
and try to extract all useful information from it. In general we can divide the
information given in a single line code into these section:

1. location attribute by which you try to locate the element on the page: eg.
findElementByXPath, findElementById.

2. container of the element: eg. span, div, button

3. attribute of the element by which you are trying to uniquely identify the
element: eg. text, id

4. Value of the attribute you have chose to uniquely identify the element:
CERCA

5. action which has to be performed on that element: eg. click, input text.

We can see an example for all the above mentioned points:

driver.findElementByXPath(”//span[contains(text(),’CERCA’)]”).click();

From the above line we can extract following information:

1. Locator : XPath

2. Container : span

21

3. Attribute : text

4. Value : CERCA

5. Action : click

For creating a parser program, we have used java as a programming lan-

guage with selenium library and we have written the code in Eclipse IDE. we

have created different methods for different functionalities. These methods are

named as locatorType, containerType, attributeType, valueType and action-

Type respectively for all the values which we have to extract from a every single

line appium code. All the methods make use of StringUtils class and methods

like substringBetween() to extract the useful information from the line code.

These methods are called inside the main method respectively. While to read

the appium code file line by line, we used Buffer-reader class, which runs till the

end of the file using a while loop. Figure ??.

Below is the example of a method created:

The program runs in such a way that, every time a line is read from the

file, it is passed as a parameter to particular function which extract the useful

information from the line, and returns back the result to a variable inside the

main function. While the value inside this variable is appended to a linked-list

created for every type or we can say for every method. When all the lines in

the file are read and stored in the respective linked list, these linked list are

converted into array.

At last, the values inside these linked list converted into array, is printed on

an excel sheet, by running a for loop. While the path of the excel sheet is given

in the program only, which can be changed on choice, since the file is created

on run time. Apache POI library was very useful in printing the values into

22

the excel sheet. also, we need to add the apache POI jar files into external jars

in eclipse build path after downloading from google. i faced few errors while

using this library, like null pointer exception, since null value was thrown while

creating a new row. while i was able to solve this by creating a private static

variable of row class and running a for loop separately to create all the row

headers first.

3.0.3 Update Layout Test Cases:

A java program created in Eclipse takes a layout test case as an input, and

adds a line of code to take screenshot before every line of code which do some

interaction on the mobile application screen.

For example, the lines of code in the above image are updated with including

two lines of code before every line, as shown in the image below.

3.0.4 Capturing Screenshots:

When the updated layout based test case is executed through eclipse IDE, ev-

ery time elementScreeenshot() method is executed, a screenshot of the element

to be interacted on mobile screen is taken and saved at a location in the sys-

tem. For completion of this task, Add Screenshot program contains a method

elementScreenshot() method. Below is the code lines used:

23

3.0.5 Resize Screenshots:

This is part of the translation which was performed on the extracted data. The

screenshots which were captured as mentioned previously, were not suitable to

use for the GUI based test cases. They need to be modified according to the

aspect ratio of the android emulator. so, inside the same method the resizing

of screenshots was done. Below is the code used for this purpose:

3.0.6 Action List Extraction:

In the same program Add Screenshot, one method is written to extract all

the actions which are performed on any elements on the mobile screen in that

particular test case. Below is the code used

24

3.0.7 Convert to GUI based Keywords:

The action list which is extracted in the previous step contains the actions

performed on respective elements from the layout based test case. These actions

were click, send keys, assert True. etc. While in visual testing tool, in our case

particularly for sikuli, the keywords used are different. So, a modification was

required. Below is the code to do the modification:

we can see in the code above the actions performed in the layout based

test case are written into a text file, after converting them according the corre-

25

sponding keywords used in visual testing tool sikuli. The following changes are

done:

(a) click event the text file is modified eg. click(Element.png)

(b) sendKeys action is replaced with type keyword in text file eg. type(”this

is first note”)

(c) assertTrue statements in test script, exists keyword is used in text file. eg.

exists (”one is smaller”)

So, finally an updated text file which can be used as an input for the sikuli

tool will look like:

Figure 4: Sikuli Input Text File

3.0.8 Creating Visual Test Cases:

After resizing of screenshots and modification of text files, all the outputs from

the program are stored at sikuli folder location only, so that it is easy to access

them. Separate folder were made using the program code only, for different test

cases. It means three main folders for three different applications and ten sub

26

folders for each test case were created. All the corresponding screenshots and

text files are put in these folder.

3.0.9 Executing GUI Test Cases:

When we have received all the necessary data, the screenshots and text files.

The all test cases were executed through sikuli tool one by one and results are

stored in screenshots. Below is the example:

Figure 5: Sikuli Tool UI

4 EVALUATION

4.1 Definition of the Experiment:

The outcomes of the experiment were very exciting, as we got to know about

different challenges and opportunities seen to improve the process of converting

second generation test scripts to third generation test scripts.In total there were

30 layout based test cases, 10 for each mobile application which we did the

experiment on and every test case had more than five interactions. Out of 30

layout test scripts, we were able to run all of them after converting them into

27

GUI based test cases. Overall, There was 100 percent success rate to convert

all the test scripts into GUI based scripts.

4.2 Interaction Log Data:

During the experiment, for each test script there were five or more than five

interactions inside the mobile application. so. for every application for all the

test cases written, the data has been collected about the number of interactions

and the type of interactions performed. Below are the data collected for all

three applications:

1. Omnni Notes Application:

Figure 6: Omni Notes Interaction Table

2. Calculator Application:

28

Figure 7: Calculator App Interaction Table

3. Unit Converter Application

Figure 8: Unit Converter Interaction Table

29

4.3 Attempts for Translation

When layout based test scripts were converted to visual based scripts, some

times the translation did not took place in one attempt. Most of the time the

updated layout test script failed to complete the execution and generate all

the screenshots required as input for the visual based tool sikuli. so, the data

collected for attempts made by different test scripts for completely convert into

visual based scripts is shown in the table below:

Figure 9: Attempts for Translation Table

Most of the time the issue was with the sleep time, as the element was not

found in the DOM or not present on the page. Few times the issue was that,

script was unable to create a new session with the appium server. But at last

all the test cases were translated successfully.

From the above table we can see that out of 30 test cases 19 were able to be

translated into visual script in one attempt only. so, we can conclude that:

Percentage(Single Attempt Translation) = (19/30)*100 = 63.3 percent

30

4.4 Issues faced in Translation:

Firstly, it took more than one attempt to run updated Layout based test scripts

to generate screenshots. Most of the time the problem was with the waiting

time means the thread.sleep statement, means element was not visible on the

page or it was not present in the DOM. This issue was resolved by increasing the

thread sleep time.In few of the interactions the sleep time was less than 500ms,

but in some cases the sleep time was increased till 1000ms which made the code

to run successfully. The line of code which required to be changed was:

Thread.sleep(1000);

Similar scenario was seen during execution of sikuli based scripts, which was

mostly because of slowness of the android emulator or the whole system. This

issue was resolved again here also by increasing the waiting time. The line of

code which was added in the text file and changed in case script was failing was:

wait(2)

There were some very specific and exciting observations made during the

experimental which are explained below:

(a) Few screenshots were not recognized by the sikuli framework, so those

test cases failed in between. these images were renamed as discarded

images and new images were generated using the sikuli framework only.

After adding new screenshots, the test scripts were again run from the

beginning and resulted in passing of the script. Also sometimes a blank

image is generated by the screenshot program, which was useless because

it guaranteed that, when you run this script in sikuli it will fail.

Examples of discarded images and respective accepted images are given

below:

Figure 10: Discarded Image 1

The above element was discarded by the sikuli tool, after which an screen-

shot was taken using sikuli tool functionality and below image was gener-

31

ated.

Figure 11: Accepted Image 1

Sometimes it was strange to know, why the screenshot was failing, as you

see in the below example.

Figure 12: Discarded Image 2

In this case, the above element received from element screenshot method

was rejected, while it look similar to the screenshot image generated by

the sikuli tool.

Figure 13: Accepted Image 2

After collecting data from all the three different applications about the

discarded images, the log is put into the table shown below:

32

Figure 14: Discarded Screenshots By Apps

(b) False Positive cases were found during the execution of sikuli test scripts.

For example,

I In the mobile application unit converter, the screenshot was for ”Grams”

value in a drop-down list, while another option ”Grains” was selected

by the tool.

II During execution of a test script for calculator mobile application,

where a division button was clicked by the tool, while the addition

button was expected to be clicked.

(c) When two similar images are found on the same page of the mobile, then

the script clicked on the first image, however it was expected to click on

the second image. But when the screenshots are generated by the sikuli

tool, the mouse clicked on the desired image even though there were two

similar images present on the mobile screen.

33

Figure 15: Similar Image Issue

In total there were 6 test cases which were affected by discarded screenshots

problem, 2 test cases affected by False Positive problem and 2 test case affected

by similar images issue.

4.5 Time Taken For Translation:

Different test cases took different time span for translation from layout to visual

script. Time factor was affected from all the issues mentioned in above section

during translation of the script. Translation can be divided into small parts,

and the time taken was different on average for different phases of translation.

For Example(for every test case on average with time in approx.):

Average Time to Updated Test Script: 1min

34

Average Time to create Screenshots: 4min

Average Time to Update Text File: 1min

Total average time for complete translation = 5min

4.6 Execution Attempts:

After solving all the issues seen in the previous step, the test cases are executed

a fixed number of times i.e. 10. After executing each test case from all the three

applications respectively, the results were collected from first 10 attempts, as

shown below:

Figure 16: Execution Attempts Passed

The execution results were very satisfactorily, as most of the times the test

cases were executed successfully.

4.7 Test Suites and Apps Used:

There are different tools used for performing this experiment. Below are the

name of the tools and apps which are used and for what purpose.

35

(a) Eclipse IDE: The programs like parser and Add Screenshots are written

in Eclipse IDE and in java language. The choice of the tool was very ob-

vious, as it is an open source tool and provides an integrated development

environment. Also, all the test scripts for all the three applications are

written in java language in Eclipse.

(b) Appium: Appium provides an open source test automation framework.

Appium server is used to run the code written in eclipse on Android

emulator. The necessary desired capabilities are mentioned in the java

program to connect with the appium server. Also, the appium element

inspector is used to identify the xpath locators for different element in the

mobile applications.

(c) Android Studio: This tool was used to build the project after downloading

the code for mobile applications from Github. It was also used to create

and run the android emulator.

(d) Sikuli: Sikuli is an image-based open source tool to automate the GUI

and can be used on any platform like Windows/Linux/Mac/Mobile. This

GUI based testing tool is used for running the updated text based test

scripts generated through the experiment.

(e) Omni Notes Mobile Application: This was our first mobile application on

which we did the experiment. Its a note making and saving application.

The home page of the application looks like this:

36

Figure 17: Omni Notes Application UI

(f) Calculator Mobile Application: This was our second mobile application

on which we did the experiment. It resembles like any other calculator

mobile application. The home page of the application looks like this:

37

Figure 18: Calculator Application UI

(g) Unit Conversion Mobile Application: This was our third mobile applica-

tion on which we did the experiment.The home page of the application

looks like this:

38

Figure 19: Unit Converter Application UI

4.8 Results:

The results obtained from the experiment were very exciting as we were able

to trans late all the layout based test cases into visual based test cases. Below

one example of one test case from each of the three applications is shown, while

results for all the test cases are shown in the appendices chapter. The results

are shown in a way, starting from the java code for layout test script, which

after going through parser and modification, generates a text file with the same

number of interactions as they were happening in the java code, followed which

it was executed in sikuli tool to generate successful results:

39

4.8.1 Omni Notes Test Script Example

(a) Text file (b) Sikuli Results

4.8.2 Calculator App Test Script Example

40

(a) Text file (b) Sikuli Results

4.8.3 Unit Converter Test Script Example

41

(a) Text file (b) Sikuli Results

5 Threats to Validity:

In this chapter, we are going to discuss about the inherent limitations of the

experiment which we have performed. This can be divided into three main

categories as mentioned below:

5.1 Threats to External Validity:

The experiment done here is at a small scale compared to an industry envi-

ronment. The data-set collected and used is also very specific. so, the results

generated from this experiment can not be generalized and applied to all other

projects. Firstly, since the interactions and keywords used are specific to sikuli

tool, so implementing them to other automation GUI testing tools will generate

issues. For example, if you run the same test suite for Eye Automate will result

in failure. But after some modifications, we would be able to run the same test

suites in Eye Automate also. By far the number of interactions were less and

platform was same for all the applications, so few issues may come if platform is

changed or an application with completed different appearance and logic. But

these issues are temporary technical limitations, and which will be addressed in

the future versions.

5.2 Threats to Internal Validity:

The result of the experiment shows that the translation success rate was 100

percent. But there were few issues while executing the translated scripts which

42

required some manual changes. since all the assumptions made during the

experiment were correct and the calculations are done in a standard method to

calculate the effectiveness of the tool.

5.3 Threats to Construction Validity:

During the experiment standard procedures are being followed, like a test case

is considered successful if it is passed, and tool effectiveness is calculated by

the total number of test cases passed. While during executing there were some

False Positive cases found, which was solved by taking the screenshots using the

sikuli tool itself. But there was no False Negative. Blank images were discarded,

which resulted in failure of particular test cases

6 CONCLUSION

6.1 Conclusion of Experiment

GUI based automated testing is the solution for today’s fast growing mobile

application market, where time and accuracy plays an important roles. So far,

we have seen in our experiment that the translation of layout based test scripts

to visual based test scripts reduces the human efforts required for testing. So,

a mixed approach where we can use both layout and visual based test cases is

very helpful to increase the productivity of the project.

GUI based automated testing is becoming a common approach among the

testing community. But GUI based approach alone is not feasible to do effec-

tive testing, which motivates to use hybrid approach which is a mix of second

generation layout based and third generation GUI based testing. But, this has

proved to be a challenge as both the techniques have common benefits and

shortcomings with respect to speed, robustness and capability to emulate the

human user, which make the two approaches complementary to each other. In

this experiment, we proposed a solution for translation of test scripts from one

generation to another. This approach will enlighten the beneficiaries to harness

the positive aspects of both the generations while mitigating the shortcomings

of particular approaches.

Although the failure in execution after the translation in some test cases were

due to fragility issues, but success is not guaranteed when the test cases itself

43

is faulty. a faulty situation can generate when an element changes at run time

or based on the current time, for example an interaction with an element works

fine before the translation and fails after that. Eventually, this experiment have

the potential to become a useful tool for the testing and developer community.

6.2 Expected Future Work

Although tool was able to translate the interactions which were provided in the

layout based test scripts but it does not guarantee that all the interactions for

all the tools may be translated easily. The factors like mobile application and

device platform can play important role in the success or failure of these kind of

translation. so, an extensive study is required which matches the parameters of

an industrial approach. Also, the current tool does not cover all the interactions

possible on a mobile application screen, so future work focused on testing all

the interactions will be very helpful for the testing community.

References

[1] Riccardo Coppola, Maurizio Morisio and Marco Torchiano.

Scripted GUI Testing of Android Apps: A Study on Diusion, Evolution and

Fragility.

[2] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas

Zimmermann, and David Lo1

Understanding the Test Automation Culture of App Developers

[3] Mario Linares-Vasquez1, Carlos Bernal-Cardenas2, Kevin Moran2, and

Denys Poshyvanyk

How do Developers Test Android Applications?

[4] LucaArdito,RiccardoCoppola, MarcoTorchiano

Towards Automated Translation between Generations of GUI-based

Tests for Mobile Devices

[5] Mario Linares-Vásquez1, Kevin Moran2, and Denys Poshyvanyk2

Continuous, Evolutionary and Large-Scale: A New Perspective

for Automated Mobile App Testing

44

Appendices

A Omni Notes Application

A.A Omni Notes Text Script 1

(a) Text file (b) Sikuli Results

45

A.B Omni Notes Text Script 2

(a) Text file (b) Sikuli Results

A.C Omni Notes Text Script 3

46

(a) Text file (b) Sikuli Results

A.D Omni Notes Text Script 4

(a) Text file (b) Sikuli Results

47

A.E Omni Notes Text Script 5

(a) Text file (b) Sikuli Results

A.F Omni Notes Text Script 6

48

(a) Text file (b) Sikuli Results

A.G Omni Notes Text Script 7

49

(a) Text file (b) Sikuli Results

A.H Omni Notes Text Script 8

(a) Text file (b) Sikuli Results

50

A.I Omni Notes Text Script 9

(a) Text file (b) Sikuli Results

A.J Omni Notes Text Script 10

51

(a) Text file (b) Sikuli Results

B Calculator Application

B.A Calculator App Test Script 1

52

(a) Text file (b) Sikuli Results

B.B Calculator App Test Script 2

53

(a) Text file (b) Sikuli Results

B.C Calculator App Test Script 3

54

(a) Text file (b) Sikuli Results

B.D Calculator App Test Script 4

55

(a) Text file (b) Sikuli Results

B.E Calculator App Test Script 5

(a) Text file (b) Sikuli Results

56

B.F Calculator App Test Script 6

(a) Text file (b) Sikuli Results

57

B.G Calculator App Test Script 7

(a) Text file (b) Sikuli Results

58

B.H Calculator App Test Script 8

(a) Text file (b) Sikuli Results

59

B.I Calculator App Test Script 9

(a) Text file (b) Sikuli Results

60

B.J Calculator App Test Script 10

(a) Text file (b) Sikuli Results

61

C Calculator Application

C.A UnitConverter App Test Script 1

(a) Text file (b) Sikuli Results

62

C.B UnitConverter App Test Script 2

(a) Text file (b) Sikuli Results

63

C.C UnitConverter App Test Script 3

(a) Text file (b) Sikuli Results

64

C.D UnitConverter App Test Script 4

(a) Text file (b) Sikuli Results

65

C.E UnitConverter App Test Script 5

(a) Text file (b) Sikuli Results

66

C.F UnitConverter App Test Script 6

(a) Text file (b) Sikuli Results

67

C.G UnitConverter App Test Script 7

(a) Text file (b) Sikuli Results

68

C.H UnitConverter App Test Script 8

(a) Text file (b) Sikuli Results

69

C.I UnitConverter App Test Script 9

(a) Text file (b) Sikuli Results

70

C.J UnitConverter App Test Script 10

(a) Text file (b) Sikuli Results

71

	INTRODUCTION
	Mobile Application Testing
	Mobile Application Development Life cycle
	Types of Mobile Application Testing
	Types of Testing Tools

	Motivation
	Layout Based to Visual based Translation of Test Scripts
	Creating Layout Based Test Cases:
	Data Collection:
	Translation Program Implementation:
	Data Generation for Visual Test Cases:
	Execution of Visual Test Cases:

	BACKGROUND
	ANDROID APP STRUCTURE
	ANDROID APPLICATION TESTING
	Layout Based Testing:
	Visual GUI Based Testing

	ANDROID TESTING ISSUES

	TOOL ARCHITECTURE
	Layout Based Test Script Creation:
	Parser Program:
	Update Layout Test Cases:
	Capturing Screenshots:
	Resize Screenshots:
	Action List Extraction:
	Convert to GUI based Keywords:
	Creating Visual Test Cases:
	Executing GUI Test Cases:

	EVALUATION
	Definition of the Experiment:
	Interaction Log Data:
	Attempts for Translation
	Issues faced in Translation:
	Time Taken For Translation:
	Execution Attempts:
	Test Suites and Apps Used:
	Results:
	Omni Notes Test Script Example
	Calculator App Test Script Example
	Unit Converter Test Script Example

	Threats to Validity:
	Threats to External Validity:
	Threats to Internal Validity:
	Threats to Construction Validity:

	CONCLUSION
	Conclusion of Experiment
	Expected Future Work

	Appendices
	Omni Notes Application
	Omni Notes Text Script 1
	Omni Notes Text Script 2
	Omni Notes Text Script 3
	Omni Notes Text Script 4
	Omni Notes Text Script 5
	Omni Notes Text Script 6
	Omni Notes Text Script 7
	Omni Notes Text Script 8
	Omni Notes Text Script 9
	Omni Notes Text Script 10

	Calculator Application
	Calculator App Test Script 1
	Calculator App Test Script 2
	Calculator App Test Script 3
	Calculator App Test Script 4
	Calculator App Test Script 5
	Calculator App Test Script 6
	Calculator App Test Script 7
	Calculator App Test Script 8
	Calculator App Test Script 9
	Calculator App Test Script 10

	Calculator Application (1)
	UnitConverter App Test Script 1
	UnitConverter App Test Script 2
	UnitConverter App Test Script 3
	UnitConverter App Test Script 4
	UnitConverter App Test Script 5
	UnitConverter App Test Script 6
	UnitConverter App Test Script 7
	UnitConverter App Test Script 8
	UnitConverter App Test Script 9
	UnitConverter App Test Script 10

