
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Hardware Accelerator for LSTM Neural
Networks using High-Level Synthesis

Supervisors

prof. Massimo PONCINO

doc. Daniele JAHIER PAGLIARI

Candidate

Chen XIE

IP Number: 250137

Academic Year 2019-2020

Summary

Neural networks are widely used in applications such as machine translation, speech
recognition, etc. Among the different types of neural networks, recurrent neural
networks (RNN) based on the Long Short-Term Memory (LSTM) architecture have
become popular for elaborating time series.

To improve accuracy, the size of LSTM models continues to grow. Matrix-vector
multiplications (MxV) are the most computation-intensive and time-consuming
operations involved in LSTM inference. In order to perform these operations with
high performance and low power consumption, Field-Programmable Gate Arrays
(FPGAs) have become popular to accelerate LSTM inference. Based on FPGAs,
finding the best accelerator architecture for a given objective and combining it
with algorithm-level optimizations become the hot issues. In particular, the most
common optimizations for LSTMs consists in using weight pruning to reduce
the number of computations and memory occupation, transforming the dense
MxV into a sparse matrix-vector multiplication (SpMxV). Accelerating SpMxV
requires solving new issues, such as managing unstructured sparse matrices and
their corresponding irregular memory access patterns.

In this thesis, a new LSTM accelerator for FPGAs is proposed, which addresses
the two aforementioned problems. The design space exploration complexity is tack-
led using high-level synthesis (HLS), which allows the generation of a large number
of different results starting from the same high-level specification changing some
synthesis directives. Hundreds of accelerator implementations have been realized,
among which a system designer could select depending on his/her requirements.
On the another hand, the proposed accelerator is made compatible with a popular
constrained pruning methods for LSTMs, known as Bank-Balanced Sparsity (BBS),
which can maintain model accuracy at a high sparsity level while still enabling an
efficient FPGA implementation.

The proposed design has been written in C++, synthesized using Xilinx Vivado
HLS and flashed onto a Xilinx Zynq System-on-Chip (SoC). These SoCs include
an ARM processor besides the FPGA, which has been programmed to trigger
the accelerator and collect results by means of a software driver. Both design
versions with DMA and without DMA are implemented. After implementation,

i

the performance of the accelerator for three different LSTM sizes are evaluated,
with unoptimized and optimized cases respectively. The performance comparison
between the implementation with DMA and the one without DMA are also discussed.
15x, 30x and 82x speedups are achieved in unoptimized version, optimized version
without DMA, and optimized version with DMA respectively, with low reasource
occupation and power consumption.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background 4
2.1 Overview . 4
2.2 Recurrent Neural Network . 6

2.2.1 Basic RNN . 6
2.2.2 Long Short-Term Memory 10
2.2.3 Field-Programmable Gate Array 14
2.2.4 High-Level Synthesis . 17

3 Related Works 21
3.1 Hardware Implementation and Optimization 22
3.2 Software Optimization . 22

4 Hardware Accelerator 24
4.1 Motivation . 24
4.2 Objective . 25
4.3 Bank-Balanced Pruning . 25
4.4 Architecture . 28
4.5 C++ design . 33
4.6 Vivado HLS . 34
4.7 IP Connection . 35
4.8 Running Design on FPGA . 37
4.9 Implementation with AXI DMA . 38

4.9.1 AXI4-Stream Interface and ARM ACP 39
4.9.2 AXI DMA . 41
4.9.3 IP Integrator Design . 41

iii

5 Experimental Results 44
5.1 Experimental Setup . 44

5.1.1 Hardware Platform . 44
5.2 Evaluation . 45

5.2.1 Speedup . 46
5.2.2 Resource Utilization . 47
5.2.3 Power consumption . 48
5.2.4 Pareto Curve . 48

6 Conclusion and Future Works 53
6.1 Conclusion . 53
6.2 Future Work . 54

A C++ Design 55
A.1 Top-Level Function . 55

A.1.1 Header File . 55
A.1.2 BBS.cpp . 56

A.2 Matrix Memory . 57
A.2.1 Header file . 57
A.2.2 MatrixMem.cpp . 57

A.3 Vector Memory . 58
A.3.1 Header file . 58
A.3.2 VectorMem.cpp . 59

A.4 PE Unit . 60
A.4.1 Header File . 60
A.4.2 PE.cpp . 61

A.5 SpMxV Unit . 62
A.5.1 Header file . 62
A.5.2 SpMxV.cpp . 63

A.6 EWOP Unit . 64
A.6.1 Header file . 64
A.6.2 EWOP.cpp . 65

A.7 Activation Functions . 66
A.7.1 Header File . 66
A.7.2 Sigmoid.cpp . 66
A.7.3 Tanh.cpp . 71

A.8 Control Unit . 74
A.8.1 Header File . 74
A.8.2 ControlUnit.cpp . 75

A.9 Testbench . 76

iv

B Scripts 79
B.1 run_hls.tcl . 79

C Software Drivers 81

Bibliography 84

v

List of Tables

2.1 The Mapping Relations between C Code and RTL 20

5.1 Implementation of Accelerator with Different Size 45
5.2 Resource Utilization . 47

vi

List of Figures

2.1 General Topological Graph of RNN 6
2.2 Unrolled RNN . 7
2.3 The neuron . 8
2.4 Activation Functions . 9
2.5 The Basic Structure of LSTM units 11
2.6 The Whole Computation model of LSTM 13
2.7 The Basic Structure of Logic Elements 16
2.8 Modern Xilinx FPGA Architecture 16
2.9 Design Time vs. Application Performance with RTL and Vivado

HLS compiler . 17
2.10 Vivado HLS Design Flow . 19

4.1 Bank Pruning . 26
4.2 CSB Representation . 27
4.3 Overall Architecture of LSTM accelerator 29
4.4 The Original Parameters . 30
4.5 Inter-Bank Multiplication . 30
4.6 Element-wise Computations . 31
4.7 The Definition of Arbitrary Precision Data Types 33
4.8 The Window of Vivado HLS Project 34
4.9 The Window of Vivado Design Suite 35
4.10 The Presetting of ZYNQ7 Processing System 36
4.11 The IP Connection . 37
4.12 The SDK Tools . 37
4.13 Result from FPGA . 38
4.14 Block Diagram of Communicating with DMA 39
4.15 Pop Stream and Push Stream . 40
4.16 AXI DMA . 41
4.17 IP Connection with DMA . 42
4.18 Address Assignment . 42

vii

5.1 PYNQ-Z2 . 45
5.2 Speedup . 46
5.3 Resource Utilization . 48
5.4 Power Consumption . 49
5.5 Pareto Curves under 32-hidden Layer Size with Minimum Latency . 50
5.6 Pareto Curves under 32-hidden Layer Size with Maximum Latency 52

viii

Chapter 1

Introduction

Nowadays, artificial neural networks (ANNs) [1] have become one of the most
popular research fields because of their higher prediction accuracy comparing
traditional machine learning algorithms. In particular, in some latency-sensitive
applications such as speech recognition [2] and machine translation [3], Recurrent
Neural Networks(RNN), which are used to process sequence-related data, have been
now considered the state-of-the-art. These deep learning models receive the output
of the previous time step, and use it as a part of input, to perform the operations in
current time step [2]. Because of this property, they are widely used in prediction
of time series. However, traditional RNN networks have problems with long-term
dependencies, which means that when they perform learning on long sequences of
data, the gradient vanishing and gradient explosion issues appear [4]. Therefore, a
variety of advanced algorithms are proposed.

Long Short-Term Memory (LSTM) networks are a kind of variant of RNN model,
which can address the aforementioned problems [5]. Inside the LSTM network,
there are special units called LSTM units, which consist of three gates: input gate,
forget gate and output gate.

Despite the good performance of LSTMs, the increasing complexity of computa-
tion logic and the growing size of models lead to problems in power consumption,
storage abilities and operation efficiency. These issues bring new challenges when
these networks are used in low-power embedded systems.

Among the computation logic of LSTMs, Matrix-vector multiplications (MxV)
are the most computation-intensive and time-consuming operations involved. To
speed up these operations, besides the algorithm-level improvements, hardware
acceleration also becomes a common choice. Nowadays, there are three pop-
ular platforms to support neutral networks: Graphics Processing Unit(GPU),
Field-Programmable Gate Array(FPGA) and Application Specific Integrated Cir-
cuit(ASIC). With high performance, low power consumption and programmable
flexibility, FPGAs [6] have become a great choice to accelerate LSTM inference in

1

Introduction

power-sensitive applications.
However, accelerating LSTMs on FPGAs is not trivial, for two main reasons.

First, finding the best accelerator architecture for a given objective (such as mini-
mum latency or minimum energy) usually requires a time-consuming trial and error
process, in which different architectures (in terms of amount of parallelism, data
format, etc.) are iteratively designed and synthesized. Second, the hardware acceler-
ation of LSTMs becomes tricky when combined with algorithm-level optimizations.
In particular, one of the most common optimizations for LSTMs consists in using
weight pruning to reduce the number of computations and the memory occupation,
transforming the dense MxV into a sparse matrix-vector multiplication (SpMxV).
Accelerating SpMxV requires solving new issues, such as managing unstructured
sparse matrices and their corresponding irregular memory access patterns.

In literature, many research works have proposed dedicated hardware acceler-
ators implemented on FPGA [7] [8]. However, few optimization of designs are
proposed to support RNNs, in particular, LSTM networks. Some researchers such
as YiWei Zhang [9] also proposed an accelerator based on FPGA for LSTM neural
network prediction, but only focused on dense LSTM weight matrices. Therefore,
storage resources become a bottleneck when facing large-scale neural networks.To
solve this problem, traditional weight pruning techniques and Compressed Sparse
Column/Compressed Sparse Column(CSC/CSR) formats [10] are provided to re-
move those parts of the weight matrices which have a negligible impact on the
output accuracy, by setting a threshold, in order to achieve less storage resource
space with acceptable accuracy. However, with the irregularity of sparse matrix-
vector multiplications caused by the unstructured matrices, the optimization of
performance and energy are limited on hardware accelerators [11]. To address these
issues, various approaches are proposed. Shi et al [12] provided eSELL format for
the sparse matrices, in order to solve the problem of area and data-access bandwith
limitation. Kung et al [13] utilized Huffman-coded Nonzero Indication format
to represent compressed matrices, which does not send row number but just a
non-zero indication bit-stream and uses an on-chip counter to identify the locations
of non-zero elements. In these studies, efficiency is increased but because of the
complex encoding schemes introduced, the area of design is significantly larger.

On the another hand, further works suggest using balanced weight pruning
to obtain structured sparse matrices, which can be more easily used to improve
the performance of accelerator from a hardware perspective. The typical idea is
coarser-grained weight pruning methods [14], which means splitting the weight
matrices into blocks and performing the pruning inside each block. The main
challenge of these techniques is the trade-off between accuracy and efficiency.

In this work, a sparsity pattern Bank-Balanced Sparsity(BBS) [15] is utilized,
which further splits the matrix rows into equal-sized banks, and then performs
the balanced pruning methods for each bank. Because of the finer splitting and

2

Introduction

balanced pruning, the design can reach higher accuracy while using a decoding-free
sparse matrix format, to further achieve high efficiency and save encoding-decoding
area in the accelerator. Moreover, to explore the best architecture for different
user requirements in specific application situations, the design space complexity is
tackled using high-level synthesis (HLS). HLS allows to specify hardware designs
using a high-level language (C/C++), and synthesize them to RTL. The most
important is that it permits the generation of a large number of different results
starting from the same high-level specification changing some synthesis directives.

3

Chapter 2

Background

2.1 Overview

Nowadays artificial neural networks(ANN) have become very popular in artificial
intelligence field. Thanks to the growing abilities of data capturing and saving
based on technique improvements, the researches of neural networks are progressing
continuously and figuring out a lot of practical problems in a variety of fields such
as medicine, automotive and economics etc.

Artificial neural networks are a deep learning model which is abstracted from
the characteristics of biological neural networks. Definitionally, it is a kind of
system which is consisting of many interconnected units, to process information
through dynamic response to external inputs [16]. These process element units
called neurons are connected with each other by different weights, which are used
to multiply data passing through the connections. These neurons are split in
different layers and process the information from previous layers and deliver the
result to next layers. In general, a bias term can be added to the result. Based on
this architecture, neural networks can deal with complex non-linear computations.
Moreover, comparing to the traditional classifiers, the neural networks can be fed
with raw data and automatically find the reasonable internal relationships and
represent them suitably.

Because of these advantages, the researches on the artificial neural networks
are continuously going, and gradually focusing on performing specific tasks, such
as image restoration, speech recognition, etc. Based on the type of connection,
we can identify two main types of artificial neural networks for classification and
regression tasks: Feedforward Network, Recurrent Network. One particular type of
feedforward network, Convolutional Neural Networks [17], have achieved excellent
performance on image processing. Recurrent Neural Networks, in contrast, are
more suited to time sequences processing.

4

Background

In a variety of Recurrent Neural Networks, Jordan Network [18] and Elman [19]
network are the earliest reccurrent neural networks facing sequential data. Their
networks are called Simple Recurrent Network(SRN). After backpropagation(BP)
algorithm [20] becoming popular, many works proposed novel approaches to train
the recurrent neural networks under BP framework. Nevertheless, long-term
dependencies problem [4] makes it hard to deal with long-time sequences, many
optimizations have been appeared and one of the important breakthroughs is Long
Short Term Memory (LSTM), which avoids the vanishing gradient problem [5].

Long short-term memory is a kind of time recurrent neural network which can
deal with long-time interval events. Inside the model, LSTM units including input
gates, forget gates and output gates, are utilized instead of neurons. In particular,
input gate decides the inputs at the current time step and the updates of state
from previous time step; forget gate decides the information to abandon; and the
output gate decides the characteristics of the states propagated to the output.
Further, LSTM augmented by "peephole connections" from the internal cells to
multiplicative gates is proposed [21], which means that each gate can obtain the
state information of the cells.

While the artificial neural network algorithms were flourishing, many studies
started to move attention to the implementation of these models and correspond-
ing accelerators on hardware. The hardware platform which can support neural
networks includes Central Processing Unit(CPU), Graphics Processing Unit(GPU),
Field-Programmable Gate Array(FPGA) and Application Specific Integrated Cir-
cuit(ASIC). The detailed comparison will be described in more detail in the following
sections. Particularly, considering the low-power characteristic and programmable
ability, FPGAs become a great choice to implement hardware accelerators.

With the appearance of high-level synthesis tools supporting FPGAs, the de-
sign time is greatly reduced. High-level synthesis(HLS) is a kind of techniques
which produces hardware designs automatically by interpreting an algorithm-level
description of a required behavior [1]. This technology can allow designer start
at high-level language as C/C++ and corresponding register-transfer level(RTL)
files are generated by the tools, further the digital hardware is implemented. HLS
allows fast design space exploration. Many different accelerator implementations
can be realized and the optimal architecture can be explored in different application
situation, without struggling with complex HDL coding and expensive time costs.

The main architecture and corresponding techniques will be analyzed in more
detail in the following sections.

5

Background

2.2 Recurrent Neural Network

2.2.1 Basic RNN
Topology

Recurrent Neural Network(RNN) is a neural network with nodes connected in a
chain [22]. As a kind of artificial neural network, the basic elements are neurons,
the generic computational units performing a weighted sum of inputs. The general
topological graph of RNN is shown as figure 2.1.

Figure 2.1: General Topological Graph of RNN

In this figure, we can see that there are three layers: input layer, hidden layer
and output layer. In particular, input layer receives external inputs and send their
output to hidden layer. Then output layer transforms the information receiving
from hidden layer to desired scales and send it to outsides.

Moreover, in RNN, it is clear that the neurons in the hidden layer also have
connections between each other, comparing to feed-forward neural networks. Be-
cause of these internal connections inside hidden layer, every time step neurons
in the hidden layer can share data. In general, the core of RNN is described as a
directed graph, which is a chain unrolled on time, from a networks with loops, as
figure 2.2. Every time step, the information is copied from previous time step, and
delivered to the same network in next time step. This permits the persistence the

6

Background

persistence of information.

Figure 2.2: Unrolled RNN

Assume a sequence of values X = {x(1), . . . , xτ}, where t is time step and τ is
the unfold length of recurrent neural network. For each time step, the RNN-cell
can be represented as [22]:

h(t) = f
1
s(t−1), X(t), θ

2
(2.1)

where the h denotes the system status of recurrent neural networks, which
describe the changes of all point with time step, in a given space. s is internal
status which describes the summary of the important features of the previous
inputs. θ denotes the weight parameter inside the cell. And f means the neural
network used to perform the predictions.

In general, there is also output node, which can be written as:

o(t) = vh(t) + c (2.2)

where v and c is weights parameters. Depending on the architecture of recurrent
neural networks, the result of output points can be export outsides through an
function. In other word:

ŷ = g(o) (2.3)

Neuron

Neurons are responsible for the processing information. Each neuron receives
information from the previous layer, and sends computing results to other connected
neurons in next layer. The connection between two neurons has different weight,
and these weights can be modified during training.

7

Background

Assume one neuron shown as figure 2.3, the input from previous layer is
x0, x1, x2...xn, and the weights in corresponding connections are w0, w1, w2...wn.
With a bias b, the neuron can be shown as a linear model to perform a weighted
sum.

Figure 2.3: The neuron

However, to deal with non-linear problems, activation functions are introduced.
Therefore, the formula of the neuron model is shown as:

yi = h

A
nØ
i=1

wixi + b

B
(2.4)

where h is activation function.
By introducing activation functions for each neuron, the linear sum of input

becomes non-linear result and further the entire network has been transformed
into a non-linear model. Typically, there are different activation functions can be
chosen, and the most common ones are shown as following:

Activation Functions

• Sigmoid Function

h(x) = 1
1 + exp(−x) (2.5)

Sigmoid function is one of the most popular activation functions. It can map
the input into the range of (0,1) and always used on the output of hidden
layer. The advantage is the smoothness and easiness to obtain derivation,
but it is not easy to compute in hardware and generates vanishing gradient
problems [23].

8

Background

Figure 2.4: Activation Functions

• Tangent Function

h(x) = tanh(x) = exp(x) − exp(−x)
exp(x) + exp(−x) (2.6)

Tangent function is also popular and has similar characteristics to sigmoid
functions, also the same disadvantages. It is a symmetric function centered
with zero. Therefore, it has better rate of convergence than sigmoid function.

• Rectified Linear Unit

h(x) = max(0, x) =
I

0 x ≤ 0
x x > 0 (2.7)

9

Background

Rectified Linear Unit(ReLU) is an activation which solves the gradient vanish-
ing problems. In general, the most representative ones are ramp function and
Leaky ReLU, whose equation is:

h(x) = max(αx, x) α ∈ (0,1) (2.8)

ReLU allows for efficient gradient propagation in deep networks, is usually
regarded as better activation function than previous logistic functions.

• Exponential Linear Unit

h(x) =
I
α(exp(x) − 1) x ≤ 0
x x > 0 (2.9)

The exponential linear unit(ELU) is also proposed to solve gradient vanishing
problems. This activation function merged sigmoid function and ReLU,
the right part of curve is linear, which focuses on gradient problems; the
characteristic of left part provides a noise-robust deactivation [23].

Although RNN has the ability to achieve predictions by previous information
thanks to its recursive architecture, when related information appears with long time
intervals, the vanishing gradient described previously will lead to long-term depen-
dencies problem [4]. Many studies made the effort to propose improved algorithm
and lots of novel architectures are introduced, including Neural History Compres-
sor(NHC), Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU), and
Independent RNN [24] [5] [25] [26].

2.2.2 Long Short-Term Memory
LSTM unit

As an important breakthrough, Long Short-Term Memory(LSTM) is proposed as a
variant of RNN to solve gradient vanishing or exploding problems.

Inside this neural network, LSTM units are used to replace neurons in hidden
layers. Each LSTM unit receives the input value of current time step xt and the
output value of past time step ht−1. The basic structure is shown as in Figure2.5.

We can see that in the LSTM unit, there four gates: input gate i, forget gate f ,
output gate o and cell input g, while the traditional neurons in recurrent neural
networks jut have the last one. Moreover, there is a cell which can "remember"
the information, and the updates will happen at each time step. These gates are
responsible to choose what information to keep and what to abandon, and to change

10

Background

Figure 2.5: The Basic Structure of LSTM units

the cell state. After the gates, there are sigmoid functions and tanh function to
deal with the output of gates.

The most important part in LSTM is forget gate, then input gate and output
gate [27]. Sigmoid function will map the output from these gates into range(0,1).
It works as a "switch", to decide if the information can affect cell state. If the
result from input gate generates value closed to zero after sigmoid function, then it
means the input value is blocked, otherwise new inputs information will be added
to cell state; if the result from forget gates closed to zero after sigmoid function,
the "memory" of the cell will be "forgotten". After updating current state, output
gate need to decide the output results to send outsides at current time step.

LSTM Inference Process

In this project, the acceleration is focusing on the inference optimization. The
LSTM neural network works as following equations:

it = σ (Wxixt +Whiht−1 + bi) (2.10)

11

Background

ft = σ (Wxfxt +Whfht−1 + bf) (2.11)

ot = σ (Wxoxt +Whoht−1 + bo) (2.12)

gt = tanh (Wxgxt +Whght−1 + bg) (2.13)

ct = ft ¤ ct−1 + it ¤ gt (2.14)

ht = tanh (ct) ¤ ot (2.15)

where xt denotes input value at current time step; ht−1 denotes output value
of hidden layer at previous time step; W denotes corresponding weights in the
connection and b denotes a bias to be added to the result of sum of weighted inputs;
¤ denotes element-wise multiplication; σ denotes sigmoid function. And it, ft, ot,
gt and ct are the activated result of input gate, forget gate, output gate, cell input
and cell activation respectively.

The working process is as following:

• Step 1: Forget gate is the first step of the neural network. xt and ht−1 are
fed into forget gate and the result goes into sigmoid function to control if the
forgetting of the information, which is shown as equation 2.11.

• Step 2: The second step is to decide the information to store in cell state.
There are two information sources: one is the value provided by input gate it;
another one is the candidate values gt. These two inputs pass sigmoid function
and tanh function respectively to achieve nonlinearization , and then updates
the cell state together. This process is shown as equation 2.10 and 2.13.

• Step 3: The third step is to updates cell states. First the previous cell state
perform multiplication with value of forget gate, to "forget" some unimportant
information. At the same time, the value of it and gt also perform multiplication
to obtain the updated content. Then these two result are added together to
obtain current cell state, shown as equation 2.14.

• Step 4: Last step is to decide which part of cell state can be output. The cell
state will multiply the value controlled by output gate after a tanh function.
The output ht then will be fed again at the next time step. This process is
shown in equation 2.12 and 2.15.

12

Background

Main Computational Operations

According to the formula of LSTM models described before, we can see that in
LSTM inference, main computational Operations are matrix-vector computation,
element-wise computation, and activation functions. The whole computation model
can be shown as Figure2.6 [9].

Figure 2.6: The Whole Computation model of LSTM

In particular, matrix-vector multiplications (MxV), as the most time-consuming
operations, consisting of numerous dot product operations. These dot prod-
uct operations are performed on each weight matrix row and the input vec-
tor composed by the concatenation of xt and ht−1. Assume size of input vec-
tor xt is INPUT_SIZE (in fact the size of input layer), size of ht−1 is HID-
DEN_SIZE (the size of hidden layer), then the size of this dense input vector is
(INPUT_SIZE+HIDDEN_SIZE), which must be exactly equal to the number
of rows in matrix. Because of the weights distributed on the connections of four gates,
the number of matrix column is equal to (4*HIDDEN_SIZE). Therefore, number
of dot products will be (INPUT_SIZE+HIDDEN_SIZE)*(4*HIDDEN_SIZE).
It is clear that as the size of matrix growing, the computation becomes more
time-consuming. Each of these dot products involves INPUT_SIZE + HID-
DEN_SIZE multiplications and additions.

13

Background

Weight Pruning

To ensure the accuracy of the neural network models, the sizes of networks are
constantly growing, which challenges the computation costs and resource storage.
In particular, with three more gates in LSTM units and even peephole connections,
the LSTM network has a huge scale of parameters, especially weight matrices.
However, not all of the connections provide same contribution to the final result
and there exists a lot of redundancy. Therefore, many compression techniques were
proposed.

• Deep Compression
Deep Compression [28] is a threshold-based weight pruning technique. It
prunes away the absolute values of weights bellow the threshold, and then
the remaining weights take part in retraining. After pruning, the dense
weight matrices converts to sparse matrices, which needs less memories and
computation costs. However, because the pruning faces to the whole weight
matrices, it leads to unstructured sparse matrices and further limits the
efficiency achievable on hardware accelerators.

• Coarse-grained Pruning
To avoid the irregularity of computation and memory accesses, coarse-grained
pruning method [11] is proposed, which means restricted pruning. The main
idea of this method is to perform pruning on matrix blocks, instead of individual
elements. The maximum magnitude or the average magnitude of elements in
one block is used to compare with pre-defined threshold, and then the entire
block is pruned or kept depending on the comparison result. The final sparse
matrices become regular but at the same time, the accuracy of the model is
reduced. It happens that some important connections are pruned when they
hides in a block with small average magnitude.

2.2.3 Field-Programmable Gate Array
Because of the feature of neural network architecture, there is a piratical significance
to sped up the computation, particularly in latency-sensitive application. Hardware
accelerators, which is a specific hardware circuit to perform a part of computation
of neural networks, becomes a popular choice. Comparing with performing the
same algorithm on a general purpose processor, specific hardware circuits consume
less power with high performance. Nowadays, the common choices are Application
Specific Integrated Circuit(ASIC), Graphics Processing Unit(GPU), and Field-
Programmable Gate Array(FPGA).

• ASIC

14

Background

ASIC is a specific circuit aiming at certain requirements and applications.
Both computation ability and efficiency of this hardware are customized based
on desired algorithms. Therefore, ASIC has advantages in the aspect of power
comsuption, circuit size, computation performance and efficiency. On the other
hand, customized circuits also have the drawbacks in flexibility to implemented
different algorithm. At the same time, high cost of development and long
design period also become limits.

• GPU
GPU is a computation unit which is good at performing parallel computation.
With large number of computation units and high-speed memory, GPU preform
great at graphics processing. The abilities to deal with coarse-grain parallelism
makes GPU find its place to be a hardware platform for neural networks, since
a great number of parallel executions exists in neural network algorithms.
Comparing with ASIC and FPGA, GPU consume more power and has lower
efficiency.

• FPGA
FPGA is an integrated circuit with semi-custom attributes. It is designed to
be configured by a customer to implement his/her design and achieve related
requirements. Because of "field-prgrammble" feature, FPGA has the flexibility
to realize different algorithms with shorter design period. However, the
possibility of customizing the hardware configuration to the target applications
makes them more efficient than GPUs. Hence with high performance and
low power consumption, FPGA becomes a great choice to implement neural
network models and explore the best architecture.

In this project, considering the performance and development period, we select
FPGA as the hardware platform to design the accelerator.

FPGA is a collection of a large number of Configurable Logic Blocks(CLBs) or
Logic Elements(LEs), and these basic elements are organized as a matrix array of
rows and columns [29]. One of these basic elements is shown as figure 2.7.

As basic building blocks, LEs are composed of Look-Up Tables (LUTs) coupled
with flip-flops, and a multiplexer is used to select the combinational or sequential
output. CLBs and LEs are exactly responsible for hardware programming. With
the matrix comprising by these elements, FPGA also has programmable inter-
connections which allow to route signals from one CLB or LB to another. And
configurable I/O blocks allow to connect to the external world. One of modern
Xilinx FPGA architecture is shown as Figure 2.8. We can see that besides CLB-
s/LEs, modern FPGAs also have embedded memories (BRAMS) and embedded
DSP blocks for arithmetic operations.

15

Background

Figure 2.7: The Basic Structure of Logic Elements

Figure 2.8: Modern Xilinx FPGA Architecture

Because multiply computation logic architectures exists, FPGA is suitable
for parallel computation to perform independent operation in neural network
algorithms. Moreover, it is convenient to optimize the accelerator architectures by
pipeline to improve throughput.

16

Background

2.2.4 High-Level Synthesis
Introduction

High-level synthesis(HLS), also called C synthesis, electronic system-level(ESL)
synthesis, algorithmic synthesis or behavioral synthesis, is a technique to transform
a C specification into a register transfer level (RTL) implementation that you
can synthesize into a digital hardware [30]. Early HLS explored a variety of
input specification languages [31], and nowadays C language family including
C/C++, SystemC, ANSI C and also MATLAB is used in general. After analyzing,
constraining and scheduling, the high-level language which describe the hardware
behaviors can transform into corresponding hardware description language(HDL)
such as verilog and VHDL, and then the design is synthesized by logic synthesis
tools. After synthesis, co-simulation between C testbench and RTL implementations
is performed, in order to perform verification of the RTL.

High-level synthesis powered up FPGA in the competition of hardware accelera-
tors to support neural networks, show as figure 2.9 [32].

Figure 2.9: Design Time vs. Application Performance with RTL and Vivado HLS
compiler

Comparing other hardware platform such as GPU, FPGA with RTL has high
performance but need more development time. However when applying HLS, as

17

Background

red point and star shows in the figure, development time is decreased sharply,
even lower than DSP and GPU, while performance keeping at high level. This
makes users paying more attention on behavior design without caring about specific
implementation at low level, therefore productivity for hardware designers is
improved.

Vivado High-Level Synthesis

Vivado Design Suite [32] is a powerful software suite produced by Xilinx. The
Vivado HLS compiler enables C specification language to be directly targeted into
Xilinx devices. It includes multiple components to support whole design process:
Vivado Simulator, Vivado IP Integrator and Vivado TCL Store.

• Vivado Simulator
Vivado Simulator is a compiled-language simulator, to perform C verification
and RTL verification. TCL scripts, mixed language and IP are supported.

• Vidado IP Integrator
Vivado IP Integrator can perform integration of Intellectual Properties (IPs)
designed by user using Vivado High-Level Synthesis tools, and IP from Xilinx
IP libary.

• Vivado TCL Store
Vivado TCL Store is a system to support scripting. This system is based on
Tool Command Language (TCL) stands and TCL scripts can be operated to
invoke Vivado functions and makes large number of synthesis and simulations
achievable.

HLS Design Flow

The general HLS design flow is shown as Figure 2.10 [33].
Designers write the behaviors of desired design and testbench in C specifica-

tion languages, then perform C simulations to validate the C source code. After
successful simulations, the synthesis is performed to create an initial RTL imple-
mentations written by verilog and VHDL. And then the RTL implementation
could be transformed into both low-area and high-throughput implementation by
adding different optimization directives, without changing the C source code. When
synthesis is finished, the co-simulation could be performed, combining C testbench
and RTL implementation, to achieve RTL verification. RTL designs generated by
high-level synthesis are then packaged as IP and exported. In Vivado Design Suite
environment, previous IP is added into IP Catalog and finally used in a SoC design.

18

Background

Figure 2.10: Vivado HLS Design Flow

HLS Phases and Mapping

In particular, high-level synthesis phases [32] are introduced here. There are three
main phases including:

• Scheduling
Scheduling is ordering the operations at each clock cycle depending on clock
cycle length, operation time and optimization directives. When clock period is
shorter than execution time of operations, high-level synthesis automatically
schedules the operations more than one clock cycles.

• Binding
Binding is to decide the hardware resource that will implement each scheduled
operation. This phase will consider the specifications of target device.

• Control logic extraction
The control logic is extracted automatically to generate corresponding finite
state machine(FSM), which manage the operations in RTL.

The mapping relationship between C code and RTL implementation is as
following:

19

Background

C Code RTL Implementation
Top-level function arguments RTL I/O ports

C functions Blocks in the RTL hierarchy
Loops By default the logic for one iteration of the loop
Arrays Block RAM or UltraRAM

Table 2.1: The Mapping Relations between C Code and RTL

20

Chapter 3

Related Works

With the Booming of deep neural networks, hardware accelerators to support corre-
sponding algorithms in different application situations become hot issues. Because
of the feature of neural network models, the huge scale of parameters and numerous
element-wise computations challenge the resource storage and computation costs.
Even more, the trade-off between efficiency and area consumption when application
in embedded environments. To achieve fast response with limited resources, more
solutions for neural network models have been proposed, both in hardware level
and software level.

In software or algorithm level, the popular solutions are mainly focusing on
approximate computing paradigm. There are two categories exist recently:

• change the floating point operations into fixed point ones, in order to reduce
corresponding size of operands and operators. The most common data type in
neural networks is 32-bit. When implementing in embedded systems, less bitwides
such as 16-bit even 8-bit may be a better choice, even loss a little accuracy that
will not affect much on final result of models.

• compression techniques, including weight pruning methods and compression
representation format. The main idea of this technology is to remove part of less
important connections inside the neural networks, to make dense weight matrices
converting to sparse ones. The number of element-wise computations such as
element- wise multiplication between weights and vectors will be reduced. At the
same time, irregular memory accesses leading by unstructured sparse matrices
becomes new issues. Moreover, with some compression pattern format, encoding
and decoding schemes may bring new challenges on resource occupations and
computation costs.

In hardware level, the solutions fall on hardware platform selections and opti-
mizations for the model implementations. GPU, ASIC and FPGA becomes hot
choices for different application purpose. And when optimizing the hardware
architecture, the parallel computation and pipeline techniques are often considered.

21

Related Works

3.1 Hardware Implementation and Optimization
Many studies proposed interesting hardware design or optimizing solutions. Wang,
Chao, et al. [34] proposed a scalable deep learning accelerator unit to achieve less
latency at low-power level. S. Li et al. [35] provided an implementation for standard
RNN. The main idea of the approach is that unfold the RNN models into a fixed
number of time steps and achieve parallel computations.

D. J. Pagliari et al. [36] proposed an hardware accelerator at high level. Inside the
hardware accelerator, microarchitectures are used to exploit the intrinsic parallelism.
Moreover based on high level design, explicit parallelism and parallel subblocks
granularity are discussed.

Facing the implementation of LSTM based on FPGA, Chang, A.X.M. and
Culurciello, E.[37] provided three architectures: DeepStream, DeepStore, and
DeepRnn, for different applications. These architecture use high DMA bandwidth
or high resource occupation or trade-off between them, users can select what they
want based on their requirements.

Zhang et al. [9] implemented an accelerator based on FPGA for dense LSTM
network. Inside the matrix-vector computations, they provided Tiled Multiplication,
overlap methods of computation and data access, to improve the throughput.

Guan, Yijin, et al. [38] ont only utilized tiled computations also, but performed
communication optimization. When the parameters and inputs of neural networks
with large scales, it is impractical to store all of them into FPGA which has a
limited resources. Therefore, one of solution is consuming parameters and inputs
during run-time inference. In their work, they implemented two input buffer groups
and two output buffer groups to work in a ping-pong manner during data accessing,
and a data dispatcher is also designed.

3.2 Software Optimization
In software/algorithm level, many researchers provided multiply solutions to reduce
the costs of computational operations and widen the space to explore parallelism
further for hardware implementations.

In the project finished by Ferreira Joao Canas and Jose Fonseca [39], they used
18-bit fixed point to make full use o the DSP48E1 slices available in the FPGA. And
they also used polynomial Approximations to make activation functions transforms
into the logic without restriction on resources and speed. To minimize the error
brought by this approximation, Least Maximum Approximation strategy is used to
find optimal polynomial.

Focusing on the compression techniques, various weight pruning methods and
corresponding sparse formats are proposed. One of the common sparse format

22

Related Works

is compressed sparse row/Column(CSR/CSC) format [40]. This sparse format
based on deep compression, which pruned elements whose absolute value bellow
threshold in the matrix. However, this compressed sparse format will bring two
types of overheads: rearranging the non-zero elements and fetching vector elements
to calculating address when decoding. Therefore, many novel encoding formats are
proposed.

Shi et al [12] provided a strategy to rearrange the formats by eSELL format. This
format is created to solve the problem of area and data-access bandwidth limitation
for on-chip applications. In CSR/CSC, because of the non-zero values in weight
matrices are put together and row/column location numbers are stored. It actually
has no random-access problem in weight matrices, but the result has random access
problem (output for next parts). To solve this problem,this paper tries to rearrange
the non-zero values to obtain continuous data by using a single-port SRAM with
wider port width. To further compress the sparse representation, it then encodes
the column indices of each row to a 3-bit value.

Kung et al. [13] provided higher compression ratio algorithm on wider range of
sparsity levels. Compare to CSC, it does not send row location numbers, but sends
non-zero indication bit-stream and use on-chip counter to identify the locations of
non-zero elements at run time. Then the stream is encoded with Huffman coding.

However encoding strategy also brings the overhead because of encoder and
decoder architectures are required. Focusing on this, Cao, Shijie, et al. [15] proposed
a decoding-free sparse pattern Compressed Sparse Banks(CSB), with related Bank-
Balanced Pruning algorithm. In this work, the sparsity of weight matrices becomes
bank-balanced, which means solving the irregular memory access problems. At
the same time, comparing to anther coarse-grained pruning methods such as Block
Pruning, this approach achieved high sparsity with higher model accuracy.

On higher-level optimizations for RNN, there are also some related works. One
point is on deciding to execute RNN on the embedded system or on the cloud
depending on input length. Based on this idea, an optimal input-dependent edge-
cloud partitioning for RNN inference [41] is proposed to achieve processing short
input sequences locally while offload long ones to the cloud. Another strategy is
that to decide the number of RNN invokations depending on input complexity. A
method called Dynamic Beam Width Tuning [42] is proposed. In this work, the
Beam Width (BW) is modulated based on the current input, in order to improve
the energy efficiency of encoder-decoder RNNs. Moreover, Dynamic Beam Search
[43] method is also presented by operating BW to support sequence-to sequence
neural networks inference on embedded systems, in order to reduce the inference
time and energy.

23

Chapter 4

Hardware Accelerator

4.1 Motivation

Due to the computational complexity of neural networks, applying neural networks
in latency-sensitive and resource-limited embedded environment becomes a new
challenge. In this situation, not only neural network model accuracy needs to keep
at high level, but also fast responses and low power consumption are required.
Specific hardware accelerators to support corresponding neural network algorithms,
become good choice to achieve this task in the perspective of hardware level.

Part of computations, in particular, the mulitply-and accumulate (MAC) op-
erations, will optimized by the hardware accelerators which can perform these
calculations in parallel way based on the hardware platform such as GPU, ASIC
and FPGA. The main space to explore on these hardware accelerator is exactly at
the optimization of computation costs and the parallelism in the processing logic.

In particular, for LSTM RNN models, to keep the models accuracy, the size
of models continues to grow. Matrix-vector multiplications (MxV) are the most
computation-intensive and time-consuming operations, as described in previous
sections. Therefore, compressing of the weight matrices is necessary by various
pruning methods. Considering the implementation of hardware, these pruning
methods also need corresponding sparse formats to encode the location of non-zero
values in sparse matrices.

Moreover, to explore the parallelism of processing logic, the best accelerator
architecture for a given objective requires a time-consuming trial and error process,
in which different architectures are iteratively designed and synthesized. High-Level
Synthesis based on FPGA makes the trial achievable. With high performance and
low energy consumption, FPGA is ideal hardware platform for embedded devices,
and HLS makes the design period reduced sharply.

24

Hardware Accelerator

4.2 Objective
In this thesis, a new LSTM accelerator using high-level synthesis for FPGAs is
proposed, which achieves algorithm-level optimizations and hardware-level opti-
mizations.

For algorithm-level optimizations, in order to make the design compatible with
weight pruning, a subset of these methods has been considered, known as constrained
pruning, where the sparsity of matrices is not completely random. Specifically,
the proposed accelerator is made compatible with a popular constrained pruning
methods for LSTMs, known as Bank-Balanced Sparsity (BBS)[15]. In BBS, matrix
rows are split into multiple equal-sized banks, and each bank keeps the same
number of non-zero values (i.e. the same sparsity).

For hardware optimizations, thanks to high-level synthesis(HLS), the design
space exploration becomes achievable without long time consumption. The design
is written by high-level language and then synthesized by HLS tools into RTL
description. With different synthesis optimization directives such as pipeline and
unroll, a large number of different implementations can be generated without chang-
ing original high-level design architecture. Multiply implementations supporting
different practical applications are generated for users. Then IP core is exported to
integrated with IP blocks. After IP insertion and connection with processor, the
bitstream files are generated and download into FPGA to achieve the programming
of the FPGA. A software driver is written and run on the target devices system.

The proposed design has been written in C++, synthesized using Xilinx Vivado
HLS and flashed onto a Xilinx Zynq System-on-Chip (SoC). These SoCs include
an ARM processor besides the FPGA, which has been programmed to trigger the
accelerator and collect results by means of a software driver.

4.3 Bank-Balanced Pruning
Pruning Algorithm

In this thesis, a sparse LSTM hardware accelerator is described, using the encoding-
free BBS format for weight matrices.

As a kind of recurrent neural network, LSTM receives inputs xt at current time
step, and also outputs of the same layer ht−1 at previous time step. Considering
the independence of calculations, xt and ht−1 can merge into a long vector named
input vector. At the same time, xt and ht−1 inputs will have four weight matrices
matching input gate i, forget gate f , output gates o, cell input g respectively, for
a total of 8 weight matrices: Wxi, Wxf , Wxo, Wxg, Whi, Whf , Who, Whg. This
weight matrices can be merged together[9] with fixed location mapping xt and ht−1.

The bank-balanced pruning method is performed on the merged weight matrix.

25

Hardware Accelerator

Each matrix row is split into equal-sized sub-rows(banks), and based on pre-defined
sparsity, the values in each blanks are sorted and then the weights with smaller
absolute value are removed. For example, when the sparsity is 50%, and the bank
size is 4, 2 elements with smallest absolute values will be removed, as figure 4.1

Figure 4.1: Bank Pruning

In this figure, the blue banks are the sub-rows split from dense matrix rows, and
the green one is the original locations of elements in each bank before sorting. At
first, the elements in the bank are sorted by their absolute value, and their original
locations are recorded, shown as the first arrow. Then the two smallest(assume
sparsity is 50%) values are removed, and the remaining elements are put back into
the bank based on their original location information.

The dense weight matrices are pre-processed based on this pruning method by
MATLAB, the algorithm is shown as following:

Compressed Sparse Bank Format

Compatible with Bank-Balanced Pruning algorithm, a sparse matrix format Com-
pressed Sparse Bank(CSB) is used. Thanks to the balanced property of BBS, the
need for decoding is eliminated, so that the overheads brought by decoding when
performing sparse matrix multiplications are avoided. The representation of CSB
is shown as Figure4.2.

In this figure, (a) is original pruned sparse matrix with 8 columns and 2 rows.
The numbers shown on the top and left of the matrix are column numbers and row
numbers respectively. In this matrix example, each row is split into 2 4-size banks
with sparsity equal to 50%, i.e. the non-zero values in each bank is equal to 2.

26

Hardware Accelerator

Figure 4.2: CSB Representation

The CSB format includes two arrays named VALUES and INDEX respectively,
as (b). VALUES array is responsible for storing non-zero values in the sparse
matrix, and INDEX array is used to store bank internal indices of corresponding
non-zero values. As the example in figure 4.2, the first non-zero element from the
first bank A is put in the first location of VALUES array, at the same time, the
A is the 0th element in this bank, therefore, 0 is put in corresponding location of
INDEX array; then the first non-zero element from the second bank C is put in the
second location of VALUES array, and its bank internal index is also 0, so that 0
is put in second location of INDEX array, and so on. When one row is rearranged,
next row is following the same strategy.

This data rearrangement is to achieve inter-bank parallelism to make every
successive elements can be directly fetched and fed for computation in parallel.

The CSB format generation is also pre-processed before hardware acceleration.
The algorithm written by MATLAB is as follows:

27

Hardware Accelerator

4.4 Architecture
The main calculations of LSTM neural network are Matrix-Vector Computation,
Element-wise Computation and the computation through Activation Functions.
Therefore the overall architecture is mainly consisting with a Sparse Matrix-Vector
Multiplication(SpMxV) Unit, Element-wise Vector Operation(EWOP) Unit, on-
chip parameter matrices, i.e., Matrix Memory and Vector Memory which storing
sparse weight matrix in CSB format and input vector(xt and ht−1) respectively.
Moreover, a small controller is used to send load/store instructions. The overall
architecture are shown as Figure 4.3.

Before sending data to the accelerator, the bank-balanced pruning method is
performed and the sparse matrix is represented by CSB format in pre-processing.
When receiving LOAD WEIGHTS instructions, the controller will send control
signals to load the CSB values and indices from host processor into Matrix Memory,
and bias and input vector into Vector Memory with LOAD BIAS and LOAD
VECTOR instructions respectively. After loading, the controller will send control
signals when receiving instruction READ PARAMETERS, to read CSB weight
values, their indices and input vectors from Matrix Memory and Vector Memory
respectively, and start the computations by controlling corresponding modules to
execute.

Memories

There are two memories Matrix Memory and Vector Memory, are used to store
CSB format weights and indices, and input vectors taking part in matrix-vector
computation. Moreover, the bias vector is also stored in Vector Memory, to
participate in the last step of SpMxV unit.

Therefore, inside Matrix Memory, there are two equal-size arrays: VALUES

28

Hardware Accelerator

Figure 4.3: Overall Architecture of LSTM accelerator

array and INDEX array, as described in CSB format. The size of these two array
is exactly the number of non-zero elements in whole sparse matrix. And also two
arrays exist inside Vector Memory and named VECTOR array and BIAS array.
The size of VECTOR array is equal to the number of matrix rows and of BIAS
array is equal to the number of matrix columns.

Moreover, Vector Memory also receives the output from EWOP unit, and merge
it into Vector array to generate new vectors for the next operation.

SpMxV Unit

The SpMxV unit is the unit computing the dot product of weights and vector. It
consisting with multiple Processing Elements(PEs) which performs the multipli-
cation between one weight row and the input vector. These processing unit can
operate in parallel, and return a result element added with bias. These result will
form a output vector fed to EWOP unit.

In particular, thanks to CSB format, the weights are already arranged by the
order of fetching from each bank contiguously, so that the weights from each bank
can be obtained concurrently. It benefits inter-bank parallelism. However, accessing
the corresponding vector element, it will lead to random memory access, which
block the inter-bank parallelism because BRAMs in FPGA do not support multiple
R/W ports. Therefore the dense vector also needs to split into equal-size banks
according to the bank partition of weights and indices.

29

Hardware Accelerator

Hence, when performing the dot-product operations, the indices recording the
internal bank locations of weights are used to search the corresponding vector
elements, as shown in Figure 4.4 and Figure 4.5.

Figure 4.4: The Original Parameters

Figure 4.5: Inter-Bank Multiplication

In Figure4.4, there is one sparse matrix row and its CSB format. This row
includes 4 banks with the size of 4 elements. We can see that the non-zero elements
and their internal bank indices is already arranged by the order of banks. And in

30

Hardware Accelerator

(c), there is a dense vector. In Figure 4.5, the dense vector is split into 4 banks
as the matrix row, and the indices from CSB are used to find the vector elements
mapping weight elements from each bank(i.e. weight representation in the CSB
format). Therefore inter-bank parallelism in dot production operations can be
explored. This operation is realized in Private Vector Buffer(PVB), as in Figure
4.3.

EWOP Unit

EWOP unit is the unit to realize element-wise operations. The result vector from
SpMxV unit is fed into this unit. The detailed computations of EWOP unit is as
Figure 4.6.

Figure 4.6: Element-wise Computations

Inside this unit, there are two activation functions: Sigmoid Function and Tanh
Function. The result vector from SpMxV unit first is fed into Sigmoid Function,
then split into different gate values. The splitting can directly perform because
the location of weight matrices corresponding to each gates are fixed. After that,
element-wise addition and multiplications are performed and then cell state will
update after processed by Tanh Function. The final result ht will go to Vector
Memory, where merging new vectors for next computation.

In particular, to make sure the design is hardware-friendly, the activation
function is implemented using piece-wise linear approximation[44]. The curve
of activation functions are approximated with lines by equal-size interval. Each

31

Hardware Accelerator

piecewise linear interpolation can be represented as y = a ∗ x+ b. The length of
interval is pre-defined, and these parameters a and b are computed by MATLAB
and will be stored into activation funciton modules in LSTM. The approximation
representation of sigmoid function and tanh function are as following:

• Sigmoid Function

f(x) =


0 x ≤ −8
aåx+8

k

8
x+ båx+8

k

8
0 < x ≤ 8

1 x > 8
(4.1)

• Tanh Function

f(x) =



−1 x ≤ −6
aåx+6

k

8
x− båx+6

k

8
−6 < x ≤ 0

aåx+6
k æx+ båx+6

k

8
0 < x ≤ 6

1 x > 6

(4.2)

Controller

There is also a small controller, to sequence the computation flow of LSTM. There
are three basic instructions received by controller from host server:

• LOAD MEMORY This instruction is performed before running the LSTM
acceleration. It includes instruction LOAD WEIGHTS, LOAD BIAS and
LOAD VECTOR. When controller receives this kind of instructions, it will
send control signals to Matrix Memory and Vector Memory to ask them to
load CSB values, CSB indices, bias and vectors from outsides, to prepare the
execution of acceleration.

• READ PARAMETERS This instruction is used to ask LSTM accelerator
to read weights, indices, vectors and biases from memories and execute the
computations, as similar with a "start" switch.

• NO READ Because LSTM is a kind of recurrent neural network, the output
will be used as next input. Therefore, when LSTM executing the computation,
no data reading is needed. This instruction is used to closed the reading from
memories.

Moreover, control unit also receives a status signal from EWOP unit, which
means that EWOP output is available. Then control unit will send one signal to
Vector Memory to enable the reading from EWOP.

32

Hardware Accelerator

4.5 C++ design

Based on Vivado HLS, the architecture described in previous section is written
by C++ language, focusing on the behaviors of each module. The main module
includes Matrix Memory, Vector Memory, SpMxV Unit, PE unit, EWOP unit,
Control Unit, Sigmoid and Tanh Function and the top-level abstraction BBS
Accelerator architecture, mapping main part of the architecture. As mentioned
before, when performing high-level synthesis, a hierarchy of sub-functions will
transform to a hierarchy of modules or entities in final RTL design. And these
module written by C functions will synthesize as blocks in RTL.

Inside each module, multiple loops are used. That is because of the benefits of
HLS which can easily explore parallelism by adding different optimization directives.
By default the loops are realized by the logic for one iteration. And with directives
such as unroll or pipeline, it can copy more logic implementation of one iteration
or insert registers to achieve pipeline. The factor of unroll and initiation interval of
pipeline can be set to different values.

The augments of top-level function will synthesize into RTL I/O port, and if
any array exists in top-level function, it will synthesize into ports to access external
BRAM.

Moreover, Vivado HLS provides a number of arbitrary precision data-types, so
that users can decide arbitrary width in their design. This is one of advantages of
HLS because in hardware more accurate bitwidths are usually used instead of the
data types such as 32-bit int provided by C/C++. The arbitrary precision data
types are defined in header files as Figure 4.7.

Figure 4.7: The Definition of Arbitrary Precision Data Types

In this figure, 32-bit float types are used. Thanks to HLS, it is convenient
to modify them with the different types and find the best accuracy bitwidth for
specific hardware design.

The C codes of the design of this thesis are shown as Appendix A.

33

Hardware Accelerator

4.6 Vivado HLS
This thesis implements the design based on Vivado HLS. Then main steps in HLS
design flow are:

• Validate C design by simulation

• Create a synthesis solution

• Verify the RTL by co-simulation and export IP packages

Before synthesis, C validation is performed by a C testbench in Vivado HLS C
debug environment, to check the correctness of the design. A new project is created
by script run_hls.tcl, shown as B. The windows of Vivado HLS is as Figure 4.8.

Figure 4.8: The Window of Vivado HLS Project

All of C design codes are in source folder and testbench is in Test Bench folder.
To perform the simulation, the data files also need to added into Test Bench folder.
After running C simulation, a csim.log will be shown automatically, to show the
simulation result. Next, the synthesis is performed. when it finished, a report
opens and performance estimates are shown. At this step, RTL files in both verilog
and VHDL are generated.

In particular, before running C synthesis, the directives tab on the right shows
the objects in the design that can be optimized, such as for-loops. Here different
directives can be added by two ways: one is directly added on the source codes;
another is added these directives into a script called directives.tcl. With former
way, the directives can be kept with source files without needing scripts when re-use

34

Hardware Accelerator

these design in other projects; and later way has the benefits to avoid changing
source files.

To perform RTL verification, the C test bench is used again and generates inputs
for RTL for simulation. The output from RTL are applied back into C test bench
to check the correctness of result. After verifying RTL and result is pass, an IP
block can be exported for using later in Vivado Design Suite.

4.7 IP Connection
After exporting the design IP, we need incorporate the design into the FPGA. This
step is operated in the Vivado Design Suite. When creating new project, we should
select target devices. In this project, we used Xilinx PYNQ-Z2 board. The initial
Project is shown as Figure 4.9.

Figure 4.9: The Window of Vivado Design Suite

The main task in this project is to generate bitstream files for programming
FPGA. The steps are following:

• Add HLS IP to the IP Catalog.

• Create an IP integrator block design of the system by connecting IP with
Zynq processor.

• Implement the system by generating implementation sources and create an
HDL wrapper as top-level module.

35

Hardware Accelerator

In particular, when creating the IP integrator, ZYNQ7 Processing System which
is already in IP catalog is used, and users need to preset this block in order to
connect their design with processor. In this project, to match the interface of
designed IP, the overall presetting is shown as Figure4.10.

Figure 4.10: The Presetting of ZYNQ7 Processing System

The IP connection with designed IP core is as Figure 4.11.

Here the block bbs_arch0 is the designed HLS IP. It is connected with Processing
System by AXI Interconnect. A Proc Sys Reset block is also generated. After
connection, validating design is performed. When the validation is successful,
generating output products is performed to obtain source files. And then we should
create HDL wrapper to make top-level of design becomes a verilog file. It means
the design is ready to be synthesized and implemented to generate bitstream files
for FPGA programming. After generating bitstream files successfully, SDK tools
are used to program FPGA.

36

Hardware Accelerator

Figure 4.11: The IP Connection

4.8 Running Design on FPGA
This section is working on Xilinx SDK, where allows users to create software driver
to run their design on target devices. The SDK environment is as Figure 4.12.

Figure 4.12: The SDK Tools

After exporting hardware including bitstream file in Xilinx Design Suite, we need
to launch SDK and create a new project. This project is automatically based on
the target device environment. When creating a new application, first we need to
check the programming and communication with FPGA. Therefore, a Hello World

37

Hardware Accelerator

template is used. After connecting the board with PC and set it up, programming
FPGA is performed. At the same time, Putty is used as a monitor to check the
communication.

Next, a software driver is written to communicate with HLS block, shown in
AppendixC. This driver is written by C language. Serveral BSP and C header files
are included. In BSP, the corresponding functions such as reading/writing data
are generated by tools, to support the software driving. Then after running the
software, the result returned by FPGA is shown on Putty, as Figure 4.13.

Figure 4.13: Result from FPGA

To verify the result, a golden value data file is generated by MATLAB. This
result computing by performing the matrix-vector multiplication directive and use
activation functions without any approximation. The result of our design is almost
same comparing to golden values, the errors caused by linear approximation of
activation functions only at 0.1%.

4.9 Implementation with AXI DMA
Moreover, in this thesis, one implementation with AXI Direct Memory Access
(DMA) peripheral also is proposed. In this solution, the hardware accelerator IP core
is connected to the Accelerator Coherency Port (ACP) of the ARM CPU in the SoC
device with AXI4-Stream interface. A DMA core in the SoC Programmable Logic
(PL) subsystem is used to make the connection. It can provide high-bandwidth

38

Hardware Accelerator

direct memory access between memory and peripherals. Then the AXI DMA
is connected to the L2 cache of the ARM processor, which achieves a higher
throughput in data communication. The block diagram of the system is shown as
Figure 4.14 [45].

Figure 4.14: Block Diagram of Communicating with DMA

4.9.1 AXI4-Stream Interface and ARM ACP
To use AXI DMA for communication, the interface of the design need to be imple-
mented with AXI-Stream communication standard. It is a kind of free-addressing
point-to-point data transfer protocol. To connect our hardware accelerator design
to AXI DMA, pop stream and push stream functions are written in C++ codes,
to support the data extraction and insertion from/into an AXI4-Stream interface,
and also change the data type into 32-bit unsigned data of AXI4 protocol. The
pop stream function and push stream function are shown as Figure 4.15:

To use AXI4-Stream interface, some side channel information associated should
be provided by user. Therefore, a data type defined as AXI_VAL written in C++
code. In the C testbench, the pop stream function is used to insert data into
AXI Stream and push stream function is used to extract result returned by the
accelerator from AXI Stream.

The Accelerator Coherency Port (ACP) of the ARM CPU is a 64-bit AXI slave
interface. This interface makes asynchronous cache-coherent access directly from
SoC PL to Cortex-A9 CPU processor subsystem achievable, provides a low latency
path [45]. Through the ACP port, the processor L1 caches are searched for the
required information, if it misses, the L2 cache is accessed, and finally the main

39

Hardware Accelerator

Figure 4.15: Pop Stream and Push Stream

memory if miss happens again.

40

Hardware Accelerator

4.9.2 AXI DMA
AXI DMA is a kind of IP core in Vivado Repository, its block diagram is shown as
Figure 4.16 [45].

Figure 4.16: AXI DMA

This DMA core can handle address generation, burst formatting and scheduling
of memory transaction [45]. The communication is achieved by a series of AXI4
interfaces, as shown in the block diagram. In particular, MM2S means AXI4 to
AXI4-Stream and S2MM means AXI4-Stream to AXI4. In this thesis, the DMA
works under Simple DMA mode, which requires less resource utilization.

In this DMA mode, AXI Memory Map Read (MM2S) interface reads data from
external memory and then the data are transmitted by DataMover to slave through
the AXI4-Stream (MM2S) port. On the another hand, AXI Memory Map Write
(S2MM) interface can receive data and send them to a slave external memory
through the AXI4-Stream (S2MM) port.

4.9.3 IP Integrator Design
As described in the previous section, after exporting IP core, Vivado Design Suite
is used to create the hardware design targeting the PYNQ-Z2 board. The block
design is shown as Figure 4.17.

In this block diagram, bbs_arch_0 is our hardware accelerator IP core. The input
para_in is connected with AXI DMA to the interface called M_AXIS_MM2S,

41

Hardware Accelerator

Figure 4.17: IP Connection with DMA

which means the AXI4-Stream Master to Slave. And the output ewop_o is
connected with AXI DMA to the interface called S_AXIS_S2MM, which means
the AXI4-Stream Slave to Master. In other words, the Programmable Logic (PL)
read/write DMA data through AXI-S interface. The Processing System (PS) sends
instructions into AXI DMA by AXI-Lite interface.

Moreover, the Address Editor shows the memory map and unmapped slaves
should be assigned suitable address. The address assignment is shown as Figure
4.18.

Figure 4.18: Address Assignment

After generating the bitstream based on this IP integrator design, we launch

42

Hardware Accelerator

SDK and create the software driver for supporting the hardware accelerator.

43

Chapter 5

Experimental Results

5.1 Experimental Setup

In this thesis, development tools from the Xilinx Vivado Design Suite have been
used, including Vivado HLS, Vivado and Vivado SDK, which have been discussed
in previous sections. The hardware platform is Xilinx PYNQ-Z2, which is a Zynq
development board designed to be used with a open-source framework.

5.1.1 Hardware Platform

The implementation and evaluation of the design in this work has been performed
on the development board PYNQ-Z2. With PYNQ open-source framework, Xilinx
Zynq All Programmable SoC(APSoC) function supports user to create their design
just focusing on the programming. The core of PYNQ-Z2 is ZYNQ XC7Z020
FPGA, which including 650MHz ARM Cortex-A9 dual-core processor and multiple
programmable logic. PYNQ-Z2 can also support Python, can achieve on-line
programming and debugging.

To setup the board, a Micro SD card loaded with the PYNQ-Z2 image needs
to insert. After connecting the USB cable and Ethernet cable, the board can be
turned on. Moreover, the Ethernet cable can be connected to a router or directly a
PC. When connecting to a computer, static IP address should be assigned for the
computer, in order to communicate with board. The IP address of the board is
192.168.2.99, so that the static IP assigned for computer should be at the same
range as the board.

After turning on the board, the board will load the image from Micro SD card.
Once two Blue LEDs and four Yellow LEDs flash, the system is booted and ready
to use.

44

Experimental Results

Figure 5.1: PYNQ-Z2

5.2 Evaluation
In this thesis, there are three hardware accelerators with different hidden layer size
are implemented, shown as Table 5.1.

Hidden Size Matrix Size Bank Size
8 32×16 4
32 128×64 8
64 256×128 16

Table 5.1: Implementation of Accelerator with Different Size

These implementation are also optimized by setting directives. Moreover, the
implementation with DMA and without DMA are also evaluated. The main parts
of evaluation are shown as following:

• Speedup of unoptimized and optimized implementations

• Resource utilization of unoptimized and optimized implementations

• Power consumption of unoptimized and optimized implementations

45

Experimental Results

• Comparison between implementation with DMA and the one without DMA,
under the same hidden layer size and directives

• Pareto curve of different solutions

5.2.1 Speedup
As the goal of accelerating LSTM models, speedup is one of main evaluations. In
this part, we set average of execution time measured 1000 times as the speed to
perform comparisons. Three accelerators with 8-size, 32-size and 64-size hidden
layers are implemented respectively. In particular, unoptimized implementation
and optimized implementation are evaluated in this part. All of these sparse LSTM
accelerators are set with sparsity equal to 50%.

These accelerators can also be used for larger LSTMs, by splitting the input
vector and weight matrices appropriately. This however will have a cost in terms
of speed-up, since the new portion of the weight matrix has to be reloaded after
each invocation of the acceleration.

The reference is the average execution time of software implementation on the
ARM Cortex-A9 processor present on the Zynq SoC. The speedup ratio is shown
as Figure 5.2.

Figure 5.2: Speedup

As show in the figure, for small accelerator version (8-size hidden layer one),
a 11x speedup has been obtained compared to a software implementation on
the ARM Cortex-A9 processor present on the Zynq SoC; when scaling to bigger

46

Experimental Results

designs (32-size hidden layer and 64-size ones), the speedup increases to 15x. This
is expected since, as explained in Section 2, the number of dot products grows
quadratically with the hidden size.

Moreover, by setting some directives, the speedup increases to 30x. It is expected
because directives are used to perform optimization, such as latency can be reduced
by adding some pipeline register and so on.

In this part, the 8-size hidden layer optimization implementation with DMA
and the one without DMA are compared. We can see that when we perform
optimization by setting directives, the speedup increases to 28x from 11x; with
using AXI DMA, the speedup sharply increases to 82x, which totally shows the
performance improve by reducing data transfer latency.

5.2.2 Resource Utilization
The resource utilization is evaluated by the utilization of BRAM, DSP48E, FF and
LUT. The evaluation is shown as Table 5.2.

Hidden Size BRAM DSP48E FF LUT
8 (without optimization) 15 34 20997 23868
8 (with optimization) 21 52 59374 51925

8 (with optimization and DMA) 25 45 43859 41197
32 (without optimization) 47 34 20500 23994
32 (with optimization) 52 52 58666 52812

64 (without optimization) 143 34 20546 24088
64 (with optimization) 148 36 38693 49007

Table 5.2: Resource Utilization

In this table, we can see that performing optimization under the same size of
implementation, the BRAM and DSP48E resources are increase will little, and
FF and LUT resources are doubled. By using the optimization methods such as
pipeline, the computing resources of the FPGA are used efficiently, in order to
increase speed as shown in previous section.

One of the interesting point is that the optimized implementation with DMA,
which achieve 82x speedup as shown in previous section, even use less resources
than the implementation without DMA under the same optimization.

The resource utilization is also evaluated by comparing our design with one dense
LSTM implementation[9] from Zhang et al. Both LSTM accelerator is implemented
to support 32-size hidden layer. The comparison is shown as Figure 5.3.

47

Experimental Results

Figure 5.3: Resource Utilization

The resource utilization is evaluated by the utilization of BRAM, DSP48E,
FF and LUT. Considering the different hardware platform, the utilization is not
represented by percentage of utilization but directly shown the number. As we can
see in the figure, the utilization of BRAM resource is similar in both implementation,
but for the utilization of DSP48E, FF and LUT, the sparse LSTM design shows
better area-saving feature.

5.2.3 Power consumption
Power consumption of LSTM accelerator is also evaluated by power report in
Vivado Design Suite. To analysing the power obtained, accelerator unoptimized
and optimized implementations with 8-size, 32-size and 64-size hidden layers are
compared.

In this figure, we can see that when the layer of LSTM growing from 8-size
to 32-size and 64-size, the increasing of power consumption is very small, almost
negligible. When comparing with the dense LSTM with same size(32-size) from
Zhang et al., power consumption of our design is lightly smaller.

Moreover, with optimization and without optimization under the same size, the
power consumption is only lightly increase. When using DMA under the same size
and optimization, the power consumption even smaller. The power consumption of
all implementation prove the lower power consuming feature of FPGA.

5.2.4 Pareto Curve
Based on HLS, the accelerator design has a flexibility to perform different opti-
mizations by adding directives, to force the implementation with different versions.

48

Experimental Results

Figure 5.4: Power Consumption

Therefore, the design space exploration can be achieved to find the suitable design
implementation for different specific application.

In this part, the hardware accelerator with 32-hidden layer size are explored
different implementations by setting different optimization directives. The both
cases with DMA and without DMA are considered.

To obtain the relationship between speed and area, both minimum latency and
maximum latency are considered, as the reference to represent speed. With higher
latency, the speed is slower. And the area is represented by four resource utilization:
BRAM, DSP48E, FF and LUT. In each case, the pareto curve is shown.

Without DMA, the different implementation of hardware accelerator with 32-
hidden layer size are realized. With reference as minimum latency and maximum
latency, the pareto curves are shown as Figure 5.5 and 5.6 respectively.

49

Experimental Results

Figure 5.5: Pareto Curves under 32-hidden Layer Size with Minimum Latency

50

Experimental Results

51

Experimental Results

Figure 5.6: Pareto Curves under 32-hidden Layer Size with Maximum Latency

In these figures, with multiple design implementation based on optimization
directives, we can find some solutions with higher latency (slower) but smaller
area (smaller resource utilization), and also some ones with lower latency but
bigger area. This exactly proves the benefits of HLS that designers can provide
numerous solutions to users by short development period, and the best solution
under requirements can be explored without changing source design.

Thanks to HLS, in this case, we are able to obtain implementations with a
worst-case minimum latency ranging from about 81000 clock cycles to about 2500
clock cycles, and maximum latency ranging from about 144325 to 13000. The
number of BRAM varies from 47 to 52, and of DSP48E varies from 31 to 52, not
changing too much. The number of FF varies from 20317 to 174172, and of LUT
varies from 23797 to 165331.

These Pareto curves are for the accelerator without DMA. However, notice that
the Pareto curve will be very similar also for the DMA case. In fact, most of the
internal accelerator architecture will be the same, and the presence of DMA will
only influence the interface part. In other words, the larger speed-up obtained in
the DMA case is not due to difference in the accelerator latency, but just in the
input/output data transfer throughput.

52

Chapter 6

Conclusion and Future
Works

6.1 Conclusion
Hardware accelerator, as a popular solution to speed up the computation process
of LSTM models, attracts many researchers to explore noval algorithms and
architectures. Focusing on the numerous parameters inside the model, sparse
LSTM networks are proposed with various pruning method and compressed sparse
formats. Moreover, further to solve the unstructured matrix problem, constrained
pruning is considered, and corresponding hardware architectures are created.

On the anther hand, with high performance and low power consumption, FPGA
becomes a good choice as hardware platform to support LSTM models. Recently,
since High level syntheis(HLS) techniques becomes more and more mature. With
the flexibility of programming and optimization, a various LSTM accelerator
implementation can be achieved, and the exploration of design space becomes much
faster.

In this thesis, a hardware accelerator supporting LSTM models based on FPGA
is designed and implemented by HLS techniques. Focusing on the resource saving,
Bank-Balanced Sparse(BBS) pruning is used, which solves unstructured sparse
matrix and irregular memory access problems. At the same time, Compressed
Sparse Bank(CSB) format is used, without introducing encoder overhead.

Based on HLS, both C++ designs using DMA and without DMA are synthe-
sized into RTL and finally implemented on the Xilinx PYNQ-Z2 FPGA board.
The evaluations on speedup, resource utilization and power consumption are per-
formed. Finally, a complete design space exploration has been performed and the
pareto curves have been found. Many different accelerator implementations have
been realized, among which a system designer could select depending on his/her

53

Conclusion and Future Works

requirements, by analysis of the speed-area relations of different designs.

6.2 Future Work
This LSTM accelerator can be further optimized. In this work, the accelerator is
implemented with 32-bit float point data type. By using shorter data types such
as fixed-point, the size of LSTM accelerator could be further reduced at the cost
of some additional accuracy loss. Moreover, based on the sparsity of output of
EWOP unit(in particular, ht vector), the pruning applied to ht could be explored,
which will lead the computational costs further reducing.

In the future work, focusing on the neural networks with huge scale, the acceler-
ator could be interfaced with the processor using multiple DMA to achieve faster
data transfers during runtime. This would allow to fully exploit the parallelism
inside the FPGA.

54

Appendix A

C++ Design

A.1 Top-Level Function

A.1.1 Header File

1 #i f n d e f _BBS_H_
2 #d e f i n e _BBS_H_
3

4 #inc lude " s t d i o . h "
5 #inc lude " ControlUnit . h "
6 #inc lude "MatrixMem . h "
7 #inc lude " VectorMem . h "
8 #inc lude "SpMxV. h "
9 #inc lude "EWOP. h "

10

11 // matrix mem
12 #d e f i n e ARRAY_SIZE 128 // value and index s i z e (csb)
13

14 // vec to r mem
15 #d e f i n e VECTOR_SIZE 16
16 #d e f i n e BIAS_SIZE 16 // from vecto r memory , equal to the #of rows

in matrix
17 #d e f i n e GATE_SIZE 4
18

19 //SpMxV
20 #d e f i n e OUT_SIZE 16
21

22 typede f f l o a t din_t ; // d e f i n e the data type
23 typede f i n t dindx_t ;
24 typede f f l o a t dout_t ;
25

55

C++ Design

26 typede f i n t cin_t ;
27 typede f i n t cout_t ;
28

29 void bbs_arch (dout_t ewop_o [GATE_SIZE∗ 2] , din_t value_i [ARRAY_SIZE] ,
dindx_t index_i [ARRAY_SIZE] , din_t vector_i [VECTOR_SIZE] , din_t

b ias_i [BIAS_SIZE] , cin_t i r_in) ;
30

31 #e n d i f

A.1.2 BBS.cpp

1 #inc lude "BBS. h "
2

3 void bbs_arch (dout_t ewop_o [GATE_SIZE∗ 2] , din_t value_i [ARRAY_SIZE] ,
dindx_t index_i [ARRAY_SIZE] , din_t vector_i [VECTOR_SIZE] , din_t

b ias_i [BIAS_SIZE] , cin_t i r_in) {
4

5 // c o n t r o l s i n g a l s
6 cin_t en_wr_v ; // s t a tu s s i g n a l from ewop
7

8 cout_t rd_matrix ; // c o n t r o l s i g n a l s from cu
9 cout_t rd_vector ;

10 cout_t wr_vector ;
11

12 cout_t ld_matrix ;
13 cout_t ld_vector ;
14

15 // matrix memory output , i n to spmxv uni t
16 s t a t i c dout_t matrix_value_o [ARRAY_SIZE] ;
17 s t a t i c dindx_t matrix_idx_o [ARRAY_SIZE] ;
18

19 // vec to r memory
20 s t a t i c dout_t vector_o [VECTOR_SIZE] ;
21 s t a t i c dout_t bias_o [BIAS_SIZE] ;
22

23 //spmxv output
24 s t a t i c dout_t spmxv_o [OUT_SIZE] ; // a f t e r adding bias , i n to EWOP
25

26

27 // a r c h i t e c t u r e
28 cu(&rd_matrix , &rd_vector , &wr_vector , &ld_matrix , &ld_vector ,

i r_in , &en_wr_v) ;
29

30 matrix_mem(matrix_value_o , matrix_idx_o , value_i , index_i , &
ld_matrix , &rd_matrix) ;

31

56

C++ Design

32 vector_mem (vector_o , bias_o , vector_i , bias_i , ewop_o , &ld_vector
, &rd_vector , &wr_vector) ;

33

34 spmxv(spmxv_o , matrix_value_o , vector_o , matrix_idx_o , bias_o) ;
35

36 ewop (ewop_o , &en_wr_v , spmxv_o , i r_in) ;
37

38 }

A.2 Matrix Memory

A.2.1 Header file

1 #i f n d e f _MatrixMem_H_
2 #d e f i n e _MatrixMem_H_
3

4 #inc lude <s t d i o . h>
5

6 #d e f i n e ARRAY_SIZE 128
7

8 typede f f l o a t din_t ;
9 typede f f l o a t dout_t ;

10 typede f i n t dindx_t ;
11 typede f i n t cin_t ;
12

13 void matrix_mem(dout_t value_o [ARRAY_SIZE] , dindx_t idx_o [ARRAY_SIZE
] , din_t value_i [ARRAY_SIZE] , dindx_t idx_i [ARRAY_SIZE] , cin_t ∗ ld
, cin_t ∗ rd) ;

14

15 #e n d i f

A.2.2 MatrixMem.cpp

1

2 #inc lude "MatrixMem . h "
3

4 void matrix_mem(dout_t value_o [ARRAY_SIZE] , dindx_t idx_o [ARRAY_SIZE
] , din_t value_i [ARRAY_SIZE] , dindx_t idx_i [ARRAY_SIZE] , cin_t ∗ ld
, cin_t ∗ rd) {

5

6

57

C++ Design

7 //CSB value and index
8 s t a t i c dout_t value_current [ARRAY_SIZE] ;
9 s t a t i c dindx_t idx_current [ARRAY_SIZE] ;

10

11 // i f r s t , load csb value and index data from f i l e s
12

13 i f (∗ ld == 1) {
14 // r e s e t va lue
15 Load_v_loop : f o r (i n t i =0; i<ARRAY_SIZE; i++) {
16 value_current [i]= value_i [i] ;
17 }
18 // r e s e t index
19 Load_idx_loop : f o r (i n t j =0; j<ARRAY_SIZE; j++) {
20 idx_current [j]= idx_i [j] ;
21 }
22 // i n t aaa=0;
23 }
24 e l s e {
25 i f (∗ rd==1) { // vec to r output
26 Out_loop : f o r (i n t i =0; i< ARRAY_SIZE; i++) {
27 value_o [i]= value_current [i] ;
28 idx_o [i]= idx_current [i] ;
29 }
30 }
31 }
32 }

A.3 Vector Memory

A.3.1 Header file

1

2 #i f n d e f _VectorMem_H_
3 #d e f i n e _VectorMem_H_
4

5 #inc lude " s t d i o . h "
6

7 #d e f i n e ARRAY_SIZE_VECTOR 16
8 #d e f i n e BIAS_SIZE_VECTOR 16
9 #d e f i n e GATE_SIZE_VECTOR 4 // f o r each gate

10

11 //#d e f i n e NUM_PE 8
12

13 typede f f l o a t din_t ;
14 typede f f l o a t dout_t ;

58

C++ Design

15 typede f i n t dindx_t ;
16

17 // f o r c o n t r o l s i g n a l s
18 typede f i n t cin_t ;
19 typede f i n t cout_t ;
20

21 void vector_mem (dout_t vector_o [ARRAY_SIZE_VECTOR] , dout_t bias_o [
BIAS_SIZE_VECTOR] , din_t vector_i [ARRAY_SIZE_VECTOR] , din_t bias_i
[BIAS_SIZE_VECTOR] , din_t ewop_o [GATE_SIZE_VECTOR∗ 2] , cin_t ∗ ld ,
cin_t ∗rd , cin_t ∗wr) ;

22

23 #e n d i f

A.3.2 VectorMem.cpp

1

2 #inc lude " VectorMem . h "
3

4 // s t o r e the vec to r and b ia s
5 // c o n t r o l s i g n a l s : r s t : a c t i v e low ; rd : v a l i d output ; wr : v a l i d input
6 // vector_o : output vec to r ; bias_o : output b i a s
7 //ewop_o : r e s u l t from ewop uni t and generate new vecto r going to

spmxv
8

9 void vector_mem (dout_t vector_o [ARRAY_SIZE_VECTOR] , dout_t bias_o [
BIAS_SIZE_VECTOR] , din_t vector_i [ARRAY_SIZE_VECTOR] , din_t bias_i
[BIAS_SIZE_VECTOR] , din_t ewop_o [GATE_SIZE_VECTOR∗ 2] , cin_t ∗ ld ,
cin_t ∗rd , cin_t ∗wr) {

10

11 s t a t i c dout_t vector_current [ARRAY_SIZE_VECTOR] ;
12 s t a t i c dout_t bias_current [BIAS_SIZE_VECTOR] ;
13

14 // i f r s t , load vec to r and b ia s data
15 // f o r l a r g e r data set , need to read data whi l e working −>DMA−

uncompleted
16 i f (∗ ld == 1) {
17 Load_vec_loop : f o r (i n t i =0; i< ARRAY_SIZE_VECTOR; i++) {
18 vector_current [i]= vector_i [i] ;
19 }
20

21 Load_bias_loop : f o r (i n t j =0; j< BIAS_SIZE_VECTOR; j++) {
22 bias_current [j]= bias_i [j] ;
23 }
24 }
25 e l s e {
26 i f (∗wr==1) {

59

C++ Design

27 Write_ewop_loop : f o r (i n t i =0; i<GATE_SIZE_VECTOR∗2 ; i++)
{

28 vector_o [i +(ARRAY_SIZE_VECTOR−2∗GATE_SIZE_VECTOR)]=
ewop_o [i] ;

29 }
30 }
31 i f (∗ rd==1) { // vec to r output
32 Out_loop_v : f o r (i n t i =0; i<ARRAY_SIZE_VECTOR; i++) {
33 vector_o [i]= vector_current [i] ;
34 }
35 Out_loop_b : f o r (i n t i =0; i<BIAS_SIZE_VECTOR; i++) {
36 bias_o [i]= bias_current [i] ;
37 }
38 }
39 }
40 }

A.4 PE Unit

A.4.1 Header File

1

2 #i f n d e f _PE_H_
3 #d e f i n e _PE_H_
4

5 #inc lude <s t d i o . h>
6

7 #d e f i n e NON_ZERO_ROW 8 //non−zero va lue s in one row in pruned matrix
8 #d e f i n e NUM_BANK 4 //N vecto r e lements in to p r i va t e vec to r b u f f e r

from vecto r memory
9 #d e f i n e BANK_SIZE 4 // the s i z e o f each bank

10

11 #d e f i n e MATRIX_ROW 16
12

13 // adder t r e e
14 #d e f i n e VALUE_SIZE_TREE 4 // the s i z e o f va lue o f matrix from matrix

memory
15 #d e f i n e VECTOR_SIZE_TREE 4
16 #d e f i n e ACCUM_LEN 10
17

18 //PE
19 #d e f i n e VALUE_SIZE_PE 4
20 #d e f i n e INDX_SIZE_PE 4 // the s i z e o f bank i n t e r n a l i n d i c e s from

matrix memory
21 #d e f i n e VECTOR_SIZE_PE 16 // vec to r and value from memory

60

C++ Design

22

23 typede f f l o a t din_t ;
24 typede f f l o a t dout_t ;
25 typede f i n t dindx_t ;
26 typede f i n t cin_t ;
27

28 dout_t pe (din_t vector_i [VECTOR_SIZE_PE] , din_t value_i [VALUE_SIZE_PE
] , dindx_t vector_idx [INDX_SIZE_PE]) ;

29

30 #e n d i f

A.4.2 PE.cpp

1

2 #inc lude "PE. h "
3

4 // p r i va t e vec to r b u f f e r
5 // s p l i t vec to r array in to banks cor re spond ing to banks in pruned

matrix row
6 // here s p l i t i n to 4 banks , and pick one element in to pvb_vector_o
7

8 void pvb (dout_t pvb_vector_o [NUM_BANK] , din_t vector_i [NUM_BANK∗
BANK_SIZE] , dindx_t vector_idx [INDX_SIZE_PE]) {

9 i n t i =0;
10 i n t j =0;
11 i n t k=0; // count f o r output vec to r element from each bank
12 dout_t vector_bank [BANK_SIZE] ;
13

14

15 Fil l_al l_bank_loop : f o r (i =0; i <(NUM_BANK∗BANK_SIZE) ; i=i+
BANK_SIZE) {

16 Fill_one_bank_loop : f o r (j =0; j<BANK_SIZE; j++) {
17

18 vector_bank [j]= vector_i [i+j] ;
19 }
20

21 pvb_vector_o [k]=vector_bank [vector_idx [k]] ;
22 k=k+1;
23 }
24 }
25

26 // adder t ree −g e n e r i c
27 dout_t adder_tree (din_t value_i [VALUE_SIZE_TREE] , din_t vector_i [

VECTOR_SIZE_TREE]) {
28 i n t i ;
29 i n t j ;

61

C++ Design

30 s t a t i c dout_t accum [ACCUM_LEN] ; // array f o r accumulation
31 dout_t accum_final ;
32

33 add_binary_loop : f o r (i =0; i <(VALUE_SIZE_TREE/2) ; i++) {
34 accum [i]= value_i [2∗ i] ∗ vector_i [2∗ i]+ value_i [2∗ i +1]∗ vector_i

[2∗ i +1] ;
35 }
36

37 add_accum_loop : f o r (j =0; j <(VALUE_SIZE_PE/2) ; j++) {
38 accum_final=accum_final+accum [j] ;
39 }
40

41 re turn accum_final ;
42 }
43

44

45 dout_t pe (din_t vector_i [VECTOR_SIZE_PE] , din_t value_i [VALUE_SIZE_PE
] , dindx_t vector_idx [INDX_SIZE_PE]) {

46 i n t i ;
47 s t a t i c dout_t pvb_vector_o [NUM_BANK] ; // po in t e r o f ouput o f pvb
48 dout_t pe_o ;
49

50 pvb (pvb_vector_o , vector_i , vector_idx) ; // output o f pvb , i n to
adder t r e e

51 pe_o=adder_tree (value_i , pvb_vector_o) ;
52

53 re turn pe_o ;
54 }

A.5 SpMxV Unit

A.5.1 Header file

1

2 #i f n d e f _SPMXV_H_
3 #d e f i n e _SPMXV_H_
4

5 #inc lude <s t d i o . h>
6

7 #d e f i n e _CRT_SECURE_NO_WARNINGS
8

9 #d e f i n e NUM_PE 2
10

11 //assume the weight matrix i s 16∗16
12 // s p l i t 4 bank in each row , i . e . , 1∗4 bank

62

C++ Design

13 //#of non−zero value in each bank i s 2 (50% purning ra t e)
14 // t h e r e f o r e 8 non−zero value in each row , t o t a l 8∗16=128 non−zero

value in the matrix
15

16 #d e f i n e VALUE_SIZE 128
17 #d e f i n e INDX_SIZE 128
18 #d e f i n e VECTOR_SIZE 16
19 #d e f i n e BIAS_SIZE 16
20

21 #d e f i n e BANK_SIZE 4
22 #d e f i n e NUM_BANK 4
23 #d e f i n e NNZ_BANK 2
24

25 #d e f i n e OUTSIZE 16
26

27 typede f f l o a t din_t ;
28 typede f f l o a t dout_t ;
29

30 typede f i n t dindx_t ;
31

32 typede f i n t cin_t ;
33

34 void spmxv(dout_t r e su l t_vec to r [OUTSIZE] , din_t value_in [VALUE_SIZE] ,
din_t vector_in [VECTOR_SIZE] , dindx_t vector_idx [INDX_SIZE] ,

din_t b ias_i [BIAS_SIZE]) ;
35

36 #e n d i f

A.5.2 SpMxV.cpp

1

2 #inc lude "SpMxV. h "
3 #inc lude "PE. h "
4

5 //spmxv unit , value_in and vector_in are from matrix memory and
vec to r memory r e s p e c t i v e l y

6 // ins_read and ins_wri te are the enable s i g n a l s to read and wr i t e
r e s p e c t i v e l y , from i n s t r u c t i o n b u f f e r

7

8 void spmxv(dout_t r e su l t_vec to r [OUTSIZE] , din_t value_in [VALUE_SIZE] ,
din_t vector_in [VECTOR_SIZE] , dindx_t vector_idx [INDX_SIZE] ,

din_t b ias_i [BIAS_SIZE]) {
9

10 dout_t pe_o ;
11 i n t i ;
12

63

C++ Design

13 s t a t i c din_t value [NUM_BANK] ;
14 s t a t i c dindx_t indx [NUM_BANK] ;
15 i n t count =0;
16

17 // c l e a r r e su l t_vec to r
18 c lean_loop : f o r (i n t m=0; m<OUTSIZE; m++) {
19 r e su l t_vec to r [m]=0;
20 }
21

22 Matrix_row_loop : f o r (i n t k=0; k<VALUE_SIZE; k=k+NUM_BANK∗NUM_PE)
{

23 PE_LOOP: f o r (i =0; i<NUM_PE∗NUM_BANK; i=i+NUM_BANK) {
24 Bank_gen_loop : f o r (i n t j =0; j<NUM_BANK; j++) {
25 value [j]= value_in [i+j+k] ;
26 indx [j]= vector_idx [i+j+k] ;
27 }
28 pe_o=pe (vector_in , value , indx) ;
29 r e su l t_vec to r [count]= re su l t_vec to r [count]+pe_o ;
30 }
31 r e su l t_vec to r [count]= re su l t_vec to r [count]+ bias_i [

count] ;
32 count++;
33 }
34

35 }

A.6 EWOP Unit

A.6.1 Header file

1

2 #i f n d e f _EWOP_H_
3 #d e f i n e _EWOP_H_
4 #inc lude " cmath "
5

6 #d e f i n e GATE_SIZE 4
7 #d e f i n e LOAD_MEM 3
8

9

10 typede f f l o a t din_t ;
11 typede f f l o a t dout_t ;
12 typede f i n t dindx_t ;
13 typede f i n t cin_t ;
14 typede f i n t cout_t ;
15

64

C++ Design

16 void ewop (dout_t ewop_o [GATE_SIZE∗ 2] , cout_t ∗en_wr_v , din_t spmxv_o [
GATE_SIZE∗ 4] , cin_t i r_in) ;

17 dout_t sigmoid (din_t x) ;
18 dout_t tanh (din_t x) ;
19

20 #e n d i f

A.6.2 EWOP.cpp

1

2 #inc lude "EWOP. h "
3

4 void ewop (dout_t ewop_o [GATE_SIZE∗ 2] , cout_t ∗en_wr_v , din_t spmxv_o [
GATE_SIZE∗ 4] , cin_t i r_in) {

5

6 s t a t i c din_t gate [GATE_SIZE∗ 4] ;
7 s t a t i c din_t i_gate [GATE_SIZE] ;
8 s t a t i c din_t f_gate [GATE_SIZE] ;
9 s t a t i c din_t g_gate [GATE_SIZE] ;

10 s t a t i c din_t o_gate [GATE_SIZE] ;
11

12 s t a t i c dout_t c_state [GATE_SIZE] ;
13 s t a t i c dout_t y [GATE_SIZE] ;
14

15 // c l e a r the s t a t e
16 c l ear_loop : f o r (i n t k=0; k<GATE_SIZE; k++) {
17 c_state [k]=0;
18 y [k]=0;
19 }
20

21 // p i p e l i n e
22 Gate_value_loop : f o r (i n t i =0; i<GATE_SIZE∗4 ; i++) {
23 gate [i]= sigmoid (spmxv_o [i]) ; // gate va lue
24 }
25

26 // s p l i t the gate ve c t o r s
27 Spl i t_gate_loop : f o r (i n t j =0; j<GATE_SIZE∗4 ; j++) {
28 i f (j<GATE_SIZE) {
29 i_gate [j]= gate [j] ;
30 }
31 e l s e i f (j<GATE_SIZE∗2) {
32 g_gate [j−GATE_SIZE]= gate [j] ;
33 }
34 e l s e i f (j<GATE_SIZE∗3) {
35 f_gate [j −2∗GATE_SIZE]= gate [j] ;
36 }

65

C++ Design

37 e l s e {
38 o_gate [j −3∗GATE_SIZE]= gate [j] ;
39 }
40 }
41

42 computation_loop : f o r (i n t k=0; k<GATE_SIZE; k++) {
43 c_state [k]= c_state [k] ∗ f_gate [k]+g_gate [k] ∗ i_gate [k] ;
44 y [k]=o_gate [k] ∗ tanh (c_state [k]) ;
45 }
46

47 // generate ewop_o output to vec to r memory to c r e a t e new vecto r
48 Ewop_gen_loop : f o r (i n t m=0; m<GATE_SIZE; m++) {
49 ewop_o [m]=y [m] ;
50 ewop_o [m+GATE_SIZE]= c_state [m] ;
51 }
52

53 i f (i r_in !=LOAD_MEM) {
54 ∗en_wr_v=1;
55 }
56

57 }

A.7 Activation Functions

A.7.1 Header File

1

2 #i f n d e f __ACTIVEMODULE_H__
3 #d e f i n e __ACTIVEMODULE_H__
4

5 #inc lude " cmath "
6

7 typede f f l o a t din_t ;
8 typede f f l o a t dout_t ;
9

10

11 dout_t SigmoidFunc (din_t x) ;
12 dout_t TanhFunc (din_t x) ;
13

14 #e n d i f

A.7.2 Sigmoid.cpp

66

C++ Design

1

2 #inc lude " ActiveModule . h "
3

4 #d e f i n e N_sl ice 160
5

6 dout_t sigmoid (din_t x)
7

8 {
9 s t a t i c f l o a t sigmoid_a [N_sl ice]= {

10 0.000352560101599184 , 0 .000389610243596535 ,
0 .000430550582544846 , 0 .000475788838390289 ,

11 0.000525775298440352 , 0 .000581007225108015 ,
0 .000642033711984364 , 0 .000709461032038589 ,

12 0.000783958525615976 , 0 .000866265080023501 ,
0 .000957196256849915 , 0 .00105765212774684 ,

13 0.00116862588417099 , 0 .00129121329151538 ,
0 .00142662306308033 , 0 .00157618823437430 ,

14 0.00174137862318382 , 0 .00192381446557077 ,
0 .00212528132226450 , 0 .00234774635358441 ,

15 0.00259337606376285 , 0 .00286455561697362 ,
0 .00316390982704920 , 0 .00349432592022642 ,

16 0.00385897816460139 , 0 .00426135445045051 ,
0 .00470528489115779 , 0 .00519497249393442 ,

17 0.00573502592133708 , 0 .00633049432700738 ,
0 .00698690419997115 , 0 .00771029808877919 ,

18 0.00850727499687927 , 0 .00938503214056493 ,
0 .0103514076368886 , 0 .0114149235368106 ,

19 0.0125848284339053 , 0 .0138711386560828 , 0 .0152846767816788 ,
0 .0168371059065062 ,

20 0.0185409577198595 , 0 .0204096520205297 , 0 .0224575048153873 ,
0 .0246997215919666 ,

21 0.0271523717449047 , 0 .0298323394709420 , 0 .0327572457418567 ,
0 .0359453352412819 ,

22 0.0394153214432177 , 0 .0431861823648066 , 0 .0472768990085096 ,
0 .0517061282045102 ,

23 0.0564918015812776 , 0 .0616506428635033 , 0 .0671975967789674 ,
0 .0731451647267883 ,

24 0.0795026452093378 , 0 .0862752810482902 , 0 .0934633207592782 ,
0 .101061008265046 ,

25 0.109055523408803 , 0 .117425905374900 , 0 .126142001830469 ,
0 .135163497825408 ,

26 0.144439089402808 , 0 .153905876350619 , 0 .163489055160232 ,
0 .173101995435410 ,

27 0.182646779039001 , 0 .192015269651127 , 0 .201090760050009 ,
0 .209750214973916 ,

28 0.217867089594464 , 0 .225314659423707 , 0 .231969750239409 ,
0 .237716710894026 ,

67

C++ Design

29 0.242451433007930 , 0 .246085194991811 , 0 .248548098335379 ,
0 .249791874789400 ,

30 0.249791874789400 , 0 .248548098335379 , 0 .246085194991811 ,
0 .242451433007930 ,

31 0.237716710894026 , 0 .231969750239408 , 0 .225314659423707 ,
0 .217867089594462 ,

32 0.209750214973915 , 0 .201090760050010 , 0 .192015269651128 ,
0 .182646779039001 ,

33 0.173101995435410 , 0 .163489055160232 , 0 .153905876350620 ,
0 .144439089402808 ,

34 0.135163497825409 , 0 .126142001830468 , 0 .117425905374901 ,
0 .109055523408804 ,

35 0.101061008265048 , 0 .0934633207592772 , 0 .0862752810482892 ,
0 .0795026452093373 ,

36 0.0731451647267889 , 0 .0671975967789673 , 0 .0616506428635022 ,
0 .0564918015812776 ,

37 0.0517061282045106 , 0 .0472768990085104 , 0 .0431861823648050 ,
0 .0394153214432180 ,

38 0.0359453352412820 , 0 .0327572457418568 , 0 .0298323394709410 ,
0 .0271523717449040 ,

39 0.0246997215919653 , 0 .0224575048153863 , 0 .0204096520205310 ,
0 .0185409577198592 ,

40 0.0168371059065064 , 0 .0152846767816783 , 0 .0138711386560819 ,
0 .0125848284339058 ,

41 0.0114149235368111 , 0 .0103514076368894 , 0 .00938503214056308 ,
0 .00850727499688064 ,

42 0.00771029808877999 , 0 .00698690419997150 ,
0 .00633049432700483 , 0 .00573502592133734 ,

43 0.00519497249393486 , 0 .00470528489115885 ,
0 .00426135445045106 , 0 .00385897816460146 ,

44 0.00349432592022581 , 0 .00316390982704973 ,
0 .00286455561697374 , 0 .00259337606376309 ,

45 0.00234774635358259 , 0 .00212528132226497 ,
0 .00192381446557088 , 0 .00174137862318347 ,

46 0.00157618823437455 , 0 .00142662306308106 ,
0 .00129121329151549 , 0 .00116862588417144 ,

47 0.00105765212774611 , 0 .000957196256849979 ,
0 .000866265080022854 , 0 .000783958525616413 ,

48 0.000709461032039060 , 0 .000642033711983903 ,
0 .000581007225107788 , 0 .000525775298441111 ,

49 0.000475788838389946 , 0 .000430550582544154 ,
0 .000389610243596295 , 0.000352560101600785

50 } ;
51

52 s t a t i c f l o a t sigmoid_b [N_sl ice]= {
53 0.00315583094325995 , 0 .00344852706503903 ,

0 .00376786170883585 , 0 .00411619627884576 ,
54 0.00449609337522624 , 0 .00491033282523371 ,

0 .00536192882811870 , 0 .00585414826451454 ,

68

C++ Design

55 0.00639053021827172 , 0 .00697490675456515 ,
0 .00761142499235005 , 0 .00830457050153880 ,

56 0.00905919204522303 , 0 .00988052767443046 ,
0 .0107742321667591 , 0 .0117464057801699 ,

57 0.0128036242685509 , 0 .0139529700755886 , 0 .0152020645870898 ,
0 .0165591012781412 ,

58 0.0180328795392119 , 0 .0196328389031554 , 0 .0213690933215938 ,
0 .0232524650527039 ,

59 0.0252945176212038 , 0 .0275075871933739 , 0 .0299048115731932 ,
0 .0325001558679094 ,

60 0.0353084336904032 , 0 .0383453225593218 , 0 .0416273719241406 ,
0 .0451720019793000 ,

61 0.0489974911381804 , 0 .0531229497135030 , 0 .0575682769965917 ,
0 .0623540985462408 ,

62 0.0675016800934576 , 0 .0730328140488207 , 0 .0789696741763240 ,
0 .0853346335881164 ,

63 0.0921500408415296 , 0 .0994379486141434 , 0 .107219789234602 ,
0 .115515991307946 ,

64 0.124345531858523 , 0 .133725418899653 , 0 .143670100220763 ,
0 .154190795568866 ,

65 0.165294751415061 , 0 .176984420271987 , 0 .189256570203095 ,
0 .202101334871497 ,

66 0.215501220326446 , 0 .229430091788455 , 0 .243852171968662 ,
0 .258721091838214 ,

67 0.273979044996333 , 0 .289556107425924 , 0 .305369794790097 ,
0 .321324938552210 ,

68 0.337313968839724 , 0 .353217694575307 , 0 .368906668195333 ,
0 .384243211386729 ,

69 0.399084157910569 , 0 .413284338332285 , 0 .426700788665743 ,
0 .439197611023474 ,

70 0.450651351347784 , 0 .460956691021122 , 0 .470032181420004 ,
0 .477825690851520 ,

71 0.484319190547959 , 0 .489532489428429 , 0 .493525543917850 ,
0 .496399024245158 ,

72 0.498292913090720 , 0 .499383041685884 , 0 .499875622354598 ,
0 .500000000000000 ,

73 0.500000000000000 , 0 .500124377645402 , 0 .500616958314116 ,
0 .501707086909280 ,

74 0.503600975754842 , 0 .506474456082151 , 0 .510467510571572 ,
0 .515680809452043 ,

75 0.522174309148481 , 0 .529967818579995 , 0 .539043308978877 ,
0 .549348648652217 ,

76 0.560802388976526 , 0 .573299211334257 , 0 .586715661667714 ,
0 .600915842089432 ,

77 0.615756788613270 , 0 .631093331804669 , 0 .646782305424691 ,
0 .662686031160274 ,

78 0.678675061447787 , 0 .694630205209905 , 0 .710443892574079 ,
0 .726020955003668 ,

69

C++ Design

79 0.741278908161784 , 0 .756147828031338 , 0 .770569908211548 ,
0 .784498779673554 ,

80 0.797898665128502 , 0 .810743429796902 , 0 .823015579728018 ,
0 .834705248584938 ,

81 0.845809204431133 , 0 .856329899779237 , 0 .866274581100350 ,
0 .875654468141480 ,

82 0.884484008692059 , 0 .892780210765401 , 0 .900562051385852 ,
0 .907849959158472 ,

83 0.914665366411883 , 0 .921030325823678 , 0 .926967185951183 ,
0 .932498319906540 ,

84 0.937645901453757 , 0 .942431723003405 , 0 .946877050286506 ,
0 .951002508861813 ,

85 0.954827998020696 , 0 .958372628075858 , 0 .961654677440691 ,
0 .964691566309595 ,

86 0.967499844132088 , 0 .970095188426801 , 0 .972492412806623 ,
0 .974705482378796 ,

87 0.976747534947300 , 0 .978630906678403 , 0 .980367161096844 ,
0 .981967120460787 ,

88 0.983440898721870 , 0 .984797935412907 , 0 .986047029924411 ,
0 .987196375731451 ,

89 0.988253594219828 , 0 .989225767833236 , 0 .990119472325569 ,
0 .990940807954774 ,

90 0.991695429498466 , 0 .992388575007650 , 0 .993025093245439 ,
0 .993609469781725 ,

91 0.994145851735482 , 0 .994638071171885 , 0 .995089667174768 ,
0 .995503906624768 ,

92 0.995883803721157 , 0 .996232138291170 , 0 .996551472934963 ,
0.996844169056727

93 } ;
94

95 dout_t y ;
96 dout_t a ;
97 dout_t b ;
98 i n t index ;
99

100 i f (x<=−8.0) {
101 y=0;
102 } e l s e {
103 i f ((x>−8.0) && (x<=0)) {
104 index=i n t ((x+8.0) /0 . 1) ;
105 a=sigmoid_a [index] ;
106 b=sigmoid_b [i n t ((x+8.0) /0 . 1)] ;
107 y=a∗x+b ;
108 } e l s e {
109 i f ((x>0) && (x <8.0)) {
110 y=sigmoid_a [i n t ((x+8.0) /0 . 1)] ∗ x+sigmoid_b [i n t ((x+8.0)

/0 . 1)] ;
111 } e l s e {
112 y =1.0 ;

70

C++ Design

113 }
114 }
115 }
116

117 re turn y ;
118

119 }

A.7.3 Tanh.cpp

1

2 #inc lude " ActiveModule . h "
3

4

5 #d e f i n e N_sl ice 120
6

7 dout_t tanh (din_t x)
8

9 {
10 s t a t i c f l o a t tanh_a [N_sl ice]= {
11 0.0000272065398976284 , 0 .0000332300424554788 ,

0 .000040587115704982 , 0 .0000495729915894749 ,
12 0.0000605482552706871 , 0 .0000739533086357991 ,

0 .0000903260331908129 , 0 .000110323359222564 ,
13 0.000134747604045860 , 0 .000164578631991485 ,

0 .000201013120406657 , 0 .000245512497939471 ,
14 0.000299861464638784 , 0 .000366239421121239 ,

0 .000447307641570083 , 0 .000546315641469786 ,
15 0.000667230938073971 , 0 .000814897305396745 ,

0 .000995227717360825 , 0 .00121543948730318 ,
16 0.00148434069039083 , 0 .00181267884187042 ,

0 .00221356504709669 , 0 .00270298948804593 ,
17 0.00330044721127964 , 0 .00402969676919329 ,

0 .00491967835137275 , 0 .006005622594909 ,
18 0.00733038617750981 , 0 .00894605535169735 ,

0 .0109158633614737 , 0 .0133164714945511 ,
19 0.0162406652301039 , 0 .0198005147701841 , 0 .0241310404966888 ,

0 .0293944045775008 ,
20 0.0357846142748886 , 0 .0435326623473986 , 0 .0529119341799766 ,

0 .0642435653763696 ,
21 0.0779012194807782 , 0 .0943144528147077 , 0 .113969422431693 ,

0 .137405161966276 ,
22 0.165203007616048 , 0 .197966054426039 , 0 .236284888889562 ,

0 .280685523011511 ,
23 0.331555852515257 , 0 .389048658048649 , 0 .452962857567404 ,

0 .522610999311755 ,

71

C++ Design

24 0.596689931506855 , 0 .673182101191282 , 0 .749324097380256 ,
0 .821681950047849 ,

25 0.886363498036340 , 0 .939372922266868 , 0 .977073255999483 ,
0 .996679946249558 ,

26 0.996679946249559 , 0 .977073255999481 , 0 .939372922266868 ,
0 .886363498036338 ,

27 0.821681950047848 , 0 .749324097380253 , 0 .673182101191283 ,
0 .596689931506855 ,

28 0.522610999311757 , 0 .452962857567405 , 0 .38904865804865 ,
0 .331555852515253 ,

29 0.280685523011512 , 0 .236284888889560 , 0 .197966054426042 ,
0 .165203007616046 ,

30 0.137405161966278 , 0 .113969422431690 , 0 .0943144528147033 ,
0 .0779012194807804 ,

31 0.0642435653763696 , 0 .0529119341799755 , 0 .0435326623474008 ,
0 .0357846142748874 ,

32 0.0293944045775030 , 0 .0241310404966844 , 0 .0198005147701874 ,
0 .016240665230105 ,

33 0.0133164714945511 , 0 .0109158633614737 , 0 .00894605535169513 ,
0 .0073303861775087 ,

34 0.00600562259491122 , 0 .00491967835137386 ,
0 .00402969676919218 , 0 .00330044721127853 ,

35 0.00270298948804593 , 0 .00221356504709780 ,
0 .00181267884186820 , 0 .00148434069039416 ,

36 0.00121543948729874 , 0 .000995227717361935 ,
0 .000814897305398965 , 0 .000667230938073971 ,

37 0.000546315641467565 , 0 .000447307641571193 ,
0 .000366239421123460 , 0 .000299861464638784 ,

38 0.00024551249793614 , 0 .000201013120408877 ,
0 .000164578631989265 , 0 .00013474760404586 ,

39 0.000110323359225895 , 0 .0000903260331885925 ,
0 .0000739533086391297 , 0 .0000605482552673564 ,

40 0.0000495729915916954 , 0 .0000405871157038717 ,
0 .0000332300424532583 , 0.0000272065398987387

41 } ;
42

43 s t a t i c f l o a t tanh_b [N_sl ice]= {
44 −0.999824472411410 , −0.999788933746319 , −0.999746262721471 ,

−0.99969504322893 ,
45 −0.999633581752315 , −0.999559853958807 , −0.999471441246210 ,

−0.999365455418242 ,
46 −0.999238449345160 , −0.999086311102638 , −0.998904138660562 ,

−0.998686091710651 ,
47 −0.998425216670494 , −0.998113240275027 , −0.997740326460962 ,

−0.997294790461413 ,
48 −0.996762763156355 , −0.996127797776867 , −0.995370410046618 ,

−0.994467541789854 ,
49 −0.993391936977504 , −0.992111418186733 , −0.990588050606874 ,

−0.988777180175361 ,

72

C++ Design

50 −0.986626332371720 , −0.984073958919022 , −0.981048021539612 ,
−0.977464405535942 ,

51 −0.973225162071620 , −0.968216587631638 , −0.962307163602310 ,
−0.955345400016385 ,

52 −0.947157657556837 , −0.937546063798621 , −0.926286696909708 ,
−0.913128286707678 ,

53 −0.897791783433948 , −0.879971272867175 , −0.859336874835503 ,
−0.835540449323078 ,

54 −0.808225141114261 , −0.777039997779794 , −0.74166105246922 ,
−0.701820295260429 ,

55 −0.657343742220794 , −0.608199172005808 , −0.554552803756876 ,
−0.496831979398342 ,

56 −0.435787583993847 , −0.372545497907116 , −0.308631298388361 ,
−0.245947970818445 ,

57 −0.186684825062365 , −0.133140306283266 , −0.0874551085698817 ,
−0.0512761822360853 ,

58 −0.025403563040689 , −0.00950073577153049 ,
−0.00196066902500738 , 0 ,

59 0 , 0 .00196066902500772 ,
0 .00950073577153049 , 0 .0254035630406897 ,

60 0.0512761822360858 , 0 .0874551085698834 , 0 .133140306283266 ,
0 .186684825062365 ,

61 0.245947970818443 , 0 .30863129838836 , 0 .372545497907115 ,
0 .435787583993852 ,

62 0.496831979398340 , 0 .554552803756879 , 0 .608199172005804 ,
0 .657343742220798 ,

63 0.701820295260427 , 0 .741661052469226 , 0 .777039997779803 ,
0 .808225141114256 ,

64 0.835540449323078 , 0 .859336874835505 , 0 .87997127286717 ,
0 .89779178343395 ,

65 0.913128286707673 , 0 .926286696909720 , 0 .937546063798612 ,
0 .947157657556834 ,

66 0.955345400016385 , 0 .962307163602310 , 0 .968216587631645 ,
0 .973225162071623 ,

67 0.977464405535935 , 0 .981048021539609 , 0 .984073958919026 ,
0 .986626332371724 ,

68 0.988777180175361 , 0 .990588050606869 , 0 .992111418186742 ,
0 .993391936977491 ,

69 0.994467541789872 , 0 .995370410046613 , 0 .996127797776858 ,
0 .996762763156355 ,

70 0.997294790461423 , 0 .997740326460957 , 0 .998113240275017 ,
0 .998425216670495 ,

71 0.998686091710667 , 0 .998904138660551 , 0 .999086311102649 ,
0 .99923844934516 ,

72 0.999365455418224 , 0 .999471441246222 , 0 .999559853958789 ,
0 .999633581752334 ,

73 0.999695043228917 , 0 .999746262721478 , 0 .999788933746332 ,
0.999824472411403

74 } ;

73

C++ Design

75

76 dout_t y ;
77

78 i f (x<=−6.0) {
79 y=−1.0;
80 } e l s e {
81 i f ((x>−6.0) && (x<=0)) {
82 y=tanh_a [i n t ((x+6.0) /0 . 1)] ∗ x−tanh_b [i n t ((x+6.0) /0 . 1)] ;
83 } e l s e {
84 i f ((x>0) && (x <6.0)) {
85 y=tanh_a [i n t ((x+6.0) /0 . 1)] ∗ x+tanh_b [i n t ((x+6.0) /0 . 1)

] ;
86 } e l s e {
87 y =1.0 ;
88 }
89 }
90 }
91 re turn y ;
92 }

A.8 Control Unit

A.8.1 Header File

1

2 #i f n d e f _ControlUnit_H_
3 #d e f i n e _ControlUnit_H_
4

5 #inc lude " s t d i o . h "
6

7 #d e f i n e READ_PARA 1 // read parameters : weight matrix and vec to r s
8 #d e f i n e NO_READ 2
9 #d e f i n e LOAD_MEM 3

10

11 // data types o f c o n t r o l s i g n a l s : in & out
12 typede f i n t cin_t ;
13 typede f i n t cout_t ;
14

15 void cu (cout_t ∗rd_matrix , cout_t ∗ rd_vector , cout_t ∗wr_vector ,
cout_t ∗ ld_matrix , cout_t ∗ ld_vector , cin_t ir_in , cin_t ∗en_wr_v)
;

16

17 #e n d i f

74

C++ Design

A.8.2 ControlUnit.cpp

1

2 #inc lude " ControlUnit . h "
3

4 /∗ c o n t r o l s i n g a l s :
5 in :
6 c l k
7 r s t
8 i r_ in : the i n s t r u c t i o n
9

10 out :
11 ∗ matrix memory :
12 rd_matrix : read csb_value and csb vec to r s i n to spmxv from matrix

memory
13 ∗ vec to r memory :
14 rd_vector : read vec to r in to spmxv from vecto r memory
15 wr_vector : wr i t e y from ewop in to vec to r memory to form new vecto r
16

17 ∗/
18

19 void cu (cout_t ∗rd_matrix , cout_t ∗ rd_vector , cout_t ∗wr_vector ,
cout_t ∗ ld_matrix , cout_t ∗ ld_vector , cin_t ir_in , cin_t ∗en_wr_v)

{
20 i f (i r_in==LOAD_MEM) { // asynchronous r e s e t (a c t i v e low)
21 ∗rd_matrix=0;
22 ∗ rd_vector =0;
23 ∗wr_vector =0;
24 ∗ ld_matrix =1;
25 ∗ ld_vector =1;
26 }
27 e l s e i f (i r_in==READ_PARA) {
28 ∗ ld_matrix =0;
29 ∗ ld_vector =0;
30 ∗rd_matrix=1;
31 ∗ rd_vector =1;
32 }
33 e l s e i f (i r_in==NO_READ) {
34 ∗ ld_matrix =0;
35 ∗ ld_vector =0;
36 ∗rd_matrix=0;
37 ∗ rd_vector =0;
38 }
39

40 i f (∗en_wr_v==1) { // s t a tu s s i g n a l : enable wr i t i ng output o f
ewop un i t in vec to r memory to c r e a t e new vecto r

41 ∗wr_vector =1;

75

C++ Design

42 }
43 }

A.9 Testbench

1

2 #inc lude "BBS. h "
3

4 cin_t i r ;
5

6 i n t main () {
7

8

9 // input data
10 din_t va lue s [MEM_SIZE_M] ;
11 dindx_t index [MEM_SIZE_M] ;
12 din_t vec tor [MEM_SIZE_V] ;
13 din_t b ia s [MEM_SIZE_B] ;
14

15 // output
16 dout_t ewop_o [GATE_SIZE∗ 2] ;
17

18 // golden data o f output
19 dout_t ewop_golden [GATE_SIZE∗ 2] ;
20

21 // misc
22 FILE ∗ fp ;
23 i n t r e t v a l =0;
24

25

26 // load input data from f i l e s
27 fp=fopen (" csb_values . dat " , " r ") ; //open data f i l e s
28 f o r (i n t i =0; i< VALUE_SIZE; i++) {
29 din_t tmp ;
30 f s c a n f (fp , "%f " , &tmp) ;
31 va lue s [i]=tmp ;
32 }
33 f c l o s e (fp) ;
34

35

36 fp=fopen (" csb_index . dat " , " r ") ;
37 f o r (i n t i =0; i< INDX_SIZE ; i++) {
38 dindx_t tmp ;
39 f s c a n f (fp , "%d" , &tmp) ;
40 index [i]=tmp ;

76

C++ Design

41 }
42 f c l o s e (fp) ;
43

44 fp=fopen (" vec to r . dat " , " r ") ;
45 f o r (i n t i =0; i< VECTOR_SIZE; i++) {
46 din_t tmp ;
47 f s c a n f (fp , "%f " , &tmp) ;
48 vec to r [i]=tmp ;
49 }
50 f c l o s e (fp) ;
51

52

53 fp=fopen (" b i a s . dat " , " r ") ;
54 f o r (i n t i =0; i< BIAS_SIZE ; i++) {
55 din_t tmp ;
56 f s c a n f (fp , "%f " , &tmp) ;
57 b ia s [i]=tmp ;
58 }
59 f c l o s e (fp) ;
60

61 // load expected output data from f i l e
62 fp=fopen (" ewop_golden . dat " , " r ") ;
63 f o r (i n t i =0; i< GATE_SIZE∗2 ; i++) {
64 din_t tmp ;
65 f s c a n f (fp , "%f " , &tmp) ;
66 ewop_golden [i]=tmp ;
67 }
68 f c l o s e (fp) ;
69

70 // r e s e t
71 p r i n t f (" s t a r t r e s e t i n g \n ") ;
72 i r=LOAD_MEM;
73 bbs_arch (ewop_o , values , index , vector , b ias , i r) ;
74 p r i n t f (" f i n i s h r e s e t i n g \n ") ;
75

76 // run
77 p r i n t f (" s t a r t running \n ") ;
78 i r=READ_PARA;
79 bbs_arch (ewop_o , values , index , vector , b ias , i r) ;
80 p r i n t f (" f i n i s h i n g running \n ") ;
81

82

83 // check outputs ag i an s t expected , the th r e sho ld i s 0 .01
84 f o r (i n t i =0; i<GATE_SIZE∗2 ; i++) {
85 p r i n t f (" ewop %d i s %f , ewop golden %d i s %f \n " , i , ewop_o [i] ,

i , ewop_golden [i]) ;
86 i f (f abs (ewop_golden [i]−ewop_o [i]) >0.1) {
87 r e t v a l =1;
88 }

77

C++ Design

89 }
90

91 // p r in t r e s u l t s
92 i f (r e t v a l ==0) {
93 p r i n t f (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n") ;
94 p r i n t f ("RESULTS ARE GOOD! \ n") ;
95 p r i n t f (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n") ;
96 } e l s e {
97 p r i n t f (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n") ;
98 p r i n t f (" Mismatch : r e t v a l=%d \n" , r e t v a l) ;
99 p r i n t f (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n") ;

100 }
101

102 // return 0 i f output are c o r r e c t
103 re turn r e t v a l ;
104

105 }

78

Appendix B

Scripts

B.1 run_hls.tcl

1

2 # Pro j ec t s e t t i n g s
3

4 # Create a p r o j e c t
5 open_project −r e s e t bbs_prj
6

7 # The source f i l e and t e s t bench
8

9 #SPMXV UNIT
10 add_f i l e s SpMxV. cpp
11 add_f i l e s SpMxV. h
12 add_f i l e s PE. cpp
13 add_f i l e s PE. h
14

15 #EWOP UNIT
16 add_f i l e s SigmoidFunc . cpp
17 add_f i l e s TanhFunc . cpp
18 add_f i l e s EWOP. cpp
19 add_f i l e s EWOP. h
20

21 #MEM
22 add_f i l e s MatrixMem . cpp
23 add_f i l e s MatrixMem . h
24 add_f i l e s VectorMem . cpp
25 add_f i l e s VectorMem . h
26

27 #Control Unit
28 add_f i l e s ControlUnit . cpp
29 add_f i l e s ControlUnit . h

79

Scripts

30

31 #Top l e v e l
32 add_f i l e s BBS. cpp
33 add_f i l e s BBS. h
34

35 add_f i l e s −tb TB_BBS. cpp
36 # Spec i f y the top−l e v e l f unc t i on f o r s y n t h e s i s
37 set_top bbs_arch
38

39

40 # So lut i on s e t t i n g s
41

42 # Create s o l u t i o n 1
43 open_solut ion −r e s e t s o l u t i o n 1
44

45 # Spec i f y a Xi l i nx dev i ce and c l o ck per iod
46 # − Do not s p e c i f y a c l o ck unce r ta in ty (margin)
47 # − Let the margin to d e f a u l t to 12.5% o f c l o ck per iod
48 set_part { xc7z020clg400 −1}
49 c reate_c lock −per iod 8
50 #set_clock_uncerta inty 1 .25
51

52 # Simulate the C code
53 csim_design
54

55 # Do not perform any other s t ep s
56 # − The ba s i c p r o j e c t w i l l be opened in the GUI
57 e x i t

80

Appendix C

Software Drivers

1

2 #inc lude <s t d i o . h>
3 #inc lude " p lat form . h "
4 #inc lude " x i l _ p r i n t f . h "
5 #inc lude " xparameters . h "
6 #inc lude " x i l _ p r i n t f . h "
7 #inc lude " s l e e p . h "
8 #inc lude " x i l_cache . h "
9 #inc lude " xbbs_arch . h "

10

11 f l o a t ewop_o [8] ;
12

13 // inputs
14 f l o a t value_in [1 2 8] = {0 .919172 ,

−0 .558193 ,0 .777594 ,0 .515993 , −0 .069569 . .} ;
15 i n t index_in [128]={1 , 0 , 0 , 0 , 2 . . . } ;
16 f l o a t vector_in [16]={ −0.3414 ,2 .85878 , 2 . 0 3 4 0 7 , . . } ;
17 f l o a t bias_in [16]={ 3 .66618 , 2 . 74954 , 2 . 63324 , 0 . 9 4 7 6 7 8 , . . } ;
18 f l o a t ewop_o_soft [8]={ 0 .085166 , 0 .567416 , 0 .022210 , 0 . 3 5 5 2 7 4 . . }
19

20 i n t i r_in ;
21

22 void RunBbs(XBbs_arch ∗ InstancePtr , f l o a t ewop_o [] , f l o a t value_in [] ,
i n t index_in [] , f l o a t vector_in [] , f l o a t bias_in [] , i n t i r_in)

23

24 {
25 XBbs_arch_Set_ewop_o(InstancePtr , (unsigned i n t)ewop_o) ;
26 XBbs_arch_Set_value_i (InstancePtr , (unsigned i n t) value_in) ;
27 XBbs_arch_Set_index_i (InstancePtr , (unsigned i n t) index_in) ;
28 XBbs_arch_Set_vector_i (InstancePtr , (unsigned i n t) vector_in) ;
29 XBbs_arch_Set_bias_i (InstancePtr , (unsigned i n t) bias_in) ;

81

Software Drivers

30 XBbs_arch_Set_ir_in (InstancePtr , i r_in) ;
31

32

33

34 XBbs_arch_Start (Ins tancePtr) ;
35 whi le (! XBbs_arch_IsDone (Ins tancePtr)) ;
36 }
37

38 i n t main ()
39 {
40 i n i t_p la t fo rm () ;
41 Xil_DCacheDisable () ;
42 char s t r [5 0] ;
43

44 pr in t (" He l lo \n\ r ") ;
45

46 XBbs_arch bbs_arch ;
47 i f (XBbs_arch_Init ia l i ze (&bbs_arch , XPAR_BBS_ARCH_0_DEVICE_ID) !=

XST_SUCCESS) {
48 x i l _ p r i n t f ("XBbs dev i ce i s not found\n\ r ") ;
49 }
50

51 // p r e s e t
52 i r_ in =3; // load
53 RunBbs(&bbs_arch , ewop_o , value_in , index_in , vector_in , bias_in ,

i r_in) ;
54 f o r (i n t i =0; i <8; i++) {
55 s p r i n t f (s t r , " ewop[%d]=%f \ r \n " , i , ewop_o [i]) ;
56 x i l _ p r i n t f (s t r) ;
57 // s p r i n t f (s t r , " ewop_soft [%d]=%f \ r \n " , i , ewop_o_soft [i]) ;
58 // x i l _ p r i n t f (s t r) ;
59 }
60

61 // run
62 i r_ in =1; // run
63 RunBbs(&bbs_arch , ewop_o , value_in , index_in , vector_in , bias_in ,

i r_in) ;
64 f o r (i n t i =0; i <8; i++) {
65 s p r i n t f (s t r , " ewop[%d]=%f , ewop_golden[%d]=%f \ r \n " , i , ewop_o [i

] , i , ewop_o_soft [i]) ;
66 x i l _ p r i n t f (s t r) ;
67 }
68

69 p r i n t f (" end\n") ;
70

71 cleanup_platform () ;
72 re turn 0 ;
73 }

82

Software Drivers

83

Bibliography

[1] Jürgen Schmidhuber. «Deep learning in neural networks: An overview». In:
Neural networks 61 (2015), pp. 85–117 (cit. on pp. 1, 5).

[2] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. «Speech recog-
nition with deep recurrent neural networks». In: 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE. 2013, pp. 6645–
6649 (cit. on p. 1).

[3] Yonghui Wu et al. «Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation». In: arXiv preprint
arXiv:1609.08144 (2016) (cit. on p. 1).

[4] Sepp Hochreiter. «The vanishing gradient problem during learning recurrent
neural nets and problem solutions». In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6.02 (1998), pp. 107–116 (cit. on
pp. 1, 5, 10).

[5] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory». In:
Neural computation 9.8 (1997), pp. 1735–1780 (cit. on pp. 1, 5, 10).

[6] Stephen D Brown, Robert J Francis, Jonathan Rose, and Zvonko G Vranesic.
Field-programmable gate arrays. Vol. 180. Springer Science & Business Media,
2012 (cit. on p. 1).

[7] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. «Optimizing fpga-based accelerator design for deep convolutional neural
networks». In: Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 2015, pp. 161–170 (cit. on p. 2).

[8] S Himavathi, D Anitha, and A Muthuramalingam. «Feedforward neural net-
work implementation in FPGA using layer multiplexing for effective resource
utilization». In: IEEE Transactions on Neural Networks 18.3 (2007), pp. 880–
888 (cit. on p. 2).

84

BIBLIOGRAPHY

[9] Yiwei Zhang, Chao Wang, Lei Gong, Yuntao Lu, Fan Sun, Chongchong Xu,
Xi Li, and Xuehai Zhou. «Implementation and optimization of the accelerator
based on fpga hardware for lstm network». In: 2017 IEEE International
Symposium on Parallel and Distributed Processing with Applications and
2017 IEEE International Conference on Ubiquitous Computing and Commu-
nications (ISPA/IUCC). IEEE. 2017, pp. 614–621 (cit. on pp. 2, 13, 22, 25,
47).

[10] Song Han, Jeff Pool, John Tran, and William Dally. «Learning both weights
and connections for efficient neural network». In: Advances in neural infor-
mation processing systems. 2015, pp. 1135–1143 (cit. on p. 2).

[11] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and
William J Dally. «Exploring the regularity of sparse structure in convolutional
neural networks». In: arXiv preprint arXiv:1705.08922 (2017) (cit. on pp. 2,
14).

[12] Runbin Shi, Junjie Liu, K-H Hayden So, Shuo Wang, and Yun Liang. «E-
LSTM: Efficient Inference of Sparse LSTM on Embedded Heterogeneous
System». In: 2019 56th ACM/IEEE Design Automation Conference (DAC).
IEEE. 2019, pp. 1–6 (cit. on pp. 2, 23).

[13] Jaeha Kung, Junki Park, Sehun Park, and Jae-Joon Kim. «Peregrine: A
flexible hardware accelerator for LSTM with limited synaptic connection
patterns». In: Proceedings of the 56th Annual Design Automation Conference
2019. 2019, pp. 1–6 (cit. on pp. 2, 23).

[14] Sharan Narang, Eric Undersander, and Gregory Diamos. «Block-sparse recur-
rent neural networks». In: arXiv preprint arXiv:1711.02782 (2017) (cit. on
p. 2).

[15] Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao, Lanshun Nie, Dechen
Zhan, Yunxin Liu, Ming Wu, and Lintao Zhang. «Efficient and effective sparse
LSTM on fpga with bank-balanced sparsity». In: Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
2019, pp. 63–72 (cit. on pp. 2, 23, 25).

[16] Robert Hecht-Nielsen. «Theory of the backpropagation neural network». In:
Neural networks for perception. Elsevier, 1992, pp. 65–93 (cit. on p. 4).

[17] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. «Backpropagation applied
to handwritten zip code recognition». In: Neural computation 1.4 (1989),
pp. 541–551 (cit. on p. 4).

[18] Michael I Jordan. «Serial order: A parallel distributed processing approach».
In: Advances in psychology. Vol. 121. Elsevier, 1997, pp. 471–495 (cit. on
p. 5).

85

BIBLIOGRAPHY

[19] Jeffrey L Elman. «Finding structure in time». In: Cognitive science 14.2
(1990), pp. 179–211 (cit. on p. 5).

[20] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. «Learning
representations by back-propagating errors». In: nature 323.6088 (1986),
pp. 533–536 (cit. on p. 5).

[21] Felix A Gers and Jürgen Schmidhuber. «Recurrent nets that time and count».
In: Proceedings of the IEEE-INNS-ENNS International Joint Conference
on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium. Vol. 3. IEEE. 2000, pp. 189–194 (cit. on
p. 5).

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016 (cit. on pp. 6, 7).

[23] Jun Han and Claudio Moraga. «The influence of the sigmoid function param-
eters on the speed of backpropagation learning». In: International Workshop
on Artificial Neural Networks. Springer. 1995, pp. 195–201 (cit. on pp. 8, 10).

[24] Jürgen Schmidhuber. «Learning complex, extended sequences using the prin-
ciple of history compression». In: Neural Computation 4.2 (1992), pp. 234–242
(cit. on p. 10).

[25] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. «Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine translation».
In: arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 10).

[26] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. «Independently
recurrent neural network (indrnn): Building a longer and deeper rnn». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 5457–5466 (cit. on p. 10).

[27] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. «LSTM neural net-
works for language modeling». In: Thirteenth annual conference of the inter-
national speech communication association. 2012 (cit. on p. 11).

[28] Song Han, Huizi Mao, and William J Dally. «Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding».
In: arXiv preprint arXiv:1510.00149 (2015) (cit. on p. 14).

[29] Claudio Passerone. Analog and Digital Electronics for Embedded Systems.
Vol. 1. Edizioni C.L.U.T, 2015 (cit. on p. 15).

[30] Tom Feist. «Vivado design suite». In: White Paper 5 (2012), p. 30 (cit. on
p. 17).

86

BIBLIOGRAPHY

[31] Grant Martin and Gary Smith. «High-level synthesis: Past, present, and
future». In: IEEE Design & Test of Computers 26.4 (2009), pp. 18–25 (cit. on
p. 17).

[32] Vivado-HLS Xilinx. Vivado design suite user guide-high-level synthesis. 2014
(cit. on pp. 17–19).

[33] Huan Li and Wenhua Ye. «Efficient implementation of FPGA based on
Vivado high level synthesis». In: 2016 2nd IEEE International Conference on
Computer and Communications (ICCC). IEEE. 2016, pp. 2810–2813 (cit. on
p. 18).

[34] Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. «DLAU:
A scalable deep learning accelerator unit on FPGA». In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 36.3 (2016),
pp. 513–517 (cit. on p. 22).

[35] Sicheng Li, Chunpeng Wu, Hai Li, Boxun Li, Yu Wang, and Qinru Qiu. «Fpga
acceleration of recurrent neural network based language model». In: 2015
IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines. IEEE. 2015, pp. 111–118 (cit. on p. 22).

[36] Daniele Jahier Pagliari, Mario R Casu, and Luca P Carloni. «Accelerators
for breast cancer detection». In: ACM Transactions on Embedded Computing
Systems (TECS) 16.3 (2017), pp. 1–25 (cit. on p. 22).

[37] Andre Xian Ming Chang and Eugenio Culurciello. «Hardware accelerators for
recurrent neural networks on FPGA». In: 2017 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE. 2017, pp. 1–4 (cit. on p. 22).

[38] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. «FPGA-based
accelerator for long short-term memory recurrent neural networks». In: 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE. 2017, pp. 629–634 (cit. on p. 22).

[39] Joao Canas Ferreira and Jose Fonseca. «An FPGA implementation of a long
short-term memory neural network». In: 2016 International Conference on
ReConFigurable Computing and FPGAs (ReConFig). IEEE. 2016, pp. 1–8
(cit. on p. 22).

[40] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles
E Leiserson. «Parallel sparse matrix-vector and matrix-transpose-vector mul-
tiplication using compressed sparse blocks». In: Proceedings of the twenty-
first annual symposium on Parallelism in algorithms and architectures. 2009,
pp. 233–244 (cit. on p. 23).

87

BIBLIOGRAPHY

[41] Daniele Jahier Pagliari, Roberta Chiaro, Yukai Chen, Enrico Macii, and
Massimo Poncino. «Optimal Input-Dependent Edge-Cloud Partitioning for
RNN Inference». In: 2019 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS). IEEE. 2019, pp. 442–445 (cit. on p. 23).

[42] Daniele Jahier Pagliari, Francesco Panini, Enrico Macii, and Massimo Pon-
cino. «Dynamic Beam Width Tuning for Energy-Efficient Recurrent Neural
Networks». In: Proceedings of the 2019 on Great Lakes Symposium on VLSI.
2019, pp. 69–74 (cit. on p. 23).

[43] Daniele Jahier Pagliari, Francesco Daghero, and Massimo Poncino. «Sequence-
To-Sequence Neural Networks Inference on Embedded Processors Using Dy-
namic Beam Search». In: Electronics 9.2 (2020), p. 337 (cit. on p. 23).

[44] Marco Storace and Tomaso Poggi. «Digital architectures realizing piecewise-
linear multivariate functions: two FPGA implementations». In: International
Journal of Circuit Theory and Applications 39.1 (2011), pp. 1–15 (cit. on
p. 31).

[45] Daniele Bagni, A Di Fresco, J Noguera, and FM Vallina. «A zynq acceler-
ator for floating point matrix multiplication designed with vivado hls». In:
Application note (2016) (cit. on pp. 39, 41).

88

	List of Tables
	List of Figures
	Introduction
	Background
	Overview
	Recurrent Neural Network
	Basic RNN
	Long Short-Term Memory
	Field-Programmable Gate Array
	High-Level Synthesis

	Related Works
	Hardware Implementation and Optimization
	Software Optimization

	Hardware Accelerator
	Motivation
	Objective
	Bank-Balanced Pruning
	Architecture
	C++ design
	Vivado HLS
	IP Connection
	Running Design on FPGA
	Implementation with AXI DMA
	AXI4-Stream Interface and ARM ACP
	AXI DMA
	IP Integrator Design

	Experimental Results
	Experimental Setup
	Hardware Platform

	Evaluation
	Speedup
	Resource Utilization
	Power consumption
	Pareto Curve

	Conclusion and Future Works
	Conclusion
	Future Work

	C++ Design
	Top-Level Function
	Header File
	BBS.cpp

	Matrix Memory
	Header file
	MatrixMem.cpp

	Vector Memory
	Header file
	VectorMem.cpp

	PE Unit
	Header File
	PE.cpp

	SpMxV Unit
	Header file
	SpMxV.cpp

	EWOP Unit
	Header file
	EWOP.cpp

	Activation Functions
	Header File
	Sigmoid.cpp
	Tanh.cpp

	Control Unit
	Header File
	ControlUnit.cpp

	Testbench

	Scripts
	run_hls.tcl

	Software Drivers
	Bibliography

