
POLITECNICO DI TORINO

Computer Engineering Master Degree
Embedded Systems Course

Master Degree Thesis

Creation of a complete data
collection system for condition

monitoring in industrial
environment with IO-Link sensor

Relatori:
Massimo Poncino, Daniele Jahier Pagliari

Company Tutor:

Claudio Chieppa

Candidate:
Jacopo Cerato

Marzo 2020

Acknowledgments

First of all, I would like to thank my supervisor Massimo Poncino for his support
during the elaboration of this thesis. I would also like to thank my team and, in

particular, Dante Bonino, Carmelo Migliore, Claudio Chieppa and Alberto
Brigand̀ı for giving me the opportunity to collaborate with them. Their support

during these months and their contribution have been extremely important.
Furthermore, I would like to express my gratitude to my parents for giving me the
opportunity to pursue a university career and to have supported me economically

during all these years. I would also like to thank my friends for making these
university years a little lighter. Finally, I would like to thank my beloved girlfriend

Giulia for supporting and enduring me in moments of university stress.

I

Summary

More and more in recent years, there is the need to be able to monitor the environ-
ment and the objects that surround us. Just think of the apps that have recently
been developed to be able to monitor your home’s rooms, or the possibility to switch
on and off your heating system from remote in order to control the environment’s
temperature, or even more the setting of your mobile phone that notifies you when
a certain app is consuming a lot, to give you the possibility to switch the app off
and reduce power consumption. It is clear that we want to control all the objects
that interact with us.
Factories are not immune to this spontaneous process. In fact, the definition of
Industry 4.0 has been recently introduced and industrial environments have become
increasingly smart. The ability to monitor industrial machinery, in order to, for
example, check the production processes’ correctness or to comply with safety stan-
dards, is becoming a desired in factory environments.
For these reasons, we have chosen to create a complete data collection system which
is able to recover data and measurements from the device, store them in a database,
and to send them to an MQTT broker, in order to make them accessible also in the
cloud.
This thesis work aims to provide a user, even if he is inexperienced, with the possi-
bility of monitoring a machine or an environment, simply by clicking a button on a
dashboard. More in details, the developed system will do all the work automatically;
this means that, once the button on the dashboard has been pressed, the system will
recover the data, requested by the user, from the sensor, store it in the framework
database and forward it via MQTT to an online broker.

In recent times, a new IO protocol is spreading in the market, the so called
IO-Link protocol. This is a new standard connection technology that has been de-
veloped for communication with sensors and actuators, in order to overcome the
shortcomings of previous technologies. This is a point to point communication and
it requires just one cable in order to establish the connection; the cable is able to
provide, using the three wires that it has inside, at the same time the power supply
and the digital input/output line. This is the first advantage given by this tech-
nology. Even more, the communication is a digital one, so costly shielded cables

II

are no more required, since digital transmission is not affected by electromagnetic
disturbances. Besides, IO-Link drastically reduces the interfaces needed, because
it provides a universal physical interface for wiring along with a uniform interface
both for configuration and parameter assignment.[10] This is a significant advantage,
since problems related to different connection interfaces for digital, analog, and se-
rial data are no more present. For these reasons, IO-Link is really appreciated in
industrial environment and this, obviously, affects our device choice.
A typical IO-link system involves the following components:

• IO-Link master;

• IO-Link device;

• Standard cable to connect the device to the master.

The IO-Link master works as a link between the controller to which is connected
and the devices that are attached to him. Typically, it has several IO-Link ports,
so it can manage more than one device at a time. The IO-Link master is the one
that manages the communication between the controller and the device; it is the
interface through which the controller has the possibility to set configuration or to
send commands to the sensor/actuator and retrieve data from it.
For this project, we choose an evaluation kit, produced by STMicroelecrtonics, that
provides us both the IO-Link master and the IO-Link device.

On the controller side, which in our case is a Linux PC, we have choosen to
use EdgeX Foundry framework. It is a collection of open source micro-services that
communicate through a common API and it is possible to replace or augment them
as needed. EdgeX is a useful tool that makes easier to connect with and to control
devices, in order to retrieve data from them, to send instruction to them or to move
data from the device to the cloud. Microservices of the framework are divided in
layers, starting from the Device Services layer, that interacts directly with devices,
and arriving at the Export Service layer, that interacts directly with the cloud.
Between this two layers, there are the Core Services layer, that is used to store
data, commands and all IoT objects connected to the platform, and the Supporting
Services layer. All these layers could interact with each other, in order to create a
network to manage data, configuration and device events.

In order to realize the data collection system, we need a way to make possible the
communication between EdgeX platform and the IO-Link master, which, in turn,
will then communicate with the IO-Link device through the standard cable. Physical
connection between the controller, in which the framework is hosted, and the IO-
Link master is achieved through serial bus. The logical connection is achieved,
instead, through a C application that works as a driver for the device. This driver
is able to send the correct commands to the master board, in order to retrieve the

III

requested data. Once the data requested to the device are sent to the controller,
the driver is able to store them in the database in order to make them accessible for
futures uses and to have a sort of history of the system. Then, every time a data
comes in the framework, it is also forwarded to the cloud through MQTT protocol,
exploiting features provided by the Export Services layer. Finally, to make the use
of the system more ”user friendly”, a dashboard has been designed. This dashboard
interacts with the system through API REST. It provides the user several buttons
and every time a button is pressed an API REST starts; when data are available,
they are displayed on the screen, in such a way that the user could check them
without accessing the database in which they are stored or without connecting to
the MQTT broker.

In conclusion, we could say that the systems works fine and all our desired
are respected. In addition, a study on power consumption has been done. We
have verified that the IO-Link device, even when it is stressed with subsequent
commands, never requires more than 80 mA. This fact places the device in the
”low-power” category; this is an advantage, since companies are always looking for
low-consumption objects and, furthermore, it is possible to supply the device with
batteries.

IV

Table of contents

Acknowledgments I

Summary II

1 Introduction 1
1.1 Background . 1
1.2 Motivations . 3
1.3 Approach and results . 3
1.4 A typical usage scenario . 7
1.5 Structure of this thesis . 7
1.6 The company . 8

2 IO-Link: overview, behavior, features 9
2.1 IO-Link overview . 9
2.2 IO-Link interface . 10
2.3 IO-Link protocol . 12
2.4 IO-Link advantages . 14

3 STEVAL-IDP005V1: overview, features, components 16
3.1 STEVAL-IDP005V1 overview . 16
3.2 STEVAL-IDP005V1 Hardware architecture 18

3.2.1 Microcontroller[1] . 20
3.2.2 Memory[1] . 20
3.2.3 MEMS Sensors[1] . 20
3.2.4 Wired connectivity . 23
3.2.5 Power management . 23

4 STEVAL-IDP004V1: overview, features, components 25
4.1 STEVAL-IDP004V1: Overview . 25
4.2 STEVAL-IDP004V1: Hardware architecture 26
4.3 STEVAL-IDP004V1: Software description 27

V

5 EdgeX Foundry: the open software framework for IoT 28
5.1 EdgeX Foundry: Introduction

28
5.2 EdgeX Foundry: Service Layers . 29

5.2.1 Device Services Layer . 29
5.2.2 Core Services Layer . 30
5.2.3 Supporting Services Layer . 32
5.2.4 Export Services Layer . 33
5.2.5 System Management and Security Services Layer 33

6 Data collection system: from the device to the cloud 34
6.1 Overview . 34
6.2 Device Profile . 36
6.3 Device Configuration . 40
6.4 Device Driver . 42
6.5 Data Exporting . 52
6.6 The dashboard . 54

7 Testing and validation 56
7.1 Testing . 56
7.2 Device Cost . 56

8 Conclusions 58
8.1 Power supply . 58
8.2 Results . 59
8.3 Future steps . 60

Bibliography 63

VI

VII

Chapter 1

Introduction

1.1 Background

More and more in recent years we hear about Internet of Things and Industry 4.0.

Internet of Things is a new terminology recently introduced referred to the extension
of internet to devices and concrete places[2]. It is the expression used, for some years
now, to define the network of equipment and devices, other than computers, con-
nected to the Internet: they could be fitness sensors, vehicles, radios, air conditioning
systems, but also bulbs, cameras, furnishings, household appliances, containers for
the transport of goods. In short, any type of electronic device, equipped with a
software that allows it to exchange data with other connected devices, could be
connected to the Internet.
The main purpose of the Internet of Things concept is to monitor and control, to
exchange information and perform consequent operations. Several examples of our
everyday life could express the IoT concept: IoT is, for example, roller shutters that
rise in the morning when your alarm rings. IoT is your house that switches on lights
as soon as it hears you entering. These IoT examples give you the opportunity to
combine the real world and the virtual one, by connecting objects to the network.
Internet of things allows to put ”things” on the network, exactly like personal com-
puter, tablet and smartphone made with people. It is estimated that in 2020, IoT
objects will be 20,4 billions[3].
Internet of things development and its application to the most variety of objects,
have been possible thanks to the discipline that deals with the creation of sensors.
These devices are designed to collect specific data according to a predetermined pur-
pose: for example, there are devices that detect data relating to room temperature,
air quality, environmental noise level or the movement of a machine. These sensors
allow, therefore, to detect information and transform it into digital data that could

1

1 – Introduction

be shared through the Internet.

Together with the concept of the Internet of Things, the theme of Industry 4.0
has spread. The name Industry 4.0 was conceived as the fourth industrial revolu-
tion, the process that is leading to fully automated and interconnected industrial
production; industries, in fact, are getting smarter and Internet of Things is deeply
involved in this. It is evident, in fact, that in companies there are more and more
connected objects. They are used, for example, to monitor the production process
in order to make it more efficient, to monitor machinery behavior in such a way that
one can promptly intervene in case of breakdowns or malfunctions. With Industry
4.0 concept, interactions within men, machines and systems are strongly enhanced.
IoT is a primary technological component in Industry 4.0 projects, to make machines
and production lines more intelligent, through integration of sensors, actuators and
Edge computing components. Operative data, selected and summarized by Edge
systems, are made available for further elaborations, like for example filling dash-
boards for industrial monitoring or feed external machine learning systems and AI
useful for predictive maintenance or optimize production.
Industrial Internet of Things could be divided in three main areas of use:

• Smart factory

• Smart logistics

• Smart lifecycle

The first one includes production progress control, work safety, maintenance, mate-
rial handling, quality control, waste management. Second one could be composed
by traceability / monitoring of the supply chain via RFId (Radio-Frequency Iden-
tification) and sensor tags, cold chain monitoring, safety management in complex
logistics centers, fleet management (e.g. via GPS / GPRS). Last one includes, in-
stead, improvement of the new product development process (e.g. through data
from previous versions of connected products), end of life management, supplier
management in the new product development phase.[4]
So, IIoT can generate revolutionary operational efficiencies and offer completely new
business models to any reality that deals with the production and/or transport of
physical goods.

Along with previous two topics, one new IO protocol is spreading in the market: it is
the so called IO-Link protocol. It is a new standard that is particularly appreciated
in industrial environments, since it provides several benefits with respect to previous
communication protocols. It is used to connect sensors or actuators to a controller
system and it requires just one cable for the connection: the cable in fact is able

2

1 – Introduction

to provide the device, at the same time, both power supply and data transaction
line. Furthermore, the transmission is a digital one, so the cable does not need to
be shielded, since digital signals are not affected by electromagnetic disturbances.
Since the transmission is a digital one, the quality of measuring sensors is obviously
enhanced because just one conversion from analog to digital is required. For these
reasons, this innovative technology is a good solution for condition monitoring of
both environment and machines. The reader can find an accurate description of
IO-Link in chapter two.

1.2 Motivations

Taking into account topics discussed in previous section, we will now analyze the
motivations that led to the realization of this thesis work that was carried out in
Concept Reply company, described in section 1.7.
Considering IO-Link technology interesting and that there was a market need, the
company decided to deepen its competence on this new communication protocol.
Main interesting features of IO-Link that moved our choice are the fact that this
technology increases signal quality of measuring sensors, drastically reduces the
interfaces needed, increases machine availability and provides advanced diagnostic
functionalities. The reader can find a detailed section on these previous topic at the
end of chapter two.
Since the company is very attentive to industries needs and considering the fact that
the so-called condition monitoring is an increasingly requested feature, the idea of
a complete data collection system, based on IO-Link device, is conceived.
The main goal of this thesis work is to create a complete data collection system that
is able to collect data from an IO-Link device, to store them for analysis or future
consultations and to spread them on the network.
Main challenge of this project is trying to integrate the IO-Link device, and all
what concerns it, starting from command up to data and measurements, with an
open source IoT framework, named EdgeX Foundry. Integration between these two
elements should result in a complete system able to collect, store and forward data
autonomously any time the user makes a request to the sensorized board.

1.3 Approach and results

Taking into account what stated in previous sections, the device used to perform
condition monitoring should be an IO-Link one. In order to work correctly, an IO-
Link device requires a IO-Link master board.
For these reasons we chose a development kit produced by STMicroelectronics. This

3

1 – Introduction

kit includes a master board, described in chapter four, a sensorized device, described
in chapter three, and an adapter board for ST-Link, used to flash firmware on the
IO-Link device.
The device communicates with the master board through an M12 standard cable,
that is able to provide both power supply and data line. You can have evidence of
this by looking the picture below:

Figure 1.1. IO-Link connection between master and device.

The master board, in turn, communicates with the PC, that works as the IO-Link
system controller, with an RS485-USB cable as you can see in the picture below. A
bench power supply is used to supply the master board.

4

1 – Introduction

Figure 1.2. Connection between master board and PC.

So, the overall connection between the device and the PC should be like the one
showed in the following picture. It is evident that, just two cables are required in
order to establish the communication between the IO-Link device and the controller
of the system, which in our case is a common Linux computer. This is obviously, a
big advantage, since costs and complexity are strongly reduced with respect to non
IO-Link solutions.

5

1 – Introduction

Figure 1.3. Overall connection between device and PC.

Another key feature of this data collection system is the use of EdgeX Foundry
platform. It is an open source framework, based on microservices, and we chose to
integrate it in our work since it is suitable for Industrial Internet of Things. You
can find a detailed description of this open source platform in chapter five.
So the main idea of this thesis work is trying to integrate the IO-Link system with
the EdgeX framework, in order to create an automatic system able to collect data
from the device, to store them permanently and to forward them to the cloud.
Therefore, main results achieved are:

• Communication between framework, master board and device achieved.

• Data recovery from the IO-Link device achieved.

• Persistent data storage achieved.

• Data forwarding achieved.

Results are anyway better discussed in chapter seven and eight.

6

1 – Introduction

1.4 A typical usage scenario

Data collection system scenario is reported as follows:

1. The user wants to monitor industrial machinery or, more in general, the envi-
ronment in which the machine works.

2. The user requests the device for a certain data. It could be: pressure, humidity,
temperature, acceleration, vibration.

3. The system programs the master board in order to communicate with the
device, then sends to the device the command corresponding to the requested
resource.

4. The device responds with the target data.

5. The system stores the data in the database for future use.

6. The system forwards the data, through MQTT protocol, to the cloud.

1.5 Structure of this thesis

This section briefly describes the thesis plan in order to give the reader an overview
on what is going to read.

First part of this document is used to describe all the components involved in this
thesis work; chapters from two to five make up this part. In particular, in chapter
two the reader can find the description of the IO-Link protocol, which is the protocol
used by the sensorized device to communicate with the master board.
Chapter three provides you a description of the STEVAL-IDP005V1, a board, pro-
duced by STMicroelectronics, on which are embedded several sensors, that could be
used to monitor industrial environment or machinery.
In chapter four, the reader can find the description of the STEVAL-IDP004V1; it
is the master board used to interface the pc to the sensorized device. Hardware
architecture and firmware descriptions are provided.
Last chapter of this first part is the one related to the framework used to collect
data from the STEVAL-IDP005V1, to store them and to forward them to the cloud.
This framework is an open source one, called EdgeX Foundry, and the reader can
find information on it in chapter number five.

Second section of this paper, composed by chapters six, seven and eight, is re-
lated to the implementation of the data collection system. More in details, chapter

7

1 – Introduction

six describes the data collection system in its entirely, starting from the low level to
the higher level. Particular attention is given to the device driver used in order to
make the device interact with the framework.
Chapter seven provides the user visibility on testing and validation of the system.
All tests performed and device costs are discussed.
Last chapter, number eight, analyzes results achieved with this thesis work, provides
a study made in order to verify the possibility to supply the system with batteries
and, finally, treats future steps and related works.

1.6 The company

This degree thesis was written to conclude the Master’s degree course in Computer
Engineering at Polytechnic of Turin, at the end of six months of work spent at Reply,
in particular in Concept Reply business unit.
Concept Reply is the hardware and software development partner of the Reply
group specialized in IoT innovation. It offers solutions in the Smart Infrastructure,
Industrial IoT and Connected Vehicle sectors; in particular, the business unit where
I work is dedicated to Industrial IoT and Edge Computing. The company covers
several aspects: from hardware design and development to software implementation
in embedded environments, to edge computing software or cloud applications.

8

Chapter 2

IO-Link: overview, behavior,
features

2.1 IO-Link overview

During recent years, IO-Link is becoming really popular in industry environment.
It is a connection technology that has been developed for communication with sen-
sors and actuators, in order to overcome the shortcomings of previous technologies.
IO-Link is not a fieldbus based technology, because it is a point-to-point communi-
cation and it requires just one cable, with three wires inside, in order to establish
the communication.
The communication is a digital one, so the cable do not require to be shielded, since
digital transmission is not affected by electromagnetic disturbances.
A typical IO-Link system involves the following components[5]:

• IO-Link master;

• IO-Link device;

• Standard cable to connect the device to the master.

The IO-Link master works as a link between the controller to which is connected
and the devices that are attached to him. Typically, it has several IO-Link ports,
so it can manage more than one device at a time. Obviously, just one device at a
time could be connected to a port, but there is no restriction on which port to use
to connect a device.
The IO-Link master is the one that manages the communication between the con-
troller and the device; it is the interface through which the controller has the possi-
bility to set configuration or to send commands to the sensor/actuator and retrieve
data from it.

9

2 – IO-Link: overview, behavior, features

2.2 IO-Link interface

As previously said, IO-Link is a point-to-point connection that provides both energy
supply and signal transmission.
In order to satisfy an higher grade of protection, to make possible installation in in-
dustrial environment, an M12 plug connector has been chosen. The master typically
has a 5 pin M12 socket, and the pin assignment is the following[5]:

• Pin 1: 24V;

• Pin 3: 0V;

• Pin 4: Switching and communication line (C/Q).

Figure 2.1. Pin assignment of IO-Link device. Taken from [6]

Pin 2 and pin 5 could have different functions depending on the type of the port.
In fact, two port classes are defined for the IO-Link master, port class A and port
class B:

Port Class A (Type A)

This is the first port type; in this case it is up to the manufacturers to define
functions for pin 2 and pin 5, since these functions are not specified by the stan-
dard. Normally, pin 5 is left unconnected, while pin 2 provides an additional digital
channel.[5]

10

2 – IO-Link: overview, behavior, features

Figure 2.2. Pin assignment port class A. Taken from[5]

Port Class B (Type B)

In some cases, users need to use devices which require more power than nor-
mal. For this reason, port class B has been defined; in fact, type B port exploits pin
2 and pin 5 to give additional supply voltage to the device.
Obviously, in this case a 5-wire cable is needed, instead of the typical 3-wire cable,
in order to provide this additional supply voltage.[5]

11

2 – IO-Link: overview, behavior, features

Figure 2.3. Pin assignment port class B. Taken from[5]

Connecting cable

Connecting cable could be of two type, depending on the master’s port class.
For type A port, 3-wire cable is sufficient, while a 5-wire cable is required for type
B port.
The cable is at most 20 meter long, shielding is not needed and also the material
cable doesn’t matter.[5]

2.3 IO-Link protocol

To analyze the IO-Link protocol, we have to focus on three main topics: communi-
cation ports, data types and transmission speed.

The IO-Link ports of the master can be configured in four different ways[5]:

• IO-Link mode:
This mode configures the port for a bi-directional communication, so the port
is used for IO-Link communication.

• DI mode:
DI mode configures the port as a digital input.

12

2 – IO-Link: overview, behavior, features

• DQ mode:
DQ mode configures the port as a digital output.

• Deactivated:
Deactivated mode just simply deactivates the port and could be applied to
unused ports.

In IO-Link communication, there are four possible data types: process data, value
status data, device data and event data.
More in details, we could analyze each of them:

• Process data:
Process data are information read by the device and transmitted to the master,
like, for example, distance readings of laser measuring sensors.
Process data of devices are cyclic data that are transmitted in a data frame;
the size of the process data is specified by the device.
Depending on the device, 0 to 32 bytes of process data are possible (for each
input and output).[5]

• Value status data:
Value status data are the ones transmitted along with process data, in order
to tell the master if the latter are valid or not.[5]

• Device data:
Device data are the ones used to send parameter or configuration to the device,
or to retrieve from it diagnostic information.
It is the master that requests the transmission of device data, and obviously
them could be written to or read from the device.[5]

• Events data:
Every times an event occurs, for example a short-circuit or overheating, events
data are transmitted from the device to the master; the master then forward
data to the controller, in order to make the controller handle the event.
Transmission of events data does not affect transmission of other data.[5]

Now that we have analyzed data types, it is time to focus on transmission speed.
For IO-Link mode, three transmission rates are specified:

• COM1 = 4.8 kilobaud

• COM2 = 38.4 kilobaud

• COM3 = 230.4 kilobaud

13

2 – IO-Link: overview, behavior, features

For each IO-Link device only one of the previous three transmission rates are defined;
the master is, instead, capable to communicate with devices using each transmis-
sion rates and it adapts itself according to the transmission rate requested by the
device.[5]

2.4 IO-Link advantages

IO-Link is becoming really popular in Industry 4.0 and the reason of that is that it
provides a wide number of benefits with respect to previous standards.

In the following we will analyze some of those advantages.

• IO-Link increases machines’ availability

One of the main troubles in industry environment is represented by the possi-
bility to replace diagnostics devices. The problem is that when a replacement
is needed, it takes time, since the new device has to be correctly set with rights
parameters and configurations.
With IO-Link this problem is no more present, since when a new device is
installed, all parameters and configuration of the replaced device are auto-
matically transferred to the new installed sensor or actuator. This action is
performed either by the IO-Link master or by the system controller.
In this way, human errors are minimized and device replacement do not require
specialized users anymore.
Another advantage is that the time to replace a device or to restart the system
is significantly reduced.[7]

• IO-Link provides advanced diagnostic functionalities

IO-Link provides users with visibility into errors and status of each device.
This means that users can now observe not only what the sensor is detecting,
but also performances: valuable information for machine efficiency. Further-
more, advanced diagnostic features allow users to identify a malfunctioning
sensor and locate problems without stopping the line of the machine.
Combination of real-time and historical data, made possible by a system with
IO-Link, not only reduces diagnostic operations’ complexity, but also opti-
mizes the maintenance program of the machines, allowing the user to save
costs and to maximize efficiency over the long term.[8]

14

2 – IO-Link: overview, behavior, features

• IO-Link increases signal quality of measuring sensors

We have previously seen that IO-Link technology provides digital transmis-
sion. This is a big advantage, since digital communications are not affected by
electromagnetic disturbances and, therefore, this means lower costs whit re-
spect to analog technologies, because costly shielded cables could be avoided.
Furthermore, IO-Link requires just one conversion; in fact, starting from the
device, for the measured value is required only one conversion from analog
to digital. The digital signal then reaches the IO-Link master that, in turn,
forwards it to the controller. In this way problem related to conversion, like,
for example, conversion losses, are no more present and the signal could keep
an high quality.[9]

• IO-Link drastically reduces the interfaces needed

Up to now, one of the problems of modern automation systems is given by
the great variety of physical interfaces present. The reason of this is that sen-
sors and actuators, from many manufacturers, are connected to the controller
via different physical interfaces for digital, analog, serial data.
Obviously, for the reason just mentioned, a variety of wiring and cables comes
in the automation system.
Moreover, in order to assign parameters to these sensors and actuators and for
configuration management, a wide variety of interfaces and tool are required.
IO-Link, instead, provides a universal physical interface for wiring and a uni-
form interface for configuration and parameter assignment. This represents a
significant advantage for users; in fact, wiring and connection methods are re-
duced to a single method for both sensors and actuators side and automation
system side.[10]

15

Chapter 3

STEVAL-IDP005V1: overview,
features, components

3.1 STEVAL-IDP005V1 overview

The STEVAL-IDP005V1 is an industrial sensor board, designed by STMicroelec-
tronics.

Figure 3.1. Overview picture of the board. Taken from[1]

The micro-controller of the board is a high end ARM Cortex-M4 32-bit. It is
used to run the processing and analysis firmware for the board’s sensors.
On the board we can find the following sensors[1]:

• an iNEMO six Degrees of Freedom accelerometer and gyroscope;

16

3 – STEVAL-IDP005V1: overview, features, components

• a relative humidity and temperature sensor;

• a digital microphone;

• a barometric pressure sensor.

One of the most interesting features lies in its limited dimensions, as you can see in
the picture below.

Figure 3.2. Dimensions with respect to my hand

This makes the board available to install in almost all industrial environment.

The sensor platform comes complete with EEPROM for data storage, an IO-Link
PHY device and power management based on a step-down switching regulator and
LDO regulator.[1]
Sensor data results can be transmitted through one of the following serial commu-
nication channels[1]:

17

3 – STEVAL-IDP005V1: overview, features, components

• IO-Link: connection with an external STEVAL-IDP004V1 IO-Link master
multi-port evaluation board, discussed in next chapter, is required.

• UART: display the data using a common terminal emulator, like TeraTerm,
through the UART communication channel.

For the scope of this work, we choose to use the IO-Link channel to transmit data,
because IO-Link is becoming widely used in companies and in Industry 4.0 projects
and provides several advantages, as described in chapter one.

3.2 STEVAL-IDP005V1 Hardware architecture

In this section you can find the list of the main hardware components along with
the top side and bottom side picture of the board. The two pictures are useful in
order to have a match between the list of the components and the board in which
they are integrated.

Top side components[1]:

• JP1 - IO-Link 4-position M12 A-coded connector

• J1 - SWD connector

• J2 - Auxiliary connector

• SW1 - Reset button

• L1 - Shielded power inductor

• U1 - L6984 step-down switching regulator

• U2 - LDK220 LDO

• U4 - ISM330DLC 3D accelerometer and 3D gyroscope

• U6 - HTS221 humidity and temperature sensor

• U8 - LPS22HB pressure sensor

Bottom side components[1]:

• U3 - L6362A IO-Link communication transceiver

18

3 – STEVAL-IDP005V1: overview, features, components

Figure 3.3. STEVAL-IDP005V1 top side components. Taken from[1]

• U7 - MP34DT05-A digital microphone

• U9 - M95M01-DF 1-Mbit serial SPI bus EEPROM

• U10 - STM32F469AI ARM Cortex-M4 32-bit MCU

• Y1 - 32.768 kHz crystal

• Y2 - 24 MHz crystal

Figure 3.4. STEVAL-IDP005V1 bottom side components. Taken from[1]

Five main functional subsystems could be identified inside the board:

• Microcontroller

• Memory

• MEMS Sensors

• Wired connectivity

• Power management

Next sections analyze each subsystem in details.

19

3 – STEVAL-IDP005V1: overview, features, components

3.2.1 Microcontroller[1]

The STEVAL-IDP005V1 embeds an STM32F469AI microcontroller. It is based on
the ARM Cortex-M4 32-bit, an high performance RISC core that could operate at
a frequency of up to 180 MHz.
The microcontroller features up to twenty-one communication interfaces: multiple
I2C, multiple UART and USART, multiple SPI, multiple CAN, one SAI (serial
audio interface) and one SDIO interface are available.
Up to 2 Mbytes of flash memory and up to 384 Kbytes of SRAM are embedded in
the device.
The microcontroller could correctly work in the −40◦C to 105◦C temperature range.

3.2.2 Memory[1]

The STEVAL-IDP005V1 embeds a non volatile memory of 1-Mbits. It is an EEP-
ROM, that means electrically erasable programmable memory.
The SPI bus is used to access the memory.
It can work correctly in the −40◦C to 85◦C temperature range.

3.2.3 MEMS Sensors[1]

Several sensors are embedded in the STEVAL-IDP005V1. They are fundamental in
order to detect environmental parameters or to detect vibration.

On the board we can find the following sensors:

• ISM330DLC 3D accelerometer and 3D gyroscope

• HTS221 humidity and temperature sensor

• LPS22HB pressure sensor

ISM330DLC

It is a system-in-package designed for Industry 4.0 applications. Inside the package
we can find a high performance 3D digital accelerometer and a 3D digital gyroscope.

In order to furtherly increase robustness and stability, manufacturers choose to im-
plement on the same silicon die both sensing elements of the accelerometer and of
the gyroscope.

It can operate in an extended temperature range, from −40◦C up to 85◦C. This, in

20

3 – STEVAL-IDP005V1: overview, features, components

Figure 3.5. Orientation axes for a 3D accelerometer and 3D gyroscope. Taken
from[11]

addition to the high shock survivability of the system, makes it optimal for Industry
4.0 applications.

HTS221

Figure 3.6. Block Diagram of HTS221 sensor. Taken from[12]

The HTS221 is an ultra compact sensor for relative humidity and temperature.
In order to provide, through digital serial interfaces, measurement information, the
sensor includes a mixed signal ASIC and a sensing element.

The sensing element consists of a polymer dielectric planar capacitor structure capa-
ble of detecting relative humidity variations and is manufactured using a dedicated

21

3 – STEVAL-IDP005V1: overview, features, components

process developed by ST.[1]

The sensor could detect humidity in a range of 20 to 80% relative humidity with an
accuracy of ±3.5%.It can measure temperature in a range of 15◦C to 40◦C with an
accuracy of ±0.5◦C.

The HTS221 could operate in an extended temperature range, from −40◦C up to
120◦C.

LPS22HB

Figure 3.7. Block Diagram of LPS22HB sensor. Taken from[13]

The LPS22HB is an ultra-compact piezoresistive absolute pressure sensor which
functions as a digital output barometer.[1] Again, the device is composed by two
main parts; the first one is the sensing element, used to detect pressure, and the
second is an IC interface, that is used in order to communicate from the sensing
element to the application, using I2C or SPI.

The sensing element is able to decect absolute pressure; it consists of a suspended
membrane, manufactured using a dedicated ST process.

The LGA package of the LPS22HB is holed; the reason of this is that, in this
way, external pressure is able to reach the sensing element.

22

3 – STEVAL-IDP005V1: overview, features, components

The LPS22HB could operate in an extended temperature range, from −40◦C up
to 85◦C.

It could measure pressure in an absolute pressure range that goes from 260 to 1260
hPa.

3.2.4 Wired connectivity

Several information about IO-Link protocol have been provided to you in the first
chapter of this document. Now we analyze how the IO-Link protocol is integrated
in the STEVAL-IDP005V1.

The STEVAL-IDP005V1 includes an IO-Link transceiver device, the L6362A, which
supports COM1, COM2 and COM3 modes.
The IC can interface a sensor node to a master unit using both the Serial Data
Communication Interface (SDCI), based on IO-Link protocol, and the Standard
I/O mode (SIO).[1]
The IC is protected against reverse polarity across VCC, GND, OUTH, OUTL and
I/O pins, output short-circuit, overvoltage and impulse voltage withstand.

3.2.5 Power management

The STEVAL-IDP005V1 power management stage is composed by two main com-
ponents:

• L6984 step-down switching regulator;

• LDK220 Low-DropOut regulator.

The first one is a step-down switching regulator. It could operate with input voltage
between 4.5 V and 36 V. It is able to provide 3.3 V output voltage without the need
for an external resistor divisor and it could supply up to 400 mA DC output current.
The switching frequency could be adjusted from 250 kHz to 600 kHz.
The output voltage could be adjusted starting from 0.9 V.
The L6984 has low consumption mode and low noise mode.
It could work fine in the temperature range that stands form −40◦C to 150◦C.[14]

The second one is a low drop voltage regulator. It is able to provide up to 200
mA output current and the input voltage could be between 2.5 V and 3.2 V.
Depending on the requirements, the output voltage could be adjusted with step of
100 mV in the range 1.2 V to 12 V.

23

3 – STEVAL-IDP005V1: overview, features, components

The LDK220 could operate in an extended temperature range, from −40◦C up to
125◦C.[15]

24

Chapter 4

STEVAL-IDP004V1: overview,
features, components

4.1 STEVAL-IDP004V1: Overview

In chapter one, we have seen that, in order to connect the IO-Link device with the
higher level controller, we need an IO-Link master. The STEVAL-IDP004V1 is the
master board, provided by STMicroelectronics, included in the IO-Link evaluation
kit for condition monitoring in factory automation systems.

Figure 4.1. Overview of the master evaluation board. Taken from [16]

25

4 – STEVAL-IDP004V1: overview, features, components

This master board is the physical link between the sensor device and the con-
troller; through the STEVAL-IDP004V1, the controller could communicate with
the STEVAL-IDP005V1 sensor board, analyzed in chapter two, in order to retrieve
measurements data or status data from it and to send command to it.

The master board can have up to four device connected, each of them with pos-
sible different settings. The master is able to store configuration for each device,
so if one of them will have to be substituted, it is not necessary to set again the
configuration for the new installed device, because the master sets directly the new
device with configurations of the older device.

4.2 STEVAL-IDP004V1: Hardware architecture

Figure 4.2. STEVAL-IDP004V1 block diagram. Taken from [16]

The power management and protection block is used to adapt the input voltage,
which is in the range 18 to 32 V, to the 8 V voltage required by the board.
The USB interface and the RS-485 interface are used in order to achieve the com-
munication with the controller, which could be the PC, like in this thesis work, or
another control unit. The CAN transceiver, instead, is used to implement the inter-
face with the other communication bus.

26

4 – STEVAL-IDP004V1: overview, features, components

The IO-Link interface is implemented using four L6360 master ICs. The L6360 is
a programmable transceiver that embeds several registers used to configure differ-
ent IC settings like output stage configuration, output current limitation threshold
protection, de-bounce time in receive mode, LED to signal malfunctions. [16]

4.3 STEVAL-IDP004V1: Software description

The master board comes with a firmware able to manage the communication with
the PC via RS-485 interface and to manage the communication with the STEVAL-
IDP005V1 device via IO-Link interface.
In the firmware kit we could identify three source files that implement functions
mentioned above:

• Master Settings.c;

• PC Communication RS485.c;

• Master DeviceCOMM.c.

First one is the driver used to properly configure the master board IO-Link transceivers,
in order to make them communicate in the correct manner with the device. It pro-
vides all the routines needed to evaluate master’s status (programmed or not) and to
write the correct value in configurable registers, with the possibility to do this either
in random way (setting one register at a time), or in sequential mode (providing all
register value to the board in just one time).

Second one is like a wrapper since it is the one that manages the communication
with the PC. It is in charge of decode user command and, depending on what it has
received, it wakes up routines and functions provided by the other two drivers. It
provides functions able to transmit and receive data via RS-485, to print messages
on the PC screen, to begin a new operation and to close a old one.

Last one is the driver that manages the communication between the master board
and the device. It provides functions able to set the master either in transmission
mode or in receiver mode; it also makes available routines to send commands or
data to the device and to manage the IO-Link transmission.

27

Chapter 5

EdgeX Foundry: the open
software framework for IoT

5.1 EdgeX Foundry: Introduction

Figure 5.1. Overview of the framework’s architecture. Taken from [17]

28

5 – EdgeX Foundry: the open software framework for IoT

The EdgeX Foundry is a collection of open source micro-services.
These services communicate through a common API and it is possible to augment
or replace them as needed.
In other words, EdgeX Foundry is a vendor-neutral open source platform at the edge
of the network, that interacts with several devices, sensors and other IoT objects.
EdgeX is a useful tool that makes easier to connect with and to control devices, in
order to retrieve data from them, to send instruction to them or to move data from
the device to the cloud.
In this framework we could identify two main sides, the north and the south one.
The north side refers to the cloud in which data are stored, analyzed and transformed
into information. The south side, instead, is the part of the system that includes
the IoT objects and the part of the network that communicates with them.
The framework is divided in several layers, each of them with a specific scope.
There are in total six layers, four of them are Service Layers, while the others two
are System Services.

5.2 EdgeX Foundry: Service Layers

Four service layers are present in EdgeX Foundry. They are structured in order
to create a link between the device and the cloud. Each layer could interact with
the others, in order to create a network to manage data, configuration and device
events.

5.2.1 Device Services Layer

The Device Services Layer is the first level of the structure, starting from the de-
vices.
Device services are the ones that interacts directly with the devices and that allow
to collect data from devices and to send them configuration or input commands.
Devices could be actuators or sensors, like in our case of study, or even more com-
plex systems like, for example, lights, hydraulic pumps, irrigation systems.

29

5 – EdgeX Foundry: the open software framework for IoT

Figure 5.2. Core services layer. Taken from [17]

Device services could manage more than one device at the same time and one
specific device service could serve all devices of the same type, for which the device
service was created.
Device services have to be implemented in such a way that they could communicate
with physical devices using the native protocol of each device. For example, in our
case of study the device uses the serial line to communicate with the controller; in
this case the device service had to be implemented in such a way that it was capable
to read and write the serial channel.
Once data have been acquired from the device using its native protocol, the Device
Services Layer transforms them into a format suitable for EdgeX and, after the
conversion, sends them to other micro-services of others framework’s layers.
In the same manner, the Device Services Layer must be able to translate commands
coming from others EdgeX micro-services and to forward the command to the device.

5.2.2 Core Services Layer

The second layer, starting from the bottom, of the framework architecture is the
Core Services Layer.

All the layers over the Core Services Layer belong to the north side, seen in para-
graph 4.1, while layer and micro-services under the Core Services Layer belong to

30

5 – EdgeX Foundry: the open software framework for IoT

the south side, seen in paragraph 4.1. So, Core Services Layer is the link between
the north and the south side, in other words the link between the cloud and the
devices. Four main elements could be identified in this layer.

Figure 5.3. Core services layer. Taken from [17]

The first one is the Core Data. It is a service that is used as a permanent repos-
itory for all the data collected from the devices; in practice it is like a database for
IoT objects’ data.

Second one is the Command service. This is a service useful to facilitate and to
control commands coming from upper layers that have to be forwarded to IoT ob-
jects.

Third one is the Metadata service. Metadata acts like a repository for devices
connected to EdgeX. Inside Metadata are registered all IoT objects connected to
the framework, along with the type of resources these devices can provide and the
list of their available commands. Metadata makes the user capable to add new de-
vices to EdgeX and to associate them with the correct device service.

Last one is the Registry and Configuration service. This is used as a repository
for values to be used during initialization.

31

5 – EdgeX Foundry: the open software framework for IoT

5.2.3 Supporting Services Layer

This layer is the one that manages the communication of events and is designed
to give edge smartness and analytics skills. In fact, the Supporting Services Layer
embeds logging microservices, in order to make the user capable of monitoring each
service and, so, how each component is behaving and how components interact with
each other.
Alerts and notifications services are also included in this layer; this is a powerful
tool, since notifications or alerts could be sent to an external system in case of de-
vice or service malfunctions. Alerts and notifications could be sent via email, REST
callback to an external system or person.

Figure 5.4. Core services layer. Taken from [17]

Furthermore, in the Supporting Services Layer we could find the Rules Engine
and the Scheduling microservices. The first one is used in order to automatically
trigger some resources, such as device activation, depending on how the administra-
tor defines the rule.
Scheduling microservices are instead used to delete some data from the core data,
after they have been processed and transmitted. This last operation could be auto-
matically performed by setting a timer.

32

5 – EdgeX Foundry: the open software framework for IoT

5.2.4 Export Services Layer

This layer is used in order to send data, collected from the south side, to the north
side. It is possible to register several clients to receive data from EdgeX; this works in
a simple manner: every time a data reaches the Core Data service it is automatically
forwarded to each client registered in the Export Service.
During registration phase, it is possible also to define the protocol to be used to
export the data. For this thesis work, we have choosen to use MQTT protocol.

5.2.5 System Management and Security Services Layer

System management services are all the services that helps with the installation,
initialization, starting and stopping of other microservices, of the BIOS or the op-
erating system.
Security services are related to the protection of sensitive data. These could be
device data or commands, secret password or access keys.

33

Chapter 6

Data collection system: from the
device to the cloud

6.1 Overview

In chapter three we have seen that the master board comes with a firmware that
allow the communication with the pc. To do that, it is possible to run a common
terminal emulator, like Tera Term, PuTTY or Minicom, and to start sending com-
mands to the board. Anyway, this communication takes place only between the
board and the controller (the pc in our case of study) and does not involve the
framework EdgeX.

In chapter four we have analyzed the structure of EdgeX Foundry and we have
seen the layers of the framework and how they work.
Since we have clear the structure of the framework, it is obvious that, if we want to
establish a communication between the sensor board and EdgeX, we have to create
a sort of driver for the target device.
This driver is included in the Device Services Layer, because this is the platform
part that interacts directly with the device.

To build EdgeX device services and to add devices to the framework, two Soft-
ware Development Kit are available; the difference between these two SDK lies only
in the fact that one is for C language, while the other one is for Go language. For
our work we choose the C SDK, that means that the device driver had to be written
in C language. The choice between the two version was made taking into account
the fact that I studied C language during university years.

34

6 – Data collection system: from the device to the cloud

Figure 6.1. Data collection system overview

In order to perfectly integrate a new device with EdgeX Foundry, three main files
are required.
One is the C file that specifies what the device service should be able to do and
defines the actions required in order to communicate commands or retrieve data
from the device.
Another one is the device profile file; it is a yaml file that specifies device’s properties
and commands that could be sent to the device. Only one device profile is required
for all the objects it describes.
Last file needed is a TOML file, which is a configuration file for the device.

Once the device driver is ready, composed by the three components just mentioned,
the system is able to take measurements and data from the device and to import
them in Edgex platform; in order to make this system complete, we need to export
data to the higher level of the network. This is performed exploiting the EdgeX
Export service and using MQTT protocol for the communication.

Last component of the system is the dashboard we design in order to give a more
user friendly tool to the customer. In fact, even if the user is not an expert one,
he could retrieve data and measurements from the device in such a simple way, by
simply clicking on a button on the screen.
In the following sections we will analyze all these components.

35

6 – Data collection system: from the device to the cloud

6.2 Device Profile

The device profile is the file that describes our device properties.
It defines the resources of the sensor, i.e. the physical quantities that we could re-
trieve from the board, their value type and their unit of measure.
Furthermore, it defines also the exactly command that we could send to the device
through API Rest, the exact path on which making the request and the type of
responses expected.
It is a YAML file, so it is human readable and it is simple to manipulate and modify.

In the following it is reported the code for the STEVAL-IDP005V1 device pro-
file.

1 name: "ser_dev"

2 manufacturer: "ST"

3 model: "STeval"

4 description: "environmental sensor"

5 labels:

6 - "sensor"

7
8 deviceResources:

9 -

10 name: TEMP

11 description: "environmental temperature"

12 attributes:

13 { parameter: "temp" }

14 properties:

15 value:

16 { type: "Float32", readWrite: "R", floatEncoding:

"eNotation" }

17 units:

18 { type: "string", readWrite: "R", defaultValue: "deg" }

19 -

20 name: ENV_HUM

21 description: "environmental humidity"

22 attributes:

23 { parameter: "hum" }

24 properties:

25 value:

26 { type: "Float32", readWrite: "R", floatEncoding:

"eNotation" }

27 units:

28 { type: "string", readWrite: "R", defaultValue: "%" }

29 -

30 name: ENV_PRESS

31 description: "environmental pressure"

36

6 – Data collection system: from the device to the cloud

32 attributes:

33 { parameter: "pressure" }

34 properties:

35 value:

36 { type: "Float32", readWrite: "R", floatEncoding:

"eNotation" }

37 units:

38 { type: "string", readWrite: "R", defaultValue: "mBar" }

39 -

40 name: ALL_ENV

41 description: "all environment values"

42 attributes:

43 { parameter: "all_env" }

44 properties:

45 value:

46 { type: "String", readWrite: "R" }

47 units:

48 { type: "string", readWrite: "R", defaultValue: "environment

measures" }

49 -

50 name: FFT

51 description: "vibration values in m/s2"

52 attributes:

53 { parameter: "vibration" }

54 properties:

55 value:

56 { type: "String", readWrite: "R" }

57 units:

58 { type: "string", readWrite: "R", defaultValue: "text

vibration" }

59 -

60 name: TDM

61 description: "rms acceleration x y z, peak acceleration x y z"

62 attributes:

63 { parameter: "acceleration" }

64 properties:

65 value:

66 { type: "String", readWrite: "R" }

67 units:

68 { type: "string", readWrite: "R", defaultValue: "text" }

69
70 coreCommands:

71 -

72 name: FFT

73 get:

74 path: "/api/v1/device /{ deviceId }/FFT"

75 responses:

76 -

77 code: "200"

37

6 – Data collection system: from the device to the cloud

78 description: "Get sensor measured accelerometer FFT"

79 expectedValues: ["FFT"]

80 -

81 code: "503"

82 description: "service unavailable"

83 expectedValues: []

84 -

85 name: TDM

86 get:

87 path: "/api/v1/device /{ deviceId }/TDM"

88 responses:

89 -

90 code: "200"

91 description: "Get sensor measured accelerometer RMS data"

92 expectedValues: ["TDM"]

93 -

94 code: "503"

95 description: "service unavailable"

96 expectedValues: []

97 -

98 name: ALL_ENV

99 get:

100 path: "/api/v1/device /{ deviceId }/ ALL_ENV"

101 responses:

102 -

103 code: "200"

104 description: "Get sensor measured environment data"

105 expectedValues: ["ALL_ENV"]

106 -

107 code: "503"

108 description: "service unavailable"

109 expectedValues: []

110 -

111 name: TEMP

112 get:

113 path: "/api/v1/device /{ deviceId }/TEMP"

114 responses:

115 -

116 code: "200"

117 description: "Get sensor measurred temperature data"

118 expectedValues: ["TEMP"]

119 -

120 code: "503"

121 description: "service unavailable"

122 expectedValues: []

123 -

124 name: ENV_HUM

125 get:

126 path: "/api/v1/device /{ deviceId }/ ENV_HUM"

38

6 – Data collection system: from the device to the cloud

127 responses:

128 -

129 code: "200"

130 description: "Get sensor measured humidity data"

131 expectedValues: ["ENV_HUM"]

132 -

133 code: "503"

134 description: "service unavailable"

135 expectedValues: []

136 -

137 name: ENV_PRESS

138 get:

139 path: "/api/v1/device /{ deviceId }/ ENV_PRESS"

140 responses:

141 -

142 code: "200"

143 description: "Get sensor measured pressure data"

144 expectedValues: ["ENV_PRESS"]

145 -

146 code: "503"

147 description: "service unavailable"

148 expectedValues: []

In the following we will analyze the above code.

• Line 1 - 7: This first part is just an introduction and a description of the
device.

• Line 7 - 69: In these lines we can find the list of all the resources that the
device makes available. For each resource, we can find the description, its
attributes and its properties. Properties are referred to the resource value and
units; in value field it is specified the type of data, like for example Float or
String, and if this resource is available in reading or writing mode. In units
field, instead, it is defined the unit of measure of the resource.
In this project, the device makes available five type of resources. First three
are referred to environment monitoring, more in details they are temperature,
humidity and pressure. These resources are foundamental in cases where the
machine to be monitored must work in environment with defined parameters,
for example because high temperature or humidity value could infect the ma-
chine. Humidity, pressure and temperature could also be measured in the
same moment, in order to have a complete control on the environment.
Last two resources are referred to motion parameters; the first one is able to
obtain from the device peak acceleration value and root mean square value,

39

6 – Data collection system: from the device to the cloud

both in m/s2 and both for the three axes x, y, z. Second one is used to ana-
lyze vibration parameters by processing accelerometer data with a Fast Fourier
Transformation algorithm. These last two resources are useful to monitor ma-
chine acceleration and vibration, in order to detect a wrong behavior on it and
to perform predictive maintenance.

• Line 70 - 148: In these lines we can find the list of all the commands that it
is possible to send to the device in order to retrieve resources from it. For each
available command, we can find the type of the command (PUT, GET, POST),
the path at which the command is reachable and the type of responses that
the command could send. If the command works fine, the response code is 200
and the expected value is the value of the resource asked by that command;
if something went wrong, the response code is 503 and no expected value is
present. In order to make the system correctly work, it is important to have
one command available for each resource.

6.3 Device Configuration

The device configuration file is a TOML file that is used by EdgeX Foundry to cor-
rectly set the environment in order to make the driver work in the desired way.
In the following the reader will find the code of the device configuration; below the
code a short explanation is provided.

1 [Service]

2 Host = "127.0.0.1"

3 Port = 49090

4 Timeout = 5000

5 ConnectRetries = 3

6 Labels = ["Serial"]

7 StartupMsg = "Serial device started"

8 CheckInterval = "10s"

9
10 [Clients]

11 [Clients.Data]

12 Host = "127.0.0.1"

13 Port = 48080

14
15 [Clients.Metadata]

16 Host = "127.0.0.1"

17 Port = 48081

18
19 [Device]

20 DataTransform = true

21 Discovery = false

40

6 – Data collection system: from the device to the cloud

22 InitCmd = ""

23 InitCmdArgs = ""

24 MaxCmdOps = 128

25 MaxCmdResultLen = 256

26 RemoveCmd = ""

27 RemoveCmdArgs = ""

28 ProfilesDir = ""

29 SendReadingsOnChanged = true

30
31 [[DeviceList]]

32 Name = "Serial Device"

33 Profile = "ser_dev"

34 Description = "environmental sensor device"

35 [DeviceList.Protocols]

36 [DeviceList.Protocols.Other]

37 Address = "/dev/ttyUSB0"

38 Baudrate = "230400"

39 Parity = "2"

40 NR_Data = "8"

41 Stopbit = "1"

• Line 1 - 8: This first part is used to define device service parameters, such as
the host and the port at which the service is reachable, the timeout and the
number of connection retries to perform to start the service.

• Line 10 - 17: In these lines there is the list of the clients with which the
device has to communicate. For each client, it is specified again the host and
the port to connect through. For this thesis work, the IO-Link device service
must interact with the Core Data and with the Core Metadata service.

• Line 19 - 29: These are default parameters, like the maximum number of
command operands or the maximum length of the command result. Most of
them must be left empty.

• Line 31 - 41: In these lines parameters useful to access the device are pro-
vided; in this project, the Io-Link sensor communicates with the pc using serial
interface. For this reason, in the ”DeviceList.Protocols”, we have specified the
address, which in this case is the name of the serial port, the Baudrate, the
parity bit value (2 means no parity), the number of data bits and stop bit.

In this file it is also possible to make the system work autonomously, in the sense
that resources are no more requested by the user of the system, but they are re-
trieved autonomously. To do this some line of configuration have to be added to the

41

6 – Data collection system: from the device to the cloud

TOML file. Based on the type of resource we want to automatically retrieve it is
sufficient to add to the configuration file, in the device list section, the information
about auto events. This is such composed:

1 [[DeviceList.AutoEvents]]

2 Resource = "ResourceName"

3 OnChange = could be either true or false

4 Frequency = "frequency expressed in seconds(i.e., 10s)"

Obviously it is possible to add each type of resource in the auto events section.
For this thesis work, temperature value has been tested with auto events execution
and the result was good. Anyway we choose to avoid this configuration, since our
goal was to demonstrate that the system could react correctly to user inputs.

6.4 Device Driver

In this section we will analyze the device driver file. This is the main part of this
project work, since it is the part related to the connection and the communication
with the device. Using function defined in this C file, in fact, it is possible to open
the serial port, to set the serial port in the correct way, to set the master board
with right configurations, to send commands to the device and to retrieve data and
measurements from it.
Three main function could be analyzed in this file: first one is the one in charge
of finding the correct communication protocol, second one is the one in charge of
setting the serial port with correct parameters and the last one is the function that
sends commands to the device and retrieves data from it.

In the section below, the reader could find the code of the function able to de-
tect the connection protocol:

1 static const edgex_protocols *findprotocol

2 (const edgex_protocols *prots , const char *name)

3 {

4
5 const edgex_protocols *result = prots;

6 int i=0;

7 while (result != NULL)

8 {

9 if (strcmp (result ->name , name) == 0)

10 {

11 return result;

42

6 – Data collection system: from the device to the cloud

12 }

13 i++;

14 result = result ->next;

15 }

16
17 return NULL;

18 }

This first function, named findprotocol, is the one used by the driver in order to
find the correct protocol in the device configuration. It works in such a simple way:
it takes the list of device protocols and the name of the protocol to be found and
it starts looping on the list comparing the name of the current list object with the
name of the protocol needed. In case the two names match, the loop breaks and
the function returns the correct protocol, otherwise the loop will continue with the
following element of the list. If no protocol is found, the function returns a NULL
pointer.

Now we focus on the function able to correctly set the serial port:

1 static const int setSerialPort

2 (iot_logger_t *lc, const edgex_protocols *protocols)

3 {

4
5 int addr;

6 memset (&conf , 0, sizeof(conf));

7
8 const edgex_protocols *p = findprotocol (protocols , "Other");

9 if (p == NULL) {

10 iot_log_error (lc , "No Serial protocol in device address");

11 return -1;

12 }

13
14 const char *name = findinpairs (p->properties , "Address");

15
16 if (name == NULL || strlen (name) == 0) {

17 iot_log_error (lc , "No Address property in Serial protocol");

18 return -1;

19
20 } else{

21
22 addr = open(name , O_RDWR);

23
24 }

25
26 const char *Baud = findinpairs (p->properties , "Baudrate");

27

43

6 – Data collection system: from the device to the cloud

28 if (Baud == NULL || strlen (Baud) == 0) {

29
30 iot_log_error (lc , "No Baudrate property in Serial protocol");

31 return -1;

32 }

33
34 if(strcmp(Baud , "230400") == 0){

35 if(cfsetispeed (&conf , B230400) < 0)

36 perror("not able to set input speed\n");

37 else

38 cfsetospeed (&conf , B230400);

39 }

40
41 if(tcsetattr(addr , TCSANOW , &conf) <0)

42 perror("tcsetattr failed\n");

43
44 tcflush(addr , TCIFLUSH);

45 sleep (1);

46
47 return addr;

48 }

This is the function used to open and set the serial port. First of all, it searches
for the serial protocol using the ”findprotocol” function previously described: if the
”findprotocol” returns a NULL pointer, the function prints an error and exit with
code -1. Otherwise, it starts searching for the address name inside the protocol by
using a function, ”findinpairs”, that works similar to the ”findprotocol”. Once the
address name is available, the function either exit with code -1, in case the name is
NULL, or open the serial port. After the serial port has been opened, the function
looks for the Baudrate property inside the protocol and then set it for the serial
port just opened. Finally, the function returns the integer value, that corresponds
to the serial port, used to access it in reading and writing mode.

Once findprotocol and setSerialPort functions have been analyzed it is time to focus
on the main function that handles the communication between the controller and
the device. This is the function able to set the master board and to get data from
the device:

1 static bool serial_get_handler

2 (

3 void *impl ,

4 const char *devname ,

5 const edgex_protocols *protocols ,

6 uint32_t nreadings ,

7 const edgex_device_commandrequest *requests ,

44

6 – Data collection system: from the device to the cloud

8 edgex_device_commandresult *readings

9)

10 {

11 serial_driver *driver = (serial_driver *) impl;

12
13 if(id_port == -1){

14 id_port = setSerialPort(driver ->lc , protocols);

15 if(id_port == -1){

16 return false;

17 }

18 program_master_node ();

19 }

20
21 if(id_port != -1){

22
23 for (uint32_t g = 0; g < nreadings; g++){

24
25 const char *param = findinpairs (requests[g].attributes ,

"parameter");

26 if (param == NULL) {

27 iot_log_error (driver ->lc, "No parameter attribute in GET

request");

28 return false;

29 }

30
31 if(strcmp(param , "temp") == 0) {

32 ask_for_temperature(readings , g);

33 return true;

34 }

35 else{

36 if(strcmp(param , "hum") == 0){

37 ask_for_humidity(readings , g);

38 return true;

39 }

40 else{

41 if(strcmp(param , "pressure") == 0){

42 ask_for_pressure(readings , g);

43 return true;

44 }

45 else{

46 if(strcmp(param , "acceleration") == 0){

47 ask_for_acceleration(readings , g);

48 return true;

49 }

50 else{

51 if(strcmp(param , "vibration") == 0){

52 ask_for_vibration(readings , g);

53 return true;

54 }

45

6 – Data collection system: from the device to the cloud

55 else{

56 if(strcmp(param , "all_env") == 0){

57 ask_for_env_parameters(readings , g);

58 return true;

59 }

60 else

61 return false;

62 }

63 }

64 }

65 }

66 }

67
68 }

69 }

70
71
72 return true;

73 }

We could divide this function in two main parts, depending on the value of the
id port variable, that represents the integer returned by the open function.

• Line 13 - 19: This is the first part, that corresponds to the case in which
id port is -1. If id port is equal to -1, it means that the serial port has not been
opened yet; in this case the function shall execute the setSerialPort process, in
order to correctly open and set the serial port. After this, the serial port has
been opened and configured with right parameters for the communication, but
the master board is not programmed yet and it does not know to which of its
four IO-Link node has to interact. So, the first set of commands has to be sent
to the master board, by calling the function named ”program master node()”,
in such a way that the serial communication is established and the node cor-
responding to the device is programmed. This is the very first section that
shall be executed, during the start up of the system. It is like an initialization
for the master board and it is executed just the first time a resource is asked
to the device.
When this section ends, the communication between the controller and the
STEVAL-IDP004V1 has started and the master node is programmed to cor-
rectly communicate with the device attached to it.
For completeness the code of the program master node() is reported in the
next page:

46

6 – Data collection system: from the device to the cloud

1 void program_master_node () {

2
3 char *buf = malloc (30* sizeof(char));

4
5 strcpy(buf , "START\n");

6 write(id_port , buf , 6);

7 sleep (3);

8
9 strcpy(buf , "MASTER\n");

10 write(id_port , buf , 7);

11 sleep (3);

12
13 strcpy(buf , "0\n");

14 write(id_port , buf , 2);

15 sleep (3);

16
17 strcpy(buf , "WR_S\n");

18 write(id_port , buf , 5);

19 sleep (3);

20
21 strcpy(buf , "096 ,248 ,033 ,122 ,122 ,122 ,122 ,\n");

22 for(int k=0; k<28; k++) {

23 write(id_port , buf+k, 1);

24 usleep (1000);

25 }

26
27 write(id_port , "\r", 1);

28 sleep (3);

29
30 free(buf);

31
32 }

As you can see, this function simply writes on the serial port the correct com-
mands sequence in order to start communication with the master board and to
program the node to which the IO-Link device is attached. The most critical
part is the one in which register values are written. In this case, the function
has to write one character at a time with an interval of 1 ms between one and
the other; the reason of this lies in the fact that writing operation, performed
by the PC, is too fast and the master is not capable to set registers correctly.
By writing one character at a time, all works fine.
No reading operation are performed in this function, since, in programming
phase, reading master responses is out of interest.

47

6 – Data collection system: from the device to the cloud

In the following two pictures the reader can see the master board before and
after the programming phase.

Figure 6.2. Master board view before programming phase

It is evident that, when the board is not programmed, only LED referred to
power supply for each node are switched on; instead, after the programming
phase, the node with the IO-Link cable attached to it has the LED, referred
to the transceiver status, switched on.
Once the transceiver LED starts blinking, it means that the master board is

48

6 – Data collection system: from the device to the cloud

ready to communicate with the IO-Link sensor through the M12 cable and the
controller could start asking resources to the device. From this moment the
LED referred to the target node will continue blinking until the reset button
is pressed or the power supply is switched off; this means that it is possible to
retrieve data from the sensorized board for a long time without doing again
the master configuration. This, obviously, speeds up data measurements. Fur-
thermore, even in the case that the IO-Link device must be replaced, as we
have seen in previous chapters, there is no need to re-configure the master
node: it is sufficient to remove the device and to place a new one and the
system will continue working correctly.

Figure 6.3. Master board view after programming phase

49

6 – Data collection system: from the device to the cloud

• Line 21 - 69: This is the second part of the serial get handler function, that
corresponds to the case in which id port is not equal to -1. If the id port value
is different from -1, it means that the serial communication has already been
established. In this case, the configuration part described above is no more
needed and the driver could directly send commands to the sensor.
Inside this section, the main part is composed by an ”if then else” decision
tree used do discriminate between different parameter values. In fact, once pa-
rameter name has been retrieved by the ”findinpairs” function, it is compared
with all parameters name available for this device. For each type of resource
requested, the driver has a specific function used to send commands to the
device, through the master board.
In the following we will analyze the function used to retrieve temperature data
from the device.

1 void ask_for_temperature(edgex_device_commandresult

*readings , int index) {

2
3 char *buf = malloc (2000* sizeof(char));

4 char *ptr = buf; //ptr points to the first location of

buf , used to free buf at the end if buf pointer will

be modified

5 char *tmp = malloc (200* sizeof(char));

6 double temp_value;

7 int i;

8 strcpy(buf , "COMMAND END\n");

9 write(id_port , buf , 12);

10 sleep (3);

11
12 strcpy(buf , "DEVICE\n");

13 write(id_port , buf , 7);

14 sleep (3);

15
16 strcpy(buf , "0\n");

17 write(id_port , buf , 2);

18 sleep (3);

19
20 stpcpy(buf , "MSR\n");

21 write(id_port , buf , 4);

22 sleep (3);

23
24 tcflush(id_port , TCIFLUSH);

25
26 stpcpy(buf , "ENV\n");

27 write(id_port , buf , 4);

28 sleep (3);

29

50

6 – Data collection system: from the device to the cloud

30 i = read(id_port ,buf ,2000);

31
32
33 do{

34 sscanf(buf , "%s", tmp);

35 buf += strlen(tmp) + 1;

36
37 } while(strcmp(tmp , "from:") != 0);

38
39 sscanf(buf , "%*s %*s %*s %s", tmp);

40 temp_value = atof(tmp);

41
42 readings[index].type = Float32;

43 readings[index].value.f32_result = temp_value;

44
45 free(tmp);

46 free(ptr);

47
48 return;

49 }

The previous code show the behavior of the function used to ask temperature value
to the device. It is a simple sequence of writing on the serial port and waiting few
seconds to make possible the master board and the device to elaborate command
received. Reading operation is performed just once, at the end of the writing se-
quence. In line 24 the reader could find the tcflush function call; this is used in order
to discard all what has been written on the serial port, either by the controller or by
the master board, that has not been read yet. The reason of this is that when the
driver reads from the serial port, it is interested only in the response to the resource
request and not to everything that has been written on the serial port. After this
function has read the device data, it saves it in readings structure, that is a variable
read by the framework to store data in the database.
Function to retrieve other resources from the IO-Link device are quite similar to
the one just analyzed, so they are omitted in this treatise, in order to not make the
reader boring.

In conclusion we could say that the behavior of the device driver, after the sys-
tem initialization, is quite simple: it is based on writing a command for the device
on the serial line, sleeping for some seconds in order to allow the device to process
the command received and to send back the response, then writing the new com-
mand. Once all commands have been sent from the controller to the device, the

51

6 – Data collection system: from the device to the cloud

driver read the sensor’s answer, retrieve data and measurements from it and send
them to the EdgeX framework.
Even if it is not difficult to understand how does the driver works, its realization was
not so easy. The main reason lies in the fact that the communication between the
PC and the board requires an high precise synchronization, otherwise the master
will reset itself and the transaction will fail. So, before we found the correct solution,
several days of tests have been spent, trying to set different values of sleep between
two sequential command write and looking for the best communication flow. In
fact, different values of seconds for the sleep call have been tried, because certain
commands work fine with some waiting time while other commands work better
with other sleep value. The most critical phase is the one in which master board
registers have to be programmed; in fact, in these step the communication failed
every time. The solution was found by writing one character at a time, with a sleep
of 1 ms between two subsequent char. All other commands, instead, work fine by
setting a sleep of three seconds between one and the following.

6.5 Data Exporting

In order to make a complete data collection system, the cloud must be included in
the work. In fact, data are more useful if they are available not only where they are
collected, but also in remote places; the reason of this, lies in the fact that, maybe,
someone wants to monitor the industrial machine or the environment in which it
works even if he is not in the same place of the system controller. Furthermore, by
exporting data to a cloud service it is possible to have multiple storing location and
post processing operations could be performed without affecting controller’s perfor-
mances.

For this thesis work, we choose to use MQTT protocol to send data. MQTT stands
for Message Queue Telemetry Transport and it is a messaging protocol designed to
be used in systems in which bandwidth is limited or unreliable.[18] It is a publish-
subscribe protocol based on a broker. The broker could be seen as the server of
the MQTT communication; in fact, it is in charge of routing all the messages be-
tween clients. Each client could subscribe to a certain topic, in order to receive all
messages published on that topic by other clients. The broker monitors each topic
and, when a message is published on one of these, it forwards the message to all
clients registered to that target topic. Connection messages and acknowledges are
exchanged between client and broker before communication starts. In the following
picture the reader could find the typical MQTT message flow.

52

6 – Data collection system: from the device to the cloud

Figure 6.4. MQTT message flow

In order to forward data to an MQTT broker it has been exploited the EdgeX
FoundryTM Export Client service. Every time a data reaches the Core Data mi-
croservice, the Export Client service will send the data to all the clients registered
to it. This is a very powerful tool, since data could be forwarded to multiple clients
with multiple protocols in the same time. In order to use this feature of the plat-
form, we need to register the MQTT broker as a client to which export data.
For this project work, we use Eclipse MosquittoTM because it is one of the most
popular open source MQTT broker that could be directly installed on the controller
machine. The registration to the Export service is performed through the HTTP
REST POST method. In the POST body it is possible to specify the protocol
through which send data to the client, in this case is MQTT, the host name and the
port through which the broker is reachable, the topic on which to publish the data
and, finally, the login parameters to connect to the broker, such as username and
password. If the POST was successful, it is possible to connect to the broker and
subscribe to the topic in order to receive data from EdgeX platform.
In the picture below the reader can verify the correct behavior of the system; it is
evident, in fact, that, by subscribing to the correct host address and the correct
topic, it is possible to receive data and measurements from the device. More in
details, it is demonstrated that all type of data have been received: temperature,
humidity, pressure, acceleration and vibration.
All data are available in JSON format; in readings field it is possible to find the

53

6 – Data collection system: from the device to the cloud

name of the resource and its value.

Figure 6.5. MQTT received messages

6.6 The dashboard

All the features of this collection data system could be used also without this dash-
board. Anyway, this requires to be an expert user and, moreover, it is a quite tricky
usage. For these reasons, we thought of creating a user interface to be provided to
the user to make the use of the system more intuitive and simpler.

54

6 – Data collection system: from the device to the cloud

Figure 6.6. Dashboard view

As you can see in the picture above, this UI provides the user a ”user-friendly”
way to collect data for condition monitoring. By simply clicking on a button, the
corresponding resource will be printed on the screen in a few seconds.
This dashboard was made using Angular, an open source framework for developing
web applications. The user just have to click on a button and the system will do
everything autonomously. If it is the first execution of the system, the master board
will be programmed; if, instead, the system has already been initialized, it will just
retrieve the data from the sensorized device.
The dashboard exploits the Angular HttpClient injectable class, designed in order
to perform HTTP requests. This class provides several methods like GET, PUT,
POST, DELETE to make HTTP requests. For this project work we use the GET
method, since we have to retrieve data from the device and, as seen in previous
chapters, this is performed through HTTP REST API; the GET method ”constructs
an observable that, when subscribed, causes the configured GET request to execute
on the server”[19]. So, the main component of the dashboard is made in such a way
that, when it detects a button click, it subscribes to the get request correspondent
to the button resource and it retrieves the data from the device. Once the device
sends back the requested data, it is visible on the dashboard. In the same time, the
system will automatically store the data in the database and send it to the cloud,
via MQTT.

55

Chapter 7

Testing and validation

7.1 Testing

Once the implementation phase has reached the end, several hours of tests have
been spent to verify the correct behavior of the data collection system.
The tests performed allowed us to verify that:

• The system is able to correctly program the master board IO-Link tansceiver
node, in order to make it communicate with the IO-Link device

• The system is able to send commands to the IO-Link device in order to retrieve
data and measurements from it

• All data of interest could be retrieved from the device: temperature, humidity,
pressure, acceleration in time domain and vibration analysis values

• The system is able to store device data in the database

• The system is able to forward data outside using MQTT protocol

• The dashboard provided to the user is able to show data retrieved from the
device

7.2 Device Cost

As previously stated, the EdgeX Foundry IoT framework is an open source one, so
there are no costs for its use. This obviously is a big advantage of this data collection
system.
With respect to the two devices involved in this project we could say that the most
expensive is the master board. It has a cost of around 150 Euros.

56

7 – Testing and validation

The IO-Link device, instead, has a cost of about 120 Euros and it is sent with all the
components needed to program it. It is possible to find in the kit also all tool needed
to use the sensorized board without the master board, exploiting the capability to
communicate via service UART.
In conclusion, the total price is around 270 Euros, but this is referred to just one of
both two products. It is expected that total cost decreases in case of mass production
of the system.

57

Chapter 8

Conclusions

8.1 Power supply

In these months of implementation and use of the data collection system we realize
that devices, even when stressed with continuous commands, never require more
than 80 mA at 24V. For this reason, I think that it is possible to supply the system
also with batteries. If we take, for example, a commercial battery, that is possible
to find on the web, with 24 V output and 12 Ah of charge, we could make some
calculation to verify if the system could work autonomously.
So, we know that the device requires 80 mA @ 24 V:

80mA ∗ 24V = 1920mW

The battery is able to provide:

12000mAh ∗ 24V = 288000mWh

Now, since this is not an ideal battery, let we assume that it has an efficiency (dis-
charge) factor of 95%:

288000mWh ∗ 0.95 = 273600mWh

In conclusion we could define the total hours that the battery is able to supply the
system:

273600mWh/1920mW = 142.5h

So the system could work for 142 hours continuously. This means that if the system

58

8 – Conclusions

has to monitor the environment all day and all night, the battery shall be recharged
around every six days. If we assume, instead, that the system has to monitor
machinery or environment for ten hours at a day, the battery charge is capable to
supply it for more than two weeks.

8.2 Results

Reached the end of this thesis project, I am satisfied because, during this months,
I had the possibility to improve my skills and to challenge myself with technologies
and tools that I didn’t know before. In particular, I acquired experience on EdgeX
Foundry platform and on Docker and Docker Compose technologies, because the
open source framework is based on containers. Furthermore, I learned how IO-Link
protocol works and I had the opportunity to manage devices and to work with them.
Finally, I also learned how to design a dashboard, using Angular framework, and
how does the MQTT protocol work. Of course, I think all these knowledges will
become useful for my future working career.

About this work, all components involved in the collection data system works in
the proper and desired manner. This means that we have been able to design and
realize this system in its entirely.
The driver is able to program master node in order to correctly communicate with
the IO-link device; we made several tests and this process works every time. After
the programming phase, the system is ready to send commands to the device; this
operation is performed, again, automatically by the system and it behaves correctly.
Every time the controller make a request for a certain data, the data will become
available in few seconds. In fact, once the device sends back a certain data to the
controller, it is displayed on the dashboard and, in the same time, it is stored in the
MongoDB database and forwarded to each client registered to the MQTT topic on
which messages are published by the system.

Results reached with this thesis work, demonstrate that integration between IO-
Link devices and EdgeX Foundry platform, in order to perform environment or
machinery monitoring, it is possible. The data collection system is consistent and
works fine and the data flow from the device to the cloud never crashes during this
period of tests.
Obviously, this is just a prototype and improvements or extensions could be applied
to it in order to use it in production scenarios. The reader could find some hints on
how to improve the system in future steps section.

59

8 – Conclusions

8.3 Future steps

This section describes both possible future steps, that could be performed in order
to improve the data collection system, and works related to it.

Firmware update

During this months in which we use the master board and the device, several
firmware issues have appeared. In fact, for example, if there is not a perfect syn-
chronization in the communication between the controller and the master board, the
latter resets itself and communication flow starts again from the beginning. This
issue could be solved by modifying the firmware of the master board.
Another problem we encountered is the fact that the device is not able to send to
the controller raw accelerometers data. This is a software matter and it is possible
to solve it by modifying the firmware for the IO-Link device.

More than one device

All this thesis work was performed using just one IO-Link device. Obviously,
in order to improve the data collection system, a good idea could be to involve more
than one device. The master board is capable to have four devices attached to it
and it would be interesting trying to exploit all of these four.
With more than one IO-Link devices it is possible to better monitor the environment
or, even more, thanks to cables long up to 20 meters, it is possible to monitor more
than one environment or several industrial machinery.
In order to use up to four devices, little modifications have to be applied to the
driver in order to adapt it to manage communications with and resources retrieval
from several sensors. In particular, attention has to be applied on the selection of
the node on which to send commands, since it is critical the case in which one wants
to monitor machine vibrations and it gets instead vibrations of a device mounted
on a wall to monitor environment temperature and humidity.
In the following picture the reader can find a schematic of the system with four
devices available.

60

8 – Conclusions

Figure 8.1. System overview with four IO-Link devices

Security implementation

Security is an increasingly important topic in the digital world. For that rea-
son, also in the data collection system, communication flow could be secure. In fact
it is reasonable that some industry do not want to have their production data stolen
or hacked.
Data from the device to the database are exchanged on top of HTTPS, therefore
this branch of the communication is already secure.
One interesting improvement that could be applied to the system is to make the
MQTT transmission, between the framework and the cloud, secure. A first level
of security could be introduced by setting username and password to publish or
subscribe to a certain topic. A second layer of security could be achieved by using
encryption of data.

61

8 – Conclusions

Machine Learning

During recent times, machine learning is becoming really popular. Since the
data collection system is able to make a lot of measurements both on environment
parameters and on accelerometers parameters, machine learning algorithms could
be applied to these data. This could be a useful improvement, since by exploiting
machine learning algorithms it is possible to do predictive maintenance on moni-
tored machinery. For example, by analyzing raw accelerometers data, it is possible
to detect when a certain machine is going to break due to strong vibrations. In
the same manner, it is possible to detect when a specific component is becoming
too hot, by analyzing temperature measurements obtained with the data collection
system.

Figure 8.2. Machine learning representation. Taken from [20]

62

Bibliography

[1] User manual. https://www.st.com/content/ccc/resource/technical/

document/user_manual/group1/41/68/d4/a7/8e/62/4d/bb/DM00518672/

files/DM00518672.pdf/jcr:content/translations/en.DM00518672.pdf.

[2] Internet delle cose. https://it.wikipedia.org/wiki/Internet_delle_

cose.

[3] L’internet delle cose (iot): cos’e’ e come rivoluzionera’ prodotti
e servizi. https://www.zerounoweb.it/analytics/big-data/

internet-of-things-iot-come-funziona/.

[4] Giovanni Miragliotta. Industrial internet of things: definizione, ap-
plicazioni e diffusione. https://blog.osservatori.net/it_it/

industrial-iot-definizione-applicazioni.

[5] IO-Link community. Io-link system description - technology and ap-
plication. https://io-link.com/share/Downloads/At-a-glance/IO-Link_

System_Description_eng_2018.pdf.

[6] Jurgen Reiser. Overview: How does the io-link work? https://blog.wika.

com/knowhow/overview-io-link/.

[7] Io-link advantages. https://www.balluff.com/en/de/

industries-and-solutions/solutions-and-technologies/io-link/

io-link-benefits/.

[8] Io-link - what it is and 5 key advantages. https://www.bannerengineering.

com/us/en/company/expert-insights/io-link.html.

[9] Did you know...? https://io-link.com/en/Technology/DidYouKnow/

DidYouKnow_MeasuringSensors.php.

[10] Did you know...? https://io-link.com/en/Technology/DidYouKnow/

DidYouKnow_ReducesInterfaces.php.

[11] Lsm6ds3: always-on 3d accelerometer and 3d gyroscope. https://www.

st.com/content/ccc/resource/technical/document/application_note/

12/98/b4/44/a5/bf/4e/c5/DM00157511.pdf/files/DM00157511.pdf/jcr:

content/translations/en.DM00157511.pdf.

[12] Stmicroelectronics hts221 capacitive digital humidity sensor. https://www.

mouser.it/new/stmicroelectronics/stm-hts221-sensor/.

63

Bibliography

[13] Lps22hb. http://www.st.com/resource/en/datasheet/lps22hb.pdf.
[14] L6984. https://www.st.com/en/power-management/l6984.html.
[15] Ldk220. https://www.st.com/en/power-management/ldk220.html.
[16] Io-link solution based on steval-idp004v2 master evaluation board and

steval-idp003v1 kit. https://www.st.com/content/ccc/resource/

technical/document/application_note/group0/10/d0/2b/48/af/7a/

4f/11/DM00402784/files/DM00402784.pdf/jcr:content/translations/

en.DM00402784.pdf.
[17] Edgex foundry documentation. https://docs.edgexfoundry.org/1.2/.
[18] Mqtt. https://en.wikipedia.org/wiki/MQTT.
[19] Angular - httpclient. https://angular.io/api/common/http/HttpClient#

get.
[20] Donato Ceccomancini. La rinascita del machine learn-

ing e’ gia’ qui. https://www.bitmat.it/blog/news/76033/

la-rinascita-del-machine-learning-gia.

64

