
POLITECNICO DI TORINO

Master of Science in Electronic Engineering

Master Degree Thesis

Implementation of a post-quantum

cryptography algorithm on an FPGA

board

Supervisor: Candidate:
prof. Guido Masera Giuseppe PULETTO

Co-Supervisor:
prof. Maurizio Martina

Academic year 2019-2020





Abstract

Cryptography (from Ancient Greek words kryptós and graphein, which
together mean "secret writing") is the set of theory and techniques used
to guarantee a secure communication between sender and receiver. A
communication is secure if there is no risk for the message to reach an
unwanted receiver.
Cryptography originates in the military, from the need to secretly com-
municate with allies. Coding the message, in such a way that it is no
longer understandable for who does not have the key to decrypt it, solves
the problem. In cryptography literature, the encrypted message is called
ciphertext. Coding and decoding are the operations to obtain the cypher-
text from the plaintext and vice versa.
The encryption algorithm has to be as robust as possible. The more
robust it is, the more di�cult it is to understand the key to decrypt the
cyphertext.
Today, cryptography �nds application everywhere. Electronic commerce,
chip-based payment cards, digital currencies, computer passwords, im-
planted medical devices make use of it. This means that even devices
with limited storage and poor computational capabilities must be able
to code and decode information in a robust and fast way.
Modern cryptosystems make use of public key algorithms, which use a
public key and a private key. As the name suggests, the public key is
known to all and is used to encode the message. Instead, the private key
is secret. Only the recipient, which needs to decrypt the message, owns
it. Although these two keys are linked one each other, it is impossible to
recover the private key knowing only the public one.
RSA is an example of public key cryptography. The security of this cryp-
tosystem is based on the so-called "factoring problem". This operation
is computationally not sustainable by a classical computer.
In 1994, the mathematician Peter Shor invented an algorithm, which is
able to break this kind of cryptosystems if executed by an ideal quantum
computer.
Studying and developing cryptosystems able to resist to quantum com-
puter attacks is urgent and inevitable.
A candidate for "post-quantum cryptography" is McEliece cryptosys-
tem. It is based on the practical di�culties of decoding a generic linear
code. The original version of this algorithm uses binary Goppa codes
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and requires to store in memory large matrices. This makes problematic
encrypting and decrypting in embedded systems with limited hardware
resources.
Variants that use LDPC or QCLDPC codes solve this problem. They re-
quire less memory and computational e�ort. One of them is the LEDApkc
algorithm.
The decoding technique of LEDApkc is called Q-Decoder. The aim of
this thesis is the creation of a prototype on fpga which implements a
Q-Decoder together with a client-server model communication.
An encrypted message is sent via the Internet. It is coded according
LEDApkc encryption algorithm. Once received, it is decrypted employ-
ing the Q-decoder decoding method. Therefore, both the sender and the
recipient are hosts, that is, computers connected to a network.
The employed Q-decoder is similar to the one developed by Kristjane
Koleci in the master thesis VLSI QC-LDPC Decoder for Post-Quantum
Cryptography.
According to speci�cations, the prototype building requires an FPGA
which has at least an Ethernet port. A built-in memory large enough to
store information like message, private key, syndrome, correlation, etc.
could maximize the decoder �exibility and minimize hardware resources
usage and time consuming. The De1-Soc Board is a good compromise
and the programmable logic is enough to implement the Q-Decoder.
The whole prototype is built using VHDL as a hardware description
language and the standard edition of Intel® Quartus® Prime Design
Software 16.0.
It is made up of two subsystems. The �rst is the HPS subsystem and
includes the following IP components:

� an Hard Processor System;

� two FIFO memories to interface correctly the hard processor system
with the decoder and vice versa;

� a phase locked loop for the clock inputs of the hard processor system
and �fos input or output ports.

The second is in the FPGA block of the DE1-SoC and contains:

� the Q-decoder;

� the 64 MB SDRAM available in the fpga block;

� a sdram controller for the 64 MB SDRAM;

� a phase locked loop for the clock inputs of the sdram controller and
�fos input or output ports;

� a parallel Input/Output component used by the HPS to start the
decoding of the cyphertext.
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The PLLs of the two subsystems share the reference clock of 50.0 MHz,
which is the output of a clock source block.
First, the encrypted message is sent from client to server via the Eth-
ernet. The communication between these two nodes of the network is
established using the so called socket programming. This means that
the two hosts run two di�erent parts of a distributed application, that is
written in C language. The server host is the hard processor system.
Once the encrypted message is received, the hps writes it, together with
the private key and the transposed private key, on a �fo. Once written,
they are read and stored in the SDRAM by one of the units which com-
pose the Q-decoder.
Finally, the decoding process starts. The syndrome, that is the product
of the message and the transposed private key, is computed, adjusted and
written in memory. Also the correlation, which is obtained multiplying
the syndrome by the private key, is stored in SDRAM. From the corre-
lation and syndrome weight, the bits to �ip in the message are found.
Toggling them, the message is updated. The decoding process is an iter-
ative algorithm. It ends when the syndrome weight is equal to zero or a
maximum number of iterations is reached.
In terms of occupied resources, the Q-decoder uses the 7 % of ALMs, the
43% of pins, the 10 % of block memory bits and two out of six PLLs.
In terms of performances, the bottleneck is represented by the 64 MB
SDRAM, which allows a clock signal of frequency equal or less than
143.0 MHz.
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1Introduction

The LEDApkc Public Key Cryptosystem is the variant of MCEllie Cryp-
tosystem for QC-LDPC codes.

1.1 | McEliece Cryptosystem

The McEliece Cryptosystem takes its name from Robert J. McEliece,
its inventor. The original version uses as secret codes irreducible Goppa
codes, but the algorithm behind it can be generalized to other types of
codes. It is an asymmetric encryption algorithm and this means that
the message is coded employing a Public Key and decrypted through a
Secret Key.
Let us suppose that the sender wish to transmit a message m through an
insecure channel to the intended recipient. In cryptography literature,
the sender is usually called Alice, the intended Bob and the adversary
Eve. Alice and Bob derive their names from the �rst two letters of the
alphabet, A and B, that are commonly used to mark the starting and
ending point of a communication channel, a journey etc. Eve comes from
eavesdropper.

Key generation and encryption. Let us imagine m as a vector
1 × k. First of all, in McEliece cryptosystem, Alice searches and �nds
Bob's Public Key G', a matrix k×n. G' is a public key, so it is accessible
for everyone, including Eve. Then she encrypts m, multiplying it by the
matrix G and adding to the result e, a random binary vector 1× n with
weight t arbitrarily generated by Alice itself:

x = m×G′ + e

x is the ciphertext, the encrypted version of the message m. Once ob-
tained x from m, Alice can send x to Bob through the channel.
Alice and Eve have the public key G', but not the secret key. Only Bob
has access to it. The private key is more than a simple matrix. The
public key G' is linked to the private key, but it is impossible from G'
going back to the private key. Bob generates the two keys, choosing ran-
domly a secret binary block code C(n,k), with n as codeword length, k
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as information word length and a k×n Generator matrix G. G is able to
correct a number of errors less or equal than t. The relationship between
G and G' is the following:

G′ = S ×G× P

S is a dense k × k non singular binary scrambling matrix, P a n × n
permutation matrix. G, S and P forms together the secret key.

Decryption. Once received x, Bob can recover �rst x' multiplying x
by P and then m exploiting the relationship between x' and it m:

x′ = m× S ×G+ e× P−1

1.2 | LEDApkc Cryptosystem

The LEDApkc algorithm di�ers from the McEliece one because uses as
secret codes non-algebraic QC-LDPC codes, the public code and the pri-
vate one are neither coincident or equivalent and employs non-bounded-
distance decoding algorithms.

Key generation. Two matrices, H and Q, form the secret key. H
is a parity check-matrix made of r0 × n0, p × p circulant blocks. Q is a
transformation matrix made of n0 × n0, p× p circulant blocks. Starting
from H and Q, the matrices L and M are computed:

L = H ×Q = [L0|L1|...|Ln0−1]

M = L−1n0−1 × L = [M0|M1|...|Mn0−2|Ip] = [Ml|Ip]

where Ip is the p× p identity matrix, while Ml the public key.

Encryption function. Starting from the public key Ml, a matrix
G' is computed as:

G′ = [Ik|MT
l ]

where Ik is the k× k identity matrix. Also a binary error vector 1× pn0

with a Hamming weight t is generated. The message m is a binary vector
1× p(n0 − 1). Once found G' and e, Alice can encrypt m as follows:

x = m×G′ + e

where x is the ciphertext.

Decryption function. Knowing H and Q, Bob computes the syn-
drome of the message, a binary p× 1 vector from x:

sT = (H ×Q)× xT
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From s, it is possible to recover e remembering that:

(H ×Q)×G′T ×mT = 0p×p(n0−1) × uT = 0p×1

As a consequence:

sT = (H×Q)×xT = (H×Q)×(m×G′+e)T = (H×Q)×eT = H×(e×QT )T

Found e, Bob recovers m from:

x+ e = u× [Ik|MT
l ]

Q decoder. There are several ways to recover the message m start-
ing from the syndrome s.
The most e�cient method is the one called Q-decoder. It is an iterative
bit �ipping algorithm with a lookup-table to reduce the number of it-
erations. Since it uses the transpose of matrix Q to estimate the error
vector e, it is able to exploit the utmost correction power of QC-LDPC
codes. This explains its remarkable e�ciency and its name.
From the message m and private key �, that contains n0 circulant blocks,
Bob �nds the syndrome s. In the Kristjane Koleci's LEDA architecture,
n0 is equal to 2 and each circulant block is a p × p matrix, where p is
15013. Therefore, m is a 1× n0 ∗ p, while L is a p× n0 ∗ p. To compute
the syndrome:

m× LT =
[
m0 m1

] [L0

L1

]
=

[
m0 ∗ L0

m1 ∗ L1

]
=

[
s0
s1

]
= sT

From s and L, the correlation UPC is evaluated:

s× L = s
[
L0 L1

]
=

[
s ∗ L0 s ∗ L1

]
= UPC

From the syndrome weight and a proper lookup table, that derives from
the chosen LEDA architecture parameters, the threshold is computed.
Then, the errors positions are found subtracting each byte to the thresh-
old. Indeed, if the correlation byte, which is related to a speci�c bit in
the message, is higher than the threshold, the position of the bit is saved.
The bit is marked as an error.
Finally, the message is updated �ipping all its wrong bits.
The whole process is repeated until there are no more errors or the max-
imum number of iterations is reached. If no more errors remain, the
decoding process ended successfully, otherwise, it failed.

1.3 | Prototype speci�cations

The prototype is built following the guidelines described below.
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� The idea is to set up a client-server model communication. An
encrypted message has to be sent via the Internet. It is coded ac-
cording LEDApkc encryption algorithm. Once received, it has to
be decrypted employing the Q-decoder decoding method. There-
fore, both the sender and the recipient have to be hosts, that is,
computers connected to a network.

� The main design e�orts should be spent on the Q-Decoder imple-
mentation rather than the client-server Ethernet communication.

� The decoder has to be implemented on an fpga and be as similar
as possible to the one developed by Kristjane Koleci in the master
thesis VLSI QC-LDPC Decoder for Post-Quantum Cryptography.

� The prototype must be as small and fast as possible in terms of
occupied hardware resources and time consuming.

� The system must be �exible to a further implementation based on
the red/black concept. In cryptosystems, the red/black architec-
ture segregates carefully the black signals from the red ones. The
�rst are the ones who carry the cyphertext, the others who carry
the plaintext.

1.4 | The choice of the FPGA

According to speci�cations, the prototype building requires an FPGA
which has at least an Ethernet port. A built-in memory large enough to
store information like message, private key, syndrome, correlation, etc.
could maximize the decoder �exibility and minimize hardware resources
usage and time consuming.
Keeping in mind the Q-decoder needs, the De1-Soc Board seems to be a
good compromise. The programmable logic is enough to implement the
Q-Decoder. This could be easily veri�ed using tools like Intel Quartus
Prime Design Software. These tools give the possibility to compile a
VHDL project for a speci�c hardware programmable board. The VHDL
project used id the one built by Kristjane Koleci and described in her
master thesis. Furthermore The fpga integrates an ARM-based hard pro-
cessor system consisting of processor, peripherals and memory interfaces.
Its equipment includes an Ethernet networking and a 64MB SDRAM. 64
MB are more than enough to store the Q-decoder information. Having
such a big memory also means space for further decoder improvements
that could require more information to store.
The block diagram of the board is shown in �gure 1.1. The picture is
taken from the tutorial material o�ered by Altera.
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Figure 1.1: DE1-Soc block diagram

The Ethernet physical layer with RJ45 connector can transmit Eth-
ernet frames at a rate of a gigabit per second. It is located in the Hard
Processor System block of the DE1-Soc board. Unfortunately, there is no
direct connection between the Ethernet connector and the FPGA block.
This forces to instantiate in the prototype a minimal HPS which allows
the programmable logic to receive and send information via Ethernet.
However, not all evils come to harm. A hard processor system could
signi�cantly reduce the design e�orts on implementing a well working
and robust Ethernet communication. The idea is to exploit the power
of the 800 MHz Dual-core ARM Cortex-A9 MPCore processor to run
a simple C program which receives and send information via Ethernet.
Thanks to HPS interfaces towards the FPGA region, the information can
be transferred in the 64 MB SDRAM. Once stored in the SDRAM, they
are accessible at occurrence by the Q-decoder. The hard processor sys-
tem also guarantees �exibility and leaves space for further and powerful
decoder improvements.

5



2The prototype system IP blocks

2.1 | A general overview of the whole system

The prototype system is made up of two subsystems. The �rst is the
HPS subsystem and includes the following IP components:

� the Arria V/Cyclone Hard Processor System, in the Qsys design
called ARM_A9_HPS;

� two Avalon FIFO memories to interface correctly the hard processor
system with the decoder and vice versa, in the Qsys design named
as FPGA_to_HPS_�fo and HPS_to_FPGA_�fo;

� a phase locked loop for the clock inputs of the hard processor sys-
tem, the HPS_TO_FPGA �fo input port and FPGA_TO_HPS
�fo output port, in the Qsys design known as HPS_pll;

The second is in the FPGA block of the DE1-SoC and contains:

� the Q-decoder;

� the 64 MB SDRAM available in the fpga block;

� a sdram controller for the 64 MB SDRAM, in the Qsys design
renamed as FPGA_sdram_controller;

� a phase locked loop for the clock inputs of the sdram controller,
in the Qsys system called FPGA_pll, the HPS_TO_FPGA �fo
output port and FPGA_TO_HPS �fo input port;

� a PIO, a parallel Input/Output component, in the Qsys design
known as LEDR_pio, used for debug purposes and by the HPS to
start the decoding of the cyphertext;

The PLLs of the two subsystems share the reference clock of 50.0 MHz,
which is the output of

� the clock source block, in the Qsys design renamed as ref_clock_block.

6
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Figure 2.1 shows a block diagram of the whole prototype system.

Figure 2.1: Prototype system

The whole prototype is built using VHDL as a hardware description
language and the standard edition of Intel® Quartus® Prime Design
Software 16.0.

2.2 | About Qsys system integration tool

Intel® Quartus® Prime Design Software Suite includes a system integra-
tion tool called Qsys or Platform Designer. Qsys is the best and fastest
way to use intellectual (IP) functions and subsystems. Indeed, using this
software component, the user can instantiate all the IP blocks available
in the chosen FPGA board. The tool also generates automatically the
interconnect logic between the used components, saving design time and
improving productivity.
To use Qsys, it is enough following the Qsys System Design Tutorial
o�ered by Intel. To summarize:

1. in the Quartus Prime Design Software Suite, click Tools > Qsys to
create a new Qsys design; the Qsys window appears and in the tab
called System Contents a �rst component is already instantiated;
it is the clock source clk_0;

2. to add a new component, use the IP catalog tab to �nd a suitable
IP function or subsystem and click Add;

3. to edit the properties of an IP block, double click on it to open the
Parameters tab;

7
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4. to rename or connect the IP blocks use the System Contents tab;
this tab also shows the components HPS base and end addresses;

5. click Generate HDL to generate the Qsys system; it is possible
choosing the HDL in which the system will be generated; the com-
mand Generate > Show Instantiation Template shows how to inte-
grate the Qsys system with the rest of the HDL code;

6. click Finish to close the Qsys window.

2.3 | The HPS subsystem

The hard processor system available in the DE1-SoC board is the Cortex-
A9 microprocessor unit (MPU)subsystem. It includes a 32-bit dual-core
processor, a level 2 (L2) cache, an Accelerator Coherency Port ID mapper
and debugging modules. The 32-bit dual-core processor is the Cortex-
A9 MPCore. It is composed of two instantiation of the ARM Cortex-A9
processor. It also includes other modules: watchdog and private inter-
nal timers for each core, a global timer, a generic interrupt controller, a
Snoop Control Unit and an Accelerator Coherency Port.

2.3.1 | Advanced Extensible Interface bridges

The HPS is connected to the FPGA fabric through a dedicated inter-
face. It is the Advanced Extensible Interface which is also known as AXI
bridge. There is a bridge to go from the HPS to the FPGA and another
one for the vice versa. The �rst is the FPGA-TO-HPS bridge, the second
the HPS-TO-FPGA bridge. These two interfaces are data width con�g-
urable: 32, 64 or 128 bits. They also manage data width conversion,
clock crossing, bu�ering. In other words, they give all the tools to have
access to HPS slaves from FPGA fabric and vice versa. There are also
available lower performance AXI interfaces. They are called Lightweight
FPGA-TO-HPS and FPGA-TO-HPS bridges. Their data width is �xed
and equal to 32-bit and are useful for low-bandwidth tra�c.
Picture 2.2 is taken from the embedded IP user guide o�ered by Intel
and shows how AXI bridges connect FPGA fabric with HPS logic and
vice versa. It also shows, in parenthesis, their clock domains.

8
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Figure 2.2: AXI interfaces

According to prototype speci�cations, the system must be as fast as
possible. To achieve the best performances both lightweight and fast AXI
interfaces are used. Indeed the former could be used to divert part of the
tra�c from the latter, improving the overall performance of the system.
Therefore, the lightweight bridges carry the following signals:

� the control status register signals of the input port of HPS-TO-
FPGA �fo;

� the control status register signals of the output port of FPGA-TO-
HPS �fo;

� the signals at the input of the parallel input \output called LEDR_pio.

The high-performance AXI interfaces transport big data like message or
secret key. These connections are speci�ed through the System Contents
tab of Qsys.

2.3.2 | Avalon FIFO memories

To bu�er data and control the data �ow in the Qsys system two on-chip
FIFO memory core are instantiated. One, called HPS_TO_FPGA_�fo,
manages the tra�c between the HPS logic and the FPGA fabric. The
other, called FPGA_TO_HPS_�fo does the same thing, but with the
data from FPGA to HPS.
The two �fos help to guarantee design �exibility and an e�cient data
transport. Indeed, these memories can operate with a single clock, but
also with separate clocks for input and output ports. The input interface

9
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may be an Avalon Memory Mapped write slave or an Avalon Stream-
ing sink, while the output one an Avalon Memory Mapped read slave or
an Avalon Streaming source. Whatever con�guration is chosen, the �rst
data that arrives at the input is also the �rst data to be delivered to the
output. Both in single and dual clock-mode, there is an optional interface
called status interface which provides information about the state of the
memory. For example, a waitrequest signal is asserted or not according
to the �fo �ll level. For write operations, it is asserted when the memory
is full, while it is deasserted if there is enough space to store data. For
read operations, it is asserted when the memory is empty, while it is
deasserted when there is at least one data to read.
Since there is no need to use them for streaming data, both the two �fos
are con�gured as Avalon Memory Mapped write slave to Avalon Memory
Mapped read slave. In this mode, an Avalon-MM write master stores
data into the memory by writing to the input port, and an Avalon-MM
read master pops data out the memory by reading from its output port.

Figure 2.3: Avalon-MM write slave to Avalon-MM read slave

Picture 2.3 is taken from the embedded IP user guide o�ered by Intel
and is a summary of a FIFO con�gured as Avalon-MM write slave to
Avalon-MM read slave.
Since the HPS logic and the FPGA fabric may live in di�erent clock do-
mains, a wise choice is using the two memories with separate clocks for
input and output. This choice also a�ects the status signals of the two
ports.
The two �fos have depth equal to 8192, while their width is 32 bits. If
necessary, both depth and width can be changed.
As mentioned above, the status interface for both input and output is
optional: it can be included or not. In the Qsys system, they are present
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for both input and output for both �fos.

2.3.3 | SDRAM controller

To connect easily the 64 MB SDRAM in the Qsys system a SDRAM
controller is used. The SDRAM controller helps to reduce design time
and e�orts. Indeed, it handles all SDRAM protocol requirements. It has
an Avalon Memory Mapped Interface to o�-chip SDRAM and guarantees
access to SDRAM with various sizes, widths and multiple chip selects.
The Avalon-MM interface also allows pipelined read operations.
To handle correctly read and write operations, the SDRAM controller
con�guration has to match the one of the 64 MB SDRAM. Therefore,
its clock frequency must match the SDRAM one. Also, address, data
and control signals on SDRAM pins have to be stable when a clock edge
arrives. A PLL may be useful to reduce clock skew between the controller
and the SDRAM. If at low frequencies the PLL may be unnecessary, at
high ones it is the only way to ensure stability of the signals at the
SDRAM pins at the clock edge. For example, the PLL may add a phase
shift to the SDRAM clock so that when the edge arrives the signals from
the controller are already stable.
Figure 2.4 is taken from embedded IP user guide o�ered by Intel and
shows the SDRAM controller and how it may be integrated with an
SDRAM.

Figure 2.4: SDRAM controller block diagram

After opening the Qsys windows, an SDRAM controller can be cho-
sen from the IP catalog and added to the system. Clicking on it, its
con�guration window appears. It has two tabs: the �rst is the Memory
Pro�le, the second the Timing.
In the Memory Pro�le page it is possible con�guring the data width,
architecture and the address width of the memory to control. According
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to the datasheet of 64 MB SDRAM, the data width is set to 16 bits, the
number of chip selects to 1, the number of the banks to 4, the address
row and column width respectively to 13 and 10.
In the Timing page it is possible choosing the right timing parameters
for the controller. According to the SDRAM datasheet, the number of
CAS latency cycles is set to 3, the initialization ones to 2. The CAS la-
tency tells how many clock cycles there are from a read command to data
out. The initialization refresh cycles are the refresh cycles the SDRAM
controller performs as part of the initialization sequence after reset. The
other SDRAM controller timing parameters are:

� how often the SDRAM controller refreshes the SDRAM (7.8 µs);

� the delay after power up and before SDRAM initialization (100.0
µs);

� how long is the refresh command (70.0 ns);

� how long is the precharge command (15.0 ns);

� ACTIVE to READ or WRITE delay (15.0 ns);

� access time, which depends on CAS latency (5.5 ns);

� write recovery time for precharge commands (14.0 ns).

The Avalon Memory Mapped interface simpli�es a lot read and write op-
erations to the 64 MB SDRAM. It also allows the slave to stall whatever
operation as many cycles as required by asserting the waitrequest signal.
There is only one rule: if the slave uses this signal for either read or write
transfers, it has to use the signal for both.
Typically signals like address, read or write, writedata, byteenable arrive
before the rising clock edge. At this point the slave raises the waitrequest
signal to hold o� the subsequent transfers if there are any and to hold
constant the signals just received. The transfer ends at the �rst rising
clock edge after the slave interface deasserts the waitrequest signal. The
slave can stall the communication how long it needs. Picture 2.5, taken
from Avalon Interface Speci�cations o�ered by Intel, shows a timing di-
agram about read and write transfers with the waitrequest signal.
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Figure 2.5: Avalon-MM read and write requests with waitrequest signal

2.3.4 | Parallel Input\Ouput component

The PIO core added to the Qsys design is used by the HPS to signal to
the Q-decoder that the message and the private key are ready to be read
from the HPS_TO_FPGA_�fo.
The core provides an Avalon Memory Mapped interface between an Avalon-
MM SLAVE port and general purpose I/O ports. In other words, this IP
component o�ers easy I/O access to user logic or external devices when
a simple "bit banging" approach is enough.
In the prototype the PIO core is used to control the red leds of the
DE1-SoC board. Checking their state, on or o�, the Q-decoder knows
when the message and the private key are ready to be read from the
HPS_TO_FPGA_�fo.
Since, the red leds can be turned on or o� also for debug purposes, the
Qsys system controls all the ten red leds of the board. As a consequence,
the width of the PIO core is set to 10 and its direction to Output. The
reset value of the output ports is 0x00000000000003�.

2.3.5 | Clock Sources and phase locked loops

The Altera DE-series boards provides an on-board oscillator which gen-
erates a 50 MHz clock and this clock signal is connected to one or more
pins usually called CLOCK_50, CLOCK2_50 and so on.
The Qsys system requires more than one clock with a frequency higher
than 50 MHz and di�erent phase shifts. Speci�c clocks can be generated
with one or more PLLs.
Two PLLs are used and two di�erent IP components are chosen. The
�rst is an IP component called Altera PLL. The second belongs to the
class of System and SDRAM PLL cores. The Altera PLL is more com-
plex than the other and generates more than one clock signal, all for the
FPGA part of the prototype. The System PLL is used to generate one
clock signal shared by di�erent IP components in the HPS block of the
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Qsys design. Both take a reference clock signal of 50.0 MHz.
The System PLL generates a clock signal of 143.0 MHz, which is used as
the clock input of all AXI bridges, the PIO component, the HPS_TO_FPGA
�fo input port and FPGA_TO_HPS �fo output port.
The Altera PLL generates three 120 MHz clock signals: the �rst for the 64
MB SDRAM, the second for the SDRAM controller, the HPS_TO_FPGA
�fo output port and FPGA_TO_HPS �fo input port, the third for the
Q-decoder. The SDRAM clock signal has a phase shift of -52.0 degrees.
This shift helps to reduce the clock skew between the memory and its
controller. The other two clocks are almost identical. They have the
same frequency and no phase shift. The only di�erence between the two
is that the Q-decoder clock signal is exported, the other not. In Qsys
exporting a signal is the only way to make it visible from the outside.
Qsys allows to export both input and output signals.
If necessary, the chosen frequencies for the HPS and FPGA blocks can
be changed. There is only one constraint: they have to be compatible
with the Qsys IP components. For example, the 64 MB SDRAM allows
a clock signal of frequency equal or less than 143.0 MHz.

2.3.6 | Reset signals

All the IP components share the same reset signals except for the Hard
Processor System, which has its own and the �fos. About these two
memories, the reset signal of both input and output ports is the OR be-
tween two reset signals: the one of the FPGA subsystem and the one of
the AXI bridges.
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2.4 | The Qsys design

The �nal result is the Qsys design shown in �gures 2.6 and 2.7. The �rst
shows the FPGA subsystem, in the red square, the second the HPS one.

Figure 2.6: Qsys design - FPGA IP components

Figure 2.7: Qsys design - HPS IP components
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3Ethernet client-server model

The client-server model is a network architecture in which a connection
between a client and a server is established. The former requests a ser-
vice, which is provided by the latter. There is also the possibility to have
more than one client.
The words server and client have di�erent meanings than server-host
client-host. The �rst may refer either a computer or a computer pro-
gram. The meaning of host is more speci�c and less ambiguous: it refers
to a computer connected to a network. Therefore, server-host and client-
host denotes computers connected to a network in which di�erent parts
of an application run.
The prototype implements a client-server model, in which a client-host
sends an encrypted message via the Ethernet to the server-host, which
decodes it. The two computer terminals run two di�erent parts of a dis-
tributed application. This computer program uses what is called socket
programming.

3.1 | Socket programming

In C language, there are a lot of ways to establish a communication
between two nodes in a network. Socket programming is one of the
simplest and e�ective. The nodes are also called sockets.
To establish the communication, there must be a listener, which listens
on a particular port at a speci�c IP. Usually, it is the server. While it
listens, another socket forms the connection reaching out the listener.
Two are the headers needed by socket programming: <sys/socket.h> and
<netinet/in.h>.

3.1.1 | Server steps

These are the steps the server has to follow to establish a working and
e�cient socket communication:

1. socket creation, whose descriptor is the return value of function
int socket( int communication_domain, int communication_type,
int internet_protocol); the communication domain is AF_INET,
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the macro for Internet domain sockets, the communication_type
SOCK_STREAM, which is a byte-stream communication, the In-
ternet protocol 0;

2. socket binding to the correct port and address, done using the func-
tion int bind(int socket_descriptor, const struct sockaddr *addr,
socklen_t addrlen); addr is a structure which contains information
like the socket family, the IP address and the port number; the
return address is an integer and is used to check if the binding ends
correctly;

3. listening for a connection, done using the function int listen(int
socket_descriptor, int backlog); the integer backlog de�nes how
many connections can be queued and if the connection arrives when
the queue is full, the client receives the error ECONNREFUSED;

4. accepting the �rst connection in the queue, using the function int
accept(int socket_descriptor, const struct sockaddr *addr, socklen_t
*addrlen); the return value is the �le descriptor of the connected
socket corresponding to the listened socket socket_descriptor.

After accepting, the connection is established and client and server can
exchange data.
An optional step can be done before the socket binding.

� Using the function int setsockopt(int socket_descriptor, int level,
int optname, const void *optval, socklen_t optlen), it is possible
manipulating the options of then listened socket. The level is the
level at which the option belongs; optname and optval are the name
and the value of the option to set. This function allows to reuse IP
addresses and ports.

Because it is optional and not necessary, it is not used in the prototype
client-server model.

3.1.2 | Client steps

Before exchanging data, the client has to connect to the socket listened
by the server. The function int socket_descriptor, const struct sockaddr
*addr, socklen_t addrlen establishes the link to the socket using its de-
scriptor. The struct const struct sockaddr *addr contains the address and
the port number of the server socket.
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3.2 | The client-server computer program

The program to send a message to the server by the client is a distributed
application. In other words, it is split in two parts, one run on the server-
host, the other on the client-host.
The whole program is written in C language and it is organized into four
�les. The one called server_fpga_com.c implements the server. The sec-
ond, named as client_server.c, runs on the client. The third, renamed as
common_functions.c, contains all the functions used by both the server
and the client. The fourth, called common_functions.h, is a header �le.
It contains macros and function prototypes.
This modularity guarantees e�ciency, �exibility, higher readability.

3.2.1 | server_fpga.c

The server_fpga.c �le contains the following functions:

� int main(int argc, char *argv[]);

� void fromClient2READ_FIFO (int *newsockfd, int *message_length);

� void fromLtrFiles2READ_FIFO (int *message_length);

� void fromREAD_FIFOtoClient(int *newsockfd).

Obviously, it also uses the ones in the common_functions.c �le.

main(). The main() function returns an integer and receives as in-
put argument the port number of the socket connection. It returns '0' if
the whole process ended successfully, '1' if not.
After setting and accepting the socket connection, it gets the addresses of
HPS_TO_FPGA �fo input port and status register, FPGA_TO_HPS
output port and status register, and LEDR_pio. The functions open()
and mmap() are used, the �rst to open the device /dev/map, the second
to map the address space of the process to the memory object /dev/map.
During this step, also the base and end address visible in pictures 2.6
and 2.7 are used.
Then, all the red leds of DE1-SoC are initialized to '1'. '1' means that
the led is turned o�. The main is ready to receive the message from the
client and to write it into the HPS_TO_FPGA �fo. This is done by
function fromClient2READ_FIFO(). Also the private key is written, so
the function fromLtrFiles2READ_FIFO() is called.
After writing the private key, the LEDR are set to '0'. They turn on:
the Q-decoder can read them from the �fo.
For debug purpose, after decoding the message, the Q-decoder writes it
on the FPGA_TO_HPS �fo. The main waits for the message through
a while loop, which checks if the �fo has at least a valid data. When
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the decoder starts to write on the �fo, the main calls the function from-
READ_FIFOtoClient(), which read the message and send it to the client.
At the end, the main closes the connection and the listened sockets.

fromClient2READ_FIFO(). The function reads integers from
the client and writes them on READ_FIFO. Its input arguments are
the integer pointers newsockfd and message_length. The �rst points to
the connection socket, the second to a variable which stores the length
of the message to receive. It uses the function error() of the com-
mon_functions.c �le. The function does not return any value.
The read() function is used to read from the connection socket. The �rst
data received is the message length. In this way, the server knows how
many packets it has to read from the socket. Every packet is read and
immediately written on HPS_TO_FPGA �fo. The length is written as
the address the last 16 bits of the message will have in the SDRAM.

fromLtrFiles2READ_FIFO(). The function reads integers from
the Ltr �les and writes them on HPS_TO_FPGA �fo. The Ltr �les
contain the private key. Its input arguments are the pointers to the con-
nection socket and to the message length variable. It uses the function
error() of the common_functions.c �le. The function does not return
any value.
Before reading the Ltr �les, it analyses the lengths of their "binary
strings": the two �les contain strings of only '0' and '1' chairs. Their
parallelisms have to be equal to each other and equal to 16 bits.
To speed up the whole process, before writing them on the �fo, the binary
strings are packaged together in 32-bit integers. 32-bit is also the width
of the �fo. The two most signi�cant bytes of the packet are a binary
string from the Ltr2.txt �le. The least signi�cant ones are a binary string
from the Ltr1.txt �le.
The �rst data written on �fo is the address the last 16 bits of the pri-
vate key will have in the SDRAM. Every packet is read and immediately
written on HPS_TO_FPGA �fo.

fromREAD_FIFOtoClient(). The function reads integers from
FPGA_TO_HPS �fo and send them to the client. The reading process
ends when the �fo becomes empty. It has no return values and one in-
put argument, which is the pointer to the connection socket. It uses the
function error() of the common_functions.c �le.

3.2.2 | client_server.c

The client_server.c �le contains the following functions:

� int main(int argc, char *argv[]);
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� void msgTransmit (char *msg1_�lename, char *msg2_�lename,
int msg1_parallelism, int msg2_parallelism, int msg1_packets_number,
int *sockfd);

� void ReceivingDecodedMessage (int *sockfd, int msg1_packets_number).

Obviously, it also uses the ones in the common_functions.c �le.

main(). Themain() function reads the message from the �lesMsg1.txt
Msg2.txt and send it to the server. It returns an integer and receives as
input argument the host name and the port number of the socket con-
nection. It returns '0' if the whole process ended successfully, '1' if not.
The �rst step is to connect to the socket. Then, the parallelisms of the
message �les are computed. They have to be equal to each other and
equal to 8 bits. The message is sent using the msgTransmit() function.
Fort the debug purposes, after sending the encrypted message, the client
reads from the socket the decoded message. The function ReceivingDe-
codedMessage() is used.
At the end the socket is closed and the main() function ends.

msgTransmit(). The function opens the two �les containing the
message, packages one or more rows of each �le into 32-bit packets and
sends them to the server. Its input parameters are:

� msg1_�lename, the pointer to the string which stores the name of
the �le containing the �rst half of the message;

� msg2_�lename, the pointer to the string which stores the name of
the �le containing the second half of the message;

� msg1_parallelism, the length of each binary string in the �le con-
taining the �rst half of the message;

� msg2_parallelism, the length of each binary string in the �le con-
taining the second half of the message;

� msg1_packets_number, the length of the �le in 16-bit packets;

� sockfd, the pointer to socket.

The function does not return ant value. It uses the function error() and
binstr2int() of the common_functions.c �le.
The message �les contains strings of only '0' and '1' chairs. Communi-
cation takes place transmitting 32-bit integers. Instead of transmitting
eight bytes for each row of the two �les, the data which is sent is the
corresponding integer of one or more rows packaged together. In this
way, four rows occupy only 4 bytes. The �rst and the third least signi�-
cant bytes of the integer are two consecutive rows from Msg1.txt �le, the
second and the fourth two consecutive ones from Msg2.txt �le. First, the
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client sends to the server how many packets it has to receive. Then it
starts to deliver the message.

ReceivingDecodedMessage(). The function receives from the server
a '0' or a '1' according to how ended the decoding ('0' stand for failure, '1'
for success) and then the decoded message. While it receives the message,
it also writes it on a �le called DecMsg.txt. This �le will contain strings
of only '1' and '0' chars. In case of failure, the �rst line of the �le contains
a warning message. Its input arguments are msg1_packets_number and
sockfd, which are respectively the length of the �le in 16-bit packets and
the pointer to the socket. The function does not return ant value. It uses
the function error() of the common_functions.c �le.

3.2.3 | common_functions.c

The header �les called common_functions.c contains the following func-
tions, which are common to both client and server .c �les:

� void error(const char *msg);

� int binstr2int(const char *bu�er1, const int representation);

� void msg�leOverview (char *msg_�lename, int *msg_parallelism,
int *msg_packets_number, int mode).

error(). The function invokes perror() to signal an error on stderr.
Its input parameter, which is a pointer to a string, is passed to perror().
It returns the integer '1'.

binstr2int(). The function converts an unsigned or two's comple-
ment binary string into its corresponding integer value. A binary string
is a string of only '0' and '1' characters. Its input arguments are bu�er1,
which is the pointer to the binary string, and an integer called represen-
tation, which can be '0' or '1' depending on how the binary string has to
be interpreted. '0' stands for unsigned, '1' for signed. The return value
is the corresponding integer of the string.

msg�leOverview(). The function opens a �le each row of which is
a binary string longer always the same. '0', '1' and '
n' are the only characters allowed. Then, it �nds the length of binary
strings and computes how long the �le is in 16-bit packets. Its input
arguments are:

� msg_�lename, the pointer to the string containing the name of the
�le;

� msg_parallelism, the pointer to a variable which stores the paral-
lelism of message �les;
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� msg_packets_number, the pointer to a variable whose value is the
length of the message in 16-bit packets;

� mode, the integer variable according to which the user is asked for
the �le name or not; if mode is set to '0', the user is asked for the
�le name, if '1', the �le name taken into account is the one stored
in msg_�lename.

It uses the function error() of the common_functions.c �le. The function
does not return any value.

3.2.4 | common_function.h

This header �le contains the prototypes of the functions in common_functions.c
�le. There are also two macros:

� packet_dimension, which is the size in number of bits of each packet
exchanged between client and server;

� debug, for debug purposes.

The debug macro is used for conditional compilation. If it is set to '1',
it enables instructions which help to understand how the whole client
server communication works. They are calls to printf() function, so they
do not interfere with the program normal behaviour.

3.3 | Make�le

To compile the .c �les, a make�le is used. A make�le is a �le in which a set
of directives is written. These are then used by make build automation
tool to generate one or more targets. Writing a make�le makes the
compilation faster, more intuitive and easier, since:

� it keeps track of compilation settings;

� it helps to detect user oversights and errors during the whole build-
ing process;

� there is no need to compile the entire program every time a change
to a functionality or a class is needed: only changed �les are com-
piled;

� it helps to present the whole project in a more systematic and
e�cient way.

Since the client and server programs have to run on di�erent hosts, the
compiler toolchain for server_fpga.c is di�erent from the client_server.c
one. However, there is the possibility to run both on the same host. This
opportunity may be useful for debug purposes. The steps to run both
client and server on the DE1-SoC HPS are:
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1. compiling server_fpga.c and client_server.c with the compiler toolchain
of Arria V/Cyclone Hard Processor System;

2. booting Linux on the DE1-SoC board through an SD card;

3. connecting the DE1-SoC to a PC establishing a serial communica-
tion;

4. opening on the PC the HPS Linux terminal;

5. putting the two compiled �les into the SD card;

6. running the server and client programs writing on the HPS Linux
terminal the commands .\<server_compiled_�le_name> <port num-
ber> & and .\<client_compiled_�le_name> localhost <port num-
ber>.

The second, third, fourth and �fth steps can be easily done accord-
ing to the tutorial material of DE1-SoC. Step 4 requires applications like
PuTTY.
The compiler toolchain of the �rst step can be downloaded installing the
application called Intel Soc FPGA Embedded Development Suite, also
known as SOC EDS.
Running a make�le is simple. First, the SOC EDS Command Shell is
opened. Then, through the linux based cd command, the working folder
is changed to the one where the make�le is located. At this point, it is
enough typing and executing the command make on the shell. The make-
�le will execute the recipe to generate the target called build. There are
also two other targets: clean, to remove the created object and executable
�les, and init, to create the exe and obj folders, which are the directories
where are generated the executable and object �les.
If the client and server have to run on di�erent hosts, the client program
has to be compiled according to the machine in which will be executed.
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4Q-decoder architecture

The Q-decoder architecture is similar, but not equal to the one devel-
oped by Kristjane Koleci in her master thesis. It cannot be exactly the
same, because it would not be compatible to the developed Qsys design.
Indeed, it would not have the right tools to read from/write to FIFOs
and SDRAM.
The decoder is written in VHDL and hierarchical. The top entity, called
DECODER, is organized in a control unit and a datapath. The datapath
is made up of the following components:

� QsysSubsystem, the Qsys system;

� WritingSDRAM, to read message and private key from
HPS_TO_FPGA �fo and write them on SDRAM;

� SyndromeCMP, to �nd the syndrome;

� SyndromeAdjustAndWeight, to adjust the syndrome and compute
its weight;

� CorrelationCMP, to compute the correlation;

� ThresholdEvaluation, to evaluate the threshold;

� ErrorPos, to �nd which bits of the message have to be toggled;

� MessageUpdate, to update the message stored in SDRAM;

� WritingDecodedMsg, to write the decoded message on
FPGA_TO_HPS �fo;

� Counter, to count the number of iterations of the whole process.

Each of them, except Counter and HPS_FIFO_SDRAM, has its own
control unit and datapath.
The DECODER control unit is quite similar to the one of Kristjane's
Q-decoder. The new state SynAdjWeight replaces the old states SynAdj
and SynWCmp. The syndrome is adjusted and its weight is computed in
one single step. A new state called WAITING_HS is added. In it, the
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state machine waits for the Hard Processor System to write the needed
information in the HPS_TO_FPGA_FIFO. Figure 4.1 shows the whole
DECODER CU.

Figure 4.1: Q-decoder control unit

Each state is tracked by a signal called HEX1. It drives one of the
7-Segment displays of DE1-Soc board.
The signal SDRAM_ADDR_MUX_SELECTBIT allows to multiplex
the signals to read from and write to SDRAM of the Q-decoder datapath
components.

4.1 | QsysSubsystem

The QsysSubsystem is the VHDL module which allows to integrate the
design developed under Qsys tool with the rest of Q-decoder.
It is made up of only one component, called hps_�fo_sdram, which de-
rives directly from the Qsys design. It is the so-called Instantiation Tem-
plate. This template is the entity of the Qsys system in a speci�c HDL.
It is accessible after generating the Qsys design. The available HDL are
VHDL and Verilog. The chosen language is VHDL.
QsysSubsystem is just an extra layer between hps_�fo_sdram and the
other VHDL modules. It is instantiated to enhance the whole prototype
�exibility. Indeed, thanks to this unit, it is possible renaming the input
and output signals of Qsys design as the user prefer. Furthermore, not
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all the signals have to be controlled from outside or are useful. For ex-
ample, the SDRAM chip select does not need to be controlled: it has
to be always active. As a consequence, it remains con�ned inside the
QsysSubsystem and set to '1'.

4.2 | WritingSDRAM

The WritingSDRAM unit reads the message and the private key written
from HPS_TO_FPGA �fo and writes them on SDRAM. It has a control
unit and a datapath.

4.2.1 | WritingSDRAM_CU

Three processes implement the state machine of WritingSDRAM control
unit. For debug purpose, each state could be tracked by HEX0. It is
an output signal long seven bits which could drive one of the 7-Segment
displays of DE1-SoC board. The states of this control unit are:

� RESET;

� SPILLING_LENGTH;

� WRITING_LENGTH;

� SPILLING_FIFO;

� WRITING_DATA_ON_REG;

� WRITING_DATA_ON_SDRAM_L;

� SDRAM_ADDR_UPD_1;

� WRITING_DATA_ON_SDRAM_H;

� SDRAM_ADDR_UPD_2;

� END_STORE;

Figure 4.2 depicts the state machine �owchart.
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Figure 4.2: WritingSDRAM control unit �owchart

The RESET state sets to zero the content of sdram_addr_increaser,
H2F_readdata_bu�er_register,message_length_bu�er_register and con-
trol_bit_from_server . The state machine evolves in the next state only
if the signal called startStore is equal to '1'.
During the state called SPILLING_LENGTH, the control unit asks to
�fo the last SDRAM address of the message or private key. It is a 32-bit
data, but only the least signi�cant 25-bits are stored. Twenty �ve bits
are enough to address the whole 64 MB SDRAM. Asking a data is allowed
only if the �fo is not busy. A �ag, calledHPS_TO_FPGA_OUT_CSR_READDATA(1),
tells if the FIFO is busy or not. It is the second less signi�cant bit in the
�fo control status register. When the FIFO is not accessible, it is equal
to '1'. If it is set to '0', the �fo is readable. The read request is done
setting to '1' the control bit called HPS_TO_FPGA_READ. If the �fo
is busy, the control unit waits in the SPILLING_LENGTH state. Once
the �fo becomes readable, the read request is performed and the state
machine evolves in the next state.
In WRITING_LENGTH state, the last SDRAM address of the message
or private key is stored in the message_length_bu�er_register.
SPILLING_FIFO is the state in which the control unit asks a new 32-
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bit data to the �fo. It is one of the 32-bit packets which compose the
message, private key or the transposed private key. The read request is
performed in the same way as in SPILLING_LENGTH state.
During WRITING_DATA_ON_REG state, the 32-bit packet read from
�fo is stored into the register called H2F_readdata_bu�er_register.
The least two signi�cant bytes are written into SDRAM during WRIT-
ING_DATA_ON_SDRAM_L state, the most signi�cant ones during
WRITING_DATA_ON_SDRAM_H state. Before writing any data in
SDRAM, a check if it is accessible and writable is done. If the SDRAM
control bit, called SDRAM_WAIT, is equal to '0', writing is possible. If
the bit is '1', the memory is busy. If the memory is busy, the control unit
has to wait.
The SDRAM address is increased by one in SDRAM_ADDR_UPD_1
state or in SDRAM_ADDR_UPD_2 state.
When the control unit reaches END_STORE state, the signal called
doneStore is set to '1'. This means that the the unit has �nished its job.
For debug purposes, another state, calledWRITING_DATA_ON_F2H_FIFO,
could be introduced. It helps to check the correctness of data read from
�fo. In this state, the information is stored in FPGA_TO_HPS �fo.
Once stored, the hard processor could run a C code and read it.

4.2.2 | WritingSDRAM_DP

The datapath of the WritingSDRAM unit is made up of the following
components:

� H2F_readdata_bu�er_register, the 32-bit register which stores the
message or private key packet read from HPS_TO_FPGA �fo;

� message_length_bu�er_register, the 25-bit register which stores
the last message or private key SDRAM address;

� control_bit_from_server, the �ip-�op which stores '0' or '1' ac-
cording to which kind of information is being processed;

� sdram_addr_increaser, the 25-bit counter needed to correctly ad-
dress the SDRAM;

� sdram_inputdata_lh_mux, a 16-bit multiplexer that selects which
of the four bytes read from �fo it is time to store in SDRAM;

� hex_decoder_for_seeing_data_in_SDRAM , a decoder for debug
purposes.

Figure 4.3 depicts the datapath schematic.
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Figure 4.3: WritingSDRAM datapath schematic

The message length is stored as the SDRAM address of the most
signi�cant two bytes of its last 32-bit packet. The public length is saved
in the same way.
If the control_bit_from_server output is equal to '0', the control unit is
reading and writing the message, if it is '1', the control unit is processing
the private key or the transposed private key.
Both private key and transposed private key are stored in SDRAM. Each
of them is divided in two parts: LtrT1 and LtrT2 are the �rst and second
parts of the private key, Ltr1 and Ltr2 are the �rst and second parts of the
transposed private key. The nomenclature of these four blocks is the same
of Kristjane Koleci's Q-decoder. The four blocks are read by the HPS
from a single �le and then stored in the �fo. Then, the WritingSDRAM
unit transfers them in SDRAM. Since Ltr1 and Ltr2 are stored �rst and
Ltr1T and Ltr2T last, the last SDRAM address to save at the beginning
of WritingSDRAM state machine is the one of the last byte of Ltrt2,
which is the last byte of the private key.
The hex_decoder_for_seeing_data_in_SDRAM output could drive a
7-segment display of DE1-SoC and help when debugging internal signals.

4.3 | SyndromeCMP

The SyndromeCMP unit computes the syndrome. It is almost identical to
the unit developed by Kristjane Koleci in her Q-decoder. The di�erences
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concern how the unit interfaces with SDRAM.
SyndromeCMP has a control unit and a datapath.
The control unit di�ers only for the output signal called
sdram_readdata_sel_bit. This signal allows to select the right message
byte during syndrome computation. The message is read from SDRAM
sixteen bits at a time. Only the upper or the lower byte is useful for the
computation, according to which part of syndrome is being processed. If
the part to compute is the �rst one, the least signi�cant byte is used. If
the part to compute is the second one, the most signi�cant is selected.
For debug purpose, each control unit state could be tracked by HEX0. It
is an output signal long seven bits which could drive one of the 7-Segment
displays of DE1-SoC.
The datapath has di�erent only the input and output signals to read
from/write to SDRAM. The rest is exactly same. It includes a component
called VectorByCirculant. It computes the multiplication between two
circulant matrix. During the syndrome computation, the matrices, which
have to be multiplied each other, are the message and the transposed
private key.
Also the VectorByCirculant component is made up of a control unit and
a datapath.

4.3.1 | CU_VectorByCirculant

The new state machine of the VectorByCirculant control unit di�ers from
the old one in the following extra states:

� READING_LTR_VALUE;

� SAVING_LTR_VALUE;

� READING_MSG_VALUE_1;

� SAVING_MSG_VALUE_1;

� READING_MSG_VALUE_2;

� SAVING_MSG_VALUE_2;

� READING_SYN_VALUE;

� SAVING_SYN_VALUE.

Figure 4.4 shows how these states are integrated in the already exist-
ing VectorByCirculant state machine. To understand the starting state,
three �ip �ops are used. Each starting state sets them in a di�erent
con�guration. According to how the �ip �ops are con�gured, the control
unit evolves in a di�erent state. This strategy helps to avoid dozens of
states more.
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(a) Extra states to read two

bytes of the transposed pri-

vate key from SDRAM

(b) Extra states to read a byte of the mes-

sage from SDRAM

(c) Extra states to read a byte of the message and a byte of the

syndrome from SDRAM

Figure 4.4: VectorByCirculant control unit extra states
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Figure 4.5 show the other state machine states, already present in the
older Q_decoder version.

(a)

(b)
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(c) (d)

(e)

(f)

Figure 4.5: VectorByCirculant control unit
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4.3.2 | DP_VectorByCirculant

The main changes in the new VectorByCirculant datapath concern how it
interfaces with SDRAM. The input and output signals to read from/write
to SDRAM are di�erent. The message, transposed private key and syn-
drome addresses are multiplexed. Also, there are three more �ip-�ops,
whose function is the one described in CU_VectorByCirculant section.
The syndrome computation is an iterative process. During the �rst iter-
ation, the behaviour of the unit is slightly di�erent. The old syndrome
register has to be cleared. An additional �ip �op helps to discriminate
the �rst iteration from the others. It replaces the latch present in the old
Q-decoder version, that causes instability once the FPGA is programmed.

4.4 | SyndromeAdjustandWeight

The SyndromeAdjustandWeight unit adjusts the last syndrome byte if
necessary and computes the syndrome weight. It merges two units called
SyndromeAdjust and SyndromeWeight in Kristjane's Q-decoder to save
control unit states and increase speed. It has a control unit and a data-
path.

4.4.1 | CU_SyndromeAdjust_and_Weight

Two processes implements the state machine of WritingDecodedMsg con-
trol unit. For debug purpose, each state could be tracked by HEX0. It is
an output signal long seven bits which could drive one of the 7-Segment
displays of DE1-SoC. This state machine has the following states:

� idle;

� reading_syn_row;

� storing_syn_row;

� CmpW_Count_incr;

� CmpA;

� CmpW;

� StoreSyn;

� EndEv.

Figure 4.6 depicts the state machine �owchart.
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Figure 4.6: WritingDecodedMsg control unit �owchart

In the idle state, the syndrome SDRAM adress counter is initialized
to the SDRAM address of the �rst syndrome byte. If the start signal is
equal to '1', the state machine evolves into the reading_syn_row state.
In reading_syn_row and storing_syn_row states, the least signi�cant
byte of the SDRAM row at the syndrome address counter is read and
stored in a bu�er register.
If it is not the last syndrome byte, its weight is computed and added to
the total syndrome weight, that is stored in a proper register and equal
to zero if the byte is the �rst one. This is done in CmpW_Count_incr
state. The control unit returns in reading_syn_row state.
If the byte read from SDRAM is the last syndrome byte, it is adjusted
in CmpA state. Adjusting means setting to '0' all the bits of the byte
which does not belong to the syndrome. Indeed, the syndrome length
may not be an exact multiple of one byte. In CmpW state, the weight of
the adjusted byte is computed and added to the total syndrome weight.
In StoreSyn, the last syndrome byte in SDRAM is overwritten with the
adjusted one.
In EndEv, a signal called done is set to '1'. The control unit returns in
idle state if the start signal return to '0'.
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4.4.2 | DP_SyndromeAdjust_and_Weight

The datapath of the SyndromeAdjustandWeight unit is made up of the
following components:

� SynInReg, the register which stores the syndrom byte read from
SDRAM;

� SynOutReg, the register which stores the adjusted syndrome byte;

� SW_reg, the register which stores the total syndrome weight;

� SynCounter, the counter whose output is the SDRAM address of
the syndrome byte to read from or overwrite in SDRAM.

4.5 | CorrelationCMP

The CorrelationCMP unit computes the correlation. The di�erences with
the homonym unit in Kristjane Koleci's Q-decoder concern how the unit
interfaces with SDRAM. It has a control unit and a datapath.
The new control unit has no UpcMemCS signals. The correlation is no
longer stored in two memories, each with its own chip select. It is saved
in SDRAM and there is no need to drive any chip select signal.
Each of the two correlation parts is computed separately multiplying the
syndrome by one of the two private key parts.
For debug purpose, each control unit state could be tracked by HEX0,
which could drive one of the 7-Segment displays of DE1-SoC.
The datapath di�ers on how it interfaces with the SDRAM. The rest
does not change. It still includes the component called VectorByCircu-
lantInteger. It computes the multiplication between two circulant matrix
in 8-bit integers. The matrices which are multiplied each other are the
syndrome and the private key.
Also the VectorByCirculantInteger component is made up of a control
unit and a datapath.

4.5.1 | CU_VectorByCirculantInteger

The new state machine of the VectorByCirculantInteger control unit dif-
fers from the old one in the following extra states:

� reading_ltrT_value;

� saving_ltrT_value;

� reading_syn_value_1;

� saving_syn_value_1;

� reading_syn_value_2;
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� saving_syn_value_2;

� reading_UPC_value;

� saving_UPC_value;

� UPCRowAdx_Update

Figure 4.7 shows how these states are integrated in the already exist-
ing VectorByCirculant state machine. To understand the starting state,
three �ip �ops are used. The strategy is the one adopted in VectorBy-
Circulant control unit.
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(a) Extra states to read two

bytes of the private key

from SDRAM

(b) Extra states to read a byte of the syndrome

from SDRAM

(c) Extra states to read a byte of the syndrome and eight bytes of the correlation from

SDRAM

Figure 4.7: VectorByCirculant control unit extra states
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Figure 4.8 show the other state machine states, already present in the
older Q_decoder version.

(a)

(b)
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(c) (d)

(e)

(f)

Figure 4.8: VectorByCirculantInteger control unit
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4.5.2 | DP_VectorByCirculantInteger

The main changes in the new VectorByCirculant datapath concern how it
interfaces with SDRAM. The input and output signals to read from/write
to SDRAM are di�erent. The private key, syndrome and correlation ad-
dresses are multiplexed.
Each correlation row is eight bytes long and it is read from / write to
SDRAM two bytes at time. To write all the bytes, four write requests to
SDRAM are needed. Two counters are used to address the correlation
bytes in SDRAM. The �rst is a 23-bit counter and addresses a particular
UPC row. The second is a 2-bit counter and addresses a speci�c couple
of bytes in a UPC row.
Also, there are three more �ip-�ops, whose function is the one described
in CU_VectorByCirculantInteger section.
An additional �ip �op helps to discriminate the �rst iteration from the
others. It replaces the latch present in the old Q-decoder version, that
causes instability once the FPGA is programmed.

4.6 | ErrorPos

The ErrorPos unit �nds the message bits to �ip before repeating the
whole process. These bits are also called error bits. Also, this unit derives
from the homonym one in the Kristjane Koleci's Q-decoder version and
di�ers on how it interfaces with SDRAM to get and write information.
As an example, the chip select signals NewPosCS are no more needed.
For debug purpose, each control unit state could be tracked by the HEX0
signal.
It is divided in a control unit and a datapath. The datapath includes the
component called ThresholdPos.
Also the ThresholdPos has a control unit and a datapath.

4.6.1 | CU_ThresholdPos

The new ThresholdPos control unit includes the following extra states:

� reading_UPC_value;

� saving_UPC_value;

� UPCRowAdx_Update;

� Store_�rst_half;

� Store_second_half.

The ReadUPC and Store states have been removed.
Figure4.9 depicts ThresholdPos control unit.
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Figure 4.9: ThresholdPos control unit �owchart

4.6.2 | DP_ThresholdPos

The new ThresholdPos datapath di�ers in the input/output signals to
read from/write to SDRAM. The correlation and error positions ad-
dresses are multiplexed.
As in VectorByCirculantInteger unit, the correlation is read two bytes at
times and two counters are used to address its bytes in SDRAM.
There is no more need of old ShiftReg and AdxReg bu�er registers.

4.7 | ThresholdEvaluation

The ThresholdEvaluation unit is identical to the one in the Kristjane
Koleci's Q-decoder.

4.8 | MessageUpdate

The Message Update unit is quite similar to the one in the old Q-decoder.
The changes concern the unit interface towards the memory.
The two components of the unit are the control unit and the datapath.
As in the other units, each control unit state could be tracked by the
HEX0 signal. The datapath includes the VectorPosFlip unit.

4.8.1 | CU_VectorPosFlip

The new CU_VectorPosFlip includes the following extra states:

� reading_NewPos_1;
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� saving_NewPos_1;

� reading_NewPos_2;

� saving_NewPos_2;

� reading_Msg;

� saving_Msg;

� PosAdx_up_1;

� PosAdx_up_2.

Figure 4.10 depicts the VectorByPos state machine.

Figure 4.10: VectorByPos control unit �owchart
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4.8.2 | DP_VectorPosFlip

The new VectorPosFlip datapath di�ers in its interface towards SDRAM.
The error positions and message addresses are multiplexed. Since it is
32-bits long, each error position requires two read requests to be stored.

4.9 | WritingDecodedMsg

The function of WritingDecodedMsg unit is the one suggested by its
name. First, it writes to the �fo called FPGA_TO_HPS �fo a zero or
one according to how ended the decoding process. Then, it writes the
whole decoded message. Zero means a failed decoding, one success.
It has a control unit and a datapath.

4.9.1 | WritingDecodedMsg_CU

Two processes implements the state machine of WritingDecodedMsg con-
trol unit. For debug purpose, each state could be tracked by HEX0. It is
an output signal long seven bits which could drive one of the 7-Segment
displays of DE1-SoC. This state machine has the following states:

� idle;

� WritingDecOutcome;

� ReadingSDRAM_1;

� Bu�eringFirst2B;

� Bu�eringFirst2B;

� AdxUpd_1;

� ReadingSDRAM_2;

� Bu�eringLast2B;

� AdxUpd_2;

� EndWrite.

Figure 4.11 depicts the state machine �owchart.
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Figure 4.11: WritingDecodedMsg control unit �owchart

The idle state zeroes the counter MsgAddress. The writing process
starts if the start signal is equal to '1'.
WritingDecOutcome is the state during the which a zero or one is written
in �fo, according to the whole decoding process outcome. If the decoding
ended successfully, the unit writes "00000000000000000000000000000001",
otherwise "00000000000000000000000000000000". If the �fo is busy, the
state machine waits in this state until the �fo becomes accessible again.
A bit in the control status register called
FPGA_TO_HPS_IN_CSR_READDATA_0 tells if writing is possible
or not.
In ReadingSDRAM_1 state, the control unit reads from SDRAM the
two least signi�cant bytes of the data to send to �fo. In Bu�eringFirst2B
state, these bytes are stored in the bu�er register called DataToWrOn-
FIFO_register_1.
In ReadingSDRAM_2 state, the control unit reads from SDRAM the
two most signi�cant bytes of the data to send to �fo. In Bu�eringLast2B
state, these bytes are stored in the bu�er register called DataToWrOn-
FIFO_register_2.
The sdram address is increased by one in AdxUpd_1 and AdxUpd_2
states.
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The writing of the decoded message in the �fo ends when the SDRAM
address counter reaches the message last SDRAM address. Since the
size of the packets written in �fo is equal to 32 bits and the SDRAM
has a width of 16 bits, an even number of SDRAM rows is always read.
The size of the message in 16-bit packets is called MaxAdxMsg. If Max-
AdxMsg is odd, the last SDRAM address read by the control unit will
be MaxAdxMsg, otherwise MaxAdxMsg minus one.
The state machine reaches the EndWrite state when the writing process
is �nished. In this state, the done signal is set to '1'. The control unit
returns to the IDLE state only if the start signal returns to '0'.
For debug purposes, the SDRAM address of the �rst bytes to write in
�fo can be changed. In this way, the WritingDecodedMsg unit could be
employed to print the SDRAM content at any range of addresses.

4.9.2 | WritingDecodedMsg_DP

The datapath of the WritingSDRAM unit is made up of the following
components:

� DataToWrOnFIFO_register_1,, the 16-bit register which stores
the two least signi�cant bytes of the data to write in �fo;

� DataToWrOnFIFO_register_2,, the 16-bit register which stores
the two most signi�cant bytes of the data to write in �fo;

� MsgAdress, the counter whose output is the SDRAM address of the
two least or most signi�cant bytes of the data to write in �fo.

Figure 4.12 depicts the datapath schematic.

46



Q-decoder architecture

Figure 4.12: WritingDecodedMsg datapath schematic

4.10 | Reset signals management

All the DECODER datapath components have the same asynchronous
reset signal, mapped to the KEY(0) button.

4.11 | SDRAM memory mapping

Figure 4.13 clari�es how information are stored in SDRAM.
Maintaining the same architecture parameters of Kristjane Koleci's LEDA
architecture, the SDRAM is organized as follows:

� the least signi�cant part of the message occupies the �rst byte of
each of the �rst 1877 rows;

� the most signi�cant part of the message occupies the second and
last byte of each of the �rst 1877 rows;

� the syndrome occupies the �rst byte of each of the 1877 rows fol-
lowing those of the message;
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� each of the private key and transposed private key parts occupies
81 rows of SDRAM and they are stored immediately after the syn-
drome;

� each correlation part occupies the following 1877∗8/2 = 7508 rows;

� the two errors positions parts are stored after the correlation most
signi�cant part, their sizes changes iteration by iteration.

The sizes and �rst addresses of each section can be found in the �le
named resources.vhd

Figure 4.13: SDRAM memory mapping

4.12 | Synthesis and performances results

To �nd the performances and how many resources the Q-decoder occu-
pies, the Intel Quartus Prime synthesis results are taken into account.
Table 4.1 shows the occupied resources.
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Resource name Used Available percentage of use

Logic utilization (ALMs) 2,246 32,070 7%
Total pins 197 457 43 %
Total block memory bits 393,216 4,065,280 10 %
Total PLLs 2 6 33 %

Table 4.1: Q-decoder resources occupation

In terms of performances, the bottleneck is represented by the 64 MB
SDRAM, which allows a clock signal of frequency equal or less than 143.0
MHz.
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5Conclusions

The whole system is a successful �rst attempt to build a working Q-
decoder prototype on a DE1-SoC board. Unfortunately, this board does
not provide to the FPGA part a direct access to the Ethernet port.
Using the Hard Processor System is the right way to set up an Ethernet
communication.
Further improvements are possible, since, for example, Avalon Memory
Mapped Interface o�ers several strategies to read from/write to SDRAM.
To write or read a large amount of data, the write burst or read burst
modes are the fastest
Choosing a di�erent board could provide to the FPGA fabric part a direct
access to the Ethernet communication. In this way, it would no longer
be necessary to use a hard processor system and socket programming.
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