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Summary

Recent developments of deep Artificial Neural Networks (ANNs) have pushed
forward the state-of-the-art in the field of image recognition [1]. However, the high
power demand required by these networks when it comes to perform inference
tasks on edge devices limits the spread of ANNs in context where the energy/power
consumption is crucial. On the other hand, Spiking Neural Networks (SNNs),
due to their biologically inspired behavior, have shown promising results both in
terms of power efficiency and real-time classification performance [2]. Being the
comunication between neurons based on spikes, SNNs guarantee a lower computa-
tional load, as well as a reduction of latency.
Along with the development of efficient SNN specialized accelerators (TrueNorth [3],
SpiNNaker [4] and Intel Loihi [5]), another advancement in the field of neuromor-
phic hardware has come from a new generation of camera, the DVS event-based
sensor [6]. Such a device, differently from a classical frame-based camera, works
emulating the behavior of the human retina. Thus, the recorded information is not
a series of time-wise separated frames, but a sequence of spikes, which are generated
every time a change of light intensity is detected. The event-based behavior of
these sensors pairs well with SNNs: the output of a DVS camera can be used as
input of the SNN, which collects and elaborate events in real-time.
A promising approach to train SNNs in a supervised learning scenario is to train
an ANN with state-of-the-art backpropagation approaches, and then assign the
trained parameters (weights and biases) to an equivalent SNN applying a conversion
process. This approach has shown promising results [7], mostly because it allows to
get the best from the two worlds: the converted SNN totally behaves like a normal
SNN, with its benefits in terms of efficiency and latency. At the same time, the
network has been trained in ANN domain with high performing methodologies that
ensure good results in classification tasks. However, such a conversion may not
always held the expected results. In fact, many aspects has to be taken into account,
like the original ANN structure, the training process, as well as the parameters that
control the ANN-to-SNN conversion. This is especially true when the converted
SNN has to be deployed on a limited precision hardware like Intel Loihi, which
restricts the degree of freedom of the conversion process.
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For this reason, in this thesis we present a complete ANN-to-SNN design pro-
cess, systematically discussing the effects of the main parameters that take part
in the conversion. We evaluate their effect, and extract some general rules that
can be successfully applied when it comes to develop an SNN for Intel Loihi. Once
we have an SNN that gets good accuracy results both on the MNIST [8] and the
CIFAR10 [9] datasets, we evaluate it also on the DVS gesture dataset [10], which
comprise 11 gestures recorded with a DVS event-based camera. The main challenge
when adopting the ANN-to-SNN conversion approach to get a trained SNN is that
we can not train an ANN on the event series coming from the DVS camera. For
this reason, we first need to collect the events into frames and then train the ANN
on such converted dataset. Different pre-processing techniques are discussed in this
thesis, also reporting the accuracy results achieved by the ANN on the generated
converted dataset. Then, after the conversion, the SNN is tested on the DVS
Gesture dataset, and it is ready to be deployed for real-time classification on Intel
Loihi.
Finally, we have optimized the conversion of a hardware-efficient ANN, the Mo-
bileNet [11], into its equivalent SNN. The network has been designed in order to
achieve the best accuracy results while minimizing the hardware resources of the
Loihi processor.
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Chapter 1

Introduction

1.1 Motivation

Recent developments in the field of Deep Learning have pushed forward the limits of
artificial intelligence in several scientific fields. Artificial Neural Networks (ANNs)
have become a widely adopted solution to solve many highly non-linear classification
and regression problems, frequently overcoming the ability of the human brain in
such tasks [12]. Improvements in the cognitive capabilities of artificial intelligence
systems are allowing big steps forward in fields like autonomous driving, healtcare,
and even finance and marketing [13] [14] [15] [16].
However, there is still a huge difference in terms of power efficiency between
modern computers and the human brain. To achieve the same computational
performance of the brain, a supercomputer needs several orders of magnitude
higher power [17]. This is due to the fundamental differences between how the
computation is performed in a biological brain and in a classical Von Neumann
computer architecture. Concerning artificial intelligence, some specific hardware
architectures have been proposed as ANNs accelerators, like Google TPU [18].
However, the computation that take place in conventional hardware designs is far
from the intrinsic efficiency that takes place in the human brain. This large gap in
terms of power efficiency has given rise to the question: can we build brain-inspired
computer systems for highly efficient computation?
To give a positive answer to this challenging question, we need to radically change
the way computation is performed, both working on the software and hardware
levels.
In the past few years Spiking Neural Networks (SNNs) have emerged as the
most energy efficient type of Neural networks. These networks, differently from
ANNs, base their computation on faithful biological models of neurons, adopting a
spike-based communication that leads to a low-energy, real-time computation [19].

1



1 – Introduction

Because of their bio-inspired computation, these networks are the most promising
solution to reduce the gap with the human brain, both in terms of power efficiency
and real-time use-cases. However, in order to release their full potential, SNNs
need custom hardware that can execute neuron computation in an efficient way.
Neuromorphic computing, a novel field in computer architecture design, has achieved
huge steps forward in the development of brain-inspired computer architectures,
specifically designed to run SNNs. The core idea is to reproduce on the hardware
level the way the neurons execute computations in the brain. This translates into the
development of highly parallel architectures in which each processing unit reproduces
the behavior of a neuron, and neurons can communicate through spikes. This radical
shift in the hardware design promises huge benefits in terms of power consumption.
Examples of such neuromorphic designs are IBM TrueNorth [3], SpiNNaker [4],
BrainScale [20] and Intel Loihi [5]. Our research has focused on the latter platform.
Figure 1.1 shows a comparison of several hardware architectures, showing how
competitive neuromorphic designs can be when compared to conventional hardware
solutions in terms of power consumption.
Along the line of brain-inspired technologies, a novelty also comes from vision
sensor field. Event-based cameras [6] are vision sensors that mimic the behavior of
the human retina, and generate spikes with the movements of the recorded subject.
Thanks to their bio-inspired neuromorphic design, these sensors can coop well with
SNNs.
However, because of the fact that neuromorphic chips are relatively new, a lot of
effort still needs to be put in the development of compatible SNNs that can fully
exploit the potential of these devices. Moreover, even if SNNs have shown great
results in terms of power efficiency and real-time behavior, they still do not provide
the same accuracy that can be achieved with state-of-the-art ANNs.

1.2 Scientific challenges
As a consequence of the intrinsic differences between conventional ANNs and
SNNs, the training procedures that are used to train ANNs to reach high levels of
accuracy can not be applied directly to SNNs. This entails a critical issue to the
development of deep spiking networks able to achieve the same accuracy of their
artificial counterpart. A possible training technique that have shown promising
results consists in training conventional ANNs with state-of-the-art algorithms, and
then convert the ANN into an equivalent SNN.
This solution, however, implies some limitations that are related to the key dif-
ferences between ANN and SNN models. Therefore, to achieve a good equivalent
SNN it is necessary to find the right balance for all the parameters implied in the
conversion, as well as efficiently translate the parameters learned during the ANN

2



1 – Introduction

INTEL  LOIHIIBM TRUENORTH

SPINNAKER BRAINSCALES

BRAIN

SUPERCOMPUTER CHIP

DESKTOP  PROCESSOR

~130.000 artificial neurons
~130 million synapses
Runs at speed of biological
neural networks

~1 million artificial neurons
256 milion synapses
Runs at speed of biological
neural networks

512 artificial neurons
128.000 synapses
10.000x faster than biological
neural networks

~1000 artificial neurons (variable)
1M synapses per 1K neurons
Runs at speed of biological
neural networks

~85 billion neurons
~1 quadrillion synapses

Not analogous to neural function

Figure 1.1: Comparison of power consumption between conventional hardware
architectures and neuromorphic architectures [Source: [21]]

training into equivalent parameters for the SNN.
Moreover, building SNNs that can be executed on the Loihi neuromorphic chip
requires to take into account several constraints that are specifically hardware
related such as quantized synaptic weights and biases, and may consistently limit
the final result.
Regarding the use of event-based cameras in combination with SNNs, it is necessary

3



1 – Introduction

to find an optimized conversion policy in order to make the events collected by the
sensor compatible with the frame-based training executed in the ANN domain.

1.3 Novel contributions
In this research, we have focused on the optimization of the ANNs-to-SNNs conver-
sion process, in order to build efficient spiking networks. Our study is specifically
related to the Loihi neuromorphic chip, and therefore the optimizations require to
take into account several hardware limitations that influence the final result of the
conversion.
Moreover, we have proposed a conversion technique for converting an event-based
gesture dataset, into an equivalent frame-based dataset in order to be compatible
with the ANN training. Then, we have trained the same ANN optimized in the
previous research step and we have efficiently converted it into an equivalent SNN
for recognizing gestures on Loihi.
Finally, we have optimized the conversion of a hardware-efficient ANN, the Mo-
bileNet [11], into an equivalent SNN. The network has been designed in order to
achieve the best accuracy results while minimizing the hardware resources of the
Loihi processor. The thesis is organized as follow:

• Chapter 2: we present an overview of the basic notions of machine learning,
artificial and spiking neural networks, as well as a description of the Loihi
architecture and event-based cameras.

• Chapter 3: we perform a comprehensive analysis of the setup for converting
an ANN into a SNN, finding the optimal parameters for a correct conversion
of a convolutional ANN on the Loihi platform.

• Chapter 4: We design a pre-processing method for a gesture event-based
dataset, to produce a frame-based equivalent dataset compatible with the
ANN domain. Then, we train the same optimized ANN of Chapter 3 on the
pre-processed dataset and convert it into a corresponding SNN to be ready to
be deployed on Intel Loihi.

• Chapter 5: We propose an in-depth analysis of a MobileNet ANN-to-SNN
conversion in order to build an equivalent spiking MobileNet that achieves the
highest accuracy possible while limiting the hardware occupation of the Loihi
processor.

• Chapter 6: We draw the conclusions of our work.

A schematic view of chapters 3,4 and 5 is presented in Figure 1.2.
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Figure 1.2: Thesis structure and overview of the experimental flow.
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Chapter 2

Background

In this chapter are discussed the basic concepts that will be the fundamental of the
research. Starting form the concepts of Artificial Intelligence and Deep Learning,
we will move towards Spiking Neural Networks, with a final overview of Intel Loihi
and DVS camera.

2.1 Artificial Intelligence and Machine Learning
Artificial Intelligence (AI) is a scientific field that aims to create machines able
to solve problems mimicking the human cognition. These problems can be easily
described using a formal mathematical approach, and are hardly solvable by the
human brain because of the highly intensive computation required.
However, AI algorithms may be of little use when it comes to solve more intuitive
problems, that can hardly be described formally. Usually these problems are easily
tackled by the human brain, thanks to its ability to generalize and use intuition.
As a consequence, a subset of AI called Machine Learning (ML) has been
developed in recent years to overcome this limitation. ML algorithms find the
statistical relations among a series of inputs. In order to do so, the inputs need to
be pre-processed to extract a high level representation of the data, called features.
The algorithms are then trained on these features, learning how to correctly process
the incoming inputs [22].

2.2 Neural Networks and Deep Learning
Machine learning aims to build biologically inspired algorithms, capable of emu-
late the interactions between neurons that take place in the brain and that are
fundamental for the human cognition. Neural Networks (NN) are biologically
inspired algorithms that try to replicate the basic step of information processing
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that take place in the brain. Based on a mathematical representation of neurons
and synaptic communication, they elaborate the inputs information in order to
solve a classification or a regression problem.
The basic structure of a NN usually makes use of a low number of neurons, arranged
into a maximum of 3 layers: input, inner (or hidden) and output layers. Neurons
are connected in a all-to-all fashion (fully connected), and the output neurons
generate the prediction based on the inputs received from the input layer.
In order to build more and more complex and intelligent systems, the number
of inner layers has been increased getting to a new step in the machine learning
evolution, Deep Learning.
The presence of an higher number of hidden layers allows the network to extract
features all by itself, directly starting from the incoming inputs. These features
contain a progressively higher level representation of the inputs [22].
As a case of study, let’s consider the problem of classification of a sequence of
images. The human brain is capable of recognizing the subjects, backgrounds and
all the different elements in a given picture thanks to the process of hierarchical
visual feature representation that take place in the brain. As the visual information
gets processed by the visual cortex, higher features are extracted and combined
to create more complex features, until a clear representation of the input image is
obtained.
Following this approach, the same hierarchical feature extraction is performed in a
neural network. Layer after layer, higher level features are extracted and combined
into more complex representation of the input image. The artificial neurons present
in the NN interact, until in the last layer a clear representation of the input is
obtained, and a classification is generated by the network. The feature extraction
process is depicted in Figure 2.1.

In order to correctly classify a wide range of possible inputs, the Network needs
to be trained. The training process can be of three main types:

• Supervised: Each input is associated to its corresponding label. The network
is trained with a kwnowtion of which output is expected.

• Unsupervised: Inputs are not labeled. The network has to extract features
and classify the inputs independently.

• Reinforcement Learning: a reward system is applied in order to modify
the network behavior depending on its output.

The training process is responsible for a correct behavior of the NNs, fine-tuning
the model until it learns how to correctly classify the inputs.
NNs can be separated into two main classes:

• Artificial Neural Networks (ANN): make use of a mathematical repre-
sentation of neurons and synaptic connection, loosely inspired by the biology
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input pixels

1st hidden layer
(edges)

2nd hidden layer
(corners and contours)

3rd hidden layer
(object parts)

Output
(object label)

car person dog

Figure 2.1: Feature extractions in a NN. As we move toward deeper layers, the
extracted features get more complex [source: [22]].

of the brain.

• Spiking Neural Networks (SNN): are biologically plausible models based
on faithful representation of neurons and synapse interaction.

These two approaches to brain-inspired computing have many differences, which
will be presented in the next two sections.
Figure 2.2 contains an overview of the topics discussed so far.

2.3 Artificial Neural Networks
When it comes to solve a classification problem, our brain is a vivid example of a fast
and efficient computation: it is capable of executing highly non-linear classification
tasks, thanks to its ability to generalize and its neural network hierarchical-based
computation.
Taking inspiration from the biological structure of a neuron, a mathematical
representation of its structure and behavior is designed and it is called perceptron.
The perceptron mimicks the behavior of a neuron: it consists of a series of synapses,
that allow communication with other neurons, and an output axon which delivers
the output computation to the fan-out neurons.
The structure of the perceptron is represented in Figure 2.3. The perceptron
receives its inputs from the output of other perceptrons. Inputs are then multiplied
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Artificial Intelligence (AI):
Science that aims to create systems 
which emulate the human cognition.

Machine Learning (ML):
Subset of AI that applies statistical
methods to create systems capable
of learning f rom experience. 

Spiking Neural Networks (SNN):
Neural Networks based on biologically 
plausible models of neurons and neuron
synaptic interaction.

Artificial Neural Networks (ANN):
Neural Networks based on artificial models 
of neurons, loosely inspired by the 
behaviour of a biological neural network. 

Deep Learning:
Branch of ML where the neural 
network used contains an high 
number of layers (more than 3).

Artificial 
Intelligence

Machine 
Learning

Spiking
Neural

Network

Figure 2.2: overview of artificial intelligence
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Figure 2.3: Perceptron model

by the synaptic weights, that represent the strength of the connections. In the cell
body the weighted inputs are summed in a linear combination, and are added to a
bias contribution. An activation function is then applied to the result of the linear
combination, providing the output value that is then delivered to following neurons
through the output axon.
Usually perceptrons are connected to form large networks, that can be used to
learn and apply highly non-linear classification functions to the input data.
The activation functions can be of different kinds:

• Tanh: has a characteristic S shape, that saturates the output when it reaches
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a high value. The equation is:

f(x) = ex − e−x

ex + e−x

• Rectified Linear Unit (ReLU): is defined as f(x) = max(0, x). Allows to
get outputs that increase linearly, without a saturation effect.

• Softmax: execute a normalization of the output values of all neurons of a
layer. It is of use in the last layer, in order to provide a normalized array of
outputs whose sum is equal to 1. Its equation is:

f(þx) = ex
iqJ

j=1 ex
j

, i = 1, 2..J

2.3.1 Training process
In order to train an ANN, it is necessary to use a dataset. Datasets are sets of
examples on which the ANN is trained, and that we expect to be able to correctly
classify at the end of the training process.

Datasets

Datasets can be a group of images, or texts or sounds. Data are usually divided
into two groups: The train set, which contains data that are going to be used to
actually train the ANN, and test set, that contains data that are not shown to
the ANN in the training phase, but are used to evaluate the trained ANN in the
inference phase.
When it comes to image recognition tasks, two of the most commonly used datasets
are:

• MNIST [8]: A collection of 28x28 grayscale images of hand-written numbers.
The dataset comprise a total of 60.000 images for training and 10.000 test
images. The total number of classes is 10, that are the numbers 0 to 9.

• CIFAR10 [9]: in this case, images belongs to 10 different classes: Airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck. the image size is
32x32 pixels. Moreover each pixel contains 3 channels, one for each RGB color.
Also in this case training set and test set are splitted in 60.000 images and
10.000 images respectively.

All the images contained in a dataset are labelled, in order to know to which
class they belong to. Examples of MNIST and CIFAR10 images are reported in
Figure 2.4.
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MNIST CIFAR10
Figure 2.4: Example images of MNIST and CIFAR10 dataset

Gradient descend algorithm

A quantitative indicator is needed to compare the output labels predicted by
the ANN and the correct labels of the input images. For this purpose, a loss
function is generally used. Such function measures the distance between the output
labels predicted by the ANN and the real labels. The training process is used
to gradually modify the weights and biases of the network, in order to minimize
the loss function, in such a way that the network predictions are correct for all
the input images. In order to achieve such minimization of the loss function, the
gradient descent algorithm can be used. This algorithm allows to reduce the
loss function by computing the derivative of the loss with respect to the weights
of the network synapses. The gradient descend requires a series of steps, that are
repeated cyclically until the Loss function reaches its minimum. The steps are as
follow:

1. First, a forward pass is performed: in this phase, the ANN receives the inputs
and compute the resulting predicted labels.

2. The ANN output labels are compared with the correct labels of each processed
images. This require the computation of the loss function. Different kind of
loss functions can be used, like Mean Square Error (MSE), or Cross Entropy,
or Categorical Cross Entropy.

3. At this point, we need to compute the derivative of the loss function with
respect to each weight of the Network. In order to do so, we can apply the
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Chain Rule, starting from the weights of the output neurons and then moving
backward layer by layer. This stage is called Backpropagation [22].

4. Once all the derivative of the Loss function with respect to the weights are
computed, we can now modify the weights. This is done by incrementing
(or decrementing) their value by a quantity proportional to the computed
derivative.

These steps are repeated until the accuracy achieved by the network on the test
set reaches a satisfactory value.
The gradient descend algorithm is usually applied on a limited amount of inputs
per cycle. This reduces the computational cost of the training, still allowing to
reach good training results. The group of inputs used per each cycle is called batch:
usually the batch size is of power of 2, in order to optimize the hardware utilization.
Once all the images belonging to the train set have been used to train the network,
an epoch is concluded. The number of epochs needed to train the network depends
on the architecture of the network itself.
A key point for a correct training is that the trained network is able to generalize.
In fact, a relevant problem in deep learning is the network overfitting. This happens
every time the network reaches an high accuracy on the images of the train set,
but then the accuracy achieved on the test set is far lower. This happens because
the network learns to recognize specific features of the train images, but it is not
able to generalize those features, and therefore its ability to classify drops once
the input image is slightly different from what it is expected. In order to avoid
overfitting, some precautions can be applied:

• Dropout [23]: This technique consists in turning off some neurons during the
training process. When these neurons are off, they are not used by the network
and the weights of the relative synapses are not updated. This technique
increases the noise during the training process, reducing the co-adaptation of
the network to the inputs. When it comes to the inference phase, all neurons
and their relative connections are restored. An example of dropout is reported
in Figure 2.5.

• Regularization: This technique penalize large weights, using penalties during
the weight update. This helps to avoid that some weights reaches very
high values, leading to overfitting. An example of regularization if the L2
regularization [24]: the weights are update not only by the derivative of the
loss by the weight, but also by subtracting a quantity proportional to the
square value of the weight itself. This penalizes the presence of large weights
in the network.

A network that is capable of high generalization will provide consistent classifi-
cation results when used on a set of inputs that have not been used in the training
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standard Neural Net With Dropout applied

Figure 2.5: Dropout technique [Source: [23]].

process, i.e. never encountered by the network before. On the other hand, a bad
classification result during this validation process highlight a bad training process,
that is the overfitting.

In order to improve the training process, different techniques can be applied. A
first solution is to apply an Optimizer, which helps to achieve a good learning
rate and a fast convergence. Examples of optimizers are Adam [25] and Stochastic
Gradient Descent (SGD) [26]. Also, we can apply Learning rate decay [27], that
consists in modifying the learning rate used in the training process as the number
of training epochs increase.
Finally, data augmentation [28] techniques can be used to apply slight modifi-
cations to the input images in order to expand the dataset. Some of these image
alterations are rotations, flip along the horizontal or vertical axis, and random
crops.

2.3.2 Convolutional Neural Networks
In a classical, fully connected NN, all neurons of one layer are connected to all the
neurons of the following layer. This comes at a high cost in terms of computation,
and power consumption. This kind of networks can not have many layers, because
of the high cost that would come in having all the connections required between
neurons. Moreover, the NN is more prone to overfitting.
Therefore, some considerations can be made in order to reduce the number of used
connections and increase the generalization capabilities of the network.
Images are usually characterized by strong correlations between pixels. The corre-
lation can be of two kinds: temporal and spatial correlation. For example, let’s
suppose that we want to recognize a face: we expect to find two eyes, one nose,
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and a mouth. Moreover, we also expect that the pixels that contain an eye are
neighbour, and cover only a small part of the whole image. Therefore, instead of
connecting each neuron to all the pixels of the input image, we connect the neuron
to a subset of the input pixels. In this way, we expect to exploit both the spatial
and temporal relation among the image pixels. Moreover, this comes with a drastic
reduction of the total number of connections needed.
In order to obtain this kind of architecture we use Convolutional Neural Net-
works (CNN) [22]. This networks use convolutional filters, that are applied between
two consecutive layers setting the connections among neurons. These filters are
applied on a subwindow of the input image, and then are moved progressively
in both x and y directions in order to cover the whole image. This allows to
recognize a certain feature, for example and eye, independently from its position.
As you move the filter on the image, you get a different output depending on the
subwindow over which the filter is applied, providing each postsynaptic neuron
with a different input quantity.
Each filter is characterize by a Kernel value, that is the size of the subwindow that
is covered by the filter, and a Stride value, indicating the number of pixel shifts
done by the filter as it moves in the x and y directions.
An example of convolution is reported in Figure 2.6.

Figure 2.6: example of a filter with a 3x3 kernel, moving with stride = 1
[Source: [29]].

The filter has the same number of channels of the input feature map: for each
channel, a different set of weights is learned. The filter is applied multiple times on
each channel, moving with a stride value until it covers the total image size in both
the dimensions. Every time the filter is applied, each kernel weight is multiplied by
the intensity of the corresponding pixel of the input feature map. The output pixel
is the sum of the output value obtained by applying the kernel on all the input
channels. To this quantity, it is usually added a bias contribution. In figure 2.7, a
numerical example of a convolution operation is presented.

On each layer of the NN, a different set of filters are applied. The number of
filters that are used on a layer defines the number of channels of the feature map
of the following layer. As we move forward into the NN, the number of filters
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Figure 2.7: Numerical example of a convolutional filter application. For each
channel, a different set of weights are learned. For each input subwindow, an output
value is obtained by multiplying the kernel weights with the intensities of the input
pixels. Finally, the results are summed up adding also a bias contribution. The
final quantity is the input of the following neuron, on which the activation function
will be applied [Source: [29]].

applied generally increases, and the size of the feature maps decreases. When a
filter is trained, it will be able to recognize specific features of the input image: the
more we move toward the last layers of the network, the more complex become the
features recognized by the filters. Figure 2.8 shows an example of a CNN with 3
convolutional layers and 1 fully connected layer.

In addition to the convolutional layer, in a CNN we can also find Pooling
layers. This filters are not used to learn new informations, but are generally
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Figure 2.8: example of a CNN with 3 convolutional layers [Source: [30]]

applied in order to get a size reduction of the feature map. Each pooling filter is
applied independently on each channel of the feature map, and are characterized
by their size and stride values. They move over the input feature map just like a
convolutional filter, applying the pooling operation on all the subwindows. Pooling
layers can be of two kinds:

• MaxPooling: the output is the maximum value between the pixel intensities
of the input feature map.

• AveragePooling: The output is the mean value between the pixel intensities
of the input feature map.

2.4 Spiking Neural Networks
Spiking Neural Networks (SNNs) [19] are a novel yet promising approach in the
world of deep learning. Usually referred to as the third generation of NNs, they
are based on biologically plausible models of neurons [31], which communicate
asynchronously through series of spikes. Neuroscience has provided more and more
precise models of the biological neuron that describe with a high precision how the
information is processed and delivered through a net of neurons.
When it comes to the implementation of a spiking neuron, different models can
be taken as a starting point. Models can be more or less faithful to the biological
world, and the one to adopt really depends on the application. As the model
complexity increases, it will provide more precise and accurate results, requiring a
higher computational cost for its implementation.
The most employed neuron model is the Integrate and Fire (IF) model, which will
be described in the following section.
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2.4.1 Integrate and Fire (IF) model
The IF is the most widely used neuron model, thanks to its relatively simple
implementation. The model is based on a RC circuit, as shown in Figure 2.9.
The model can be described considering two neurons, called presynaptic and

Figure 2.9: Top: biological model of neurons. Bottom: electrical circuit of the
integrate and fire model. [Source: [32]]

postsynaptic. The presynaptic neuron connects its axon to the dentrites of the
postsynaptic neuron, and the connections are called synapses.
To analize the model, let’s consider the case in which the presynaptic neuron emits
a spike at time t

(f)
j [33]. This spike (or action potential) travels through the axon

and gets to the synapse. Looking to the RC model, the spike δ(t− t
(f)
j ) is low-pass

filtered at the synapse and a pulse current α(t− t
(f)
j ) is generated. The differential

equation that describes the evolution of the postsynaptic membrane potential (PSP)
is:

I(t) = v(t)
R

+ C
dv

dt
from which we derive the membrane time constant τm:

τm
dv

dt
= −v(t) + RI(t)

When the membrane potential reaches a certain threshold θ at time t
(f)
i , the postsy-

naptic neuron produces a spike δ(t− t
(f)
i ). After the spike, the membrane potential
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is reset to a value vrest that is always lower than θ. For t > t(f), the membrane
potential starts increasing again as new spikes are received at the input.
A modified version of the IF model, called Leaky-integrate and fire (LIF) [33],
takes also in consideration the concept of refractory period. After the spike, the
membrane potential is unable to increase for a short perioid of time ∆abs. During
this time, the voltage does not increase even if a train of spikes is received at the
input.

The evolution of the membrane potential over time is illustrated in Figure 2.10.
When the neuron receives multiple input spiketrains from a multitude of presynaptic

Figure 2.10: membrane potential dynamic [Source: [33]]

neurons, the membrane potential dynamic over time can be described with the
following equation:

τm
dv

dt
= −v(t) + (i0(t) +

Ø
wjij(t))

In this case, it has been made clear the contribution of each spike to the final
potential. When the spike is received, a synaptic current ij(t) is generated and its
magnitude is modulated by the synaptic weight wj . Finally, a constant contribution
called bias current io(t) is added.
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2.4.2 SNNs architecture and advantages over ANNs
The structure and behavior of an SNN are presented in Figure 2.11.
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Figure 2.11: Structure and main steps for an SNN for image classification task.
In this example, a fully connected SNN, with neurons represented as circles and
synapses as lines, is shown. (A) Pixel intensities set the inputs of neurons in the
first layer. (B) The spikes from the pre-synaptic neuron travel across the axon
and accumulate in the dendritic tree of post-synaptic neurons. The membrane
current of the post-synaptic neuron integrates the incoming weighted spike trains.
(C) The neuron membrane potential integrates the bias current and the membrane
current. An output spike is generated each time the potential reaches a predefined
threshold. Afterwards, the membrane potential is set back to the initial level. (D)
The output neurons, one for each class, generate spike trains: for each neuron, its
corresponding spike rate in a predefined time-window is computed, and used as
the output prediction for its class.

SNNs major improvements over traditional ANNs are the following [31]:

• The intrinsic asynchronous, spike-based communication protocol adopted in the
network allows to reduce the power consumption required in the computations. In
fact, in a classical ANN the power consumption is independent from the intensity
of the network inputs, because the network computations are executed no matter
of the incoming inputs. On the other hand, when little or no spikes are received
at the input the SNN does not compute, thus consuming not much power. At the
same time, when sudden burst of input spikes are received, the neurons of the
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SNN elaborate the information and power consumption increases. Such intrinsic
low power behavior originate from the assumption that the information received
from the outside is sparse, bringing to a drastic power-efficient computation.

• The asynchronous, spike-based design makes this networks ideal to cooperate
with event-based sensors. The events provided as input can be seen as train of
spikes directly processable by the network.

• The asynchronous data-driven computation brings to a fast propagation of
information through the network. This can lead to a pseudo-simultaneous
processing of information, in the sense that a first approximation of the output
classification is available immediately after a first spike is received at the input.
This is also true when the number of hidden layers is high, because spikes
propagates through layers of the network as soon as a sufficient amount of spikes
is delivered by the lower layers neurons to the following layers.

Information representation through spikes

In order to provide input spikes and collect the resulting output spikes of the SNN,
we have to understand how to properly code continuous informations using spikes.
Different approaches are used to obtain such conversion [34]:

• Rate coding: In this case, the information is coded as the mean firing rate of
generated spikes in a defined observation period.

• Inter-spike interval (ISI): the intensity of the activation is coded as the precise
delay between consecutive spikes.

• Time to first spike (TTFS): In this code technique, the information is encoded
in the latency that goes from the beginning of the stimulus, to the time of the
first output spike. This solution enables a very fast information processing,
carrying enough information.

The three coding techniques are presented in Figure 2.12.

SNN Training

When it comes to SNNs training, different solutions can be applied depending on
the typology of training that we are looking for: unsupervised or supervised.

When we want to train our network with an unsupervised technique, a possi-
bility is represented by the Spike Time Dependent Plasticity (STDP) [35]. This
solution is based on the biologically plausible synaptic weight modification that
occur as trains of spikes are processed by locally connected neurons. The basic
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Figure 2.12: Temporal diagram of the presented coding techniques

idea is that we expect to get the output neuron to spike when a certain pattern
of spikes is detected at the input of the network. The learning rule is reported in
Equation 2.1 [35].

wi ←− wi + ∆wi, ∆wi =
I

+a+wi(1− wi), if tout > ti

−a−wi(1− wi), if tout ≤ ti
(2.1)

ti and tout refer to the spike time of the presynaptic and postsynaptic respectively.
The synaptic weight wi is incremented by a quantity ∆wi if the presynaptic spike
arrives before the output postsynaptic spike. On the other hand, if the postsynap-
tic spike is generated earlier than the input spike, the weight wi is reduced. The
amount by which the weight is reduced is proportional to the weight itself and to
the learning rates a+ and a−.

For what concerns supervised learning, a fundamental problem arises: classical
supervised learning approach, i.e., backpropagation, cannot be applied due to the
non-differentiability of the SNN loss function [36]. Therefore, two main approaches
have been proposed to achieve supervised learning in SNNs:

• Use the backpropagation algorithm directly in the spiking domain. This method
generally requires to substitute the loss function with a placeholder function,
that can be differentiated [37][38].

• Train an equivalent ANN model in the ANN domain and then convert the
trained network to the SNN domain [7].

Throughout this research, we focus on the latter approach. Training the network
in the ANN domain allows us to use the current state-of-the-art training policies
and techniques. Moreover, the ANN-to-SNN conversion has shown promising
results, allowing to get SNNs that reach the same, or very close levels of accuracy,
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compared to their corresponding ANN versions [36][7]. However, some precautions
and limitations have to be considered when using this approach, as we will explain
in our analysis in Chapter 3.

2.5 Intel Loihi Neuromorphic Chip
ANNs achieve the best results in terms of accuracy and efficiency when executed on
highly parallel hardware like GPUs (Graphics Processing Unit), and even more with
specialized hardware accelerators, like Google TPU (Tensor Processing Unit) [18].
Similarly, SNNs require their specialized hardware to achieve the best results in
terms of power efficiency and latency [39].
Neuromorphic chips represent an efficient hardware solution when it comes to
the implementation of SNNs. The highly parallel asynchronous structure, combined
with the hardware implementation of the neuron model, such as the leaky-integrate-
and-fire model [35], allows to achieve far better results both in latency and power
efficiency with SNNs when compared to their CPU and GPU implementation.
Recent developments in the field of neuromorphic hardware have brought valid
and powerful solutions for the simulation of spiking neural models, like IBM
TrueNorth [3], SpiNNaker [4] and Intel Loihi [5]. Our research has focused on the
latter platform.

The Intel Loihi is a neuromorphic processor providing highly parallel and
power efficient asynchronous computation. The chip is based on a neuromorphic
mesh of 128 neurocores which execute the neuron computations. The management
of all the neurocores is possible thanks to 3 embedded x86 processors. Finally,
an asynchronous network-on-chip (NoC) connects neurocores allowing neuron-to-
neuron communication [5].

2.5.1 Neuron model
The biologically-plausible neuron model adopted by the Loihi architecture is
based on a modified version of the Current-Based (CUBA) leaky-integrate-and-fire
model [5].
Each neuron is characterized by its synaptic response current ui(t) and its mem-
brane potential vi(t). Given a postsynaptic neuron i, it receives in input a train of
spikes that are sent by a presynaptic neuron j. These spikes can be represented as
a train of Dirac delta functions:

σj(t) =
Ø

k

δ(t− tk)
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where tk is the spike time.
When the train of spikes arrives at the synapse, it is filtered by a synaptic filter
input response αu(t), which is defined as:

αu(t) = e− t
τu

τu

H(t)

Where H(t) is the step function. Each filtered spike train is multiplied by the
synaptic weight wij associated to the synapse that connects neurons ni and nj.
The synaptic response current can then be computed as the sum of all the weighted
and filtered spike trains, with an additional bias current bi:

ui(t) =
Ø

j

wij(αu ∗ σj)(t) + bi

Finally, the synaptic current is integrated by the membrane potential vi(t).

v̇i(t) = − 1
τv

vi(t) + ui(t)− θiσi(t)

When the membrane potential reaches a certain threshold θi, the neuron spikes.
After that, the membrane potential is reset to a vrest value and start increasing
again as new input spikes are received. The time constant τv is responsible for the
leaky behaviour of the model [5].

2.5.2 Chip Architecture

Overview

Each neurocore can simulate up to 1024 spiking neural compartments units: each
compartment can emulate a tree of neurons. Neurons variables are updated at
every algorithmic time-step. The spikes generated by a neuron are delivered to
all the compartments belonging to its synaptic fan-out through the Network on
Chip (NoC). The NoC allows to deliver spikes between different neurocores in a
packet-messaged form, following a mesh operation that is executed over a series of
algorithmic time-steps. In the absence of a global clock, a barrier synchronization
mechanism is used to ensure that at the end of each time-step, all neurons are ready
to proceed to the next time-step. An off-chip communication interface allows to
extend the mesh up to 4096 on-chip cores, and up to 16,384 hierarchically connected
cores [5].
The architecture of a single Loihi chip is displayed in Figure 2.13.
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Figure 2.13: Loihi single chip architecture

Mesh operation

The Network on Chip allows the neurons to exchange spikes during each algorithmic
timestep t. Each neuron inside the mesh neurocores goes through the different
stages of its computation, generating output spikes that has to be delivered to all
the postsynaptic neurons that belong to the neuron fan-out [5]. In Figure 2.14(B)
we have an example of two neurocores, A and B, containing two spiking neurons n1
and n2: thes spikes are delivered to the destination neurocores through the NoC.
In order to correctly deliver the spikes, each neurocore iterates over its neurons,
and deliver the spikes to the neurocores that contain the postsynaptic neuron. This
operation is performed through the NoC, that is based on a dual-channel router
network. Spikes are sended by the neurocores on one of the two channels, which
allows the trasmission of 1 spike message at a time. Each neurocore processes a
list of fan-out cores in order to deliver more than one output spike.
The asynchronous digital architecture of the Loihi chip requires a barrier synchro-
nization mechanism [5] that allows all the neurons present in the neural network
to advance to the next algorithm timestep t + 1. When a neurocore ends the
distribution of spikes of its neurons, it send a barrier synchronization message that
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is received by the neighbour neurocores. At this point, all spikes that are still
traveling are flushed. After this, a second message is shared to all cores and as
soon as it is received by a neurocore, it advances to the next timestep t + 1.
An example of the mesh operation is presented in Figure 2.14

A

B

(A) (C)(B) (D)

Figure 2.14: Loihi neuromorphic mesh operations: (A) neurons advance through
their computations. (B) Neuron n1 and n2 belonging to neurocores A and B
generate output spikes that are delivered to postsynaptic neurons belonging to
other neurocores. (C) other neurons spike and the spikes are sended thorugh the
mesh. (D) the barrier synchronization mechanism is exchanged and neurons move
to the following timestep [Source: [5]]

Moving to a closer examination of the neurocore message exchange protocol, let’s
consider the case of a neuron x which generates spikes to be delivered to a group
of postsynaptic neurons A − F , as presented in Figure 2.15. Each postsynaptic
neuron may belong to different neurocores, thus a core-to-core connection protocol
has to be established [5].
Each destination core is connected to the sender core with an axon connection,
labeled with a specific ID. The axons are exclusive for each core-to-core pair, and
connect neurocore’s output and input edges.
Some constraints has to respected when it comes to the neurocore mapping of
neurons and their input and output connections. These limitations are reported in
Table 2.1.

Neurocore constraints
max compartments 1024
max fan-in axons 4096
max fan-out axons 4096

Table 2.1: Constraints of Loihi neurocores [5].
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Figure 2.15: Loihi neurocores connection policy. In yellow are the core output
edges. In red are the core input edges. [Source: [5]]

Neurocore microarchitecture

Figure 2.16 shows the schematic of the Loihi neurocore microarchitecture. Besides
the input and output blocks, the design can be divided into 4 units [5]:

• The Synapse unit processes the incoming spiketrains, and retrieves the
corresponding synaptic weights from memory.

• The Dendrite unit modifies the synaptic current u and membrane potential
v of each neuron present in the neurocore (up to 1024 neurons).

• For each neuron, the output messages are create by the Axon unit. Each
message is associated to the specific postsynaptic neuron that has to be
delivered to.

• Finally, the Learning unit modifies the synaptic weights of all the synapses
connected to each neuron. The synaptic weights are updated accordingly to
the defined learning rule.

2.6 Simulators for SNNs
When it comes to the software implementation of SNNs, different simulators can
be employed. Usually they allow to describe the network with a high-level of
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Figure 2.16: Loihi neurocore microarchitecture. The color codes refear to the
core operation modes. Green: input spike handling. Purple: compartements
update. Cyan: spike generation. Red: synaptic weight update. [Source: [5]]

abstraction, giving to the user the possibility to model large ensembles of neurons
and build large networks. However, it is also possible to fine-tune the characteristics
of each neuron and synapse present in the network, leading to a deep control over
the whole simulation.
Different simulators are available with such a scope: Nengo [40], BRIAN2 [41],
PyNN [42] are all software toolkit written in python that let to implement large
networks of neurons with a high level of detail in the neuron model description.
These simulators can run locally and can be used to execute simulations of complex
SNNs.
Specifically related to Loihi neuromorphic chip, a dedicated software toolkit called
Intel NxSDK [43] is available. This python API allows to build network models
with deep controls of neurons characteristics, and directly deploy the model on
Loihi hardware. The software API gives the user a complete control over the
neuromorphic chip, allowing a full exploitation of the hardware.

Concerning the ANN to SNN conversion, specific software tools need to be
employed. Some simulators have their own conversion toolkit, like Nengo-DL [44]
for the Nengo simulator. However, a more universally compatible conversion toolkit
is SNN-ToolBox [7]. This software takes as input ANNs that have been trained
with different backends, like Keras [45], and convert them into SNNs models
compatible with different SNN simulators, like PyNN, BRIAN2 and a built-in
simulator called INI [7]. Moreover, SNN-ToolBox offers a full compatibility with
Intel NxSDK, allowing to build converted SNNs that can be directly deployed on
the Loihi platform.
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An in-depth analysis of SNN-ToolBox will be reported in section 3.4.2.

2.7 Event-Based cameras
Event-based cameras are bio-inspired sensors for the acquisition of visual informa-
tion [6]. This new technology is based on an asynchronous paradigm for dynamic
light acquisition. In a classical frame-based image sensor, the image recording of a
scene is obtained by stacking a series of frames collected with a defined temporal
rate, that is called frame rate. This approach lead to the collection of information
that is temporally not related to the dynamic of the scene.
On the other hand, in a event-based sensor, the information recorded is directly
related to the light variations in the scene. The camera works asynchronously, not
recording frames with a precise timing. Instead, the sensor records negative and
positive brightness variations in the scene. Thus, each pixel encodes for a brightness
change in the scene. Pixels are independent, and can record both positive and
negative light variations.
Figure 2.17 shows a comparison between frame-based and event-based recording.

frame-based sensor

event-based sensor

Figure 2.17: Comparison of frame-based and event-based recordings. In the first
case, frames are recorded with a precise timing. In the event-based case, the only
information collected is the movement of the cheetah through time, because is the
only dynamic subject in the scene [Source: [46]].
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The output stream recorded by the sensor is a sequence of events, each coding
for a specific brightness change in the scene at a specific position (x,y),
This completely new data acquisition mechanism brings to consistent benefits [6]:

• Power consumption: The event-based recording paradigm lead to a consistent
power reduction. In fact, new data is recorded only when a bright variation is
detected in the scene. This means that, in the absence of light changes, no
information is recorded, leading to a almost zero power consumption.

• High dynamic range: The sensor has a dynamic range of 140 dB, that is far
higher than frame-based camera (60dB). This allows to use the sensor also in
very low light conditions.

• High temporal resolution: the sensor can record light variations with a very
high temporal resolution of the order of microseconds.

Figure 2.18(A) shows an example of a DVS camera, the DAVIS 240. In Fig-
ure 2.18(B) a typical event-based output is reported.

(A) (B)
Figure 2.18: (A) example of a DVS camera, the DAVIS 240. (B) typical output
of an event-based camera: Magenta pixels denote positive events, whereas cyan
pixels code for negative events [Source: [47]].
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Chapter 3

ANN-to-SNN Conversion

3.1 Theory of conversion
3.1.1 Introduction
The ANN-to-SNN conversion represents a valid solution when it comes to the
training of large, convolutional SNNs. The possibility to train the ANN with
state-of-the-art training methodologies, combined with the highly power efficient
and low-latency design of spiking networks, can set a new standard in the field of
Deep Learning. The fundamental idea behind the conversion process is that there
is a close link between ANN neurons output activation function (ReLU) and the
output spiking frequency of SNN neurons. Essentially, it is possible to define an
equivalence between the output activation of classical artificial neurons and the
spikerates of biologically inspired neurons.

After the training, for each connection among two neurons of consecutive layers
i and i+1, the weight wi,i+1 is defined. Moreover, for each neuron of layer i+1, also
the bias bi+1 is derived. In the equivalent SNN model, these parameters need to
be translated into an equivalent value for the spiking neural model. Specifically
referring to the CUBA LIF neuron model implemented by Loihi and described in
section 2.5.1, the conversion works as follows:

• the bias bi+1 is associated to the bias current bi of the neuron ni+1.

• The weight wi,i+1 is directly set as the weight of the synapse connecting neurons
ni and ni+1.

Besides the learned parameters, each layer of the ANN has to be converted to
an equivalent spiking version. This means that each layer will be composed of
equivalent spiking neurons that follow the CUBA LIF model.
In order to get a proper conversion, the trained parameters of the ANN must
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be efficiently converted into the corresponding parameters of the SNN: this also
requires to take into consideration the intrinsic differences between the two models,
and some adjustments are consequently required to get a correct conversion. In the
following sections we will present the main steps that have to be followed during
the conversion process, along with the parameters that influence the final result.

3.1.2 Activation vs Spikerate
As previously mentioned, the basic principle behind the conversion process is the
assumption that the output activation of an analog neuron can be seen as the mean
spikerate of an equivalent spiking neuron. This equivalence is particularly true in
the case of the ReLU activation function, because of its linearity, such that the
activation increases directly with its input. The same behavior can be noticed for
the spikerate of a biological neuron, where the spikerate increases as the number
of input spike increases. However, there might be some inconsistencies between
activations and spikerates after the model conversion. Different explanations are
possible for potentially poor results [7]:

• the input spikerates are insufficient to modify the membrane potential in such
a way that the membrane potential crosses its threshold. This may lead to a
lower output spikerate with respect to the artificial activation.

• The number of spikes produced by the spiking neuron are too high, leading to
a higher spikerate with respect to the artificial neuron activation.

Increasing the simulation time can solve the first problem, giving to the spiking
neuron more time to generate output spikes. On the other hand, a reduction of the
number of simulation timesteps may lead to solving the second problem, reducing
the amount of spikes generated by the neuron in the unit of time. However, none
of the previous solutions lead to a correctly converted network, where the neuron
spikerate is equivalent to the corresponding artificial activation.

3.1.3 Normalization process
The solution usually adopted to solve the inconsistencies between artificial activa-
tions and spikerates is the normalization process. The amount of output spikes
produced by a neuron is strictly related to the values of synaptic weights and
memebrane potential. If the weights are too high, the probability for the membrane
potential to cross the threshold increases, leading to an excessively high amount
of output spikes. Therefore, the normalization process adjust the weights to have
output spikerates that are consistent with the artificial activation. As we modify
the weights, we are consequently varying the memebrane threshold to input weights
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ratio.
The normalization can be of two types [7]:

• Conservative approach: The first possibility consists of rescaling all the synap-
tic weights of a layer by the maximum positive artificial activation of that
layer. This solution ensures that the activations of all neurons of a layer are
≤ 1. This can be done by scaling both weights and biases: if we call λl the
highest activation of layer l (max[al]), then the weights and biases of layer l
are scaled as:

Wl = Wl
λl−1

λl

, bl = bl/λl

When this normalization is applied, we can be sure that no spikerate saturations
will be present in the final SNN layer. However, this solution may lead to
very low firing rates across the network, being the whole process fine-tuned
for the worst case scenario (highest activation). In fact, especially in the case
of strong positive outliers in the layer activations distribution, the firing rates
of all the other neurons will be far lower than expected.

• Percentile approach: to avoid an excessive reduction of weights due to strong
outliers, we can choose as λl the p− th percentile of the total activity distri-
bution of layer l. This solution highly reduces the problem related to extreme
outliers in the distribution. In this case we will experience spikerates satura-
tion for those neurons that have activations higher than the p− th percentile.
However, we reduce the probability of having very low spikerates in the layer
neurons. Moreover, by choosing a p− th percentile between [99.0, 99.9], we
ensure that the spikerate saturation regards very few neurons.

3.1.4 Input conversion
When it comes to the application of an input image to a converted SNN, there are
2 possibilities that we can go for.

1. A first solution is to convert the analog value image into a spiking equivalent
image. This require to adopt some kind of analog to spike conversion, like a
Poisson spikerate generation [48]. However, this solution is usually avoided
in the case of converted SNN. In fact, using a train of spikes as input for the
input neurons produces an inconsistency among the ANN and SNN input
format: ANN input neurons are trained to deal with constant quantities,
the pixel intensities. On the other hand, the input neurons of the spiking
network receive train of spikes that are generated by a Poisson model, leading
to impairs in the performance.

32



3 – ANN-to-SNN Conversion

2. A second solution consists in associating the pixel intensity to the bias current
of the corresponding input neuron. This results in a constant input to the
neuron synaptic current, which consequently lead to a steady increase of the
membrane potential. Thus, the spikerates of the input neurons are consistent
with their equivalent artificial activations.

3.1.5 Pooling layers
As explained in 2.3.2, two possible pooling layers can be adopted in Analog networks:
MaxPooling and AveragePooling. The conversion of an AveragePooling layer can
be executed without problems, simply setting the synaptic weights to 1/n, where
n is the number of pixels of the feature map sub-window considered by the filter.
On the contrary, the MaxPooling implementation in the spiking domain can be
more complex: a possible solution can be to use a winner-take-all algorithm on the
ouput spiketrains on which the pooling is applied. However, this can be hard to
implement and generally the MaxPooling is converted into an AveragePooling layer
during the conversion [7].
To avoid the possible conversion loss due to the change in the layer adopted, it is
recomended to use AveragePooling layers directly in the ANN domain.

3.2 Adapting the conversion to Loihi hardware
limitations

The conversion process requires a series of additional considerations that have to
be taken into account to get a successful conversion when the SNN is specifically
built for the Loihi platform.
First of all, the Loihi architecture uses limited precision (8bit) synaptic weights,
that can be defined within the interval [-256,255] with steps of 2 or within the
intervals [0,255] or [-128,127] with steps of 1. On the other hand, the trained
ANN uses full precision 32bit floating point weights. Therefore, a preliminary
quantization of the ANN-trained weights is crucial to get a precise converted SNN.
In this quantization process, the distribution of the input weights has a major role
in the outcome of the conversion: the input weights has to be clipped into the
Loihi quantized range, therefore a tight weight distribution can be mapped to the
quantized interval without relevant errors. On the other hand, the presence of
outliers in the original weights distribution can be the main source of an inprecise
conversion: this is due to the fact that a large amount of weights are clipped to fit
into a reduced number of quantization steps. This leads to possible inconsistencies
between the pre and post quantization weight distributions. Figure 3.1 shows the
quantization problem described so far.
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Figure 3.1: examples of weight quantizations. In the first case, the weight
distribution does not contain strong outliers, leading to a seamless quantization.
In the second case, the original weight distribution presents a very high value, that
we refear to as a strong outlier. Given that all weights have to be quantized in the
interval [-256,255], a large amount of weights is quantized in a reduce number of
steps.

To decrease the probability to find strong outliers in the final trained weights, the
L2 regularization [24], applied both on activations and kernels during training,
helps to keep weights into a limited range, avoiding the precense of very high
weights that may affect the conversion.
A good practice to evaluate the quality of the conversion is to look at the cor-
relation plots between the ANN layer activations and its corresponding SNN
layer output spike rates. Figure 3.2 shows three typical correlation plots that can
be obtained with good and bad conversion processes. The expected behaviour is
having all the points along the diagonal y = x: this means that each artificial
activation is properly translated into the spikerate output of the corresponding
neuron.

Plot 3.2(A) is an example of a good correlation: as can be seen, the ANN acti-
vations are properly converted into SNN spikerates, being all the points distributed
along the main diagonal. On the contrary, plot 3.2(B) shows a worse conversion:
the ANN activations and the SNN spikerates are still distributed along the diagonal,
but the distribution of points is not confined to the desired range, being spread all
over the plot. Finally, plot 3.2(C) is another example of bad conversion. However,
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Figure 3.2: Examples of correlation plots.

in this case, the activations and the spikerates are totally unrelated.

3.3 Tunable Conversion Parameters
Many parameters can be tuned during the ANN-to-SNN conversion process, and
a detailed analysis over their effects on the converted SNN is necessary. These
parameters modify the spiking neuron model, the characteristics of the network
and the simulation duration.

• Reset mode: The reset mode defines the behavior of the neuron after a spike.
As previously said, the neuron spikes every time its membrane voltage exceeds
the threshold Vth. After the spike, the membrane voltage is reset to a value that
depends on the chosen reset mode:

– Hard Reset: The membrane voltage is reset to a fixed reset value V0 every
time the neuron spikes. This solution is less computationally expensive, but
less accurate.

– Soft Reset: The membrane voltage is reset to a value equal to the differ-
ence between the highest value reached by the membrane voltage and the
membrane threshold. This solution is more accurate, but more expensive,
because the amount of compartments needed to simulate each neuron is
doubled, compared to adopting the hard reset.

The two reset mode are shown in Figure 3.3.

• Desired Threshold to Input Ratio (DThIR): As described in Section 3.1.3,
the weights of the input ANN model has to be converted to synaptic weights of
the SNN. Because of the limited dynamic range of spiking neurons, the output of
a spiking neuron may saturate due to an excessively high input, given by some
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Figure 3.3: Examples of hard reset and soft reset

out-of-scale synaptic weights. Hence, it is necessary to normalize the network
and set a constant ratio between the incoming neuron inputs and its membrane
threshold [49].

• Simulation duration: This parameter defines the number of algorithmic
timesteps for which the network receives the same image as input, i.e. the
inference time. A longer duration gives the network more time to output its
prediction, but it increases the latency of the system.

3.4 Experimental Setup
The experimental setup that has been used to study the conversion process comprise
3 main steps:

• ANN training: first, it is needed to properly train the neural network in the
original analog domain. The training has been performed using the Python
Keras API [45], which allows to train the network with state-of-the-art
techniques and optimizations.

• ANN-to-SNN Conversion: once the network has been trained in the analog
domain, it is possible to convert it to a spiking equivalent model. The
conversion is performed using SNN-ToolBox [7], an open-source python
conversion tool compatible with Loihi.

• SNN inference on Loihi The Loihi platform can be programmed using Loihi
NxSDK [43], a python API that allows to create and test spiking models on
Loihi hardware.

The described steps are depicted in Figure 3.4. In the following 3 sections, we
are going to describe the tools used during the conversion process.
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Figure 3.4: Tool flow of our simulation process.

3.4.1 ANN training
To study the behavior of the conversion, a network has been used to evaluate
the process. Such a network, that we will refer to as NxNet, is a convolutional
neural network that contains only convolutional layers and a final dense layer. Its
structure is reported in Table 3.1.

Layer features Kernel stride size MNIST size CIFAR10 Activation
Input 1 28x28x1 32x32x3 ReLU

Conv2D 16 4x4 2 13x13x16 15x15x16 ReLU
Conv2D 32 3x3 1 11x11x32 13x13x32 ReLU
Conv2D 64 3x3 2 5x5x64 6x6x64 ReLU
Conv2D 10 4x4 1 2x2x10 3x3x10 ReLU
Flatten 40 90
Dense 10 10 SoftMax

Table 3.1: NxNet architecture for MNIST dataset.

To achieve a better conversion, both activation and weight L2Reguralization
are applied on the network layers: in both cases the regularization parameter is set
to 1 · 10−4. The use of regularization during training is preferable for preventing
the divergence of the parameter distribution and avoiding information loss due to
the quantization process of the parameters, as discussed in Section 3.2.

The datasets on which the analysis have been performed are MNIST [8] and
CIFAR10 [9] datasets. For each input image, the intensity values are normalized
between 0 and 1. Both networks are written in Keras, using TensorFlow [50] as
backend. The training is performed with the following policies:

• learning rate decay: initially set to 0.001, it is halved after 15 consecutive epochs
without validation accuracy improvements, with a minimum value reachable of
5 · 10−7.

• Adam optimizer [25].
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• Small data augmentations, with width and height shifts of 0.1, and 10° rotations.

After training, the values of test accuracy achieved by the networks are reported in
table 3.2.

Nework Dataset Accuracy
NxNet MNIST 98.79%
NxNet CIFAR10 78.92%

Table 3.2: Accuracy results of the ANN models.

3.4.2 SNN-ToolBox
To apply the ANN-to-SNN conversion, we use SNN-ToolBox (SNN-TB) [7], an
open-source conversion tool that is compatible with Loihi’s Python NxSDK [43],
that will be described in Section 3.4.3. More specifically, SNN-ToolBox executes the
conversion and provide a spiking model that is compliant with NxSDK specification.
The results obtained with the conversion process may not always be optimal, due
to some limitations of the NxSDK API and specific constraints of Loihi neurocores.
Therefore, in the following Section 3.5, we present a case of study for an ANN-to-
SNN conversion, specifying a set of general guidelines to follow in order to achieve
a converted SNN that reaches the same accuracy levels of the corresponding ANN.

Conversion Process

The SNN-ToolBox conversion requires four main steps:

1. Parsing: The input ANN model is analyzed, extracting the relevant infromation
related to the layer architecture. Then, an equivalent ANN model, called parsed
model, is built. This new model will contain only those layers that are necessary
for inference, discarding layers that are used only during the training process (i.e.
Dropout, BatchNormalization). Moreover, if the model contains MaxPooling
layers, they are converted into equivalent AveragePooling layers. This is because,
as we explained in 3.1.5, AveragePooling is the only supported pooling operation
in the spiking domain. The parsed model is the one used as reference for the
following conversion.

2. Conversion: A NxSDK-compatible spiking model is obtained, applying a
normalization process that adapts weights and biases to the limited dynamic of
the spiking neurons, satisfying the selected value of DThIR.

3. Partition: The conversion process requires to find a valid partition of the neural
network on the Loihi chip. Some constraints has to be respected in order to
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have a valid partition: these constraints, reported in table 2.1, are related to
the synaptic fan-in and fan-out of each neurocore, and the maximum number of
neurons that can be mapped on a single neurocore.

4. Mapping: The partition is mapped onto the Loihi chip, and the model is now
ready to be used in the SNN simulation.

3.4.3 Loihi NxSDK

The Intel NxSDK [43] is a sotfware development tool that can be used to control
and program Intel Loihi chip. The tool allows to control the chip with two levels
of abstractions:

• NxNet: an high level API that allows to control the chip without having a
deep understanding of the underlying hardware. It is possible to specify our
model in terms of groups of neurons, connections and specify the learning
rate.

• NxCore: this low level API gives the full control of the hardware implemen-
tation of neurons. It requires knowledge of neurocore configurations, and
per-core, per-register and per-field programming.

Concerning the implementation of SNN obtained after conversion from an original
ANN, a NxSDK module called NxTF is used. This module allows to build a
spiking equivalent model from an original analog network. The ANN training has
to be performed using Keras, that is the only NxTF ANN training compatible
API. Not all Keras layers are supported by the Loihi’s Python NxSDK. The only
supported layers are the one in Table 3.3. This limitation has to be taken in
consideration in the development of the ANN architecture.

Dense Flatten Reshape Padding
AvgPooling2D DepthwiseConv2D Conv1D Conv2D

Table 3.3: Layers supported by NxTF.

The access to Loihi chip is possible through the Intel NRC server. Five different
Loihi device boards are available for the user: each one differs in the number of
available Loihi chips. Moreover, boards are accessible for a limited period of time.
The available boards are reported in Table 3.4.
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Loihi Loihi_2h Nahuku08 Nahuku32 Nahuku32_2h
numer of available chips 4 4 8 32 32
execution time limit 20 min 2 hours 20 min 20 min 2 hours

Table 3.4: Avaible Loihi boards

3.5 Results
The simulations reported are executed on the Nahuku32_2h board, which is the
best choice both in terms of available Loihi chips (32), and available execution time.
As described in section 3.3, the three main parameters that have been analyzed for
a fine tuning conversion are reset mode, DThIR and simulation duration. Different
simulations have been realized to evaluate the effects of these parameters on the
final SNN accuracy of the chosen network.

3.5.1 Results varying the DThIR
In this experiment we evaluate the conversion results varying the DThIR. The
simulation duration is set to 256 algorithmic time-steps that, as we will see later on,
is a reasonable choice for both soft reset and hard reset. The tested DThIR levels
are 21, 23 and 25. Selecting higher levels is usually not a good solution because
the membrane potential threshold may gets too large. The results are reported in
Figure 3.5(A).

• MNIST: In both cases of soft reset and hard reset, the SNN accuracy is equal to
the ANN accuracy value for DThIR = 21 and 23. However, when the parameter
is increased to 25, the accuracy drops in both soft and hard reset cases.

• CIFAR10: Also in this case the highest accuracy is reached for DThIR=21, both
for hard and soft reset. However, the accuracy starts reducing when the DThIR
is set to 23, and gets to a minimum when the parameter is increased to 25.

As a consequence of these results, a value of DThIR = 21 is chosen for the following
analysis.

3.5.2 Results varying the duration and reset mode
This analysis tries to find a good compromise between simulation duration and
reset mode. Choosing a longer duration, we expect to get more precise results,
paying in terms of output latency. Moreover, the use of a soft reset is expected to
provide higher accuracy. The results are reported in Figure 3.5(B).

Looking at the results achieved on the MNIST dataset, a test accuracy of 98.70%,
only 0.09% lower than the one obtained with the ANN model, is reached in the
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Figure 3.5: The legend is common for all the plots. Classification accuracy results
for the NxNet on the MNIST and CIFAR10 datasets. (A) Varying the DThIR with
fixed simulation duration of 256 timesteps. (B)Varying the simulation duration
with fixed DThIR = 2.

soft reset case, when the simulation duration is longer than 64 time-steps. On the
other hand, it takes at least 128 time-steps for the hard reset case to get to the
same level of accuracy. Moreover, the accuracy reached by both soft/hard reset
remains stable also in the case of longer simulations.

The results for the CIFAR10 dataset clearly show that in the hard reset case
the ANN accuracy of 78.92% is never reached. The maximum value of accuracy is
67.20% when the simulation gets longer than 256 time-steps. On the other hand,
the soft reset shows better results than the hard reset, even if it does not achieve
the same results as the corresponding ANN. An accuracy of 77.10% is reached
with 256 time-steps, slowly growing to 77.40% with a longer simulation of 1024
time-steps.

Taking in consideration the case of a simulation duration of 256 time-steps, we
have the following average time for single image classification and chip occupancies
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reported in Table 3.5. Looking at the number of occupied neurocores, in both
MNIST and CIFAR10 cases the soft reset makes use of more cores.

Reset Mode Dataset Classification time Neurocores
soft MNIST 8.312 ms 27
hard MNIST 6.464 ms 20
soft CIFAR10 21.371 ms 37
hard CIFAR10 26.159 ms 29

Table 3.5: Accuracy results of the ANN models.

3.5.3 Correlation Plots Analysis
For better understanding the reasons why the soft reset conversion achieves better
results than the hard reset conversion, we compare the correlation plots of the
converted layers. Figure 3.6 shows the correlation plots of all the convolutional
layers, both for the soft reset and the hard reset versions, and on both datasets. In
each of the 4 presented cases, a simulation duration of 256 time-steps is applied, as
well as a DThIR = 21. At a first glance, it is immediately clear that the correlation
plots of the soft reset conversion are far more compliant with the expected behavior
when compared to the hard reset results, both in the case of MNIST and CIFAR10
datasets. Looking at the MNIST - soft reset simulation, the correlation plot of the
first layer shows a perfect conglomeration of activations (x axis) vs. spikerates (y
axis) points along the main diagonal. This means that the conversion of the layer
is working as desired, having all neurons spiking with a rate equivalent to their
corresponding ANN neurons activations. The same principle is adopted for the
following layers.
Looking at the MNIST - hard reset simulation, all layers correlation plots show a
far worse conversion result with respect to the soft reset case. Starting from the
first layer, the points distributes with a overlapped-staircase behavior. The same
happens in the second layer, where it is also present a dilatation of the agglomerate
of points along the x axis. However, both in the 3rd and 4th layers correlation
plots, the points are sufficiently compacted along the diagonal, and in fact the
final accuracy achieved by this network is equivalent to the ANN model, as seen in
Figure 3.5.
Regarding the CIFAR10 analysis, the soft reset case gives good correlation plots,
even if the points form a thicker agglomerate with respect to the MNIST case.
On the other hand, the hard reset gives far worse results: the correlation between
activations and spikerates is far less evident, with a general behavior that follows
the one of MNIST case, but much more emphasized. The analysis of these plots
clears the 10% accuracy drop in the hard reset case, as seen in Figure 3.5.
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Figure 3.6: Correlation plots of the first 4 layers of NxNet. The first column
shows the results on the MNIST dataset, whereas the second column presents the
results for the CIFAR10 dataset.

Overall, the results obtained on the CIFAR10 dataset are worse than the one
obtained on MNIST, both in the case of soft reset and hard reset. This can
be addressed to the higher complexity of CIFAR10 images, representing a much
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challenging dataset to work with.

3.6 Conclusions
Overall, the use of a soft reset mode gives higher accuracy results, because of
the lower information loss that occurs during the conversion, as clearly shown by
correlation plots. A good choice for the simulation duration seems to be ≥ 256
time-steps: a faster simulation may lead to an accuracy loss, as shown in the
CIFAR10 case. On the other hand, using more than 512 time-steps does not lead to
higher level of accuracy, as shown in both MNIST and CIFAR10 analysis. Finally,
a DThIR value equal to 21 seems to be the best choice to reduce the loss during
the conversion.
Furthermore, the conversion results are also strongly influenced by the ANN
architecture, as well as by the ANN training policies. To have a deeper evaluation of
the conversion process, several other ANN models have been trained and converted.
These models vary in terms of size, number of layers, and layers characteristics.
Problems generally arise when the ANN layers are too wide, making the conversion
not feasible because neurocore constraints are violated. Therefore, when it comes to
build very large networks, it is suggested to use depthwise separable convolutional
layers that require less core occupation than equivalent convolutional layers. A
wider analysis concerning ANN design adopting such layers will be discussed in
Chapter 5.
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Chapter 4

An Efficient Spiking Neural
Network for Recognizing
Gestures with a DVS
Camera

4.1 Introduction
Recent developments in the field of event-based cameras have increased the possi-
bilities to use such devices in combination with neuromorphic hardware to realize
low latency, low power systems for image recognition. As explained in section 2.7,
the great advantages of these sensors in terms of power efficiency, latency and high
dynamic range sets them as a valid alternative to frame-based cameras, especially
in the field of embedded systems.
In order to develop reliable SNNs that can work properly in combination with such
devices, we need datasets that can serve as test-applications and prove the benefits
of this technology.
As a consequence, the IBM event-based gesture dataset [10] has been used in this
research to realize a gesture recognition system that use a SNN to provide gesture
classification of video recorded with an event-based camera.

4.2 IBM gesture dataset
The IBM DvsGesture dataset [10] is a fully event-based gesture recognition dataset.
Each gesture is recorded with a DVS128 camera, providing a total of 1342 samples
divided in 122 trials. In each trial, 1 subject execute the 11 different gestures in
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sequence. A total of 29 subjects under 3 different light conditions form the whole
dataset.
The gestures are: hand clapping, left hand wave, right hand wave, left arm counter-
clockwise, left arm clockwise, right arm counter-clockwise, right arm clockwise, arm
roll, air drum, air guitar and finally other gestures class.

Each gesture has an average duration of 6 seconds and is composed by a collection
of all the events that have been recorded by the DVS camera. As explained in
section 2.7, there are 2 types of events: a positive event is recorded every time a
positive variation of light is detected, whereas a negative event is generated when
the detected light variation is negative. An example of the described event-based
gesture recordings is reported in Figure 4.1.

Figure 4.1: Examples of DvsGesture recordings. First row: actual frame of RGB
recordings. Second Row: events recorded during the execution of the hand gestures;
magenta pixels represent positive events, whereas cyan pixels are generated by
negative events. [Source: [10]]

Event-based data are ideal when used as input to SNNs, thanks to their intrinsic
asynchronous and spiking behavior. However, in the context of our research, we
are training a network in the ANN domain and only in a second stage we convert
it into the SNN domain. This force us to find an alternative representation of the
input data, being the ANN not trainable on pure sequences of events.
A valid solution can be to train the ANN with a series of frames obtained by
collecting the incoming events. However, some choices have to be made to achieve
a good conversion into frames:

• Choose the amount of events to collect into a single frame.

• Select the size of the frame and its number of channels.

• Set a policy for positive and negative events accumulation.
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4.3 Dataset conversion

4.3.1 Events Accumulation
As reported in [36], there are two accumulation approaches:

• Time-based accumulation: all events that occur in a fixed time window are
accumulated in a single frame (Figure 4.2(A)). This solution ensures that the
timing information within frames is respected.

• Quantitative-based accumulation: a fixed number of consecutive events are
accumulated in a single frame (Figure 4.2(B)). This solution guarantees that
each frame will have the same amount of information. However, this may not
be a good choice when it comes to gesture recordings. In fact, the number of
events generated by a gesture in a fixed time window also depends on the type
of the gesture itself. Not all the gestures generate the same amount of events
per second: gestures that involve wider movements generate more events per
second.

positive
negative

t(ms)

incoming
events

0 N

N events

positive
negative

incoming
events

(A)

(B)

Figure 4.2: (A): example of time-based accumulation during a period of N ms.
(B): example of quantitative-based accumulation of N events.

Therefore, using a quantitative approach, the number of frames generated
depends on the number of events produced by the gesture. Gestures with the same
time length may lead to a different amount of frames, having different event rates.
As a consequence, the final dataset will be imbalanced, having a diverse amount
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of frames per classes, both in the train set and in the test set, as reported in
Figure 4.3. In order to balance the dataset, one may reduce the amount of frames

Figure 4.3: Train set sample distribution over classes in quantitative based
approach, with an accumulation of 6000 events per frame. As it can be seen, the
amount of frame per class differs as the number of events within a fixed time
window depends on the motion itself.

per gesture to a number equal for all classes, but this would come out in a drastic
reduction of the used information from the original event-based recordings. Hence,
based on these considerations, the time-based accumulation is preferable, because
it guarantees a balanced dataset. Therefore, the results relative to the quantitative-
based accumulation approach are not discussed.

4.3.2 Time Window Size
The amount of events per seconds varies not only from gesture to gesture, but also
between different trials of the same gesture. A mean number of 98 events/ms is
estimated by evaluating the original dataset over all the available gestures of all
the different trials. This information is a relevant starting point in the choice of
the time window size that each frame has to cover. A too short time window may
lead to frames that do not contain a sufficient amount of information for a proper
classification. On the other hand, a too long time window would make the system
unable to work in a real-time condition. In this research, four different time windows
are explored: 60ms, 150ms, 235ms and 300ms. Preliminar experiments have found
that choosing a time window of less than 60ms would bring to an insufficient
amount of events collected per frame. On the other hand, an accumulation time of
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more than 300ms would lead to a total of less than 3 frames per second, that we
consider as the minimum for a real-time application.

A single frame may also have more than one channel, each covering a subset
of the whole time window. For example, a frame covering a window of 300ms
can have 3 channels, each covering 3 sub-windows of 100ms. This solution allows
to get frames in which the temporal information is preserved, since the channels
cover consecutive time sections. An example of such channel temporal separation
is shown in Figure 4.4.

100ms 100ms 100ms

channels

single 
frame

Figure 4.4: Examples of temporal channel separation within a single frame.

Moreover, another solution may be to use overlapped frames, i.e., the time windows
covered by two consecutive frames are partially overlapped. For example, using an
overlap factor of 2 with frames of 300ms, the frames will cover partially overlapped
ranges. The first frame will be [0ms; 300ms] and the following frame will cover the
range [150ms; 450ms]. A visual example of overlapped frame policy is reported in
Figure 4.5. There are several advantages in choosing this solution:
• The number of frames generated from the original dataset is multiplied by the

overlap factor, leading to a bigger dataset that guarantees better training results.

• The frames can cover different time windows, augmenting the temporal informa-
tion in the dataset.

• The throughput of the system is multiplied by the overlap factor.
In our analysis, an overlap factor of 2 has been chosen. Using an overlap factor
n > 2 would lead to generating redundant overlapped frames. On the other hand,
a value n < 2 would reduce the benefits of having overlapped frames.

4.3.3 Dealing with Polarity
Each event carries three features: the x and y position of the detected event, as
well as the polarity of the event that can be either positive or negative. We need
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0 ms 100 ms 300 ms200 ms

150 ms 250 ms 450 ms350 ms

Frame 1

Frame 2

time

channel 1 channel 2 channel 3

channel 1 channel 2 channel 3

Figure 4.5: Examples of frame temporal overlapping with an overlapping factor
of 2.

to establish a policy that defines how to efficiently exploit the polarity information.
We can define 3 possible choices:

1. 2 Channel Accumulation (Figure 4.6(A)): accumulate the positive and nega-
tive events in two different channels of the frame, c+ and c−. Both the channel
pixels are initialized at 0, and when a positive event is detected, the pixel (x, y,
c+) is incremented by 1. On the other hand, a negative event increases the pixel
(x, y, c−) by 1. Finally, pixel intensities are normalized in the range [0; 255].
This solution prevents the information loss. In fact, the polarity information
may become relevant when the gestures differ only for their sense of rotation,
because the accumulation of opposite signed events form a trace of the gesture
motion over time.

2. 1 Channel Accumulation (Figure 4.6(B)) accumulate all negative and positive
events on the same channel, keeping the polarity information. All the pixels
are initialized to a mean value of 128, and incremented or decremented by 1,
depending on the polarity of the event. Finally, pixel intensities are normalized
in the range [0; 255].

3. Discard Polarity (Figure 4.6(C)): discard the polarity information and collect
all the events in a single channel, simply incrementing the pixel (x, y) every
time either a positive or a negative event occurs. Finally, pixel intensities are
normalized in the range [0; 255].
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An experiment has been done to evaluate these three solutions: three different
datasets have been obtained by converting the original event-based dataset applying
the different polarity policies. Then the same ANN analyzed in Chapter 3, NxNet,
has been trained on the three datasets, and depending on the accuracy achieved by
the ANN on the test sets, it has been possible to select the best polarity policy.
The best solution has proved to be the third one, in which the polarity is discarded.
The 2-channel accumulation solution has not shown particular improvements on
the final accuracy, when compared to the case in which the polarity is discarded.
At the same time, having two channels that separately store the polarity comes
with a series of drawbacks: the size of the dataset and the dimension of the ANN
increases. Moreover, the number of neurocores occupied by the converted SNN is
higher, thereby also impacting on the latency of the system. For this reason, the
2-channel policy can be discarded. Considering the 1-channel polarity accumulation,
the obtained results have shown a drop of accuracy (Ä −4%) with respect to the
discarded polarity case: this can be addressed to the fact that this solution leads
to having frames with a general high level of pixel intensities, being all initialized
to a non-zero value, thereby leading to lower classification results.
For these reasons, in Table 4.1 only the results achieved without signed polarity
accumulation are reported.

channel 1 channel 2 single channel single channel

(A) (B) (C)

Figure 4.6: Polarity policies. (A) 2 channel accumulation: negative and
positive events are accumulated on 2 different frame channels. (B) 1 channel
accumulation: positive/negative events increment/decrement the pixel intensities
of a single channel. (C) Discard polarity: events are accumulated on a single
channel independently from their polarity.

4.3.4 Frame Size
Lastly, the dimension of the frame has to be chosen. The original recordings have
a dimension of 128x128. However, such dimension may be too large when used
as input of our converted SNN, leading to high number of neurocores needed to
simulate the network, as well as increasing the latency of the prediction. Therefore,
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we resized the image to a dimension of 32x32, applying two different techniques:
whole Window resize and Attention Window.

Whole Window resize

Starting from the original 128x128 frame size, we reduce the frame dimension to
32x32 by applying a preliminary Average Pooling step. This process is also useful
to remove noisy events present in the original recordings, producing an input frame
that contains only the relevant gesture information. Also a 64x64 size reduction
have been evaluated, but the accuracy results obtained by the ANN did not show
any improvement over the 32x32 size. On the other hand, a size of 16x16 would be
too small for achieving a good recognition by the ANN. A visual representation of
this solution is reported in Figure 4.7(A).

Attention Window

Another solution, which has been proposed by [51] for the same dataset, is to
collect only the events that are inside a 64x64 attention window, which moves and
keeps track of the incoming gestures. Then, the Average Pooling is applied on the
64x64 frame, reducing its size to 32x32. This solution is shown in Figure 4.7(B).

(A) (B)

Figure 4.7: Frame resize policy. (A) The original frame with size 128x128 is
scaled to a dimension of 32x32 using an Average Pooling filter. (B) An attention
window of size 64x64 is extracted and resized to a dimension of 32x32 applying
Average Pooling.

4.3.5 Dataset Structure
In all the above-discussed pre-processing approaches, the frames are associated to
their corresponding labels, and accumulated into a train set and a test set. The
dimension of the dataset depends on the chosen pre-processing approaches. Less
frames are generated with longer time-windows, whereas the amount of frames
increases as the time-window covered by each frame gets shorter.
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4.4 ANN Accuracy Results

4.4.1 Experimental setup
All the obtained pre-processed datasets have been tested with the NxNet, the
same ANN analyzed in Chapter 3, along with the same training parameters for
the MNIST and CIFAR10 datasets. This choice has been made to ensure that the
possible inconsistencies between the ANN and SNN accuracy results depends only
on the data pre-processing stage, and are not related to the network architecture
or the training policies. As explained in Section 3.6, if the ANN architecture is
modified, the conversion process may suffer and the resulting SNN might not show
the expected behavior.
The conversion process has been executed applying the soft reset mode, and a
simulation duration of 256 time-steps, with a DThIR=21, since these are the
settings that have shown the best results for both the MNIST and the CIFAR10
analyses.

4.4.2 Whole Window resize
Table 4.1 shows the accuracy results of the ANN on the different post-processed
datasets. In all the reported cases, the size of the frame is set to 32x32, and the
events polarity is discarded.

Experiment duration(ms) overlap channels ANN accuracy
E1 60 (10 per ch.) 7 6 85.23%
E2 60 (20 per ch.) 7 3 85.44%
E3 150 (50 per ch. ) 7 3 87.89%
E4 235 (78 per ch.) 7 3 88.63%
E5 300 (100 per ch.) 7 3 88.33%
E6 100 7 1 74.14%
E7 235 (78 per ch.) 2 3 88.87%
E8 300 (100 per ch.) 2 3 90.46%

Table 4.1: Pre-processing techniques applied to the original gesture DVS dataset
and relative ANN accuracies. In all the experiments, the frame size is equal to
32x32 and the polarity inormation is discarded. All the generated datasets have
been tested with the NxNet ANN.

Experiment E1 shows that, choosing a time window of only 60ms gives low
accuracy results, and the same goes for experiment E2, where the time range
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covered by each channel is doubled: this can be tracked back to a few amount of
events accumulated per channel.
Moving to experiments E3-5, the time window is progressively incremented, until
a maximum duration of 300ms is covered. The results show that a good level of
accuracy is reached with a 3-channel frame covering periods of 235ms and 300ms.
Experiment E6 has been realized to see if the use of a single channel frame could
be a valid solution. In this case, the accuracy drop is evident, and this can be
easily addressed to the fact that the single frame does not contain the temporal
information, being all the events accumulated in a single channel.
Moving to experiments E7 and E8, an overlap factor equal to 2 is introduced. The
accuracy in these two cases increases, reaching a value of 90.46% in experiment
E8, that is the best obtained value.

4.4.3 Attention window resize

As explained in section 4.3.4, another preprocessing approach is based on isolating
the 64x64 region of the input frame where the gesture is happening, and then apply
average pooling to get a 32x32 frame size. We have built a new dataset in which
the attention window policy is followed. For what concerns the other preprocessing
choices, the temporal window covered by each frame is 300ms, with each frame
containing 3 channels each covering 100ms. The polarity information is discarded
and the overlapping factor is set to 2.
This dataset, apart for the use of the attention window, is the same of experiment
E8 from section 4.4.2, where the whole window resize policy is used. We have
decided to compare the two policies (Attention Window vs Whole Window) in the
best case scenario.
The test accuracy result achieved by NxNet on this attention window-based dataset
is only 87.35%, that is -3% with respect to the once achieved with a whole window
resize policy in experiment E8 from Table 4.1.
In order to evaluate the reasons behind such poorer accuracy result, it is possible
to analyze the confusion matrix of both the experiments, reported in Figure 4.8.

As one can see from the reported confusion matrices, in the attention window
dataset case the ANN gets better results for the classes air guitar and other gestures.
On the other hand, the whole window resize policy gets better recognition results
for all the other 9 classes.
This results can be explained by assuming that the spatial relation between the
gesture and the body position is an important information for the ANN to correctly
recognize the gesture. In fact, when the attention window is applied, the gesture is
taken out of context, leading to an inevitable information loss.
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Attention Window Whole Window

Figure 4.8: Comparison of the confusion matrices obtained from the attention
window and whole window results on the NxNet

4.5 SNN inference

The trained NxNet model of experiment E8 is then converted to its equivalent SNN
and tested on the Intel Loihi. The converted network reaches a test accuracy of
89.64%, which is only 0.82% lower with respect to the original ANN. Moreover,
the average time for classifying an input frame is 11.43ms.
This results has to be compared with the state-of-the-art test accuracies achieved
in [10] and in [37].
[10] reaches a test accuracy of 94.59% with a 64x64 frame size, whereas the accuracy
achieved on a 32x32 frame drops down to 90.78%. This last value is only 1,14%
higher than the one obtained in this research using frames with the same dimension
of 32x32, but it is obtained with an ANN that is far bigger (16 convolutional
layers with far more feature maps per layer) with respect to the one that we used.
However, we did not consider to employ such large and deep networks, to maintain
low resource utilization and low latency for a real-time system.
In [37] the test accuracy reached on a smaller portion of the original dataset (1.5
seconds per gesture) is 93.64%, that is 4% higher with respect to the one obtained
with our methodology. However, being their network a pure SNN, they have directly
used the original event-based dataset, avoiding an inevitable information loss that
is related to the pre-processing step.
In terms of latency, with our best solution (E8) the total time needed for a frame
classification is 150ms + 11.42ms = 161.42ms. Since the overlap factor is 2, the
next frame starts after 150ms, therefore we considered 150ms of accumulation time
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per frame. Moreover, we are neglecting the pre-processing time needed to obtain
the input frame. This configuration gives a throughput of 6.24 classified frames
per second, which constitutes a feasible solution for a real-time application.

4.6 Conclusions
In this chapter, we have proposed an efficient method for deploying gesture recog-
nition through a DVS camera on the Loihi neuromorphic processor. After a careful
study of the original event-based DvsGesture dataset, we devised an efficient pre-
processing method for accumulating the events into an equivalent frame-based
dataset. As shown by our results, this process enables the training in the ANN
domain. Therefore, the well-known training policies and optimizations for ANNs
can be employed. An efficient conversion of the trained ANN into the SNN domain
enables the accurate, energy-efficient and real-time processing on a neuromorphic
embedded platform such as the Loihi.
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Chapter 5

Spiking MobileNet
implementation on Loihi

5.1 MobileNet Architecture
When it comes to the implementation of deep neural networks, the network architec-
ture design has a major role in determining its computational cost and latency. An
ANN gets deeper as we increase the number of layers, and wider as the number of
feature maps per layer increases. This can lead to highly computationally intensive
networks, that require a lot of hardware resources to be executed.
When dealing with limited hardware devices, like in embedded systems for mobile
vision, we need to go for some optimization approaches that can reduce the network
size and computational cost, still providing good accuracy results.
MobileNet [11] is an efficient network architecture that drastically reduces the
number of parameters needed to build deep networks, providing an higher efficiency
in terms of accuracy per computational cost.
The design of a MobileNet is based on the use of Depthwise Separable Convolu-
tions (DSCs), that substitute traditional convolutional layers leading to a massive
saving in terms of network parameters and number of computations required to
execute convolution operations.

5.1.1 Depthwise Separable Convolution
In a classical convolutional layer, when the filter is applied on the input feature map
two operations are executed simultaneously: first, each input channel is filtered
applying the convolution operation, then the filter combines the information among
the input channels providing an output feature map. On the other hand, DSC
layers split this two operations into two subsequent steps [11]:
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• First, the input image is filtered, reducing its size but keeping the same number
of input channels. This operation is executed using depthwise convolution
filters which operate individually on each input channel.

• As a second step, another convolutional operation called pointwise convo-
lution is used to combine the pixels along the channel dimension.

This factorization allows to drastically reduce the number of operations that are
needed to execute the entire convolution operation.
Taking in consideration a classical convolution filter, it takes as input a feature
map with size DF ×DF with M channels, and produces an output feature map
with size DG ×DG with N channels. Such filter has shape DK ×DK ×M ×N .
This lead to a computational cost in terms of number of needed multiplication
equal to [11]:

DK ·DK ·M ·N ·DF ·DF

On the other hand, in a DSC layer the filters used are two. First, depthwise
convolution filters are applied on the input feature map: a total of M filters with
size DK × DK are applied individually on each of the M channels of the input
feature map. This produces an intermediate feature map with size DG ×DG and
M channels. Then, the pointwise convolution is executed by using N 1× 1×M
filters, which combine the information along the input channels and provide an
output feature map with size DG ×DG with N channels. In this case, the number
of multiplications needed is the sum of the multiplications of the first depthwise
filter and the second pointwise filter [11]:

DK ·DK ·M ·DF ·DF + M ·N ·DF ·DF

From this, we can compute the reduction of computation with respect to a single
step convolution:

DK ·DK ·M ·DF ·DF + M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

= 1
N

+ 1
D2

K

Therefore, the use of a DSC leads to a massive reduction in the number of multipli-
cations, that is directly proportional to the number of output channels N and the
filter square size D2

K .
Figure 5.1 shows a visual comparison between a standard convolution and a depth-
wise separable convolution.
The use of DSC layers also reduces the number of parameters of the network [11]:
Given a convolutional filter, its number of parameters is equal to DK×DK×N×M .
On the other hand, the number of parameters of a DSC is the sum of the depthwise
convolution parameters and pointwise convolution parameters: DK ×DK ×M +
M ×N .
This allows to build very deep networks keeping the size of the model very small
when compared to equivalent networks implemented with traditional convolutions.
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Figure 5.1: (A) Visual representation of a standard convolution. (B) Generic
example of a depthwise separable convolution, containing both the depthwise
convolution and pointwise convolution steps [Source: [11]].

5.1.2 Depthwise convolution on Loihi

When it comes to the implementation of Deep SNNs on Loihi, mapping large
layers on the architecture neurocores may be non-trivial. This is mostly due to the
limitations in the neurons fan-in and fan-out given by the neurocore constraints
reported in Table 2.1. By using standard convolutions, the number of input synapses
may be very large when the input feature map has many channels, being equal to
DK ×DK ×M .
On the other hand, the use of DSCs can lead to a consistent reduction of neurons
fan-in. In fact, by dividing the convolution in two subsequent steps, the number
of input neurons reduces. Neurons that receives the output of the depthwise
convolutions will have a number of input synapses equal to DK × DK , and the
following group of neurons placed after the pointwise convolution will receive a
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total of 1× 1×M inputs per neuron. This drastically reduces the complexity of
the converted SNN mapping on the Loihi neurocores, leading to a lower amount of
used cores.
To better understand the fan-in reduction, let’s look at the example reported in
Figure 5.2. In this example we consider a 5x5 feature map with 3 channels on which
it is applied a convolution with 3x3 kernel with stride 1. On the left side of the
Figure, the convolution is performed in two steps, using a DSC layer. As one can
see, the fan-in of neurons after the depthwise convolution (first step) is 9, whereas
the fan-in after the pointwise convolution (second step) is only 3. On the other
hand, as shown in the right side of the Figure, when a conventional convolution is
applied, the fan-in of the output neurons grows significantly, reaching a value of 27
synaptic inputs. Not considering the high reduction in terms of multiplications and
addictions that comes with the use of DSCs, the consistent reduction of the fan-in
makes the use of these layers crucial for the development of deep neural networks
on Loihi. To better understand the real benefits that comes from the use of DSCs,

Fan-in: 9 
Fan-in: 3 Fan-in: 27

DepthWise 
Separable Convolution Conventional Convolution

Figure 5.2: Fan-in of a depthwise separable convolution (left) and fan-in of a
conventional convolution (right)

we can compare the number of neurocores occupied by two equivalent SNNs, one
fully made of conventional convolutional layers, whereas the second one built with
DSCs layers. The results of this comparison are reported in Table 5.1. The use
of depthwise separable convolutions lead to a reduction of 485 neurocores, saving
78.5% of hardware resources.
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Layer filter output shape neurocores neurocores
Conv2D DSC

Input 32x32x3 6 6
Conv 4x4x32, stride 2 15x15x32 75 15
Conv 3x3x64, stride 1 15x15x64 225 45
Conv 3x3x128, stride 2 7x7x128 154 26
Conv 3x3x128, stride 1 7x7x128 112 28
Conv 3x3x256, stride 2 3x3x256 24 8
Conv 3x3x512, stride 1 1x1x512 18 4
flatten 512 / /
Dense 10 1 1

Total: 618 133

Table 5.1: Neurocores occupation comparison between a fully convolutional SNN
and a corresponding depthwise-based convolutional SNN.

5.1.3 Network architecture
As a first step, let’s start by analyzing the architecture of the original MobileNet.
The network was originally designed for ImageNet [52], a very large dataset with
224x224 RGB images. The network structure is reported in Figure 5.3.

As one can see, besides a first conventional convolutional layer, the network is
structured as a series of depthwise convolutions, that are divided into 2 types:

• DSC0: A depthwise separable convolution with 3x3 kernel and stride 1, which
does not reduce the size of the input feature map and neither increases its
number of channels. Both the inner depthwise and the pointwise convolutional
layers are followed by a BatchNormalization layer, before applying the ReLU
activation function on the outputs.

• DSC2: A depthwise separable convolution with 3x3 kernel and stride 2, which
reduce by half the size of the input feature map and doubles the number of
input channels. Both the inner depthwise and the pointwise convolutional
layers are followed by a BatchNormalization layer before applying the ReLU
activation function on the outputs.

It should be noted the use of 5 consecutive DSC0 blocks, that consistently increase
the size of the whole network. Finally, the network comprise an AveragePooling
layer, needed to reduce the size of the feature map, and a fully connected layer
that generates the output predictions.
In order to see the full potential of this network in terms of accuracy, number of
operations and parameters, we can compare it with an equivalent MobileNet that
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Figure 5.3: Architecture of the original MobileNet [11].

uses conventional convolutional layers instead of DSCs. The comparison is reported
in Table 5.2.

Model Accuracy Mult-Adds Parameters
Conv MobileNet 71.7% 4866 (Million) 29.3 (Million)

MobileNet 70.6% 569 (Million) 4.2 (Million)

Table 5.2: Depthwise separable vs fully convolutional MobileNet

As one can notice, the use of depthwise separable layers comes with a minimal
accuracy reduction of only 1.1%, yet drastically reducing the number of multiplica-
tions and additions needed, as well as the number of parameters by a factor 8.5x
and 7x respectively.
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5.2 Adapting the MobileNet to Loihi constraints

5.2.1 Pseudo-MobileNets
The main focus of this research is to evaluate the ANN-to-SNN conversion process of
different pseudo-MobileNet networks, i.e., networks that adopt depthwise separable
convolutions instead of conventional convolutions following the principles of the
original MobileNet described in Section 5.1.3. The networks are built varying the
use and order of DSC layers. As a consequence, it is possible to generate several
networks that differ in terms of size and depth.
In order to understand the design policy adopted, it is necessary to draw some
distinctions from the original MobileNet design. The original MobileNet has been
designed to operated on ImageNet dataset, which contains very large images
(224x224x3), as a consequence, the network is very big in size, and it is not suitable
for a direct implementation on Loihi. In order to reduce the dimensions of the
network, we choose to use another dataset, CIFAR10 [9], which contains far smaller
(32x32x3) images. This allows to reduce the dimension of the network, making it
possible to run the converted SNNs on Loihi.
Given the reduced dimensions of the dataset size, it is also necessary to modify the
network structure. First of all, 3 different types of depthwise separable convolutions
have been adopted. In addition to the layers DSC0 and DSC2, which are present
also in the original version of the MobileNet, we have added the layer DSC1: this
depthwise separable layer reduces by 2 the size of the input feature map, doubling
the number of channels. As for DSC0 and DSC2, in DSC1 both the depthwise
and the pointwise convolutional layers are followed by a BatchNormalization layer,
and then the ReLU activation function is applied on the outputs of both the
intermediate layers.
The 3 DSC layers are summarized in Figure 5.4. The introduction of the layer
DSC1 has been necessary in order to have a less significant size reduction of the
feature maps with respect to DSC2, allowing to build deeper networks.

5.2.2 Design policy
Networks have been designed with several purposes:

• Build progressively deeper and larger networks, in order to have a clearer
view on how the size of the original ANN translates in the number of Loihi
neurocores occupied by the converted SNN.

• Find the converted SNNs with the best trade-off between accuracy and hard-
ware occupation.
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2
kernel : 3x3 stride: 2 padding: same

input: (X,Y,Z) output: (X/2, Y/2, 2 Z)

1
kernel : 3x3 stride: 1 padding: valid

input: (X,Y,Z) output: (X-2, Y-2, 2 Z)

0
kernel : 3x3 stride: 1 padding: same

input: (X,Y,Z) output: (X, Y, Z)

Figure 5.4: Depthwise separable convolutional layers adopted in our research.

• Analyze how the converted networks behave dependently on the layer used,
as well as on the order and the number of layers adopted.

As a consequence of these principles, several networks have been realized. Networks
differs in terms of depthwise separable layers adopted and number of convolutional
filters applied. For all the networks, the first layer is in common: as like as in the
original MobileNet, the first layer is a conventional convolutional layer: its kernel
size is set to 4x4 with stride 2, with a total of 32 filters. The choice of using this
kind of layer comes from the need to reduce the feature map size, in order to adopt
the following depthwise separable layers on a smaller feature map with size 15x15.
This solution is extremely important when it comes to implementing the SNNs
on Loihi, because large feature maps may be difficult to be efficiently mapped on
neurocores. The same approach is used in the original MobileNet to reduce the
feature map size from 224x224 to 112x112.
Then, after the first convolutional layer, only depthwise separable convolutions
layers are used. Each of the designed network is defined by the series of depthwise
separable layers adopted, as well as by the feature maps used for each layer. As in
the original MobileNet, the number of filters applied are chosen to be incremental,
such that deeper layers have feature maps with an higher number of channels, as
well as a smaller size. Depending on the type of depthwise separable filters used,
the number of the output channels can be equal to the input channels, for DSC0,
or double than the input channels, as for DSC1 and DSC2. As we will see in
Section 5.2.3, this channel progression policy has been adopted for the majority of
the implemented networks. However, in some cases it has been necessary to avoid
the channel doubling for layers DSC1 in order to avoid to have extremely large
feature maps in the last layer of the network.
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5.2.3 Experimental setup
Implemented networks

Network models can be identified by the order of depthwise filters applied: for
example, model 02021 will be structured as:

• First, there is always a conventional convolution with kernelsize = 4x4
and stride = 2.

• a sequence of 5 depthwise separable convolutions: DSC0, DSC2, DSC0,
then another DSC2 and finally DSC1.

• The last layer is always a fully connected dense layer with 10 output neurons
with a softmax activation function applied.

A detailed visual representation of this network, is reported in Figure 5.5.
All the networks are designed to have as output of the last depthwise separable
convolution a feature map with size (1,1) or, at most, (2,2). This design choice
comes from the need of having a small feature map before the final fully connected
layer. Otherwise, the number of synapses needed to connect the last convolutional
layer and the following dense layer would be very high, leading to a very high
fan-in, and consequently to the possibility of not being able to fit the last layer
into the Loihi neurocores.
A complete report of all the networks that have been designed for this research
is presented in Table 5.3. For each model, only the depthwise separable layers
progression is reported. Each model has been designed such that it has as first layer
a conventional convolution with 32 filters, as reported in 5.2.1. Moreover, each
network ends with a fully connected dense layers that comprise 10 output neurons.
For each model, represented by the order of its layers, two possible feature map
channel progression are adopted: in the first case (A), the first depthwise layer
start with 32 filters, whereas in the second case (B) the first depthwise separable
convolution comprises 64 filters. Then, the filter progression depends on the DSCs
applied, following the policy reported in 5.2.1. However, in the case of larger
networks, it has been decided to avoid the doubling of the number of filters for
layer DSC1 in the last positions. This has been done in order to avoid very large
feature maps in the last layer, that would eventually lead to a difficult mapping of
the network on Loihi.

ANN training and ANN-to-SNN conversion

The set of obtained pseudo-MobileNets ANNs are trained following the same
principles adopted in Section 3.4.1, and then converted into equivalent SNNs. The
number of training epochs is set to 135, that has shown to be a valid solution for
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DSC layers feature maps channel progression
221A 32 64 128
221B 64 128 256
1211A 32 64 128 256
1211B 64 128 256 512
2111A 32 64 128 256
2111B 64 128 256 512
02021A 32 64 64 128 256
02021B 64 128 128 256 512
11211A 32 64 128 256 512
11211B 64 128 256 512 1024
010211A 32 64 64 128 128 256
010211B 64 128 128 256 256 512
020111A 32 64 64 128 128 256
020111B 64 128 128 256 256 512
0101211A 32 64 64 128 128 128 256
0101211B 64 128 128 256 256 256 512
010101121A 32 64 64 128 128 256 512 512 1024
010101121B 64 128 128 256 256 512 1024 1024 2048

Table 5.3: Set of all the pseudo-MobileNet models proposed in the research.

all the proposed model in order to avoid overfitting. The conversion process is
implemented following the results obtained in Section 3.5, setting the conversion
parameters in order to achieve the best conversion results. More specifically,
the reset mode adopted is Soft Reset, the DThIR is set to 21 and finally the
simulation duration is set to 256 algorithmic time-steps.

5.3 Results

5.3.1 Model 02021B analysis
As it has been shown in Chapter 3, Section 3.5, there is always an accuracy gap
between the original ANN model and the corresponding converted SNN. This gap
can vary, depending on the network model, and on other factors:

• Trained weights and biases distributions: as explained in Section 3.2, the
distribution of weights and biases may play a key role in the final conversion
result. This is due to the possible presence of strong outliers in the distributions
that may impact negatively on the quantization process that is performed
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Figure 5.5: Example of a pseudo-MobileNet. The sequence of depthwise separable
layers adopted is 02021. The first convolutional layer has 32 filters, and the following
layers use a number of filters that follows the described pattern.

during the network conversion.

• SNN design: some specific issues may be related to the networks model itself.
Very large networks may fail to correctly operate in the SNN domain, because
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of a very high number of neurons per layer.
In order to evaluate the reasons behind failed conversions, let’s focus on a specific
case study, model 02021B.
The analysis conducted follows the principles reported in 5.2.3. First, as always,
we execute the training of the ANN model, applying a weight regulazation of 10−4

to each layer. As we will see in Section 5.3.2, this value is a good choice for this
model setup. Once the training is completed, the model can be converted using
SNN-ToolBox, and finally the converted SNN can be tested directly on Loihi.
After the training, the ANN accuracy achieved by the model is equal to 84.10%.
However, the converted SNN gets an accuracy of only 53.92% on the test set. This
means that the conversion process is not efficient, leading to an accuracy drop of
30.18%.
In order to understand the causes of such an accuracy drop, we can analyze the
correlation plots of of each network layer. Correlation plots have been introduced
in Section 3.2 as a valid tool to evaluate the conversion process. In figure 5.6 are
shown the correlation plots of all the depthwise separable layers in the network.
Moreover, for each layer is reported the value of the Pearson Coefficient (PC),
that is an index that measures the linear correlation between two variables, i.e.
activation and spikerates. The PC ∈ [0,1], where 1 represent a perfect correlation.
Each layer comprises one depthwise convolution and a subsequent pointwise convo-
lution. As explained in Section 3.2, a correlation plot shows the correlation between
the ANN neuron activation and the corresponding SNN neuron spikerates. In an
ideal conversion we expect to have all the points aligned along the diagonal with a
PC = 1, indicating that the conversion has been performed without information
loss between the ANN and the SNN model. However, The reported results show
that, as we move toward deeper layers of the network, the point distribution in
the correlation plot gets wider, indicating that the converted spiking neurons are
not behaving as expected. When the last depthwise separable layer (DSC1) is
reached, the point distributions in the correlation plots get extremely sparse with
PC = 0.679 and PC = 0.432 in the last depthwise and pointwise layers, leading to
an evident inequality between the two models.

As previously discussed, the conversion inefficiency may come from a bad weights
and biases quantization that takes place during the conversion process. Therefore,
we can plot the weight and bias distributions of all the depthwise layers to see if
there are discrepancies between the original ANN weight and bias distributions
and the corresponding quantized distributions of the final SNN model. Figure 5.7
reports, for each depthwise separable layer, the weight and bias distributions of
both the original ANN layer and the equivalent SNN. Moreover, for all the DSCs,
both the depthwise and the pointwise convolutions distributions are shown.
Results show that the weights and biases distributions shapes are preserved for all
the layers. However, in some cases the quantized biases distribution get squeezed
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Figure 5.6: Correlation plots of model 02021B. For reason of clarity, only the
depthwise separable layers are reported, while are omitted the correlation plots of
the first convolution and the final dense layer. For each DSC, there are 2 inner
layers: the depthwise convolution and the pointwise convolution.
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into a smaller interval with respect to the original ANN distribution. Such a bias
magnitude reduction is a consequence of the normalization process that takes place
during the conversion. As explained in 3.1.3, during the conversion a normalization
operation is executed in order to avoid the saturation of the neuron spikerates.
This process requires to apply a scaling factor for weights, and also the membrane
threshold is scaled to have a fixed threshold to input ratio. As a consequence of the
threshold scaling, also biases need to be scaled by an additional factor proportional
to the reduction applied to the membrane threshold of the previous layer.

In order to evaluate the possible influence of biases distributions on the converted
network, we train again the ANN model 02021B removing the bias contributions
from each convolutional layer. Then, the converted SNN is evaluated again by
analyzing its correlation plots, that are reported in Figure 5.8.

As it can be clearly noticed, the correlation plots are far more accurate in
this case. For almost all convolutional layers the correlation points are tightly
distributed along the diagonal, with Pearson coefficients that are steadily higher
than 0.95 for all layers except for the last pointwise convolution. These results
clearly show that the bias contribution is responsible for the final results of the
conversion.
However, besides the correctness of the correlation plots, we still need to evaluate
both the ANN test accuracy and the final SNN test accuracy in order to see if the
converted model works as expected. The results are reported in Table 5.4, that
contains a comparison between the model 02021B trained both with and without
biases.
In the case of no bias used, the model ANN test accuracy is equal to 78.87%, that
is more than 5% lower than the one achieved by the original 02021B ANN using
biases (84.10%). Moreover, the accuracy achieved by the converted SNN gets to a
mere 40.40%, that is lower than the one obtained with the original 02021B model.
Looking also at the accuracy difference between the ANN and the SNN models,
when biases are removed from the convolutional filters the gap goes up to a 38.47%,
that is far 8% higher with respect to the one of the original model with biases.

Model 02021B ANN accuracy SNN accuracy Accuracy Gap
With Bias 84.10% 53.92% 30.18%

Without Bias 78.87% 40.40% 38.47%

Table 5.4: Recap of the accuracy results achieved with model 02021B. The first
row reports the results achieved when using biases during training, whereas the
second row shows the accuracy obtained with the same model trained without
biases for all the convolutional layers.

These results show that the SNN conversion efficiency is not only related to the
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Figure 5.7: Weight and bias distributions of all depthwise separable layers for the
model 02021B. For each layer, both the depthwise convolutional and the pointwise
convolutional weights and biases distributions are displayed. Moreover, for each
layer are reported both the original ANN distributions and the post-quatizations
distributions of the converted SNN.

weights and biases conversion. More probably, the cause for a faulty conversion
has to be found in the layer succession and the network architecture itself.
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Figure 5.8: Correlation plots of model 02021B trained without bias. For reason
of clarity, only the depthwise separable layers are reported, while are omitted the
correlation plots of the first convolution and the final dense layer. For each DSC,
there are 2 inner layers: the depthwise convolution and the pointwise convolution.
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5.3.2 Weight Regularization analysis

As explained in 3.4.1, the use of Weight Regularization (WR) during training
can help to achieve a better conversion output. In fact, this technique allows to
reduce the possibility of having very large weights at the end of the ANN training,
keeping the weight distribution away from the presence of strong outliers.
Therefore, L2Regularization [24] has been applied to all the ANNs layers, with
3 possible values: 10−4, 10−3 and finally 10−2. As this parameter increases, the
regularization applied gets more strict.

The analysis conducted follows the principles reported in 5.2.3. First, all the
ANN models reported in Table 5.3 are trained. Once the training is completed,
the model can be converted using SNN-ToolBox, and finally the converted SNN
can be tested directly on Loihi.

First of all, we can analyze the Loihi neurocores occupation for each of the
converted SNNs. Figure 5.9 shows the incremental use of neurocores by the different
SNNs. As expected, the number of neurocores occupied by the SNN increases with
the number of layers, as well as with the number of channels of the feature maps.
Models with filters progression A occupy always less than the corresponding B
model. The results for model 010101121B is not reported because the network is
too deep, and the mapping process fails. This sets an upper limit in our design
space in terms of networks size.
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Figure 5.9: Neurocores occupation for each of the converted SNNs.
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The accuracy results both for the ANN models and the corresponding converted
SNNs are reported in Figure 5.10. For each weight regularization policy, are re-
ported the ANN accuracy and the SNN accuracy of all the models under test.
Moreover, the accuracy difference between the ANNs and the corresponding SNNs
are highlighted. Models are organized in ascending order of neurocore occupation,
following the results shown in Figure 5.9.
A general consideration is that a not negligible accuracy difference between the
original ANN model and the converted SNN is present for several networks. Some-
times, this difference is low (< 3%) but in many cases the gap is consistent, making
the SNN very inefficient.
Overall, the worst results are given for the case of WR = 10−2: for almost all the
proposed networks, the ANN accuracy is lower with respect to the one achieved
with the 2 other WR settings. As a consequence, also the SNN accuracies are lower
with respect to the cases with WR = 10−3 and WR = 10−4.
Moving to the cases WR = 10−3 and WR = 10−4, in terms of SNN accuracy the
results achieved differs with the models sizes. For small models, i.e. up to model
02021A excluding model 2211B, an higher accuracy is reached by applying a more
severe regularization (10−3). On the other hand, for all the following deeper models
an higher accuracy is achieved when a weaker regularization (10−4) is chosen.
Looking at the accuracy differences between the ANN and SNN models, it is
possible to notice that the case of WR = 10−4 gives the better results for almost
all the models. It is important to notice that this accuracy difference can be seen
as a meter of the conversion quality: therefore, choosing a less strict regularization
seems to be a better solution for the development of large spiking MobileNets.

5.3.3 Pareto Optimal Solutions
Given the results reported in Figure 5.9 and 5.10, it is possible to extract optimal
models. We are trying to optimize two parameters at the same time: the hardware
usage, expressed in terms of number of neurocores needed to map the network, and
the test accuracy of the final SNN. This multi-objective optimization is usually
referred to as Pareto optimization [53]. This solutions exploration does not
provide a unique optimal model, but a set of Pareto optimal configurations that
score the best with respect to both the accuracy and hardware usage. These
optimal solutions belong to the Pareto-frontier curve.

Figure 5.11 shows the SNN accuracies and neurocores usage of all the models.
More specifically, for each model the reported SNN accuracy is the best one among
the three values obtained from the different weight regularization simulations. The
faded results belong to models that are not optimal, having an accuracy lower
than the one obtained by a competitive model that occupies a lower amount of
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Figure 5.10: ANNs and SNNs test accuracies of all the implemented models.
ANN and SNN accuracy results varies with the applied weight regularization, as
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neurocores.
On the other hand, the orange curve highlights the networks that minimize the
core occupation while maximizing the accuracy.
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relative neurocores occupation. ANN and SNN accuracy results varies with the
applied weight regularization, as well as by the model dept. The orange line is the
Pareto-front set of solutions.

As results has shown, some network structures are more efficiently convertible,
whereas some others are not equally efficient once transformed into equivalent
SNNs.

5.4 Conclusions
The ANN-to-SNN conversion of pseudo-MobileNet models can lead to succesful
results in both the final SNN accuracy as well as in the final Loihi usage.
For some network configurations there is still a gap between the original ANN and
the final SNN accuracy results: in some cases, the SNNs can still provide good
accuracy performances, whereas for other networks the gap is so high that the SNN
can not be compared with the original ANN.
An in-depth analysis of one of the faulty conversions has shown that there is not a
trivial solution to this problem. As it has been shown, the inefficiency of the final
SNN can not be related exclusively to the conversion of weights and biases, and it
is more likely related to the network structure itself.
An extensive analysis has been carried out in order to evaluate the conversion
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of different models and find the network configurations that can maximize the
final SNN accuracy while reducing the hardware usage. In this way, a set of
Pareto-optimal solutions have been identified. As expected, deeper models can
achieve higher accuracies, still occupying an higher amount of neurocores.
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Chapter 6

Conclusions

Spiking Neural Networks represent a breakthrough in Artificial Intelligence, setting
a new paradigm for building powerful yet efficient cognitive systems. The strongly
biologically inspired nature of these models can lead to a more efficient information
processing, as well as reducing the power consumption needed to execute complex
tasks.
At the same time, the development of neuromorphic hardware is crucial for a step
forward of SNNs. The brain-inspired design allows to efficiently simulate neurons
properties and build large scale networks simulations. This, combined with the
spiking-based computation, can lead to fast, extremely power efficient solutions.
In this research, the Intel Loihi neuromorphic processor has been extensively
analyzed with the aim of building deep SNNs. Regarding the methodology used to
train and build the networks, we have chosen to follow the ANN-to-SNN approach.
This solution is the most promising for the development of very deep networks,
combining the state-of-the-art solutions for ANN training, with the power efficiency
and real-time behavior of the spiking domain.
However, the conversion process comes with challenges that are directly related
to the inevitable differences among the two networks domains. Moreover, the
conversion process has to face additional limitations when the SNN has to run on
a limited precision hardware as Loihi.
As a consequence, we have produced an in-depth analysis of the full ANN-to-SNN
conversion procedure on Loihi. Starting from the ANN training optimization, we
have then evaluated the different parameters that play a role in the conversion
process, in order to determine the setup that can provide efficient SNNs.
Then, we have moved to an application domain, realizing an efficient conversion
process to convert spiking event data coming from a DVS camera and generate
frame-based equivalent input. More specifically, we have focused on the optimization
of the conversion process for the event-based IBM DvsGesture dataset, in order to
produce an equivalent, ANN-compatible, frame-based dataset. Then, the converted
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dataset has been used to train an ANN, that has then been converted into an SNN
in order to provide an efficient SNN for gesture recognition.
Finally, we have focused on the development of deep SNNs, specifically dealing
with MobileNet-inspired networks. Such model has proven to be an extremely
good choice when it comes to implementing large networks on Loihi, matching the
neurocores constraints of the device, such as fan-in and fan-out limitations and
maximum number of neurons per core. However, in some network configurations
there is still an evident accuracy gap between the original ANN model and the
equivalent converted SNN. Such a difference is the consequence of an inefficient
conversion. However, there is not a clear reason behind this inefficiency, and it may
be directly related to the network architecture itself.
As a last mention, it is worth remarking how profound and revolutionary this
new technology field can be. Building brain-inspired devices, working both on the
hardware and software level, is the right path toward the development of extremely
low-power, real-time cognitive systems.
We can learn so much on how to realize efficient, parallel devices by looking at the
best computer ever made, our brain.
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