POLITECNICO
DI TORINO

DEPARTMENT OF ELECTRONICS AND
TELECOMMUNICATIONS
MASTER OF SCIENCE IN ELECTRONIC ENGINEERING (EMBEDDED SYSTEMS)

Methodologies for SOC verification

Candidate:
Imane EL FENTIS

Academic Advisor:
Prof. GRAZIANO Mariagrazia

Academic Advisor:
Prof. RIENTE Fabrizio

Academic Year 2019-2020

PoLyTECHNIC UNIVERSITY OF TURIN
DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS
MASTER OF SCIENCE IN ELECTRONIC ENGINEERING (EMBEDDED SYSTEMS)

Acknowledgments

I would like to show my gratitude to my Supervisors: M.GRAZIANO and F.RIENTE for
enabling this greatly appreciated thesis and allowing me to participate in it and for guiding
me throughout the whole process of the development of this thesis. I would also like to
recognize the invaluable assistance and support provided from my family and friends during
my studies.

Torino, April 2019
Imane EL. FENTIS

iii

Abstract

Nowadays, with he increase of the complexity of system on chips SOC, the ASIC industry
struggles to meet schedules of time to market TTM. System on chips market is complex in
term of the business and technology point of view. However, the time to market enforces
a huge pressure to this industry. As a consequence of these factors: appearance of new
challenges, among them the top one which is verification. This last one consumes more than
70 percent of design effort.

Verifying the correctness of the final design is the key to design more and more complex
SOCs and exploiting leading_edge process technologies.

The better to discover the hidden bugs in earlier stages the better in term of the cost,
companies often end up with costly mistake. Hence, it is important for the companies to
select the suitable tool and techniques for verification. One of the modern and effective
methodologies is universal verification methodology UVM.

UVM provides to verification engineer a layered architecture. It is based hierarchy that
allows the verification engineer to decompose the problem to sub-problem that can be solved
in several steps, hence, not dealing with huge and complex problem. In the next chapters, it
is described the importance and efficiency of this methodology and its tools used to verify a
SOC and how to use its language.

Contents

(1. Introductionl

[2. Technology challenges|

[2.1. challenges of a technology| oo

2.2. Technology options|

[2.2.1. Static Technologies| oo oo

[2.2.2. Simulation Technologies| 0.

[2.2.3. Formal Technologies|

[2.3. Verification Methodologyl o oL

[2.3.1. System-Level Verification|00,

[2.4. Verification Approaches| Lo

12.4.1. "Top-Down Design and Verification Approach|

12.4.2. Bottom-Up Verification Approach|

12.4.3. Platform-based Verification Approach|

12.4.4. System Interface-driven Verification Approach|

[3._Universal verification methodology UVM]

B, UVMIHOrarchy] . . « - o o o ooeoe e e e e e

B.1.7. UVM Scoreboardl

3.1.8. UVM Sequencer| v

8.1.9. UVM Sequence|

13.1.10. UVM Sequence item|,

B.2. UVM Class Library|.

8.3.1. Build phase| o
B3.2. Run-Time Phased. oo 0oL

8.3.3. Cleanup Phases|.

15
16
16
18
18
18
19
19
20
20
20
20
21
21
22
23
25
26

vii

Contents

4. UVM specifications|
[4.1. UVM-SV-Glossoary|

4.1.1. Accessing members| e e

[4.2. UVM : sequence_item, sequence, sequencer, transaction, virtual sequence| . .

4.2.1. Code styling

of Transactions|

4.2.2. code style of

the transaction class|.

4.2.4. Relationship

between non_virtual and virtual methods|

4.2.5. The convert2

string method| o oL

[4.3. Drivers and sequencers|. Lo

4.3.2. Working way

4.4.1. The Monitor

and type of the transactions|

4.4.2. Gathering the input transactions for analysis|

4.4.4. TLM analysis port flow]

4.4.5. Monitor code example| L oo

[4.8. configuration| . . .
[4.9. UVM factory] . . .

5. Examples in UVM]
[5.1. First style of coding]

p.1.2. Example of P4Adder|{. oo

b.1.3. Sequential circuit: D register|]o

|5] 1 Ew g] I Ew g] (2 E‘IE‘()I

6. Conclusionl

viii

27
27
28

30
31
32
33
36
41
41
44
46
47
48
48
48
48
49
50
o1
53
93
o4
95
55
96
o7
58

59
59
99
7
(s
79
79
79
81

89

91

List of Figures

[1.1. Hw/Sw Design gap-ITRS report| 2
2.1. design productivity gap| 6
2.2. 50C verification methodology|. oo 10
[2.3. Bottom-UP verification approach| 0oL 13
[2.4. Platform-based verification approach| 0oL 13
B.1. UVM evolutionl o 15
8.2. heritage of UVM|o 16
[3.3. The hierarchy ot UVM|o oo 17
[B.4. UVM fransaction Tevel Testbenchl 17
B-5. UVM Agent|. oo e 19
8.6. UVM Class library| o o 21
B8.7. UVM phases| e 22
3.8. Run phasel. 23
[T structureof aclass [I] 27
(2. structure JII) 28
4.3. sequencer and SEQUENCE| i a e e e 29
4.4. The base object|. 29
[£5. Relationship between virtual and non virtual methods [. 34
[4.6. handshake between Test/Driver/Sequence [II] 41
4.7. generator-driver-DU'L|o oo oo 41
[4.8." Transaction and control flow [. 42
[4.9. Target and initiator communication [If.o L. 43
[4.10. Analysis port-export JII] 43
[4.11. Control direction without using TLM [I]] 44
[4.12. Control direction using TLM [I]|. 44
[4.13. The sequencer and driver [I]|. oo L 44
[4.14. The driver example -complete the code [1| 45
BI5 virtualinterfacel oo 47
[4.16. The emulation [I[| o 47
[4.17. The coverage-collector,agent,monitor [1I| 48
[4.18. DUT-monitor-scoreboard| oo 49
[4.19. code of monitor-scoreboard [I]| L 49
[4.20. control and transaction flow direction [1]]. 49
[4.21. Monitor-scoreboard with UVM [I]] 50
[£:22.TLM analysis port-export [1]| i 50
4.23. multiple agents| 51
4.24. DUT with multiple ports|] 52
4.25. Active and passive agent| oL Lo 52

ix

List of Figures

[4.26. Real example of multiple agent with other components| 52
[4.27. Implementation and verification plan| o000 53
[4.28. Single block| 53
[4.29. The component of the scoreboard [I] 54
[4.30. Scoreboard TLM connection [IIf 54
[4.31. hierarchical scoreboard [IIfo Lo Lo 54
[4.32. Flat scoreboard [. 55
[4.33. Testbench-copy-clone [T 55
[0.1. circuit to implement| L oL o 59
B2 Tulladder] o oovov oo 59
[5.3. design optimization window| Lo 73
[0.4. Enabling coverage-Questasim| Lo oL 73
E5. Results after simulation] Lo oo 74
[5.6. waves form after simulationl oL o 74
0.7, Structural window]o 74
[5.8. structural-code coverage analysis-coverage details| 75
[5.9. Code coverage analysis and coverage details| 75
[5.10. Code coverage Report| 76
BILPIAdde o oo oo 76
D12, FESMI . . . o e 80

List of Tables

[2.1. Comparison ot verification options|

xi

Chapter 1.

Introduction

Nowadays, the field of integrated systems has known an evolution ,which means the complexity
of digital systems has became very complex .In one system on chip (SOC) may include
different parts of other electronic systems ,such as the memory ,the DSP,the A/D and
D/A converters up to the microprocessor.The aim of this evolution is to make a product
faster,more efficient also less expensive in terms of area ,power consumption and obviously
in terms of money,taking in consideration time to market when produce the product to the
client (final user) with low cost ,It is very important to minimize time and effort invested
in life cycle of the product. However,a digital design before arriving to the market ,must
pass within several steps starting from the original set of specifications. In the process of
manufacturing a Very Large scale integrated circuit three different step:

1. - Design : the design phase is when an idea is transformed to a real working system

2. - verification: to ensure that the functionality of the system is the same as the
specification of the design.

3. - test : During the life cycle of the digital circuit or the system in general, periodically it
is needed to check if this system including processor cores and components are working
as expected. Generally, in order to satisfy in-field testing requirements this task is
performed by running short, fast and specialised test programs.

One of the largest and the more complex domain is design verification (DV)which contains
many languages,technologies and methodologies .A DV engineer must not get pigeonholed
in only one of many technologies that fall under DV umbrella . He/she should have largest
knowledge about systemverilog,UVM and hardware micro-architecture .At the least, the
following technologies fall under DV domain:

* UVM (Universal Verification Methodology).
* UPF (Unified Power Format) low-power verification using UPF.
* AMS (analog/mixed signal) verification. Real number modeling, etc.

* SystemVerilog Assertions (SVA) and functional coverage (SFC) languages and method-
ology.

* Coverage-driven verification (CDV) and constrained random verification (CRV).

% Static verification technologies. Static formal verification (model checking), static +
simulation hybrid methodology, X-state verification, CDC (clock domain crossing), etc.

* Logic equivalency check (LEC). Design teams mostly take on this task. But the DV
(design verification) team also needs to have this expertise.

Chapter 1. Introduction

* ESL—FElectronic System Level (TLM 2.0) virtual platform development (for both
software development and verification tests/reference model development).

* Hardware/software co-verification (hint: use virtual platform methodology).
% SoC interconnect (bus-based and NoC—network-on-chip) verification.
* Simulation speedup using hardware acceleration, emulation, and prototyping

The verification methodologies are continuously developed since the complexity of a design
is increased, as a result the verification flows become fractured and in some cases inefficient.
Though each technology presented has more features and advantages with respect to the
previous version of the same technology or an other technology especially faster bug detection
rate . The most challenge for engineer is to find an answer of this question: what can we
do during pre-silicon verification to guarantee post-silicon validation a first pass success?
Moreover,the biggest challenge that companies face is time to market which is short,in order
to deliver first pass working silicon of increasing complexity. Power management ,performance
and massive functional capacity are embedded in recent SOC realizations.The challenges
of the verification on an increased complexity scale are growing, so traditional verification
methodologies are losing field as time to market should be reached and in same time the
cost must be met .another burning point nowadays is exploding software content ,so a
methodology needed to allow in same time easier software development and faster silicon
realization. In the past, it was possible to have a early silicon sample for software development.
Oun a recent report of ITRS (International Technology Roadmap for Semiconductors) we can
clearly observe the increasing HW-SW design gap.

Additional SW required for HW

'y ~ ‘
LoC SW/Chip / 2x/10 months
log ~

Gates / Chip

Technology capabilities
2x/36 months

HW design productivity
Filling with [P and memory

HW design productivity

SW productivity
2x5 years

[
L

1981
1985
1989
1993
1997
2001
2005
2009
2013
2017
2021

Figure 1.1.: Hw/Sw Design gap-ITRS report

The starting point of such methodology which enables a unified software and hardware
development is the specification analysis of the whole system for each of the three direc-
tions:design,verification,software development .

In such a unified development environment, the verification role has increased, from

developing classical test benches, to complete architecture of transaction-level models that

enable architecture testing, performance metrics, software development, and accurate and
efficient design verification.

Chapter 2.

Technology challenges

The embedded systems know a quick shifting from system on board to system on chip ,where
all components are in the same die. As an interaction with the market, the system on
chips SOCs become more complex and challenging. The velocity of semiconductor processes
evolution and the need of the complex applications let thee design and verification engineers
think to find and build an efficient future design methodologies and verification methodologies
to meet the constraints such time to market TTM and handle the complexity of the design
. By integrating several pre-designed cores on one and same die ,realizes more soc so it
becomes state-of-the-art. Nevertheless ,this evolution raises lot of challenges with respect to
previous and traditional methodologies . In this chapter will highlight the :

e Technology challenges

e Verification technology options
e Verification methodology

e Verification languages

e Verification approaches

e Verification plans

2.1. challenges of a technology

The physical dimensions of silicon structures got continuously shrunk by silicon technology
foundries. Due to this shrinkage ,both circuit capacity and performance got improved
significantly. Moor’s law characterizes this technology evolution, It states that integrating
logic gates (transistors) onto a single silicon chip doubles every 18 months. When silicon
technology reached level 0.25 and bellow of deep sub-micron dsm, significant challenges face
the design community. These challenges can be grouped to :

1. timing closure : Designing a chip is not enough ,so timing closure must be taken in
consideration ,therefor timing closure is important ;because we need to know how fast
the chip is going to run, how much time need to receive the responses after applying
inputs , how fast the chip is going to interact with the other chips, etc. In semiconductor
market , timing closure and time taken to achieve it can dramatically impact the success
of the product . therefore, methodologies employed are addressed and strategized to
obtain in a faster timing closure along with reasonable design metrics .the main reasons

of making this item a challenge:

Chapter 2. Technology challenges

* increased size of the project :following the moor’s law as a result the computational
resources required for achieving the timing closure for billion gates become high.

x trade off timing for design techniques :most of design techniques such as power
gating, multiple clock and dynamic voltage and frequency scaling are trade off
with low power consumption [2].

2. capacity : a capacity challenges introduced in DSM technology when millions of gates
are integrated onto a single IC using 0.15 um and below technology.in order to cope
with this challenges ,the DSM design system must contain the following solutions:

* block based design :in system on chip solutions, which combine several chips into
one device that have thousands of gates .in order to complete the design of the
project successfully, the design engineer must carefully plan to meet design timing
and specifications, therefore the design must be partitioned. The top level provides
the interconnection of the blocks and in the design level down, provides the details
of these blocks either in terms of interconnection of sub-blocks or library elements.

x Design reuse :reusing already designed components for a class of the applications is
a method to reduce the design-effort and time, since these blocks are pre-designed
and have been certified or validated then there is no need to validate them again,
and they are considered as black boxes.

3. Physical properties : main challenging key in this feature are signal integrity SI
such as cross talk noise, and IR drop and design integrity such as hot electron, electro-
migration and self heating. Theses keys were ignored at relaxed geometries, while this
last have shrunk, they become more critical so that require a sign-off screen in order to
check if any violation exist [3].

4. Design productivity gap : the increase of the complexity of Ics is accompanied
with introducing more challenges to both design engineer and verification engineer
.The ITRS identified a critical design gap [4]. The design productivity lags the design
density . See figure . As a solution to this challenge is using design reuse strategies.

Additional SW required for HW
2x%/10 months

Technology capabilities
2x/36 months

HW design productivity
Filling with IP and memory

HW design productivity

SW productivity
2x5 years

.
L

1985
1989

993
1997
2001
2005
2009
2013
2017
2021

Figure 2.1.: design productivity gap

By reusing pre-existing blocks (also known as virtual component (vc) or intellectual

2.2. Technology options

property (IP)) is reducing time and effort. By adopting platform-based-design ,a set
of core elements that are common ,identified ,integrated and verified as a single entity
.by adding either newly authored elements or additional IP blocks to this core, the
actual products are then built and realized [5].

5. Time to market trend : Nowadays ,the development of a product is based on

change rapidly,and increasing percentage of demands of new products as the number
of competitors for market share do. In the market ,there are core elements which are
affecting the revenue,for example ,if your product launched with a delay of 6 months
.theses 6 months for your competitors are a chance to grape market share, and less
revenue for you to persue when finally go to market. So the better control you have on
your development of your products,the better you will have a control and ability to
predict TTM and get new technologies out while it is still new and same time have
good revenue.
With market and time pressures plus the evolution affect badly on verification method-
ologies and tools.the studies and experiences showed that from 40 to 70 percentage of
the total development of a product is dedicated to verification tasks. Clearly, these
verification activities must be efficient with respect to time.

6. SOC technology : The traditional verification methods are neither enough nor efficient
for verifying complex and developed SOC which make an other kind of challenges to
design and verification engineers.A SOC contains hardware elements,software elements
and programmable elements and power distribution ,clock and buses and test structures.
Nowadays,a SOC contains different design disciplines (AMS, digital, embedded software
(ESW)) That are co-existed in a single design.as a result the verification methodology
must deal with analog ,mixed digital signals and mixed hardware/esw verification.

2.2. Technology options

The aim of the verification is to ensure that the design meets the functional requirements
as defined in the functional specification. From 40 to 70 percent of the total development
effort for the design is dedicated to the verification of SOC devices.There are many issues
that challenge both the verification solution providers and the verification engineer such as :
is the device verified enough?,what technology options and strategies to use for verification
?7and how to plan for it to minimize verification time?.

In the industry,different technology options are available. These options can be divided to
four classifications: static technologies, simulation based technologies, formal technologies,
and physical verification and analysis. A combination of these methods must be used in
order to achieve the SOC verification goals.

2.2.1. Static Technologies

The technologies of static verification such as lint checking and static timing verification
verification don’t require test vectors or testbench for performing verification.

Lint checking :

Lint checking is a technology of static verification used to carry out a static check of the
design code in order to verify the correctness of the syntax. The types of uncovered errors

Chapter 2. Technology challenges

include unsupported constructs, uninitialized variables, and port mismatches. Simple errors
that would be time-consuming are identified by lint checking. So it would be better to
perform it in the earlier design cycle.

Static Timing Verification :

Each storage element and latch have timing requirements in a design, such as setup, hold,
and various delay timings. Timing verification determines whether the timing requirements
are being met. Timing verification is challenging for a complex design, since each input can
have multiple sources, and the timing can vary depending on the circuit operating condition.

2.2.2. Simulation Technologies

Simulation technologies include code coverage, event-based and cycle-based simulators,
transaction-based verification, AMS simulation, HW/SW co-verification,accelerators, such as
rapid prototype systems, hardware accelerators, hardware modelers, and emulation .

Code Coverage :

Code coverage analysis provides you the capability to know the quantity of the functional
coverage, that a particular test suite is applied to a specific design. This can at the full-chip
level or at the individual block level.

Event-based Simulators :
It performs the simulation by taking events, one at a time and propagating them until a
steady state condition is achieved ,through the design. This can be slow for large designs.

Cycle-based simulators :

Cycle-based simulators only function on synchronous logic, because they have no notion for
time within a clock cycle maybe this can speed up the process of the simulation but it leads
to erroneous results(for combinational circuits) because they evaluate the logic between state
element and/or ports.

Transaction-based Verification

Transaction-based verification allows simulation and debug of the design at the transaction
level. A detailed testbench with large vectors is not required in the transaction based
verification.

Emulation Systems
Emulation systems perform at speeds faster than software simulators, in some instances, can
approach the target design speeds, because they are done in hardware

HW/SW Co-verification

In HW/SW co-verification, integration and verification of the hardware and software occurs
concurrently. The co-verification environment provides a graphical user interface (GUI) that
is consistent with the current hardware simulators and software emulators/debuggers.

2.3. Verification Methodology

Hardware Accelerators

In most common cases, the actual design to be verified is run in the hardware accelerator
and the testbench keeps running in software.

Rapid Prototyping Systems

It is offering the ability for developing and debugging software, with a real view of hardware

of SOC

AMS Simulation

Due to the complexity of analog designs, less automation provided by analog tools that are
available in the industry, it is more complex than both digital-only or analog-only simulation.

2.2.3. Formal Technologies

Usually, it is difficult to detect bugs happening in a specific sequences of events. When we are
not able to detect bugs earlier in the verification phase, they may cause serious impact on the
design cycle. The exhaustive nature of formal verification and detecting these bugs earlier
become main driving forces toward using formal verification techniques. Formal verification
methods do not require testbenches or vectors for verification. They theoretically promise a
very fast verification time and 100 percent coverage. The formal verification methods are:

* Formal model checking
* Theorem proving technique

* Formal equivalence checking

Formal model checking :

A model checking tool compares the design behavior to a set of logical properties defined by
the user,which are extracted from the design specifications. Formal model checking is used
to verify behavioral properties of a design using formal mathematical techniques.

2.3. Verification Methodology

Design verification planning should start in parallel with the creation of specifications for
the system. System specifications drive the verification strategy. The figure shows the
high-level verification flow for an SOC device.

2.3.1. System-Level Verification

According to the specifications, the system behavior is modeled in the system design. The
system behavior is verified using a behavioral simulation testbench. This last might be
created in HDL, C, C++.

After validating the system behavior,the system is mapped to an existed and suitable library.
The hardware and software partitioning is done. The testbench should be converted to a
suitable format, so it can be used for hardware RTL code simulation and software verification.

Chapter 2. Technology challenges

Event based | Cycle Hw accel- | Emulation Formal Static
simulation based erators verifica- timing
simula- tion verifica-
tion tion
Function Yes Yes Yes Yes No No
Abstraction || Behavioral, RTL, RTL, RTL, Gate RTL, Gate
level RTL, Gate Gate Gate Gate
Functional Yes Yes Yes Yes Yes No
equiva-
lence
Timing Yes No Yes/No No No Yes
Gate capac- || Low Medium High Very high High Medium
ity
Run time <10 cycles 1k cycles | 1K cycles | 1M cycles Medium High
Cost Low Medium Medium High Medium Low
Table 2.1.: Comparison of verification options
System
Specifications
HW IPs
Library
System Level . —
Verification ‘hh__w_r_,-"‘“*
=
RTOS Library
"-.__________...-r"
Partitioning
Functional (S0C SW Software
[Verification [** L soc HWRTL | Development Verification

I_+

Metlist
Yerification

Synthesis,
Chip Plan & Design

10

.

¢

~

Functional Yerification
Timing Yerification
Physical VYerification &
Device Test

v

Design Sign-off

Figure 2.2.: SOC verification methodology

2.4. Verification Approaches

2.3.2. SOC Software Verification

The software team provides the software and test files in order to perform the software
verification that is performed against the specifications obtained from the system design.

2.3.3. SOC Hardware RTL Verification

The system design sends the testbench and RTL code to the Hardware verification. The
testbench is converted or migrated to a suitable format to verify the RTL code and the design
is verified for functionality. The verification mainly focuses on the functional aspects of the
design. RTL verification includes lint checking, formal model checking, logic simulation,
transaction-based verification, and code coverage analysis.

2.3.4. Netlist Verification

In this phase, the hardware RTL is synthesized and a gate-level netlist is generated. Using
formal equivalence checking tool with the reference design that is the RTL code to verify it
and the netlist of the gate-level as the implementation design. So this is used in order to
ensure that RTL and gate-level are equivalent logically.

2.3.5. Physical Verification

In order to ensure that there are no violations in the implemented design, a physical
verification is performed on the chip design. The physical verification includes design rules
checking, layout versus schematic, process antenna effects analysis, SI checking, including
crosstalk, and current-resistance (IR) drop.

2.3.6. Device Test

The final device test uses the test vectors that are generated during the functional verification.
The device test checks if the device was manufactured correctly. In this stage, it is focused
on the structure of the chip like the gate truth tables, connections. By using an automatic
test pattern generator(ATPG) tool Vectors are generated for manufacturing the device test
using the testbench created during functional verification. After getting satisfied about the
results then the design is ready for fabrication sign-off and tape-out.

2.3.7. Verification IP Reuse

Because of the pressures of the TTM on product design cycles,It forces SOC designers
and integrators to reuse available design blocks. Verification teams put a lot of effort into
developing testbenches. If the testbenches developed for one design can be used for other
similar designs, a significant amount of the verification time is saved for subsequent designs.

2.4. Verification Approaches

There are different verification approaches. These include top-down design and verification,
bottom-up verification, platform-based verification, and system interface-driven verification.

11

Chapter 2. Technology challenges

2.4.1. Top-Down Design and Verification Approach

The functional specification is the starting point for any top-down design. A detailed
verification plan is developed from the functional specification.

we are functionally verifying the system level model by exercising it with the system level
test bench. The design can be decomposed through any number of abstraction level until the
detailed design is complete. Using the system testbench, the design is verified a the upper
abstraction levels.

2.4.2. Bottom-Up Verification Approach

Nowadays, this approach is widely used in the design field. The first step in this approach is
validating the incoming data of the design by passing the files through a parser to ensure
that they are compatible with target tools. The second step is passing the files of the design
through a lint checker.

The next steps depend on the abstraction level of the design as it is shown in the figure.
Verification levels are defined as follows:

o Level 0:the blocks, individual components, or units are verified in this level separately.
The goal is to test the component exhaustively without considering the environment
into which it will be integrated. The technologies and techniques used in unit test are
similar to those applicable to an integrated design : directed random simulation, lint,
deterministic simulation, and formal checking.

e Level 1: in this level the system memory map and The internal interconnect of the
design are verified. By performing writes and read-backs all the interconnect within
the design are verified.

e Level 2: At this level, it is verified basic functionality of the design and the external
interconnect.

e Level 3:The intent is to test the functionality of the integrated design exhaustively.

After the above tests, the netlist verification, timing verification, physical verification, and
device tests are performed to ensure correct chip implementation.

2.4.3. Platform-based Verification Approach

for verifying the derivative designs that using a verified preexisting platform.

2.4.4. System Interface-driven Verification Approach

In this approach, at the interface level, of the blocks that are planned to be used are modeled
during system design. These models, along with the specifications for the blocks to be
designed and verified, are handed off to the design team members. The interface models can
be used by the verification engineers to verify the interface between the designed block and
the system. This eases the final integration efforts and enables early detection of errors in
the design.

12

2.4. Verification Approaches

Dasign fles

Detailed Design view| ————— o
N
l Abstract | Modal view
N
"
Matkst Syt chip
rif I.‘T — —* P.-.I:‘;I;—cr-:'

l

‘ Funclonal varification ‘

Timing varification
Physical verfication
a
Durvici 1St

l

Design-off

Figure 2.3.: Bottom-UP verification approach

f’._ ___________________ -.\

1
i Testbench E [Testbench]
|
|]
| v iy
[Program i High
: SoC Platform | 1 | Performance
: Memory)
1]

I

T System Bus

Peripheral Bus
Peripheral
Block

vy

Figure 2.4.: Platform-based verification approach

13

Chapter 3.

Universal verification methodology UVM

In verification technology,the latest advancement is UVM.UVM is a new verification method-
ology .It is designed to enable creation of robust,reusable,interoperable verification IP and
testbench components .

UVM has lot of exiting aspect like how is developed .UVM is not rolled out as a part of a
marketing campaign, because a collection of industry experts participated on developing this
technology like verification consultants, networking companies, microprocessor companies
,as well as EDA vendors.Accellera was the responsible of taking the auspices of this great
work.UVM succeed to unify lot of competitors in the market place in order to collaborate to
build a sophisticated verification methodology see [3.]] .

* UVM is an open standard Verification

Methodology jointly developed by: | Verification Environment
* Mentor (OVM) Universal Verification
* Open Verification methodology Methodalogy
* Used as the base for UVM =
* Cadence (URM) UVM Class Library
* Universal Reuse Methodology \
* Synopsys (VMM) 1800 compliant
SystemVerilog Language

* Verification Methodology Manual |
Figure 3.1.: UVM evolution

The result is a powerful, multi-dimensional software layer and methodology for building
verification environments [6]. The culmination of lot of indepent efforts in the verification
space represent UVM,which means based on union of other technologies ,we get as a result a
powerful verification methodology.Its heritage includes AVM, URM, VMM, and OVM figure
0.2l

UVM is very close to OVM ,because OVM was the starting point to build UVM and UVM is
compatible with OVM .In UVM the register facility is a transformation of the RAL package
which was part of VMM.UVm is the fruit of combining these methodologies and it is not just
a conglomeration of code drawn from its predecessors.This fruit provides new facilities and
new use models for testbench construction,as a result the stat-of-the-art is moved forward.
UVM is transaction level methodology (TLM). UVM is a derived class library that makes it
easy to write a configurable and reusable code.It is based on Object Oriented Programming
(OOP), but UVM designers did the whole hard work to simplify it .so you don’t need to be
an OOP expert; by creating the so co-called class library whose components an be used to
develop a testbench.In other words,when you put together the required code in place,you
will be able to go forward to next project because you still can reuse the previous code

15

Chapter 3. Universal verification methodology UVM

uvm

VMM URM

Figure 3.2.: heritage of UVM

whiteout modifying it ,you just derive from that class. However ,only few components such
driver,scoreboard and the basic transaction(sequence) need to be changed.Hence,as a solution
to the challenge of communication between interfaces ,the UVM designers make UVM classe
based, so it communicates between these classes via transaction .

3.1. UVM Hierarchy

Don’t you understand some of this? hold on, we will go into UVM hierarchy and examples
to solidify the concepts.

The UVM class library gives you the possibility to use them for generic utilities like component
hierarchy,transaction library model(TLM) ,configuration of database,etc..,which enable the
user to create any structure he wants for the testbench. In this figure [3.3|is from [(Accelera,
Universal Verification Methodology (UVM) 1.2 User’s guide)] which shows a simple hierarchy
which is composed of

* UVM Testbench
x* UVM Test

* UVM Environment

3.1.1. UVM Testbench

Testbench instanciates the Device Under Test (DUT) and Test class and configures the
connection between them.In UVM ,TLM interfaces provide a set of communication methods
that is consist to send and receive transactions between components.These components are
instantiated and connected in the testbench in order to perform the different operations
required to verify a design.

The UVM Test is instantiated dynamically at run-time, so it allows the UVM testbench to
be compiled once and run with many different tests.

Transacton level Testbench of UVM

figur Thisis the most basic testbench using a UVM agent that comprises of the se-
quencer,the driver and the monitor A scoreboard is used to analyze data is also instantiated.
The components of this Tesbench are:

16

3.1. UVM Hierarchy

testbench
uvm_test
uvm_anv uvm_sequencer
(top-level environment) uvm_sequence
{ uvm_env
[uvm_env
[uvm_env

/]

AN

virtual interface connections

interface interface interface
checks & coverage checks & coverage checks & coverage
interface ports
DUT module(s) (RTL, signals)

Figure 3.3.: The hierarchy of UVM

Sends Tests [Data

. seq_item_export

Figure 3.4.: UVM transaction level Testbench

17

Chapter 3. Universal verification methodology UVM

1. the Sequencer: Stimulus Generator,creates transaction -level traffic to send them to
the driver.

2. The driver: It takes these transactions from the sequencer and then converts them into
pin signal -level activity,and drives the DUT

3. The monitor: snoops the signal -level activity and converts them back transactions
that are sent to a scoreboard.

4. The scoreboard: gets the monitored transactions from the monitor comparesthem with
expected transactions (response transactions).

3.1.2. UVM Test

In the UVM testbench, the UVM-test is the top level UVM component. A test is a class
that encapsulates test-specific instructions written by the test writer. Tests in UVM are
classes,they are derived from uvm -test class.By using classes ,inheritance and reuse of test
is allowed. The test instantiates the top-level environment just like any other verification
component.

The uvm test :

1. Instantiate the top-level environment.
2. Configure the environment (via factory overrides or the configuration database).

3. Apply stimulus by invoking UVM sequences through the environment (typically one
per DUT interface) to the DUT.

3.1.3. UVM Environment

The UVM environment is a component that groups together other verification components that
are interrelated.The components that are usually instantiated inside the UVM environment
are UVM agents, UVM scoreboards, or even other UVM environments because the top-level
environment contains one or more environments. Each environment contains an agent for
a specific DUT interface which means that each interface to the DUT might have separate
environment per interface.This top -level environment instantiates and configures the reusable
verification IP and defines the default configuration of that IP required by the application.
Some of these IP environments can be grouped together into cluster environments (e.g., an
IP interface environment, CPU environment, etc.).

3.1.4. UVM Agent

The UVM agent is a component that groups together other verification components that are
dealing with a specific DUT interface. Agent contains a UVM sequencer to manage stimulus
flow, a UVM driver to apply stimulus to the DUT interface, and a UVM monitor to monitor
the DUT interface. UVM agents might include other components, like coverage collectors,
protocol checkers, and a TLM model.

As mentioned before, the UVM agent is the component that drives the signal-level interface
of the DUT. The agent can operate in an active mode or a passive mode. In the active mode,
it can generate the stimulus (i.e., the driver drives DUT input and senses DUT outputs). In
the passive mode, the driver and the sequencer remain silent (disabled) and only the monitor

18

3.1. UVM Hierarchy

/ UVM AGENT Sequencer

Sends Tests / Data

Monitor Sequence

Item

Monitors DUT Data
Virtual
\ Interface

Figure 3.5.: UVM Agent

Virtual
Interface

remains active. Monitor simply monitors the outputs of DUT;it cannot control the 10 of
the DUT. You can dynamically configure an agent in either an active mode or a passive
mode. Monitor is an unidirectional interface,while driver is a bidirectional interface. This is
depicted in Figure

3.1.5. UVM Driver

Driver is where the TLM transaction-level world meets the DUT signal/clock/ pinlevel world.
Driver receives sequences from the sequencer, converts the received sequences into signal -level
activities, and drives them on the DUT interface as per the interface protocol. Or the driver
pulls sequences from the sequencer and sends them to the signal-level interface. An other
block (The monitor) will observe and evaluate This interaction.As a result, functionality of
the driver should only be limited to send the necessary data to the DUT. Note that nothing
prevents the Driver from monitoring the transmitted/received data from DUT—but that
violates the rules of modularity. Also, if you embed the monitor in the driver, you can’t turn
the monitor ON/OFF.

The driver has a TLM port to receive transactions from the sequencer and access to the
DUT interface to drive the DUT signals.

Driver is written by extending uvm-driver.uvm-driver is inherited from uvm-component;
Methods and TLM port (seq-item-port) are defined for communication between sequencer
and driver.The uvm-driver is a parameterized class; and it is parameterized with the type of
the request sequence-item and the type of the response sequence-item.

3.1.6. UVM Monitor

Monitor, is reverse of the driver. It takes the DUT signal/pin-level activities and converts
them back into transactions to be sent out to the rest of the UVM testbench (e.g., to the
scoreboard) for analysis. Monitor broadcasts the created transactions through its analysis
port. Note that comparing of the received output from the DUT to that with expected
output is normally done in the scoreboard and not directly in the monitor.

The reason is to preserve modularity of the testbench. Monitor, as the name suggests,monitors
the DUT signals and coverts them to transactions. That’s it. It’s the job of the scoreboard

19

Chapter 3. Universal verification methodology UVM

to receive the broadcasted transaction from the Driver and do the comparison with the
expected outputs.

3.1.7. UVM Scoreboard

The scoreboard simply means that it is a checker (not to be confused with SystemVerilog
SVA “checker”). It checks the response of the DUT against expected response. The UVM
scoreboard usually receives transactions from the monitor through UVM agent analysis ports
and the transactions through a reference model to produce expected transactions and then
compares the expected output versus the received transaction from the monitor.

There are many ways to implement a scoreboard. For example, if you are using a reference
model, you may use SystemVerilog-DPI API to communicate with the scoreboard, pass
transactions via DPI to the reference model, convert reference model response into trans-
actions, and compare the DUT output transaction with the one provided by the reference
model. Reference model can be a C/C++ model or a TLM2.0 SystemC model or simply
another SystemVerilog model.

3.1.8. UVM Sequencer

The sequencer controls the flow of request and response sequence items between sequences and
the driver. UVM sequencer is a simple component that serves as an arbiter for controlling
transaction flow from multiple stimulus sequences. The sequencer and driver use TLM
interface to communicate. uvm-sequencer and uvm-driver base classes have seq-item-export
and seq-item-port defined respectively. The user needs to connect them using TLM connect
method.

3.1.9. UVM Sequence

After a basic uvm-sequence-item has been created, the verification environment will need to
generate sequences using the sequence item to be sent to the sequencer.

Sequences are an ordered collection of transactions (sequence items); they shape transactions
to our needs and generate as many as we want. Since the variables in the transaction
(sequence item) are of type “rand,” if we want to test just a specific set of addresses in a
master-slave communication topology, we could restrict the randomization to that set of
values instead of wasting simulation time in invalid (or redundant) values.

Sequences are extended from uvm-sequence, and their main job is generating multiple
transactions. After generating those transactions, there is another class that takes them to
the sequencer.

3.1.10. UVM Sequence item

UVM sequence item (i.e., a transaction) is the fundamental lowest denominator object in the
UVM hierarchy. It is the definition of the basic transaction that will then be used to develop
UVM sequences.

The sequence item defines the basic transaction data items and/or constrains imposed on
them. While the driver deals with signal activities at the bit level, it doesn’t make sense to
keep this level of abstraction as we move away from the DUT, so the concept of transaction
was created.

UVM sequence items, i.e., transactions are the smallest data transfers that can be executed in

20

3.2. UVM Class Library

a verification model. They can include variables, constraints, and even methods for operating
on themselves.

3.2. UVM Class Library

—

UMITI_feSounce » | < |
gel_by_name()
mt?::_gmﬂ get_name() wm_sequence_item
sel0) : compare()
: wm_resource_db copyl) i
) packl) < gel_parent_sequence()
get_by_name() prini()
get_by_type() record()
setf) unpackl) r
read_by_name()
read_by_ype() T s ek
wnte_by_name(} | : body()
wiite_by_type) | | wm_report_object | 9;::}]
— | =
| wm_config db | S0
wm_component
get_parent()
T e oe frume) = .
L wmn_sequences = puig_phase() i esesd
LvM_monitor _'-} run_phase()
L&f—} final_phase() wam_teport_catcher
wm,_scoreboard =2 phae_ended() caichi)

Figure 3.6.: UVM Class library

shows the building blocks of UVM class library that you can use to quickly build well
constructed, reusable, configurable components and testbenches. The library contains base
classes, utilities, and macros.
The advantages of using the UVM class library [7] include:

(a) Many features are provided by the UVM class library, those features are required for
verification.

(b) The component can be derived from a corresponding UVM class library component.
By using these base class elements, it increases the readability of your code since each
component’s role is predetermined by its parent class.

3.3. UVM Phases

In UVM ,phases are defined as callback methods,uvm-component provides a set of predefined
phases and corresponding callbacks. The Method can be either a function or task.Methods
that consumes simulation time are Tasks while methods that they don’t consume simulation
time are functions.May more than one callback will be implemented if the class is derived

21

Chapter 3. Universal verification methodology UVM

from uvm-component.These callbacks are executed in order.
Basically,the UVM phases have three phases:

* Build phase:builds top-level testbench topology.
* Connect phase:connects environment topology
* Run phase: run the test

* Cleanup phase. gathers details on the final DUT state processes the simulation results,
and does simulation results analysis and reporting

Run phase includes many different sub-phases ,all of them are run in Zero time ,except of
course run() phase.

¢ Build Phases

"

Zay — Build Top-Level Testbench Topology
:
(ond_of_slaboraton) -~ Connect environment topology

e N pre_reset) - Post-elaboration activity (e.g. print
topology)
* Run Phases
— Run-time execution of test
Run
ases i
Ph = _% — All phases except run() execute in
-
- Lots of sub-phases not used really
¢ Cleanup Phases
L) C post_shuidown) — Gathers details on the final DUT state
~ Processes and checks the simulation
E:anup results.
— Simulation results analysis and reporting

Figure 3.7.: UVM phases

3.3.1. Build phase

At the start of the UVM testbench simulation,the buils phases are executed ,so the aim of
these phases is to construct, configure and connect the testbench component hierarchy.All
the build phase methods are functions and therefore execute in zero simulation time. [8]

build

Once the UVM testbench root node component is constructed, the build phase starts to
execute. It constructs the testbench component hierarchy from the top downwards. The
construction of each component is deferred so that each layer in the component hierarchy
can be configured by the level above. During the build phase uvm-components are indirectly
constructed using the UVM factory [8].

22

3.3. UVM Phases

extract

e |

run

reset |—.| oonﬁsur:|_. main —.| shutdown

end_of_elaboration

v

start_of_simulation

0 ns Xns
Start of End of
Simulation Simulation

Figure 3.8.: Run phase

connect

The connect phase is used to make TLM connections between components or to assign
handles to testbench resources. It has to occur after the build method has put the testbench
component hierarchy in place and works from the bottom of the hierarchy upwards [g].

end-of-elaboration

The end-of-elaboration phase is used to make any final adjustments to the structure, config-
uration or connectivity of the testbench before simulation starts. Its implementation can
assume that the testbench component hierarchy and inter-connectivity is in place. This
phase executes bottom up.

3.3.2. Run-Time Phases

The testbench stimulus is generated and executed during the run time phases which follow
the build phases. After the start-of-simulation phase, the UVM executes the run phase and
the phases pre-reset through to post-shutdown in parallel. The run phase was present in the
OVM and is preserved to allow OVM components to be easily migrated to the UVM. It is
also the phase that transactors will use. The other phases were added to the UVM to give
finer run-time phase granularity for tests, scoreboards and other similar components. It is
expected that most testbenches will only use reset, configure, main and shutdown and not
their pre and post variants [§].

start-of-simulation

The start-of-simulation phase is a function which occurs before the time consuming part of
the testbench begins. It is intended to be used for displaying banners, testbench topology, or
configuration information. It is called in bottom-up order][§].

Run

The run phase occurs after the start-of-simulation phase and is used for the stimulus generation

and checking activities of the testbench. The run phase is implemented as a task, and all

23

Chapter 3. Universal verification methodology UVM

uvm-component run tasks are executed in parallel. Transactors such as drivers and monitors
will nearly always use this phase [g].

pre-reset

The pre-reset phase starts at the same time as the run phase. Its purpose is to take care of
any activity that should occur before reset, such as waiting for a power-good signal to go
active [g].

Reset

The reset phase is reserved for DUT or interface-specific reset behavior. For example, this
phase would be used to generate a reset and to put an interface into its default state [g].

post-reset

The post-reset phase is intended for any activity required immediately following reset. This
might include training or rate negotiation behavior [§].

pre-configure

The pre-configure phase is intended for anything that is required to prepare for the DUT’s
configuration process after reset is completed, such as waiting for components (e.g., drivers)
required for configuration to complete training and/or rate negotiation. It may also be used
as a last chance to modify the information described by the test/environment to be uploaded
to the DUT [§].

Configure

The configure phase is used to program the DUT and any memories in the testbench so that
it is ready for the start of the test case. It can also be used to set signals to a state ready for
the test case start [g].

post-configure

The post-configure phase is used to wait for the effects of configuration to propagate through
the DUT or for it to reach a state where it is ready to start the main test stimulus. I do not
anticipate much use for this phase [g].

pre-main

The pre-main phase is used to ensure that all required components are ready to start
generating stimulus [g].

Main

This is where the stimulus specified by the test case is generated and applied to the DUT. It
completes when either all stimulus is exhausted or a time-out occurs. Most data throughput
will be handled by sequences started in this phase [§].

24

3.3. UVM Phases

post-main

This phase is used to take care of any finalization of the main phase [§].

pre-shutdown

This phase is a buffer for any DUT stimulus that needs to take place before the shutdown
phase [§].

Shutdown

The shutdown phase is used to ensure that the effects of stimulus generated during the main
phase have propagated through the DUT and that any resultant data has drained away|[§].

post-shutdown

Perform any final activities before exiting the active simulation phases. At the end of the
post-shutdown phase, the UVM testbench execution process starts the cleanup phases [§].

3.3.3. Cleanup Phases

The cleanup phases are used to extract information from scoreboards and functional coverage
monitors to determine whether the test case has passed and/or reached its coverage goals [9].
The cleanup phases are implemented as functions and therefore take zero time to execute.
They work from the bottom upwards in the component hierarchy [g].

Extract

The extract phase is used to retrieve and process information from scoreboards and functional
coverage monitors. This may include the calculation of statistical information used by the
report phase. This phase is usually used by analysis components [g].

Check

The check phase is used to check that the DUT behaved correctly and to identify any errors
that may have occurred during the execution of the testbench. This phase is usually used by
analysis components [§].

Report

The report phase is used to display the results of the simulation or to write the results to file.
This phase is usually used by analysis components [§].

Final

The final phase is used to complete any other outstanding actions that the testbench has
not already completed. Here’s a very simple example of a basic uvm-component showing
different UVM phases [g].

25

Chapter 3. Universal verification methodology UVM

3.4. summary

The system used to verify the functionality of a circuit design DUT comprises :

26

*

*

A control station which comprises at least one graphical user interface (GUI).

An emulator that is in communication with the control station.The emulator is composed
of verification component and a register abstraction layer(RAL), where the verification
component is configured to implement the DUT and where the RAL is configured to
implement one or more communication interface of DUT. The emulator generates a
transaction stream for a communication interface, the transaction stream is composed
of many transactions. The transaction are associated with the commands of the
communication interface and test data associated with commands.

Sending the transaction stream to the dut via the communication interface.

One or many monitors that are associated responses sent from the DUT via the
communication interface.

A RAL painter that classifies the transaction and responses based responses based
upon one or more characteristics of the transactions and the responses.

Generating a graphical representation of the transactions and responses based upon
the classification.

Displaying the graphical representation on the control station GUI.[9]

Chapter 4.

UVM specifications

The chapter [3] describes the UVM components and their hierarchy, in this chapter we will go
deeply in each component and know how to describe them and then write their code.

All these details and information are from Mentor-SEIMENS videos, the UVM_guide_user
and UVM-cookbook, and it is an explanation of the code of next chapter.

4.1. UVM-SV-Glossoary

Before going on, It would be better to give a definition to most important vocabularies used
in OOP:

Class : contains related features and functionality that are in an usable block. It contains
definitions for variables and routines that operate on those var