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Abstract

Nowadays, with he increase of the complexity of system on chips SOC, the ASIC industry
struggles to meet schedules of time to market TTM. System on chips market is complex in
term of the business and technology point of view. However, the time to market enforces
a huge pressure to this industry. As a consequence of these factors: appearance of new
challenges, among them the top one which is verification. This last one consumes more than
70 percent of design effort.
Verifying the correctness of the final design is the key to design more and more complex
SOCs and exploiting leading_edge process technologies.
The better to discover the hidden bugs in earlier stages the better in term of the cost,
companies often end up with costly mistake. Hence, it is important for the companies to
select the suitable tool and techniques for verification. One of the modern and effective
methodologies is universal verification methodology UVM.
UVM provides to verification engineer a layered architecture. It is based hierarchy that
allows the verification engineer to decompose the problem to sub-problem that can be solved
in several steps, hence, not dealing with huge and complex problem. In the next chapters, it
is described the importance and efficiency of this methodology and its tools used to verify a
SOC and how to use its language.
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Chapter 1.

Introduction

Nowadays, the field of integrated systems has known an evolution ,which means the complexity
of digital systems has became very complex .In one system on chip (SOC) may include
different parts of other electronic systems ,such as the memory ,the DSP,the A/D and
D/A converters up to the microprocessor.The aim of this evolution is to make a product
faster,more efficient also less expensive in terms of area ,power consumption and obviously
in terms of money,taking in consideration time to market when produce the product to the
client (final user ) with low cost ,It is very important to minimize time and effort invested
in life cycle of the product. However,a digital design before arriving to the market ,must
pass within several steps starting from the original set of specifications. In the process of
manufacturing a Very Large scale integrated circuit three different step:

1. - Design : the design phase is when an idea is transformed to a real working system

2. - verification: to ensure that the functionality of the system is the same as the
specification of the design.

3. - test : During the life cycle of the digital circuit or the system in general, periodically it
is needed to check if this system including processor cores and components are working
as expected. Generally, in order to satisfy in-field testing requirements this task is
performed by running short, fast and specialised test programs.

One of the largest and the more complex domain is design verification (DV)which contains
many languages,technologies and methodologies .A DV engineer must not get pigeonholed
in only one of many technologies that fall under DV umbrella . He/she should have largest
knowledge about systemverilog,UVM and hardware micro-architecture .At the least, the
following technologies fall under DV domain:

∗ UVM (Universal Verification Methodology).

∗ UPF (Unified Power Format) low-power verification using UPF.

∗ AMS (analog/mixed signal) verification. Real number modeling, etc.

∗ SystemVerilog Assertions (SVA) and functional coverage (SFC) languages and method-
ology.

∗ Coverage-driven verification (CDV) and constrained random verification (CRV).

∗ Static verification technologies. Static formal verification (model checking), static +
simulation hybrid methodology, X-state verification, CDC (clock domain crossing), etc.

∗ Logic equivalency check (LEC). Design teams mostly take on this task. But the DV
(design verification) team also needs to have this expertise.

1



Chapter 1. Introduction

∗ ESL—Electronic System Level (TLM 2.0) virtual platform development (for both
software development and verification tests/reference model development).

∗ Hardware/software co-verification (hint: use virtual platform methodology).

∗ SoC interconnect (bus-based and NoC—network-on-chip) verification.

∗ Simulation speedup using hardware acceleration, emulation, and prototyping

The verification methodologies are continuously developed since the complexity of a design
is increased, as a result the verification flows become fractured and in some cases inefficient.
Though each technology presented has more features and advantages with respect to the
previous version of the same technology or an other technology especially faster bug detection
rate . The most challenge for engineer is to find an answer of this question: what can we
do during pre-silicon verification to guarantee post-silicon validation a first pass success?
Moreover,the biggest challenge that companies face is time to market which is short,in order
to deliver first pass working silicon of increasing complexity. Power management ,performance
and massive functional capacity are embedded in recent SOC realizations.The challenges
of the verification on an increased complexity scale are growing, so traditional verification
methodologies are losing field as time to market should be reached and in same time the
cost must be met .another burning point nowadays is exploding software content ,so a
methodology needed to allow in same time easier software development and faster silicon
realization. In the past, it was possible to have a early silicon sample for software development.
On a recent report of ITRS (International Technology Roadmap for Semiconductors) we can
clearly observe 1.1 the increasing HW-SW design gap.

Figure 1.1.: Hw/Sw Design gap-ITRS report

The starting point of such methodology which enables a unified software and hardware
development is the specification analysis of the whole system for each of the three direc-
tions:design,verification,software development .
In such a unified development environment, the verification role has increased, from

developing classical test benches, to complete architecture of transaction-level models that

2



enable architecture testing, performance metrics, software development, and accurate and
efficient design verification.
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Chapter 2.

Technology challenges

The embedded systems know a quick shifting from system on board to system on chip ,where
all components are in the same die. As an interaction with the market, the system on
chips SOCs become more complex and challenging. The velocity of semiconductor processes
evolution and the need of the complex applications let thee design and verification engineers
think to find and build an efficient future design methodologies and verification methodologies
to meet the constraints such time to market TTM and handle the complexity of the design
. By integrating several pre-designed cores on one and same die ,realizes more soc so it
becomes state-of-the-art. Nevertheless ,this evolution raises lot of challenges with respect to
previous and traditional methodologies . In this chapter will highlight the :

• Technology challenges

• Verification technology options

• Verification methodology

• Verification languages

• Verification approaches

• Verification plans

2.1. challenges of a technology
The physical dimensions of silicon structures got continuously shrunk by silicon technology
foundries. Due to this shrinkage ,both circuit capacity and performance got improved
significantly. Moor’s law characterizes this technology evolution, It states that integrating
logic gates (transistors) onto a single silicon chip doubles every 18 months. When silicon
technology reached level 0.25 and bellow of deep sub-micron dsm, significant challenges face
the design community. These challenges can be grouped to :

1. timing closure : Designing a chip is not enough ,so timing closure must be taken in
consideration ,therefor timing closure is important ;because we need to know how fast
the chip is going to run, how much time need to receive the responses after applying
inputs , how fast the chip is going to interact with the other chips, etc. In semiconductor
market , timing closure and time taken to achieve it can dramatically impact the success
of the product . therefore, methodologies employed are addressed and strategized to
obtain in a faster timing closure along with reasonable design metrics .the main reasons
of making this item a challenge:

5
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∗ increased size of the project :following the moor’s law as a result the computational
resources required for achieving the timing closure for billion gates become high.

∗ trade off timing for design techniques :most of design techniques such as power
gating, multiple clock and dynamic voltage and frequency scaling are trade off
with low power consumption [2].

2. capacity : a capacity challenges introduced in DSM technology when millions of gates
are integrated onto a single IC using 0.15 um and below technology.in order to cope
with this challenges ,the DSM design system must contain the following solutions:

∗ block based design :in system on chip solutions, which combine several chips into
one device that have thousands of gates .in order to complete the design of the
project successfully, the design engineer must carefully plan to meet design timing
and specifications, therefore the design must be partitioned. The top level provides
the interconnection of the blocks and in the design level down, provides the details
of these blocks either in terms of interconnection of sub-blocks or library elements.

∗ Design reuse :reusing already designed components for a class of the applications is
a method to reduce the design-effort and time, since these blocks are pre-designed
and have been certified or validated then there is no need to validate them again,
and they are considered as black boxes.

3. Physical properties : main challenging key in this feature are signal integrity SI
such as cross talk noise, and IR drop and design integrity such as hot electron, electro-
migration and self heating. Theses keys were ignored at relaxed geometries, while this
last have shrunk, they become more critical so that require a sign-off screen in order to
check if any violation exist [3].

4. Design productivity gap : the increase of the complexity of Ics is accompanied
with introducing more challenges to both design engineer and verification engineer
.The ITRS identified a critical design gap [4]. The design productivity lags the design
density . See figure 2.1 . As a solution to this challenge is using design reuse strategies.

Figure 2.1.: design productivity gap

By reusing pre-existing blocks (also known as virtual component (vc) or intellectual
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property (IP) ) is reducing time and effort. By adopting platform-based-design ,a set
of core elements that are common ,identified ,integrated and verified as a single entity
.by adding either newly authored elements or additional IP blocks to this core, the
actual products are then built and realized [5].

5. Time to market trend : Nowadays ,the development of a product is based on
change rapidly,and increasing percentage of demands of new products as the number
of competitors for market share do. In the market ,there are core elements which are
affecting the revenue,for example ,if your product launched with a delay of 6 months
.theses 6 months for your competitors are a chance to grape market share, and less
revenue for you to persue when finally go to market. So the better control you have on
your development of your products,the better you will have a control and ability to
predict TTM and get new technologies out while it is still new and same time have
good revenue.
With market and time pressures plus the evolution affect badly on verification method-
ologies and tools.the studies and experiences showed that from 40 to 70 percentage of
the total development of a product is dedicated to verification tasks. Clearly, these
verification activities must be efficient with respect to time.

6. SOC technology : The traditional verification methods are neither enough nor efficient
for verifying complex and developed SOC which make an other kind of challenges to
design and verification engineers.A SOC contains hardware elements,software elements
and programmable elements and power distribution ,clock and buses and test structures.
Nowadays,a SOC contains different design disciplines (AMS, digital, embedded software
(ESW)) That are co-existed in a single design.as a result the verification methodology
must deal with analog ,mixed digital signals and mixed hardware/esw verification.

2.2. Technology options
The aim of the verification is to ensure that the design meets the functional requirements
as defined in the functional specification. From 40 to 70 percent of the total development
effort for the design is dedicated to the verification of SOC devices.There are many issues
that challenge both the verification solution providers and the verification engineer such as :
is the device verified enough?,what technology options and strategies to use for verification
?and how to plan for it to minimize verification time?.
In the industry,different technology options are available. These options can be divided to
four classifications: static technologies, simulation based technologies, formal technologies,
and physical verification and analysis. A combination of these methods must be used in
order to achieve the SOC verification goals.

2.2.1. Static Technologies
The technologies of static verification such as lint checking and static timing verification
verification don’t require test vectors or testbench for performing verification.

Lint checking :

Lint checking is a technology of static verification used to carry out a static check of the
design code in order to verify the correctness of the syntax. The types of uncovered errors
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include unsupported constructs, uninitialized variables, and port mismatches. Simple errors
that would be time-consuming are identified by lint checking. So it would be better to
perform it in the earlier design cycle.

Static Timing Verification :

Each storage element and latch have timing requirements in a design, such as setup, hold,
and various delay timings. Timing verification determines whether the timing requirements
are being met. Timing verification is challenging for a complex design, since each input can
have multiple sources, and the timing can vary depending on the circuit operating condition.

2.2.2. Simulation Technologies
Simulation technologies include code coverage, event-based and cycle-based simulators,
transaction-based verification, AMS simulation, HW/SW co-verification,accelerators, such as
rapid prototype systems, hardware accelerators, hardware modelers, and emulation .

Code Coverage :

Code coverage analysis provides you the capability to know the quantity of the functional
coverage, that a particular test suite is applied to a specific design. This can at the full-chip
level or at the individual block level.

Event-based Simulators :

It performs the simulation by taking events, one at a time and propagating them until a
steady state condition is achieved ,through the design. This can be slow for large designs.

Cycle-based simulators :

Cycle-based simulators only function on synchronous logic, because they have no notion for
time within a clock cycle maybe this can speed up the process of the simulation but it leads
to erroneous results(for combinational circuits) because they evaluate the logic between state
element and/or ports.

Transaction-based Verification

Transaction-based verification allows simulation and debug of the design at the transaction
level. A detailed testbench with large vectors is not required in the transaction based
verification.

Emulation Systems

Emulation systems perform at speeds faster than software simulators, in some instances, can
approach the target design speeds, because they are done in hardware

HW/SW Co-verification

In HW/SW co-verification, integration and verification of the hardware and software occurs
concurrently. The co-verification environment provides a graphical user interface (GUI) that
is consistent with the current hardware simulators and software emulators/debuggers.
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Hardware Accelerators

In most common cases, the actual design to be verified is run in the hardware accelerator
and the testbench keeps running in software.

Rapid Prototyping Systems

It is offering the ability for developing and debugging software, with a real view of hardware
of SOC

AMS Simulation

Due to the complexity of analog designs, less automation provided by analog tools that are
available in the industry, it is more complex than both digital-only or analog-only simulation.

2.2.3. Formal Technologies

Usually, it is difficult to detect bugs happening in a specific sequences of events. When we are
not able to detect bugs earlier in the verification phase, they may cause serious impact on the
design cycle. The exhaustive nature of formal verification and detecting these bugs earlier
become main driving forces toward using formal verification techniques. Formal verification
methods do not require testbenches or vectors for verification. They theoretically promise a
very fast verification time and 100 percent coverage. The formal verification methods are:

∗ Formal model checking

∗ Theorem proving technique

∗ Formal equivalence checking

Formal model checking :

A model checking tool compares the design behavior to a set of logical properties defined by
the user,which are extracted from the design specifications. Formal model checking is used
to verify behavioral properties of a design using formal mathematical techniques.

2.3. Verification Methodology
Design verification planning should start in parallel with the creation of specifications for
the system. System specifications drive the verification strategy. The figure 2.2 shows the
high-level verification flow for an SOC device.

2.3.1. System-Level Verification

According to the specifications, the system behavior is modeled in the system design. The
system behavior is verified using a behavioral simulation testbench. This last might be
created in HDL, C, C++.
After validating the system behavior,the system is mapped to an existed and suitable library.
The hardware and software partitioning is done. The testbench should be converted to a
suitable format, so it can be used for hardware RTL code simulation and software verification.
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Event based
simulation

Cycle
based
simula-
tion

Hw accel-
erators

Emulation Formal
verifica-
tion

Static
timing
verifica-
tion

Function Yes Yes Yes Yes No No
Abstraction
level

Behavioral,
RTL, Gate

RTL,
Gate

RTL,
Gate

RTL, Gate RTL,
Gate

Gate

Functional
equiva-
lence

Yes Yes Yes Yes Yes No

Timing Yes No Yes/No No No Yes
Gate capac-
ity

Low Medium High Very high High Medium

Run time <10 cycles 1k cycles 1K cycles 1M cycles Medium High
Cost Low Medium Medium High Medium Low

Table 2.1.: Comparison of verification options

Figure 2.2.: SOC verification methodology

10



2.4. Verification Approaches

2.3.2. SOC Software Verification

The software team provides the software and test files in order to perform the software
verification that is performed against the specifications obtained from the system design.

2.3.3. SOC Hardware RTL Verification

The system design sends the testbench and RTL code to the Hardware verification. The
testbench is converted or migrated to a suitable format to verify the RTL code and the design
is verified for functionality. The verification mainly focuses on the functional aspects of the
design. RTL verification includes lint checking, formal model checking, logic simulation,
transaction-based verification, and code coverage analysis.

2.3.4. Netlist Verification

In this phase, the hardware RTL is synthesized and a gate-level netlist is generated. Using
formal equivalence checking tool with the reference design that is the RTL code to verify it
and the netlist of the gate-level as the implementation design. So this is used in order to
ensure that RTL and gate-level are equivalent logically.

2.3.5. Physical Verification

In order to ensure that there are no violations in the implemented design, a physical
verification is performed on the chip design. The physical verification includes design rules
checking, layout versus schematic, process antenna effects analysis, SI checking, including
crosstalk, and current-resistance (IR) drop.

2.3.6. Device Test

The final device test uses the test vectors that are generated during the functional verification.
The device test checks if the device was manufactured correctly. In this stage, it is focused
on the structure of the chip like the gate truth tables, connections. By using an automatic
test pattern generator(ATPG) tool Vectors are generated for manufacturing the device test
using the testbench created during functional verification. After getting satisfied about the
results then the design is ready for fabrication sign-off and tape-out.

2.3.7. Verification IP Reuse

Because of the pressures of the TTM on product design cycles,It forces SOC designers
and integrators to reuse available design blocks. Verification teams put a lot of effort into
developing testbenches. If the testbenches developed for one design can be used for other
similar designs, a significant amount of the verification time is saved for subsequent designs.

2.4. Verification Approaches

There are different verification approaches. These include top-down design and verification,
bottom-up verification, platform-based verification, and system interface-driven verification.
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2.4.1. Top-Down Design and Verification Approach
The functional specification is the starting point for any top-down design. A detailed
verification plan is developed from the functional specification.
we are functionally verifying the system level model by exercising it with the system level
test bench. The design can be decomposed through any number of abstraction level until the
detailed design is complete. Using the system testbench, the design is verified a the upper
abstraction levels.

2.4.2. Bottom-Up Verification Approach
Nowadays, this approach is widely used in the design field. The first step in this approach is
validating the incoming data of the design by passing the files through a parser to ensure
that they are compatible with target tools. The second step is passing the files of the design
through a lint checker.
The next steps depend on the abstraction level of the design as it is shown in the figure.
Verification levels are defined as follows:

• Level 0:the blocks, individual components, or units are verified in this level separately.
The goal is to test the component exhaustively without considering the environment
into which it will be integrated. The technologies and techniques used in unit test are
similar to those applicable to an integrated design : directed random simulation, lint,
deterministic simulation, and formal checking.

• Level 1: in this level the system memory map and The internal interconnect of the
design are verified. By performing writes and read-backs all the interconnect within
the design are verified.

• Level 2: At this level, it is verified basic functionality of the design and the external
interconnect.

• Level 3:The intent is to test the functionality of the integrated design exhaustively.

After the above tests, the netlist verification, timing verification, physical verification, and
device tests are performed to ensure correct chip implementation.

2.4.3. Platform-based Verification Approach
for verifying the derivative designs that using a verified preexisting platform.

2.4.4. System Interface-driven Verification Approach
In this approach, at the interface level, of the blocks that are planned to be used are modeled
during system design. These models, along with the specifications for the blocks to be
designed and verified, are handed off to the design team members. The interface models can
be used by the verification engineers to verify the interface between the designed block and
the system. This eases the final integration efforts and enables early detection of errors in
the design.
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Figure 2.3.: Bottom-UP verification approach

Figure 2.4.: Platform-based verification approach
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Chapter 3.

Universal verification methodology UVM

In verification technology,the latest advancement is UVM.UVM is a new verification method-
ology .It is designed to enable creation of robust,reusable,interoperable verification IP and
testbench components .
UVM has lot of exiting aspect like how is developed .UVM is not rolled out as a part of a
marketing campaign, because a collection of industry experts participated on developing this
technology like verification consultants, networking companies, microprocessor companies
,as well as EDA vendors.Accellera was the responsible of taking the auspices of this great
work.UVM succeed to unify lot of competitors in the market place in order to collaborate to
build a sophisticated verification methodology see 3.1 .

Figure 3.1.: UVM evolution

The result is a powerful, multi-dimensional software layer and methodology for building
verification environments [6].The culmination of lot of indepent efforts in the verification
space represent UVM,which means based on union of other technologies ,we get as a result a
powerful verification methodology.Its heritage includes AVM, URM, VMM, and OVM figure
3.2.
UVM is very close to OVM ,because OVM was the starting point to build UVM and UVM is
compatible with OVM .In UVM ,the register facility is a transformation of the RAL package
which was part of VMM.UVm is the fruit of combining these methodologies and it is not just
a conglomeration of code drawn from its predecessors.This fruit provides new facilities and
new use models for testbench construction,as a result the stat-of-the-art is moved forward.
UVM is transaction level methodology (TLM). UVM is a derived class library that makes it
easy to write a configurable and reusable code.It is based on Object Oriented Programming
(OOP), but UVM designers did the whole hard work to simplify it .so you don’t need to be
an OOP expert; by creating the so co-called class library whose components an be used to
develop a testbench.In other words,when you put together the required code in place,you
will be able to go forward to next project because you still can reuse the previous code
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Figure 3.2.: heritage of UVM

whiteout modifying it ,you just derive from that class. However ,only few components such
driver,scoreboard and the basic transaction(sequence) need to be changed.Hence,as a solution
to the challenge of communication between interfaces ,the UVM designers make UVM classe
based, so it communicates between these classes via transaction .

3.1. UVM Hierarchy
Don’t you understand some of this? hold on, we will go into UVM hierarchy and examples
to solidify the concepts.
The UVM class library gives you the possibility to use them for generic utilities like component
hierarchy,transaction library model(TLM) ,configuration of database,etc..,which enable the
user to create any structure he wants for the testbench. In this figure 3.3 is from [(Accelera,
Universal Verification Methodology (UVM) 1.2 User’s guide)] which shows a simple hierarchy
which is composed of

∗ UVM Testbench

∗ UVM Test

∗ UVM Environment

3.1.1. UVM Testbench

Testbench instanciates the Device Under Test (DUT) and Test class and configures the
connection between them.In UVM ,TLM interfaces provide a set of communication methods
that is consist to send and receive transactions between components.These components are
instantiated and connected in the testbench in order to perform the different operations
required to verify a design.
The UVM Test is instantiated dynamically at run-time, so it allows the UVM testbench to
be compiled once and run with many different tests.

Transacton level Testbench of UVM

figur 3.4 Thisis the most basic testbench using a UVM agent that comprises of the se-
quencer,the driver and the monitor A scoreboard is used to analyze data is also instantiated.
The components of this Tesbench are:
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Figure 3.3.: The hierarchy of UVM

Figure 3.4.: UVM transaction level Testbench
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1. the Sequencer: Stimulus Generator,creates transaction -level traffic to send them to
the driver.

2. The driver: It takes these transactions from the sequencer and then converts them into
pin signal -level activity,and drives the DUT

3. The monitor: snoops the signal -level activity and converts them back transactions
that are sent to a scoreboard.

4. The scoreboard: gets the monitored transactions from the monitor comparesthem with
expected transactions (response transactions).

3.1.2. UVM Test
In the UVM testbench, the UVM-test is the top level UVM component. A test is a class
that encapsulates test-specific instructions written by the test writer. Tests in UVM are
classes,they are derived from uvm -test class.By using classes ,inheritance and reuse of test
is allowed. The test instantiates the top-level environment just like any other verification
component.
The uvm test :

1. Instantiate the top-level environment.

2. Configure the environment (via factory overrides or the configuration database).

3. Apply stimulus by invoking UVM sequences through the environment (typically one
per DUT interface) to the DUT.

3.1.3. UVM Environment
The UVM environment is a component that groups together other verification components that
are interrelated.The components that are usually instantiated inside the UVM environment
are UVM agents, UVM scoreboards, or even other UVM environments because the top-level
environment contains one or more environments. Each environment contains an agent for
a specific DUT interface which means that each interface to the DUT,might have separate
environment per interface.This top -level environment instantiates and configures the reusable
verification IP and defines the default configuration of that IP required by the application.
Some of these IP environments can be grouped together into cluster environments (e.g., an
IP interface environment, CPU environment, etc.).

3.1.4. UVM Agent
The UVM agent is a component that groups together other verification components that are
dealing with a specific DUT interface. Agent contains a UVM sequencer to manage stimulus
flow, a UVM driver to apply stimulus to the DUT interface, and a UVM monitor to monitor
the DUT interface. UVM agents might include other components, like coverage collectors,
protocol checkers, and a TLM model.
As mentioned before, the UVM agent is the component that drives the signal-level interface
of the DUT. The agent can operate in an active mode or a passive mode. In the active mode,
it can generate the stimulus (i.e., the driver drives DUT input and senses DUT outputs). In
the passive mode, the driver and the sequencer remain silent (disabled) and only the monitor
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Figure 3.5.: UVM Agent

remains active. Monitor simply monitors the outputs of DUT;it cannot control the IO of
the DUT. You can dynamically configure an agent in either an active mode or a passive
mode. Monitor is an unidirectional interface,while driver is a bidirectional interface. This is
depicted in Figure 3.5

3.1.5. UVM Driver
Driver is where the TLM transaction-level world meets the DUT signal/clock/ pinlevel world.
Driver receives sequences from the sequencer, converts the received sequences into signal -level
activities, and drives them on the DUT interface as per the interface protocol. Or the driver
pulls sequences from the sequencer and sends them to the signal-level interface. An other
block ( The monitor) will observe and evaluate This interaction.As a result, functionality of
the driver should only be limited to send the necessary data to the DUT. Note that nothing
prevents the Driver from monitoring the transmitted/received data from DUT—but that
violates the rules of modularity. Also, if you embed the monitor in the driver, you can’t turn
the monitor ON/OFF.
The driver has a TLM port to receive transactions from the sequencer and access to the
DUT interface to drive the DUT signals.
Driver is written by extending uvm-driver.uvm-driver is inherited from uvm-component;
Methods and TLM port (seq-item-port) are defined for communication between sequencer
and driver.The uvm-driver is a parameterized class; and it is parameterized with the type of
the request sequence-item and the type of the response sequence-item.

3.1.6. UVM Monitor
Monitor, is reverse of the driver. It takes the DUT signal/pin-level activities and converts
them back into transactions to be sent out to the rest of the UVM testbench (e.g., to the
scoreboard) for analysis. Monitor broadcasts the created transactions through its analysis
port. Note that comparing of the received output from the DUT to that with expected
output is normally done in the scoreboard and not directly in the monitor.
The reason is to preserve modularity of the testbench. Monitor, as the name suggests,monitors
the DUT signals and coverts them to transactions. That’s it. It’s the job of the scoreboard
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to receive the broadcasted transaction from the Driver and do the comparison with the
expected outputs.

3.1.7. UVM Scoreboard
The scoreboard simply means that it is a checker (not to be confused with SystemVerilog
SVA “checker”). It checks the response of the DUT against expected response. The UVM
scoreboard usually receives transactions from the monitor through UVM agent analysis ports
and the transactions through a reference model to produce expected transactions and then
compares the expected output versus the received transaction from the monitor.
There are many ways to implement a scoreboard. For example, if you are using a reference
model, you may use SystemVerilog–DPI API to communicate with the scoreboard, pass
transactions via DPI to the reference model, convert reference model response into trans-
actions, and compare the DUT output transaction with the one provided by the reference
model. Reference model can be a C/C++ model or a TLM2.0 SystemC model or simply
another SystemVerilog model.

3.1.8. UVM Sequencer
The sequencer controls the flow of request and response sequence items between sequences and
the driver. UVM sequencer is a simple component that serves as an arbiter for controlling
transaction flow from multiple stimulus sequences. The sequencer and driver use TLM
interface to communicate. uvm-sequencer and uvm-driver base classes have seq-item-export
and seq-item-port defined respectively. The user needs to connect them using TLM connect
method.

3.1.9. UVM Sequence
After a basic uvm-sequence-item has been created, the verification environment will need to
generate sequences using the sequence item to be sent to the sequencer.
Sequences are an ordered collection of transactions (sequence items); they shape transactions
to our needs and generate as many as we want. Since the variables in the transaction
(sequence item) are of type “rand,” if we want to test just a specific set of addresses in a
master-slave communication topology, we could restrict the randomization to that set of
values instead of wasting simulation time in invalid (or redundant) values.
Sequences are extended from uvm-sequence, and their main job is generating multiple
transactions. After generating those transactions, there is another class that takes them to
the sequencer.

3.1.10. UVM Sequence item
UVM sequence item (i.e., a transaction) is the fundamental lowest denominator object in the
UVM hierarchy. It is the definition of the basic transaction that will then be used to develop
UVM sequences.
The sequence item defines the basic transaction data items and/or constrains imposed on
them. While the driver deals with signal activities at the bit level, it doesn’t make sense to
keep this level of abstraction as we move away from the DUT, so the concept of transaction
was created.
UVM sequence items, i.e., transactions are the smallest data transfers that can be executed in
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a verification model. They can include variables, constraints, and even methods for operating
on themselves.

3.2. UVM Class Library

Figure 3.6.: UVM Class library

shows the building blocks of UVM class library that you can use to quickly build well
constructed, reusable, configurable components and testbenches. The library contains base
classes, utilities, and macros.
The advantages of using the UVM class library [7] include:

(a) Many features are provided by the UVM class library, those features are required for
verification.

(b) The component can be derived from a corresponding UVM class library component.
By using these base class elements, it increases the readability of your code since each
component’s role is predetermined by its parent class.

3.3. UVM Phases
In UVM ,phases are defined as callback methods,uvm-component provides a set of predefined
phases and corresponding callbacks.The Method can be either a function or task.Methods
that consumes simulation time are Tasks while methods that they don’t consume simulation
time are functions.May more than one callback will be implemented if the class is derived
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from uvm-component.These callbacks are executed in order.
Basically,the UVM phases have three phases:

∗ Build phase:builds top-level testbench topology.

∗ Connect phase:connects environment topology

∗ Run phase: run the test

∗ Cleanup phase. gathers details on the final DUT state processes the simulation results,
and does simulation results analysis and reporting

Run phase includes many different sub-phases ,all of them are run in Zero time ,except of
course run() phase.

Figure 3.7.: UVM phases

3.3.1. Build phase

At the start of the UVM testbench simulation,the buils phases are executed ,so the aim of
these phases is to construct, configure and connect the testbench component hierarchy.All
the build phase methods are functions and therefore execute in zero simulation time.[8]

build

Once the UVM testbench root node component is constructed, the build phase starts to
execute. It constructs the testbench component hierarchy from the top downwards. The
construction of each component is deferred so that each layer in the component hierarchy
can be configured by the level above. During the build phase uvm-components are indirectly
constructed using the UVM factory [8].
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Figure 3.8.: Run phase

connect

The connect phase is used to make TLM connections between components or to assign
handles to testbench resources. It has to occur after the build method has put the testbench
component hierarchy in place and works from the bottom of the hierarchy upwards [8].

end-of-elaboration

The end-of-elaboration phase is used to make any final adjustments to the structure, config-
uration or connectivity of the testbench before simulation starts. Its implementation can
assume that the testbench component hierarchy and inter-connectivity is in place. This
phase executes bottom up.

3.3.2. Run-Time Phases
The testbench stimulus is generated and executed during the run time phases which follow
the build phases. After the start-of-simulation phase, the UVM executes the run phase and
the phases pre-reset through to post-shutdown in parallel. The run phase was present in the
OVM and is preserved to allow OVM components to be easily migrated to the UVM. It is
also the phase that transactors will use. The other phases were added to the UVM to give
finer run-time phase granularity for tests, scoreboards and other similar components. It is
expected that most testbenches will only use reset, configure, main and shutdown and not
their pre and post variants [8].

start-of-simulation

The start-of-simulation phase is a function which occurs before the time consuming part of
the testbench begins. It is intended to be used for displaying banners, testbench topology, or
configuration information. It is called in bottom-up order[8].

Run

The run phase occurs after the start-of-simulation phase and is used for the stimulus generation
and checking activities of the testbench. The run phase is implemented as a task, and all
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uvm-component run tasks are executed in parallel.Transactors such as drivers and monitors
will nearly always use this phase [8].

pre-reset

The pre-reset phase starts at the same time as the run phase. Its purpose is to take care of
any activity that should occur before reset, such as waiting for a power-good signal to go
active [8].

Reset

The reset phase is reserved for DUT or interface-specific reset behavior. For example, this
phase would be used to generate a reset and to put an interface into its default state [8].

post-reset

The post-reset phase is intended for any activity required immediately following reset. This
might include training or rate negotiation behavior [8].

pre-configure

The pre-configure phase is intended for anything that is required to prepare for the DUT’s
configuration process after reset is completed, such as waiting for components (e.g., drivers)
required for configuration to complete training and/or rate negotiation. It may also be used
as a last chance to modify the information described by the test/environment to be uploaded
to the DUT [8].

Configure

The configure phase is used to program the DUT and any memories in the testbench so that
it is ready for the start of the test case. It can also be used to set signals to a state ready for
the test case start [8].

post-configure

The post-configure phase is used to wait for the effects of configuration to propagate through
the DUT or for it to reach a state where it is ready to start the main test stimulus. I do not
anticipate much use for this phase [8].

pre-main

The pre-main phase is used to ensure that all required components are ready to start
generating stimulus [8].

Main

This is where the stimulus specified by the test case is generated and applied to the DUT. It
completes when either all stimulus is exhausted or a time-out occurs. Most data throughput
will be handled by sequences started in this phase [8].
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post-main

This phase is used to take care of any finalization of the main phase [8].

pre-shutdown

This phase is a buffer for any DUT stimulus that needs to take place before the shutdown
phase [8].

Shutdown

The shutdown phase is used to ensure that the effects of stimulus generated during the main
phase have propagated through the DUT and that any resultant data has drained away[8].

post-shutdown

Perform any final activities before exiting the active simulation phases. At the end of the
post-shutdown phase, the UVM testbench execution process starts the cleanup phases [8].

3.3.3. Cleanup Phases

The cleanup phases are used to extract information from scoreboards and functional coverage
monitors to determine whether the test case has passed and/or reached its coverage goals [9].
The cleanup phases are implemented as functions and therefore take zero time to execute.
They work from the bottom upwards in the component hierarchy [8].

Extract

The extract phase is used to retrieve and process information from scoreboards and functional
coverage monitors. This may include the calculation of statistical information used by the
report phase. This phase is usually used by analysis components [8].

Check

The check phase is used to check that the DUT behaved correctly and to identify any errors
that may have occurred during the execution of the testbench. This phase is usually used by
analysis components [8].

Report

The report phase is used to display the results of the simulation or to write the results to file.
This phase is usually used by analysis components [8].

Final

The final phase is used to complete any other outstanding actions that the testbench has
not already completed. Here’s a very simple example of a basic uvm-component showing
different UVM phases [8].
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3.4. summary
The system used to verify the functionality of a circuit design DUT comprises :

∗ A control station which comprises at least one graphical user interface (GUI).

∗ An emulator that is in communication with the control station.The emulator is composed
of verification component and a register abstraction layer(RAL), where the verification
component is configured to implement the DUT and where the RAL is configured to
implement one or more communication interface of DUT. The emulator generates a
transaction stream for a communication interface, the transaction stream is composed
of many transactions. The transaction are associated with the commands of the
communication interface and test data associated with commands.

∗ Sending the transaction stream to the dut via the communication interface.

∗ One or many monitors that are associated responses sent from the DUT via the
communication interface.

∗ A RAL painter that classifies the transaction and responses based responses based
upon one or more characteristics of the transactions and the responses.

∗ Generating a graphical representation of the transactions and responses based upon
the classification.

∗ Displaying the graphical representation on the control station GUI.[9]
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UVM specifications

The chapter 3 describes the UVM components and their hierarchy, in this chapter we will go
deeply in each component and know how to describe them and then write their code.
All these details and information are from Mentor-SEIMENS videos, the UVM_guide_user
and UVM-cookbook, and it is an explanation of the code of next chapter.

4.1. UVM-SV-Glossoary
Before going on, It would be better to give a definition to most important vocabularies used
in OOP:

Class : contains related features and functionality that are in an usable block. It contains
definitions for variables and routines that operate on those variables. No memory
allocated. To simplify it, It is like a blueprint of a house.

Figure 4.1.: structure of a class [1]

Property : variable declared in the class.light switches.

Method : task or function in a class. turn ON/OFF switches.

Members : methods and properties in a class (because, it is unfeasible to use the class by it
self, so it should be instantiated. The instance of the class is an object).

Object : instance of class that can be used. Memory allocated. a complete house.

Handle : type-safe printer to an object (systemverilog). So no worries about interrupting
accidentally the handler.
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Encapsulation : As mentioned before, a class contains properties and methods that operate
on them. After defining a class, we declare the handle variable then construct the
object using new() method. It allocates memory for the object. new() returns the
object location which assigned to the handle.

4.1.1. Accessing members
An object’s properties and methods are accessed with the handle and dot_operator(.)
OOP languages such C++ and JAVA recommend that properties should only be accessed

Figure 4.2.: structure [1]

through methods and never directly; with systemverilog testbench, you need direct access
properties for generating randomized values and injecting errors.

Aggregation Composition : a class contains a reference to a handler class has_a relationship.

Construct : build an object directly by calling “ new()” method

Base class or Derived class : extend a base class to make a derived class

OOP hierarchy : relationship between base and derived class is_a relationship.

Create : construct an object indirectly with the UVM factory instead of calling new(). there
are two major groups of classes: transaction and component

Transaction : stimulus item, continually created and destroyed during the simulation. Test
generates stimulus, send them to DUT, monitor catches the results and sends them to
scoreboard.

Component : testbench unit (driver,monitor..) created at start of simulation and it exists
for entire simulation

UVM hierarchy : relationship between UVM components;test has an environment, env has
an agent,...

Testbench topology : is not an official term for testbench but it describes the relationship
between UVM components has_a relationship.

28



4.2. UVM : sequence_item, sequence, sequencer, transaction, virtual sequence

4.2. UVM : sequence_item, sequence, sequencer,
transaction, virtual sequence

First of all, we should distinguish between sequence_item, sequence, sequencer and transac-
tion:

• sequence_item: contains the properties and methods of the transaction .

• Sequence: generates a series of sequence items.

• Sequencer: arbitrates/routes one or more sequences.

• Driver: sends sequence item objects to the DUT.

Figure 4.3.: sequencer and sequence

Creating individual transactions and connecting them together to a sequence is generated in
the test level then sent them to the lower testbench components in the design under test
DUT.
The base class of all UVM classes, is UVM_object and the individual transaction is known as
UVM_sequence_item and the sequence is a collection of sequence items collected together to
describe a stimulus. The transactions are flown to the sequencer which arbitrates between
sequences.
When first time read about UVM component, is easy to confuse between sequencers and

Figure 4.4.: The base object

sequences. Sequencer is actually a pipe that connects sequences to the driver then sends
them to the DUT.
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A virtual sequence is a sequence that controls the execution of other sequences and almost
never generates sequence_items itself. This is different from a sequence library which is a
sequence that lets you pick from a group of sequences that are registered with the library.
A virtual sequence contains pointers to agent sequencers so you start other sequences on
those sequencers and is not recommended to use virtual sequences. If you want to create
configurable streams of stimuli, coordinated with other streams:

• The UVM_sequence_item class has no member to access its context and configuration,
eventually, building a UVM_sequence that can be generated by a sequencer and send
to multiple drivers.

• UVM_transaction is an isolated object with no context.

4.2.1. Code styling of Transactions

A transaction class hold single unit of stimuli such as bus transaction that work in packets
or a processor instruction.

1 class tx_item extends UVM_sequence_item
2 `uvm_object_utils ( tx_item )
3 function new ( string name = " tx_item ");
4 super.new(name);
5 endfunction
6 rand bit [31:0] src;
7 rand bit [31:0] dst;
8 rand command_t cmd;
9 logic [31:0] result ;

10 ... // sequence in the method class
11 endclass

• Transactions are extended from UVM_sequence_item

• The first line in transaction class should be a macro: `uvm_object_utils(tx_item),
it creates the code directs new UVM factory, no semicolon needed in the end of the
line. This macro is used to build and substitute the object.(register the class in UVM
factory)

• The constructor that has a single argument name which must have a default value :

– should be the same as the class name

– the actual value is passed into the function by the factory

1 function new ( string name = " tx_item ");
2 super.new(name);
3 endfunction

• This piece of code it is used for describing properties; So it stores the transaction values
and send them to the DUT and read back from DUT.

1 rand bit [31:0] src;
2 rand bit [31:0] dst;
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All inputs should be randomized for maximum controllability, it is unfeasible to
use randomized values by yourself. However, if you don’t write rand, it cannot be
randomized rather.
Since the randomization is based on writing 0s or 1s then it is better to declare
DUT inputs properties as randomized 2-states types and for output don’t need to be
randomized, but you need to declare them 4-states type since it may contain not only
0s and 1s but also Xs and Zs

• class methods is used for : copy(),compare(),...

1 ... // sequence in the method class

A transaction might contain many properties into the DUT so to organize them:

• store stimulus values to send into the DUT

• store outputs that are read back from the DUT

• store predicted results that are expected from DUT output

4.2.2. code style of the transaction class

Style 1

Same sequence item has both DUT inputs and outputs, however the class may become huge.

1 class tx_item extends UVM_sequence_item
2 // DUT inputs ( stimulus )
3 rand bit [31:0] src;
4 rand bit [31:0] dst;
5 // DUT outputs and predicted output values
6 logic [31:0] result ;
7 ... // transaction methods
8 endclass

Style 2

The problem here, that you may need to access both sets predictor and scoreboard.

1 class tx_in extends UVM_sequence_item
2 rand bit [31:0] src;
3 rand bit [31:0] dst;
4 ... // transaction methods
5 endclass

1 class tx_out extends UVM_sequence_item
2 logic [31:0] result ;
3 ... // transaction methods
4 endclass
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Style 3

So as a solution to the previous style 2, you can use a base sequence item that it is extended
for inputs and outputs. So you share common methods in the base class and declare the
inputs and outputs transaction in different classes.

1 class tx_base extends UVM_sequence_item
2 ... // common variables / methods
3 endclass

1 class tx-in extends tx_base ;
2 rand bit [31:0] src;
3 rand bit [31:0] dst;
4 ... // extended methods
5 endclass

1 class tx_out extends tx_base ;
2 logic [31:0] result ;
3 ... // extended methods
4 endclass

4.2.3. Methods on transaction class
operating on transactions

for example: a scoreboard compares an expected and actual transactions. UVM provides
standard sets of methods that can build and operate on a new transaction classes.
transaction inherit these methods from UVM_object

• compare(): deep compare two transactions, it returns 1 for match and 0 for mismatch.

1 if( actual . compare ( expected ))...

• copy(): deep copy of transaction.

1 dst.copy(src);

• create(): creates new object and returns a handle

• clone(): is a method that calls create() then copy(). This method created in
UVM_object and it returns the handle of type UVM_object.

1 dst=src.clone();

Waiiit!!!! don’t you see anything wrong in the syntax ? Because clone() is method from
UVM_base_object and it returns back the handle of type UVM_object it is impossible
to assign that handl to the drive handle dst.

1 if(!$cast(dst,src,clone()))....;

A dynamic cast needed to check the type of the object in run time and see if compared
with dst handle . Remember to check $ cast results in case of testbench bugs.

• convert2string(): is a method that converts to a string. like print in language C. Its
format is

32



4.2. UVM : sequence_item, sequence, sequencer, transaction, virtual sequence

1 `uvm_info ("BUILD", tx. convert 2 string ()...);

• print() and sprint(): display transactions properties except that sprint() returns the
resulting string.

• record(): deep records() the transaction information and is used by simulators for
debugging analysis.

• pack(): concatenates the transaction into a packed array of bits.

• pack_bytes() and pack_int() : is the same as pack() but the first one concatenates
byte by byte and second one int.

• unpack(): is the opposite of pack(). Used to extract the transaction properties from
a concatenated packed array of bits.

• unpack_bytees(), unpack_int().

These methods are important !!
UVM enables scalability and reusability by requiring that all transactions have a standard
set of methods. compare(), copy() and convert2string() are the most methods used in
transaction class.
DO I have to write 14 methods for every transaction type? IT’S TOOO MUCH
each of these pre_defined methods are non_virtual and they can call a set of virtual
methods. We only need to create the virtual ones.
UVM provides two ways to create these virtual methods:

• use do_() method by hand which is flexible and more precise.

• The alternative way is by using a set of macros which are more quick to implement,
slower, less debug needed and quirky syntax.
Don’t ever mix between these two methodes in one class.

4.2.4. Relationship between non_virtual and virtual methods
in the following, it shows the relationship between virtual and non_virtual methods, so when
a transaction class is created, it is possible to call them. The difference only in convert2sting
that it can be called directly.

Implementing do_() methods
As first question might come to mind where do the do_() methods go? let’s take this example
:

1 class tx_item extends UVM_sequence_item
2 `uvm_object_utils ( tx_item )
3 function new ( string name = " tx_item ");
4 super.new(name);
5 endfunction
6 rand bit [31:0] src;
7 rand bit [31:0] dst;
8 rand command_t cmd;
9 rand tx_playload pay_h; // contaned object

10 logic [31:0] result ;
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Figure 4.5.: Relationship between virtual and non virtual methods [1]

11
12 virtual function bit do_compare (...); // do deep compare
13 virtual function void do_copy (...) ; // do deep copy
14 virtual function bit do_print (...) ; // do deep print
15 virtual function bit do_pack (...) ; // do deep pack
16 virtual function bit do_unpack (...) ; // do deep unpack
17 virtual function bit do_record (...) ; // do deep record
18 virtual function string conevrt 2 string (); // your method
19 endclass

tx_item is a class extended from UVM_sequence_item and after the registration factory and
constructing the function, the properties are defined. The pay_h is defined from another
class called tx_playload which extended from UVN_sequence_item

1 class tx_payload extends UVM_sequence_item
2 // UVM object macro and constructor
3 // properties
4 // do_ *() & convert2string () method
5 endclass

In order to copy transaction object including the following properties:

1 class tx_item extends UVM_sequence_item
2 `uvm_object_utils ( tx_item )
3 function new ( string name = " tx_item ");
4 super.new(name);
5 endfunction
6 rand bit [31:0] src;
7 rand bit [31:0] dst;
8 rand command_t cmd;
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9 rand tx_playload pay_h; // contaned object
10 logic [31:0] result ;

The systemverilog does not have deep copy operator, it must be written manually. There 3
three steps that do most deep methods and must be followed to do deep copy:

1 class tx_item extends UVM_sequence_item
2 virtual function void d0_copy( UVM_object rhs);
3 tx_item tx_rhs ;
4 if(!$cast( tx_rhs , rhs) )
5 `uvm_fatal ( get_type_name (), " Illegal rhs argument ")
6 super. do_copy (rhs);
7 src = tx_rhs .src;
8 dst = tx_rhs .dst;
9 cmd = tx_rhs .cmd;

10 result = tx_rhs . result ;

create do_copy() method

• called to copy objects for scoreboards,TLM,etc

• void do_copy() has one argument "rhs" : right hand side, because of the rules of OOP
consist that the type of this argument must much the type of the base class where was
declared as UVM object handle. The problem that tx_item properties are not visible
with UVM object handle. So :

1. the first step to do is to create new handle tx_item tx_rhs and cast the argument to
this type. Always check the results from $ cast, never use it as a task.

1 if(!$cast( tx_rhs , rhs) )
2 `uvm_fatal ( get_type_name (), " Illegal rhs argument ")

2. The second step involves the basic class, there maybe properties in sequence UVM that
they need to be copied so call super.do_copy() passing rhs handle .

3. The third step is to copy the object properties.

1 this.src = tx_rhs .src;
2 this.dst = tx_rhs .dst;
3 this.cmd = tx_rhs .cmd;
4 this. result = tx_rhs . result ;

So now we get from where rhs comes from: is in the right hand side of the assignment.
We are copying from another object to this one. So no need for these handles src,dst
and cmd should be visible in this method.

1 src = tx_rhs .src;
2 dst = tx_rhs .dst;
3 cmd = tx_rhs .cmd;
4 result = tx_rhs . result ;

Until now we were looking only to copy the properties of this object which is shallow copy.
The tx_item class has a handle to payload, we need to copy rhs payload to this one.Don’t
forget to check for null handles.
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A class has a handle to testbench object like an agent, we would not copy it, we need only to
know what handles to follow and to rewrite the do methods for tx_payload class.
comparing two deep UVM item objects
virtual do_compare() method is called by scoreboards and returns the bit that is true or
false and it has a rhs handle just like do_copy().

1 class tx_item extends UVM_sequence_item
2 virtual function bit do_compare ( UVM_object rhs, UVM_compare

compare );
3 tx_item tx_rhs ;
4 if(!$cast( tx_rhs , rhs) )
5 `uvm_fatal ( get_type_name (), " Illegal rhs argument ")
6 return (super. do_compare (rhs , comparer )) &&
7 ( src === tx_rhs .src ) &&
8 (dst === tx_rhs .dst ) &&
9 (cmd === tx_rhs .cmd ) &&

10 ( result === tx_rhs . result ));
11
12 endfunction
13 endclass

1. The first step is to cast the UVM handle and do tx_item

1 class tx_item extends UVM_sequence_item
2 virtual function bit do_compare ( UVM_object rhs, UVM_compare

compare );
3 tx_item tx_rhs ;
4 if(!$cast( tx_rhs , rhs) )
5 `uvm_fatal ( get_type_name (), " Illegal rhs argument ")
6 endfunction
7 endclass

2. The second step is to call super.do_compare() since it is a function with returned
value it needs to return saved.

1 return (super. do_compare (rhs , comparer ))

3. The third step is to compare your properties using logic & which is a short circuit
evaluation. we should use 4 states operator " === " . Deep compare the properties
payload being careful to avoid null handles, your transactions classes may treat handles
differently

4.2.5. The convert2string method
Printing a transaction in the way that you want
In the class tx_item, writing the virtual function that returns the string with content of this
object must be done in following steps :

1. Step 1: create the string with the base object properties

1 class tx_item extends UVM_sequence_item
2 virtual function string convert 2 string ();
3 string s =super. convert 2 string ();
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4 endfunction
5 endclass

2. Step 2: have more values with $ format,

1 class tx_item extends UVM_sequence_item
2 virtual function string convert 2 string ();
3 string s =super. convert 2 string ();
4
5 $sformat (s, "%s\n tx_item valeus are:", s)
6
7 endfunction
8 endclass

convert the payload have to check for null handles, we have to use a simple convert2string
for the tx_payload class.

1 (pay_h == null) ? "null": pay_h. convert 2 string ();

the complete code for convert2string():

1 class tx_item extends UVM_sequence_item
2 virtual function string convert 2 string ();
3 string s =super. convert 2 string ();
4 $sformat (s, "%s\n tx_item valeus are:", s);
5 (pay_h == null) ? "null" : pay_h. convert 2 string ();
6 return s;
7 endfunction
8 endclass

Printing the do() method and convert2string()

• create and call convert2string() in he message macro

1 `uvm_info ("DBG", tx. convert 2 string (), " UVM_DEBUG ")
2 `uvm_error ("DRV", $formatf ("BAD :", tx. convert 2 string ()))
3 `uvm_fatal ("cast",{"$cast failed ", tx. convert 2 string ()})

• avoid sprint() and print()) as both ignore the verbosity.
– sprint() calls do_print and returns the string
– print() is non virtual method so it should call do_print and print with $display()
– implement do_print is in your base class

1 virtual function void tx_item :: do_print ( UVM_printer
printer );

2 printer . m_string = convert 2 string ;
3 endfunction

• Since convert2string is virtual,extended classes don’t need to be override do_print().
In other words, calling always convert2string will print properties of the object even in
the derived class. So means we only need to write it once per transaction type

• The UVM_printer formats values,primarily used by fields Marcos.(called by field
macros).
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Copy a data in a transaction in a new format
In UVM, the methods pack(),unpack(),can transform sequence items into arrays of bits,bytes
and ints.
UVM testbench can record transaction by packing the object into an array and write it into
a file. In another simulation, an other testbench can read the file, unpack the data and the
transaction and replay them. Writing pack and unpack methods depend on your specifics of
your protocol. Just make empty versions for now ,we may need them later.

1 virtual function void do_pack ( UVM_packer packer );
2 return ;
3 endfunction
4 virtual function void do_unpack ( UVM_packer packer );
5 return ;
6 endfunction
7 virtual function void do_record ( UVM_recorder recorder );
8 return ;
9 endfunction

writing do_*() methods when extending a transaction class

1 class tx_dst_fixed extends tx_item
2 `uvm_object_utils ( tx_dst_fixed )
3
4 function new ( string name = " tx_dst_fixed ");
5 super.new(name);
6 endfunction
7
8 bit [31:0] fixed_dst ;
9 constraint c_dst_fixed { soft dst == fixed_dst };

10
11 virtual function void do_copy ( UVM_object rhs);
12 tx_dst_fixed tx_rhs ;
13 if(!$cast( tx_rhs , rhs) ) `uvm_fatal ( get_type_name (), " Illegal

rhs argument ")
14 // copy base properties
15 super. do_copy (rhs);
16 // copy derived properties
17 fixed_dst = tx_rhs . fixed_dst ;
18 endfunction
19
20 virtual function bit do_compare ( UVM_object rhs, UVM_comparer

comparer );
21 tx_dst_fixed tx_rhs ;
22 if(!$cast( tx_rhs , rhs) ) `uvm_fatal ( get_type_name (), " Illegal

rhs argument ")
23 // compare base properties
24 return (super. do_compare (rhs, comparer ) &&
25 // compare derived properties
26 ( fixed_dst === tx_rhs . fixed_dst ));
27 endfunction
28
29 virtual function string convert 2 string ();
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30 string s = super. convert 2 string ();
31 // show base properties
32 $sformat (s, "%s\n tx_ds_fixed valeus are: \n", s);
33 // show derived properties
34 $sformat (s, "%s fixed_dst = %0x\n", s , fixed_dst );
35 endfunction
36 endclass

do_pack(), do_unpack(), do_record() and do_print() are all one line methods imple-
mented in the base transaction class tx_item, we don’t need to override them in the extended
class for this simple protocol.

1 tx_item :: do_print (),d0_pack(), do_unpack () and do_record ()

Write the sequence item virtual methods

• Always implement all 6 sequence item virtual methods.

– do_copy(), do_compare(), do_print(), do_pack(),do_unpack(),do_record()
plus convert2string().

– Even if the project does not use all these methods,future projects might.

– Exception, IP that already has field macros-stay with macros when extending
those classes.

• Always call non_virtual methods, like compare()in the testbench, not do_compare().

– That sequence item method calls its do_*() counterpart.

– Never mix field macros and do_*() method; both are called, with bad results.

• Always call super.do_*() in a do_*() method: allows a sequence item to be extended
from another sequence item and properly chain any base class functionality. In other
words, we need just to add a new thin layer and reuse all the current code by extending
classes that are built on the existed functionality of the parents.

Stimulating the design with a sequence item
A sequence item represents a single transaction object. It contains the values to communicate
with UVM components such as drivers and scoreboards and it provides standard methods to
print, copy, compare etc.
As a question might you ask yourself: how do I use these sequence item as stimulus for my
DUT? the answer is hat a sequence contains one or more items that are generated together.
So, we can create complex sequences that can be generated in groups, with feedback of
Streams of related transactions, processor instructions, commands and responses. This can
be done only by creating multiple transactions with context between them.
Generating transactions

• A UVM sequence class is derived from UVM_sequence base class

• It contains a body () task that generates one or more sequence items.

1 class tx_sequence extends UVM_sequence #( tx_item );
2 `uvm_object_utils ( tx_sequence )
3
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4 function new ( string name = " tx_sequence ");
5 super.new(name);
6 endfunction
7
8 virtual task body ();
9 repeat (50) begin

10 tx_item tx;
11 tx = tx_item :: type_id :: create ("tx");
12 start_item (tx);
13 if(! tx. randomize ()) `uvm_fatal ( get_type_name (), " Illegal rhs

argument ")
14 finish_item (tx);
15 end
16 endtask
17 endclass

The class tx_sequence is extended from the class UVM_sequence and it is parametrized class
and it specialized for specific sequence item type

1 #( tx_item );

A sequence is not just an array of sequence items, the transactions that are generated in
the body methods know this is a task not a function so it can have delays. There are 4 four
steps to generate a transaction:

1. create the individual transaction object (when see type_id think of the UVM factory;
The macro uvm_object_utils), tx_item class declare it class type_id you can think
that this is a small factory with a method to create tx_item object. The string "tx"is
the instance of the object. In general use Handle name such tx for the instance name
to simplify debugging.

1 tx = tx_item :: type_id :: create ("tx");

2. Wait for start_item (tx) to be requested from the driver for next item.The driver might
no be ready or need to reset the DUT or still be busy with the previous transaction.

1 start_item (tx);

3. Assign the transaction values, randomizing values of transaction object.

4. Send the transaction to the driver by passing tx handle and finish_item(tx) blocks
waiting for the driver to complete. The driver sends this transaction to DUT and when
finishes, releases the call finish_item

NB: when always randomize values object, always check for the returned status in case
of randomization fails. Check with if statement not with assert statement; The problem
with the assert is that maybe someone wants to speedup the simulation so he disables the
assertions in which case the code inside the assert is never executed, in this case thee UVM
object transactions won’t be randomized.
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Figure 4.6.: handshake between Test/Driver/Sequence [1]

The handshake between Test/Driver/Sequence

1. The test calls the sequence’s start() method, which initializes its properties, then
invokes body().
The test blocks (waits at that point) in the start() method until body() exits.

2. The sequence body() calls start_item()
start_item() blocks until the driver asks for a transaction

3. The driver calls seq_item_port.get_next_item method to pull in a transaction.
The driver then blocks until a transaction is received from the sequence

4. The sequence fills in the item, calls finish_item to send transaction to the driver, and
blocks

5. the driver calls item_done to tell the sequence it is done with that object.

6. when the sequence body() exits, control is returned back to the test.

7. the test continues with its next statement(such as allowing the run_phase to end)

4.3. Drivers and sequencers
As we have seen in previous chapters, a transaction flows from test level to the sequencer
through the driver passing by the interface to the DUT. So in this section, it is highlighted
how a transaction passes from sequencer to the driver and from driver to interface and from
interface to the DUT.

4.3.1. UVM TLM communication

In the testbench, the DUT limits how fast the stimuli can be applied. Since the driver is
connected to the DUT, it can only accept new transaction when the DUT is ready, as a
result, in the connection in the left, the driver controls flow not the generator. The driver

Figure 4.7.: generator-driver-DUT
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pulls transaction from generator. This last one is made up of classes in this example shown
in the figure. In case if you are writing the classes from scratch without UVM you might
have the following pseudo code.

1 class driver ;
2 generator g;
3 task run();
4 forever begin ()
5 g.get(tx);
6 transfer (tx);
7 end
8 endtask
9 endclass

The driver class has run method that continually pulls the transactions from the generator
by calling get(), then the driver send out those transactions by calling transfer(tx).

1 class generator ;
2 task get( tx_item tx);
3 tx = new ();
4 if(!tx. randomize ())....;
5 endtask
6 endclass

In the example of the generator class, which combines UVM_sequence that creates random
transactions and UVM_sequencer that write them to the driver. The driver calls get() task
in the generator which creates the transaction, randomizes it and returns the handle to the
driver.

1 class agent;
2 generator g = new();
3 driver d = new(g);
4 task run();
5 d.run();
6 endtask
7 endclass

The agent instantiates the components and runs the driver. This is just a simplified version
of real UVM_agent. Transactions flow from left to right and controls flow from right to left.
In UVM, it is said that the driver is the initiator of the transfer, and generator is the target

Figure 4.8.: Transaction and control flow [1]

for transfer. The problem with this approach is that the connection between these components
has hard_wired(coded) and difficult to change. The driver can only get transactions from
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single component which must be a class called "generator". As a solution to this problem is
to add a layer of abstraction between the components.
The communication between the components called TLM: transaction level Modeling, it is
based from TLM standard from systemC. As it is explained in the previous chapters, the
TLM connection has two ports A port calls a communication method, such as calling get()

Figure 4.9.: Target and initiator communication [1]

NB: the term port is confusing, it has nothing to do with port in systemverilog term port.
The driver requests the transaction to the port, the target, such as UVM_sequencer class
contains an object called export which has the implementation of the port’s method, such
as the get() body.
A port must be paired with exactly one export (one_to_one) connection.

1 DRIVE ==> SEQUENCER

Figure 4.10.: Analysis port-export [1]

An analysis port as shown in the figure 4.10 : pairs with zero or more exports (one_to_many)

1 MONITOR ==> SCOREBOARD & COVERAGE

Without TLM the driver who controls the generator like is shown in the figure 4.11 while in
the other figure 4.12 it is with TLM, the driver has a handle seq_item_port and calls get(),
this is a blocking connection called UVM_blocking_port as the driver’s run task is blocked
until the get() method returns.
TLM connections are components so the export is the child of the sequencer. The sequencer
has the final get() method.
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Figure 4.11.: Control direction without using TLM [1]

Figure 4.12.: Control direction using TLM [1]

So to go from port to export, the tx_agent calls the port.connect with the handle to
export.

1 tx_agent :
2 drv. seq_item_port . connect (sqr. seq_item_export );

The general formula is:

1 initiator .port. connect ( target . export )

Even though there are three 3 calls of "get()" instead of one, the TLM connection still efficient
as its functional call is very fast because it passes only handles not entire objects.
There are many TLM connections flavors like blocking, non blocking, FIFOs and others...
The most common TLM connections are the blocking and analysis port.

4.3.2. Working way of the sequencer and the driver together
The sequencer is a part of the agent, it receives transaction by sequence and then send them
to the driver in this agent (the driver is fed by a single sequence and a sequencer is fed by

Figure 4.13.: The sequencer and driver [1]

multiple sequences and arbitrates between them). See figure 4.13. In the following code, it
is a way describing how to declare a sequencer handle sqr specialized with tx_item in the
agent.

1 // Declare a sequencer handle - fas !
2 class tx_agent extend UVM_agent ;
3 uvm_sequencer #( tx_item ) sqr;
4 tx_driver drv;
5 endclass

The other way is shown in the following code which is defining a new type tx_sequencer
then using this type to declare the handle and is helpful in case it is needed to define multiple
handles of sequencer in multiple places.
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1 // Declare a separate sequencer type
2 typedef uvm- sequencer #( tx_item ) tx_sequencer ;
3 class tx_agent extend UVM_agent ;
4 tx_sequencer sqr;
5 tx_driver drv;
6 .....
7 endclass

However the preferred style is the first style of coding as it is short and does not require to
define other type.
Both components communicate with a special TLM connection, the base class is UVM_driver
which is parametrized with : the first parameter is " REQ " for request type and " RSP "
for response type which has a s default value RSQ type and the declaration of special TLM
connection is seq_item_port, which is declared in the base class. see the following example:

1 class tx_driver extend UVM_driver #( tx_item );
2 `uvm_component_utils ( tx_driver )
3 // constructor , no default needed
4 function new ( string name, uvm_component parent );
5 super.new(name, parent );
6 endfunction
7 .....
8 endclass

1 // //////////////////////////////////
2 class tx_driver #(type REQ= uvm_sequence_item , type RSP=REQ)

extends uvm_component ;
3 uvm_seq_item_pull_port #(REQ , RSP) seq_item_port ;
4 endclass

tx_driver is extended from UVM_driver and specialized with tx_item type(since tx_-
driver is a component we need to register it in the UVM factory ); the constructor has two
formal arguments: the instance and the handle to the parent, we don’t have default values
unlike sequence_item.
In the figure 4.14 where the driver requests a sequencer item from a sequencer and send the

Figure 4.14.: The driver example -complete the code [1]
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item to DUT inputs. The driver needs a handle to the interface " vif " so it can send the
transactions. In the run phase, the driver:

• declares a handle to the transaction

• requests a new transaction by calling get_next_item()

• calls the method in the interface such as transfer(tx) to send transaction to the DUT.
When a task returns, the driver tells the sequencer is done with transaction by calling
item_done.

The UVM agent creates and connects a driver and a sequencer. tx_agent class has handle for
driver and sequencer, during the build phase, components create lower layer components. The
UVM_driver base class has a built_in TLM port called seq_item_port and UVM_sequencer
base has a built_in TLM export called seq_item_export. In build phase the components
are built TOP DOWN

1 class tx_agent extend UVM_agent ;
2 ... // Factory registration & constructor
3 tx_driver drv;
4 uvm_sequencer #( tx_item ) sqr;
5
6 virtual function void build_phase ( uvm_phase phase);
7 drv = tx_driver :: type_id :: create ("drv",this);
8 sqr = new("sqr",this); //don 't call factory
9 enfunction

10
11 virtual function void connect_phase ( uvm_phase phase);
12 drv. seq_item_port . connect (sqr. seq_item_export );
13 endfunction
14 endclass

4.3.3. The communication between modules and the interface
In verilog,ports connecting the testbench and the modules is too low level, and gives error
prone plus adding more port is time consuming. Systemverilog SV introduces the interface
which contains all signal and code to describe the communication protocol.

1 interface test_if (input logic clk);
2 logic reset_n ;
3 logic en;
4 logic [31:0] a, b;
5 logic [31:0] result ;
6
7 task automatic transfer (tx_in t);
8 ...
9 endtask

10 endinterface

An interface is like a module that contains signals and the code that read and write signals, it
receives handle to an object that describes the transaction to be sent to DUT. The testbench
classes become more reusable with this layer of abstraction, the driver can call a method and
sends the transaction so it reduces the dependencies between the driver and DUT.See the
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corresponding code of the interface.

Figure 4.15.: virtual interface

Sometimes in SV classes, UVM_driver may contain virtual interfaces. In general, in SV "
virtual " means reference to something else.
A dynamic class cannot contain a static interface which is made of wires, the virtual interface
value is passed through in a configuration database.

1 class tx_driver ....;
2 virtual test_ifc vif;
3 virtual task run_phase (...);
4 tx_item tx;
5 forever begin
6 seq_item_port . get_next_item (tx);
7 vif. transfer (tx);
8 seq_item_port . item_done ();
9 end

10 endtask
11 endclass

4.3.4. The Emulation performance

Figure 4.16.: The emulation [1]

Emulation performance is always a concern. The code of verification is written in UVM
OOP and simulation run in a simulator such Questasim. In design time it is not declared
any delay, it passes transactions and interfaces methods and it is not assigned directly to
DUT ports. The emulation side is written in synthesizable modules or interfaces. It is
important to synchronize the DUT when drives the pins.[10]

47



Chapter 4. UVM specifications

4.4. Monitor
The interface reads DUT pin wiggles and collects them into UVM transactions, then the
monitor receives them and broadcasts them to be analyzed. If the scoreboard and coverage_-
collector are present(they are optional), they receive those transactions and work on them.
The coverage_collector can go inside or outside of the agent. The monitor never analyzes

Figure 4.17.: The coverage-collector,agent,monitor [1]

these collected transactions, it just drops them to the proper destinations. A monitor is
always passive component because it does not drive DUT ports.

4.4.1. The Monitor and type of the transactions
The monitor observes the values going into the DUT and creates input transactions object.
This broadcasts the analysis port(they maybe seen by the scoreboard predictor or/and
coverage collector). The monitor sees also the transactions coming out of the DUT and
creates outputs transactions object(that broadcasts the scoreboard evaluator and coverage
collector).

4.4.2. Gathering the input transactions for analysis
The driver and sequencer cannot send these transactions, because the values sent by them
may not be the actual values on the interface due to deliberated errors or accidental.
An agent cannot send these transactions because it might be a passive agent which means
that it does not contain neither the sequence nor the driver(no streams).
Only the monitor captures the values and sends them to the scoreboard and coverage collector
because it :

• ensures that both UVM verification IP and non_UVM work in the UVM-testbench.

• ensures vertical scaling of testbenches.

The monitor broadcasts transactions with TLM analysis ports(one_to_many). The number of
analysis port designed is dependent. Typically, the monitor broadcasts the input transactions
in one port and the output transactions in an other.

4.4.3. The communication between the monitor and scoreboard
The monitor is tied to the DUT until it limits how fast the transactions are received. The
monitor sends out the transactions to the scoreboard. Writing in SV the code of these
component without UVM, see figure 4.19.
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Figure 4.18.: DUT-monitor-scoreboard

Figure 4.19.: code of monitor-scoreboard [1]

The monitor will have a forever loop receiving a transaction from the DUT and then passing
a handle to the write() method in the scoreboard. The scoreboard’s write() method receives
a handle and might store in an array the expected transactions. These two components are
instantiated and connected in agent class.
As may you notice, this connection has problems such that, the monitor communicates only
with the component called scoreboard(not with the coverage_collector) (so its connection
is hard-coded class name and with a fix topology). So if we add function " coverage ", we
need to add more code to the monitor after write() call. The scoreboard and coverage are
optional, so we need to write this code using if statement. Hence, the monitor needs to
know about the configuration information. We can use mailbox in SV but may not work
well with multiple optional receivers. So, as a solution, add a layer of abstraction between
the components. Both control and transactions flow from left to right. The monitor is the
initiator of the transfer, scoreboard is the target for the transfer.

4.4.4. TLM analysis port flow

Figure 4.20.: control and transaction flow direction [1]

In the figure4.20 shows the connection without UVM, where the monitor passes the handle
directly to class scoreboard’s write() function.
In UVM, as shown in the figure 4.21, the tx_monitor reads the transaction from the DUT and
passes the handle to TLM_analysis_port write() function. The scoreboard write() function
is called from analysis_imp_export. In analysis port can connect multiple component so,
it needs a list of component handles called " imp ", then for each component, it calls its
write() method. The final connection is made in higher hierarchical level such as the the
environment or the agent.

1 initiator .port. connect ( target . export )

TLM rule: write() is non_blocking and always completes. This is because the monitor must
passes the transactions to the other components without any delay and this is because of if
the scoreboard has a delay, the monitor can miss the following transaction.
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Figure 4.21.: Monitor-scoreboard with UVM [1]

Figure 4.22.: TLM analysis port-export [1]

4.4.5. Monitor code example

1 class tx_monitor extends uvm_monitor ;
2 ... // Factory registration & constructor
3 virtual tb_if vif;
4 agent_config agt_cfg ;
5 uvm_analysis_port #( tx_item ) dut_in_tx_port ;
6 uvm_analysis_port #( tx_item ) dut_out_tx_port ;
7
8 function void build_phase ( uvm_phase phase);
9 dut_in_tx_port = new(" dut_in_tx_port ", this);

10 dut_out_tx_port = new(" dut_out_tx_port ", this);
11 if(! uvm_config_db #( agent_config ) :: get(this ,"" ," agt_cfg ",

agt_cfg ))
12 'uvm_fatal (" MONITOR ","No agent configuration found!")
13 vif = agt_cfg .vif;
14 endfumction
15
16 virtual task run_phase ( uvm_phase phase);
17 fork
18 get_inputs ();
19 get_outputs ;
20 join
21 endtask
22
23 virtual task get_inputs ();
24 tx_item tx_in;
25 forever begin
26 tx_in = tx_item :: type_id :: create ("tx_in");
27 vif. get_an_input (tx_in);
28 'uvm_info ("TX_IN",tx_in. convert 2 string (), UVM_DEBUG )
29 dut_in_tx_port .write(tx_in);
30 end
31 endtask
32
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33 virtual task get_outputs ();
34 tx_item tx_out ;
35 forever begin
36 tx_out = tx_item :: type_id :: create (" tx_out ");
37 vif. get_an_output ( tx_out );
38 'uvm_info (" TX_out ", tx_out . convert 2 string (), UVM_DEBUG )
39 dut_out_tx_port .write( tx_out );
40 end
41 endtask
42
43 endclass : tx_monitor

4.5. Agent
We want to verify a device with multiple ports using UVM code and make it reusable on
future projects, we start with making UVM-sequencer,monitor,driver and call the methods
in the interface and check the result for the scoreboard, lastly, we instantiate all these
component in a test, but this still is not reusable. When we write second test we will have to
manually instantiate all these low level components in a new test all over again.
In case if this device has multiple interfaces such as USB ports it should be easy to write the
test component because it contains all these low level components.
So better way to organize this is by wrapping all these component in an agent which is a
reusable container that creates and connects the component inside.Hence, the test controls
all low level components without reaching down to them. So, make a configuration class

Figure 4.23.: multiple agents

containing addresses and other properties. This agent let us easily reuse port (USB for
example) specific component. If the design has 3 USB ports, just instantiate 3 agents. The
scoreboard receives the results from all agents, so it is not included inside any agent. By
wrapping agent(s) and all theses components in the environment level, it becomes reusable
either. So it has its own configuration, test can customize its behavior.
An agent contains the components for a specific DUT protocol. Each agent is connected
to an interface for that protocol (for the DUT side, most of these signals may be discrete
ports). Related DUT signals are grouped together in an interface that has its own UVM
agent. see figure 4.24.An environment can contain any number of agent.
A passive agent only monitors the DUT(the driver and sequencer are not created) while
an active agent both drives and monitors the DUT. UVM methodology recommends that
agents should be configurable to be either active or passive . The figure shows an example of
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Figure 4.24.: DUT with multiple ports

Figure 4.25.: Active and passive agent

Figure 4.26.: Real example of multiple agent with other components
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multiple agents that has :

• A separate interface is used for each logic group of DUT signals

• A separate agent is paired with each DUT interface

• Agents can be active (drive and monitor) or passive (just monitor)

the source of this figure 4.26 is taken from "A verification Horizons Magazine an evaluation
of the advantages of moving fomA vhdl to a UVM test bench.(verificationacademy.com)"

4.6. Scoreboard
Any discussion of scoreboards should have a brief pr-description of the design. A scoreboard
is comparing the actual outputs of the design with expected values. The design engineer

Figure 4.27.: Implementation and verification plan

reads the specifications and implement the design and writes RTL code. The verification
engineer reads same specifications and makes verification plan and writes the test for the
design. The comparison between these two threads can be a scoreboard. In UVM, it is
preferable to apply random stimulus that requires automatic checking. For a single test, the
scoreboard job is to let you know if the test is pass or fail, in some other scoreboards,they
can let you know when finishes.
In initial testbenches verify single blocks. As the design progresses from individual blocks

Figure 4.28.: Single block

to sub_systems, chips and beyond, checking evolves too. Each configuration may need a
different set of scoreboards. The environment needs to be flexible enough to handle these
various configurations.

4.6.1. Individual parts of the scoreboard
In general, the scoreboard should keep track of the differences between outputs of the design
and the testbench. A monitor captures the DUT inputs and outputs. The design outputs
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called the actual results. A predictor transforms the input transactions , perhaps with an
abstraction model. The predictor outputs called expected results and they will be stored in
a buffer until the actual results are ready. The evaluator compares the expected and actual
results, this could be with the following method:

1 uvm_sequence_item :: compare ()

or with another algorithm. The scoreboard is a reusable component. Common scoreboard

Figure 4.29.: The component of the scoreboard [1]

bugs might be caused by improper synchronization of all these threads.

4.6.2. Scoreboard TLM communication

Figure 4.30.: Scoreboard TLM connection [1]

A scoreboard needs to communicate transactions in several ways:
In high level, the monitor sends transactions to the scoreboard. Inside the scoreboard, the
predictor is optional,hence, it must be connected to the monitor with analysis port. The
monitor calls a write() method in the TLM method which then calls the write() method in the
agent port. This broadcasts the transaction up through agent ports and into any receiving
exports. The scoreboard receives the handle with analysis export(because, it exports its
write() method making visible to component outside the block) the final connection is made
with analysis_imp_export which sends the handle to the final implementation of the write()
method. Scoreboard is instantiated in the environment level. In this document, will be
shown to kinds of scoreboards:
hierarchical scoreboard The predictor and the evaluator are different component contained

Figure 4.31.: hierarchical scoreboard [1]

inside the scoreboard, the DUT is an ALU, the sequence item type of the input with an
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opcode and operands is used for DUT inputs and outputs, the transactions are held on
FIFOs and then compared. The predictor is a reference model.
Flat scoreboard
The second example is a flat scoreboard: predictor and evaluator coded directly in the

Figure 4.32.: Flat scoreboard [1]

scoreboard and it has different sequence item types for inputs and outputs, the expected
values are stored in an associative array storage.

4.6.3. Scoreboard storage
Typically,the predictor genrates the expected transactions in 0 Zero time. The scoreboard
needs to store them until the actual results available later. There are lot of ways to store the
transactions, among them :

• FIFOs : the predictor and evaluator can be connected by means of TLM_analysis port,
this function is like SV mailbox with blocking get() and put() methods, the content
of FIFO is not visible and it is automatically connected to analysis export so there
is no need to connect between the write() and put() methods. First_in,First_out
ordering.

• Queues : it is a sv dynamic array built_in access methods it is more flexible than
FIFO.

• Associative arrays : when DUT outputs can occur in an unpredictable order. The
storage created only for the locations used.

4.6.4. Safer testbenches

Figure 4.33.: Testbench-copy-clone [1]

Among the common software project problems is memory corruption, the monitor stores
the DUT transactions in an object then sends the handle to the predictor and coverage
collector. A predictor can write the expected result into the transaction. The coverage
collector will immediately see the changes and if the collector sample the changed values,
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it could get wrong coverage result. The best way to avoid this, by making sure that the
testbench using copy()/clone() before writing into it. This principle is known as copy On
Write COW.
Let’s consider the following code, we have write() method that receives tx_item handls and
dst handle.

1 function void write(input tx_item t);
2 tx_item dst;
3 dst = t.clone(); //??
4 ...

We cannot clone t to dst, we get the following compiler error :

1 Error Questa : illegal assignment to type 'class tx_item ' from type
'class uvm_object ': types are not assignment compatible .

this is because tx_item eventually derived from uvm_object which is, where the clone()
method is defined(turned to uvm base handle) the assignment of a base handle to a derived
handle is not legal, instead, we must use $cast to check at run time the type of the object
returned by clone() methd and ensured the compatibility with dst handle. It would be better
if we use if statement to check the results and gives fatal in case of errors. As it is mentioned
before in the monitor section, always created a new object for every transaction broadcast.
Otherwise, the scoreboard storage array will have many handles outputting to the single
object.Sharing and reusing objects can result in data corruption bugs.

4.7. Environment
The agent contains the component for a single protocol and it is a reusable class, the envi-
ronment contains multiple agent plus scoreboards and coverage collectors and configuration
object. This forms a high level reusable block. An environment can contain multiple lower
environment, the best practice is to have a single top environment and multiple sub environ-
ment, this allows you to hide details of lower level blocks as an agent hides details of the
driver and monitor.

1 class tx_env extends uvm_env ;
2 ... // factory registration & constructor
3 tx_agent agt;
4 tx_scoreboard scb;
5 tx_coverage_collector cov;
6 env_config env_cfg ;
7
8 virtual function void build_phase ( uvm_phase phase);
9 // get env_cfg from configuration database

10 agt = tx_agent :: type_id :: create ("agt", this);
11 if ( env_cfg . enable_scoreboard )
12 scb = tx_scoreboard :: type_id :: create ("scb", this);
13 if ( env_cfg . enable_coverage )
14 cov = tx_coverage_collector :: type_id :: create ("cov", this);
15 endfunction
16
17 virtual function void connect_phase ( uvm_phase phase);
18 if ( env_cfg . enable_scoreboard ) begin
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19 agt. dut_in_tx_port . connect (scb. dut_in_imp_export );
20 agt. dut_out_tx_port . connect (scb. dut_out_imp_export );
21 end
22 if ( env_cfg . enable_coverage )
23 agt. dut_in_tx_port . connect (cov. dut_in_imp_export );
24 endfunction
25 endclass : tx_env

tx_env class is extended from uvm_env, it has handles to the components agent, scoreboard,
coverage and configuration class which contains variables that describe the environment. The
build phase is where you build the component, the first step to do is to get the configuration
of the environment then create the agent, since the scoreboard is optional, it depends on
the configuration object if it must be crated or no,likewise the coverage collector is optional.
The last step is to connect the components. The environment is just a container of the
components so it does not have a Run_phase.

4.8. configuration
UVM testbench is composed from components and stimulus ,they should be configurable
for maximum re-usability, Instead of hardwired values create variables that we can vary to
change the class behavior, allow the user to change the testbench topology, the following
configuration values must be set during the build phase

• Number of master and slave agents

• Active o passive agents

• Interface location

• Bus sizes

• Address ranges for slave devices

The configuration values that must be set during the run phase:

• Stimulus specification:

– Transaction generation iteration

– Transaction delays

– Randomization constraints

• Verification specification

– Enabling or disabling message printing

– Enabling or disabling specific checks in the scoreboard

Passing configuration values through OOP constructors in hierarchical references does not
work(there are too many values and testbench topology can change from run to run).This
is solved in UVM by passing them through a separate database DB which is not a part of
testbench topology, using set() and get() methods.
The database is made up of three entries:

1 scope name value
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UVM configuration DB is stored in a class called UVM_config_db. A set of values ,addressed
by strings stored in an associative array, each entry consists of scope and name and value,
this class has two main functions set(..) and get(..) which have four 4 arguments : the first
and second " context and inst" are combined to give scope and the last two are the name of
the entry and the actual value respectively.
For further information return back to uvm_users_guide.

4.9. UVM factory
One of the fundamental role of UVM is reusing of testbench over and over without making
any changes (one reason to avoid changes is that can break the existing tasks).
If a component is constructed with new(), then it is not possible to derive from it.

1 class usb_agent extends uvm_agent
2 usb30 _driver drv;
3 function void build_phase (...);
4 drv = new();
5 endfunction
6 endclass

When building an object a hook needed to optionally build an alternative one, this allows
writing the testbench code once and inject new behavior later. In uvm, building the object
with create()method that looks up the class in the factory and build the object.

1 class usb_agent extends uvm_agent
2 usb30 _driver drv;
3 function void build_phase (...);
4 drv = usb30 _driver :: type_id :: create ("drv", this); // factory

create driver
5 endfunction
6 endclass

To connect factory with classes either use the first way which used for component ’uvm_-
component_utils macro registers classes derived from uvm_component,such as uvm_test,
uvm_env, uvm_agent, uvm_sequencer, uvm_monitor...; a component is constructed with two
arguments: name and parent. The second way is used for non-component class ’uvm_object_-
utils macros register classes derived from uvm_object and any other non-component class
like uvm_sequence, uvm_sequence_item, and configuration object class.
Theses macros create a proxy class type_id that can build the class by registering its class
name and its proxy in the factory.
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Examples in UVM

5.1. First style of coding

5.1.1. Full adder

Figure 5.1.: circuit to implement

The figure 5.1 shows the layered levels of verifying the DUT. In this chapter we will verify
some simple circuits using UVM and the all component explained in the previous chapters in
general and the code explained in the last chapter in particular. All the examples used are
implemented in VHDL except the DUT in FSM.
The following code implements the full adder in vhdl,the figure 5.2 shows the full adder
circuit

Figure 5.2.: Full-adder

where :

1 S = a ^ b ^ ci // sum
2 co = (a & b) | (a & ci) | (b & ci)

The code in VHDL:
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1 // --------------------**fa.vhdl **-----
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 use ieee. std_logic_unsigned .all;
5 entity adder is
6 port(
7 clk : in std_logic ;
8 reset : in std_logic ;
9 a : in std_logic ;

10 b : in std_logic ;
11 ci : in std_logic ;
12 s : out std_logic ;
13 co : out std_logic );
14 end adder;
15 architecture description of adder is
16 begin
17 s <= a xor b xor ci;
18 co <= ( a and b) or(a and ci) or (ci and b);
19 end description ;

The interface is spitted to two : input_if and output_if, the first one used to describe the
inputs going to the DUT and second one is the interface of signals coming out from DUT.
The interface using "modport" which is used to restrict the access within an interface. It is
not necessary to split the interface to input and output, is just about the style coding. The
interfaces of full adder

1 // --------------------** input_if .sv**--------
2 interface input_if (input clk, rst);
3 logic A, B;
4 logic ci;
5 modport port(input clk, rst, A, B, ci);
6 endinterface
7 // -------------------------------------------

1 // --------------------** output_if .sv**-------
2 interface output_if (input clk, rst);
3 logic data;
4 logic co;
5 modport port(input clk, rst, output data, co);
6 endinterface
7 // -------------------------------------------

the transaction are extended from uvm_sequence_item.

1 `uvm_object_utils_begin ( packet_in )
2
3 `uvm_field_int (A, UVM_ALL_ON | UVM_HEX )

they are just two lines macro expand to over 100 lines of code just to support the field
automation macros [11]. It is useful when building your own comparer so do not need to
create your own do_compare() and do_copy()... then build the class, since it is derived
from object then it has no parent only name and register it in the factory.
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1 // --------------------** packet_in .sv**-------
2 class packet_in extends uvm_sequence_item ;
3 rand logic A ;
4 rand logic B ;
5 rand logic ci;
6 `uvm_object_utils_begin ( packet_in ) // register in the factory
7 `uvm_field_int (A, UVM_ALL_ON | UVM_HEX )
8 `uvm_field_int (B, UVM_ALL_ON | UVM_HEX )
9 `uvm_field_int (ci, UVM_ALL_ON | UVM_HEX )

10 `uvm_object_utils_end
11 // -----------------------------------------
12 function new( string name = " packet_in " );
13 super.new(name);
14 endfunction : new
15 // -----------------------------------------
16 endclass : packet_in
17 // -------------------------------------------

Packet_in and packet_out are transactions sent to the DUT and received from it respectively.
In this code are defined both in different classes so to make it easy for me to distinguish
which packet do I need to use. Both are extended from uvm_sequence_item and registered
in the factory then built using new() method, each of the packets has its own properties

1 // --------------------** packet_out .sv**------
2 class packet_out extends uvm_sequence_item ;
3 rand logic data;
4 rand logic co;
5 `uvm_object_utils_begin ( packet_out )
6 `uvm_field_int (data, UVM_ALL_ON | UVM_HEX )
7 `uvm_field_int (co, UVM_ALL_ON | UVM_HEX )
8 `uvm_object_utils_end
9 // --------------------------------------

10 function new( string name=" packet_out ");
11 super.new(name);
12 endfunction : new
13 // ---------------------------------------
14 endclass : packet_out
15 // -------------------------------------------

Generating the sequences that sequence class is derived from uvm_sequence base class and
it is parametrized with #(packet_in). It is also registred in the factory and built, it uses
a task to use start_item which tells the sequencer that the sequence is available to be
arbitrated by him then, it randomizes the returned value also to use finish_item which
sends the randomized sequence_item to the driver.

1 // --------------------** sequence_in .sv**-----
2 class sequence_in extends uvm_sequence #( packet_in );
3 `uvm_object_utils ( sequence_in )
4 // ------------------------------------------
5 function new( string name=" sequence_in ");
6 super.new(name);
7 endfunction : new
8 // -----------------------------------------
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9 task body;
10 packet_in tx;
11 forever begin
12 tx = packet_in :: type_id :: create ("tx");
13 start_item (tx);
14 assert (tx. randomize ());
15 finish_item (tx);
16 end
17 endtask : body
18 // -------------------------------------------
19 endclass : sequence_in
20 // -------------------------------------------

The sequencer class is derived from uvm_sequencer parametrized with packet_in, it is
registered in the factory using ’uvm_component_utils not’uvm_object_utils so to build
it, it must have name and parent. It will arbitrate the randomized transactions and then
send them to the driver.

1 // --------------------** sequencer .sv ---------
2 class sequencer extends uvm_sequencer #( packet_in );
3 `uvm_component_utils ( sequencer )
4 // -------------------------------------------
5 function new ( string name = " sequencer ", uvm_component parent = null);
6 super.new(name, parent );
7 endfunction
8 // -------------------------------------------
9 endclass : sequencer

10 // -------------------------------------------

The driver class is derived from uvm_driver always parametrized with packet_in, it is
registered in the factory and built with a name and parent. In this class is defined the virtual
interface, because in SystemVerilog a class cannot make a reference to a signal without being
declared within a module or interface scope where those signals are defined. For the purposes
of developing reusable testbenches this is very restrictive. However, SystemVerilog classes
can reference signals within an interface via a virtual interface handle. This allows a class
to either assign or sample values of signals inside an interface, or to call tasks or functions
within an interface. A virtual interface is a peculiar concept. It behaves like a class variable,
but an interface gets defined and instantiated like a module. An interface is not a data type,
but a virtual interface is.
In task run phase, it uses fork-join to run in parallel three tasks that are defined out side of
this task. The virtual protected task used when we don’t want the methods and members be
accessible from outside only by the child inherited. In this task, the inputs are reset when
reset=1.
In the get_and_drive task, it waits until reset gets activated low and when the clock is
positive, It loops forever to get multiple transactions from sequencer using seq_item_-
port.get(req).
In the drive_transfer task, the transactions are transferred to the virtual variables. It
waits for one clock cycle to generate and record then It ends record after another clock cycle
that is used for hold time, the task is ended.

1 // --------------------** driver .sv ------------
2 typedef virtual input_if input_vif ;
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3 class driver extends uvm_driver #( packet_in );
4 `uvm_component_utils ( driver )
5 input_vif vif;
6 event begin_record , end_record ;
7 // -------------------------------------------
8 function new( string name = " driver ", uvm_component parent = null);
9 super.new(name, parent );

10 endfunction
11 // -------------------------------------------
12 virtual function void build_phase ( uvm_phase phase);
13 super. build_phase (phase);
14 assert ( uvm_config_db #( input_vif ):: get(this , "", "vif", vif));
15 endfunction
16 // -------------------------------------------
17 virtual task run_phase ( uvm_phase phase);
18 super. run_phase (phase);
19 fork
20 reset_signals ();
21 get_and_drive (phase);
22 record_tr ();
23 join
24 endtask
25 // -------------------------------------------
26 virtual protected task reset_signals ();
27 wait (vif.rst == 1);
28 forever begin
29 vif.A <= 0;
30 vif.B <= 0;
31 vif.ci <= 0;
32 @( posedge vif.rst);
33 end
34 endtask
35 // -------------------------------------------
36 virtual protected task get_and_drive ( uvm_phase phase);
37 wait(vif.rst === 1);
38 @( negedge vif.rst);
39 @( posedge vif.clk);
40 forever begin
41 seq_item_port .get(req);
42 -> begin_record ;
43 drive_transfer (req);
44 end
45 endtask
46 // -------------------------------------------
47 virtual protected task drive_transfer ( packet_in tr);
48 @( posedge vif.clk)
49 vif.A = tr.A;
50 vif.B = tr.B;
51 vif.ci = tr.ci;
52 @( posedge vif.clk);
53 -> end_record ;
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54 @( posedge vif.clk); // hold time
55 endtask
56 // -------------------------------------------
57 virtual task record_tr ();
58 forever begin
59 @( begin_record );
60 begin_tr (req, " driver ");
61 @( end_record );
62 end_tr (req);
63 end
64 endtask
65 // -------------------------------------------
66 endclass
67 // -------------------------------------------

The driver_out is extended from uvm_driver, driver and driver_out can be grouped in
one class, all is about coding style.

1 // ------------------** driver_out .sv**-------
2 typedef virtual output_if output_vif ;
3 class driver_out extends uvm_driver #( packet_out );
4 `uvm_component_utils ( driver_out )
5 output_vif vif;
6 // -------------------------------------------
7 function new( string name = " driver_out ", uvm_component parent = null);
8 super.new(name, parent );
9 endfunction

10 // -------------------------------------------
11 virtual function void build_phase ( uvm_phase phase);
12 super. build_phase (phase);
13 assert ( uvm_config_db #( output_vif ):: get(this , "", "vif", vif));
14 endfunction
15 // -------------------------------------------
16 virtual task run_phase ( uvm_phase phase);
17 super. run_phase (phase);
18 endtask
19 // -------------------------------------------
20 endclass
21 // -------------------------------------------

The monitor class is defined from uvm_monitor, like previously described it receives data
from the DUT and sends them to scoreboard

1 // --------------------** monitor .sv**---------
2 class monitor extends uvm_monitor ;
3 input_vif vif;
4 event begin_record , end_record ;
5 packet_in tr;
6 uvm_analysis_port #( packet_in ) item_collected_port ;
7 `uvm_component_utils ( monitor )
8 // -------------------------------------------
9 function new( string name, uvm_component parent );

10 super.new(name, parent );
11 item_collected_port = new (" item_collected_port ", this);
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12 endfunction
13 // -------------------------------------------
14 virtual function void build_phase ( uvm_phase phase);
15 super. build_phase (phase);
16 assert ( uvm_config_db #( input_vif ):: get(this , "", "vif", vif));
17 tr = packet_in :: type_id :: create ("tr", this);
18 endfunction
19 // -------------------------------------------
20 virtual task run_phase ( uvm_phase phase);
21 super. run_phase (phase);
22 fork
23 collect_transactions (phase);
24 record_tr ();
25 join
26 endtask
27 // -------------------------------------------
28 virtual task collect_transactions ( uvm_phase phase);
29 wait(vif.rst === 1);
30 forever begin
31 -> begin_record ;
32 tr.A = vif.A;
33 tr.B = vif.B;
34 tr.ci = vif.ci;
35 item_collected_port .write(tr);
36 @( posedge vif.clk);
37 -> end_record ;
38 end
39 endtask
40 // -------------------------------------------
41 virtual task record_tr ();
42 forever begin
43 @( begin_record );
44 begin_tr (tr, " monitor ");
45 @( end_record );
46 end_tr (tr);
47 end
48 endtask
49 // -------------------------------------------
50 endclass
51 // -------------------------------------------

Like the driver, the monitor_out uses virtual variables to get data from DUT.

1 // --------------------** monitor_out .sv -------
2 class monitor_out extends uvm_monitor ;
3 `uvm_component_utils ( monitor_out )
4 output_vif vif;
5 event begin_record , end_record ;
6 packet_out tr;
7 uvm_analysis_port #( packet_out ) item_collected_port ;
8 // ------------------------------------------
9 function new( string name, uvm_component parent );

10 super.new(name, parent );
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11 item_collected_port = new (" item_collected_port ", this);
12 endfunction
13 // -------------------------------------------
14 virtual function void build_phase ( uvm_phase phase);
15 super. build_phase (phase);
16 assert ( uvm_config_db #( output_vif ):: get(this , "", "vif", vif));
17 tr = packet_out :: type_id :: create ("tr", this);
18 endfunction
19 // -------------------------------------------
20 virtual task run_phase ( uvm_phase phase);
21 super. run_phase (phase);
22 fork
23 collect_transactions (phase);
24 record_tr ();
25 join
26 endtask
27 // -------------------------------------------
28 virtual task collect_transactions ( uvm_phase phase);
29 @( negedge vif.rst);
30 forever begin
31 -> begin_record ;
32 tr.data = vif.data;
33 tr.co = vif.co; item_collected_port .write(tr);
34 @( posedge vif.clk);
35 -> end_record ;
36 end
37 endtask
38 // -------------------------------------------
39 virtual task record_tr ();
40 forever begin
41 @( begin_record );
42 begin_tr (tr, " monitor_out ");
43 @( end_record );
44 end_tr (tr);
45 end
46 endtask
47 // -------------------------------------------
48 endclass
49 // -------------------------------------------

The agent instantiates the components : sequencer, driver and monitor. It consists of the
handles of these components, after registration in the factory and constructing it, it uses uvm_-
analysis_port to get transactions then create the handls of sequencer,driver and monitor
then connect monitor to item_collected_port and the driver with seq_item_export.

1 // --------------------** agent.sv -------------
2 class agent extends uvm_agent ;
3 sequencer sqr;
4 driver drv;
5 monitor mon;
6 uvm_analysis_port #( packet_in ) item_collected_port ;
7 `uvm_component_utils (agent)
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8 // -------------------------------------------
9 function new( string name = "agent", uvm_component parent = null);

10 super.new(name, parent );
11 item_collected_port = new(" item_collected_port ", this);
12 endfunction
13 // -------------------------------------------
14 virtual function void build_phase ( uvm_phase phase);
15 super. build_phase (phase);
16 mon = monitor :: type_id :: create ("mon", this);
17 sqr = sequencer :: type_id :: create ("sqr", this);
18 drv = driver :: type_id :: create ("drv", this);
19 endfunction
20 // -------------------------------------------
21 virtual function void connect_phase ( uvm_phase phase);
22 super. connect_phase (phase);
23 mon. item_collected_port . connect ( item_collected_port );
24 drv. seq_item_port . connect (sqr. seq_item_export );
25 endfunction
26 // -------------------------------------------
27 endclass : agent
28 // -------------------------------------------

The agent_out is used to connect the driver_out and monitor_out,again it is all about
code style.

1 // --------------------** agent_out .sv**-------
2 class agent_out extends uvm_agent ;
3 driver_out drv;
4 monitor_out mon;
5
6 uvm_analysis_port #( packet_out ) item_collected_port ;
7
8 `uvm_component_utils ( agent_out )
9 // -------------------------------------------

10 function new( string name = " agent_out ", uvm_component parent = null);
11 super.new(name, parent );
12 item_collected_port = new(" item_collected_port ", this);
13 endfunction
14 // -------------------------------------------
15 virtual function void build_phase ( uvm_phase phase);
16 super. build_phase (phase);
17 mon = monitor_out :: type_id :: create (" mon_out ", this);
18 drv = driver_out :: type_id :: create (" drv_out ", this);
19 endfunction
20 // -------------------------------------------
21 virtual function void connect_phase ( uvm_phase phase);
22 super. connect_phase (phase);
23 mon. item_collected_port . connect ( item_collected_port );
24 endfunction
25 // -------------------------------------------
26 endclass : agent_out
27 // -------------------------------------------
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The reference model is extended from uvm_component, it is registered in the factory and
constructed. It has two handles of packet_in and packet_out. In run phase, it calls a
function called "sum" and "sum1" in c++(can be in c++, c, systemverilog or matlab,...),
these functions are imported in the top of the file using "import "DPI -C" context function",
it gets the transaction inputs and then pass them as arguments to these functions.

1 // --------------------** refmod .sv**----------
2 import "DPI -C" context function int sum(int x, int y , int carry_in );
3 import "DPI -C" context function int sum1(int x, int y , int carry_in );
4
5 class refmod extends uvm_component ;
6 `uvm_component_utils ( refmod )
7 packet_in tr_in;
8 packet_out tr_out ;
9 integer a, b;

10 uvm_get_port #( packet_in ) in;
11 uvm_put_port #( packet_out ) out;
12 // -------------------------------------------
13 function new( string name = " refmod ", uvm_component parent );
14 super.new(name, parent );
15 in = new("in", this);
16 out = new("out", this);
17 endfunction
18 // -------------------------------------------
19 virtual function void build_phase ( uvm_phase phase);
20 super. build_phase (phase);
21 tr_out = packet_out :: type_id :: create (" tr_out ", this);
22 endfunction : build_phase
23 // -------------------------------------------
24 virtual task run_phase ( uvm_phase phase);
25 super. run_phase (phase);
26 forever begin
27 in.get(tr_in);
28 tr_out .data = sum(tr_in.A, tr_in.B, tr_in.ci);
29 // uvm_report_info (" DAAATAAAAAA ", "");
30 tr_out .co = sum1(tr_in.A, tr_in.B, tr_in.ci);
31 out.put( tr_out );
32 end
33 endtask : run_phase
34 // -------------------------------------------
35 endclass : refmod
36 // -------------------------------------------

The comparator or scoreboard is extended from uvm_scoreboard, it defines some string (to
be shown later during the simulation) that are parametrized to accept a data object of type
T. In run phase, it raises the objection and drops it in order to coordinate status information
between the participant components. The put() is used in refmod to get the expected result
and since the comparator is the receiver with respect to reference model, it must define the
put task which is a blocking task. The try_put() is a non blocking function, will attempt
to perform a put operation and will return true if it succeeds, and false if does not. If it fails,
then you have to try again. The can_put() function is just a test to see if a non-blocking
put operation would succeed without actually performing the operation.
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1 // --------------------** comparator .sv --------
2 class comparator #(type T = packet_out ) extends uvm_scoreboard ;
3 typedef comparator #(T) this_type ;
4 `uvm_component_param_utils ( this_type )
5 const static string type_name = " comparator #(T)";
6 uvm_put_imp #(T, this_type ) from_refmod ;
7 uvm_analysis_imp #(T, this_type ) from_dut ;
8 typedef uvm_built_in_converter #( T ) convert ;
9 int m_matches , m_mismatches ;

10 T exp;
11 bit free;
12 event compared , end_of_simulation ;
13 // -------------------------------------------
14 function new( string name, uvm_component parent );
15 super.new(name, parent );
16 from_refmod = new(" from_refmod ", this);
17 from_dut = new(" from_dut ", this);
18 m_matches = 0;
19 m_mismatches = 0;
20 exp = new("exp");
21 free = 1;
22 endfunction
23 // -------------------------------------------
24 virtual function string get_type_name ();
25 return type_name ;
26 endfunction
27 // -------------------------------------------
28 task run_phase ( uvm_phase phase);
29 phase. raise_objection (this);
30 @( end_of_simulation );
31 phase. drop_objection (this);
32 endtask
33 // -------------------------------------------
34 virtual task put(T t);
35 if(!free) @compared ;
36 exp.copy(t);
37 free = 0;
38 @compared ;
39 free = 1;
40 endtask
41 // -------------------------------------------
42 virtual function bit try_put (T t);
43 if(free) begin
44 exp.copy(t);
45 $display ("exp ",exp);
46 free = 0;
47 return 1;
48 end
49 else return 0;
50 endfunction
51 // -------------------------------------------
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52 virtual function bit can_put ();
53 return free;
54 endfunction
55 // -------------------------------------------
56 virtual function void write(T rec);
57 if (free)
58 uvm_report_fatal ("No expect transaction to compare with", "");
59 if(!(exp. compare (rec))) begin
60 uvm_report_warning (" Comparator Mismatch ", "");
61 m_mismatches ++;
62 end
63 else begin
64 uvm_report_info (" Comparator Match", "");
65 m_matches ++;
66 end
67 if( m_matches + m_mismatches > 100)
68 -> end_of_simulation ;
69 -> compared ;
70 endfunction
71 // -------------------------------------------
72 endclass
73 // -------------------------------------------

The environment class connects and instantiates the component that are in bottom layer
such as agent, agent_out,refmod and comparator.

1 // --------------------**env.sv**-------------
2 class env extends uvm_env ;
3 agent mst;
4 refmod rfm;
5 agent_out slv;
6 comparator #( packet_out ) comp;
7 uvm_tlm_analysis_fifo #( packet_in ) to_refmod ;
8 `uvm_component_utils (env)
9 // -------------------------------------------

10 function new( string name, uvm_component parent = null);
11 super.new(name, parent );
12 to_refmod = new(" to_refmod ", this);
13 endfunction
14 // -------------------------------------------
15 virtual function void build_phase ( uvm_phase phase);
16 super. build_phase (phase);
17 mst = agent :: type_id :: create ("mst", this);
18 slv = agent_out :: type_id :: create ("slv", this);
19 rfm = refmod :: type_id :: create ("rfm", this);
20 comp = comparator #( packet_out ):: type_id :: create (" comp", this);
21 endfunction
22 // -------------------------------------------
23 virtual function void connect_phase ( uvm_phase phase);
24 super. connect_phase (phase);
25 // Connect MST to FIFO
26 mst. item_collected_port . connect ( to_refmod . analysis_export );
27 // Connect FIFO to REFMOD
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28 rfm.in. connect ( to_refmod . get_export );
29 // Connect scoreboard
30 rfm.out. connect (comp. from_refmod );
31 slv. item_collected_port . connect (comp. from_dut );
32 endfunction
33 // -------------------------------------------
34 virtual function void end_of_elaboration_phase ( uvm_phase phase);
35 super. end_of_elaboration_phase (phase);
36 endfunction
37 // -------------------------------------------
38 virtual function void report_phase ( uvm_phase phase);
39 super. report_phase (phase);
40 `uvm_info ( get_type_name (), $sformatf (" Reporting matched %0d", comp

. m_matches ), UVM_NONE )
41 if (comp. m_mismatches ) begin
42 `uvm_error ( get_type_name (), $sformatf ("Saw %0d mismatched

samples ", comp. m_mismatches ))
43 end
44 endfunction
45 // -----------------------------------------
46 endclass
47 // -------------------------------------------

Simple_test is where the container environment and transactions are instantiated.

1 // --------------------** simple_test .sv**-----
2 class simple_test extends uvm_test ;
3 env env_h;
4 sequence_in seq;
5 `uvm_component_utils ( simple_test )
6 // -------------------------------------------
7 function new( string name, uvm_component parent = null);
8 super.new(name, parent );
9 endfunction

10 // -------------------------------------------
11 virtual function void build_phase ( uvm_phase phase);
12 super. build_phase (phase);
13 env_h = env :: type_id :: create ("env_h", this);
14 seq = sequence_in :: type_id :: create ("seq", this);
15 endfunction
16 // -------------------------------------------
17 task run_phase ( uvm_phase phase);
18 seq.start(env_h.mst.sqr);
19 endtask : run_phase
20 // -------------------------------------------
21 endclass
22 // -------------------------------------------

Top is the top level where DUT is instantiated. All included files can grouped and packed in
one package then import it.

1 // --------------------**top.sv**-------------
2 import uvm_pkg ::*;
3 `include " uvm_macros .svh"
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4 `include "./ input_if .sv"
5 `include "./ output_if .sv"
6 `include "./ packet_in .sv"
7 `include "./ packet_out .sv"
8 `include "./ sequence_in .sv"
9 `include "./ sequencer .sv"

10 `include "./ driver .sv"
11 `include "./ driver_out .sv"
12 `include "./ monitor .sv"
13 `include "./ monitor_out .sv"
14 `include "./ agent.sv"
15 `include "./ agent_out .sv"
16 `include "./ refmod .sv"
17 `include "./ comparator .sv"
18 `include "./ env.sv"
19 `include "./ simple_test .sv"
20 // Top
21 module top;
22 logic clk;
23 logic rst;
24 initial begin
25 clk = 0;
26 rst = 1;
27 #22 rst = 0;
28 end
29 always #5 clk = !clk;
30 input_if in(clk, rst);
31 output_if out(clk, rst);
32 adder sum(.clk(clk), .reset(rst), .a(in.A), .b(in.B), .ci(in.ci),.

s(out.data), .co(out.co));
33 initial begin
34 `ifdef INCA
35 $recordvars ();
36 `endif
37 `ifdef VCS
38 $vcdpluson ;
39 `endif
40 `ifdef QUESTA
41 $wlfdumpvars ();
42 set_config_int ("*", " recording_detail ", 1);
43 `endif
44 uvm_config_db #( input_vif ):: set( uvm_root :: get (), "*. env_h.mst

.*", "vif", in);
45 uvm_config_db #( output_vif ):: set( uvm_root :: get (), "*. env_h.slv

.*", "vif", out);
46 run_test (" simple_test ");
47 end
48 endmodule
49 // -------------------------------------------

to compile a code in QuestaSim we run the commands :

• vcom : for vhdl files
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Figure 5.3.: design optimization window

• vlog : for verilog and systemverilog files

• -mixedsvvh : for packages either are defined in vhdl or systemverilog.

∗ So as a first step run command step" vcom fa.sv"

∗ second step run command "vlog top.sv external.cpp -dpiheader external.h"

we start with optimization: simulate –> design optimization –> work –> select top
and give a name to output design name( I gave the name : opt). Go to visibility and check
"apply full visibility to all modules" figures: 5.3 and 5.4. Go to coverage and enable for the

Figure 5.4.: Enabling coverage-Questasim

moment source code coverage and enable 0/1/z toggle coverage(x).
we start with simulation: simulate –> start simulation –> work –> opt. Go to others
and enable code coverage then OK. Run 400 ns.
In the transcript we can read and observe if we have match or mismatch and in what clock
cycle see figure 5.5 and the figure 5.6 shows the wav forms.
Code coverage is the only verification metric generated automatically from design source in
RTL or gates. While most verification plans require a high level of code coverage, it does not
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Figure 5.5.: Results after simulation

Figure 5.6.: waves form after simulation

Figure 5.7.: Structural window
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necessarily indicate correctness of your design. Code coverage measures only how often a
suite of tests exercises certain aspects of the source.
Missing code coverage is usually an indication of one of two things: either unused code, or holes
in the tests. Because it is automatically generated, code coverage is a metric achieved with
relative ease, obtained early in the verification cycle. A sophisticated exclusions mechanism
enables you to achieve 100% code coverage, even for designs where unused code would
otherwise make it impossible to achieve coverage. Code coverage statistics are collected and
can be saved into the Unified Coverage DataBase for later analysis. The structural window

Figure 5.8.: structural-code coverage analysis-coverage details

figure 5.7 shows the results in hierarchical tree, it is mainly used as design navigation aid,
it is not specific of code coverage but it adds additional information when the simulation
is invoked in the code coverage mode, it displays coverage data and graphs for each design
object or file including coverage from child instances compiled with coverage argument, in
this example we consider sum instance that has 56,52% for statement. In this example, we
have only one instance (not child instances).
Coverage analysis window is key to navigate through coverage data that can be enabled

Figure 5.9.: Code coverage analysis and coverage details

from View –> coverage –>code coverage analysis. It is context dependent, it displays
the line numbers of covered, uncovered and excluded items in the file underlined selected in
structure or instance window.
The coverage details window also is available in same menu View –> coverage –> details,
it shows complementary information based on selection from analysis window. On the
coverage analysis we can set what type of metrics displayed can be set and filters are available
to show or hide covered, missed or excluded lines.
The report of code coverage reports the percentage of each file figur 5.10
In sim window go to structure –> code coverage –> code coverage reports
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Figure 5.10.: Code coverage Report

Figure 5.11.: P4Adder
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5.1.2. Example of P4Adder
The general structure of the adder used in the pentium 4 is described in the figure 5.11. The
sub-blocks are a carry select for the sum generation and a sparse tree for the carry generation.
The first stage receives the inputs(operands) A and B. this stage consists of blocks that
are used to create the prefix signals i.e Generate and Propagate signals. The Prefix phase
consist of sparse Carry merge block [10]. The Carry merge block is used to generate the
first predetermined number of carry signals based on the generate and propagate signals.
Similarly predetermined number of carry signals will be generated using another carry merge
circuit. Those predetermined number of carry signals will be again merged to calculate the
group carry. The Group carry should be calculated for every 4 bit summation block. The
Summation Stage is the second step, in the parallel prefix adder to perform the addition
operation. It consists of Carry select adder to calculate the output sum. It consists of a
ripple carry adder block, and a multiplexer.The code used to implement and verify is in
Appendix.

5.1.3. Sequential circuit: D register
In this section we are going to verify a sequential circuit starting from simple one : D register

1 library IEEE;
2 use IEEE. std_logic_ 1164.all;
3 entity register_generic is
4 Generic (N: integer :=4);
5 Port ( DIN: In std_logic_vector (N-1 downto 0) ;
6 Reset: In std_logic ;
7 clk: In std_logic ;
8 DOUT: Out std_logic_vector (N-1 downto 0));
9 end register_generic ;

10 architecture BEH of register_generic is
11 begin
12 p1: process (clk, RESET)
13 begin
14 if RESET='1' then
15 DOUT <= ( others => '0 ');
16 ELSIF rising_edge (clk) THEN
17 DOUT <= DIN;
18 END IF;
19 end process ;
20 end BEH;

The code for the components in UVM are the same(examples of fulladder and in Appendix ),
the main modifications in the components are:

1 // ------------------** input_if .sv**-----
2 interface input_if (input clk, rst);
3 logic [3:0] A;
4 modport port(input clk, rst, A);
5 endinterface

1 // ------------------** output_if .sv**----
2 interface output_if (input clk, rst);
3 logic [3:0] data;
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4 modport port(input clk, rst, output data);
5 endinterface

1 // ----------------** packet_in .sv**-------
2 class packet_in extends uvm_sequence_item ;
3 rand logic A;
4 logic clk;
5 logic rst;
6 `uvm_object_utils_begin ( packet_in )
7 `uvm_field_int (A, UVM_ALL_ON | UVM_HEX )
8 `uvm_object_utils_end
9 // ... code

10 endclass : packet_in
11 // ---------------------------------------

1 // ------------------** packet_out .sv -----
2 class packet_out extends uvm_sequence_item ;
3 rand logic data;
4 `uvm_object_utils_begin ( packet_out )
5 `uvm_field_int (data, UVM_ALL_ON | UVM_HEX )
6 `uvm_object_utils_end
7 // ... code
8 endclass : packet_out
9 // ---------------------------------------

1 // --------------------** driver .sv**-----
2 // ... code
3 virtual protected task drive_transfer ( packet_in tr);
4 @( posedge vif.clk);
5 vif.A = tr.A;
6 @( posedge vif.clk);
7 @( posedge vif.clk);
8 -> end_record ;
9 @( posedge vif.clk); // hold time

10 endtask
11 // ... code

1 // --------------------** monitor .sv**----
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A; item_collected_port .write(tr);
8 @( posedge vif.clk);
9 -> end_record ;

10 end
11 endtask
12 // ... code

1 // --------------------** monitor_out .sv ---
2 // ... code
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3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 -> begin_record ;
7 tr.data = vif.data; item_collected_port .write(tr);
8 @( posedge vif.clk);
9 -> end_record ;

10 end
11 endtask
12 // ... code

For sequential model, the easiest way to build a reference model in my opinion is to use
systemverilog because,I can use timing notations.

1 // --------------------** refmod .sv**----
2 class refmod extends uvm_component ;
3 // ... code
4 virtual task run_phase ( uvm_phase phase);
5 super. run_phase (phase);
6 forever begin
7 in.get(tr_in);
8 fork
9 wait(tr_in.rst === 0);

10 @( posedge tr_in.clk);
11 tr_out .data = tr_in.A;
12 join_none
13 out.put( tr_out );
14 end
15 endtask : run_phase
16 // ---------------------------------------
17 endclass : refmod
18 // ---------------------------------------

5.1.4. Serial In Serial Out SISO

Serial-in, serial-out shift registers delay data by one clock time for each stage. They will
store a bit of data for each register.The implementation and verification code used are in
Appendix.

5.1.5. Control unit

The circuit is a simple control unit connected to an Alu that consists of addition, subtraction,
shifting using SISO shifter. The implementation and code used for reference model are
described in Appendix.

5.1.6. FSM

As an example for FSM is an adder that has six 6 inputs :clk, rst, two operands, and two
signals ready and valid and the same for outputs, it has two signals to send data and receive
it. Since the example is in systemverilog [12], we add it in"top.sv" like other components
in systemverilog. Following the previous steps to compile it, simulate it and observe the
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Figure 5.12.: FSM

total coverage, we can also have a window that shows a drown FSM figure 5.12. view –>
coverage –> code coverage analysis –> FSM –> double click on state.

1 module adder( input_if .port inter, output_if .port out_inter ,
2 output enum logic [1:0] { INITIAL ,WAIT,SEND} state)
3 always_ff @( posedge inter.clk)
4 if(inter.rst) begin
5 inter.ready <= 0;
6 out_inter .data <= 'x;
7 out_inter .valid1 <= 0;
8 state <= INITIAL ;
9 end

10 else case(state)
11 INITIAL : begin
12 inter.ready <= 1;
13 state <= WAIT;
14 end
15 WAIT: begin
16 if(inter.valid) begin
17 inter.ready <= 0;
18 out_inter .data <= inter.A + inter.B;

out_inter .valid1 <= 1;
19 state <= SEND;
20 end
21 end
22 SEND: begin if( out_inter .ready1)

begin out_inter .valid1 <= 0;
23 inter.ready <= 1;
24 state <= WAIT;
25 end
26 end
27 endcase
28 endmodule : adder

1 // --------------------** refmod .sv**----
2 // /... code
3 import "DPI -C" context function int sum(int a, int b);
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4 virtual task run_phase ( uvm_phase phase);
5 super. run_phase (phase);
6 forever begin
7 in.get(tr_in);
8 tr_out .data = sum(tr_in.A, tr_in.B);
9 out.put( tr_out );

10 end
11 endtask : run_phase
12 // ... code

1 // --------------------** external .cpp**--
2 # include <stdio.h>
3 extern "C" int sum(int a, int b){
4 return a+b;
5 }

5.2. Second coding style
Writing the code without using predefined classes in UVM might look like: l let ’us take a
simple example of an adder described in VHDL used in the previous code style

1 // ----------------** transaction .sv**----
2 class transaction ;
3 // declaring the transaction items
4 rand bit a;
5 rand bit b;
6 rand bit ci;
7 bit s;
8 bit co;
9 // ---------------------------------------

10 function void display ( string name);
11 $display (" -------------------------");
12 $display ("- %s ",name);
13 $display (" -------------------------");
14 $display ("- a = %0d, b = %0d,ci = %0d",a,b,ci);
15 $display ("- s = %0d,co = %0d",s,co);
16 $display (" -------------------------");
17 endfunction
18 endclass

1 // --------------------** interface .sv**---
2 interface intf(input logic clk,reset);
3 // declaring the signals
4 logic valid;
5 logic a;
6 logic b;
7 logic ci;
8 logic s;
9 logic co;

10 endinterface
11 // ---------------------------------------
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1 // --------------------** generator .sv**--
2 class generator ;
3 // declaring transaction class
4 rand transaction trans;
5 // repeat count , to specify number of items to generate
6 int repeat_count ;
7 // mailbox , to generate and send the packet to driver
8 mailbox gen2driv;
9 // event , to indicate the end of transaction generation

10 event ended;
11 // constructor
12 // ---------------------------------------
13 function new( mailbox gen2driv);
14 // getting the mailbox handle from env ,
15 //in order to share the transaction packet between
16 // the generator and driver , the same mailbox is shared between

both.
17 this.gen2driv = gen2driv;
18 endfunction
19 // ---------------------------------------
20 // main task , generates ( create and randomizes ) the
21 // repeat_count number of transaction packets and puts into mailbox
22 task main();
23 repeat ( repeat_count ) begin
24 trans = new();
25 if( !trans. randomize () ) $fatal ("Gen :: trans randomization

failed ");
26 trans. display ("[ Generator ]");
27 gen2driv.put(trans);
28 end
29 -> ended; // triggering indicatesthe end of generation
30 endtask
31 // ---------------------------------------
32 endclass
33 // ---------------------------------------

1 // --------------------** driver .sv**---
2 // gets the packet from generator and drive the transaction paket
3 // items into interface ( interface is connected to DUT , so the

items
4 // driven into interface signal will get driven in to DUT)
5 class driver ;
6 // used to count the number of transactions
7 int no_transactions ;
8 // creating virtual interface handle
9 virtual intf vif;

10 // creating mailbox handle
11 mailbox gen2driv;
12 // constructor
13 // ---------------------------------------
14 function new( virtual intf vif, mailbox gen2driv);
15 // getting the interface
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16 this.vif = vif;
17 // getting the mailbox handles from environment
18 this.gen2driv = gen2driv;
19 endfunction
20 // ---------------------------------------
21 // Reset task , Reset the Interface signals to default / initial

values
22 task reset;
23 wait(vif.reset);
24 $display ("[ DRIVER ] ----- Reset Started -----");
25 vif.a <= 0;
26 vif.b <= 0;
27 vif.ci <= 0;
28 vif.valid <= 0;
29 wait(!vif.reset);
30 $display ("[ DRIVER ] ----- Reset Ended -----");
31 endtask
32 // ---------------------------------------
33 // drivers the transaction items to interface signals
34 task main;
35 forever begin
36 transaction trans;
37 gen2driv.get(trans);
38 @( posedge vif.clk);
39 vif.valid <= 1;
40 vif.a <= trans.a;
41 vif.b <= trans.b;
42 vif.ci <= trans.ci;
43 @( posedge vif.clk);
44 vif.valid <= 0;
45 trans.s = vif.s;
46 trans.co = vif.co;
47 @( posedge vif.clk);
48 trans. display ("[ Driver ]");
49 no_transactions ++;
50 end
51 endtask
52 // ---------------------------------------
53 endclass
54 // ---------------------------------------

1 // --------------------** monitor .sv**--
2 // Samples the interface signals , captures into transaction packet

and send the packet to scoreboard .
3 class monitor ;
4 // creating virtual interface handle
5 virtual intf vif;
6 // creating mailbox handle
7 mailbox mon2scb;
8 // constructor
9 // ---------------------------------------

10 function new( virtual intf vif, mailbox mon2scb);
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11 // getting the interface
12 this.vif = vif;
13 // getting the mailbox handles from environment
14 this.mon2scb = mon2scb;
15 endfunction
16 // ---------------------------------------
17 // Samples the interface signal and send the sample packet to

scoreboard
18 task main;
19 forever begin
20 transaction trans;
21 trans = new();
22 @( posedge vif.clk);
23 wait(vif.valid);
24 trans.a = vif.a;
25 trans.b = vif.b;
26 trans.ci = vif.ci;
27 @( posedge vif.clk);
28 trans.s = vif.s;
29 trans.co = vif.co;
30 @( posedge vif.clk);
31 mon2scb.put(trans);
32 trans. display ("[ Monitor ]");
33 end
34 endtask
35 // ---------------------------------------
36 endclass
37 // ---------------------------------------

1 // -------------------- environment .sv**--
2 `include " transaction .sv"
3 `include " generator .sv"
4 `include " driver .sv"
5 `include " monitor .sv"
6 `include " scoreboard .sv"
7 class environment ;
8 // generator and driver instance
9 generator gen;

10 driver driv;
11 monitor mon;
12 scoreboard scb;
13 // mailbox handle 's
14 mailbox gen2driv;
15 mailbox mon2scb;
16 // virtual interface
17 virtual intf vif;
18 // constructor
19 // ---------------------------------------
20 function new( virtual intf vif);
21 // get the interface from test
22 this.vif = vif;
23 // creating the mailbox (Same handle will be shared across
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generator and driver )
24 gen2driv = new();
25 mon2scb = new();
26 // creating generator and driver
27 gen = new(gen2driv);
28 driv = new(vif,gen2driv);
29 mon = new(vif,mon2scb);
30 scb = new(mon2scb);
31 endfunction
32 // ---------------------------------------
33 task pre_test ();
34 driv.reset();
35 endtask
36 // ---------------------------------------
37 task test();
38 fork
39 gen.main();
40 driv.main();
41 mon.main();
42 scb.main();
43 join_any
44 endtask
45 // ---------------------------------------
46 task post_test ();
47 wait(gen.ended. triggered );
48 wait(gen. repeat_count == driv. no_transactions ); // Optional
49 wait(gen. repeat_count == scb. no_transactions );
50 endtask
51 // ---------------------------------------
52 // run task
53 task run;
54 pre_test ();
55 test();
56 post_test ();
57 $finish ;
58 endtask
59 // ---------------------------------------
60 endclass
61 // ---------------------------------------

1 // --------------------** scoreboard .sv**--
2 // gets the packet from monitor , Generated the expected result and

compares with the // actual result recived from Monitor
3 class scoreboard ;
4 int x =0;
5 int y =0;
6 // creating mailbox handle
7 mailbox mon2scb;
8 // used to count the number of transactions
9 int no_transactions ;

10 // constructor
11 // ---------------------------------------
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12 function new( mailbox mon2scb);
13 // getting the mailbox handles from environment
14 this.mon2scb = mon2scb;
15 endfunction
16 // ---------------------------------------
17 // Compares the Actual result with the expected result
18 task main;
19 transaction trans;
20 forever begin
21 mon2scb.get(trans);
22 if(((trans.a ^trans.b ^ trans.ci) == trans.s) && ((trans.a &

trans.b) |(trans.a & trans.ci) |( trans.ci & trans.b)) ==
trans.co)

23 $display (" Result is as Expected and x = %0d, count is %0d,
",x,y++);

24 else
25 $error ("Wrong Result .\n\ tExpeced : x = %0d",x++);
26 no_transactions ++;
27 trans. display ("[ Scoreboard ]");
28 end
29 endtask
30 // ---------------------------------------
31 endclass
32 // ---------------------------------------

1 // --------------------** directedtest .sv**--
2 `include " environment .sv"
3 program test(intf i_intf );
4 class my_trans extends transaction ;
5 bit [1:0] count;
6 // ---------------------------------------
7 function void pre_randomize ();
8 a. rand_mode (0);
9 b. rand_mode (0);

10 // a = 10;
11 //b = 12;
12 endfunction
13 // ---------------------------------------
14 endclass
15 // ---------------------------------------
16 // declaring environment instance
17 environment env;
18 my_trans my_tr;
19 initial begin
20 // creating environment
21 env = new( i_intf );
22 my_tr = new();
23 // setting the repeat count of generator as 4, means to

generate 4 packets
24 env.gen. repeat_count = 16;
25 env.gen.trans = my_tr;
26 // calling run of env , it interns calls generator and driver
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main tasks.
27 env.run();
28 end
29 endprogram

1 // --------------------** testbench .sv**--
2 // tbench_top or testbench top , this is the top most file , in which DUT

and Verification environment are connected .
3 // including interfcae and testcase files
4 `include " interface .sv"
5 module tbench_top ;
6 // clock and reset signal declaration
7 bit clk;
8 bit reset;
9 // clock generation

10 always #5 clk = ~clk;
11 // reset Generation
12 initial begin
13 reset = 1;
14 #5 reset =0;
15 end
16 // creatinng instance of interface , inorder to connect DUT and

testcase
17 intf i_intf (clk,reset);
18 // Testcase instance , interface handle is passed to test as an

argument
19 test t1( i_intf );
20 // DUT instance , interface signals are connected to the DUT ports
21 adder DUT (
22 .clk( i_intf .clk),
23 .reset( i_intf .reset),
24 .a( i_intf .a),
25 .b( i_intf .b),
26 .ci( i_intf .ci),
27 .valid( i_intf .valid),
28 .s( i_intf .s),
29 .co( i_intf .co)
30 );
31
32 // enabling the wave dump
33 initial begin
34 $dumpfile ("dump.vcd"); $dumpvars ;
35 end
36 endmodule
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Chapter 6.

Conclusion

This thesis is focused in the study and evaluation of verification of devices. The first
part is dedicated to technology challenges explaining technology options such as static
technologies,simulation technologies and formal technologies and explaining SOC verification
methodology showing the different approaches in verification and when they are used such
as top-down verification, bottom-up verification, platform-based verification.
The second part, the focus is brought to the latest advancement in the verification methodology
which is UVM, it is designed to enable creation of robust, reusable, interoperable verification
IP and testbench components.
In the third section of this thesis, it shows the hierarchy of UVM and discusses all the
components of the testbench : sequencer, driver, monitor, agent, scoreboard, sequence items,
environment and test then testbench. This section goes through all these components and
explains them in details how the connection between all of them is done and how to move from
layer to layer using transaction level modeling TLM and Constrained Random Verification
which show also different UVM phases. While going through each component, a starting
point of how to write a code in UVM using Systemverilog is given, and how to compare the
module under verification MUV(device under test: DUT) with a golden model that it might
be written in other language like C, C++ or MATLAB ..., so to enable the reader to write
his own code for its own project.
In the next section, an explained example is discussed showing all the steps discussed in the
previous section are shown, this example, the device under test DUT is a full adder that
is implemented in VHDL and the code used to verify it in SV, deriving the classes from
pre-defined component in UVM also mentioning the steps followed for using Questasim. In
the last section, it is discussed and given the code for combinational, sequential, finite state
machine and a simple control unit in UVM.
The Appendix consists of different examples are built during the thesis period, those examples
are extended from the devices used in the previous section.
One of the work to be extended in the future is to verify more complex circuit like having
multiple agents, interfaces, specially different kind of transactions, also dedicate some effort
to Hardware/Software Co-verification because an SoC is ready only when both, its hardware
and software components are ready. We cannot ship silicon until its software is ready
because without software, hardware is pretty useless. The Current designs invariably have
both the digital and analog components within a block and also at SoC level. Without
correct verification of analog voltage levels to digital binary and vice versa also known as
Analog/Mixed Signal (AMS) Verification, the design will be dead on arrival.
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Appendix

For the following circuits, it is shown only the portion of code that will change, for the rest
won’t be changed like env.sv , agent_out.sv, sequencer.sv, sequence_in.sv and compara-
tor.sv..
rca.vhdl

1 // --------------------**rca.vhdl**----------
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 use ieee. std_logic_unsigned .all;
5 entity RCA_generic is
6 Generic ( N : integer := 4);
7 Port ( clk : in std_logic ;
8 reset : in std_logic ;
9 A : In std_logic_vector (N-1 downto 0);

10 B : In std_logic_vector (N-1 downto 0);
11 Ci : In std_logic ;
12 S : Out std_logic_vector (N-1 downto 0);
13 Co : Out std_logic );
14 end RCA_generic ;
15
16 architecture STRUCTURAL of RCA_generic is
17 signal STMP : std_logic_vector (N-1 downto 0);
18 signal CTMP : std_logic_vector (N downto 0);
19 component adder
20 port( clk : in std_logic ;
21 reset : in std_logic ;
22 a : in std_logic ;
23 b : in std_logic ;
24 ci : in std_logic ;
25 s : out std_logic ;
26 co : out std_logic );
27 end component ;
28 begin
29 CTMP(0) <= Ci;
30 fai4:for i in 1 to N generate
31 fai5:adder
32 Port Map (clk,reset,a(i-1), b(i-1), ctmp(i-1), STMP(i-1),

ctmp(i));
33 end generate ;
34 co <= ctmp(n);
35 s <= stmp;
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36 end structural ;

1 // --------------------** packet_in .sv**------
2 class packet_in extends uvm_sequence_item ;
3 rand logic A ;
4 rand logic B ;
5 rand logic ci;
6 `uvm_object_utils_begin ( packet_in ) // register in the factory
7 `uvm_field_int (A , UVM_ALL_ON | UVM_HEX ) `uvm_field_int (B ,

UVM_ALL_ON | UVM_HEX )
8 `uvm_field_int (ci, UVM_ALL_ON | UVM_HEX )
9 `uvm_object_utils_end

10 // ... code
11 endclass : packet_in
12 // ---------------------------------------

1 // --------------------** packet_out .sv**-----
2 class packet_out extends uvm_sequence_item ;
3 rand logic data;
4 rand logic co;
5 `uvm_object_utils_begin ( packet_out )
6 `uvm_field_int (data, UVM_ALL_ON | UVM_HEX )
7 `uvm_field_int (co, UVM_ALL_ON | UVM_HEX )
8 `uvm_object_utils_end
9 // ... code

10 endclass : packet_out
11 // ---------------------------------------

1 // --------------------** driver .sv**---------
2 // ... code
3 virtual protected task drive_transfer ( packet_in tr);
4 @( posedge vif.clk);
5 vif.A = tr.A;
6 vif.B = tr.B;
7 vif.ci = tr.ci;
8 @( posedge vif.clk);
9 @( posedge vif.clk);

10 -> end_record ;
11 @( posedge vif.clk); // hold time
12 endtask
13 // ... code
14 endclass
15 // ---------------------------------------

1 // --------------------** monitor .sv**---------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
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9 tr.ci = vif.ci;
10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 endclass

1 // --------------------** monitor_out .sv**----
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 -> begin_record ;
7 tr.data = vif.data;
8 tr.co = vif.co; item_collected_port .write(tr);
9 @( posedge vif.clk);

10 -> end_record ;
11 end
12 endtask
13 // ... code
14 endclass

1 // --------------------** refmod .sv**----------
2 import "DPI -C" context function int rca_sum (int x,int y,int carry_in );
3 import "DPI -C" context function int rca_carry (int x, int y, int

carry_in );
4 // ... code
5 virtual task run_phase ( uvm_phase phase);
6 super. run_phase (phase);
7 forever begin
8 in.get(tr_in);
9 tr_out .data = rca_sum (tr_in.A, tr_in.B, tr_in.ci);

10 tr_out .co = rca_carry (tr_in.A, tr_in.B, tr_in.ci);
11 out.put( tr_out );
12 end
13 endtask : run_phase
14 // -------------------------------------------
15 endclass : refmod

1 // --------------------**top.sv**-------------
2 import uvm_pkg ::*;
3 `include " uvm_macros .svh"
4 `include "./ input_if .sv"
5 `include "./ output_if .sv"
6 `include "./ packet_in .sv"
7 `include "./ packet_out .sv"
8 `include "./ sequence_in .sv"
9 `include "./ sequencer .sv"

10 `include "./ driver .sv"
11 `include "./ driver_out .sv"
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12 `include "./ monitor .sv"
13 `include "./ monitor_out .sv"
14 `include "./ agent.sv"
15 `include "./ agent_out .sv"
16 `include "./ refmod .sv"
17 `include "./ comparator .sv"
18 `include "./ env.sv"
19 `include "./ simple_test .sv"
20 // ... code
21 rca_generic sum(.clk(clk), .reset(rst), .a(in.A), .b(in.B), .ci(in.ci)

,.s(out.data), .co(out.co));
22 // ... code
23 endmodule

1 // --------------------** external .cpp**-------
2 # include <stdio.h>
3 // -------------------------------------------
4 int getBit (int a, int i)
5 {
6 return ((a & (1 << i)) >> i);
7 }
8 // -------------------------------------------
9 int sum(int carry_in ,int a,int b)

10 {
11 return (( carry_in ^ a) ^ b);
12 }
13 // -------------------------------------------
14 int carry(int carry_in ,int a,int b)
15 { int d;
16 d=( carry_in & a) | (a & b) | ( carry_in & b) ;
17 return d;
18 }
19 // -------------------------------------------
20 int setBit (int result , int i, int s)
21 {
22 if (s == 1)
23 return result | (1 << i);
24 return result & ~(1 << i);
25 }
26 // -------------------------------------------
27 extern "C" int rca_sum (int x, int y , int carry_in ){
28 int a,b,i , result =0;
29 for (i = 0; i < 4; i++) // probably can 't use the increment op
30 {
31 a = getBit (x, i);
32 b = getBit (y, i);
33 int s = sum( carry_in , a, b);
34 int carry_out = carry( carry_in , a, b);
35 result = setBit ( result , i, s);
36 carry_in = carry_out ;}
37 return result ;
38 }
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39 // -------------------------------------------
40 extern "C" int rca_carry (int x, int y , int carry_in ){
41 int a,b,i, result =0 ;
42 for (i = 0; i < 4; i++) // probably can 't use the increment op
43 {
44 a = getBit (x, i);
45 b = getBit (y, i);
46 int s = sum( carry_in , a, b);
47 int carry_out = carry( carry_in , a, b);
48 result = setBit ( result , i, s); carry_in = carry_out ;}
49 return carry_in ;
50 }

Multiplexer

1 // --------------------** mux21.sv**-----------
2 library IEEE;
3 use IEEE. std_logic_ 1164.all;
4 entity MUX21 is
5 Generic ( N : integer := 31);
6 Port ( clk : in std_logic ;
7 reset : in std_logic ;
8 A : In std_logic_vector (N-1 downto 0) ;
9 B : In std_logic_vector (N-1 downto 0);

10 S : In std_logic ;
11 Y : Out std_logic_vector (N-1 downto 0));
12 end entity ;
13 architecture behavioral of MUX21 is
14 BEGIN
15 Y <= A when S='0' else B;
16 end behavioral ;

1 // ------------------** driver .sv**------------
2 // .... code
3 virtual protected task drive_transfer ( packet_in tr);
4 @( posedge vif.clk);
5 vif.A = tr.A;
6 vif.B = tr.B;
7 vif.s = tr.s;
8 @( posedge vif.clk);
9 -> end_record ;

10 @( posedge vif.clk); // hold time
11 @( posedge vif.clk);
12
13 endtask
14 // ... code
15 // -------------------------------------------
16 endclass
17 // ---------------------------------------

1 // --------------------** monitor .sv**---------
2 // .... code
3 virtual task collect_transactions ( uvm_phase phase);
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4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
9 tr.s = vif.s; item_collected_port .write(tr);

10 @( posedge vif.clk);
11 -> end_record ;
12 end
13 endtask
14 // .... code
15 // -------------------------------------------
16 endclass
17 // ---------------------------------------

1 // ------------------** monitor_out .sv**-------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 -> begin_record ;
7 tr.y = vif.y; item_collected_port .write(tr);
8 @( posedge vif.clk);
9 -> end_record ;

10 end
11 endtask
12 // .... code
13 // -------------------------------------------
14 endclass
15 // ---------------------------------------

1 // --------------------** refmod .sv**----------
2 import "DPI -C" context function int mux(int a, int b, int sel);
3 // ... code
4 virtual task run_phase ( uvm_phase phase);
5 super. run_phase (phase);
6 forever begin
7 in.get(tr_in);
8 tr_out .y = mux(tr_in.A, tr_in.B, tr_in.s); out.put(

tr_out );
9 end

10 endtask : run_phase
11 // -------------------------------------------
12 endclass : refmod

1 // --------------------**top.sv**-------------
2 // ... code
3 mux21 mux(.clk(clk), .reset(rst), .a(in.A), .b(in.B), .s(in.s),.y(out.

y));
4 // ... code
5 // -------------------------------------------
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1 // --------------------** external .cpp**-------
2 # include <stdio.h>
3 // -------------------------------------------
4 extern "C" int mux(int a, int b, int sel){
5 int y;
6 if (sel == 0){
7 y=a;}
8 else y = b;
9 return y;

10 }

Carry Select Adder

1 // --------------------**csa.vhdl**-----------
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 use ieee. std_logic_unsigned .all;
5 entity csa is
6 Generic (N : integer := 32);
7 Port ( clk : in std_logic ;
8 reset : in std_logic ;
9 A : In std_logic_vector (N-1 downto 0);

10 B : In std_logic_vector (N-1 downto 0);
11 Cin : In std_logic ;
12 Si : Out std_logic_vector (N-1 downto 0));
13 end ENTITY ;
14 architecture STRUCTURAL of csa is
15 signal STMP0 : std_logic_vector (N-1 downto 0);
16 signal STMP1 : std_logic_vector (N-1 downto 0);
17 signal STMP2 : std_logic_vector (N-1 downto 0);
18 signal Carry0,Carry1 : std_logic ;
19 signal valid1 : std_logic ;
20 component RCA_generic is
21 Generic ( N : integer := 32);
22 Port ( clk : in std_logic ;
23 reset : in std_logic ;
24 A : In std_logic_vector (N-1 downto 0);
25 B : In std_logic_vector (N-1 downto 0);
26 Ci : In std_logic ;
27 S : Out std_logic_vector (N-1 downto 0);
28 Co : Out std_logic );
29 end component ;
30 component MUX21 is
31 Generic ( N : integer := 32);
32 Port ( clk : in std_logic ;
33 reset : in std_logic ;
34 A : In std_logic_vector (N-1 downto 0) ;
35 B : In std_logic_vector (N-1 downto 0) ;
36 S : In std_logic ;
37 Y : Out std_logic_vector (N-1 downto 0));
38 end component ;
39 begin
40 CSA0: RCA_generic
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41 generic map (N=> N)
42 Port Map (clk =>clk, reset =>reset, a =>a, b=>b, ci => '0',

s =>STMP0,co=>Carry0);
43 CSA1: RCA_generic
44 generic map (N=> N)
45 Port Map (clk =>clk, reset =>reset,a =>a, b => b,ci =>'1', S

=> STMP1,co=>Carry1);
46 mux: MUX21
47 generic map (N=> N)
48 port map(clk =>clk, reset =>reset,A => stmp0,B => stmp1,s=>

Cin, y=>stmp2);
49 si <= stmp2;
50 end STRUCTURAL ;

1 // --------------------** driver .sv**----------
2 // .... code
3 virtual protected task drive_transfer ( packet_in tr);
4 @( posedge vif.clk);
5 vif.A = tr.A;
6 vif.B = tr.B;
7 vif.ci = tr.ci;
8 @( posedge vif.clk);
9 -> end_record ;

10 @( posedge vif.clk); // hold time
11 @( posedge vif.clk); // hold time
12 @( posedge vif.clk); // hold time
13 @( posedge vif.clk); // hold time
14 endtask
15 // .... code
16 // -------------------------------------------
17 endclass
18 // ---------------------------------------

1 // --------------------** monitor .sv**---------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
9 tr.ci = vif.ci;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 // -------------------------------------------
17 endclass
18 // ---------------------------------------
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1 // --------------------** monitor_out .sv**-----
2 // ..... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
9 tr.ci = vif.ci;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 // -------------------------------------------
17 endclass
18 // --------------------------------------

1 // --------------------** refmod .sv**----------
2 import "DPI -C" context function int csa(int a, int b, int ci);
3 // ... code
4 virtual task run_phase ( uvm_phase phase);
5 super. run_phase (phase);
6 forever begin
7 in.get(tr_in);
8 tr_out .data = csa(tr_in.A, tr_in.B, tr_in.ci);
9 out.put( tr_out );

10 end
11 endtask : run_phase
12 // -------------------------------------------
13 endclass : refmod

1 // --------------------**top.sv**-------------
2 // ... code
3 csa sum(.clk(clk), .reset(rst), .a(in.A), .b(in.B), .cin(in.ci),.si(

out.data));
4 // ... code

1 // --------------------** external .cpp ---------
2 # include <stdio.h>
3 # include <iostream >
4 using namespace std;
5 # include <cmath >
6 # include <stdlib .h>
7 int getBit (int a, int i)
8 {
9 return ((a & (1 << i)) >> i);

10 }
11 // -------------------------------------------
12 int sum(int carry_in ,int a,int b)
13 {
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14 return (( carry_in ^ a) ^ b);
15 }
16 // -------------------------------------------
17 int carry(int carry_in ,int a,int b)
18 { int d;
19 d=( carry_in & a) | (a & b) | ( carry_in & b) ;
20 return d;
21 }
22 // -------------------------------------------
23 int setBit (int result , int i, int s)
24 {
25 if (s == 1)
26 return result | (1 << i);
27 return result & ~(1 << i);
28 }
29 // -------------------------------------------
30 int rca_sum (int x, int y , int carry_in ){
31 int a,b,i , result =0;
32 for (i = 0; i < 4; i++) // probably can 't use the increment op
33 {
34 a = getBit (x, i);
35 b = getBit (y, i);
36 int s = sum( carry_in , a, b);
37 int carry_out = carry( carry_in , a, b);
38 result = setBit ( result , i, s);
39 carry_in = carry_out ;}
40 return result ;
41 }
42 // -------------------------------------------
43 int rca_carry (int x, int y , int carry_in ){
44 int a,b,i, result =0 ;
45 for (i = 0; i < 4; i++) // probably can 't use the increment op
46 {
47 a = getBit (x, i);
48 b = getBit (y, i);
49 int s = sum( carry_in , a, b);
50 int carry_out = carry( carry_in , a, b);
51 result = setBit ( result , i, s);
52 carry_in = carry_out ;}
53 return carry_in ;
54 }
55 // -------------------------------------------
56 int mux(int a, int b , int sel){
57 int y;
58 if (sel == 0){
59 y=a;}
60 else y = b;
61 return y;
62 }
63 // -------------------------------------------
64 extern "C" int csa(int a, int b , int ci){
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65 int si;
66 int sum1, sum0;
67 int carry0,carry1;
68 int mux_out ;
69 sum0 = rca_sum (a, b, 0);
70 carry0 = rca_carry (a, b, 0);
71 sum1 = rca_sum (a, b, 1);
72 carry1 = rca_carry (a, b, 1);
73 mux_out = mux (sum0,sum1,ci);
74 cout << mux_out ;
75 return mux_out ;
76 }

Sum Generator

1 // --------------------** sum_generator .vhdl **-
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 use ieee. std_logic_unsigned .all;
5 entity CSA_generic is
6 Generic (N: integer := 32);
7 Port (
8 clk : in std_logic ;
9 reset : in std_logic ;

10 A : In std_logic_vector (N-1 downto 0);
11 B : In std_logic_vector (N-1 downto 0);
12 Cin : In std_logic_vector (N/4-1 downto 0);
13 Si : Out std_logic_vector (N-1 downto 0));
14 end ENTITY ;
15 architecture STRUCTURAL of CSA_generic is
16 signal STMP0 : std_logic_vector (N-1 downto 0);
17 signal STMP1 : std_logic_vector (N-1 downto 0);
18 component csa is
19 Generic (N : integer := 32);
20 Port ( clk : in std_logic ;
21 reset : in std_logic ;
22 A : In std_logic_vector (N-1 downto 0);
23 B : In std_logic_vector (N-1 downto 0);
24 Cin : In std_logic ;
25 Si : Out std_logic_vector (N-1 downto 0));
26 end component ;
27 begin
28 SUMGEN 1: for i in 1 to N/4 generate
29 CSi : csa
30 generic map (N => 4)
31 port map (clk,reset,a(4*i-1 downto 4*(i-1)), b(4*i-1 downto 4*

(i-1)), Cin(i-1), si(4*i-1 downto 4*(i-1)));
32 end generate ;
33 end STRUCTURAL ;

1 // ------------------** driver .sv**-----------
2 // .... code
3 virtual protected task drive_transfer ( packet_in tr);
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4 @( posedge vif.clk);
5 vif.A = tr.A;
6 vif.B = tr.B;
7 vif.ci = tr.ci;
8 @( posedge vif.clk);
9 @( posedge vif.clk);

10 @( posedge vif.clk);
11 @( posedge vif.clk);
12 -> end_record ;
13 @( posedge vif.clk); // hold time
14 endtask
15 // .... code
16 // -------------------------------------------
17 endclass
18 // ---------------------------------------

1 // --------------------** monitor .sv**---------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
9 tr.ci = vif.ci;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 endclass
17 // ---------------------------------------

1 // --------------------** monitor_out .sv**----
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 -> begin_record ;
7 tr.data = vif.data;
8 item_collected_port .write(tr);
9 @( posedge vif.clk);

10 -> end_record ;
11 end
12 endtask
13 // ... code
14 endclass
15 // ---------------------------------------

1 // ------------------** refmod .sv**------------
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2 import "DPI -C" context function int sum_generator (int a, int b, int ci
);

3 // ... code
4 virtual task run_phase ( uvm_phase phase);
5 super. run_phase (phase);
6 forever begin
7 in.get(tr_in);
8 tr_out .data = sum_generator (tr_in.A, tr_in.B, tr_in.ci);
9 out.put( tr_out );

10 end
11 endtask : run_phase
12 endclass : refmod
13 // ---------------------------------------

1 // ------------------**top.sv**--------------
2 \\ .... code
3 CSA_generic sum(.clk(clk), .reset(rst), .a(in.A), .b(in.B), .cin(in.ci

),.si(out.data));
4 \\.. code.

1 // --------------------** external .cpp**-------
2 # include <stdio.h>
3 # include <iostream >
4 using namespace std;
5 # include <cmath >
6 # include <stdlib .h>
7 int getBit (int a, int i)
8 {
9 return ((a & (1 << i)) >> i);

10 }
11 // -------------------------------------------
12 int sum(int carry_in ,int a,int b)
13 {
14 return (( carry_in ^ a) ^ b);
15 }
16 // -------------------------------------------
17 int carry(int carry_in ,int a,int b)
18 { int d;
19 d=( carry_in & a) | (a & b) | ( carry_in & b) ;
20 return d;
21 }
22 // -------------------------------------------
23 int setBit (int result , int i, int s)
24 {
25 if (s == 1)
26 return result | (1 << i);
27 return result & ~(1 << i);
28 }
29 // -------------------------------------------
30 int rca_sum (int x, int y , int carry_in ){
31 int a,b,i , result =0;
32 for (i = 0; i < 4; i++)
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33 {
34 a = getBit (x, i);
35 b = getBit (y, i);
36 int s = sum( carry_in , a, b);
37 int carry_out = carry( carry_in , a, b);
38 result = setBit ( result , i, s);
39 carry_in = carry_out ;}
40 return result ;
41 }
42 // -------------------------------------------
43 int rca_carry (int x, int y , int carry_in ){
44 int a,b,i ;
45 for (i = 0; i < 4; i++)
46 {
47 a = getBit (x, i);
48 b = getBit (y, i);
49 int s = sum( carry_in , a, b);
50 int carry_out = carry( carry_in , a, b);
51 int result = setBit ( result , i, s);
52 carry_in = carry_out ;}
53 return carry_in ;
54 }
55 // -------------------------------------------
56 int mux(int a, int b , int sel){
57 int y;
58 if (sel == 0){
59 y=a;}
60 else y = b;
61 return y;
62 }
63 // -------------------------------------------
64 int csa(int a, int b , int ci){
65 int si;
66 int sum1, sum0;
67 int carry0,carry1;
68 int mux_out ;
69 sum0 = rca_sum (a, b, 0);
70 carry0 = rca_carry (a, b, 0);
71 sum1 = rca_sum (a, b, 1);
72 carry1 = rca_carry (a, b, 1);
73 mux_out = mux (sum0,sum1,ci);
74 return mux_out ;
75 }
76 // -------------------------------------------
77 extern "C" int sum_generator (int a, int b, int ci){
78 int si;
79 int sum_gen ;
80 sum_gen = csa(a, b, ci);
81 return sum_gen ;
82
83 }
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G block

1 // --------------------**g.vhdl**-------------
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 entity G is
5 port ( clk : in std_logic ;
6 reset : in std_logic ;
7 G_ik : in std_logic ;
8 P_ik : in std_logic ;
9 G_k_j : in std_logic ; -- G_k-1_j

10 G_ij : out std_logic );
11 end G;
12 architecture Behav of G is
13 begin
14 G_ij <= G_ik or (P_ik and G_k_j);
15 end Behav;

1 // --------------------** driver .sv**----------
2 // ... code
3 virtual protected task drive_transfer ( packet_in tr);
4 @( posedge vif.clk)
5 vif.G_ik = tr.G_ik;
6 vif.P_ik = tr.P_ik;
7 vif.G_k_j = tr.G_k_j;
8 @( posedge vif.clk);
9 -> end_record ;

10 @( posedge vif.clk); // hold time
11 endtask
12 // ... code
13 endclass

1 // --------------------** monitor .sv**---------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.G_ik = vif.G_ik;
8 tr.P_ik = vif.P_ik;
9 tr.G_k_j = vif.G_k_j;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // .... code

1 // --------------------** monitor_out .sv -------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
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6 -> begin_record ;
7 tr.G_ij = vif.G_ij;
8 item_collected_port .write(tr);
9 @( posedge vif.clk);

10 -> end_record ;
11 end
12 endtask
13 // ... code
14 // -------------------------------------------
15 endclass

1 // --------------------** refmod .sv**----------
2 import "DPI -C" context function int g(int a, int b, int c);
3 // ... code
4 virtual task run_phase ( uvm_phase phase);
5 super. run_phase (phase);
6 forever begin
7 in.get(tr_in);
8 tr_out .G_ij = g(tr_in.G_ik, tr_in.P_ik, tr_in.G_k_j);
9 out.put( tr_out );

10 end
11 endtask : run_phase
12 // -------------------------------------------
13 endclass : refmod
14 // ---------------------------------------

1 // ------------------**top.sv**---------------
2 // .... code
3 g sum(.clk(clk), .reset(rst), .G_ik(in.G_ik), .P_ik(in.P_ik), .G_k_j(

in.G_k_j),.G_ij(out.G_ij));
4 // ... code

1 // --------------------** external .cpp**-------
2 # include <stdio.h>
3 extern "C" int g(int a, int b , int c){
4 int d;
5 d = a or (b and c);
6 return d;
7 }

P block

1 // --------------------**P.vhdl**-------------
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 entity P is
5 port (
6 clk : in std_logic ;
7 reset : in std_logic ;
8 P_ik : in std_logic ;
9 P_k_j : in std_logic ; --P_k-1_j

10 P_ij : out std_logic );
11 end P;
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12 architecture Behavioral of P is
13 begin
14 P_ij <= P_ik and P_k_j;
15 end Behavioral ;

1 // --------------------** driver .sv**----------
2 // .... code
3 virtual protected task drive_transfer ( packet_in tr);
4 @( posedge vif.clk)
5 vif.P_ik = tr.P_ik;
6 vif.P_k_j = tr.P_k_j;
7 @( posedge vif.clk);
8 -> end_record ;
9 @( posedge vif.clk); // hold time

10 endtask
11 // ... code
12 // -------------------------------------------

1 // ------------------** monitor .sv**-----------
2 // .... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.P_ik = vif.P_ik;
8 tr.P_k_j = vif.P_k_j;
9 item_collected_port .write(tr);

10 @( posedge vif.clk);
11 -> end_record ;
12 end
13 endtask
14 // ... code
15 // -------------------------------------------

1 // ------------------** monitor_out .sv**------
2 // .... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 @( posedge vif.clk);
7 -> begin_record ;
8 tr.P_ij = vif.P_ij;
9 item_collected_port .write(tr);

10 @( posedge vif.clk);
11 -> end_record ;
12 end
13 endtask
14 // ... code
15 // -------------------------------------------

1 // --------------------** refmod .sv**----------
2 import "DPI -C" context function int p(int a, int b );
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3 // ... code
4 virtual task run_phase ( uvm_phase phase);
5 super. run_phase (phase);
6 forever begin
7 in.get(tr_in);
8 tr_out .P_ij = p(tr_in.P_ik, tr_in.P_k_j);
9 out.put( tr_out );

10 end
11 endtask : run_phase
12 // -------------------------------------------
13 endclass : refmod

1 // --------------------**top.sv**-------------
2 // ... code
3 p P(.clk(clk), .reset(rst), .P_ik(in.P_ik), .P_k_j(in.P_k_j),.P_ij(out

.P_ij));
4 // ... code
5 // -------------------------------------------

1 // --------------------** external .cpp**-------
2 # include <stdio.h>
3 extern "C" int p(int a, int b ){
4 int d;
5 d = a and b 5
6 return d;
7 }

PG_BLOCK

1 // --------------------** pg_block .vhdl --------
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 entity pg is
5 port (
6 clk : in std_logic ;
7 reset : in std_logic ;
8 Gik : in std_logic ; --a
9 Pik : in std_logic ; --b

10 G_k_j : in std_logic ; --c -- G_k-1_j
11 P_k_j : in std_logic ; --m
12 G_ij : out std_logic ; --d
13 P_ij : out std_logic ); --v
14 end pg;
15 architecture Behav of pg is
16 begin
17 G_ij <= Gik OR (G_k_j and Pik) ;
18 p_ij <= pik and p_k_j;
19 end Behav;

1 // --------------------** driver .sv**----------
2 // ... code
3 virtual protected task drive_transfer ( packet_in tr);
4 @( posedge vif.clk);
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5 vif.Gik = tr.Gik;
6 vif.Pik = tr.Pik;
7 vif.G_k_j = tr.G_k_j;
8 vif.P_k_j = tr.P_k_j;
9 @( posedge vif.clk);

10 -> end_record ;
11 @( posedge vif.clk); // hold time
12 endtask
13 // ... code
14 // -------------------------------------------

1 // -------------------** monitor .sv**----------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.Gik = vif.Gik;
8 tr.Pik = vif.Pik;
9 tr.G_k_j = vif.G_k_j;

10 tr.P_k_j = vif.P_k_j;
11 item_collected_port .write(tr);
12 @( posedge vif.clk);
13 -> end_record ;
14 end
15 endtask
16 // ... code
17 // -------------------------------------------

1 // --------------------** monitor_out .sv**-----
2 // .... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 -> begin_record ;
7 tr.G_ij = vif.G_ij;
8 tr.P_ij = vif.P_ij;
9 item_collected_port .write(tr);

10 @( posedge vif.clk);
11 -> end_record ;
12 end
13 endtask
14 // ... code

1 // -------------------** refmod .sv**-----------
2 import "DPI -C" context function int sum(int a, int b, int c , int m);
3 import "DPI -C" context function int sum1(int a, int b, int c , int m);
4 // ... code
5 virtual task run_phase ( uvm_phase phase);
6 super. run_phase (phase);
7 forever begin
8 in.get(tr_in);
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9 tr_out .G_ij = sum(tr_in.Gik, tr_in.Pik, tr_in.G_k_j, tr_in.
P_k_j);

10 tr_out .P_ij = sum1(tr_in.Gik, tr_in.Pik, tr_in.G_k_j, tr_in.
P_k_j);

11 out.put( tr_out );
12 end
13 endtask : run_phase
14 // -------------------------------------------
15 endclass : refmod
16 // ---------------------------------------

1 // -----------------------**top.sv**----------
2 // ... code
3 pg m(.clk(clk), .reset(rst), .Gik(in.Gik), .Pik(in.Pik), .G_k_j(in.

G_k_j), .P_k_j(in.P_k_j),.G_ij(out.G_ij), .P_ij(out.P_ij));
4 // ... code

1 // -------------------** external .cpp**--------
2 # include <stdio.h>
3 extern "C" int sum(int a, int b, int c, int m){
4 int d;
5 d = a or c and b;
6 return d;
7 }
8 // -------------------------------------------
9 extern "C" int sum1(int a, int b , int c ,int m){

10 int v;
11 v= b and m ;
12 return v;
13 }

PG_NETWORK

1 // -----------------** pg_network .sv**---------
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 entity pg_network is
5 Generic (N: integer := 4);
6 port ( clk : in std_logic ;
7 reset : in std_logic ;
8 A : in std_logic_vector (N-1 downto 0);
9 B : in std_logic_vector (N-1 downto 0);

10 Cin : in std_logic ;
11 p : out std_logic_vector (N-1 downto 0);
12 g : out std_logic_vector (N-1 downto 0);
13 G_10 : out std_logic );
14 end pg_network ;
15 architecture Behav of pg_network is
16 signal tmp_p, tmp_g : std_logic_vector (N-1 downto 0);
17 begin
18 pg_net : for i in 0 to N-1 generate
19 tmp_p(i) <= a(i) xor b(i);
20 tmp_g(i) <= a(i) and b(i);
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21 G_10 <= tmp_g(0) or (tmp_p(0) and cin);
22 end generate ;
23 p <= tmp_p;
24 g <= tmp_g;
25 end Behav;

1 // ---------------------** driver .sv**--------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 -> begin_record ;
7 tr.p = vif.p;
8 tr.g = vif.g;
9 tr.G_10 = vif.G_10;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 // -------------------------------------------

1 // --------------------** monitor .sv**---------
2 // .... code.sv
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
9 tr.ci = vif.ci;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 // -------------------------------------------

1 // --------------------** monitor_out .sv**-----
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 @( posedge vif.clk);
7 -> begin_record ;
8 tr.p = vif.p;
9 tr.g = vif.g;

10 tr.G_10 = vif.G_10;
11 item_collected_port .write(tr);
12 @( posedge vif.clk);
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13 -> end_record ;
14 end
15 endtask
16 // ... code
17 // -------------------------------------------

1 // ----------------------** refmod .sv**--------
2 import "DPI -C" context function int sum(int a, int b );
3 import "DPI -C" context function int sum1(int a, int b );
4 import "DPI -C" context function int sum2(int a, int b, int ci );
5 // ... code
6 virtual task run_phase ( uvm_phase phase);
7 super. run_phase (phase);
8 forever begin
9 in.get(tr_in);

10 tr_out .p = sum (tr_in.A, tr_in.B);
11 tr_out .g = sum1(tr_in.A, tr_in.B);
12 tr_out .G_10 = sum2(tr_in.A, tr_in.B, tr_in.ci);
13 out.put( tr_out );
14 end
15 endtask : run_phase
16 // -------------------------------------------
17 endclass : refmod
18 // ---------------------------------------

1 // ----------------** external .cpp**-----------
2 # include <stdio.h>
3 // -------------------------------------------
4 extern "C" int sum(int a, int b ){
5 int k;
6 k= a xor b;
7 return k;
8 }
9 // -------------------------------------------

10 extern "C" int sum1(int a, int b ){
11 int d;
12 d = a & b ;
13 return d;
14 }
15 // ------------------------------------------
16 extern "C" int sum2(int a, int b ,int ci){
17 int j;
18 j= sum1(a,b) | (sum(a,b) & ci);
19 return j;
20 }

1 // ------------------**top.sv**---------------
2 // ... code
3 pg_network pg_net (.clk(clk), .reset(rst), .a(in.A), .b(in.B), .cin(in.

ci),.p(out.p), .g(out.g), .G_10(out.G_10));
4 // ... code
5 // -------------------------------------------
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CARRY GENERATOR

1 // -------------** generic_carry_generator .sv**----
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 use ieee. std_logic_unsigned .all;
5 use IEEE. math_real .all;
6 use WORK.log2Funct.all;
7 entity CARRYGEN_GENERIC is
8 Generic ( N: integer := 4);
9 port ( clk : in std_logic ;

10 reset : in std_logic ;
11 A : in std_logic_vector (N-1 downto 0);
12 B : in std_logic_vector (N-1 downto 0);
13 Cin : in std_logic ;
14 Co : out std_logic_vector (N/4-1 downto 0));
15 end CARRYGEN_GENERIC ;
16 architecture Struct_generatorcar of CARRYGEN_GENERIC is
17 component G is
18 port ( clk : in std_logic ;
19 reset : in std_logic ;
20 G_ik : in std_logic ;
21 P_ik : in std_logic ;
22 G_k_j : in std_logic ; -- G_k-1_j
23 G_ij : out std_logic );
24 end component ;
25 component P is
26 port ( clk : in std_logic ;
27 reset : in std_logic ;
28 P_ik : in std_logic ;
29 P_k_j : in std_logic ; --P_k-1_j
30 P_ij : out std_logic );
31 end component ;
32 component pg_network is
33 Generic (N: integer := 4);
34 port ( clk : in std_logic ;
35 reset : in std_logic ;
36 A : in std_logic_vector (N-1 downto 0);
37 B : in std_logic_vector (N-1 downto 0);
38 Cin : in std_logic ;
39 p : out std_logic_vector (N-1 downto 0);
40 g : out std_logic_vector (N-1 downto 0);
41 G_10 : out std_logic );
42 end component ;
43 component pg is
44 port ( clk : in std_logic ;
45 reset : in std_logic ;
46 Gik : in std_logic ; --a
47 Pik : in std_logic ; --b
48 G_k_j : in std_logic ; --c -- G_k-1_j
49 P_k_j : in std_logic ; --m
50 G_ij : out std_logic ; --d
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51 P_ij : out std_logic ); --v
52 end component ;
53 type Matrix is array (N-1 downto 0) of std_logic_vector (N-1 downto 0)

;
54 signal GTree : Matrix ;
55 signal PTree : Matrix ;
56 signal p_n : std_logic_vector (N-1 downto 0);
57 signal g_n : std_logic_vector (N-1 downto 0);
58 signal G10 : std_logic ;
59 begin
60 pgNETWORK : pg_NETWORK
61 generic map (N)
62 port map (clk,reset,a, b, Cin,p_n, g_n, G10);
63 righe : for riga in -2 to log2(N)-3 generate
64 riga0 : if riga=-2 generate
65 array0 : for I in 1 to N/2 generate
66 array01 : if I=1 generate
67 G_20 : G
68 port map(clk,reset,g_n(1),p_n(1),G10, GTree(1)(0));
69 end generate array01;
70 array0n : if I/=1 generate
71 P_ij : P
72 port map(clk,reset,p_n(I*2-1), p_n(I*2-2), PTree(I*2-1)(I*2-2));
73 G_ij : G
74 port map(clk,reset,g_n(I*2-1),p_n(I*2-1),g_n(I*2-2),GTree(I*2-1)(I*2-2

));
75 end generate array0n;
76 end generate array0;
77 end generate riga0;
78 riga1: if riga=-1 generate
79 array1 : for I in 1 to N/4 generate
80 G_ij : G
81 port map(clk,reset,GTree(I*4-1)(I*4-2),PTree(I*4-1)(I*4-2),GTree(I*4-3

)(I*4-4),GTree(I*4-1)(I*4-4));
82 array1n : if I>1 generate
83 P_ij : Pg
84 port map(clk,reset,GTree(I*4-1)(I*4-2), PTree(I*4-1)(I*4-2),GTree(I*4-

3)(I*4-4), PTree(I*4-3)(I*4-4),GTree(I*4-1)(I*4-4),PTree(I*4-1)(I*
4-4));

85 end generate array1n;
86 end generate array1;
87 end generate riga1;
88 ---------------------*** Generates only the G blocks ***--------------
89 rigaxG : if (riga/=-2 and riga/=-1) generate
90 arrayxG : for I in 2**riga+1 to N/4 generate
91 IfxG: if (I=2**riga+1) generate
92 ForxG: for n in 0 to 2**riga-1 generate
93 -- generate the G window (I=index of the window )
94 G_ij : G
95 port map(clk,reset,GTree((I+n)*4-1)(2**riga*4), PTree((I+n)*4-1)(2**

riga*4),GTree(2**riga*4-1)(0), GTree((I+n)*4-1)(0));
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96 end generate ForxG;
97 end generate IfxG;
98 end generate arrayxG ;
99 end generate rigaxG ;

100 -----------------------*** Generates the PG blocks ***-------
101 rigaxPG :if (riga/=-2 and riga/=-1 and riga/=log2(N)-3) generate
102 arrayxPG : for I in 1 to N/4 generate
103 -- x is the windows number containing 2^rows PG
104 PG : for x in (N/(2**(riga+3))-1) downto 1 generate --for x in

Num_finestre_PG downto 1 (ex: 32bit -> {riga=0 x=3,riga=1 x=1})
105 IfxPG: if (I=(2**riga+x*2**(riga+1)+1)) generate
106 ForxPG : for n in 0 to 2**riga-1 generate
107 G_ij : G
108 port map(clk,reset,Gtree((I+n)*4-1) ((I-1)*4), Ptree((I+n)*4-1) ((I-1)

*4), GTree((I-1)*4-1) ((I-1)*4-(2**(riga+2))), GTree((I+n)*4-1) ((
I-1)*4-(2**(riga+2))));

109 P_ij : P
110 port map(clk,reset,Ptree((I+n)*4-1) ((I-1)*4), PTree((I-1)*4-1) ((I-1)

*4-(2**(riga+2))), PTree((I+n)*4-1) ((I-1)*4-(2**(riga+2))));
111 end generate ForxPG ;
112 end generate IfxPG;
113 end generate PG;
114 end generate arrayxPG ;
115 end generate rigaxPG ;
116 end generate righe;
117 CoX: for i in 1 to N/4 generate
118 Co(i-1) <= GTree(i*4-1) (0);
119 end generate CoX;
120 end Struct_generatorcar ;

1 // ---------------------**11. log2function .vhd **-
2 package log2Funct is
3 function log2( i : natural ) return integer ;
4 end log2Funct;
5 package body log2Funct is
6 function log2( i : natural ) return integer is
7 variable temp : integer := i;
8 variable ret_val : integer := 0;
9 begin

10 while temp > 1 loop
11 ret_val := ret_val + 1;
12 temp := temp / 2;
13 end loop;
14 return ret_val ;
15 end log2;
16 end log2Funct;

1 // ---------------------** driver .sv**---------
2 // ... code
3 virtual protected task drive_transfer ( packet_in tr);
4 vif.A = tr.A;
5 vif.B = tr.B;
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6 vif.ci = tr.ci;
7 @( posedge vif.clk);
8 -> end_record ;
9 @( posedge vif.clk); // hold time

10 endtask
11 // ... code
12 // -------------------------------------------

1 // -------------------** monitor .sv**----------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
9 tr.ci = vif.ci;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 // -------------------------------------------

1 // --------------------** monitor_out .sv**-----
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
9 tr.ci = vif.ci;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 // -------------------------------------------

1 // ---------------------** refmod .sv**---------
2 import "DPI -C" context function int addBits ( int num_1, int num_2,

int carry_out );
3 // ... code
4 virtual task run_phase ( uvm_phase phase);
5 super. run_phase (phase);
6 forever begin
7 in.get(tr_in);
8 tr_out .co = addBits (tr_in.A, tr_in.B, tr_in.ci);
9 out.put( tr_out );
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10 end
11 endtask : run_phase
12 // -------------------------------------------
13 endclass : refmod

1 // -------------------** external .cpp**--------
2 # include <iostream >
3 # include <stdio.h>
4 # define N_CSA 4
5 using namespace std;
6 // -------------------------------------------
7 extern "C" int addBits ( int num_1, int num_2, int carry_out ){
8 int output = 0;
9 int index = 0;

10 int size = sizeof ( unsigned int);
11 int maxPow = 1;// <<(size *8 -1);
12 // = 0;
13 bool first_time = true;
14 for(int i=0;i<size*8;++i){
15 // print last bit and shift left.
16 int bit_num_ 1 = (num_1& maxPow ? 1 : 0);
17 int bit_num_ 2 = (num_2& maxPow ? 1 : 0);
18 int sum = bit_num_ 1 + bit_num_ 2 + carry_out ;
19 carry_out = ((sum & 1<<1)>>1 ? 1 : 0);
20 if (((i+1) % N_CSA == 0) && (! first_time ))
21 {
22 carry_out = carry_out << index++;
23 output = output | carry_out ;
24 }
25 num_1 = num_1>>1;
26 num_2 = num_2>>1;
27 first_time = false;
28 }
29 // print_Bits ( output );
30 return output ;
31 }

1 // ------------------**top.sv**---------------
2 // ... code
3 carrygen_generic carrygen (.clk(clk), .reset(rst), .a(in.A), .b(in.B),

.cin(in.ci),.co(out.co));
4 // ... code
5 // -------------------------------------------

P4ADDER

1 // ----------------** p4adder .sv**-------------
2 library ieee;
3 use ieee. std_logic_ 1164.all;
4 use ieee. std_logic_unsigned .all;
5 entity P4Adder is
6 Generic (N: integer := 32);
7 port (
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8 clk : in std_logic ;
9 reset : in std_logic ;

10 A : in std_logic_vector (N-1 downto 0);
11 B : in std_logic_vector (N-1 downto 0);
12 Cin : in std_logic ;
13 SUM : out std_logic_vector (N-1 downto 0);
14 Co : out std_logic );
15 end P4Adder;
16 architecture Struct_P 4Adder of P4Adder is
17 signal cc : std_logic ;
18 component CARRYGEN_GENERIC is
19 --this component used tfor generating carry tree
20 Generic ( N: integer := 32);
21 port ( clk : in std_logic ;
22 reset : in std_logic ;
23 A : in std_logic_vector (N-1 downto 0);
24 B : in std_logic_vector (N-1 downto 0);
25 Cin : in std_logic ;
26 Co : out std_logic_vector (N/4-1 downto 0));
27 end component ;
28 component CSA_generic is
29 -- with carry generated in CARRYGEN_GENERIC ,the sum can be done!
30 Generic (N: integer := 32);
31 Port (
32 clk : in std_logic ;
33 reset : in std_logic ;
34 A : In std_logic_vector (N-1 downto 0);
35 B : In std_logic_vector (N-1 downto 0);
36 Cin : In std_logic_vector (N/4-1 downto 0);
37 Si : Out std_logic_vector (N-1 downto 0));
38 end component ;
39 component register_generic
40 Generic (N: integer :=32);
41 Port (
42 DIN : In std_logic_vector (N-1 downto 0) ;
43 Reset : In std_logic ;
44 clk : In std_logic ;
45 DOUT : Out std_logic_vector (N-1 downto 0));
46 end component ;
47 signal Cout : std_logic_vector (N/4-1 downto 0);
48 signal SumCin : std_logic_vector (N/4-1 downto 0);
49 signal Ct : std_logic ;
50 begin
51 CARRYGEN : CARRYGEN_GENERIC
52 generic map(N)
53 port map(clk,reset,a, b, Cin, Cout);
54 SumCin <= Cout(N/4-2 downto 0) & Cin;
55
56 SUMGEN : CSA_generic
57 generic map (N)
58 port map (clk,reset,a, b, SumCin , sum);
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59 co<= Cout(N/4-1); -- final carry out
60 end Struct_P 4Adder;

1 // ------------------** driver .sv**------------
2 // ... code
3 virtual protected task drive_transfer ( packet_in tr);
4 @( posedge vif.clk);
5 vif.A = tr.A;
6 vif.B = tr.B;
7 vif.ci = tr.ci;
8 @( posedge vif.clk);
9 -> end_record ;

10 @( posedge vif.clk); // hold time
11 endtask
12 // ... code
13 // -------------------------------------------

1 // ------------------** monitor .sv**-----------
2 // .... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A;
8 tr.B = vif.B;
9 tr.ci = vif.ci;

10 item_collected_port .write(tr);
11 @( posedge vif.clk);
12 -> end_record ;
13 end
14 endtask
15 // ... code
16 // -------------------------------------------

1 // -----------------** monitor_out .sv**--------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 -> begin_record ;
7 tr.data = vif.data;
8 tr.co = vif.co;
9 item_collected_port .write(tr);

10 @( posedge vif.clk);
11 -> end_record ;
12 end
13 endtask
14 // .... code
15 // -------------------------------------------

1 // ----------------** refmod .sv**--------------
2 import "DPI -C" context function int p4_sum(int a, int b, int ci);
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3 import "DPI -C" context function int p4 _carry (int a, int b, int ci);
4 // ... code
5 virtual task run_phase ( uvm_phase phase);
6 super. run_phase (phase);
7 forever begin
8 in.get(tr_in);
9 tr_out .data = p4_sum(tr_in.A, tr_in.B, tr_in.ci);

10 tr_out .co = p4 _carry (tr_in.A, tr_in.B, tr_in.ci);
11 out.put( tr_out );
12 end
13 endtask : run_phase
14 // -------------------------------------------
15 endclass : refmod

1 // ------------------** external .cpp**---------
2 # include <stdio.h>
3 # include <iostream >
4 using namespace std;
5 # include <cmath >
6 # include <stdlib .h>
7 # define N_CSA 4
8 // -------------------------------------------
9 int getBit (int a, int i)

10 {
11 return ((a & (1 << i)) >> i);
12 }
13 // -------------------------------------------
14 int sum(int carry_in ,int a,int b)
15 {
16 return (( carry_in ^ a) ^ b);
17 }
18 // -------------------------------------------
19 int carry(int carry_in ,int a,int b)
20 { int d;
21 d=( carry_in & a) | (a & b) | ( carry_in & b) ;
22 return d;
23 }
24 // -------------------------------------------
25 int setBit (int result , int i, int s)
26 {
27 if (s == 1)
28 return result | (1 << i);
29 return result & ~(1 << i);
30 }
31 // -------------------------------------------
32 int rca_sum (int x, int y , int carry_in ){
33 int a,b,i , result =0;
34 for (i = 0; i < 4; i++)
35 {
36 a = getBit (x, i);
37 b = getBit (y, i);
38 int s = sum( carry_in , a, b);
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39 int carry_out = carry( carry_in , a, b);
40 result = setBit ( result , i, s);
41 carry_in = carry_out ;}
42 return result ;
43 }
44 // -------------------------------------------
45 int rca_carry (int x, int y , int carry_in ){
46 int a,b,i ;
47 for (i = 0; i < 4; i++)
48 {
49 a = getBit (x, i);
50 b = getBit (y, i);
51 int s = sum( carry_in , a, b);
52 int carry_out = carry( carry_in , a, b);
53 int result = setBit ( result , i, s);
54 carry_in = carry_out ;}
55 return carry_in ;
56 }
57 // -------------------------------------------
58 int mux(int a, int b , int sel){
59 int y;
60 if (sel == 0){
61 y=a;}
62 else y = b;
63 return y;
64 }
65 // -------------------------------------------
66 int csa(int a, int b , int ci){
67 int si;
68 int sum1, sum0;
69 int carry0,carry1;
70 int mux_out ;
71 sum0 = rca_sum (a, b, 0);
72 carry0 = rca_carry (a, b, 0);
73 sum1 = rca_sum (a, b, 1);
74 carry1 = rca_carry (a, b, 1);
75 mux_out = mux (sum0,sum1,ci);
76 // cout <<mux_out ;
77 return mux_out ;
78 }
79 // -------------------------------------------
80 int sum_generator (int a, int b , int ci){
81 int si;
82 int sum_gen ;
83 sum_gen = csa(a, b, ci);
84 return sum_gen ;
85 }
86 // -------------------------------------------
87 int pg1(int a, int b , int c , int m,int d, int v){
88 d = a |(c & b) ;
89 return d;
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90 }
91 // -------------------------------------------
92 int pg2(int a, int b , int c , int m,int d, int v){
93 v= b & m ;
94 return v;}
95 // -------------------------------------------
96 int pg_network 1(int a, int b ,int p ){
97 p = a ^b ;
98 return p;
99 }

100 // -------------------------------------------
101 int pg_network 2(int a, int b ,int g){
102 g = a & b;
103 return g;
104 }
105 // -------------------------------------------
106 int pg_network 3(int a, int b , int c , int G_10){
107 G_10 = (a & b) | (( a ^ b) & c);
108 return G_10;
109 }
110 // -------------------------------------------
111 int P(int a, int b , int d ){
112 d = a & b ;
113 return d;
114 }
115 // ------------------------------------------
116 int G(int a, int b , int ci , int v){
117 v = a | (b & ci);
118 return v;
119 }
120 // -------------------------------------------
121 struct Point {
122 int Gtree, Ptree;
123 };
124 // -------------------------------------------
125 int get_bits (int N ,int bits_wanted ){
126 int k;
127 int bits;
128 for (k=0; k< bits_wanted ;k++){
129 int mask=1<<k;
130 int masked_n = N& mask;
131 int thebit = masked_n >>k;
132 bits = thebit ;
133 }
134 return bits;
135 }
136 // -------------------------------------------
137 int addBits ( int num_1, int num_2, int carry_out ){
138 int output = 0;
139 int index = 0;
140 int size = sizeof ( unsigned int);
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141 int maxPow = 1;// <<(size *8 -1);
142 // = 0;
143 bool first_time = true;
144 for(int i=0;i<size*8;++i){
145 // print last bit and shift left.
146 int bit_num_ 1 = (num_1& maxPow ? 1 : 0);
147 int bit_num_ 2 = (num_2& maxPow ? 1 : 0);
148 int sum = bit_num_ 1 + bit_num_ 2 + carry_out ;
149 carry_out = ((sum & 1<<1)>>1 ? 1 : 0);
150 if (((i+1) % N_CSA == 0) && (! first_time ))
151 {
152 carry_out = carry_out << index++;
153 output = output | carry_out ;
154 }
155 num_1 = num_1>>1;
156 num_2 = num_2>>1;
157 first_time = false;
158 }
159 // print_Bits ( output );
160 return output ;
161 }
162 // -------------------------------------------
163 extern "C" int p4_sum(int a, int b , int ci)
164 { int sum;
165 sum = sum_generator (a,b,ci);
166 return sum;
167 }
168 // -------------------------------------------
169 extern "C" int p4 _carry (int a, int b , int ci)
170 { int carry;
171 carry = addBits (a,b,ci);
172 return carry;
173 }

1 // -----------------**top.sv**----------------
2 // ... code
3 P4Adder sum(.clk(clk), .reset(rst), .a(in.A), .b(in.B), .cin(in.ci),.

sum(out.data), .co(out.co));
4 // ... code
5 // -------------------------------------------

Serial In Serial Out SISO

1 // --------------------**siso.vhdl**----------
2 library IEEE;
3 use IEEE. std_logic_ 1164.all;
4 use ieee. std_logic_unsigned .all;
5 entity siso is
6 Generic (N: integer :=4);
7 Port (
8 din_siso : In std_logic ;
9 Reset : In std_logic ;

10 clk : In std_logic ;
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11 Dout_siso : Out std_logic );
12 end siso;
13 architecture BEH of siso is
14 signal tmp : std_logic_vector (N-1 downto 0);
15 begin
16 process (clk)
17 begin
18 if ReSeT='1' then
19 DOUT_siso <= '0';
20 ELSIF rising_edge (clk) THEN
21 for i in 0 to 2 loop
22 tmp(i+1) <= tmp(i);
23 end loop;
24 tmp(0) <= din_siso ;
25 end if;
26 dout_siso <= tmp(3);
27 end process ;
28 end BEH;

1 // -----------------------** input_if .sv**-----
2 interface input_if (input clk, rst);
3 logic A;
4 modport port(input clk, rst, A);
5 endinterface

1 // ---------------------** output_if .sv**------
2 interface output_if (input clk, rst);
3 logic data;
4 modport port(input clk, rst, output data);
5 endinterface

1 // --------------------** packet_in .sv**-------
2 class packet_in extends uvm_sequence_item ;
3 rand logic A;
4 logic clk;
5 logic rst;
6 `uvm_object_utils_begin ( packet_in )
7 `uvm_field_int (A, UVM_ALL_ON | UVM_HEX )
8 `uvm_object_utils_end
9 // -------------------------------------------

10 function new( string name=" packet_in ");
11 super.new(name);
12 endfunction : new
13 // -------------------------------------------
14 endclass : packet_in

1 // ---------------------** packet_out .sv**-----
2 class packet_out extends uvm_sequence_item ;
3 rand logic data;
4 `uvm_object_utils_begin ( packet_out )
5 `uvm_field_int (data, UVM_ALL_ON | UVM_HEX )
6 `uvm_object_utils_end
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7 // -------------------------------------------
8 function new( string name=" packet_out ");
9 super.new(name);

10 endfunction : new
11 // -------------------------------------------
12 endclass : packet_out

1 // ---------------------** driver .sv**---------
2 // ... code
3 virtual protected task drive_transfer ( packet_in tr);
4 vif.A = tr.A;
5 @( posedge vif.clk); // hold time
6 @( posedge vif.clk); // hold time
7 -> end_record ;
8 @( posedge vif.clk);
9 endtask

10 // ... code

1 // ----------------------** monitor .sv**-------
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 wait(vif.rst === 1);
5 forever begin
6 -> begin_record ;
7 tr.A = vif.A; item_collected_port .write(tr);
8 @( posedge vif.clk);
9 -> end_record ;

10 end
11 endtask
12 // ... code
13 // -------------------------------------------

1 // --------------------** monitor_out .sv**-----
2 // ... code
3 virtual task collect_transactions ( uvm_phase phase);
4 @( negedge vif.rst);
5 forever begin
6 -> begin_record ;
7 tr.data = vif.data;
8 item_collected_port .write(tr);
9 @( posedge vif.clk);

10 -> end_record ;
11 end
12 endtask
13 // ... code
14 // -------------------------------------------

1 // -----------------** refmod .sv**-------------
2 class refmod extends uvm_component ;
3 `uvm_component_utils ( refmod )
4 packet_in tr_in;
5 packet_out tr_out ;
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6 logic a,rst,clk,b;
7 uvm_get_port #( packet_in ) in;
8 uvm_put_port #( packet_out ) out;
9 // -------------------------------------------

10 function new( string name = " refmod ", uvm_component parent );
11 super.new(name, parent );
12 in = new("in", this);
13 out = new("out", this);
14 endfunction
15 // -------------------------------------------
16 virtual function void build_phase ( uvm_phase phase);
17 super. build_phase (phase);
18 tr_out = packet_out :: type_id :: create (" tr_out ", this);
19 endfunction : build_phase
20 // -------------------------------------------
21 virtual task run_phase ( uvm_phase phase);
22 super. run_phase (phase);
23 forever begin
24 in.get(tr_in);
25 fork
26 if (tr_in.rst===1)
27 sig <=0;
28 else
29 @( posedge clk);
30 sig = sig << 1;
31 for(int i=0; i<2; i++) begin
32 sig[i+1] <= sig[i];
33 end
34 sig[0] = tr_in.A;
35 tr_out .data = sig[3];
36 join_none
37 out.put( tr_out );
38 end
39 endtask : run_phase
40 // -------------------------------------------
41 endclass

1 // ---------------------**top.sv**------------
2 // ... code
3 siso sum( . din_siso (in.A), .reset(rst), .clk(clk), . dout_siso (out.

data));
4 // ... code
5 // -------------------------------------------

ALU

1 // --------------------**Alu.vhdl **--
2 library IEEE;
3 use IEEE. std_logic_ 1164.all;
4 use IEEE. std_logic_arith .all;
5 use WORK. GLOBALS .all;
6 entity ALU is
7 generic (N : integer :=4);
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8 port (
9 clk : in std_logic ;

10 reset : in std_logic ;
11 FUNC : IN ALUOP;
12 DATA1, DATA2 : IN std_logic_vector (N-1 downto 0);
13 OUTALU : OUT std_logic_vector (N-1 downto 0));
14 end ALU;
15 architecture BEHAVIOR of ALU is
16 COMPONENT P4Adder is
17 Generic (N: integer := 4);
18 port (
19 clk : in std_logic ;
20 reset : in std_logic ;
21 A : in std_logic_vector (N-1 downto 0);
22 B : in std_logic_vector (N-1 downto 0);
23 Cin : in std_logic ;
24 SUM : out std_logic_vector (N-1 downto 0);
25 Co : out std_logic );
26 end COMPONENT ;
27 component siso is
28 Generic (N: integer :=4);
29 Port (
30 din_siso : In std_logic ;
31 Reset : In std_logic ;
32 clk : In std_logic ;
33 Dout_siso : Out std_logic );
34 end component ;
35 SIGNAL CARRY_IN : STD_LOGIC ;
36 SIGNAL out_shft 1 : STD_LOGIC ;
37 SIGNAL ADD_IN 2, OUT_SUM , OUT_shft , OUT_nop : STD_LOGIC_VECTOR (3 downto

0);
38 begin
39 CARRY_IN <= '1' WHEN FUNC = F_SUB ELSE '0' ;
40 ADD_IN 2 <= NOT(DATA2) WHEN FUNC = F_SUB ELSE DATA2;
41 out_shft <= "000"& out_shft 1;
42 ADD : P4ADDER
43 generic MAP (N =>4)
44 Port MAP( clk, reset , DATA1, ADD_IN 2, CARRY_IN , OUT_SUM );
45 shift: siso
46 generic map(N =>4)
47 port map ( data1(0), reset, clk, out_shft 1 );
48 out_nop <= "000"&"0";
49 OUTALU <= OUT_SUM WHEN FUNC = F_ADD ELSE
50 OUT_nop WHEN FUNC = nop ELSE
51 OUT_SUM WHEN FUNC = F_SUB ELSE
52 OUT_SHFT WHEN FUNC = F_SHFT ELSE
53 ( OTHERS => '0 ');
54 end BEHAVIOR ;

CONTROL-UNIT-HW

1 // --------------------** cu_hw.sv**---
2 library ieee;
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3 use ieee. std_logic_ 1164.all;
4 use ieee. std_logic_unsigned .all;
5 use ieee. std_logic_arith .all;
6 use work. GLOBALS .all;
7
8 entity CONTROL_UNIT is
9 generic (

10 MICROCODE_MEM_SIZE : integer := 4; -- Microcode Memory
Size

11 FUNC_SIZE : integer := 3; -- Func Field Size for
R-Type Ops

12 OP_CODE_SIZE : integer := 3; -- Op Code Size
13 IR_SIZE : integer := 12; -- Instruction

Register Size
14 CW1_SIZE : integer := 4
15 ); -- Control Word Size
16 port (
17 Clk : in std_logic ; -- Clock
18 Rst : in std_logic ; -- Reset: Active -Low
19 IR_IN : in std_logic_vector ( IR_SIZE - 1 downto 0

);
20 ALU_OPCODE : out aluOp -- implicit coding
21 );
22 end CONTROL_UNIT ;
23 architecture dlx_cu_hw of CONTROL_UNIT is
24 type mem_array is array ( integer range 0 to MICROCODE_MEM_SIZE - 1)

of std_logic_vector (CW1_SIZE - 1 downto 0);
25 CONSTANT cw_mem : mem_array := (
26 "0000",
27 "0001",
28 "0010",
29 "0011"
30 );
31 signal IR_sig : std_logic_vector ( func_size -1 downto 0);
32 signal IR_func : std_logic_vector ( FUNC_SIZE -1 downto 0);
33 signal aluOpcode_i : aluOp ;
34 signal aluOpcode 1: aluOp ;
35 begin
36 IR_sig <= IR_IN( 10 downto 8);
37 -- IR_opcode <= "010";
38 IR_func <= IR_IN(5 downto 3);
39 CW_PIPE : process (Clk, Rst)
40 begin
41 if Rst = '1' then
42 aluOpcode 1 <= nop;
43 elsif rising_edge (clk) then
44 aluOpcode 1 <= aluOpcode_i ;
45 end if;
46 end process CW_PIPE ;
47 ALU_OPCODE <= aluOpcode 1;
48 ALU_OP_CODE_P : process ( ir_sig , ir_func )
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49 begin
50 case conv_integer ( unsigned ( IR_func )) is
51 when TYPE_ADDI => aluOpcode_i <= F_ADD;
52
53 when TYPE_SUBI => aluOpcode_i <= F_SUB;
54 when TYPE_SHFT => aluOpcode_i <= F_SHFT ;
55
56 when TYPE_NOP => aluOpcode_i <= NOP;

57 when others => aluOpcode_i <= NOP;
58 end case;
59 end process ALU_OP_CODE_P ;
60 end dlx_cu_hw ;

DATA

1 // -------------**data.sv**-----------
2 library ieee ;
3 use ieee. std_logic_ 1164.all;
4 use ieee. numeric_std .all;
5 use WORK. GLOBALS .all;
6 entity Data is
7 port (
8 Clk : in std_logic ;
9 Rst : in std_logic ;

10 IRam_DOut : IN std_logic_vector (11 downto 0);
11 alu_out : OUT std_logic_vector (3 downto 0)
12 );
13 end data;
14 architecture data_r of Data is
15 COMPONENT alu
16 generic (N : integer :=4);
17 port (
18 clk : in std_logic ;
19 reset: in std_logic ;
20 FUNC : IN ALUOP;
21 DATA1, DATA2: IN std_logic_vector (3 downto 0);
22 OUTALU : OUT std_logic_vector (3 downto 0));
23 end component ;
24 component CONTROL_UNIT
25 generic (
26 MICROCODE_MEM_SIZE : integer := 4;
27 OP_CODE_SIZE : integer := 3;
28 IR_SIZE : integer := 12;
29 CW1_SIZE : integer := 4
30 );
31 port (
32 Clk : in std_logic ;
33 Rst : in std_logic ;
34 IR_IN : in std_logic_vector ( IR_SIZE - 1 downto 0

);
35 ALU_OPCODE : out aluOp
36 );
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37 end component ;
38 signal ALU_OPCODE_i : aluOp;
39 signal siga : std_logic_vector (3 downto 0);
40 signal sigb : std_logic_vector (3 downto 0);
41 begin
42 siga <= IRam_dout (7 DOWNTO 4);
43 sigb <= IRam_dout (3 DOWNTO 0);
44 CU_I: CONTROL_UNIT
45 port map (Clk, Rst, IRam_DOut , ALU_OPCODE_I );
46 DP1: alu
47 port MAP( Clk, Rst, ALU_OPCODE_I , siga, sigb, alu_out );
48 end data_r ;

1 // --------------------** driver .sv**---------------
2 virtual protected task drive_transfer ( packet_in tr);
3 @( posedge vif.clk)
4 vif.iram = tr.iram;
5 @( posedge vif.clk);
6 @( posedge vif.clk);
7 @( posedge vif.clk);
8 @( posedge vif.clk); // hold time
9 @( posedge vif.clk); // hold time

10 @( posedge vif.clk); // hold time
11 @( posedge vif.clk); // hold time
12 @( posedge vif.clk); // hold time
13 @( posedge vif.clk); // hold time
14 @( posedge vif.clk); // hold time
15 @( posedge vif.clk); // hold time
16 @( posedge vif.clk); // hold time
17 @( posedge vif.clk); // hold time
18 @( posedge vif.clk); // hold time
19 @( posedge vif.clk); // hold time
20 @( posedge vif.clk); // hold time
21 @( posedge vif.clk); // hold time
22 @( posedge vif.clk); // hold time
23 -> end_record ;
24 @( posedge vif.clk); // hold time
25 endtask

1 // --------------------** refmod **-----
2 // ... code
3 virtual task run_phase ( uvm_phase phase);
4 super. run_phase (phase);
5 forever begin
6 in.get(tr_in);
7 fork
8 ir_opcode =tr_in.iram [5:3];
9 a = tr_in.iram [7:4];

10 b = tr_in.iram [3:0];
11
12 wait(tr_in.rst === 0)begin
13
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14 case ( ir_opcode )
15 0: funci = 0;
16 1 : funci = a+b ;
17 2: funci = a-b ;
18 3: funci = a[0];
19 default : funci =0;
20 endcase
21 tr_out . alu_out = funci;
22 end
23 join_none
24 out.put( tr_out );
25 end
26 endtask : run_phase
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