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Summary

Recently, after the advent of Artificial Intelligence, Deep Neural Networks (DNNs)
become popular for several machine learning-based applications, like image classi-
fication or speech recognition, inspired by brain-behavior to process information.
They had a significant impact toward complex tasks, showing their superiority over
human capabilities. Moreover, many recent studies revealed that slight perturba-
tions of the test inputs can fool well-trained networks to mis-predict. Adversarial
examples (AE), generated by adding small perturbations to the original inputs,
imperceptible to human eyes, highlight the tendency of DNNs to learn superficial
and brittle features that make the model vulnerable.
The same limitation of DNNs in image classification is noticed when the input is
affected by affine transformations that do not modify the pixels but their relative
position in space. These problems could lead toward drastic consequences, especially
in safety-critical applications, i.e autonomous driving, robotics, smart healthcare,
privacy and banking applications. Then, towards the deployment of DNNs, it is
relevant to ensure robustness against inputs transformations and against malicious
adversarial attacks, by developing a more robust DNN model and/or improving
the defense mechanisms.
The most desired goal is to increase the generalization level of a DNN to limit these
problems, similarly as the human brain works.
Many researches proposed solutions of increasing the depth of CNN architectures,
others proposed to modify the hyperparameters, use data pre-processing or in-
troduce regularization during training. For a CNN, the convolutional and the
max pooling layers provide generalization and the capability to detect high order
features in a large region of the image. Thanks to these layers, if a relevant feature
of the object that has to be detected is slightly shifted or perturbed, the CNN is
still able to detect it, but without preserving any relation with other identified
features from the original image.
With the introduction of the Capsule Networks (CapsNet), the basic building block
of a neural network, i.e., the neuron, has been replaced by a group of neurons, called
capsule. Each capsule stores the feature information in a vector form, in contrast
to the scalar form used by the neurons in traditional CNNs. The capsules encode
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spatial information as well as the probability of an object being present: when a
detected feature moves around the image, the probability of being detected does
not vary, but its pose information changes (equivariance property). An efficient way
of learning the coupling between capsules from different layers was also proposed,
the so-called dynamic routing algorithm, an iterative process that replicates the
behavior of max pooling, but without losing any information.
Hence, such capsule structure improves the generalization of the network, because
can efficiently learn cross-correlations between different features of the inputs.
Recently, other works showed that a deeper version of CapsNet can achieve high
accuracy also on mid-complex datasets like the CIFAR10, despite reducing the
number of parameters compared to the shallower first model.
Existing works have analyzed the vulnerabilities and robustness of CapsNets against
affine transformations and adversarial attacks, respectively, showing promising
results.

Research Questions and Associated Challenges
Towards this, the goal of this work is to answer the following research questions:

1. Are CapsNets more robust than CNNs against adversarial attacks and affine
transformations?

2. If yes, how can this phenomena be shown in a systematic way?

3. Which features of the CapsNets contribute more to the robustness improve-
ment?

Answering these questions is a challenging task. Firstly, we evaluate a good
metric of comparison between CapsNets and CNNs, i.e., which network models give
a fair and significant robustness comparison, which type of adversarial attacks has
to be applied, etc. Then, for adversarial attacks which are based on the network
model, i.e., white-box attacks, it should be interesting to analyze the transferability.
If an adversarial example has been generated to fool the network A, can it also
fool the network B? Moreover, how to analyze the relative contribution of each
difference between the CapsNets and the CNNs to the difference in the robustness
is still an open challenge.

In summary, our key results show that the CapsNets are more robust than deeper
CNNs against affine transformation and different types of adversarial attacks. As
we will demonstrate, such improvements in the robustness also hold when the
adversarial examples are transferred from one network to the other one, and
vice-versa.

After showing the power of the capsules, we focus our analysis on the Dynamic
Routing contribution, the other main difference that characterizes the CapsNet
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architectures. This algorithm, by means of its iterative voting procedure, propa-
gates only the information that confer a high coupling with the output. The novel
proposed method increases the confidence of the prediction, with a consequent
improvement in terms of accuracy. By knowing that, our challenging question is:
Is the Dynamic Routing also useful for Robustness against adversarial examples
and affine transformations?
Moreover, our results show that the dynamic routing does not contribute much for
improving the CapsNets robustness. Indeed, the main generalization contribution
is due to the hierarchical feature learning through capsules.
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single vote ṽ, and the respective stride define the dimension wl+1 of
the layer l+1. cl+1 ·nl+1 kernels generate cl+1 ·nl+1 features maps for
each cl capsule tensor (a group of wl × wl capsules nl-dimensional).
To generate the output capsules, the coupling coefficients are updated
according to the agreement with S and Ṽ . . . . . . . . . . . . . . . 25
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Chapter 1

Introduction

Recently, Neural Networks (NNs) reached a large deal of interest in many different
applications thanks to their ability to reproduce the human brain-behavior in the
classification of complex data. By exploiting many layers of neurons and using
the experience of a training process, the NNs learn to distinguish, hierarchically,
the key-features common for a set of data, achieving even higher performances for
more complex tasks, like image or speech recognition.

1.0.1 Motivation: Why evaluating the Robustness of Neu-
ral Networks?

Many recent studies revealed that small perturbations of the test inputs can fool
well-trained networks to mis-predict. High confidence models are vulnerable to
adversarial examples (AEs), which are generated by attacker algorithms, adding
imperceptible perturbations to the original inputs. Furthermore, the power of NNs
in image recognition is compromised if the test inputs suffer small transformations in
space, i.e rotation translation and zooms. As a consequence of this, it is relevant to
evaluate the vulnerability of NNs to adversarial attacks and affine transformations
before deploying such networks in safety-critical applications, i.e., autonomous
driving, privacy and banking applications and smart healthcare.

1.0.2 Scientific challenges
In order to increase the robustness of NNs many solutions have been proposed.
The most desired goal is to increase the generalization level of a NN, similarly as
the human brain works. As shown in Figure 1.1, many researches tried to modify
the hyperparameters, use data pre-processing or introduce regularization during
training. However, nowadays, improving generalization and accuracy with this
kind of solutions is becoming increasingly difficult.
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1 – Introduction

NNs, then, need to be revised/redesigned to fill these gaps and make them stronger
against attacks and affine transformations. In the last few years new concepts have
been introduced in traditional Convolutional Neural Networks (CNNs), increasing
their resilience to external attacks. The proposed solution is the Capsule Network
(CapsNet), a novel architecture that learns and stores more feature information
(i.e orientation, position in space) in a vector form as well as the probability
that a feature is present, substituting the neuron basic element with a group of
neurons (capsule). Hence, such capsule structure improves the generalization of
the networks, because it can efficiently learn cross-correlations between different
features of the inputs. Furthermore, a Dynamic Routing between two capsule
layers has been defined. It substitutes the max pooling of CNNs, propagating
only the most significant features, without losing any information. Recently, other
works showed that a deeper version of CapsNet can achieve high accuracy and an
even better level of generalization for more complex datasets, despite reducing the
number of parameters compared to the shallower first model.

.

Generalization RobustnessHow to improve
generalization?

Affine Transformatins Adversarial AttacksDeep Neural Networks

3D convolutional
layers

Dynamic Routing

Modyfing the architectures

Capsule NetworksCNNs

Max Pooling Convolutional 
layers

Deep Capsule
Networks

basic element: neuron basic element: group of neurons

Are Capsule Networks more robust than normal CNNs?

Regularization, 
Data Augmentation, 
learning rate decay, 
Dropout,
etc. 

Improving training 
process

Figure 1.1: Scientific challenges.

1.0.3 Novel Contributions
Overall, promising results have been obtained by evaluating CapsNets robustness,
but a systematic study which compares different types of CapsNets and CNNs is
missing. Towards a comprehensive comparison, we test two CapsNets and two
CNN models on the MNIST, the GTSRB and the CIFAR10, as well as on affine-
transformed versions of such datasets and against adversarial attacks. With a
thorough analysis (Chapter 4), we show which properties of these architectures
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1 – Introduction

better contribute, increasing the robustness against attacks and their limitations.
These are the steps followed also summarized in Figure 1.2:

• We generate an affined transformed version of the CIFAR10 and GTSRB
datasets, which we call affCIFAR and affGTSRB (Chapter 5.1).

• We compare the robustness against affine transformations for different
datasets and different networks (Chapter 5.1).

• We compare the robustness against adversarial attacks for different datasets
and different networks(Chapter 5.2).

• We evaluate the contribution of the dynamic routing to the CapsNets
robustness (Chapter 6).

CNNs
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ap
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6 Dynamic Routing 
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Adversarial Attacks
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5
.1 Affine Transformations Chapter 4

Methodology

Robustness
Evaluation

Figure 1.2: Overview of chapters organization.

Before proceeding to the technical sections, we present an overview inChapter 2,
to a level of detail necessary to understand the research contribution of the work.
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Chapter 2

Background

2.1 From Artificial Intelligence to Deep Learning

Machine Learning (ML) is a current application of Artificial Intelligence (AI)
inspired by the human ability to identify elements in the real world. Every human
interfaces with different objects every day and can understand the environment
from his experience [1]. The basic idea behind ML is similar: to solve apparently
natural tasks for the human brain, i.e. recognition of complex data, using examples
or past experience. Then, differently from any other AI algorithm, which use a
certain code for the respective task, ML models learn without being programmed.
Deep learning is a sub-branch of ML and covers all the architectures and the
algorithms that exploit multiple layers of basic elements, called neurons, to clas-
sify a set of data. These architectures reproduce the brain-behavior, learning,
hierarchically, the statistical relationships among the features of real objects.

Figure 2.1: From Artificial Intelligence to Deep Learning. Source [2]
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2 – Background

2.2 Multi-layer Perceptron architectures (MLP)

The simplest element exploited by Deep Learning is the perceptron (Figure 2.2b),
a mathematical model of a biological neuron that stores pieces of information.
While in a biological neuron (in Figure 2.2a) the dendrites receive electrical signals
coming from other neurons, the perceptron receives probability values, processed
and sent out toward the axon.

(a) (b)

Figure 2.2: (a) Biological Neuron, (b) Perceptron model example.

The output of each element is the result of a weighted sum of the inputs,
generated by other neurons or coming from the environment, compressed in a
certain interval by means of an activation function (2.1).

y = factivation (
#inputsØ

n=1
(Wixi + B)) (2.1)

The activation function transforms the perceptron outputs in probability values,
introducing non linearity in the model. This grants generalization and a faster
convergence of the learning algorithm toward the solution of the task.

The most popular activation functions are reported in Table 2.1:
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2 – Background

Table 2.1: Examples of most common Activation Functions.

Activation Function equation

Sigmoid or logistic f(x) = 1
1+e(−x) = ex

(ex+1)

Tanh - Hiperbolic tangent f(x) = ex−e−x

ex+e(−x)

ReLu - Rectified linear Units f(x) = max(0, x)

Figure 2.3 shows an example of whole architecture composed of many perceptron
layers (Multi-Layer Perceptron architecture (MLP)), in which many basic elements
are connected together, one after the other, and activated according to the external
stimuli, such as the human brain works.

Figure 2.3: An example of Multi-Layer Perceptron (MLP). Source [3]

The layer is the highest-level building block, composed of many perceptrons
that receive and transform the weighted inputs and pass the result as output to the
next layer. The shallower neurons learn to identify low-level features (like edge or
lines for image classification), that are combined together in the following hidden
layers, to classify real objects in the last layer, with a certain probability. Usually,
in the last layer, a different activation function is exploited, called softmax, that
takes as input the activations and normalizes them into a probability distribution,
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2 – Background

in order to facilitate the classification.
All the connections in Figure 2.3 perform a similar work done by the synapses,

which, connecting axon and dendrites of different neurons, propagate the weighted
information along the chain. A connection in the architecture corresponds to a
parameter (or weight Wi), that has to be updated by a training process in line with
the task that the network has to solve. Furthermore, also the biases B, present
in the perceptron model, has to be updated for the same purpose, improving the
convergence rate of the model.

It is possible to distinguish two main important phases in a machine learning
procedure:

• The training phase: the means with which the architecture learns to perform
the real task.

• The inference phase: a test of the ability of the network to perform the learned
tasks.

2.3 Learning process
A machine learning model learns by itself how to solve a certain task, differently
from any other computer application that before the testing has to be programmed
by means of a code. The final purpose of Neural Networks (NNs) is to associate a
class to each object, with a certain probability. Given an example xi, belonging
to a class yi, the trained model M has to ensure that yi = M(xi) + Ô. To achieve
reasonable performances and low errors, a careful learning process needs, like for
the human brain with external experiences.
The learning process consists of providing to the network a collection of data,
belonging to a set of classes, in agreement with the objects that would be discrimi-
nated from the external environment.
For that purpose, to make comparable the response of the networks, existing
datasets are used. They correspond to a set of different data, with the same
characteristics and properties, collected for a specific purpose. Each example has a
corresponding true label that represents the correct class it belongs to. An example
is the MNIST (Modified National Institute of Standards and Technology [4]), a
simple dataset for image recognition, representing hand-written numbers. It is
composed of 60,000 training images and 10,000 testing images, each one of 28
×28 grey-scale pixels. All the images belong to 10 different classes, representing a
different number from 0 to 9.

We have three types of learning:

• Supervised learning: the models use the given labeled data to learn as a
comparison metric.
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2 – Background

• Unsupervised learning: the network tries to recognize features without
knowing the labels.

• Semi-supervised: not every example is labeled.

The supervised learning is common for image recognition: machines learn by
iteratively minimizing a loss function, that expresses how much predicted labels
are distant from the true ones. By means of a back propagation process, all the
values of the weights in the chain are updated in direction of the minimum loss.

It is like to solve a logistic regression problem.
Considering the output of a single neuron with N inputs (Figure 2.2b), equal

to q
i(xiwi + b) = þwT x + b, the backpropagation process correspond to find an

approximated model M that solves the following equation:

þw = argmin
NØ

i=0
( 1
N

(yi −M(xi, þw))2

where qN
i=0( 1

N
(yi −M(xi, þw))2 is the quadratic loss function L(þw) (see Table 2.2).

The most common algorithm used for this task is the Gradient Descend that
iteratively approximate the solution adjusting the values of þw, to bring the model
toward the minimum point of the loss function. The algorithm follows these points:

Algorithm 1 Gradient Descend
1: initialize randomly all the weights þw (included the bias b)
2: provide in input the dataset examples and evaluate the loss, comparing the

predicted labels with the real ones
3: evalute the gradient of the loss with respect to each parameter

∂L(þw)
∂wi

= ∂

∂wi

(
nØ

i=0

1
N

(yi −M(xi, þw)2)

4: chose a learning step Ô, the hyperparameter that control how fast the algorithm
moves toward the minimum of the loss

5: update all the parameters wi → wi + Ô∂L(þw)
∂wi

6: check if the loss improves
7: Go to step 3 until the loss function converges towards the minimum

The number of iterations, or epochs, is the hyperparameter that controls how
many times the full dataset passes through the training process.
Running a learning cycle for the full dataset is expensive in terms of simulation
time, moreover, it requires several memory resources. It is possible to reduce the
memory bandwidth and the simulation time sending to the network a fraction of
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the dataset examples in parallel, according to the hardware limits. The number of
parallel inputs is defined as batch size, another gradient descent hyperparameter
representing also the number of training samples working before that the model’s
internal weights are updated.
Many loss functions and optimizers exist and also many hyperparameters have to
be set for a converging training process. Table 2.2 shows three different methods
that can be used to evaluate the loss function during training.

Table 2.2: Most common loss functions used for the backpropagation. N is the
batch size multiplied by the dimension of inputs , C is the number of classes, y is
the correct label and yÍ is the predicted output.

Loss Function equation

MSE / L2 Loss / Quadratic Loss
qN

i=1 (yi − yÍ
i)

2

N

(Binary) Cross Entropy
qN

i=1
qC

j=1 yÍ
i log (yi,j)

N

Categorical Cross Entropy −qN
i=1 yÍ

i + log
1qN

i=1
qC

j=1 yi,j

2

2.4 Inference and Generalization problem
The final task of machine models is to classify each real image belonging to those
classes for which the network has been trained. The ability of the networks to
discern examples, different from the ones used for training, is called generalization.
For this purpose, a test dataset needs: it is a set of unseen images belonging to the
same classes and with the same dimensions of the train set, used to test the ability
of the network to perform the learned task. This is known as forward process, or
inference, for which the inputs are propagated along with the network, applying
the trained weights (Figure 2.4). The generalization of the models is tested by
evaluating loss and accuracy response on the test set.

• The accuracy represents the parameter that indicates how many times the
model correctly classifies the input.

• The loss expresses the distance between the true and the predicted labels.
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Figure 2.4: Example of inference, after training.

When the accuracy gap between test and train set is too large the problem of
overfitting occurs, implying that the model has learned many specific features of
the train dataset without generalizing.
Underfitting happens, instead, when the train set itself does not reach a sufficient
accuracy. These problems occur mainly for more complex datasets, especially, if the
input images used for the test are affected by noise or spatial transformations. This
means that a further generalization needs in order to achieve successful accuracy
and reduce the gap with the train set also in more critical conditions.
The most significant solution proposed was going deeper with Convolutional Neural
Networks (CNNs), (see Section 2.5). Many other works, instead, proposed an
improvement of the backpropagation process, i.e. modifying hyperparameters,
applying loss regularization or using data-preprocessing, without altering the
structure of the networks. It is usual to test the model after each epoch with a
validation set of images, unseen during the training (as for the test set), to check
and manage the overfitting at each iteration of the backpropagation algorithm.
i.e. if the training set reaches high performances and the validation accuracy
stays constant or starts to drop, the training can be stopped, because, probably,
overfitting occurs.

A regularization (Kukacka et al. [5]) term, usually, is added to the loss function
in order to avoid that the models learn so much, during the backpropagation process.
Using many layers, it is possible to achieve better results, but with the increasing
of the number of parameters, the network starts to learn both key-features and
the noise. i.e., if a model must learn to distinguish a cat or a dog in the same
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background, it is not interested in learning the background. The regularization
penalizes large weights, using penalties to prevent the learning of features that are
not needed. The following equation represents an example of a loss function with a
l2 regularization term, evaluated as the norm of all the weights:

nØ
i=0

1
N

(yi −M(xi, þw)2) + λ

2m

nØ
j=0
||wj||2

where n is the number of layers, wj the weighted matrix for the jth layer, m the
number of layers and λ a regularization hyperparameter. By adding this squared
term means that the backpropagation process has to minimize the loss but also
has to keep down the biggest weights.
Another solution is the Dropout (Srivastava et al. [6]): especially in fully connected
layers, it can be useful to disconnects some neurons at training time to reduce the
number of parameters to train, and keep all connections at the testing time.
Also is usual to perform random data-augmentation (like rotation translations and
zooms) before providing each image as input for the training process, in order to
make the network less vulnerable against affine transformations during inference
(Mikołajczyk and Grochowski [7]).

2.5 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) replaced the first-generation MLP archi-
tectures, introducing the concept of convolution in at least one layer. In MLPs
each node in each layer is connected with a certain weight to every node in the
following layer, and only general matrix multiplications are performed. With the
need to recognize increasingly complex data, even closer to real objects, the MLP
networks become deeper and larger, with a high number of parameters to train. In
addition, the problem of overfitting occurs: linking each input to every neuron, the
network learns everything about the training set, but the aim is to discern only
the key features common to the same class, to do classification. CNNs solve this
problem by achieving a comprehensive degree of generalization reducing, also, the
number of parameters required.

A convolutional layer controls sliding kernels (or filters) of fixed dimensions that
move through all the neurons of a layer. Sharing the same parameter across different
locations, the kernels are able to recognize features on the whole image exploiting
local correlations. This grant to the architecture the equivariance property, in
the sense that if the input image suffers a transformation, the output of each
convolution does not change, i.e. if some features are translated in the image
background the sliding kernel is still able to detect them.

Each convolution operation is performed between the values of the filter and
the input activations coming from the previous layer, as shown in Figure 2.6. Each

11
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step of the filter along one direction produces a new output that becomes a new
activation for the following layer. Furthermore, all the convolutions performed with
the same kernel generate a feature map that store information about a part-whole
of the input (as shown in the upper part of Figure 2.5). In each layer, more than
one filter is used to recognize many input features, which will be combined together
in the following convolutional layers to learn more complex objects. The stride
indicates how far the filter moves along one direction and determines the dimensions
of the feature maps. The operation performed for each kernel is the following:

S(i, j) = (I ∗K)(i, j) =
Ø
m

Ø
n

I(m, n)K(i−m, j − n)

where S(i, j) represents the result of a convolution operation, I an example of
input image, K the kernel and m and n the dimensions of the filter [1]. The Figure
2.5 shows a whole architecture composed of three convolutional and three fully
connected layers. The architecture is able to classify correctly the input, identifying
hierarchically the learned features that compose the full image, starting from the
simpler, i.e. edge or curves, toward the more complex objects.
A typical CNN uses an activation function, i.e. the ReLU (Rectified Linear Unit
in Table 2.1) and a Pooling at the end of each layer. The pooling operates over
each feature map independently, by using a window that selects the maximum
(Max-Pooling) or the mean value (Average-Pooling) between neighbor activations.
This layer makes the representation smaller and more manageable and also increases
the level of generalization providing invariance, in the sense that if the input image
is a little bit transformed, i.e. translation of the pixels in the space is applied, the
max-pooling does not change the output. The drawback is that a lot of information
is discarded.
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Figure 2.5: An example of Convolutional Neural Network.
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Figure 2.6: A simple illustration of a convolution operation.

2.6 Capsule Networks
Capsule Networks (CapsNets) reached a great deal of interest, thanks to their
ability to achieve classification accuracies comparable to other traditional state-of-
the-art classifiers, such as CNNs. The convolutional layer, as seen in Section 2.5,
learns and then recognizes the key features that compose a class of real objects, but
unfortunately does not preserve any hierarchical relationship between the parts. This
means that two images, composed by the same features with different orientations
in space, are not well distinguished by a normal CNN. Sabour et al. [8] proposed
this new innovative architecture, based on the following main differences with
respect to traditional CNNs:

• the concept of capsules (Hinton et al. (2011)): multidimensional entities,
instead of single neurons, as basic element that constitutes each layer.

• a Dynamic Routing between two adjacent layers selects the capsules that have
to be propagated, based on their pose agreement.

• a squash function that compresses the components of each capsule in a small
interval at the end of each layer.

2.6.1 Capsules
A capsule is a group of neurons collecting many scalar activations in a vector
form. Each vector stores different properties of the same entity, i.e the probability
that a feature is present as well as for neurons in CNNs, and further information,
i.e position and orientation of features in space. The orientation of the vector
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(the pose), preserves the relationships between the learned features, the length
(activation), instead, represents the probability that a feature is detected. Therefore,
unlike CNNs, CapsNets are able to recognize the position of an object relative to
another one. The key idea behind CapsNets is the inverse rendering process used
by humans to recognize images. When our eyes recognize an object, it is decoded
in small parts, and matched with the same representation in the brain, preserving
spatial relations.

2.6.2 Layers of Capsules

The first architecture designed in [8] is a shallow CapsNet (ShallowCaps, also shown
in Figure 3.1 in Section 3.1), composed of three layers, where the last one is a fully
connected layer of capsules. Figure 2.7 shows the passage from a simple structure
made of neurons toward a capsule architecture, reshaping the output coming from
a convolutional layer in a vector form.

Figure 2.7: From neuron to capsule architecture. In the left side: starting from 20
× 20 × 256 features maps, a convolution with kernel 9 × 9 and stride 2 generates
a 6 × 6 × 256 output. In the right side the 6 × 6 × 256 ouput is reshaped in 32
features map, each with 6 × 6 8D-capsules.

Sabour et al. [8] defines a transformation-matrix that, during the training, learns
the relationships between each capsule i and j, of two adjacent layers, l and l + 1
respectively (Figure 2.8). From the multiplication of the transformation-matrix
Wij by the input capsules ui, n ·m activation vectors are provided (uj|i in Figure
2.8), whit n and m as number of capsules in the layer l and l + 1 respectively. Each
uj|i = Wijui value represents a coupling relation between each capsule of the two
layers.
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Trasformation	Matrixui[1	X	8]
uj|i[1	X	16]

Wij[1	X	16]

Primary	Capsule	layer	reshaped Activation	Vetctors

Figure 2.8: Transformation matrix and activation vectors. 1152 × 10 activation
vectors are generated from the multiplication between the input capsules (1152 of
dimension 8) and the Transformation Matrix W . Each element Wij has size 1 ×
16, where 16 is the dimension of 10 output capsules.

2.6.3 Dynamic Routing
Between two consecutive capsule layers Sabour et al. [8] also propose a new
algorithm: the Dynamic Routing. It has the task to propagate only the activations
uj|i with a high influence on the output capsules. Specifically, this iterative
algorithm ensures that only the most voted opinion among the predictions has to
be propagated.
Figure 2.9 is a representation of the algorithm and exhibits how each activation
vector uj|i is propagated toward the output vj by means of coupling coefficients cij .
The initial values of the coupling coefficients cij are iteratively refined by measuring
the agreement aij between the current output vj and the activation vectors uj|i
(aij = vj ∗ þuj|i). The higher the agreement, the higher is the effect of increasing
the coupling coefficients for that high-level capsule vj. After a certain number of
iterations, only the activation vectors with higher coefficients are propagated down.
In other words, it is an improved version of max pooling, specialized for CapsNets,
which preserves all the information. Each step is reported in Algorithm 2.

2.6.4 Squash Function
Each capsule in each layer is compressed in a certain interval by a squashing
function (2.2), different from the ones used in normal CNNs, seen in Section 2.2.

vj = ||sj||2

1 + ||sj||2
sj

||sj||
(2.2)

15



2 – Background

soft
max

uj|1152

uj|1
uj|2
uj|3

c1j
c2jc3j

c1152j

uj|1
uj|2
uj|3

uj|1152

vj

vjT

b1j
b2j
b3j

b1152j
c3j
c2j
c1j

c1152j

Dynamic	routing	

.

a1ja2j
a3j

a1152j

squash()

Figure 2.9: Dynamic Routing.

Algorithm 2 Dynamic Routing.
1: procedure ROUTING(ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0.
3: for r iterations do
4: for all the capsule i in layer l: ci ← softmax(bi)
5: for all capsule j in layer (l + 1): sj ←

q
i cijûj|i

6: for all capsule j in layer (l + 1); vj ← squash(sj)
7: for all capsule i in layer l and j in layer (l + 1): bij ← bij + ûj|i · vj

8: end for
9: return vj

10: end procedure

where vj is the output vector of the capsule j and sj its input. As every activation
function, the task is to transform the output of linear matrix operations in a
probability. The term sj

||sj || scale the length of the input vector so that it becomes
lower than one, without modifying its direction. The term ||sj ||2

1+||sj ||2 is an additional
scaling factor ensuring that short vectors reach a length close to 0 and long vectors
a length slightly below 1. The behavior of the function is the same as Figure 2.10.

16



2 – Background

1 2 3 4 5

0.2

0.4

Input Capsule length

Output squashed capsule length

0.6

0.8

1.0

Figure 2.10: Squash function behaviour.

2.7 Adversarial Examples (AEs)
All the discussions done in the previous sections treated the problem of generaliza-
tion and its solutions, starting from the modification of the training process going
toward the resizing of the architectures. Moreover, the introduction of Adversarial
Examples (AEs) showed that the generalization level reached by well-trained DNNs
is still not sufficient to correctly classify input with small perturbations. The con-
cept of AE was introduced by Szegedy et al. [9] like an input data, generated with a
carefully constructed perturbation, with the task to mislead DNNs. Formally, hav-
ing an example x that is correctly classified by a well-trained model M(x) = ytrue,
an adversarial example xÍ = x + η is defined as a new input, perceptually identical
to the original one, but wrongly classified by the model, i.e., M(xÍ) /= ytrue.

Adversarial attacks can be distinguished based on the choice of the target class
and the knowledge of the networks under attack (Papernot et al. [10]) as reported
in Figure 2.12. A white-box assumption implies that the attacker knows the entire
model, i.e., it has access to the parameters and exploits the gradient of the model
to generate an AE. A black-box assumption, instead, does not imply any knowledge
of the attacker about the network and therefore it is less powerful. If the goal
of an adversarial attack is simply to mislead the network toward a wrong class
(M(xÍ) /= ytrue), the attack is considered untargeted, otherwise if the model M is
forced to predict a targeted label (M(xÍ) = ytarget /= ytrue) we refer to targeted
attack. Furthermore, a well-designed attack requires to be imperceptible, i.e., the
crafted example is hardly distinguishable from the original input by a human eye,
and robust, i.e., the misprediction reaches high confidence.
Figure 2.11 shows as an image belonging to the MNIST dataset, that, when per-
turbed by means of an attacker, fools a model M(θ) toward misclassification.
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Figure 2.11: Example of adversarial image generation, that fools a trained model.

According to the attacker algorithm used, many criteria to evaluate the goodness
of an attack exist. The succes rate is the most direct and effective criterion used
that indicates how many times the AEs generated by the attacker fool the network
under analysis. The perturbation, instead, represents the distance between the
original and generated AE. As already said, the perturbation has to be balanced
in order to mislead the networks and to be imperceptible by humans at the same
time. Figure 2.12 summarizes the taxonomy used to distinguish the different kind
of attacks.

Taxonomy	of	adversarial	attacks

KNOWLEDGE TARGET EVALUATION	METRICS

Force	the	output
classification	to	be	a
specific	target	class

TARGETED

Alter	output	classification
to	any	class	different	from

the	original

UNTARGETED

Attacker	knows	training
data,	model	parameters
and	model	architectures

WHITE	BOX

Attacker	does	not	know
training	data,	model
parameters	and	model

architectures

BLACK	BOX

AEs	correctly	misclassified
by	the	model	

Distance	between	the	input
and	the	generated	AE	

SUCCESS	RATE

PERTURBATION

Figure 2.12: Taxonomy of Adversarial Examples.
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Chapter 3

State of the art and related
works

In this chapter, we analyze more in detail the state-of-the-art architectures and the
algorithms exploited in this work, in order to introduce our analysis. Two capsule
architectures and two CNN models with their respective training set-up have been
selected, to compare them against existent attacker algorithms as will be explained
in Chapter 4.

3.1 ShallowCaps Network
The first structure employed is the one already introduced in Section 2.6.1 (Sabour
et al.[8]). It is the first neural model that introduces the concept of capsule instead
of neuron as basic element in a shallow architecture.
The architecture designed in [8] is a shallow CapsNet (ShallowCaps), trained for
the MNIST dataset, composed of three layers:

• a first standard convolutional layer with 256 9 × 9 kernels and stride 1. The
shape of the output feature maps is 20 × 20 × 256. The activation function
is a standard ReLu.

• a Primary Capsule layer, a convolutional layer reshaped to form 8-dimensional
capsules (Figure 2.7). 256 kernels of shape 9 ×9, with stride 2, generating 6
× 6 × 256 feature maps, reshaped in 1552 8-dimensional capsules.

• a Digit Capsule layer (DigitCaps layer) of 10 capsules of dimension 16.

• a decoder, composed of three fully connected layers, is exploited in order to
provide in output the reconstructed input images. The first layer receives in
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input the 16 × 10 outputs of the DigitCaps layer, masked by means of the true
labels of the input images. The two intermediate levels respectively produce
512 and 1,024 elements. The output at the third and last fully connected layer
is composed of 784 elements. Reshaping the output is possible to gain the
reconstructed 28 × 28 input image.

Between the two capsule layers, (i) Primary Capsule layer and (ii) DigitCaps layer,
the transformation matrix multiplication and the Dynamic Routing iterations are
performed, as already explained in the section 2.6, in the Figures 2.8 and 2.9.

Figure 3.1 shows the whole structure defined by Sabour et al.

Figure 3.1: ShallowCaps original model as described in [8].

The loss function used for the backpropagation process is the result of two
contributions, the margin loss and the reconstruction loss.

• the margin loss indicates how far the predicted labels are from the real ones
and it is expressed by the following equation:

Lk = Tkmax(0, m+ − ||vk||)2 + λ(1− Tk)max(0, ||vk|| −m−)2 (3.1)

where ||vk|| are the output activations, each one evaluated as the norm of the
vectors coming out from the last layer of capsules (DigitCaps layer). It has
to be applied for each digit class k, with Tk = 1 for the correct label and 0
otherwise. λ = 0.5, m+ = 0.9 and m− = 0.1 are three hyperparameters that
improve the training process.

• the reconstruction loss is equal to the l2 distance between the input and the
reconstructed image. reconstruction_loss = 1

N

ñq
i(xi − xÍ

i)2

• the total loss is a weighted sum of the previous two equations

total_loss = margin_loss + µ reconstruction_loss (3.2)

The reconstruction loss is scaled by a factor µ = 0.0005 so that it not dominates
the margin loss during training. Including also the weights of the decoder
in the evaluation of the gradient for the backpropagation process, works as
regularization.
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Figure 3.2 summarizes the training process used by Sabour et al. [8].

Figure 3.2: Steps followed for ShallowCaps training. [11]

Each image of the MNIST training set is sent as input to the architecture that
produces 10 pose vectors of dimension 16 coming out from the DigitCaps layer.
These output vectors are used both (i)to evaluate the activations (the length of the
output vectors), that need for the margin loss estimation, and (ii) as inputs for
the decoder block. Before entering in the decoder, the pose vectors are masked,
with the true label during the training process and with the predicted label during
inference.
For the training, data-augmentation is performed, shifting by up two pixels in each
direction the input images.

Each digit of the masked output vector, stores a property of the input image.
Some of the 16 dimensions represent a combination of global transformations, in
fact as proved in [8], by adding small perturbations to the vector digits, coming
out from the DigitCaps layer, the reconstructed images suffer transformations like
in Figure 3.3.

The results prove that the MNIST dataset achieves 99.75% of accuracy. In
addition, in order to test the ability of the capsules to preserve hierarchical relation-
ships between the features detected, it has been tested the model on the affNIST1

dataset. A set of images belonging to it is shown in Figure 3.4, a collection of 40 ×
40 MNIST digits with random affine transfotmations i.e. rotation, translation and

1Available at http://www.cs.toronto.edu/tijemen/affNIST/
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Figure 3.3: Meaning of capsules. In each row are represented the reconstructed
images of the decoder, by modifying a dimension of the output predicted capsule,
with steps of 0.05 in the range [-0.25, 025]. Source: [8]

zooms.

Figure 3.4: AffNIST dataset.

The state-of-the-art offered by Sabour et al. proves that the affNIST dataset
trained and tested on ShallowCaps achieves 79% of accuracy, while a similar CNN
model with the same number of parameters only reaches 66%. However, there is
still a huge gap between the two untransformed and transformed version of the
MNIST from over 99% to 79% respectively.
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3.2 Going deeper with the Capsule Networks
The limit of the ShallowCaps architecture is that it is not able to correctly generalize
a complex dataset. Kumar [12] proposed a three-layer architecture, like the previous
one, for the GTSRB dataset (Houben et al. [13]), increasing the number of capsules
coupled with the DigitCaps layer. This one needs a huge number of parameters
and wasteful use of resources to reach similar performances as traditional CNN
models. To solve this problem, Rajasegaran et al. [14] introduced the DeepCaps
(Figure 3.5), which reduce the number of parameters, exploiting deeper capsule
architectures compared to the ShallowCaps.
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Figure 3.5: DeepCaps architecture [14].

Without stacking more than one fully connected layer of capsules, the DeepCaps
introduced a new kind of 3D dynamic routing that exploits 3D convolutions, similar
to the 2D version in CNNs, but with capsules. By means of a 3D convolution, the
kernels are able to recognize features across different locations, preserving also the
capsule structure. Figure 3.6 shows a 3D convolutional layer that uses 3D kernels,
sliding through the capsules like in a normal 2D convolution with single neurons.
Furthermore, at the end of the 3D convolutional layer, the DeepCaps introduces a
3D dynamic routing.

Figure 3.6 explains how the cl reshaped 3D capsule tensors (each one of dimen-
sions wl × wl × nl), outputs of the layer l, are transformed in cl+1 3D capsule
tensors (each one of dimensions wl+1 × wl+1 × nl+1), outputs of the layer l + 1.

The Algorithm 3 explains step by step how 3D dynamic Routing with 3D
convolution works.

The whole architecture (Figure 3.5) is composed of 4 main groups of normal
2D convolutions, with a 3D convolutional layer in the last skip connection and a
DigitCaps layer.
A further difference with respect to the ShallowCaps architecture is the implemen-
tation of the decoder. The decoder used by DeepCaps consists of deconvolutional
layers that capture more spatial relationships than the fully connected ones used
in ShallowCaps [8]. Furthermore, in DeepCaps, only the vector corresponding to
the true label during the training or the one corresponding to the predicted label
during inference is sent toward the decoder, as illustrated in Figure 3.7.

23



3 – State of the art and related works

Algorithm 3 Dynamic Routing using 3D convolutions. φ l is the output of the
capsule layer l, wl is the length and the width of the feature maps, cl is the number
of 3D capsule tensors, nl is the dimension of capsules.

procedure ROUTING
2: Require: φ l ∈ R(wl,wl,cl,nl), r and cl+1, nl+1

ó Initialization
4: φ l ←− Reshape(φ l) ∈ R(wl,wl,cl×nl,1)

V ←− Conv3D(φ l) ∈ R(wl+1,wl+1,cl,cl+1×nl+1)

6: Ṽ ←− Reshape (V) ∈ R(wl+1,wl+1,nl+1,cl,cl+1)

B ←− 0 R(wl+1,wl+1,cl,cl+1)

8: Let p ∈ wl+1, q ∈ wl+1, r ∈ l + 1 and s ∈ cl

for i iterations do
10: for all p, q, r, kpqrs ←− softmax_3D(bpqrs)

for all s, Spqr ←−
q

s Kpqrs ∗ Ṽpqrs

12: for all s, Spqr ←− squash_3D(Spqr)
for all s, bpqrs ←− bpqrs + Spqr · Ṽpqrs

14: end for
return φ l+1 = S

16: end procedure
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Figure 3.6: 3D Dynamic routing using 3D convolutions. Source: [14]. Each kernel
of dimension 3 × 3 × nl trasforms 9 adjacent capsules in a single vote ṽ, and the
respective stride define the dimension wl+1 of the layer l + 1. cl+1 · nl+1 kernels
generate cl+1 · nl+1 features maps for each cl capsule tensor (a group of wl × wl

capsules nl-dimensional). To generate the output capsules, the coupling coefficients
are updated according to the agreement with S and Ṽ .

(a) (b)

Figure 3.7: ShallowCaps decoder (a) vs DeepCaps decorer (b)

For the training process, it has been used data-augmentation with random
translations, rotations, zooms and horizontal flips. Furthermore, considering the
lower number of parameters required, 7.22 million against 22.48 million of the
shallower architecture for CIFAR10 classification, Rajasegaran et al.[14] increases
the resolution of the train images, resizing each example from 32 × 32 × 3 to 64 ×
64 × 3.

The DeepCaps achieves higher classification accuracy results than the Shallow-
Caps for CIFAR10 (91.01%), reducing by 68% the number of parameters.
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3.3 Dynamic Routing drawbacks and Self Rout-
ing

As seen in Section 2.6.3, the Dynamic Routing proposed by Sabour et al. [8] uses
learned part-whole relationship to vote for objects output. The algorithm can be
considered a linear combination of tensors that transforms input vectors ui, in
output vectors vj, updating a set of coupling coefficients between them.

As expressed by the equations below, the transformation matrix Wij transforms
the inputs ui in intermediate vectors uj|i and, then, each of these is weighted by
the coupling coefficients cij before to be combined together.

vj =
Ø

i

cijûj|i, ûj|i = Wijui

However, both this iterative algorithm and also the EM routing used by Hinton
et al. [15] are computationally expensive in terms of simulation time. Many works
tried to accelerate the procedure (Zhao et al. [16]) and others proposed novel
routing strategies (Choi et al. [17]; Li et al.[18]).
Many others, instead, suggest to incorporate the routing procedures into the
optimization process, removing it. In other words, it is possible to learn the coupling
coefficients cij implicitly, including them in the weights of the transformation matrix
W Í

ij.
vj =

Ø
i

cijWijui =
Ø

i

W Í
ijui

In this way the weights W Í
ij of the transformation matrix learn also the coupling

between different capsule layers, without learn separately cij and Wij. Our anal-
ysis (Chapter 6) proves that also against attacks and affine transformations the
contribution of the Dynamic Routing is not effective, then, incorporating it in the
training process could be a solution to avoid this expensive procedure.

Hahn et al.[19] proposed a different way to introduce the coupling coefficients
inside the learning process, called self routing. Considering that each capsule i in
the layer l has a pose vector ui and an activation scalar ai, the algorithm defines
two learnable weight matrices W pose

ij and W route
i to evaluate aj and uj of the layer

l + 1.

• The coupling coefficients cij are the result of the multiplication between W route
i

and the input pose vectors ui. By multiplying the activations ai, coming from
the layer l, and the learned coupling coefficient cij, the weighted intermediate
votes aij are provided. Then, summing the i coupling contributions of the
weighted votes, it is possible to obtain the activations aj.

cij = softmax(W route
i ui)j aj =

q
i cijaiq

i ai
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• W pose
ij is used to generate the activation matrix ûj|i (it performs the same work

done by transformation matrix in [8]). The output pose vector vj is the result
of an average weighted sum between the activation vector ûj|i, the coupling
coefficients cij and the activations ai.

uj|i = W pose
ij ui, vj =

q
i cijaiûj|iq

i cijai

3.4 Residual Neural Networks and ResNet20
After showing the capsule architectures, this section introduces the Residual Neural
Networks and in particular the ResNet20, the one exploited for our comparative
analysis. In recent years, state-of-the-art architectures became even deeper, going
from few layers (e.g. AlexNet [20]) toward more than hundred layers (Simonyan and
Zisserman [21]). Increasing the depth allows the networks to solve more complex
tasks and, as already explained in Section 2.4, overfitting may be avoided with
many techniques, i.e. regularization or dropout.
However, often, the accuracy of very deep networks gets quickly saturated and then
degrades rapidly. The problem is not caused by overfitting, but by the vanishing
gradient, due to the huge number of multiplications that the backpropagation
solves at each step, from the final layer back to the first one, making the gradient
exponentially close to zero. As consequence of that, the weights never update their
values and therefore, no learning is performed.

Comparing two trained CNNs with different depths, one of 20 and the other of
56 layers, He et al. [22] showed that adding more layers to a proper deep model
leads to higher training error. Using deeper networks, then, could degrade the
performance of the model and He et al. [22] tried to solve the problem using Deep
Residual Neural Networks.

The functions ’squashing’/’activation’ are the ones that introduce small deriva-
tives, so by removing those from the chain itself, it is possible to mitigate the
vanishing gradient problem considerably. Figure 3.8 represents the basic block of a
Residual Neural network (ResNet), that uses skip connections, or shortcuts to jump
over some layers. An operation here refers to a convolution, a batch normalization
and a ReLU activation, except the last operation of a block, that does not have
the ReLU.

The skip connections between layers add the outputs from previous layers to the
outputs of stacked layers. By staking more than one layer is possible to train deeper
architectures than normal CNNs achieving convergence. The ResNet20 model, the
one used for our analysis is composed of 20 layers, organized like in Figure 3.8, with
a final average pooling before the last dense layer. The state-of-the-art from the
work [22] indicates an accuracy value, for the CIFAR10 dataset, equal to 91.25%.
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Figure 3.8: Residual Block. Source [22].

3.5 Adversarial Examples State of the Art
For our purpose, we chose, by means of a careful analysis, some attacker algorithms,
to test these networks on robustness and compare their response. For a question of
completeness, existing algorithms are here mentioned, focusing on the ones useful
to our goal. Several algorithms for the generation of adversarial attacks have been
proposed and explained (Goodfellow et al. [23]) and the corresponding defenses
(Carlini and Wagner [24]) have been proferred. Goodfellow et al. [23] proposed the
fast gradient sign method (FGSM), a white-box attack able to generate AEs by
exploiting the gradient of the model with respect to the input image. Given an
original image X, the problem can be solved with:

Xadv = X + Ôsign(∇XJ(X, ytrue, θ)) (3.3)

The algorithm finds the perturbation that maximizes the loss J of a given model
θ, while keeping the size of the perturbation equal to Ô.

Figure 3.9 shows a generated AE with the FGSM method.

Projected Gradient Descend

Afterward, Madry et al. [25] and Kurakin et al. [26] proposed two different versions
of the projected gradient descent (PGD) attack.

This is an iterative version of FGSM that introduce a perturbation α at every
step in the direction of the maximun loss, by evaluating the gradient sign with
respect to the input image. If the perturbation is higher than a certain value, it is
projected inside a ball with a radius Ô.

(Madry et al.[25]) PGD attack consists of the following iteration:

xÍ
i = xÍ

i−1 − projε(α · sign(∇xloss(θ, x, t)) (3.4)

More in detail these are the steps followed by (Madry et al.[25]) PGD attack:
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Figure 3.9: Generated Adversarial Example with the FGSM method: the image
of the "panda", after attack, fools the network to predict a "gibbon" with confidence
equal to 99.3%. Source [23]

1. Start from a random perturbation in the β ball around a sample xÍ
i(0);

2. Perform a step α in the direction of the maximum loss by following the
Equation 3.4;

3. Perform a projection inside the β ball if necessary.

4. Repeat 2–3 times.

By means of this iterative algorithm, the equation finds the maximum loss inside
an linf distance ball β(Ô, x), generating a more robust attack than FGSM and
keeping the size of the perturbation smaller than Ô. Many versions of the algorithm
exist according to the initialization of the perturbation chosen and the metric of
the ball evaluation (l∞, l1 or l2).

Figure 3.10 shows some example of attacked images belonging to the MNIST
dataset evaluated with L2 and Linf bounded ball metrics. The linf bounded attack
acts on all pixels of the picture, the l2 on the pixels with a high deviation between
them.

Carlini Wagner

Carlini and Wagner [24] proposed a powerful white-box targeted attack method, by
exploiting l∞, l1 and l2 distances to preserve the imperceptibility of the AE. The
algorithm solves the following optimization problem:

||δ||2 + c ·max(G(x, δ, t)−M(x)t,−k) (3.5)

The algorithm iteratively aims to minimize both the components of the equation:
(i) the distance δ between the input and the adversarial image and (ii) the distance
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L2 adversary, ε =2.0 
       P(3)= 0.865Original P(7) =1.0

Linf adversary, ε =2.0 
       P(3)= 0.865

L2 adversary, ε =2.0 
       P(7)= 0.986Original P(1) =1.0

Linf adversary, ε =2.0 

       P(7)= 0.973

L2 adversary, ε =2.0 
       P(9)= 1.0Original P(4) =1.0

Linf adversary, ε =2.0 
       P(9)= 1.0

Figure 3.10: Left column: original examples. Middle column: L2 bounded
adversarial examples. Right column: Linf bounded adversarial examples.

between the max output activation (G(x, δ, t) := maxi /=t(M(x + δ))) and the con-
fidence M(x)t of the target label t. The value c is updated at every iteration, in
order to balance the two terms during the generation of the attacked data. When
the confidence of the target label surpasses the other ones, the algorithm starts to
decrease the c value in order to minimize the distance between AE and original
image, increasing the first contribution of the Equation 3.5.

Many works showed the success of such attacks in fooling CNNs, and provide
state-of-the-art success rate results. Some researchers believed that the reasons are
over-fitting, insufficient regularization or the introduction of nonlinearity. Good-
fellow et al. [23] supposed that the problem of vulnerability is due to the linear
behavior of high dimensional CNNs. Given an adversarial example x

Í = x + η,
and considering a generic activation function wT x

Í = wT x + wT η the perturbation
added provides a noisy contribution wT η that propagates along the depth of the
network.
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3.5.1 Adversarial attacks on Capsule Networks
Recent works showed the vulnerability of CapsNets against adversarial attacks.
Frosst et al. [27] investigated the detection of adversarial examples using the
reconstruction quality of the CapsNets. Peer et al. [28] and Marchisio et al. [29]
applied the FGSM method (Goodfellow et al. [23]) and their proposed attack on
CapsNets, respectively. Michels et al. [30] compared the results of different attacks
on CapsNets trained on different datasets. However, such experiments need to be
properly investigated and analyzed in a systematic way, before employing CapsNets
in safety-critical applications.

3.5.2 Adversarial Training
By knowing the power of AE to fool models, many works started to provide solutions
against such problems. Specifically, conferring robustness against adversarial attacks
increases the interpretability of machine learning models and prevents the learning
of brittle features for many real-world applications going beyond security. The most
common state-of-the-art defense algorithm against AE is the adversarial training, a
different Data Augmentation that includes attacked images during training. More in
detail, at the end of each backpropagation cycle, the updated weights are exploited
for the generation of AEs, the new training data for the next epoch (Madry et al.
[25]). This allows that the networks can be trained also taking into account such
possible perturbations of external inputs increasing the level of generalization. The
algorithm at the same time has (i) to maximize the loss for the generation of the
attacked image and, then, (ii) minimize the loss for the model convergence, by
modifying the weights of the network. Overall, the following equation has to be
minimized:

min
θ

max
δ∈∆

L(x + δ, y, θ) (3.6)

Specifically, instead to minimize the loss L for the normal input image x, the
minimum is evaluated by considering the attacked image xadv = x + δ, where
∆ is a set of perturbations for which the model has to be invariant. The set of
perturbation belonging to ∆ can be evaluated by considering the different metrics
of distance l1, l2 or linf .

Madry et al.[25] using adversarial training with PGD defense for ResNet models,
achieves promising results against PGD attack itself, with the only drawback of
decreasing a bit the accuracy performances, for large values of perturbations Ô.
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Chapter 4

In-Depth View of our
Analysis

Several works analyzed the problem of attacks on CNNs and found many solutions
to these problems improving defenses. The introduction of the CapsNets suggests
indications that these architectures might be more robust towards adversarial
attacks than other CNNs. To demonstrate this intuition, we present a detailed
analysis with the aim of answering our main research questions and to show (i)
if and why the Capsule Network under attack provides a better response than
normal CNNs, (ii) which model quality plays an important role and their limits.
Knowing the main differences of CapsNets with respect to traditional CNNs, we
explore the impact of these networks on affine transformations and adversarial
attacks. Towards a fair and comprehensive evaluation, the results already provided
by Michels et al. [30] for the ShallowCaps have been compared with 3 different
architectures, chosen according to their properties, their number of parameters and
their depth.

• ResNet20 (He et al. [22]) is one of the best performing CNN architectures for
CIFAR10, used in various applications. It would be interesting to compare
the capabilities of the CapsNets with a widely used CNN, which is deeper and
employs only convolutional and average pooling layers (see Section 3.4).

• a deeper CapsNet architerure, like the DeepCaps model [14]. Despite deeper
than the ShallowCaps, it has fewer parameters (see Section 3.2).

• another traditional CNN, with similar depth and number of parameters as
the DeepCaps, with the same depth, but without multidimensional entities
such as capsules. Its comparison with respect to the DeepCaps highlights the
contribution to the robustness of 3D convolutions and capsules.
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All these architecture are tested for a simple dataset like the MNIST and more
complex ones like the GTSRB and CIFAR10.

In this work we follow these steps:

1) Evaluation of robustness on affine transformations.

• We train our networks with the normal MNIST, GTSRB and CIFAR10
datasets with the same hyperparameters and data augmentation.

• We test our trained network on the affNIST dataset, an affine transformed
version of MNIST.

• For the CIFAR10 and GTSRB datasets, we design a novel transformed
dataset with random translations, rotations and zooms (which we call
affCIFAR and affGTSRB, see Section 5.1).

• We use such affCIFAR and affGTSRB datasets for inference, like in the
case for affNIST, to evaluate the response of the networks against affine
trasformations.

2) Evaluation of robustness on adversarial attacks.

We use the saved parameters of the trained models to evaluate the gradient,
with respect to the input, for the two implemented white-box attacks.

• We apply the projected gradient descent (PGD) attack for each architec-
ture, for the MNIST, the GTSRB and the CIFAR10 datasets, to generate
adversarial examples.

• We test the networks with the generated adversarial inputs, evaluating
the behaviour of the accuracy, increasing the level of the perturbation.

• Then, we apply the Carlini Wagner attack, again for all the datasets.

• We evaluate the mean distortion required to the algorithm to misclassify
500 images of the test dataset and its fooling rate.

• As a further step, we apply at the input to a network the adversarial
image generated with another one, to test the transferability of the attack.

4.1 Experimental Set-Up
The networks chosen for our analysis are:
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Figure 4.1: Overview of our analysis.

• the original CapsNets (ShallowCaps) [8].1 It is composed of a convolutional
layer with kernel 9 x 9 and stride 2, a convolutional capsule layer with kernel
5 x 5 and stride 1, and a fully connected Capsule layer.

• the DeepCaps [14], with 4 groups of 2D convolutional capsule layers, with the
last one that presents a 3D convolution as skip layer, and a fully connected
capsule layer of 10 capsules of dimension 32.

• A traditional CNN, similar to the DeepCaps architecture, with same number
of layers and same sizes, excluding the concept of capsules. This architecture
presents traditional convolutional layers with batch normalization at the output
of each layer instead of capsules with squash compression, and a traditional
fully connected layer instead of the DigitCaps layer with dynamic routing.

• the ResNet20 [22], a CNN with batch normalization at the end of each layer,
composed of Residual Blocks and a final Average Pooling layer.

These architectures have been trained with the 40 × 40 sized version of the MNIST
dataset, and tested on the affNIST for evaluating the robustness against affine
transformations. For all the architectures tested on CIFAR10, input data have been
resized before the training, from 32 × 32 to 64 × 64, following the pre-processing

1For the CIFAR10 and affCIFAR datasets, the architecture is a slightly different version of
CapsNet, as compared to the model of [8], which is adapted for the dataset.
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steps used in [14]. For the GTSRB the size of the input images are kept 32 × 32.
The data augmentation and hyperparameters used for the training are kept the
same for all the networks. As regularization term, for capsule architectures, it has
been used the reconstruction loss provided by the decoder. For the evaluation of the
loss, we use the same as in [8] for CapsNets (see Section 3.1) and the Cross Entropy
for CNNs. Table 4.1 summarizes the basic characteristics of these networks, and
their differences.

Table 4.1: Characteristics of the CapsNets and CNNs that are used in our
experiments.

Network params MNIST40x40 params GTSRB params CIFAR10 depth
ShallowCaps 11,288,609 16,695,059 112,508,163 3
DeepCaps 9,674,433 13,918,915 13,427,283 13

CNN 7,475,978 7,611,435 7,596,042 13
ResNet20 274,154 276,587 276,362 20

The adversarial attack algorithms used for our analyses are:

• Projected Gradient Descend (PGD): the iterative version of FGSM. It is a
white-box attack and for our evaluations we chose its untargeted version.

• The Carlini Wagner (CW): a targeted white-box attack.

For more details about the attacker algorithms see Section 3.5. For the algorithms
implementation, we exploited the cleverhans [31] library, adapted for the Keras
framework [32] with Tensorflow backend [33].

The training of the networks it has been run on the Nvidia RTX-2080Ti GPU
with CUDA 10.
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Chapter 5

Capsule Networks
Robustness

5.1 Robustness Against Affine trasformations

5.1.1 Affine Datasets Generation

While a dataset with affine transformed images of the MNIST (affNIST) is already
available, we create an affine version of the CIFAR10 and GTSRB datasets, which
we call affGTSRB and affCIFAR respectively, to compare the response of the
networks defined in Section 4.1 against affine transformations. The test data was
created by modifying the whole test images from the original datasets with random
affine transformations. Every image is randomly transformed with translations,
rotations and zooms following these criteria:

• Translations: random pixels translations in one or in two dimensions by a
factor between 10% and 25% of the input image size, with a fixed interval.

• Rotations: random rotations between +20 and -20 degree with a predefined
fixed step.

• Zooms: the vertical and the horizontal expansion are chosen uniformly between
0.8 (i.e. shrinking the image by 20%) and 1.2 (i.e. making the image 20%
larger).

Figure 5.2 and Figure 5.1 show some example images of our affCIFAR anf
affGTSRB datasets rispectively.
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Figure 5.1: Affine GTSRB (affGTSRB) dataset.

Figure 5.2: Affine CIFAR10 (affCIFAR) dataset.

37



5 – Capsule Networks Robustness

5.1.2 Affine Trasformations Results
For each architecture model defined in Section 4.1, we evaluate the accuracy for the
MNIST1, GTSRB, CIFAR10, affNIST, affGTSRB and the affCIFAR10 datasets.
The results are shown in Table 5.1 and Figure 5.3.

Table 5.1: Robustness results against affine trasformations.

Network MNIST40 GTSRB CIFAR10 AffNIST affGTSRB AffCIFAR
ShallowCaps 99.18% 95.29% 77.32% 75.61% 78.88% 48.85%
DeepCaps 99.19% 95.64% 91.52% 87.60% 84.14% 78.66%

CNN 99.22% 94.73% 91.68% 82.83% 79.03% 69.90%
ResNet20 99.16% 96.39% 91.48% 96.39% 89.75% 75.84%

ShallowCaps vs. DeepCaps

Accordingly to the results proposed by [8], with the ShallowCaps is possible to
achieve better accuracy on the transformed version of the MNIST dataset, which
is an unreachable result with traditional CNNs of similar size.

The big limit of the basic ShallowCaps is that the number of capsules and the
layers involved in the model are not enough to better generalize more complex
datasets, like the CIFAR10, and affine transformed images, despite the high number
of parameters required. As shown in the results of Table 5.1, in fact, the ShallowCaps
on the CIFAR10 dataset achieves an accuracy far below the state-of-the-art (just
77.32%).

To reach reasonable results with more complex datasets, like the CIFAR10,
and ensure generalization (and also robustness), the ShallowCaps architecture
needs improvement in terms of number and size of capsules, with the drawback of
increasing a lot the dimension of the transformation matrix and the parameters to
train (see Section 2.6.1).

Then, going deeper, preserving the capsule structure along with the architecture,
not only it is possible to reduce the number of parameters but is also possible to
gain better results with CIFAR10 (91.52%) and with the affine transformed datasets.
In fact, by considering the results achieved with affMNIST and affGTSRB, despite
the shallower model reaches a good accuracy on the normal datasets (99.18% and

1All the simulation and results obtained with the MNIST dataset are referred to 40 × 40
version in order to make the trained model compatible with testing on the affMNIST dataset.
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Figure 5.3: (a) Normal accuracies, (b) affine transformation results.

95.29% respectively), it is still not able to generalize as the DeepCaps against affine
transformations.

A further contribution to the improved accuracy of the affine datasets with
DeepCaps, could be explained by the presence of the 3D convolutional layer. As
explained in Section 2.6, the DigitCaps layer, i.e., last layer of the ShallowCaps,
plays a similar role as a fully connected layer in CNNs, with the difference that the
basic block is not a single neuron but a group of neurons. The effect of having 3D
convolutions, compared to a stack of fully connected capsules, is similar like when
we compare the generalization level offered by the Multy Layer Perceptrons (MLP)
and the CNNs. As shown in Figure 5.4, in the DigitCaps layer, each element of the
transformation matrix Wij learns if capsules of two adjacent layers are correlated.
When the affine transformations are applied, the information previously stored in
the capsule ui could be then associated to a different capsule uj and, therefore,
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the transformation element Wi might not be able to detect the feature anymore.
On the contrary, with the 3D convolution, sliding a 3D kernel, the same weights
are used among all the capsule of the layer. This characteristic allows to learn the
presence of a particular feature also if the input image is spatially transformed
(e.g., traslated, rotated, or zoomed). The results in Figure 5.3b and in Table 5.1
proves that a deeper network performs better on affine transformations than the
ShallowCaps for all the datasets.

Wi0

Wj0
uj

ui

Wi0

ui
uj

Wij	[3	x	3	x	8] Wij	[8	x	16]

		3D	convolutional	layer	 DigitCaps	layer

Figure 5.4: 3D convolution vs DigitCaps layer

DeepCaps vs. CNN and ResNet20

Another significant result is provided by comparing the DeepCaps with a traditional
CNN with a similar base architecture. While the accuracy on the MNIST, CIFAR10
and GTSRB datasets are similar to the DeepCaps, CNN robustness against the
affNIST, affGTSRB and affCIFAR is much lower. These results confirm the benefits
of capsules against affine transformations.
The ResNet20, instead, compared to the DeepCaps, is deeper, but with a lower
number of parameters. It is able to generalize better for the affMNIST and
affGTSTB, but worse for the affCIFAR dataset. This apparently contradictory
result is due to the difference of complexity between the datasets. While for simple
datasets a deep CNN like the ResNet20 can generalize very well, for more complex
tasks like the affCIFAR it is outperformed by the DeepCaps. This highlights the
capability of the capsule architectures to preserve spatial correlations between the
features detected, with respect to traditional CNNs, and this difference is even more
clear when the input dataset is composed of complex features like the CIFAR10.
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5.2 Robustness Against Adversarial Attacks

5.2.1 Projected Gradiend Descent (PGD) Attack
We analyze the response of the networks defined in Section 4.1 increasing the level
of the perturbation ε of the images generated by the PGD algorithm. Figures 5.5a,
5.5b and 5.5c show the results for the MNIST, GTSRB and the CIFAR10 datasets,
respectively. Since a successful PGD attack makes the classification accuracy drop
down to 0%, the robustness of the networks is evaluated as the accuracy.

ShallowCaps vs. ResNet20

Applying the PDG attack for the MNIST dataset, the ResNet20 appears to be less
vulnerable than other networks, for low levels of ε. The ShallowCaps robustness
behavior, not so far from the one of the ResNet20, overperforms the ResNet20 when
ε ≈ 0.065. Hence, despite the low number of layers, the ShallowCaps is affected by
the PGD attack similarly as a deeper CNN.

DeepCaps vs. ShallowCaps

According to the results, the ShallowCaps is more robust than the DeepCaps, in
contrast to what happens for affine transformations. This means that increasing
the depth of a CapsNet does not provide more robustness against perturbed images.

Note, the response of the ShallowCaps for the CIFAR10 dataset has not been
examined, because of its low baseline accuracy and the huge number of parameters
required, therefore not comparable with other networks.

DeepCaps vs. ResNet20 vs. CNN

For this kind of algorithm and the MNIST dataset, the Figure 5.5a shows that the
DeepCaps works worse than the ResNet20. On the contrary, for a more complex
datasets like the CIFAR10 and the GTSRB, the results, in Figure 5.5, show that
the ResNet20 is not as robust as the MNIST dataset.
Note, increasing the size of the perturbation, the success rate of the attacks grows
faster than on DeepCaps. Such outcome is inline with the takeaway from Section
5.1.2, which showed the DeepCaps be more robust than the ResNet20 against the
transformation in the affCIFAR.
The behavior of the CNN curve, for GTSRB and CIFAR10, always stays below the
curve of the DeepCaps. It means that the capsule architecture plays a fundamental
role in improving the robustness against the PGD attacks when the dataset becomes
more complex.
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Figure 5.5: Robustness against the PGD attack for (a) the MNIST, (b) the
GTSRB and (c) the CIFAR10 datasets.

Transferability ResNet20 ⇐⇒ DeepCaps

Towards a more comprehensive study of the robustness against the PGD attack, we
analyze the transferability of the attacks, between the ResNet20 and the DeepCaps,
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presenting the two opposite behaviors. We provide at the input to the DeepCaps the
adversarial examples generated with the gradient of the ResNet20, and vice-versa.
The Figures 5.6a and 5.6b show the transferability for the MNIST and for the
CIFAR10 datasets, respectively.
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Figure 5.6: Transferability for the PGD attack: comparison of the networks
response for (a) the MNIST and (b) the CIFAR10 datasets.

For the MNIST dataset, the attacks generated for the ResNet20, tested on
DeepCaps, have a greater effect than the other way round. This outcome confirms,
like in Figure 5.6a, that the ResNet20 appears robust for the generalization of the
MNIST. The opposite results can be derived for the CIFAR10 dataset, where the
DeepCaps shows greater robustness than the ResNet20, due to a better ability to
generalize for a more complex dataset.
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Transferability ShallowCaps ⇐⇒ DeepCaps

For the GTSRB dataset the transferability is tested between the ShallowCaps
and the DeepCaps, in order to appreciate a further comparison between the two
different capsule architectures with different depths. The Figure 5.7 shows the
two curves by providing at the input of the DeepCaps the AEs generated with
the gradient of the ShallowCaps and vice-versa. The results prove again that the
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Figure 5.7: Transferability for the PGD attack: comparison of the networks
response for GTSRB dataset.

ShallowCaps ensures a better robustness against such attack, because its curve
behaviour overperforms the DeepCaps at increasing the perturbation Ô.

5.2.2 Carlini Wagner (CW) Attack
To have a more solid comparison, the CapsNets and CNNs have been tested also
against the CW attack, a different kind of algorithm that does not define a threshold
for the magnitude of the perturbation (like the ε in the PGD attack). It is an
iterative targeted algorithm that tries to reduce the gap between the target and the
predicted class (success rate) with the minimum perturbation (mean distortion),
estimated as the l2 distance. The more robust the network, the more iterations the
probability of the targeted class needs to overcome the probability of the targeted
class. As a consequence, more iterations also imply a higher l2 distance between the
original image and the adversarial example. For our estimations, we set a maximum
of 10 iterations for the MNIST, and 5 iterations for the CIFAR10 and GTSRB
datasets. In addition, for the attacks on CIFAR10 and GTSRB, the algorithm has
been forced to set the confidence of the targeted class to be 0.5 higher than the
confidence of the true label. Table 5.2 reports the fooling rate, i.e., the percentage
of successful attacks, and the mean distortion for both the datasets.
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Table 5.2: Robustness results against the CW attack.

MNIST GTSRB CIFAR10

Network Mean
Distortion

Fooling
Rate

Mean
Distortion

Fooling
Rate

Mean
Distortion

Fooling
Rate

ShallowCaps 1.59 98.6% 1.31 100% - -
Deepcaps 1.24 86.8% 1.16 98.8% 0.34 100%
CNN 0.95 100% 0.59 100% 0.23 100%
ResNet20 0.94 100% 0.34 100% 0.12 100%

CapsNets vs. CNNs

The CW attack is very effective for traditional CNNs. In fact, it reaches 100%
fooling rate for all the MNIST, the GTSRB and the CIFAR10 datasets, as also
shown in [24]. On the other hand, both CapsNets show greater robustness (i.e.,
lower fooling rate) than CNNs, for the MNIST dataset (and also for GTSRB even
if the Fooling Rate of the DeepCaps is just a little bit lower than 100%). The
CapsNets also require a higher mean distortion than the CNNs, hence, the resulting
adversarial example would be more perceptible to fool the networks.

For the CIFAR10 dataset, the CW attack shows its effectiveness, because for all
the networks the fooling rate is 100%. However, we can notice higher robustness of
the CapsNets due to a higher mean distortion.

DeepCaps vs. ShallowCaps

The DeepCaps shows to be more robust than ShallowCaps, because of a lower
fooling rate, despite having slightly lower mean distortion. Therefore, the depth
and the 3D convolutions help to generalize better against such attack.

Transferability ResNet20 ⇐⇒ DeepCaps

The Table 5.3 shows the transferability between the ResNet20 and the DeepCaps
for the CW attack. The reported values represent the accuracies of the two models
that receive as input a sample of 500 targeted AEs generated by the CW algorithm
applied to the other network.

The high accuracy values demonstrate the low level of transferability of the
targeted CW attack. Despite this, the ResNet20 still achieves lower accuracies
than DeepCaps, thereby performing less robust.
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Table 5.3: Transferability of the CW attack between the DeepCaps and the
ResNet20.

Network MNIST CIFAR10
DeepCaps → ResNet20 97.4% 86.8%
ResNet20 → DeepCaps 97.8% 89,2%

Transferability ShallowCaps ⇐⇒ DeepCaps

Like done for PGD, we compare the behaviour of the two CapsNets by studying
the transferability of CW between them, exploiting the GTSRB dataset.

Table 5.4: Transferability of the CW attack between the ShallowCaps and the
DeepCaps for GTSRB.

Network Mean Distortion Fooling Rate
DeepCaps → ShallowCaps 2.16 58.2%
ShallowCaps → DeepCaps 2.15 57.8%

The results in Table 5.4 show again the low level of the transferability of such
attack, demonstrated by the lower fooling rates with respect to the original ones
achieved in Table 5.3. Both fooling rate and mean distortion are not so different
for both the cases, even if the DeepCaps appears a bit more robust against the
attacked image generated with the gradient of the ShalloCaps, contrary to what
happens for PGD.

5.2.3 Projected Gradient Descent Adversarial Training
After analyzing the robustness of CapsNets compared to traditional CNNs, we
apply the defense algorithm proposed by Madry et al. [25] on the DeepCaps.

We test the adversarial training on the GTSRB and the CIFAR10 datasets,
including in the backpropagation process the AEs generated with the PGD attack,
(see Sections 3.5.2).

The choice of the training perturbation magnitude has been influenced by
the previous analysis, taking into account the behavior of the normally trained
DeepCaps against the PGD attack (see Figure 5.5). For the adversarial training
with the CIFAR10 dataset, we chose an input perturbation equal to Ô = 0.003, a
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value for which the accuracy of the DeepCaps model without defense is already
around 50%. Moreover, increasing the magnitude of the perturbation during
training, the final accuracy starts to move away from the original one, thereby
preventing the training from converging.

For the GTSRB, we chose a perturbation magnitude equal to Ô = 0.03, a value
for which the DeepCaps without defense is already working worse than a random
classifier (see Figure 5.5).

The Figure 5.8 shows the response of the adversarially trained DeepCaps against
the PGD attack, for GTSRB and CIFAR10 datasets.
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Figure 5.8: Asversarially trained DeepCaps with (a) the GTSRB, (b) the CIFAR10
datasets.

From the Figure 5.8, we can derive that the adversarial training increases the
robustness of the DeepCaps against the PGD attack, both for the CIFAR10 and
the GTSRB datasets, even if with the more complex CIFAR10, the defenses are
more difficult to achieve. This because the CIFAR10 dataset reaches a lower final
accuracy using lower perturbation magnitudes than GTSRB during the training.
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Accordingly with the discussions provided in the previous sections, the difference
with respect to the GTSRB dataset could be explained by the higher complexity
of the CIFAR10 dataset.
It is also interesting to analyze how the adversarially trained model reacts against
Affine Transformations and the CW attack.

• Affine Transforations response:

Table 5.5: Comparision between adversarially and normally trained model against
affine transformations.

Network GTSRB affGTSRB CIFAR10 affCIFAR
Normally trained model 95.64% 84.14% 91.52% 78.66%

Adversarially trained model 94.08% 79.73% 89.22% 73.04%

The Table 5.5 shows that the adversarial training procedure produces draw-
backs against affine transformations, as well as the normal accuracy gets worse
for both the datasets.

• CW attack response

Table 5.6: Comparision between adversarially and normally trained model against
the CW attack

GTSRB CIFAR10

Network Mean
Distortion

Fooling
Rate

Mean
Distortion

Fooling
Rate

Normally trained model 1.16 98.8% 0.34 100%
Adversarially trained model 1.44 98.6% 0.84 96.6%

In contrast to what happens for affine transformations, the adversarial training
with PGD defense helps the networks also against the CW attack. For both
the datasets, from the Table 5.6,comparing both the mean distortion and the
fooling rate, it appears that the adversarially trained model is more robust.
This means that the adversarial training improves the model interpretability
and reduces the learning of brittle features, also if the attacker algorithm used
for defenses is different from the one used for the testing.
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Chapter 6

Contribution of the
Dynamic Routing to the
Robustness of the DeepCaps

As a further analysis, we explore the contribution of the Dynamic Routing (DR)
towards the generalization and, as a consequence, towards the robustness, on the
CapsNets.

In order to have a good metric of comparison, we train different versions of the
DeepCaps architecture modifying the routing algorithm:

1. the original DR with 3 iterations has been replaced by a simple connection
(i.e., one iteration of DR), in both the 3D convolutional and the DigitCaps
layer.

2. the DR has been replaced by the Self Routing (SR) algorithm in the last fully
connected layer, while in the 3D convolutional layer it has been left the 3D
version of the DR .

We run the experiments on such networks and compare them with the original
DeepCaps model already analyzed in the previous Chapter 5. From such compar-
isons, we can evaluate how the robustness significantly changes, either incorporating
the coupling coefficients of DR in the training process (removing iterations) or
introducing new coupling weights between two capsule layers (W route in SR, see
Section 3.3).
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6.1 Affine Trasformations
The results reported in Table 6.1 compare the accuracy achieved by the original
DeepCaps (with DR), without DR and with SR, for MNIST, GTSRB and CIFAR10
datasets.

Table 6.1: Robustness results against affine trasformations for the different
DeepCaps models, according to the routing algorithm.

Network MNIST40 GTSRB CIFAR10 AffNIST affGTSRB AffCIFAR
Without Routing 99.27% 96.27% 91.47% 87.72% 84.54% 79.86%
Dynamic Routing 99.19% 95.29% 91.52% 87.60% 84.14% 78.66%

Self Routing 99.25% 95.60% 90.5% 88.15% 83.17% 77.37%
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Figure 6.1: (a) Normal accuracies, (b) Affine Transformation results.

While the difference is minimal, the response of the DeepCaps without DR
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against affine transformations appears to be slightly better than the others.

• For the MNIST dataset, the response against affine transformations of the
three architectures is pretty much similar.

• With GTSRB both for the transformed and untransformed datasets, the
DeepCaps without DR works better than the others.

• For the CIFAR10, even if the accuracy with the normal dataset reaches 91.52%
with the DR, higher than 91.47% without it, the latter works better for the
affCIFAR. The SR appears to be slightly the worst, showing some limits with
a complex task like the CIFAR10.

We can derive that the DR does not provide a significant contribution to the
robustness against affine transformations, indeed, it makes the DeepCaps much
computationally heavier. Since the accuracies are close to each other, we analyze
in detail what happens to the output activations, to explain why the DR may not
contribute to the robustness of the network.

Dynamic Routing vs. Without Dynamic Routing

The functionality of the DR is to inhibit the propagation of the activation vectors
with a lower contribution, by lowering the values of the coupling coefficients in
such connections (see Section 2.6.3).
The Figure 6.2a and 6.3a, show the coupling factors, after three iterations of the
DR in a DeepCaps architecture, providing in input an image belonging to the
CIFAR10 and the MNIST dataset respectively.
The coupling factors are evaluated by summing all the coupling coefficients linked
with each output capsule and subtracting the minimum between them. For example,
for the CIFAR10 and the MNIST, 10 coupling factors are defined, each one
representing the coupling with the 10 output classes.
By analyzing in detail the Figure 6.2:

• For the original image (an auto in the Figure 6.2c), the DR algorithm correctly
updates the coefficients, as demonstrated by the highest coupling factor in
correspondence of the true label (blue bars of the Figure 6.2a). Therefore, the
output activativation of the model with DR achieves a higher confidence than
the architecture whitout it (0.88 vs 0.85 respectively, comparing the orange
bars of Figures 6.2b and 6.2d).

• For the transformed image, instead, the highest coupling factor amplifies the
coupling with the wrong label (green bars of Figure 6.2a), fooling the network
with DR to mispredict a truck. Therefore, the confidence of the predicted class
is wrongly increased by the DR, making things worse. In fact, despite both the
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architectures do not correctly classify the adversarial image (i.e, track instead
of auto), the confidence of the incorrect predicted label with DR overperforms
the one achieved without it (0.92 and 0.79 respectively, from the red bars of
the Figures 6.2b and 6.2d).
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Figure 6.2: Comparison between the output activations of the DeepCaps with
and without DR, by providing in input an affine transformed image of the CIFAR10
dataset. Left side: (a) the coupling factors and (b) the output activations of the
DeepCaps with DR. Right side: (c) the input image used for the comparison, (d)
the output activations of the DeepCaps without DR

The Figure 6.3 shows another example similar to the previous one, that underlines
the limits of the DR on the robustness, also for the MNIST dataset.

It is possible to observe that also the original image (in Figure 6.3c), is not
well classified by the architecture with DR. The algorithm amplifies with the same
intensity the coupling with two different output capsules (the ones corresponding
to the class 2 and the class 6, as suggested by the blue bars of the Figure 6.3a).
Therefore, the confidence corresponding to the wrong label, overperforms the
correct one with a confidence equal to 0.42 (orange bars of Figure 6.3b). Without
DR instead, the architecture correctly classifies both the untransformed and the
transformed images (Figure 6.3d).

6.2 PGD Adversarial Attack
Following the steps of our analysis, we investigate the contribution of the DR
against the Projected Gradient Descend (PGD) and Carlini Wagner (CW) attacks.
The comparison analysis for the PGD attack applied to the MNIST, GTSRB and
CIFAR10 datasets are shown in Figures 6.4a, 6.4b and 6.4c, respectively.
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Figure 6.3: Comparison between the output activations of the DeepCaps with
and without DR, by providing in input a transformed image of the MNIST dataset.
Left side: (a) the coupling factors and (b) the output activations of the DeepCaps
with DR. Right side: (c) the input image used for the comparison, (d) the output
activations of the DeepCaps without DR.

• For the MNIST dataset, the DeepCaps with DR is more robust than the
version without it. The SR increases the robustness of the network when the
level of the perturbation starts to be large, but when the accuracy is already
below the 40%.

• For the GTSRB the three architectures follow the same behavior.

• For the CIFAR10, instead, the accuracy of the DeepCaps without DR decreases
slightly faster, when increasing the perturbation ε. The SR does not contribute
to increase the robustness with such attack.

From our analysis we can understand that increasing the complexity of the dataset,
from MNIST toward the CIFAR10 as in Figure 6.4, the DR does not improve the
classification capability when the input starts to be perturbed. Furthermore, the
SR does not contribute to the robustness, when the task becomes complex and
when the inputs too noisy.

Dynamic Routing vs. Without Dynamic Routing

Also in this case, we conduct the same analysis carried out against affine transfor-
mations. We analyze how the DR, by updating the coupling coefficients, influences
the output activations, in case of PGD attack. As for affine transformations we
compare the response of two DeepCaps architectures with and without DR.
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Figure 6.4: PGD results: comparison of the DeepCaps response with Routing and
without Routing for (a) the MNIST, (b) the GTSRB datasets (c) the CIFAR10.

• For the original image belonging to the MNIST dataset (Figure 6.5c) the
coefficients increase the coupling with the correct output capsule, and reduce
the others. This is proved by the higher coupling factor in correspondence of
the true label (Figure 6.5a) and by the fact that the confidence with DR is
higher than without it (0.96 and 0.87, comparing Figures 6.5b and 6.5d).

• For the adversarial image, in most of the cases, especially for low levels of
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perturbation, the DR, for the simple task of MNIST classification, works
better, as suggested by the Figure 6.4a. In the specific case, the adversarial
image in Figure 6.5c, perturbed with epsilon = 0.03, fools the architecture
with DR, increasing the confidence of the wrong label (red bars of Figure 6.5b).
The architecture without DR, instead, is still able to classify the perturbed
image (red bars of the Figure 6.5d)
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Figure 6.5: Comparison between the output activations of the DeepCaps with
and without DR, by providing in input an adversarial image of the MNIST dataset.
Left side: (a) the coupling factors (b) the output activations of the DeepCaps
with DR. Right side: (c) the input image used for the comparison, (d) the output
activations of the DeepCaps without DR

The Figure 6.4c suggests that with a higher level of perturbation the AEs with
CIFAR10 are slightly better classified without DR. The Figure 6.6 shows the
behavior of the coupling coefficients, for an example of the CIFAR10 dataset, with
a perturbation equal to Ô = 0.004. This allows to understand what happens to DR
when the perturbation starts to increase for a complex task like the CIFAR10.

This analysis exhibit that also the original image is not correctly classified by
the architecture with DR, that increases the coupling with the wrong output label,
i.e while the original image is a cat, the routing increases the coupling with the
label corresponding to the dog (Figure 6.6a). The DeepCaps without DR, instead,
correctly classifies the cat, also when the input is perturbed with PGD attack
(Figure 6.6d).
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Figure 6.6: Comparison between the output activations of the DeepCaps with and
without DR, by providing in input an adversarial image of the CIFAR10 dataset.
Left side: (a) the coupling factors (b) the output activations of the DeepCaps
architecture with DR. Right side: (c) the input image used for the comparison, (d)
the output activations of the DeepCaps without DR

6.3 CW Adversarial Attack

The table 6.2 shows the results of the CW attack. Since the fooling rate is lower
and the mean distortion is higher without DR, we can derive that the DR does
not improve the robustness against such attack. It confirms the result that the
DR does not contribute to the generalization much. The SR, instead, works better
than the others, contrary to what happens for both affine transformations and
PGD, showing lower fooling rate values.

Table 6.2: Robustness results against the CW attack.

MNIST GTSRB CIFAR10

Network Mean
Distortion

Fooling
Rate

Mean
Distortion

Fooling
Rate

Mean
Distortion

Fooling
Rate

DeepCaps 1.24 86.8% 1.16 98.8% 0.34 100%
DeepCaps without DR 1.62 74.0% 1.27 84.11% 0.46 100%
DeepCaps with SR 2.28 48.6% 1.02 54.4% 0.52 99.2%
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6.4 Conclusions
With our analysis we compared three DeepCaps architectures by modifing or
removing the routing algorithm between two capsule layers.

• From the first analysis against affine transformations, we derived that the
architecture without DR responds slightly better than the others. Accordingly
to our results, the architecture with the SR in the last layer outperforms the
model without DR only in the case of the simpler MNIST dataset.

• Against the PGD attack, only for the simple MNIST, the DR seems to improve
the robustness, increasing the magnitude of the perturbation. The DeepCaps
with SR outperforms all the others, but when already the accuracies are too
low. Overall, going toward more complex datasets, the DR does not improve
the classification capability, especially for high level of perturbation.

• Against the CW, the SR seems to confer robustness, even if, again, the
architecture with DR is outperformed also by the one without DR.

To go into detail, we also analyzed the behaviour of the coupling coefficients and
the output activations for the architectures with and whitout DR, concluding that
when the input is perturbed or transformed, the coupling coefficients do not help, or
in some cases could make the things worst. This could happens because, when the
input image becomes too noisy, the transformation matrix could wrongly recognize
some relationships between the inputs and a wrong output label, which the DR
amplifies, together with the correct agreements. This, with the consequence of
increasing the confidence of the incorrect label.
We can conclude that the relationship between objects, is learned by the transfor-
mation matrix during the training, and performing more routing iterations during
inference does not help to recognize spatial input transformations or brittle features.
Furthermore, it is possible to learn the coupling coefficients implicitly, considering
them included in the weights of the transformation matrix during the training
process.
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Chapter 7

Conclusions and Future
works

In this work, we systematically analyzed the contributions of the CapsNets to
their robustness against affine transformations and adversarial attacks. Comparing
different types of CapsNets and CNNs, we investigated which model quality plays an
important role for our purpose. The ShallowCaps are more robust than comparable
CNNs, as already confirmed by other works [8][34]. However, not so deep to correctly
generalize more complex datasets, with the further cost to train a high number
of parameters. The results prove that they are more robust against adversarial
attacks but show their limits against affine transformations. Going deeper, the
DeepCaps reduce this problem, decreasing the gap between the transformed and
untransformed version of the datasets, despite the lower number of parameters.
Against the adversarial attacks, specifically the PGD, the DeepCaps does not reach
the same robustness of ShallowCaps for a simple task like the MNIST or GTSRB
classification, but for a more complex dataset like the CIFAR10, their performances
overcome not only a CNN with a similar architecture, but also the ResNet20. The
same conclusion can be done on affine transformations, where the DeepCaps reaches
a higher accuracy than the ResNet20 with the affCIFAR dataset. Moreover, our
results show that the dynamic routing does not contribute much for improving the
CapsNets robustness.

Additionally, accordingly to our results, it turns out that by applying defenses
with a spercific attacker algorithm, i.e the Projected Gradient Descend (PGD), the
robustness of the models increases also against a different attack, i.e. the Carlini
Wagner (CW).

Regarding future works, could be interesting to exploit the adversarial examples
generated to fool a more robust model, i.e. a Capsule Network, to train less robust
Neural Networks, i.e. ResNet20, analysing whether its robustness improves.
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