Master Degree in Computer Engineering
Software Engineering Track

<

By,
FKTHS

VETENSKAP
39 OCH KONST 9

ST

PoOLITECNICO DI KTH
ToRINO ROYAL INSTITUTE OF
TECHNOLOGY

Extracting contact surfaces from
point-cloud data for autonomous

placing of rigid objects

Supervisors Candidate
Prof. Alessandro Rizzo Carolina Bianchi

Joshua A. Haustein, Ph. D.

AY 2019-2020

Abstract

Nowadays, thousands of human workers engage daily in non-creative and physically
demanding tasks such as order-picking-and-placing. This task consists of collecting
different goods from warehouse shelves and placing them in a container to fulfill an
order. The robotics research community has put much effort into investigating the
automation of the picking problem for robotic manipulators. The placing problem,
however, has received comparably less attention.

A robot tasked with placing a grasped object has to choose a suitable pose and
motion to release the item inside a container, that may be partially filled with other
goods. The aim of this thesis is to develop and evaluate a system that automates
the placing of objects in a container, whose content is perceived through an RGB-D
camera. To accomplish this goal, we develop a perception module that estimates
the volume of the objects inside the container and extracts horizontal surfaces as
potential supporting regions for the object from RGB-D data. We integrate this
module with a state-of-the-art placement planner to compute placement poses for
the grasped object, that are stable and reachable by the robot among the perceived
obstacles.

We evaluate the system by manually reproducing the computed placements in
different test scenarios. Our experiments confirm that with the developed pipeline
it is possible to automatically compute feasible and stable placements poses for
different objects in containers filled with various objects, perceived through an RGB-

D camera.

Contents

1 Introduction
1.1 Problem Statement
111 Scope and Limitations
1.2 Outline
2 Related Work
21 Obstacle Volume Estimation,
2.2 Placement Stability o o
2.3 Plane Detection in Point Clouds
231 Attribute-based Methodso
2.3.2 Model-based Methods L.
24 Placement Quality L L
25 Placement Search Space Exploration
3 Method
31 InputData
311 The Sensor
312 DataFormat
313 Preprocessing
3.2 Obstacle Volume Estimation
3.3 Horizontal Regions Extraction
3.3.1 Normal Vectors Estimation
3322 Postprocessing

11
11
18
21
22

3.4 Integration with the Placement Planner.
4 Results
41 Placing on a Single Surface o oL
411 Toolbox
412 Cans
413 BagofPetFood
414 Water Bottles o
4.2 Placing in Semi-filled Roller Containers
421 Roller Container filled with Boxes
422 Semi-filled Roller Contatner
423 Clutter.
5 Discussion
51 Plane Extraction
5.2 Integration with the Placement Planner.

6 Conclusion

6.1 Possible extensions

Bibliography

40
40
40
42
44
46
48
48
51
53

55
55

56

58

6o

Chapter 1

Introduction

One of the main changes that our economy, industry, and society is undergoing
in the present years is the so-called fourth industrial revolution, or Industry 4.0.
Although it is too soon to provide a formal definition of this process, it is clear that
Information and Communication Technologies are the main drivers of this change
[1]. A milestone in this process is the automation of warehouses, which constitutes
a step towards the full implementation of smart factories. Smart factories leverage
the latest innovations in the fields of communication, data science, and robotics
to automatize and optimize processes that have historically been carried out by
humans.

A central task in this context is order-picking-and-placing, which is the operation
of collecting different goods from warehouse shelves and placing them in containers
to fulfill an order [2]. This non-creative and physically demanding task is hard to
automate, due to the inherent difficulties of developing a technology that is able to
tackle multiple object shapes, potentially in collaboration with humans in a dynamic
and unstructured environment.

E-commerce corporations like Amazon have a strong interest in warehouse au-
tomation and thus launched initiatives like the Amazon Picking Challenge [3] to
encourage the development of new technologies to automate the pick-and-place
process. This includes solving the problem of identifying a single item in an un-

structured collection of similar items on warehouse shelves or on pallets, planning

Introduction

and executing a collision-free motion to approach and grasp the object stably, and

selecting a stable placement pose and a feasible motion to realize the placement.

The object identification and localization problem has received much attention by

the computer vision research community [4]-[5]. Similarly, the robotics research com-

munity has extensively investigated the grasp and motion planning task, for which

the developed methods range from analytical approaches to data-driven strategies

[6]-[7] and, more recently, vision-based solutions [8]. In this work, we focus on the

third problem, placing, which has received comparably less attention.

Placing consists of deciding where and how to place a grasped object. Here, a

robot is presented with several challenges:

1.

If the robot has no prior knowledge about the environment, it has to interpret

noisy sensor data and reconstruct a model of its environment.

It has to find a suitable pose in the environment that affords a stable placement
for the object. To this aim, it has to reason about the item and the physical

characteristics of the environment.

Not all the possible placements are equally desirable. The robot has to rank
the available placements according to a quality metric that encodes an objective
that should be maximized, e.qg., semantic preference, clearance from obstacles,

or space optimization.
It has to compute a collision-free motion to reach the placement.

Finally, the robot needs to execute the planned motion and release, push, throw,

or nudge the object to its target location.

In this thesis, we will focus on the perception and planning challenges (1-4) of

this placement problem. The control of the execution (challenge 5) is not explicitly

addressed in this thesis.

Introduction

1.1 Problem Statement

We address the placement problem for scenarios as shown in Figure 1.1: a robotic
manipulator is tasked to place a grasped rigid object o in a partially-filled roller
container. To describe the placement problem, we adopt the notation of Haustein,
Hang, Stork, et al. in [9].

Placement search space: Initially, the robot is at a pre-place configuration
¢o € C that offers it a top-view over a target volume V; C R3 and it has to place
the object in this volume. The robot can sense a volume V; C V; and it has to find a
placement pose Z, for the object. The search space of the object placement position
is thus limited to V;. The robotic manipulator that is employed in this thesis can re-
orient the object only around the world z-axis and therefore the orientation search
space is SO(2). The total search space for object placements is thus V,; x SO(2).

Motion reachability constraint: We focus on prehensile manipulation: the robot
will hold the object, move it to the final pose and release it. Thus, the placement pose
Z, has to be reachable by the robotic manipulator. Given the robot’s configuration
space C, there must be a continuous path 7(q,, ¢1) that connects the robot initial
configuration ¢y € C to a final configuration ¢; € C' that results in the object being
at Z,. Let the predicate r(x,) express this constraint: if a pose x, is reachable, then
r(z,) evaluates to 1, else to 0.

Collision-free constraint: During the execution of the motion, the object and the
robot must not collide with the environment. If this condition is satisfied, we say
the no-collision constraint ¢(7) evaluates to 1, otherwise to 0. To evaluate this
constraint, the robot has to interpret the sensor data to understand which part of
Vs is occupied by rigid objects. For example, in the scenario in Figure 1.1 it has
to infer the volume Vs occupied by the cans, the box and the bag in the roller
container, and by the roller container itself.

Stability constraint: Furthermore, the manipulator has to choose a target pose
that affords a stable placement for the grasped item. For example, it needs to know
that a placement across objects at very different heights (the two stacks of cans) is

not stable. This additional constraint s(z,) evaluates to 1 if the placement is stable,

Introduction

to 0 if not.
Placement objective: Lastly, the robot needs to choose among multiple place-
ment possibilities. For this, we define with £(x,) a scalar metric that expresses a

placement preference score that has to be maximized.

(a) A partially filled roller container with com- (b) A new object (water bottles package) is
mon goods: cans, a bag of pet food, and a box. placed automatically in the roller container.

Figure 1.1: The robot needs to find a suitable placement for a package of water bottles in
a semi-filled roller container. In the picture on the right, the resulting placement is realized
by the robot.

With these definitions, the placement problem can then be formulated as a

constrained-optimization problem:

Introduction

max x
20€VsxSO(2),7(Co,z0) 5(O)

subject to: r(z,) = 1 (1.1)

Most of the positions in the sensed volume V; are not valid for a placement:
they will be in mid-air, violating the stability constraint, or inside objects volume,
violating the non-collision constraint. The goal of this thesis is therefore to develop
a perception module that restricts the position search space V; to positions that
are more likely to satisfy the problem’s hard constraints. This perception module
is then integrated with a state-of-the-art placement planning algorithm [9] to solve

the above optimization problem.

1.1.1 Scope and Limitations

In our target scenario, we operate a robotic manipulator, of which the full geomet-
ric and kinematic model is known. The manipulator can perceive the environment
through an RGB-D camera, and the environment is rigid and static over the time
frame needed to carry out the placement task. Initially, the robot is at a pre-place
configuration, from which it has a view over the placement volume, and the robot is
grasping the target object, which is rigid and has a known geometry. To evaluate

the computed placements, we manually reproduce them in the real world scenario.

1.2 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents related
work relevant to challenges 1-3. The motion planning (challenge 4) is solved by the
placement module in [9]. In Chapter 3, we detail the employed RGB-D sensor and
the format of the data it produces and we explain the algorithms that are used to
implement the perception module and its integration with the planning algorithm in

[9]. In Chapter 4, we illustrate the results of the experiments conducted to assess

Introduction

the system performance, and in Chapter 5 we analyze the results and the system
limitations. Lastly, in Chapter 6 we summarize the work done in this thesis, and we

suggest possible future developments.

Chapter 2

Related Work

In this chapter, the scientific literature relevant to the challenges 1-3 introduced
in Chapter 1 is presented. Section 2.1 overviews the methods that are commonly
employed for obstacle estimation in applications that require motion planning in un-
known scenes. Section 2.2 illustrates the strategies that state-of-the-art placement
algorithms employ to ensure a stable placement. Section 2.3 reviews the methods
that have been developed to extract primitive shapes from point clouds. Section 2.4
lists some of the metrics that can be employed to evaluate the quality of a place-
ment. Finally Section 2.5 illustrates the placement sampling strategies encountered

in literature.

2.1 Obstacle Volume Estimation

Many robotics applications require having a tractable model of the environment.
Mobile robots need it to plan their navigation dynamically without crashing into
obstacles and similarly do robotic manipulators. In our application, we need a map
to plan the motion of the robot so that it does not collide with the objects in the
scene.

When the surroundings are not previously known, the robot has to perceive the
environment through sensors. Commonly employed range-measuring sensors serving

this purpose are: tilting laser range finders (LIDAR), ultrasonic distance sensors,

Related Work

Time of Flight cameras, or RGB-D sensors.

Measurements taken by such sensors are affected by noise, therefore the map
building procedure has to deal with uncertainty. Common ways to do this are
to either employ a probabilistic framework or to apply obstacle inflation, i.e., to
estimate the obstacle volume and add some padding to ensure extra safety.

The main trade-off when it comes to mapping is between memory and time effi-
ciency and precision. In some cases, mapping can be reduced to a 2D problem, for
example, if the robot motion is constrained to be on a planar surface or if it is in a
structured environment.

Commonly employed data-structures in this context are occupancy grids [10].
Each cell in the grid holds the probability of being occupied, which is initialized to be
0.5 and can range from 0 to 1. When the sensor perceives an obstacle, the occupancy
probability of the cells on the ray that connects it to the obstacle decreases, and
the occupancy probability of the cell containing the obstacle increases. This simple
model has been extended to elevation maps [11], which store in each cell the height
of the perceived obstacle, or multi-level surface maps, which offer a multi-surface
view of the environment [12].

The natural extension of two dimensional occupancy grids to the 3D case, is
the use of occupancy voxel grids. This approach, however, scales poorly as it is
very memory-demanding. To mitigate this issue, Hornung, Wurm, Bennewitz, et al.
[13] proposed an octree-based data structure, that enables temporal measurement
integration, handles unseen space, and is time and memory efficient. The data
structure holds the map representation in an octree (see Figure 2.1), where each
node in the tree represents a cube (voxel) in the space and can have zero or eight
children. The node contains a value that expresses its voxel occupancy probability;
children nodes are created only when necessary. The occupancy probabilities are

updated similarly to the two dimensional case.

Related Work

e

Figure 2.1: Octree data structure. Each node in the structure represents a three dimensional
cube in the space. The root of the tree and each intermediate node in the tree have exactly
eight children. Image from [14].

In this thesis, we will take advantage of the prior knowledge that we have about
the placement scenario. The robot has a top-view on the target placement volume,
therefore we use a reconstruction of the scene similar to the elevation map approach.
The obstacle resolution depends on the local resolution of the point cloud. The

developed method is illustrated in Section 3.2.

2.2 Placement Stability

In order to solve the placement problem, it is necessary to reason about the stability
of a placement pose. A rigid body rests in equilibrium if the forces that act on it
sum to zero and if they do not induce any momentum. The forces that we consider
in this context are gravitation, support reaction forces and friction. Gravity acts
from the object center of mass towards the ground. Reaction forces act at the points
of contact between the object and the support to impede the motion of the object

towards the support. Friction is exerted between the object and the support contact

Related Work

surfaces in the direction that hinders a sliding motion of the object on the surface.

Baumgartl, Werner, Kaminsky, et al. in [15] developed a placement planner that
bases its stability analysis by explicitly reasoning about friction. When computing
a placement, the authors identify the set of contact points between the object and
the supporting surface. They project the object center of mass along the gravity
direction and verify that the projection lies within the contact points’ convex hull,
which ensures rotational stability. Furthermore, they assume a minimum friction
coefficient i, which defines the maximum allowed slope of the contact surface that
guarantees a static equilibrium.

If it is not possible to make any assumption about the object or environment
materials, the most general approach remains to consider only planar surfaces as
candidate placement regions to ensure force equilibrium. In this case, the gravita-
tional force acts perpendicularly to the placement surface that, given its rigid nature,
will counteract with an equal and opposite normal force, regardless of the friction
coefficient, thus ensuring force equilibrium.

Following this method, Harada, Tsuji, Nagata, et al. in [16] identify candidate
placement areas by deriving polygon models of the object and the environment from
point cloud data, and considering only horizontal surfaces. The authors cluster the
object and the environment in approximately planar surface patches and base their
stability evaluation on a convexity test between the contact surface of the object
and the placement region. Haustein, Hang, Stork, et al. in [9], similarly, do not
assume any friction coefficient and restrict placements to horizontal surfaces. An
analogous method was employed by Schuster, Okerman, Nquyen, et al. in [17], who
focus their research on the perception of flat surfaces on cluttered tabletops that
can afford placements.

Jiang, Lim, Zheng, et al. in [18] develop a strategy to compute more complex
placements such as hanging and caging. To this aim, they manually design several
features to characterize a placement, which aim to capture the placement stability
and preferred orientation. They then produce a training set of placement combina-
tions by employing a rigid-body simulator, and train a Support Vector Machine to

rank candidate placements automatically.

10

Related Work

In this thesis, we build on the work of Haustein, Hang, Stork, et al. in [9] to
compute stable and reachable placements among clutter, see Section 2.5. Therefore,
also in this work we constrain placements to the horizontal case and thus develop a
method to detect planar surfaces from noisy point clouds. As a drawback, complex

placements (such as hanging or caging) will not be considered.

2.3 Plane Detection in Point Clouds

Range measuring sensors produce point clouds, i.e. sets of points in space. Several
strategies can be found in the scientific literature to identify primitive shapes in a
point cloud, and we focus on the ones which aim at isolating flat surfaces. Given
a point cloud P = {p;},p; € R?, the goal is to find the regions R; C P that were
generated by a planar surface in the scene.

We can divide the most popular state-of-the-art point cloud segmentation strate-
gies into two classes: attribute-based methods and model-fitting methods. In the

following, we give an overview of each of these strategies.

2.3.1 Attribute-based Methods

Region growing procedures segment point clouds in the spatial domain, a typical
region-growing algorithm is summarized in Algorithm 1.

Key concepts in this approach are:

e Neighborhood N, of a point p,: a collection of points in P that satisfy some

proximity condition to p, (Algorithm 1 line 2).

e Local features: the set of geometric attributes that are computed to characterize

each point p; in the cloud.

e Seed point p,: reference point from which the region is currently growing
(Algorithm 1 lines 1 and 4). An alternative is using voxels, rather than single
points, as working units, thus preserving only one measurement or the average

measurement in each voxel [19], [20], [21].

11

Related Work

Algorithm 1: Region growing algorithm

Data: P = {p;__n} point cloud
Result: R, ,, set of horizontal regions
initialize R = 0;
1 select an initial seed point p;;
1 =1;
Ri - {ps};
P. = P ~ ps set of points that do not belong to any region;
while P, #+ 0 do
2 N, = neighborhood (P, ps) ;
for p, € N, do
3 if p, and ps; belong to the same region then
R; <+ R, U{pn};
P, P.~A{pn};
end
end
if R; can still grow then
‘ pick ps in R;;
else
grow a new region: ¢ <— % + 1;
4 choose p, € P,;
Ri — {ps} ;
end

end

Procedure neighborhood (F,, p;)
N5 is the set of points in P, that are close to ps;
return N,;

12

Related Work

e Region growing criterion: a condition that the point p; has to satisfy in order
to be joined to the region RR;, taking into consideration the source point p;
(Algorithm 1 line 3). This condition is evaluated by considering the two points’

local features.

The choices regarding the definition of the local neighborhood of a point, its
local features, the seed point and the region growing condition differentiate each
algorithm and its performance. In the following, we present some of the strategies

encountered in literature.

Neighborhood definition

Defining a suitable neighborhood is one of the most challenging aspects of the

algorithm, as it influences the computed local features. Some options are:

e Define a fixed-size k neighborhood of p,: N(f contains the closest k points to

pq- Closeness is evaluated in the sense of Euclidean distance [22].

e Define a fixed-radius p sphere around p,: N/ is the set of points within this
sphere. Fan, Wang, Geng, et al. in [23] propose a method to automatically

determine p based on global consideration of the sparseness of the point cloud.

e Dynamically define the geometry of the neighborhood based on local consid-

erations such as the currently estimated slope [24].
e Divide the point cloud into voxels and define each voxel as a neighborhood [20].

e TOF cameras and RGB-D cameras produce a point cloud organized in a matrix
shape, like a standard picture. In this case it is then possible to use a fixed
pixel-sized square neighborhood [19] to avoid the complex neighbors search or
alternatively to adapt the size of the pixel-neighborhood to the local depth of
each point [25].

Local Features

The local features, that are computed to characterize each point, include:

13

Related Work

e The local surface normal n, of point p,.

It can be computed by the Principal Component Analysis (PCA) as proposed
in [26] and done in [22], [20], [27] and [21]. It corresponds to finding the normal
of the least-squares-fit plane 7, of p,'s neighborhood N, .

Let C;, be the covariance matrix C, = if:l(pz —p)'(p; — p) of neighborhood
N, of the queried point. p is the average of p;. Let Ay, A1, A2 be the eigenval-
ues of C,, which satisfy 0 < Ay < A\; < A9, and let v; be the eigenvector that
corresponds to \; for ¢ = 0,1,2. Then:

1 if vy - (v, — > 0,
ny — 0 0 (Vp — Pg) (2.1)
—1 if - (Vp—pq) <0

v, is the sensor pose when the point cloud was acquired.

This method fails in case of surface discontinuities and noise. An alternative
proposed by Fan, Wang, Geng, et al. is to use a constrained nonlinear least-
squares algorithm that weights each point contribution proportionally to its fit

to the plane 7, [23].

Holzer, Rusu, Dixon, et al. focus on picture-shaped point clouds (TOF and
RGB-D data). The authors adopt a square neighborhood definition NV, =

m,n

Pm,n

(pm*r’nq pm_-r-’n+T). The authors adjust the size of the neighborhood r to

Pm+r,n+r

Pm+rmn—r

the local point depth, based on the observation that farther measurements tend
to be affected by heavier noise. Moreover, they implement an edge detection
mechanism to avoid averaging depth data in the presence of depth discontinu-

ities.

A further time-improvement by Holz, Holzer, Rusu, et al. in [19] is based on
the use of integral images, which allows averaging measurements over any
rectangular-shaped pixel neighborhood in constant time. An integral image [

of a source image S = S; ; of dimension i x w is defined in Equation 2.2:

N
]
I
3
o]

Spmfori=1,.hj=1.w (2.2)
0

o~
&,
Il
-
I
o

m

14

Related Work

Each element of the integral image can be computed iteratively as follows in

Equation 2.3 and shown in Figure 2.2:

Lij =5+ licij+Lijo1 — Licij (2.3)

thus needing a single pass over the image for the full integral image retrieval.

1 2 3 4 3 1 2 3 4 5
1{3 |3 |2 |3 |1 113 |6 |8 |11 |12
202 12 (3 |1 |1 215 [10|15]|19]21
313 12 (2 |4 |1 318 | 1522|3033
01 |3 |4 [4 |4 19 | 193042 |49
Sl 2 (3]2 |1 110 | 22|36 |50 |58

(a) The source image S. (b) The integral image 1.

Figure 2.2: Toy example of an integral image. On the left we have the original image .S, on
the right its integral image I. As an example of Equation 2.3 Iy 4 = Sya+I34+1s3—I33 =
4+ 30+ 30 — 22 =42,

By considering the matrices containing the x, y and z coordinates of the points
in the organized cloud as source images S®, SY, S%, then it is possible to
compute the sum of measurements (hence the average) over any square neigh-
borhood of size r in the picture with only four memory accesses:

m-+r n—+r

Z Z Si,j = Im+r,n+r - [mfr,nJrr -]err,nfr + Imfr,nfr- (24)

t=m—r j=n—r

Given these premises, once the neighborhood size r in pixels of p € P at
pixel position m,n is computed, the normal vector is retrieved as the cross
product between the vectors connecting pixels p,,—r, and ppir, and D,
and Dy, n+r, Where the coordinate of each of the four points is smoothed over a

r — 1 side square within the neighborhood of p,,, as illustrated in Figure 2.3.

15

Related Work

i
l

- —— 7,!3_%“‘
:

m=r

(@) Cross product of the vec-
tors connecting the points at
the horizontal and vertical
boundaries of the neighbor-
hood (thick line).

n-r n n+

(b) In yellow the measure-
ment smoothing region for the
point at the bottom limit of the
neighborhood.

n-r n n+r

(c) In yellow the measurement
smoothing region for the point
at the upper limit of the neigh-
borhood.

Figure 2.3: Normal computation over an organized point cloud with local smoothing. 7 is
the size of the neighborhood (in pixels).

e The local curvature, as introduced by Pauly, Gross, and Kobbelt in [28] and

used by Wang, Zou, Shen, et al. in [22], is computed as:

g, _—)\0
T N+ M+ o

(2.5)

A; are the eigenvalues of the neighborhood covariance matrix with the same

order considered in the computation of the surface normal. Another method

to assess the local curvature is to compute the distance of the point to the

fitting plane [29], or by summing the squared residuals of the points in the

neighborhood of p, w.r.t. the computed fitting plane 7, [20], [27].

Seed Point Definition

The methods to choose a new seed point, include:

e Randomly pick a point in the cloud.

e Choose the point with the smallest curvature, when explicitly searching for

planar clusters [22].

16

Related Work

e |dentify points which present high-density peaks [30] and are sufficiently dis-
tant one from the other, following the assumption that cluster centers are sur-

rounded by neighbors with lower local density.
Strategies for the choice of subsequent seed points include:

e Keep the same seed point until it is impossible to aggregate more points to

the current cluster.

e Choosing a new seed point in the region p; if the angle between its local normal

vector and the region normal vector does not exceed a threshold [22].

Region Growing Criterion

A similarity condition is needed to decide whether a point in the neighborhood of

ps belongs to the same region (Algorithm 1 line 2). Standard strategies are:

e Defining a maximum angqular threshold 6,,,, between the normal of the seed
point and the new point [20], [22], [23], [27], [31]. Given the seed point p, and
its normal v, the neighboring point p; is added to the region if its normal v;

is such that:
| Vs = Vi |

s 1wl

cos™!() < Omaz (2.6)

Omaz 1s @ parameter that limits the allowed local roughness, as it is evaluated

between two close points.

e Using a threshold on the sum of residuals, that enforces smooth areas to be

broken at edges [27].

e If the focus is on detecting horizontal clusters, testing the difference of the z

coordinate of the seed point ps and the neighboring point p; [21].

Attribute-based methods are a robust approach to point cloud segmentation [32].
However, the definition of neighborhood in an unevenly sampled space can be diffi-
cult. Moreover the computation time can be unfeasible in case of multidimensional

attribute spaces and highly dimensional input point clouds.

17

Related Work

2.3.2 Model-based Methods

When models of the different parts composing the scene are known, it is possible
to employ model-fitting methods to detect those shapes. The two standard ways
to implement model-fitting are the Hough Transform (HT) and RANdom SAmpling
Consensus (RANSAC) methods.

Hough Transform

Hough Transform was first introduced by Hough in [33] to detect patterns in binary
images, and it was later successfully applied in 2D greyscale images to recognize
lines and circles. This method is useful to fit parametric shapes to sampled data,
and its application was extended to 3-D data as well.

To work with the Hough Transform for shape detection on the point cloud P =

{p;} € R3, one has to define:

e A parametric shape I' C R? defined over a set of parameters a € R".

e A relation A : R? — 2®" between each point and the parameters in RY that

describes the family of shapes to which the point could belong.

e A suitable discretization of the parameter space R" and an N-dimensional
data structure (accumulator) with a one-to-one correspondence to each cell of

the discretized parameter space.

The most straightforward implementation of the Hough Transform for primitive shape

detection follows Algorithm 2.

Algorithm 2: Hough transform algorithm

,,,,,

zero each entry of the accumulator;

for p, € P do
find the parametric shapes to which the point could belong A(p;);
increment the corresponding cells in the accumulator;

end

look for peaks in the accumulator and extract the corresponding shapes;

18

Related Work

Some improvements of the algorithm are reviewed in [34]:

e Select active peaks at regular intervals instead of sweeping and updating the

whole parameter space.

e Instead of working point-by-point, use randomly drawn minimal set of points
which identifies one single corresponding shape (three points for a plane), only

update that cell in the accumulator.

e Create a one-to-one correspondence between the point and the shape (a plane),
by locally estimating the normal [35], eventually, smooth the vote with a Gaus-

sian distribution in parameter space [36].

RANSAC

RANSAC strategies stem from the algorithm introduced by Fischler and Bolles in
[37]. It is considered the state-of-the-art method for model fitting. Some key concept

in this technique are:

e The consensus set of I'(a) in P is the set of points p; € P within a certain

threshold from a shape T'(«).
e The size M of the minimal set of points in P which uniquely identify one shape.

e The inverse function ™! : R** — RY that allows retrieving the single shape

identified by a minimal set: T (py, ..., par) = (a1, ..., an).

A typical RANSAC algorithm is presented in Algorithm 3.

Several improvements have been studied about each step of the algorithm. Schn-
abel, Wahl, and Klein in [38] use this method to efficiently extract primitive shapes
such as planes, torus, cylinders, cones, and spheres from point clouds. The authors
implement a sampling criterion which follows the assumption that the a-priori prob-
ability that two points belong to the same shape is higher for closer points. Torr and
Zisserman in [39] formulate the problem in a probabilistic framework, thus basing
the shape re-fit (Algorithm 3 Line 1) by finding the maximum-likelthood shape that
fits the points.

19

Related Work

Algorithm 3: RANSAC algorithm

Data: P = {p;__n} point cloud; I: RV — R3, '™t R3M — RV
1=0;

while nc < cons_min and 7 < max_i do

Sample a subset S € P:|S| =M ;

Find the parametric shape that fits the points o = I'"1(S) ;
Find S* =p1,...,px € P within a tolerance from I'(«) ;

ne=|S*|=k;
1+ 1+1;
end
if 7 < max_i then
1 ‘ refit the whole consensus set S* minimizing some cost function;
else
| failure
end

20

Related Work

Overall, model-based methods are fast and robust to outliers [32] and in particular
RANSALC is considered the state-of-the-art primitive shape extraction method.

Given the works illustrated in this section, we decide to adopt a region-growing
algorithm for horizontal surfaces detection presented by Dong, Gao, Zhang, et al. in
[21]. The reason behind this choice is twofold: the strategy presented by the authors
specifically aims at finding horizontal surfaces in contrast to the other reviewed
methods. Moreover, the algorithm is simple and its results are comparable with the
state-of-the-art RANSAC algorithm, while the runtime is lower [21]. We adapt the
algorithm to the case of organized point clouds like the ones generated by RGB-D
or TOF cameras, by integrating the contributions of Holz, Holzer, Rusu, et al. in
[19] and Holzer, Rusu, Dixon, et al. in [25] about fast neighbors retrieval and normal

vectors estimation in organized point clouds.

2.4 Placement Quality

If the robot manages to find multiple solutions to the placement problem, it has to
be able to rank them and choose the most suitable one to solve the problem at hand.

One way to rank different placement poses is to take into account their semantic
preference: not all the object’s orientation feel equally desirable to humans, and
neither do all locations. Baumgartl, Werner, Kaminsky, et al. in [15] define an object
preferred orientation by aligning the object’s volume first dominant principal axis to
the placement surface normal. This encourages vertical placements over horizontal
ones. A complementary work on this topic is presented in [40], where the authors
train a Support Vector Machine on hand-made geometric features to predict the
upright orientation of objects. A similar method is implemented in [18]. The authors
predict the semantically preferred placement areas and orientations for objects. For
example, they learn that a plate is preferably placed on a table or in a dish-rack
and that in the first case it should be placed horizontally, and in the second case it
should be caged by the racks.

Other placement objectives are to maximize the clearance from obstacles to ensure

a safe placement, or to minimize it to implement a packing procedure [9].

21

Related Work

In this work, we choose to minimize the object placement height, following the
empirical observation that to fill up roller containers it is beneficial to start placing

objects at the lowest layer available, hence:

§(z0) =~ (2.7)

2.5 Placement Search Space Exploration

We operate in the presence of several obstacles, hence it is important to efficiently
explore the search space, as most of the poses will not satisfy the problem con-
straints. Most of the works presented in Section 2.2 do not explicitly mention the
strategy adopted to sample candidate placement poses. Baumgartl, Werner, Kamin-
sky, et al. in [15] quide their search starting from an arbitrary point in the space,
and they progressively explore the nearby positions and orientations; they stop the
search as soon as a valid pose is found. Haustein, Hang, Stork, et al. in [9] perform
an efficient search biased towards regions which are expected to be more favorable
to satisfy the problem hard constraints, while maximizing a user-provided objective
function &(x,). This algorithm aims to find quickly a feasible solution and to pro-
gressively optimize it in an anytime fashion. We adopt this second strategy as it
is tailored for placements in cluttered scenes and explores the solution space while
exploiting the local information progressively collected during the search.

To explore the solution space, the authors employ a tree structure to hold the
hierarchical subdivision of the position search space (in our case Ry) and the ori-
entation search space (in our case SO(2)). At the first level of the tree, we find the
clusters that were produced by the horizontal region detection algorithm, and each
of them is associated with the complete orientation solution space of [—m, 7). At
each deeper layer in the tree, the region is recursively split in four regions along
its principal axes and the orientation space is divided in k£ equal-width segments.
The splitting process is continued until a user-defined resolution either in space or
orientation is reached. Each node in the tree, therefore, restricts the search to a

small area in the space and a subset of orientations.

22

Related Work

The authors use this tree-structure for a Monte Carlo tree search to incorpo-
rate feedback to bias the sampling process towards more promising regions, while
keeping the search explorative of untested spaces. Every time a point is drawn
from a region, a heuristic that takes into account the hard constraints and the user-
provided objective is computed. The reward is propagated back to the parents of
the region (see Figure 2.4), thus indirectly informing the sampling process about the
expected results in the nearby space as well. Each time a kinematically reachable
collision-free and stable placement pose that improves the objective £(z,) is found,
the motion planning algorithm is invoked to verify its path-reachability and compute

the motion 7(Cy, z,).

n_visits
rewsard

m_visits
revward

s L

i = n_visits n wisits n wisits n_visits o visitsl — —
rewzrd ({11 - Ty = 13 = @ @ . Faq) [N Too)|novisits| (Toa) n_visits
eward | eward [N eward Eward | reward =4 [i—) I

ErNA M da o ppwa EVYA EVYA pvva g qa HFPea

Figure 2.4: Hierarchical representation of the search space. Each node in this tree repre-
sents a region (or a sub-region). When a region is sampled, the number of visits increases
and the corresponding reward is computed according to an heuristic function which evaluates
the hard and soft constraints of the problem.

The observation that motivates the algorithm in [9] is that there exists a spatial
correlation between the poses that satisfy the hard constraints: for example, if a
pose produces a collision with the nearby environment, close poses will likely do
the same and vice-versa. Similarly, the adopted sampling strateqy is helpful in
the case £(z,) has a limited local growth within contiguous regions in the solution
space, which is certainly true for the z coordinate of points belonging to the same
horizontal region.

By integrating the perception of the obstacle volume and using the extracted pla-
nar surfaces from the point cloud as candidate placement regions with this placement

module, we are able to compute placement poses in new scenes for known objects.

23

Chapter 3

Method

Figure 3.1 illustrates the overall system that was developed in this thesis. This
chapter covers the method that was developed to implement the perception module
and the integration with the planning algorithm in [9]. Throughout this chapter we
use the notation introduced in Section 1.1. Section 3.1 briefly describes the sensor
that produces the input data, its format and how the data is pre-processed. Section
3.2 presents the strategy adopted to estimate the volume occupied by the obstacles
in the sensed space. Section 3.3 illustrates the method used to extract horizontal
flat regions from a point cloud, which restricts the search space for the placement
position. Section 3.4 details how the work in [9] was integrated with the perception

module.

3.1 Input Data

The robot perceives the environment through an RGB-D camera. In the following

subsections we briefly describe the working principle of the employed sensor.

3.1.1 The Sensor

The robot is provided with an Intel® RealSense™ D435 depth camera with the
technical specifications in Table 3.1 [41].

24

Method

Object model

0
T

World scene Point cloud Perception module Planning module Evaluation
Planes

<z

Robot model

"B

Figure 3.1: The overall system that was developed in this thesis is summarized in this figure.
The robot can perceive the environment through an RGB-D sensor, that produces a point
cloud. The point cloud is the input of the perception module, that produces an estimation
of the obstacle volume in the environment and extracts horizontal planes that restrict the
position search space. The obstacles and the horizontal regions are then fed to the planning
module, together with the robot and object model. The planning module samples a feasible
placement for the object in the environment, and computes a motion for the robot. Lastly
the placement is evaluated by manually reproducing the computed placement in the real
scenario.

Right imager IR projector Leftimager RGB moule

Figure 3.2: Intel® RealSense™ D435 depth camera. The picture shows the Infrared stereo
module (right and left imager), the Infrared projector and the RGB Module. Picture taken
from [41]

Working Principle

The sensor has two infrared (IR) cameras, an RGB sensor, and an IR pattern projector

(see Figure 3.2). It is a stereo camera, which means that depth information estimation
25

Method

Environment: indoor/outdoor

Features Image Sensor Technology: Global Shutter, 3 pmxum pixel size
Maximum range: approx 10 meters.
Depth technology: Active IR Stereo
Depth field of view (FOV) : 87° £ 3° x 58° 4+ 1° x 95° £ 3°
Depth .
Maximum range: approx 10 meters.
Depth output resolution and frame rate: Up to 1280 x 720 active
stereo depth resolution. Up to 90 fps.
RGB Sensor Resolution and Frame Rate: 1920 x 1080
RGB RGB frame rate: 30 fps
RGB Sensor FOV (H x V x D): 69.4° x 42.5° x 77°(£3°)
Major Camera Module: Intel RealSense Module D430 + RGB Camera
components Vision Processor Board: Intel RealSense Vision Processor D4
Form Factor: Camera Peripheral
: Connector: USB-C* 3.1 Gen 1*
Physical

Length x Depth x Height: 90 mm x 25 mm x 25 mm
One 1/4-20 UNC thread mounting point. Two M3 thread mount-
ing points.

Table 3.1: Technical specification of Intel® RealSense™ D435 depth camera.

is based on the comparison of the output produced by two identical (IR) sensors,

displaced along one of their axis with a known offset (left and right imagers in

Figure 3.2), as to mimic human vision.

After having acquired two IR images at the same time, the procedure to infer the

per-pixel depth is the following:

1. Solve the correspondence problem: find a per-pixel correspondence between

the two images (i.e., match pixels which were originated by the same world

location). For each corresponding pair of pixels, its disparity is computed, i.e.,

the shift that separates the two pixels in the two images along the cameras

displacement axis (see Figure 3.3 and 3.4). The objects which are closer to the

camera will experience a larger displacement with respect to the objects that

are far away in the background.

2. Triangulate each pixel to find its location in the camera frame, leveraging the

knowledge of the spatial offset between the two cameras.

26

Method

The result of this operation is an IR image with associated a per-pixel depth infor-
mation, hence their location in the camera reference systems. The image is enriched

with the color data retrieved by the RGB camera.

(a) A landscape as seen from the left camera of (b) A landscape as seen from the right camera of
a stereo system. a stereo system.

Figure 3.3: A landscape as seen from two cameras of a stereo system. The orange (red)
square highlights a point in the world and its different locations in the two camera’s frames.
The orange (red) line connecting the two squares represents the disparity between the two
pixels. Images from [42].

3333000000000000000000000000000 _
3 33000000000000000000000000 Depth = -Baseline x Focal Length
3330000000000000333333 Sisparity

Disparity=x-x"

Depth

Aa444
388555555555555 %
il oe /55,555 555555

55555555555555555.

Focal length, f
Focal length, f

1
Baseline

(b) Retrieving depth from disparity maps.

(@) An example of a disparity map.

Figure 3.4: The image on the left contains a toy example of a disparity map. Pixels
belonging to closer objects have higher disparity values. Images from [42].

Limitations

The key operation that enables the stereo camera to retrieve the depth of each pixel

is finding correspondences between the two pictures, which is easier if the scene in

27

Method

the field of view as a highly varied texture. Therefore the camera is more appropriate
for applications in external environments, whereas it may be challenging to retrieve
reliable data when dealing with homogeneously textured patches (such as walls or

floors). An example of this effect can be observed in Figure 3.5.

0000175
ooooooo
ooooooo

0.000100

0.000050

0.000000

(a) A flat homogenously col- (b) Heatmap of the variance of (¢ Infrared pattern projected
ored surface, with a random the estimated per-pixel depth on the scene.

noise patch in its top-left cor- over ten frames.

ner.

Figure 3.5: The depth estimation is more consistent when the surface has a varied texture.

To overcome this limitation, the camera is provided with an IR projector, which
projects a semi-random light pattern on the scene consisting of five thousand points
[43] (see Figure 3.5c). This pattern enriches the scene with more recognizable
key-points that help finding correspondences in low-textured scenes. If the scene
material is poorly reflective such as transparent plastic or dark surfaces, however,

the projector will bring no advantage.

3.1.2 Data Format

The data produced by this sensor is a collection of points in camera frame organized

P11 P1,w . .
g P) hence called organized point
h,1 h,w

clouds. h is the height of the cloud (1280 in our sensor) and w is its width (720).

in a two dimensional matrix P = (

Each point p; ; carries its location in camera frame (z,y, z) € R® together with the
color (r,g,b) € [0.0,1.0]® information provided by the RGB camera. This data can
be interpreted as a general picture (3.6a), a depth map (3.6b) or a point cloud in
space (3.6c¢).

28

Method

0 00 400 600 800 1000 1200

it

(a) Color information.

(b) Depth information [m]. Red (c) Color and depth information
pixels represent missing data. combined in a point-cloud.

Figure 3.6: Three ways to interpret the output of the RGB-D camera.

3.1.3 Preprocessing

Stereo cameras like the one that we employ in this project are heavily affected by
local noise, and we need a way to mitigate the derived uncertainty.

If the sensor and the scene are steady, each pixel measures the same point in
the space in subsequent frames. Hence, it is possible to average several sensor
measurements over time in a per-pixel basis. To do this, we apply the temporal
filter provided by the Realsense Library [44] and implemented in an exponential
moving average (Algorithm 4). This strategy allows us to mitigate the per-pixel

noise, as well as to recover partially missing frames.

Algorithm 4: Exponential temporal filtering

Data: D" = {d;';} depth matrix acquired at ¢;

Dto = {Jfoj} filtered depth data at the previous time step tg;
Result: D" filtered depth data at ¢,

for di'; € D" do
if | dY; — di% |< d,nae then

| dl = adl+ (1—a)dp,
else
Jt t
| diy =

end

end

29

Method

To make the computation feasible in short times sequentially on a CPU, we will
use only a downsampled version of the point-cloud (originally made of 1280 % 720 =
921600 points) both in the obstacle volume estimation operation (Section 3.2) and in
the horizontal region extraction (Section 3.3). To reduce the size of the point cloud
we employ a decimation step: given a resolution d, only the points at a row/column

which is multiple of d are kept in the cloud (Equation 3.1):

P={pli=kxdj :n*d,k:O,l,...,Z,n:O,l,...,Zl]} (3.1)

Obviously decimating the point cloud worsens the spatial resolution of the avail-
able data. This effect is linearly dependent on the depth of the points in the camera
frame (Figure 3.7). To choose a suitable decimation factor, we consider the fact that
our maximum working depth is of 1.5 m. Therefore we decide to use a decimation
factor of 4, which means having a spatial resolution at 1.5 m distance of 0.0066 m,

while bringing down the number of points to 57600.

0.014 A

0.012

0.010

0.008

0.006

0.004

spatial resolution x,y [m]

0.002

0.000 4

0.4 0.6 0.8 1.0 1.2 1.4 1.6
distance [m]

Figure 3.7: Resolution along the camera x and y-axis for different decimation factors at
different depths. The spatial resolution is computed according to the equations in [45].

Using these strategies we produce a reduced version of the original point-cloud
which is robust to local noise. Neither filtering nor decimating merges any mea-

surements spatially, thus preserving edges.

30

Method

3.2 Obstacle Volume Estimation

Obstacle volume estimation is needed to assess the non-collision constraint of the
motion of the robot ¢(7). As described in Chapter 1, initially the robot is grasping
an object and it is at a pre-place configuration that allows it to have a top view over
the placement volume (Figure 3.8). The robot end-effector grasping the object is at

the same height of the camera.

Figure 3.8: Point cloud acquired from the RGB-D camera showing the view of the robot
over the placement volume.

We restrict the motion of the robot to be within the camera field of view (FOV),
therefore all the obstacles that have to be take into account are visible. The place-
ment volume is at the center of the FOV, such that we can approximate occlusion to
be vertical.

To place the object, the robot will realize a vertical descending motion that
brings the object to the target placement pose. In addition, the mounting point of
the camera limits the view to top surfaces in the placement volume. Therefore, we
can consider the space that lies underneath the perceived surfaces and above the
floor as occupied or unknown. In this way, we allow placements only on the top
surfaces of the visible objects, and we prevent the robot to move underneath visible
surfaces.

To do this, we employ a simple obstacle representation similar to a heightmap.

Namely, we use a composition of axis-aligned cuboids to describe the occupied

31

Method

space, which allows fast collision checking. The method to retrieve this volumetric

description is detailed in Algorithm 5 and Figure 3.9.

Algorithm 5: Estimate obstacle volume from a point cloud.

Data: P = {p;}, k inflation factor

Result: Vs C V; volume occupied by obstacles
initialize Vs = 0;

fori=1,...h—1do

forj=1,...,w—1do

PrsPd, Par = neighbors (p;;) ;
find Vs, ., the axis-aligned rectangular cuboid that fits the four

points;
inflate its base by k;
‘/obs — ‘/obs U ‘/;)bs,pi,]- ,

end

end
Procedure neighbors(p; ;)
Pr = Pi,j+1 ;
Pa= Piy1;;
Pdr = Lit1,5+41 5
return [p,, pa, Par);

2.00 2.00
175 175
1.50 1.50
125 £ 125 £
[-% o
100 g 100 g
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00

1
X pix, 2
els 3 0

1
X Pix,
els 3 0

2

(b) Original and inflated obstacle. The base is

(a) Rectanqgular cuboid fit to the first four pixels
inflated by a 1.10 coefficient.

of the image.

Figure 3.9: Obstacle volume approximation. Each pixel contains one measurement (a point
in the space). Pixels are processed four-by-four; a rectangular axis-aligned cuboid is fit to
each group of pixels. The obstacle base is then inflated by a coefficient (right image), which
in the example is 10%. This operation ensures further safety during motion planning.

32

Method

3.3 Horizontal Regions Extraction

To ensure placement stability, we follow the strategies presented in Section 2.2:
the planning algorithm in [9] ensures that the center of mass of the target item falls
into the candidate placement face, and we restrict placements to flat surfaces.

We need to detect horizontal segments in the input point cloud, to restrict the
placement position search space. We choose the world frame orthonormal reference
system {Z,¢, 2} in which gravitation acts in the negative direction of the z-axis
ﬁg = —|F,|2. A plane in this reference system is horizontal if its normal vector is
parallel to 2. Given P = {p;}, the output of the sensor brought to the world frame,
we want to cluster together those points which belong to the same horizontal region
and therefore will share a similar z coordinate. We want to filter out the points that
do not belong to horizontal segments.

To this aim, we keep the overall structure of the algorithm in [21] and summarized
in Algorithm 6 for horizontal clusters extraction. We change the pre-processing
method (Section 3.1.3), post processing strategies (Section 3.3.2) and the normal

vectors estimation method (Section 3.3.1).

3.3.1 Normal Vectors Estimation

The two features used in Algorithm 6 are the point z coordinate (line 4) and its
local normal vector (lines 1-2). Dong, Gao, Zhang, et al. estimate this vector by
employing a fixed-size neighborhood using standard PCA as illustrated in Section
2.3.1.

Instead, we adopt the method presented by Holzer, Rusu, Dixon, et al. in [25],
who implement a depth-adaptive normal estimation mechanism precisely for orga-
nized point clouds. Table 3.2 summarizes the time-improvement experienced when
adopting the decimation and integral-images-based normal computation method,
with respect to the voxel filter and PCA based on KD-tree strategy adopted in [21].

We adopt the square-neighborhood definition used in [25] to speed up the neigh-
bor search needed in line 2 of Algorithm 6. This concept is implemented in the Point

Cloud Library [46] by Radu B. Rusu et al. with the name of OrganizedNeighbor.

33

Method

Algorithm 6: HoPE: Horizontal Plane Extractor for Cluttered 3D Scenes
[21]

Data: P = {p;}, N = {N,,} neighbors of each point in P
Result: Ry = {R;} horizontal segments: R; = {p;} set of points belonging
to the same horizontal surface
initialize Ry = 0,7 = 0;
preprocess(P);
1 compute point-wise normals {n;};

2 keep points with almost vertical normals: P = {p;} | cosil(Hfﬁ'ﬁ;”) < Omaz;

select a seed point pg;
P < P\ ps;
Rj = {ps};
while P +# () do
3 for p, € N, neighbor of ps do
4 if [pn. — Ps.2| < 0Zmas then
Rj < R; U{pn};
P+ Pxp,;
pn can be chosen as new seed to grow region j;
end

end
if There is a point in R; that has not been used as seed yet then
\ choose p, from R;, keep growing this region;
else
RH — {RH U Rj };
Choose p, from P;
Jj=J+1
Start growing a new region R; = {p,}
end

end

postprocess(Rpy);

Procedure preprocess(P)

remove points out of the camera working depth ranges ;
remove outliers ;

down-sample P using a voxelized filter;

return P;

Procedure postprocess(Ry)

detect false positives by analyzing each region’s points normal
distribution;

return Ry;

34

Method

Method Time/point(avg) [us] | Std dev [us]
Voxel filter + KD-tree 3.23 0.135
Decimation + Integral image 0.156 0.0298

Table 3.2: Per-point processing time to downsample and estimate the normals of an
organized point cloud initially made of 921600 points. We compare our method with the
one in [21]. Dong, Gao, Zhang, et al. in [21] use a voxel-approach to reduce the point
cloud dimensionality (Section 2.3) and a standard KD-tree and PCA strateqy for normal
vectors estimation (Section 2.3). The results are taken by using a voxelized filter with
1.0cm resolution (output 14615 points), and a the decimation method with decimation factor
8 (output 14400 points). The experiment were run on an Intel Core i7-8550U CPU, 1.80
GHz of standard frequency and up to 4.00 GHz of turbo frequency. The second method
gives a ~ 20x time improvement.

This definition of neighborhood takes down the temporal complexity of neighbors
extraction from O(log(N)) in a K-D tree data structure [47] to constant time.

Lastly, to choose the maximum value for the tilting angle 6,,,. between Z and
n; (Algorithm 6 line 2), we examine the distribution of those angles at a planar
surface (Figure 3.10) and pick the one corresponding to its 99th percentile, namely
0.531 rad (30.42°).

—=- 90%, 0.238 rad
—-=- 95%, 0.313 rad
——- 99%, 0.531 rad

= 90%, 0.238 rad
=— 95%, 0.313 rad
—— 99%, 0.531 rad

0.0 01 02 03 0.4 05 0.6
[rad] -06 -04 -02 00 02 0.4 0.6 08
[m]

(a) Distribution of the angle formed by the
local normal and the z axis on a flat surface.
The vertical lines cut the distribution at
the 90th, 95th and 99th percentile of the
distribution.

(b) Distribution of the x and y components of
the normal vectors on a flat surface. If the
surface is planar with white noise, the dis-
tribution should be gaussian, as the one in
the picture. The colored circles represent the
90th, 95th and 99th percentile of the distri-
bution.

Figure 3.10: Distribution of the tilting angle of the estimated normals at a planar surface.

35

Method

3.3.2 Postprocessing

Once the candidate planar clusters Ry = {R;} have been extracted, we conduct a
post-processing procedure to exclude false positives. An example of a false positive,
can be a slightly tilted planar surfaces: the per-point normal vectors are almost
vertical, but the cluster is not overall horizontal. Similarly, the upper face of a
sphere presents almost vertical normal vectors.

To effectively detect sloped planar clusters from our final result, we compute the
least-squares plane fit m, of each cluster and enforce a threshold on the allowed
overall slope, which in this case can be much finer than 6,,,,. Namely, we filter out
those point clusters which overall normal is tilted of more than 0.08 rad (5.0°) from

the reference vertical vector 2 (Figure 3.11).

(a) Pitch: 0 rad (b) Pitch: —0.05 rad (c) Pitch: —0.07 rad
(0°) (—3.0°) (—4.0 °)

Figure 3.11: To test the post processing analysis, we progressively tilt the scene by adding
some pitch to the camera transform. We highlight in green the points that belong to planar
clusters. When the tilting reaches about 4 degrees, almost no point in the original planar
surface is detected as planar.

To tackle the second case of false positives, we test the cluster curvature [28]:
given the cluster R;, the covariance matrix of the cluster is computed as in Equation
3.2.

| K
Ci= e Z(pi —p)" (pi — P) (3.2)

7j=1
being p the centroid of the points set. We let Ay, A1, A2 be the eigenvalues of C;,
such that 0 < A\ < Ay < Ao If the cluster is planar, we expect it to have a

36

Method

principal component decomposition such that the two principal components would
explain most of the cluster variance, therefore A\; >> XAy and Ay >>). Given this

principle, the curvature is computed as in Equation 3.3.

Ao

__ At 33
S VIS WIS W (3:3)

We put an upper bound on the curvature of 0.02, i.e. only 2.0% of the cluster
variability can be explained by the third principal component (the normal) of the

cluster.

3.4 Integration with the Placement Planner

The set of horizontal regions Ry, restricts the search space for the candidate place-
ment positions from V; to Ry. Next, we integrate the perceived regions with the
planner in [9] and reviewed in Section 2.5.

We provide a way to hierarchically split the placement regions, as required to
build the Monte Carlo Search Tree. To do this, we use the Principal Component
Analysis to find the placement region principal axis and its centroid. We assign
each point to a different sub-region, according to their position w.r.t. the center and

the two principal axis of the region (Figure 3.12).

37

Method

T T T T T
0.9 1.0 11 12 1.3x[m]

Figure 3.12: Creation of children regions from an initial set of points. The points in the
plot are the projection of the points in the space into the xzy plane. Each color represents
the assignment of those points to a specific subregion. To subdivide the regions produced
by the segmentation algorithm hierarchically, we use the Principal Component Analysis to
find the central point of the area and the two horizontal principal axes. Then, we consider a
local reference system centered in the mean position and with the axes found by PCA: each
point is assigned to one of the four child regions based on the sign of the local coordinates
in this new reference system.

The pose that is sampled in the solution space refers to a reference system that
is centered on one of the points in the base surface of the target object’s convex
hull (Figure 3.13). To assess the support constraint, we verify that each of the other
vertices in the placement face is in contact with some surface in the scene. To do
this, we perform a radius search for each of the vertices of the object on the original
input point cloud. If all of them have a minimum amount of neighbors within a radius

r, we consider the placement to be stable.

1.0

0.8

0.6
0.4
0.2
0.0 \\\ ==

0'%"‘:).%_20‘\//:2 030405

0.0 0.1
“01y 5o 50.100

Figure 3.13: Cubic object that has to be placed in the scene. The red points are checked
to assess the stability constraint. The arrows symbolize the object’s local reference system.

38

Method

The integration of the perception and placement planning module, allows the
computation of a placement pose 7, and a corresponding motion 7 to place a known
objects in a scene perceived through an RGB-D sensor. The pose satisfies the
no-collision and stability constraint. Moreover, it maximizes the objective function

&(x,), Le. is the lowest feasible placement.

39

Chapter 4

Results

In the following, we illustrate the result of the plane extraction process and place-
ment computations in some placement scenarios of increasing difficulty. To evaluate

the computed placements, we manually reproduce them in the real scenario.

4.1 Placing on a Single Surface

To assess the performance of the pipeline, we first test if it is possible to compute
simple placements like placing small boxes on a single object. Each supporting
object stands on a layer of boxes and in this phase we force the plane extraction

module to ignore the boxes.

41.1 Toolbox

As first supporting object, we choose a rigid toolbox. The toolbox has an upper
rigid surface of 15.0 cm x40.0 cm and is slightly sloped on the side. We compute a
placement for a small carton box with a bottom face of 8.0 cm x19.0 cm. Table 4.1
shows the process of plane extraction. Table 4.2 shows the result of the obstacle
volume estimation applied to the content of the roller container (in red); the volume of
the roller container (in grey) is known. Table 4.3 shows multiple planned placement

poses and the reproduction of one of those in the real setup.

40

Results

Plane extraction

Point cloud Normal vectors

Clusters Planes

Table 4.1: Plane extraction process applied to a toolbox. In the upper-left corner the
original point cloud. In the upper-right corner the estimated normal vectors: the red ones
are filtered out according to line 2 of Algorithm 6. In the bottom-left corner the remaining
points are divided in clusters, each color corresponds to a new cluster. The bottom-right
corner shows the cluster that pass the post-processing test.

Obstacles

Table 4.2: Obstacle estimation (in red). In grey the obstacle volume of the roller container,
its pose and volume is known.

41

Results

Planning

Planned placements Example Real placement

Table 4.3: Computed placement for a small box. The leftmost picture shows the footprint
of the object in different computed placement poses. In the middle one of the computed
placements, on the right the reproduction of the placement.

41.2 Cans

As a second experiment, we use as support a package of 24 cans. Cans have circular
planar surfaces of 2.5 cm radius and are wrapped in a plastic film that is overall
planar. The size of the top layer of the can box is circa 38.0 cm x29.0 cm. We plan
a placement for a box with a base of 26.0 cm x20.5 cm. Table 4.5 shows the result of
the obstacle volume estimation. Table 4.6 shows multiple planned placement poses

and the reproduction of one of those in the real setup.

42

Results

Plane extraction

Point cloud

Normal vectors

Table 4.4: Plane extraction process applied to a box of cans. In the upper-left corner the
original point cloud. In the upper-right corner the estimated normal vectors: the red ones
are filtered out according to line 2 of Algorithm 6. In the bottom-left corner the remaining
points are divided in clusters, each color corresponds to a new cluster. The bottom-right
corner shows the cluster that pass the post-processing test: curved clusters between the

packages are discarded.

Obstacles

Table 4.5: Obstacle estimation (in red). In grey the obstacle volume of the roller container,

its pose and volume is known.

43

Results

Planning

Planned placements Example Real placement

Table 4.6: Computed placement for a box with a base of 26.0 cm x20.5 cm. The leftmost
picture shows the footprint of the object in different computed placement poses. In the middle
one of the computed placements, on the right the reproduction of the placement.

4.1.3 Bag of Pet Food

The next supporting surface that we use is a pet food bag. The bag is not rigid,
therefore it has several local bumps and is overall curved. The size of the bag
can be approximated to be 42.0 cm x26.0 cm. The sides of the bag are slightly
curved, therefore it is not possible to find placements that require having all the
supports on its most external sides. For this reason, it is not possible to find a
placement of the 26.0 cm x20.5 cm side box. We compute placement poses for a box
of size 26.0 cm x16.0 cm. Table 4.7 shows the result of plane extraction: the local
bumps constitute small clusters at different heights. Table 4.8 shows the results of
obstacle volume estimation applied to the content of the roller container. Table 4.7
illustrates multiple solutions found by the planning algorithm and the realization of

one of them.

44

Results

Plane extraction

Point cloud Normal vectors

Clusters Planes

Table 4.7: Plane extraction process applied to a the bag of pet-food. In the upper-left
corner the original point cloud. In the upper-right corner the estimated normal vectors:
the red ones are filtered out according to line 2 of Algorithm 6. In the bottom-left corner
the remaining points are divided in clusters, each color corresponds to a new cluster. The
bottom-right corner shows the cluster that pass the post-processing test.

Obstacles

Table 4.8: Obstacle estimation (in red). In grey the obstacle volume of the roller container,
its pose and volume is known.

45

Results

Planning

Planned placements Example Real placement

Table 4.9: Planned and real placement. The object appears to be bigger in the real
placement scenario, due to perspective distortions.

4.1.4 Water Bottles

Lastly we use as supporting objects four packs of water bottles, the size of one
package is approximately 15.0 cm x21.0 cm. Water bottles are wrapped in a plastic
film which is in fact overall almost planar. However, the plastic film is transparent
and as a result it is hardly perceived by the sensor. Thus, only a small section of
the top surface is detected as planar (Table 4.10). Nonetheless, it is possible to

compute multiple placements for a box of size 26.0 cm x20.5 cm (Table 4.12).

46

Results

Plane extraction

Point cloud Normal vectors

Table 4.10: Plane extraction process applied to a water bottle package. In the upper-left
corner the original point cloud. In the upper-right corner the estimated normal vectors:
the red ones are filtered out according to line 2 of Algorithm 6. In the bottom-left corner
the remaining points are divided in clusters, each color corresponds to a new cluster. The
bottom-right corner shows the cluster that pass the post-processing test. Almost all the
clusters found by the algorithm do not pass the post-processing step, due to the high z-
variation.

Obstacles

Table 4.11: Obstacle estimation (in red). In grey the obstacle volume of the roller container,
its pose and volume is known.

47

Results

Planning

Planned placements Example Real placement

Table 4.12: Placement for a box. On the left several proposed placement poses, in the
center and right picture the realization of one of them. The box in the real scenario appears
to be bigger than the Planned one, due to perspective distortion.

4.2 Placing in Semi-filled Roller Containers

Next, we test the system on more complex scenes, namely roller-containers filled
with several objects. We use three different target objects: the package of water
bottles (base 18.0 cm x24.0 cm), a box (base 26.0 cm x20.5 cm), and a can package
(base circa 40.0 cm x27.0 cm). The objects are approximated with their bounding

boxes.

4.2.1 Roller Container filled with Boxes

As first scenario, we choose a roller container filled with boxes. This first scenario is
easy, as the top surface of the boxes is planar. Table 4.13 illustrates the process of
the plane extraction: the surfaces of the boxes are recognized as planar. The upper
layer is perceived as two different clusters due to a perceived local discontinuity.
Table 4.14 illustrate the result of obstacle volume estimation. Tables 4.15-4.17 show

some planned placements for the water bottles, a box and the cans package.

48

Results

Plane extraction

Point cloud Normal vectors

4

Clusters Planes

Table 4.13: Plane extraction process applied to a roller container filled with boxes. In the
upper-left corner the original point cloud. In the upper-right corner the estimated normal
vectors: the red ones are filtered out according to line 2 of Algorithm 6. In the bottom-left
corner the remaining points are divided in clusters, each color corresponds to a new cluster.
The bottom-right corner shows the cluster that pass the post-processing test.

Obstacles

Table 4.14: Obstacle estimation (in red). In grey the obstacle volume of the roller contatiner,
its pose and volume is known.

49

Results

Planning - water bottles

Planned placements Example Real placement

Table 4.15: Placement for a water bottle package. Placement for a water bottle package.
On the left, the footprint of the bounding box of the package is plotted on the scene in

several planned poses. The right image is the manual reproduction of the placement in the
central image.

Planning - box

Planned placements Example Real placement

Table 4.16: Computed placement for a box (26.0 cm x20.5). On the left, the footprint of the
bounding box of the package is plotted on the scene in several planned poses. The right
image is the manual reproduction of the placement in the central image.

Planning - cans

Planned placements Example Real placement

Table 4.17: Computed placement for a package of cans. On the left, the footprint of the
bounding box of the package is plotted on the scene in several planned poses. The right
image is the manual reproduction of the placement in the central image.

50

Results

4.2.2 Semi-filled Roller Container

In the next scenario, we fill up the roller container with a combination of cans, boxes
and pet food. We compute a placement for the water bottles (Table 4.20) and the
box (Table 4.21). No placement is found for the cans.

Plane extraction

Point cloud Normal vectors

l.ﬂ"wl‘!ﬁl"\? T

e

Table 4.18: Plane extraction process applied to a roller container filled with different
objects: two stacks of beverage cans, a bag of pet food and a carton box. In the upper-left
corner the original point cloud. In the upper-right corner the estimated normal vectors:
the red ones are filtered out according to line 2 of Algorithm 6. In the bottom-left corner
the remaining points are divided in clusters, each color corresponds to a new cluster. The
bottom-right corner shows the cluster that pass the post-processing test. The sloped cluster
at the rightmost edge of the pet-food bag is discarded, as well as the clusters that separate
the two columns of cans in the lower layer.

51

Results

Obstacles

Table 4.19: Obstacle estimation (in red). In grey the obstacle volume of the roller container,
its pose and volume is known.

Planning - water bottles

Planned placements Example Real placement

L Lotps s

Table 4.20: Placement for a water bottle package. On the left, the footprint of the bounding
box of the package is plotted on the scene in several planned poses. The right image is the
manual reproduction of the placement in the central image.

Planning - box

Planned placements Example Real placement

2o\t

Table 4.21: Placement for a box. Placement for a box. On the left, the footprint of the
bounding box of the package is plotted on the scene in several planned poses. The right
image is the manual reproduction of the placement in the central image.

52

Results

4.2.3 Clutter

Finally, we create a highly cluttered scene with several objects (Table 4.22-4.23)
and we show that it is still possible to find a placement for the box (Table 4.24). The
perception module is able to find planar clusters in this highly cluttered an doisy
environment: namely it detects the top surface of the bag of pet food, of the toolbox,

of the can package and of the box in the bottom left corner.

Plane extraction

Point cloud Normal vectors

Clusters Planes

Table 4.22: Plane extraction process applied to a roller container filled with different
objects. In the upper-left corner the original point cloud. In the upper-right corner the
estimated normal vectors: the red ones are filtered out according to line 2 of Algorithm 6. In
the bottom-left corner the remaining points are divided in clusters, each color corresponds
to a new cluster. The bottom-right corner shows the cluster that pass the post-processing
test.

53

Results

Obstacles

Table 4.23: Obstacle estimation (in red). In grey the obstacle volume of the roller contatiner,
its pose and volume is known.

Planning - box

Planned placements Example Real placement

Table 4.24: Placement for a box. On the left several proposed placement poses, in the
center and right picture the realization of one of them.

54

Chapter 5

Discussion

In this section, we discuss the results of the experiments in Chapter 5 and highlight

the main findings and limitations.

5.1 Plane Extraction

The experiments in Section 4 show that the plane extraction algorithm recognizes
planar clusters and discards surfaces that are not planar for the different objects
that we have employed. A meaningful case is the last example in Table 4.22. The
scene is highly cluttered and the data is particularly noisy, nonetheless the plane
extraction algorithm succeeds in finding planar surfaces on the bag of pet food, the
toolbox, the cans and the boxes. Moreover it does discard the surfaces belonging to
the ball and the toy car in the roller-container.

In order to be successful, the plane extraction algorithm has to be able to tackle
the source of erroneous depth estimation presented in Section 3.1. In table 4.1 and
413 it is possible to observe the local error in depth estimate at homogeneously
colored surfaces. From these examples it is clear that noise is not spatially indepen-
dent, and a wrong estimate at pixel i, j affects the estimates at the nearby pixels as
well. Therefore planar surfaces present several local bumps. In both cases in Tables
4.1 and 4.13 the extraction algorithm does recognize the surfaces as planar, and

local bumps are integrated in bigger overall-planar clusters. Two different clusters

55

Discussion

are created on the higher layer of boxes in Table 4.13. This is due to the fact that
none of the pixels on the border between the two clusters are perceived as being
at similar heights, hence there is no evidence that the two clusters are connected
according to proximity condition in line 4 of Algorithm 6.

A challenging case is the case of soft surfaces like the bag of pet-food in Table
4.7. This surface is not rigid, hence it has small local deformations and it is slightly
curved on the sides. The algorithm is able to assign most points in the surface to the
same planar cluster. Few small clusters that do not satisfy the proximity condition
(line 4 of Algorithm 6) are isolated from the main cluster.

Another very challenging scenario is the case of water bottles. The depth estimate
in case of translucent materials like the plastic film that wraps the water bottles
(Table 4.10) is affected by the light conditions. In most of the cases the sensor
perceives correctly the center of the bottles cups. The data in the space between the
cups measures the depth of the bottles, rather than the plastic film. In the example
in Table 4.10, the package in the upper-right corner of the image is affected less by
light reflection, and the algorithm manages to find the planar cluster that connects
the bottles cups.

Overall the results demonstrate that the plane extraction algorithm is able to
tackle small local deformations, both in the case of sensor noise, or partially planar
surfaces as in the case of non-rigid bags. Some sensor limitations such as consistent
noise or significant deformations (as the rightmost edge of the package of cans in
Table 4.4) cannot be mitigated in absence of prior knowledge about the objects in

the scene.

5.2 Integration with the Placement Planner

The integration with the placement planner shows promising results. The com-
puted placements do satisfy the reachability, no-collision and support constraints
of the problem. No faulty placement were ever computed, and the simple obstacle

estimation strategy used seems to be sufficient to quarantee feasible placements.

56

Discussion

It is always possible to compute placements where enough planar space is avail-
able on the scene. Moreover, it is possible to compute placements even in the case

that very small planar clusters are found, as the in the experiment with bottles (Table
4.10).

57

Chapter 6

Conclusion

In this thesis, we addressed the problem of automating the placement of known
objects in an unknown and unstructured environment such as partially-filled con-
tainers. To do this, we used an RGB-D sensor to perceive the working scene, and
we extracted planar surfaces as candidate placement regions. Then, we made use
of the algorithm developed in [9] to find a suitable placement pose.

Under the hypothesis of dealing with rigid objects and a static environment,
our experiments show that given enough space, the overall system succeeds to find
stable placements for simple objects like boxes. Overall, this work constitutes a step

towards the automation of placement tasks.

6.1 Possible extensions

To develop this work we relied on some simplification. For example, we assume that
the pose and volume of the target container is known. In some placement scenarios,
this is not the case, and a container-localization step must be included.

Moreover, we assume that a model of the object that has to be placed is available,
or we approximate box-shaped objects with their bounding boxes when needed. If
a model of the object is not available, an extension could be to estimate the object
shape from perceived data. https://doi.org/10.1007/s11042-018-6912-6

Additionally, we consider a region of interest at the center of the camera field of

58

Conclusion

view, which allow us to make use of a simple obstacles volume estimation method. If
a wider area has to be considered, a more sophisticated volume estimation method
has to be applied, possibly integrated over time [13].

A further improvement could be to design a placement objective function that
aims at producing placements that are favorable to the goal of filling up the roller
container tightly. Alternatively, such a mapping could be learnt empirically, possibly
through synthetic data, similarly to what was done in [48] or [49], where the authors

use physics simulators to learn robust grasps from RGB-D images.

59

Bibliography

1]

[4]

Y. Lu, «Industry 4.0: A survey on technologies, applications and open research
issuesy, Journal of Industrial Information Integration, vol. 6, pp. 1-10, Jun. 2017,
ISSN: 2452414X. por: 10.1016/j . jii.2017 .04 .005. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2452414X17300043
(visited on 01/24/2020).

T. Ketelaars and E. van de Plassche, «An Industrial Solution to Automated
[tem Picking», in Automation in Warehouse Development, R. Hamberg and
J. Verriet, Eds., London: Springer London, 2012, pp. 105-115, 1s8N: 978-0-
85729-968-0. poi: 10.1007 /978~ 0-85729-968-0_8. [Online]. Available:
https://doi.org/10.1007/978-0-85729-968-0_8 (visited on 09/06/2019).

Robot Challenges - ICRA 2015, http://icra2015.org/conference/robot-
challenges. (visited on 01/25/2020).

H.-Y. Kuo, H.-R. Su, S.-H. Lai, and C.-C. Wu, «3D object detection and pose es-
timation from depth image for robotic bin picking», in 2074 IEEE International
Conference on Automation Science and Engineering (CASE), Taipei: IEEE,
Aug. 2014, pp. 1264-1269, 1sB8N: 978-1-4799-5283-0 978-1-4799-5282-3. por:
10.1109/CoASE . 2014 . 6899489. [Online|. Available: http://ieeexplore.
ieee.org/document/6899489/ (visited on 03/23/2020).

R. D. Singh, A. Mittal, and R. K. Bhatia, «3D convolutional neural network
for object recognition: A review», Multimedia Tools and Applications, vol. 78,
no. 12, pp. 15951-15995, Jun. 2019, i1ssn: 1380-7501, 1573-7721. poi: 10.

6o

https://doi.org/10.1016/j.jii.2017.04.005
https://linkinghub.elsevier.com/retrieve/pii/S2452414X17300043
https://doi.org/10.1007/978-0-85729-968-0_8
https://doi.org/10.1007/978-0-85729-968-0_8
http://icra2015.org/conference/robot-challenges
http://icra2015.org/conference/robot-challenges
https://doi.org/10.1109/CoASE.2014.6899489
http://ieeexplore.ieee.org/document/6899489/
http://ieeexplore.ieee.org/document/6899489/
https://doi.org/10.1007/s11042-018-6912-6
https://doi.org/10.1007/s11042-018-6912-6

BIBLIOGRAPHY

8]

[10]

[11]

1007/s11042-018-6912-6. [Online]. Available: http://1link. springer .
com/10.1007/s11042-018-6912-6 (visited on 09/19/2019).

A. Sahbani, S. El-Khoury, and P. Bidaud, «An overview of 3D object grasp syn-
thesis algorithms», Robotics and Autonomous Systems, Autonomous Grasping,
vol. 60, no. 3, pp. 326-336, Mar. 1, 2012, 1ssN: 0921-8890. por: 10.1016/7 .
robot.2011.07.016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0921889011001485 (visited on 02/27/2020).

J. Bohg, A. Morales, T. Asfour, and D. Kragic, «Data-Driven Grasp Synthesis
- A Surveyn, IEEE Transactions on Robotics, vol. 30, no. 2, pp. 289-309, Apr.
2014, 1ssN: 1552-3098, 1941-0468. por: 10.1109/TR0.2013.2289018. arXiv:
1309.2660. [Online]. Available: http://arxiv.org/abs/1309.2660 (visited
on 02/27/2020).

G. Du, K. Wang, and S. Lian, «Vision-Based Robotic Grasping from Object Lo-
calization, Pose Estimation, Grasp Detection to Motion Planning: A Review,
arXiv:1905.06658, May 16, 2019. arXiv: 1905.06658 [cs]. [Online]. Available:
http://arxiv.org/abs/1905.06658 (visited on 02/27/2020).

J. A. Haustein, K. Hang, J. Stork, and D. Kragic, «Object Placement Planning
and optimization for Robot Manipulators», arXiv:1907.02555, pp. 7417-7424,
2020. po1: 10.1109/iros40897.2019.8967732. arXiv: 1907 .02555.

S. Thrun, «Probabilistic robotics», Communications of the ACM, vol. 45, no. 3,
pp. 221-242, Mar. 1, 2002, 1ssn: 00010782. por: 10.1145/504729 . 504754.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=504729.
504754 (visited on 03/23/2020).

R. Hadsell, J. A. Bagnell, D. F. Huber, and M. Hebert, «Accurate rough terrain
estimation with space-carving kernels.», in Robotics: Science and Systems,
vol. 2009, 2009.

R. Triebel, P. Pfaff, and W. Burgard, «Multi-Level Surface Maps for Outdoor
Terrain Mapping and Loop Closing», in 2006 IEEE/RS] International Con-
ference on Intelligent Robots and Systems, Oct. 2006, pp. 2276-2282. por:
10.1109/IR0S.2006.282632.

61

https://doi.org/10.1007/s11042-018-6912-6
https://doi.org/10.1007/s11042-018-6912-6
http://link.springer.com/10.1007/s11042-018-6912-6
http://link.springer.com/10.1007/s11042-018-6912-6
https://doi.org/10.1016/j.robot.2011.07.016
https://doi.org/10.1016/j.robot.2011.07.016
http://www.sciencedirect.com/science/article/pii/S0921889011001485
http://www.sciencedirect.com/science/article/pii/S0921889011001485
https://doi.org/10.1109/TRO.2013.2289018
https://arxiv.org/abs/1309.2660
http://arxiv.org/abs/1309.2660
https://arxiv.org/abs/1905.06658
http://arxiv.org/abs/1905.06658
https://doi.org/10.1109/iros40897.2019.8967732
https://arxiv.org/abs/1907.02555
https://doi.org/10.1145/504729.504754
http://portal.acm.org/citation.cfm?doid=504729.504754
http://portal.acm.org/citation.cfm?doid=504729.504754
https://doi.org/10.1109/IROS.2006.282632

BIBLIOGRAPHY

[16]

[18]

[19]

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, «Oc-
toMap: An efficient probabilistic 3D mapping framework based on octreesy,
Autonomous Robots, vol. 34, no. 3, pp. 189-206, Apr. 1, 2013, 1ssN: 1573-
7527. por: 10.1007/s10514-012-9321-0. [Online]. Available: https://doi.
org/10.1007/s10514-012-9321-0 (visited on 12/02/2019).

Wikipedia, Octree, https://en.wikipedia.org/wiki/Octree# /media/
File:0Octree2.svg. (visited on 01/25/2020).

J. Baumgartl, T. Werner, P. Kaminsky, and D. Henrich, «A fast, GPU-based ge-
ometrical placement planner for unknown sensor-modelled objects and place-
ment areasy, in 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), Hong Kong, China: IEEE, May 2014, pp. 1552-1559, I1sBN:
978-1-4799-3685-4. poi: 10.1109/ICRA.2014.6907058. [Online]. Available:
http://ieeexplore.ieee.org/document/6907058/ (visited on 09/19/2019).

K. Harada, T. Tsuji, K. Nagata, N. Yamanobe, and H. Onda, «Validating an
Object Placement Planner for Robotic Pick-and-Place Tasks», Robotics and
Autonomous Systems, vol. 62, no. 10, pp. 14631477, Oct. 1, 2014, 1ssN: 0921-
8890. por: 10.1016/ j . robot . 2014 . 05. 014. [Online]. Available: http :
//www . sciencedirect . com/science/article/pii/S0921889014001092
(visited on 08/13/2019).

M. J. Schuster, J. Okerman, H. Nguyen, J. M. Rehg, and C. C. Kemp, «Perceiving
Clutter and Surfaces for Object Placement in Indoor Environmentsy», in 2070
10th IEEE-RAS International Conference on Humanoid Robots, Dec. 2010,
pp. 152-159. por: 10.1109/ICHR.2010.5686328.

Y. Jiang, M. Lim, C. Zheng, and A. Saxena, «Learning to Place New Objects
in a Sceney, arXiv:1202.1694, Feb. 8, 2012. arXiv: 1202.1694 [cs]. [Online].
Available: http://arxiv.org/abs/1202.1694 (visited on 08/17/2019).

D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, «Real-Time Plane Segmentation
Using RGB-D Camerasy, in RoboCup 2011: Robot Soccer World Cup XV, T.
Rofer, N. M. Mayer, J. Savage, and U. Saranly, Eds., ser. Lecture Notes in

62

https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg
https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg
https://doi.org/10.1109/ICRA.2014.6907058
http://ieeexplore.ieee.org/document/6907058/
https://doi.org/10.1016/j.robot.2014.05.014
http://www.sciencedirect.com/science/article/pii/S0921889014001092
http://www.sciencedirect.com/science/article/pii/S0921889014001092
https://doi.org/10.1109/ICHR.2010.5686328
https://arxiv.org/abs/1202.1694
http://arxiv.org/abs/1202.1694

BIBLIOGRAPHY

[20]

[21]

[25]

Computer Science, Springer Berlin Heidelberg, 2012, pp. 306-317, 1sBN: 978-
3-642-32060-6.

A.-V. Vo, L. Truong-Hong, D. F. Laefer, and M. Bertolotto, «Octree-Based Re-
gion Growing for Point Cloud Segmentationy», ISPRS Journal of Photogram-
metry and Remote Sensing, vol. 104, pp. 88-100, Jun. 1, 2015, 1ssN: 0924-
2716. poi: 10.1016/j.1isprsjprs.2015.01.011. [Online]. Available: http:
//www . sciencedirect . com/science/article/pii/S0924271615000283
(visited on 08/17/2019).

Z. Dong, Y. Gao, J. Zhang, Y. Yan, X. Wang, and F. Chen, «HoPE: Horizon-
tal Plane Extractor for Cluttered 3D Scenes», Sensors (Switzerland), vol. 18,
no. 10, 2018. poi: 10.3390/s18103214.

X. Wang, L. Zou, X. Shen, Y. Ren, and Y. Qin, «A region-growing approach for
automatic outcrop fracture extraction from a three-dimensional point cloud»,
Computers & Geosciences, vol. 99, pp. 100-106, Feb. 2017, 1ssn: 00983004.
DoI: 10.1016/j.cageo.2016.11.002. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0098300416306471 (visited on 09/13/2019).

Y. Fan, M. Wang, N. Geng, D. He, J. Chang, and J. J. Zhang, «A self-adaptive
segmentation method for a point cloud», The Visual Computer, vol. 34, no. 5,
pp. 659-673, May 2018, 1ssN: 0178-2789, 1432-2315. poi: 10.1007/s00371~
017-1405-6. [Online]. Available: http://link. springer.com/10. 1007/
s00371-017-1405-6 (visited on 09/13/2019).

S. Filin and N. Pfeifer, «Segmentation of airborne laser scanning data using a
slope adaptive neighborhoody, ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 60, no. 2, pp. 71-80, Apr. 2006, 1ssN: 09242716. por: 10.1016/
j . isprsjprs.2005.10.005. [Online]. Available: https://linkinghub .
elsevier.com/retrieve/pii/S0924271605000638 (visited on 09/16/2019).

S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, «Adaptive neigh-
borhood selection for real-time surface normal estimation from organized point
cloud data using integral images», in 20712 IEEE/RS/ International Conference
on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal: IEEE, Oct.

63

https://doi.org/10.1016/j.isprsjprs.2015.01.011
http://www.sciencedirect.com/science/article/pii/S0924271615000283
http://www.sciencedirect.com/science/article/pii/S0924271615000283
https://doi.org/10.3390/s18103214
https://doi.org/10.1016/j.cageo.2016.11.002
https://linkinghub.elsevier.com/retrieve/pii/S0098300416306471
https://linkinghub.elsevier.com/retrieve/pii/S0098300416306471
https://doi.org/10.1007/s00371-017-1405-6
https://doi.org/10.1007/s00371-017-1405-6
http://link.springer.com/10.1007/s00371-017-1405-6
http://link.springer.com/10.1007/s00371-017-1405-6
https://doi.org/10.1016/j.isprsjprs.2005.10.005
https://doi.org/10.1016/j.isprsjprs.2005.10.005
https://linkinghub.elsevier.com/retrieve/pii/S0924271605000638
https://linkinghub.elsevier.com/retrieve/pii/S0924271605000638

BIBLIOGRAPHY

[26]

[27]

28]

[29]

[30]

2012, pp. 2684-2689, 1sBN: 978-1-4673-1736-8 978-1-4673-1737-5 978-1-
4673-1735-1. poi: 10.1109/IR0S.2012.6385999. [Online]. Available: http:
//ieeexplore.ieee.org/document/6385999/ (visited on 01/29/2020).

J. Berkmann and T. Caelli, «Computation of surface geometry and segmentation
using covariance techniquesy», IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 16, no. 11, pp. 1114-1116, Nov./1994, 1ssN: 01628828.
pol: 10.1109/34.334391. [Online]. Available: http://ieeexplore. ieee.
org/document/334391/ (visited on 09/13/2019).

T. Rabbani, F. Van Den Heuvel, and G. Vosselman, «Segmentation of Point
Clouds Using Smoothness Constraint», International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences, vol. 36, no. 5, pp. 248-
253, 2006.

M. Pauly, M. Gross, and L. Kobbelt, «Efficient simplification of point-sampled
surfacesy, in IEEE Visualization, 2002. VIS 2002., Boston, MA, USA: IEEE,
2002, pp. 163-170, i1sBN: 978-0-7803-7498-0. poi: 10.1109/VISUAL.2002.
1183771. [Online]. Available: http://ieeexplore . ieee . org/document /
1183771/ (visited on 09/13/2019).

J. M. Biosca and J. L. Lerma, «Unsupervised robust planar segmentation of
terrestrial laser scanner point clouds based on fuzzy clustering methodsy», /S-
PRS Journal of Photogrammetry and Remote Sensing, vol. 63, no. 1, pp. 84—
98, Jan. 2008, 1ssNn: 09242716. poi: 10.1016/j . isprsjprs.2007 .07 . 010.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0924271607000809 (visited on 09/17/2019).

A. Rodriguez and A. Laio, «Clustering by fast search and find of density peaks»,
Science, vol. 344, no. 6191, pp. 1492-1496, Jun. 27, 2014, 1ssn: 0036-8075,
1095-9203. por: 10.1126/science.1242072. pmid: 24970081. [Online]. Avail-
able: http://science.sciencemag.org/content/344/6191/1492 (visited
on 09/15/2019).

Y. Ge, H. Tang, D. Xia, L. Wang, B. Zhao, J. W. Teaway, H. Chen, and T.

Zhou, «Automated measurements of discontinuity geometric properties from a

64

https://doi.org/10.1109/IROS.2012.6385999
http://ieeexplore.ieee.org/document/6385999/
http://ieeexplore.ieee.org/document/6385999/
https://doi.org/10.1109/34.334391
http://ieeexplore.ieee.org/document/334391/
http://ieeexplore.ieee.org/document/334391/
https://doi.org/10.1109/VISUAL.2002.1183771
https://doi.org/10.1109/VISUAL.2002.1183771
http://ieeexplore.ieee.org/document/1183771/
http://ieeexplore.ieee.org/document/1183771/
https://doi.org/10.1016/j.isprsjprs.2007.07.010
https://linkinghub.elsevier.com/retrieve/pii/S0924271607000809
https://linkinghub.elsevier.com/retrieve/pii/S0924271607000809
https://doi.org/10.1126/science.1242072
24970081
http://science.sciencemag.org/content/344/6191/1492

BIBLIOGRAPHY

[33]

[35]

[37]

3D-point cloud based on a modified region growing algorithm», Engineering
Geology, vol. 242, pp. 44-54, Aug. 2018, 1ssN: 00137952. por: 10.1016/j.
enggeo.2018.05.007. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0013795217317477 (visited on 09/13/2019).

A. Nguyen and B. Le, «3D Point Cloud Segmentation: A Surveyy, in 2013
6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), Nowv.
2013, pp. 225-230. poi: 10.1109/RAM.2013. 6758588

P. V. C. Hough, «Method and Means for Recognizing Complex Patternsy», U.S.
Patent 3069654A, Dec. 18, 1962. [Online]. Available: https ://patents .
google.com/patent/US3069654A/en (visited on 09/17/2019).

D. Borrmann, J. Elseberg, K. Lingemann, and A. Niichter, «The 3D Hough
Transform for plane detection in point clouds: A review and a new accumulator
designy», 3D Research, vol. 2, no. 2, p. 3, Jun. 2011, 1ssNn: 2092-6731. por:
10.1007/3DRes . 02(2011) 3. [Online]. Available: http://1link . springer.
com/10.1007/3DRes.02(2011) 3 (visited on 09/16/2019).

R. Hulik, M. Spanel, P. Smrz, and Z. Materna, «Continuous Plane Detec-
tion in Point-Cloud Data Based on 3D Hough Transformy», Journal of Visual
Communication and Image Representation, Visual Understanding and Appli-
cations with RGB-D Cameras, vol. 25, no. 1, pp. 86-97, Jan. 1, 2014, issN:
1047-3203. por: 10.1016/j.jvcir.2013.04.001. [Online]. Available: http:
//www . sciencedirect . com/science/article/pii/S104732031300062X
(visited on 09/03/2019).

X. Leng, J. Xiao, and Y. Wang, «A Multi-Scale Plane-Detection Method Based
on the Hough Transform and Region Growingy, Photogrammetric Record, vol. 31,

no. 154, pp. 166-192, 2016. poi: 10.1111/phor. 12145

M. A. Fischler and R. C. Bolles, «Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartogra-
phy», Communications of the ACM, vol. 24, no. 6, pp. 381-395, Jun. 1, 1981,
IssN: 00010782. poi: 10.1145/358669 . 358692. [Online]. Available: http:

65

https://doi.org/10.1016/j.enggeo.2018.05.007
https://doi.org/10.1016/j.enggeo.2018.05.007
https://linkinghub.elsevier.com/retrieve/pii/S0013795217317477
https://linkinghub.elsevier.com/retrieve/pii/S0013795217317477
https://doi.org/10.1109/RAM.2013.6758588
https://patents.google.com/patent/US3069654A/en
https://patents.google.com/patent/US3069654A/en
https://doi.org/10.1007/3DRes.02(2011)3
http://link.springer.com/10.1007/3DRes.02(2011)3
http://link.springer.com/10.1007/3DRes.02(2011)3
https://doi.org/10.1016/j.jvcir.2013.04.001
http://www.sciencedirect.com/science/article/pii/S104732031300062X
http://www.sciencedirect.com/science/article/pii/S104732031300062X
https://doi.org/10.1111/phor.12145
https://doi.org/10.1145/358669.358692
http://portal.acm.org/citation.cfm?doid=358669.358692
http://portal.acm.org/citation.cfm?doid=358669.358692

BIBLIOGRAPHY

[38]

[44]

[45]

[46]

[47]

/ /portal . acm . org/ citation . cfm? doid=358669 . 358692 (visited on
09/17/2019).

R. Schnabel, R. Wahl, and R. Klein, «Effictent RANSAC for Point-Cloud Shape
Detection», Comput. Graph. Forum, vol. 26, pp. 214-226, 2007. poi: 10.1111/
j.1467-8659.2007.01016.x.

P. Torr and A. Zisserman, «kMLESAC: A New Robust Estimator with Applica-
tion to Estimating Image Geometry», Computer Vision and Image Understand-
ing, vol. 78, no. 1, pp. 138-156, Apr. 2000, 1ssN: 10773142. poi: 10. 1006/
cviu.1999.0832. [Online|. Available: https://linkinghub.elsevier.com/
retrieve/pii/S81077314299908329 (visited on 09/18/2019).

H. Fu, D. Cohen-or, G. Dror, and A. Sheffer, «Upright Orientation of Man-Made
Objectsy, ACM Trans. Graphics, pp. 1-7, 2008.

Depth Camera D435, https://www.intelrealsense.com/depth-camera-
d435/. (visited on 01/27/2020).

Stereo depth cameras for mobile phones, https://dev . intelrealsense.

com/docs/stereo-depth-cameras-for-phones. (visited on 02/24/2020).

Projectors for D400 Series Depth Cameras, https://dev.intelrealsense.
com/docs/projectors. (visited on 01/28/2020).

|. RealSense™, Intel® RealSense™ SDK 2.0, https://github.com/IntelRealSense/
librealsense. (visited on 02/24/2020).

Camera Calibration and 3D Reconstruction — OpenCV 2.4.13.7 Documenta-
tion, https://docs . opencv.org/2.4/modules/calib3d/doc/camera _
calibration_and_3d_reconstruction.html. (visited on 02/24/2020).

Point Cloud Library (PCL): PCL API Documentation, http://docs.pointclouds.
org/1.8.1/index.html. (visited on 09/10/2019).

J. L. Bentley, «Multidimensional binary search trees used for associative search-
ing», Communications of the ACM, vol. 18, no. 9, pp. 509-517, Sep. 1, 1975,
IssN: 00010782. poi: 10.1145/361002.361007. [Online]. Available: http:

66

http://portal.acm.org/citation.cfm?doid=358669.358692
http://portal.acm.org/citation.cfm?doid=358669.358692
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1006/cviu.1999.0832
https://doi.org/10.1006/cviu.1999.0832
https://linkinghub.elsevier.com/retrieve/pii/S1077314299908329
https://linkinghub.elsevier.com/retrieve/pii/S1077314299908329
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://dev.intelrealsense.com/docs/stereo-depth-cameras-for-phones
https://dev.intelrealsense.com/docs/stereo-depth-cameras-for-phones
https://dev.intelrealsense.com/docs/projectors
https://dev.intelrealsense.com/docs/projectors
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.pointclouds.org/1.8.1/index.html
http://docs.pointclouds.org/1.8.1/index.html
https://doi.org/10.1145/361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007

BIBLIOGRAPHY

/ /portal . acm . org/ citation . cfm?doid=361002 . 361007 (visited on
01/29/2020).

[48] E. Johns, S. Leutenegger, and A. J. Davison, «Deep Learning a Grasp Func-
tion for Grasping under Gripper Pose Uncertaintyy, in 2076 IEEE/RS] In-
ternational Conference on Intelligent Robots and Systems (IROS), Oct. 2016,
pp. 4461-4468. po1: 10.1109/IR0S.2016.7759657.

[49] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K.
Goldberg, «Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic
Point Clouds and Analytic Grasp Metrics», Mar. 27, 2017. arXiv: 1703.09312
[cs]. [Online]. Available: http://arxiv.org/abs/1703.09312 (visited on
09/24/2019).

http://portal.acm.org/citation.cfm?doid=361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007
https://doi.org/10.1109/IROS.2016.7759657
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1703.09312

	Introduction
	Problem Statement
	Scope and Limitations

	Outline

	Related Work
	Obstacle Volume Estimation
	Placement Stability
	Plane Detection in Point Clouds
	Attribute-based Methods
	Model-based Methods

	Placement Quality
	Placement Search Space Exploration

	Method
	Input Data
	The Sensor
	Data Format
	Preprocessing

	Obstacle Volume Estimation
	Horizontal Regions Extraction
	Normal Vectors Estimation
	Postprocessing

	Integration with the Placement Planner

	Results
	Placing on a Single Surface
	Toolbox
	Cans
	Bag of Pet Food
	Water Bottles

	Placing in Semi-filled Roller Containers
	Roller Container filled with Boxes
	Semi-filled Roller Container
	Clutter

	Discussion
	Plane Extraction
	Integration with the Placement Planner

	Conclusion
	Possible extensions

	Bibliography

