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Chapter 1

Introduction

1.1 INS and GNSS systems
The technologic development achieved during the twentieth century brought
massive improvement in the field of the navigation systems. Nowadays
precise and accurate navigation is indeed required also for civil applications.
Even if several navigation systems exist, the most common ones are Inertial
Navigation Systems (INS) and Global Navigation Satellite Systems (GNSS).
Both of them have different characteristics and peculiarities and so they can
be employed depending on the requirements of the application. A INS can
be useful, for example, because it does not require any supporting network:
all the informations and measurements are performed and elaborated in loco.
On the other hand, even if GNSS is a network based navigation system, it
provides much better accurate position approximations on the long run with
respect to INS.

1.1.1 Inertial Navigation System (INS)
This system is based on the employment of IMUs (Inertial Measurement
Unit), a measurement instrument mounted on the vehicle characterized by
having in its core inertial sensors. Even if nowadays INS are evolving their
performance with the ading of several different types of sensors, the most com-
mon version is the one which is supported by gyroscopes and acceloremeters.
These types of INS mount IMU that have six DOF (Degree Of Freedoms),
i.e. three accelerometers and three gyroscopes (one for each Cartesian axis)
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Introduction

in order to have three dimensioned measurements. There are lots of different
IMUs in commerce. Their performance vary with respect to the technology
of the sensors and with respect to the costs.

• Platform based: IMUs implement the sensors in such a way that the
attitude of the body is kept constant. This is achieved thanks to the
employment of a platform which is supposed to mount the sensors and
adapt the relative system to the surroudings.

• Strap-down based: IMUs does not mount its sensors over a platform:
the body keep its own relative reference system. This kind of system is
better with respect to the platform based in terms of power consumption
but needs some more refined post-processing of the data, which must be
converted to the inertial frame.

Practically speaking every INS suffers from error accumulation, though :
this cause the performed measurements to drift on the long run and even the
most expensive INS carries a non negligible error. A stand-alone INS can be
indeed considered as a dead-reckoning system. The cheapest IMU sensors
that can be found in market are the MEMS (Micro-Electro-Mechanical Sys-
tem) IMU sensors, which are characterized by their extreme compactness.
Sensors are implemented in silicon chips as miniaturized mechanical and
electro-mechanical elements, while the electronics are fabricated as integrated
circuits [1].

1.1.2 Global Navigation Satellite System (GNSS)
It exploits satellite communications to retrieve the position of user at
the ground. Each satellite based sub-system (as GPS, Galileo, BeiDou,
GLONASS, etc.) owns a constellation of satellites which continuously orbit
around the earth. Generally these orbits are built in such a way that they
are able to provide coverage maximization, in order to increase the reliability
of the system as much as possible.

User is therefore positioned thanks to triangulation: he converts each of
the signal received by the visible satellites (which tipycally have different
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Figure 1.1: GPS coverage

range codes) to get informations about position and velocity by solving
mathematical systems made up by collecting the pseudo-range equations
related to each visible satellite m.

ρi =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 + but + ε̂

i = 1, ...,m
The previous set of equations are essential to retrieve the position of

the user u at a given time t′. [xi, yi, zi] and [xu, yu, zu] are respectively the
i-th satellite’s and the user’s positions. On the other hand but represents
the clock bias cδtu and the ε̂ represents the remaining pseudo-range errors
caused by the ionospheric and troposphere effects [2]. The objective of this
research is moreover to work on increasing the reliability of the position
retrieval process by attenuating those additive errors. This will be done
with the integration with INS sensors and with the aiding of a Neural Network.

In GNSS systems attitude can be computed employing multiple antennas
at the receiver side (at least three antennas are required to fully retrieve roll,
pitch and yaw). Unfortunately satellite communications in GNSS involve
really complex assumptions. Since transmissions are based on code division
schemes, i.e. each satellite is assigned to a given code, making end to end
synchronization one of the main issues, receiver and transmitter should
compensate clock bias, clock error and Doppler frequency. Therefore in
order to properly retrieve the three dimensioned position of the user and
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Introduction

compensate the clock bias at the same time, there must be at least four
satellites in visibility, i.e. a system made up by four equations and four
variables must be solved.

1.2 INS/GNSS Integration
Navigation systems are widely used in lots of applications and for lots of
purposes. For example, the ETSI standards for V2X communications totally
rely on the positioning capabilities of the nodes: positioning is exploited to
perform packet addressing (Geo-Networking) [3]. This technology allows the
vehicular system not to need a coordinating infrastructure but instead allows
vehicles to spread packets (with different methodologies) at the network
layer based on the geographical position of the nodes. Therefore packets are
basically forwarded and addressed to certain geographical areas. Though it
seems to be very hard to understand, this technology allows V2X communi-
cations to be more secure, accurate and efficient.

Positioning and navigation are key features also in the IoT, where there
exist some strict requirements in terms of costs and in power consumptions.
When cloud-based positioning [4] is not employed these systems are forced to
employ very low cost and sometimes very inaccurate sensors and positioning
systems, because nodes are supposed to elaborate their sensors informations
and not to transfer the signal processing to a centralized cloud server.

Whatever the application would be, it is quite clear that more and more
exigent requirements are pushing the navigation technologies to a point
where the performance of such systems should be optimized as much as
possible. Unluckily it is difficult to make a single navigation system meet
high requirements on different main characteristics (reliability, accuracy,
availability, real-time performances and costs). A stand-alone INS indeed is
ideal in terms of availability, has good anti-jamming capabilities, real-time
performances and costs. Still it suffers error accumulation and its outcome
drifts as time elapses regardless of the error model. Therefore INS has lack
of reliability and accuracy on the long run. On the other side a stand-alone
GNSS can reach good results in terms of accuracy and reliability but when
used in some environments (like in urban canyons) it experiences lack of
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Introduction

availability and real-time performances.

In order further improve the capabilities of a position estimator, inte-
grated navigation becomes the direction where to lead the development and
the research on the navigation systems. Integrated navigation is based on
combining the informations of two or more systems in order to better refine
the position approximation. This is achieved by mutual error compensation.
The perk of exploiting such a system is to combine together the advantages
of different navigation systems and satisfy more strictly requirements. For
instance, an integrated system gives better results at the same costs with
respect to a stand-alone one. Integration requires lot of signal and data
processing, though. Therefore different level of accuracy can be reached
depending on the grade of integration of the systems involved.

It is difficult to give a detailed classification of integrated navigation
systems. Indeed, they are implemented with respect to the requirements of
the applications for which they are built. The most common and widely used
integrated navigation systems is the one obtained by the combination of INS
and GNSS, because both the systems can be very low cost and available to be
applied much easily, especially for civil applications. As it will be shown in
the next section, GNSS/INS integration can be implemented in mainly two
ways: loosely-coupled one and tightly-coupled one. The difference depends
on the level of integration of the systems.

1.3 Neural Network
Neural networks are one of the most widely used tool in nowadays tech-
nologies. Their concept is based on the reproduction of the human neurons.
Since it has become a general purpose technology, it can be used in a lot of
applications, not only for Artificial Intelligence (AI) or image recognition.
The core component of Neural Networks is the neuron itself : logical entities
that receive inputs and produce outputs according to a given activation
function [5]. Neurons form a networks thanks to connections (as shown in
figure 1.2), which are responsible to provide the output of one neuron as
input of another neuron. Connections have given weights, that assign a
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Figure 1.2: Example of a fully-connected Neural Network

certain level of importance to some outputs with respect to other ones. The
combination of thousands of neurons, all connected with each other, lead to
the generation of a very complex network which can classify of approximate
data, as a human brain. Different types of NN exists and different for their
topology and from the activation function employed. Each Neural Network
have to be trained, though. Training is the process employed to adjust
weights and biases associated to the activation functions of each neuron using
a given data-set. Once the NN is properly trained, it may be ready to receive
inputs and elaborate them in order to give them a complex classification/ap-
proximation.

1.4 Related research
INS/GNSS Integration has become one of the main issues in the navigation
technologies. Mass products indeed need more and more reliable and accurate
systems, according sometimes to very low cost requirements. The benefits
of integration has moreover been proven for lots of applications, because it
can help the overall system to enjoy the advantages of both the navigation
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systems. But there are still some gaps to fill. Since there are some scenarios
where there is a lack of performance, the related research needs to improve
and study new technologies. The limits of INS/GNSS integrated systems
are shown when for example the reliability of one of those system decreases
like when there is a GNSS outage when in indoor scenarios (or more likely
when a car is approaching a tunnel in the highway). In these case all the
responsibility is left on the INS and as it is known this can be a problem in
the long run, because the errors on the position retrieval increase more than
linearly.

It is proven that tightly-coupled INS/GNSS Integrated systems give more
accurate position approximation, even if the supporting algorithms are more
complicated than the loosely-coupled ones. In this scenario, research tried
to improve the system with the aiding of Neural Networks and results show
that they are successfully able to compensate GNSS outages by emulating
GNSS pseudo-ranges and pseudo-range rates [6] and attenuating a lot the
error increases on the measurements. Since NN require to be trained with
proper data, and since this training may require non-negligible amount of
time, it is still difficult to understand how to make the system to work in
an efficient way minimizing the computational cost of the supporting algoritm.

1.5 Research objective
This work addresses a new approach on integrated navigation combining
INS, GNSS with a RBNN (Radial Basis Neural Network). RBNN is a special
kind of NN which has a very simple topology with only one hidden layer.
The purpose of this research is to build a system able to compensate in
a better and lighter way the overall position approximation during GNSS
outages, which is achieved by aiding the INS informations to a RBNN. If
the NN is properly trained, it will be able to predict and substitute with a
certain accuracy the GNSS informations needed to approximate the position
of the user keeping a good accuracy. RBNN is a type of neural network
characterized by having a very simple topology which is fast to be trained
with respect to traditional NN. Moreover it is used also for approximating
functions, which is what the system requires since it must approximate the
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pseudo-range and pseudo-range rate difference evolutions.

The next section will give an overview of the working principles of GNSS,
INS and their combined integration (tightly and loosely-coupled). The section
3 will moreover give a detailed overview of the RBNN and it will also give
explanations about why it is convenient to use this kind of NN in navigation
systems. Furthermore, the purpose of the section 4 is to go in detail on the
actual implementation of the navigation system, showing how the NN is
actually employed in it. In section 5 experimental results will be shown. At
the end, section 6 will give tips and suggestions about future implementation
of the proposed navigation system.
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Chapter 2

INS/GNSS Integration

2.1 Overview of GNSS
The “Global Navigation Satellite Systems” refers to all the navigation systems
that are based on satellite communications. GPS, Galileo, GLONASS and
BeiDou are just examples of different employments of the navigation system.
Each of them exploits different signal transmission technologies and owns
its own satellite constellation. The position of the user at the receiving end
is provided thanks to what is called trilateration: a computational process
which is performed in order to retrieve the pseudo distances ρs (commonly
known as “pseudo-ranges") between the user and the current visible satellites.
A receiver theoretically needs just three satellites to compute its position,
which is retrieved as solution of an analytic system geometrically represented
by the feasible intersection point between spheres which have the position
of the satellites as their center, as shown in figure 2.1. In practice, though,
every GNSS receiver needs at least four satellites in view in order to perform
timing corrections and compensation.

Receiving end knows the positions of the visible satellites because the posi-
tion retrieval process is based on the assumption that satellites continuously
broadcast their orbit informations using the navigation message, usually
denoted with Signal-In-Space (SIS). This allows the receiver to easily obtain
the pseudo-ranges needed to perform the position estimation. The distances
between receiving end and satellites are furthermore referred with “pseudo”
since they are affected by the clock biases that exist both at the receiver
and at the transmitter sides because of a lack of clock synchronization. The
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Figure 2.1: GNSS trilateration

pseudorange equation can furthermore be written as stated below.

ρs = rs + c(δtu − δts) + I + T + ε

• ρs is the pseudo-range related to satellite s.

• rs is the effective distance between receiver and satellite s. Assuming
Pu = [xu, yu, zu] as the position of the receiver u and P s = [xs, ys, zs]
as the position of satellite s, the distance rs can be expressed using a
simple geometrical distance formula.

– rs =
√

(xs − xu)2 + (ys − yu)2 + (zs − zu)2

• δtu and δt are respectively the receiver and the satellite clock biases.
Since these values affect the distance measurements performed at the
receiver, they need to be multiplied with the light constant c. In most of
the textbooks, biases both at receiver and transmitter side are usually
referred with a unique value δt.

• I and T are respectively quantities affected by the ionospheric and
the tropospheric delays. The ionospheric effects are quite peculiar
because they strongly depend on the frequency of the transmitted signal.
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When it goes through a ionospheric region where the signal is affected by
ionospheric scintillations, the delay contribution would be bigger. On the
other side the tropospheric delays depend on the temperature, humidity,
pressure of the troposphere. If the ionospheric delay can be somehow
removed thanks to multi-frequency measurements, the tropospheric
delay can be more complicated to manage because it needs accurate
error modeling. Athmospheric error attenuation is still one of the biggest
deals with satellite communications because it is not possible to predict
in an accurate way the weather conditions of both the ionosphere and
the troposphere.

• ε is a quantity that collects all the unmodeled effects such as multipath
and measurement errors.

Figure 2.2: GPS C/A range code shift registers

In all the satellite navigation systems multiple access problem is solved
thanks to CDMA (Code Division Multiple Access). Each satellite is assigned
with a given range code taken from a set of orthogononal codes, which let
the receiver proper demultiplex the transmitted signals and identify all the
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satellites in visibility. Range codes are usually generated using a BPSK
modulation (i.e. the transmitted values are sequence of [0,1] bits). GPS for
example uses convolutional C/A codes, which are generated thanks to the
combination of two linear shift registers.

Each satellite is assigned to a set phase selectors, which can be spotted
in figure 2.2 as the feedbacks of the shift register below. The selection of
different feedbacks leads to the generation of different range codes. Thanks
to this procedure orthogonality and unique satellite identification is guar-
anteed. Acquisition of the signal is indeed performed by computing the
autocorrelation functions (which ideally have fixed known values) and after
by seeking peaks in them. Peak in the autocorrelation function means that
the SIS contains a signal transmitted by the satellite which is assigned with
the range code by which the autocorrelation function is computed with.

At the end, the receiver is able to properly identify the satellites in visibil-
ity and demodulate their SIS, which carries their ephemeris. These data is
collected in the navigation data, the binary frame continuously broadcasted
by each satellite. These message contains all the informations that are
useful for the position retrieval (ephemeris, clock bias parameters, relativistic
corrections, etc.).

2.2 Overview of Inertial Navigation Systems
Inertial Navigation Systems, together with GNSS, are the most commonly
used navigations systems. These systems are typically equipped with IMU
sensors, able to obtain informations about the motion of the vehicle. Using
INS may be convenient because these systems are self-contained: they do
not need any supporting network to let them work since all the data is
provided and processed in loco. Stand-alone INS performs dead-reckoning
thanks to the employment of accelerometers and gyroscopes. In order to get
three-dimensional informations, a INS needs a triade of both accelerometers
and gyroscopes, which are typically put alongside the Cartesian axes. Ac-
celerometers measure the specific forces along the three axes, which can be
easily translated into accelerations, velocities and then positions. Gyroscopes
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on the other hand provide attitude informations of the body with respect to
the navigation frame. This is denoted with ωb

ib, angular velocity of the body
frame b with respect to the inertial frame i.

2.2.1 Mechanization
A common problem with strap-down INS (which is the most commonly used
ones) is that the measured data needs to be transformed with respect to the
proper reference system and also needs to be processed in order to be under-
standable and useful to the navigation process. The specific forces measured
by the accelerometers need to be compensated with the gravitational model.
On the other hand angular rates needs to be compensated too, because
they are measured with respect to the navigation frame, which is influenced
by the effects of the rotation of the earth. However, it is understandable
that a stand-alone IMU itself can not provide coherent data, because the
measured informations need to be properly translated into attitude, position
and velocity exploiting severe mathematical assumptions. This is why the
IMU that are mounted in the INS always need to be implemented along a
proper navigation algorithm which is also commonly called mechanization
process.

Figure 2.3: Block diagram of the INS mechanization

Mechanization uses kinematic models to transform the data into coherent
position, velocity and attitude frames. Kinematic models are more useful and
easy to implement than dynamic ones because dynamic modeling requires
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specific force and mass models (i.e. in order to be effective, one should model
all the forces acting upon the object moving). Starting from the specific
forces measured by the IMU, it is possible indeed to retrieve the position and
the velocity of the object just by integrating, following the scheme shown in
figure 2.3. Summarizing, it is possible to express a relation between these
components as shown in the following equations.

r(t) = [x(t), y(t), z(t)]

v(t) = [dx
dt
,
dy

dt
,
dz

dt
] = [vx(t), vy(t), vz(t)]

a(t) = [d
2x

dt2
,
d2y

dt2
,
d2z

dt2
] = [dvx

dt
,
dvy

dt
,
dvz

dt
] = [ax(t), ay(t), az(t)]

2.2.2 Quaternion and rotation matrix
Accelerometer and gyroscope measurements are typically taken from the
body frame, which in principle does not coincide with the inertial frame of
the object. Because of this, the specific forces measured by the accelerometer
need to be transformed in order to be coherent by multiplying the measure-
ment vector with a given rotation matrix. On the other hand, in order to
convert the angular rates measured by the gyroscope to the proper frame,
the rotation matrix R is multiplied with the skew-symmetric matrix Ω asso-
ciated to ωb

ib. In order to parametrize the rotation matrix R several methods
exist and the quaternion approach is the most used one. A quaternion is a
four-dimensioned representation of the rotation matrix which is related to a
rotation angle θ =

√
θ2

x + θ2
y + θ2

z .

A quaternion is said to be consistent only if the following condition holds.

q1 + q2 + q3 + q4 = 1

Furthermore, the rotation matrix is computed using the following rela-
tionship, which directly associates the quaternion to it:

20



INS/GNSS Integration

R =


R1,1 R1,2 R1,3
R2,1 R2,2 R2,3
R3,1 R3,2 R3,3

 =

=


q2

1 − q2
2 − q2

3 − q2
4 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 − q1q4)
2(q1q3 − q2q4) 2(q2q3 + q1q4) −q2

1 − q2
2 + q2

3 + q2
4



2.2.3 Inertial sensors errors
Errors affect the position, velocity and attitude approximations even in the
most costly INS. As it is shown in the first section, a stand-alone INS per-
forms indeed dead-reckoning : a navigation technique that approximates the
position in a iterative manner by calculating the distances from the previous
estimated one. Since these algorithms do not have position compensation
feedbacks, it is common that errors accumulate on the long run. Errors
cause a drifting phenomena of the measurements made at the mechanization
level that lead to a misleading results even for the most accurate INS systems.

In order to build a system able to navigate in the most accurate way, error
compensation feedbacks must be implemented. In order to do so, INS error
modeling must be performed.

Gyroscope constant bias 0.01 deg/h
Angular random walk 0.001 deg/

√
h

Accelerometer constant bias 50 µg
Velocity random walk 10µg/

√
Hz

Scale factor error 10 ppm
Askew installation error 10 arcsec

The table above shows common errors observed using a typical INS system.
These values are used to perform error compensation in the model of the
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system of this work. On a mathematical point of view, error is modeled as a
gaussian random variable, with its mean value and its variance.

• The gyroscope and accelerometer constant biases represent the values
that are measured on average when both the sensors are not being used
(i.e. when they are still). These average biases are always present in any
measurement performed by the inertial system. Moreover they can be
represented as the mean values of gaussian random variables.

• The gyroscope and accelerometer random walks represent on the other
hand the error variances that affect each measurement.

• The scale factor error of a system denotes how the output is related
to its input. Generally speaking the output is the result of a linear
effect, in which the output is proportional to the input and scaled [7].
Mathematically speaking it can be considered as the slope of a function
that represents a straight line.

• The askew installation error is a quantity related to the non-orthogonality
of the sensors mounted in the INS. For example, this problem cause
the gravity effects to be present in all the components of the measured
values by the IMU. Careful manifacturing can somehow attenuate this
problem, at the expense of an increase of the costs.

2.3 Navigation Integration
As stated in the previous chapter, the optimization of INS/GNSS naviga-
tion integration systems has nowadays become one of the main purposes
of scientific research. But how actually integration is performed? How to
merge data informations in a coherent manner in order to let those systems
cooperate? The answer to this question is hidden in the structure of these
systems. INS/GNSS navigation systems are indeed classified in two cate-
gories : loosely-coupled and tightly-coupled. The main difference between
those implementation is the level of cooperation. Previous research show
that as the indipendence level of those systems increase, as the accuracy of
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the navigation algorithm decrease. But the accuracy increase comes with a
cost, which is the complexity of the system and the computational complex-
ity of the algorithm that implements it. The next pair of sub-sections will
give an overview of the pair of navigation integrated system mentioned above.

2.3.1 Loosely-coupled implementation
The loosely-coupled implementation of INS/GNSS navigation system is the
simplest one. INS and GNSS systems indeed cooperate together to approx-
imate the position as different and separate systems. In order to improve
the position estimation a optimal estimator (i.e. a Kalman Filter) is used.
Loosely-coupled integrated systems are robust and simple. In their open-loop
form (i.e. without INS feedbacks) they are indeed able to provide three
indipendent navigation solutions : the GNSS one, the INS one and the
GNSS/INS integrated one.

Figure 2.4: Block diagram of an open loop loosely-coupled GNSS/INS
integrated system

The block diagram shown in figure 2.4 resumes the working principle of
such a system. GNSS and INS provide indipendent navigation solutions.
These are then used to approximate a compensation ∆Pcorr and ∆Vcorr

through the Kalman Filter by means of differences ∆P” and ∆V ”. The
compensation is then subtracted from the INS navigation solution in order
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to compute the integrated navigation solution. As it is possible to see, the
level of integration is very high : INS system do not interfere in the GNSS
receiver. Moreover this system is more simple and robust. Since GNSS still
needs at least four satellites in visibility to navigate, the GNSS outages are
more frequent for these kind of systems.

2.3.2 Tightly-coupled implementation
The tighly-coupled implementation on the other hand is more complex, be-
cause INS and GNSS cooperate in one merged system. Integration is indeed
performed at a pseudo-range level since the GNSS and INS collaborate more
deeply with each other to improve the error compensation estimation and
predict the position in a more accurate way.

Figure 2.5: Block diagram of a tightly-coupled GNSS/INS integrated
system

As it is possible to see in figure 2.5, the block diagram of a tightly-coupled
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GNSS/INS integrated system is much more complex than the loosely-coupled
one. In this case the level of cooperation of the INS and the GNSS system is
definetely higher, because the integration is done at a pseudo-range and at a
pseudo-range rate level. What is interesting is that the optimal estimator
approximates no more the differences of the navigation solutions of both the
systems (as the loosely-coupled version do). On the other hand it estimates
the navigation solution from the difference [∆ρ,∆ρ′] between the pseudo-
ranges retrieved by the GNSS receiver [ρGNSS, ρ

′
GNSS] and the approximated

ones that are computed from both the INS measurements and the satellite
ephemeris obtained after the GNSS signal processing [ρINS, ρ

′
INS].

This approach is furthermore more convenient rather than the loosely-
coupled one because it can provide an accurate navigation solution even if
the number of visible satellites is below four. This is the reason why this
work focuses only on the tightly-coupled implementation. GNSS outages are
a big problem in urban environments, urban canyons and in all the situation
where the satellite availability is low. This is the reason why using a system
that works also with few satellites is a big improvement in navigation.
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Chapter 3

Neural Network

3.1 Radial Basis Function Neural Network
As stated in the previous chapters, NN are nowadays source of interests
for a wider and wider class of applications. This work focuses on the im-
plementation of a Radial Basis Function NN in the GNSS/INS Integrated
Navigation system. This NN has been chosen for two main reasons. First
of all because RBNN is a special kind of NN that is characterized by its
fast learning. Second, this NN is mostly used for function approximation
purposes and this is one of the aim of the research explained in this paper.
During GNSS outages, tightly-coupled integrated system is indeed no more
able to provide an integrated solution because it lacks of the evolution of the
∆ρ and ∆ρ′ values. In this work the RBFF is employed to give a coherent
approximation of the evolution of such a function when GNSS can no more
give a navigation solution.

This type of NN has been thought with a totally different approach
(with respect to the standard NN) because its design is viewed as a curve-
fitting approximation problem in a high dimensional space. The topology
of such a NN is moreover much more simpler than the normal ones. The
layer architecture, which is showed in figure 3.1, is indeed classified as follows.

• Input Layer: this layer is composed by as many nodes as the dimension
of the vector to approximate or classify. Its duty is to connect the input
data to the hidden layers.
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Figure 3.1: RBNN topology

• Hidden Layer: it is characterized by its high dimensionality (i.e. it
may have a lot of nodes). The duty of its nodes is to provide a set of
basis function that act over the input passed from ther input layer. The
output of such a computation is then passed to the output layer.

• Output Layer: this layer provides the output approximation after
having computed the linear combination of the values passed by the
hidden layer. The dimension of the output layer (i.e. the number of
nodes) depends on the requirements.

3.2 Radial Basis Function characterization
Hidden and output layer of such a Neural Network form together what is
known as Radial Basis Function. The linear combination of the hidden layer
outputs is weighted by the wi values associated to each connection going in
the output layer. Each node of the hidden layer is moreover associated with
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a bell shaped function (i.e. Gaussian function) hi(x). The output f(x) of
the NN can be furthermore computed as follows.

m∑
i=1

wihi(x)

hi(x) = exp(−(x− ci)2

r2
i

)

The Gaussian function associated to each node i of the hidden layer is
characterized univoquely by its ci and ri values. These values are respectively
the center and the radius (in stochastic processes this value is also known
as standard deviation) of the hi(x) function. Known this, the design of a
Radial Basis Function Neural Network is reduced to understanding how many
neurons the hidden layers should have and compute the optimal parameters
wi, ci and ri associated to each neuron.

3.3 Learning strategies
As stated in the previous sections, RBNNs are characterized by their strong
fast learning processes. But how can the learning process be optimized?
What are the best strategies to train such a NN? The answer to these question
is brought by three main learning strategies, that are explained in the next
sub-sections.

3.3.1 Random selections of the centers
This learning strategy is quite simple to implement. The hidden nodes
number is fixed. Their centers are picked up from random values taken
from the data-set used to train the network. The only values that should be
parameterized are the output weights (the coefficients which multiply each
hi(x) function). The only drawback of such a strategy is that in order to
obtain a good learning, the network should be trained with a quite large
data-set.
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3.3.2 Cluster-based learning
This strategy is also known as "self-organized learning" and it is considered
a hybrid learning technique. This strategy is based on applying a k-mean
clustering process to the training data-set in order to understand the number
of hidden nodes of the hidden layer and to retrieve its centers. The k-means
is a clustering algorithm which splits data by means of its different attributes
in an iterative way. At first it identifies K partitions that can be determined
randomly. After computing the centroid for each of them, the algorithm iden-
tifies again new partitions by associating nearest centroids. This algorithm is
convenient to use because it converges quickly but it does not guarantee that
the global optimum will be reached. Since it can be applied multiple times,
k-means is usually applied several times using different initial partitions and
the best solution is chosen afterwards. But still it is not the best solution to
use because this process will add some delay to the learning process.

3.3.3 Supervised selection of centers
This is also a hybrid learning strategy based on the use of a Least Mean
Squared algorithm which is employed to determine in a unique and supervised
way all the free parameters of the network. Supervised learning is a learning
technique which is based on the adaptation of the variables of the network
on several input/output samples (which are also known as training samples).
During the training, the algorithm will search for given patterns in the data
correlated to the desired output [8]. Even if this technique is the most use one
also for machine learning purposes, for this kind of applications some draw-
backs may be spotted. For example it is suggested to change the supervised
learning algorithm depending on the level of heterogeneity of the data-set. If
the features of the data-set are indeed a lot different with each other, some
learning algorithms may be more advised than others because the converge
more quickly. Moreover if the data-set contains some redundant informa-
tions, the performance of some learning algorithms may be worse than others.
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Chapter 4

Tightly-coupled
Integration with Neural
Network aiding

4.1 The system model
As stated in the previous chapters, this work focuses on the implementation
of a Radial Basis Function Neural Network on a GNSS/INS tightly-coupled
integrated navigation system. The objective of such an employment is to
compensate in the best way possible the navigation errors during GNSS
outages. While GNSS is not available because there is no satellite visibility,
a typical integrated navigation system would only rely its approximations on
the INS measurements. No matter if the GNSS/INS system is tightly-coupled
or loosely-coupled. The NN implementation may be very important because
if properly trained, it can substitute the GNSS performances during those
outages.

This research focuses only on the tightly-coupled implementation for
several reasons. One of these is because it is known that tightly-coupled
systems are more accurate than loosely-coupled ones. Another reason is that
tightly-coupled GNSS/INS integrated systems are characterized by having
an outage probability much lower than the loosely-coupled one. Loosely-
coupled integrated system is indeed composed by indipendent GNSS and INS
receivers. This means that the GNSS receiver needs as usual at least four
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satellites in visibility, as explained in chapter 2.1. A tightly-coupled system
on the other hand is characterized by a different working structure. GNSS
and INS does not work indipendently but cooperate in an active and deep
way. This means that a tightly-coupled system is able to approximate the
navigation position of the user even if the number of satellites is below four
[9]. A tightly-coupled system is furthermore able to retrieve the position of
the user with cooperation between GNSS and INS when the loosely-coupled
one may be not.

Figure 4.1: System model

Figure 4.1 shows the system model in its general scheme. It is possible to
observe that it is very similar with the standard tightly-coupled integrated
navigation system, shown in chapter 2.3, but with a slightly different struc-
ture. A RBNN (Radial Basis Neural Network) is added. This block takes
useful data only when GNSS has an outage (blue arrows), otherwise it does
not predict any output but it only takes the training data ∆ρ and ∆ρ′ that
is necessary to the learning process (red arrow). The output of the Kalman
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Filter is furthermore used to perform a feedback error correction needed by
the INS to improve its accuracy. This is proven by the previous research
conducted on the field [10] and it is highlighted by the yellow arrow.

4.1.1 First generalized scheme
In order to properly understand the working principles of the system model,
it should be shown in its two generalized schemes. The first scheme represents
the system model when the GNSS is working as it should (i.e. when there
are enough satellite in visibility). Figure 4.2 shows the block diagram of the
system on its first generalized scheme. In this case the RBNN is not needed
because GNSS is able to retrieve the position of the user properly. At the
end the scheme of the integrated navigation system is very similar to the
classical tightly-coupled implementation, shown in the previous sections.

Figure 4.2: First generalized scheme (GNSS working properly)
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It can be moreover noticed that the pseudo-range differences computed
at the first stage of the integration are used to feed the RBNN. Training
can be done in a offline and online way. The offline training is also called «
supervised training ». It consist in training the NN when the system is not
operating in an active way. Data is collected in bunches and fed to the NN
in a supervised way. Online training consist in training the NN while the
GNSS is working and the system is operating. In other words, the network
is fed with data as long as there is no outage and as long as the system is
working properly.

4.1.2 Second generalized scheme

The second generalized scheme shown in figure 4.3 represents the system
while there is a GNSS outage. In this case the system model is simplified be-
cause the GNSS receiver is no more considered. Its performances are indeed
substituted by the RBNN block, which is fed with the error compensated
measurements performed by the IMU block.

Figure 4.3: Second generalized scheme (during a GNSS outage)
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4.2 Working principles of the RBNN
As proposed in the schemes shown in the previous section, it is possible to
observe that the RBNN has a different behavior depending on its generalized
scheme (i.e. depending if it is on its training or on its active modality).
When the GNSS is working properly the RBNN has the possibility to be
trained, but the system shown in this research works with offline training, so
it simply goes in stand-by. When there is a GNSS outage caused by a lack
of satellite visibility, the RBNN switches into its active mode and predicts
the pseudo-ranges ∆ρ̂ and the pseudo-range rates ∆ρ̂′ needed to estimate
the position using the Kalman Filter. As stated in the previous sections, the
RBFNN is moreover characterized by having a pretty quick training. This
means that in order to have good performances not a lot of pair samples are
needed.

Offline training is achieved using the supervised selection of centers, shown
in section 3.3. This algorithm adapts the number of centers and all the NN
parameters depending on pairs of input and output. Since the objective is
to be somehow able to predict ∆ρ̂ and ∆ρ̂′, the offline training is achieved
feeding the NN with the following pairs:

[(fib, ωib), (∆ρ̂,∆ρ̂′)]T

Where fib are the accelerometer measurements before the mechanization
still denoted with the body frame and ωib the gyroscope ones. The correlation
between the pairs is proven by the fact that the differences ∆ρ̂ and ∆ρ̂′ are
computed thanks to the approximated pseudo-ranges ρINS and ρ̂′

INS.

∆ρ = ρGNSS − ρINS

∆ρ′ = ρ′
GNSS − ρ′

INS

Those approximated pseudo-ranges are computed in the pseudo-range and
pseudo-range rate computer block, shown in the previous chapters. These val-
ues are directly related to the IMU measurement performed at each iteration
of the algorithm. In the pseudo-range rate formula, f s

D denote the doppler
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frequency measured in the GNSS receiver, and it is related to the difference
of the velocities of both the satellite and of the velocity measured by the IMU.

ρINS =
√

(xsat − xINS)2 + (ysat − yINS)2 + (zsat + zINS)2

ρ′
INS = −λf s

D
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Chapter 5

Eperimental results

5.1 Initialization of the system
In order to properly initialize the simulation of the system model shown
in the previous section, it will be needed to fix univoquely the IMU mea-
surements related to the motion of the user. Setting the accelerometer and
gyroscope measurements means to determine in a unique way the motion
of the user. The figures 5.1 and 5.2 show the accelerometer and gyroscope
measurements that this work used to perform the simulation of the system.
These measurements are not ideal ones. They are taken from a real trajectory
and so they already are subjected by the errors. This is the reason why their
evolution is noisy.

5.2 Testing of the system without RBNN
After having set the IMU measurements, the system has been tested with
its standard tightly-coupled solution. For simplicity reasons, since it is not
the purpose of this work, the satellite constellation is supposed to be fixed.
This means that in this particular ideal case the satellites have a steady
evolution and they do not move along their orbits. The GNSS system taken
into account is moreover the GPS one. IMU measurements are supposed
to give sensor outputs with a rate of ts = 0.01 s, while GPS gives approx-
imatively coherent data each second. Implementing the system using one
IMU output sample per time leads to poor resistance from the circular
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Figure 5.1: Noisy accelerometer IMU measurements

Figure 5.2: Noisy gyroscope IMU measurements
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motion error. This problem leads to very misleading results. In order to get
good performances at least three or four samples should be used to update
INS during the mechanization. In this work 5 samples are taken each time.
This means that INS gives an update of its measurements each tmech = 0.05 s.

Figure 5.3: Approximated trajectory

Figure 5.3 shows the approximated trajectory of the vehicle in motion.
As expected, the algorithm is able to evaluate the position evolution with
the standard results that have been shown in the previous research. The
position and velocity errors, whose evolution is shown in figures 5.4 and
5.5, are indeed coherent to the standard errors expected using a simple
tightly-coupled integrated system.
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Figure 5.4: Position error evolution

Figure 5.5: Velocity error evolution

5.3 Tightly-coupled GNSS/INS integrated
system with RBNN

With the Radial Basis Function Neural Network, the system model reduces
to the one shown in section 4.1. Furthermore the algorithm adopted for this
work is based on the offline of NN. In order to do a proper simulation addi-
tional data has been generated to train it. This data has been approximated
with the following form:

[(fib, ωib), (∆ρ̂,∆ρ̂′)]T

Where, as shown in section 4.2, the outputs of the IMU sensors are directly
associated to the pseudo-ranges and pseudo-range rates differences (∆ρ̂,∆ρ̂′).
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The process of association between these functions permits the realization of
the system model shown in figure 4.3.

5.3.1 Offline training of the RBFNN
At a first stage, the algorithm adopted is based on the offline training of the
NN. The RBFNN is characterized by its fast training and by the fact that it
does not need too much samples to give good performances. The NN has
been nevertheless trained with 50 samples of pairs, which correspond to 4.9 s
of additional trajectory data. The simulation is moreover runned supposing
that the GNSS suffers of about 30 s of outage. This outage starts at about
79 s from the beginning of the motion of the vehicle. The simulation lead to
the results shown in figure 5.6 and 5.7.

Figure 5.6: Position error evolution with offline training

Figure 5.7: Velocity error evolution with offline training

As it is possible to observe, both of the error evolutions starts to grow
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almost linearly at the beginning of the GNSS outage. Both of the evolutions
present indeed a peak located exacty in the GNSS outage interval. This
means that, as the GNSS stops to work and the system starts to work with
its second generalized scheme (shown in section 4.1), the accuracy starts to
slightly decrease. The performances of the position estimator starts to be
normal when the GNSS starts to work properly again.

5.3.2 Online training of the RBFNN
In the second simulation stage the algorithm has been modified a bit in order
to let it perform online training. Online training is based on the assumption
that, as long as the GNSS is working properly, the RBFNN is contemporarily
trained with the samples retrieved during the iterations of the algorithm. In
order to obtain better results for the comparison, the GNSS is planned to
have an outage at almost 79 s from the beginning of the motion of the vehi-
cle, as done in the previous sub-section. The outage duration is 30 s. This
time, of course no additional data is used to train the NN. As stated before
the samples of pairs computed iteratively are indeed used to train the network.

In figures 5.8 and 5.9 it is possible to observe the same phenomena that
occurred with offline training. The error evolution of both the position
and the velocity present peaks that are caused by the lack of accuracy
that becomes more ingent as long as the GNSS has an outage. The situ-
ation then restores to normality after the GNSS starts to work properly again.

Figure 5.8: Position error evolution with online training
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Figure 5.9: Velocity error evolution with online training

5.3.3 Comparison
Whether if the RBFNN is trained with an offline or an online approach, this
work show that it is possible to implement successfully a NN in any tightly-
coupled GNSS/INS integrated navigation system. Giving a more closer look
to the error evolutions shown in the previous sub-sections, it is moreover
clear that online training provides slightly more accurate position solution
during GNSS outages. An offline trained RBFNN can produce less accurate
approximations due to the fact that the error peak is slightly higher, as
it is possible to observe comparing figures 5.8 and 5.9 with figures 5.6 and 5.7.

Figure 5.10: Trajectory comparison between the two different approaches
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Figure 5.10 gives a direct proof of the these assumptions. It shows a
zoomed overview of the trajectory of the vehicle during the GNSS outage.
It is clearly possible to observe that the online trained RBFNN provides a
GNSS/INS integrated solution much more closer to the real trajectory of the
vehicle in motion. The offline trained RBFNN on the other hand provides a
less accurate navigation solution, which is more far from the real trajectory.
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Conclusions

Offline training of RBFNN can be a very powerful approach. It let the
integrated system be more efficient and fast, because the training of the
NN is done una tantum and in a supervised approach. A drawback of
this training procedure is that the supervisor should be able to generate as
much eterogeneous data as possible, in order to let the RBFNN be ready to
respond to many different kinds of inputs. Data can be generated artificially,
providing the same INS error modeling, or can be collected directly from the
vehicle motion.

Online training on the other hand gives much more accurate solutions
because the learning of the RBFNN is done contemporarily to the GNSS/INS
standard working routine (when GNSS is also working properly). During the
training the NN is being fed with more eterogeneous data and is made more
efficient and ready to give accurate outputs to many kinds of different input
pairs. One drawback of online training is that is done in real-time. This may
cause computational problems because at each iteration of the algorithm the
NN must be trained and updated.
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6.1 Future research
This work proposes one possible approach to the mitigation of the GNSS
outages in a GNSS/INS tightly-coupled integrated navigation system. In
order to further analyze and study how to exploit in the best way NNs, it
can be interesting to further deepen some other aspects that may be helpful
to this research. For example:

• Analyzing and comparing the performances of a GNSS/INS integrated
navigation system with RBFNN aiding using both a loosely-coupled and
a tightly-coupled approach.

• Comparing the performances on the tightly-coupled GNSS/INS inte-
grated system using a standard NN.

• Analyzing the performances of the system shown in this work when
the supervised offline trained data-set varies (for example using less
eterogeneous data or increasing the pair samples).

• Analyzing the NN overfitting phenomena in the online training case.

• Analyzing and comparing the computational costs of the algorithms
adopted in this research.
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