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Abstract

Global Navigation Satellite Systems (GNSSs) play an important role in vehicle-positioning
applications. However, these systems have limited accuracy and availability to satisfy the
increasingly strict safety-related requirements of this kind of applications. To overcome
this issue, the recent evolution of Vehicle-to-Vehile (V2V) communication has led to the
development of Cooperative Positioning methods, based on a network of vehicles able to ex-
change among them relative ranging information data to improve their positioning accuracy
and precision. This thesis addresses the problem of integrating these additional relative
measurements with the GNSS stand-alone solution. In particular, it focuses on Bayesian
Filters that are generally considered as a powerful statistical tool to jointly combine data
measurements from heterogeneous sources to enhance positioning performance. Despite of
the non-linearity of the positioning problem (i.e. trilateration), many solutions approach it
by means of linearization (i.e. Least Mean Square, Extended Kalman Filter). This meth-
ods also approximate general probability distributions of the input measurements through
Gaussian distribution, for simplicity. In particular, when precise positioning is addressed,
the mismodelling error due to non-Gaussian nature of relative measurements induces sever
reduction in the accuracy of the solution. Among the Bayesian Filters, Particle Filter (PF)
has the capability to natively handle non-Gaussian and non-linear measurement models,
thus, being suitable for the aforementioned measurements integration. The integration of
cooperative ranging measurements is performed by compensating for the lack of GNSS
measurements in urban environment. By addressing the collaborative positioning of mov-
ing vehicles immersed in a urban scenario, an Agent Network (AN) is implemented with the
intent of locating and tracking a vehicular target T by employing some static collaborative
agents Ci. The static location of the collaborative agents does not imply a lack of general-
ity in terms of relative dynamics with respect to the GNSS satellites. In this cooperative
scenario, the agents interact with the target providing an estimate of their position at each
time instant, along with the set of the available GNSS measurements (i.e. Doppler and
pseudoranges). Target-agent distances are computed by means of Weighted Least Square
Double Difference method. At first, the general Particle Filter model is optimized for a
GNSS-only scenario by focusing on the resampling procedure and the particle generation
process. Then, by analyzing a cooperative scenario where an agent provides relative ranging
measurements to the target at each time instant, it is shown how the optimized Particle
Filter can achieve higher performance with respect to the suboptimal one, by applying
non-Gaussian distribution models for the likelihood of the auxiliary measurements.
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Chapter 1

GPS Overview

1.1 GPS Principles

Global Position System (GPS) is one of the Global Navigation Satellite Systems (GNSSs)
currently operating worldwide. An exhaustive definition of GPS can be given as: a space-
based radionavigation system, broadcasting synchronized timing signals to provide esti-
mates of Position, Velocity and Time (PVT) based on passive, one-way ranging to satellites.
PVT measurements are collected by applying a spherical trilateration method, starting
from the identification of the visible satellites and the estimation of satellite-user distances
called pseudoranges [1].

1.1.1 System Architecture

GPS consists of three segments: the Space Segment, the Control Segment and the User
Segment (Figure 1.1). The Space Segment includes the satellites while the Control Segment
deals with the management of the satellite operations. Instead, the User Segment refers
to a wide range of possible receivers, with different performance levels and additional
functionalities [1].

Satellite Segment

The fully operational GPS constellation includes 32 active satellites approximately uni-
formly distributed around six circular orbits with four or more satellites each (Figure 1.2).
The orbits are inclined at an angle of 55° with respect to the equator and are separated
from each other by multiples of 60° right ascension. The orbits are non-geostationary and
approximately circular, with radii of 26,560 km and orbital periods around 12 hours. The-
oretically, a minimum of four GPS satellites will always be visible from most of the points
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GPS Overview

Figure 1.1. GPS Segments. Figure taken from [3].

on the earth’s surface, and this number of satellites is also the minimum number needed to
determine an user’s position by measuring the pseudorauges and estimating the position
in a passive, listen-only mode [1] [2].

Figure 1.2. GPS Space Segment. Satellites are distributed in six orbital planes [22].

Control Segment

Control Segment is managed by the Master Control Station (MCS) which operates the sys-
tem and provides command and control functions (Figure 1.3). Some of the MCS functions
are based on monitoring the satellite orbits and health and commanding small maneuvers
to maintain the orbit and relocations to compensate for failures. Other Control Segment
functions consist on mantaining the GPS time, predicting the satellite ephemerides and
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1.1 – GPS Principles

clock parameters and updating satellite navigation messages.
Besides the MCS, twelve unmanned monitor stations spread around the globe are oper-
ated remotely directly from the MCS. Equipment at a monitor station consists essentially
of GPS receivers with cesium standards, meteorological instruments and communication
gears to transmit information to the MCS via ground and satellite links. This information
refers to estimation and prediction of the satellite orbits, satellite clock biases and GPS
Time.
The ephemeris and clock parameters are computed by the MCS and uploaded to the satel-
lites through one of the dedicated ground antennas for communications with the satellites
[1].

Figure 1.3. GPS Control Segment [23].

User Segment

User Segment considers all the activities related to the development and usage of military
and civil GPS equipments. The revolution of integrated circuits gave a great contribution
to the large-scale civil employment of GPS receivers and services, together with the benefits
coming from the military GPS receivers [1] [2].
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1.1.2 GPS Signal Structure

GPS satellite signals are transmitted continuously by each satellite and consist of three
structural components: a carrier, a ranging code and the navigation data.

Carrier

Each GPS satellite transmits two spread spectrum L-band carrier signals: a L1 signal with
carrier frequency f1= 1575.42 MHz and a L2 signal with carrier frequency f2= 1227.6
MHz. These two frequencies are integral multiples (f1=1540f0 and f2=1200f0) of a base
frequency f0=1.023 MHz. The signals transmitted on L1 are for Standard Positioning
Service (SPS), i.e. civil service, while those transmitted on L2 are for Precise Positioing
Service (PPS), i.e. the fully accuracy positioning service provided to United States and
its allied military organizations. In the last years, the L2 band has started been granted
also for some civil applications to provide compensation for propagation delays. Since
delay varies approximately as the inverse square of signal frequency f (delay ∝ f−2), the
measurable differential delay, computed by exploiting together the two carrier frequencies
L1 and L2, can be used to compensate for the delay in each carrier [2].

Ranging Code

Ranging codes are associated with the provided service (SPS or PPS) and refers to a family
of binary codes called Pseudorandom Noise (PRN) sequences or PRN codes [1].
L1 signal from each satellite uses Binary Phase-Shift Keying (BPSK), modulated by two
PRN codes in quadrature, defined as the Coarse Acquisition code (C/A-code) and Precision
code (P-code). Instead, the L2 BPSK signal is modulated by only the P-code. The signal
generation scheme is shown in Figure 1.4.

Figure 1.4. GPS Signal Generation.
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The P-code is a relatively long and fine-grained code having an associated clock or chip
rate of 10f0=10.23 MHz. The full P-code has a length of 259 days (≈ 1014 chips), during
which each satellite transmits a unique portion of the full P-code. This portion of P-code
has a length of precisely one week before this code portion repeats.
The C/A-code is instead employed to simplify the rapid satellite signal acquisition and
the handover to the P-code. It is a relatively short and coarse-grained code having an
associated clock or chip rate f0=1.023 MHz. The C/A-code for any GPS satellite has a
length of 1023 chips before it repeats.
A panoramic of the GPS signal spectra is displayed in Figure 1.5.
Users have knowledge of the PRN codes and they can be generated and stored in the
GPS satellite signal receivers. The signal transmitted by a particular GPS satellite can be
acquired by generating and matching, by correlation, the local PRN code of that particular
satellite [2].

Figure 1.5. Spectra of GPS Signals [24].

Navigation Data

The navigation signal is a binary-coded message including navigational information on the
ephemeris of the transmitting GPS satellite, the clock bias parameters and an almanac
for all the GPS satellites, providing approximate corrections for the ionospheric signal
propagation delays and for the offset time between satellite clock time and true GPS time.
The navigational information is transmitted at a rate of 50 Baud [1].
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1.2 Receiver Design

The first function of a GPS receiver (a generic architecture is shown in Figure 1.6) is to
collect, pre-amplify and filter all the Radio Frequency (RF) signals transmitted by the
satellites. This is performed by a hemispherical antenna and the RF front-end. Then,
given a recent almanac and a rough idea of the user location, the receiver determines
which satellites are visible, separating the different signals from satellites in view. At this
point, knowing the structure of the C/A codes being transmitted by the satellites, the
receiver begins the acquisition stage where satellites are detected and a rough estimation
of their parameters is performed. Once the acquisition is complete, the tracking stage
is executed by performing fine measurements of the signal transit time and the Doppler
shift by code synchonization. At last, it decodes the navigation message determining the
satellite position, velocity, and clock parameters needed to finally solve the PVT equations
[1].

Figure 1.6. Generic GPS Receiver Architecture [25].

1.2.1 Acquisition Stage

To acquire a satellite signal, the receiver generates a replica of the known C/A-code, and
attempts to align it with the incoming one by sliding the replica in time and computing
the correlation. From the auto-correlation property of the signal, the correlation function
exhibits a sharp peak when the code replica is aligned with the code received from the
satellite. The uncertainty in matching the replica with the incoming code is limited to only
1023 code chips, and the process of aligning them is generally quick. Direct acquisition
of a P(Y)-code is difficult by design due to the length of the code. The signal acquisition
is accomplished in two steps and is based on the known timing relationship between the
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C/A- and P(Y)-codes. First, the receiver acquires the C/A-code and then, with the aid of
the timing information contained in the navigation message, acquires also the P(Y)-code
[1].

1.2.2 Tracking Stage

Code tracking is implemented as a feedback control loop, called Delay Lock Loop (DLL),
which continuously adjusts the replica code to keep it aligned with the code in the incoming
signal. After the alignment is accomplished, the PRN code is removed from the signal,
leaving the carrier modulated by the navigation message.
This signal is now tracked with another feedback control loop called Phase Lock Loop
(PLL). Essentially, the receiver generates a sinusoidal signal to match the frequency and
phase of the incoming signal, and in the process extracts the navigation message. The
Doppler shift is measured in the phase-lock loop.
The measurement of the transit time for a signal modulated by a C/A-code is conceptually
quite simple. The time shift required to align the receiver-generated code replica and the
signal received from the satellite is the apparent transit time of the signal modulo 1 ms.
The PRN code chips are generated by the satellite at precisely known instants according
to the satellite clock, therefore the receiver can read the satellite clock time to determine
when a chip was generated. Instead, the time of reception can be easily determined from
the receiver clock.
If the apparent transit time is multiplied by the speed of light a measure of pseudorange
is obtained. Pseudoranges measured from four, or preferably more, satellites are used
to compute the position estimate. The Doppler shift, caused by the relative motion of a
satellite and the user, is the projection of the relative velocity on the Line-of-Sight (LoS) and
can be converted into pseudorange rate. Given the pseudorange rates corresponding to four
or more satellites and the satellite velocity vectors (derived from the navigation message),
a user can compute his velocity. A GPS receiver does this automatically, continuously, and
virtually instantaneously [1].

1.3 PVT Computation

1.3.1 Quality Factors for PVT Estimate

The quality of the PVT estimates obtained by a user GPS receiver depends basically on
two factors: the number and spatial distribution of the visible satellites and the quality of
the range and range rate measurements.
The spatial distribution of the satellites relative to the user is referred to as satellite ge-
ometry. The satellite geometry changes with time as the satellites rise, move across the
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sky and set. An optimal satellite spatial distribution corresponds to satellites dislocated
on all sides of the user, some high in the sky and several low. If a significant part of the
sky is somehow blocked (LoS not available), the user may still be able to compute PVT
estimates if four or more satellites are in view, but there would generally be an accuracy
penalty for poor geometry.
The second factor determing the quality of the PVT estimates is the quality of the pseudo-
range and Doppler measurements. There are several sources of biases and random errors,
which affect the measurements. Typical errors occur in the navigation message on param-
eters related to satellite position and signal transmission time, affecting the pseudorange
measurements. These errors are often referred to as Signal-In-Space (SIS) errors. Other
errors depends on propagation delays due to ionosphere and troposphere and signal distor-
tion due to multipath and receiver noise. In particular, the ionospheric propagation delay
can be quite large, ranging from several meters to several tens of meters, depending upon
the state of the ionosphere and the elevation of the satellite. Nevertheless, this error can
be considerably removed by means of a dual-frequency receiver [1].

1.3.2 Position Estimation with Pseudoranges

The pseudorange measurement from the k-th satellite at epoch t (GPS time) can be mod-
eled as

ρ(k)(t) = r(k)(t, t − τ) + c[δtu(t) − δt(k)(t − τ)] + I(k)(t) + T (k)(t) + Ô(k)
ρ (t) (1.1)

where k = 1,2, . . . , K. r(k)(t, t − τ) is are actual distance between the receiver antenna
at signal reception time t and the satellite antenna at signal transmission time (t − τ);
δtu(t) and δt(k)(t − τ) are the receiver and satellite clock offsets respectively, relative to
GPS Time (GPST); I(k)(t) and T (k)(t) are the ionospheric and tropospheric propagation
delays; Ô

(k)
ρ (t) accounts for modeling errors, orbit prediction errors and unmodeled effects

(e.g., receiver noise and multipath).
A user can correct each measured pseudorange for the known errors using parameter values
in the navigation message from the satellite. The main corrections available for a civil user
are: satellite clock offset relative to GPST, relativistic effect and ionospheric delay, using
the parameter values for the Klobuchar model.
The corrected pseudorange obtained by accounting for the satellite clock offset and com-
pensating for the remaining errors in the measurements can be rewritten as

ρ(k)
c (t) = r(k) + c · δtu + Ỗ(k)

ρ (1.2)
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1.3 – PVT Computation

where the error term Ỗ
(k)
ρ denotes the combined effect of the residual errors.

Let vectors x = (x, y, z) and x(k) = (x(k), y(k), z(k)), for k = 1,2, . . . , K, represent respec-
tively the position of the user at the time of the measurement and the position of the k-th
satellite at the time of signal transmission. The user-to-satellite geometric range is

r(k) =
ñ

(x(k) − x)2 + (y(k) − y)2 + (z(k) − z)2 = ëx(k) − xë (1.3)

By replacing (1.3) in (1.2):

ρ(k)
c (t) = ëx(k) − xë + b + Ỗ(k)

ρ (1.4)

where the the user clock bias term is replaced with a simpler b.
The pseudorange measurements from K satellites are modeled as nonlinear equations cor-
responding to (1.4). Each equation involves four unknowns: b and three components of
x. Clearly, four pseudorange measuremens (and equations) are required from at least four
satellites to estimate the user’s instantaneous position.
A simple approach to solve the K equations is to linearize them about an approximate user
position and solve iteratively. The idea is to start with rough estimates of the user position
and clock bias and refine them in stages so that the estimates fit better the measurements.
The generic pseudorange ρ

(k)
c can be approximated through the Taylor axpansion around

a known location x̂ = (x̂,ŷ,ẑ,b̂) to

ρ̂(k) = ëx(k) − x̂ë + b̂ (1.5)

The true position and the true clock bias can be represented as x = x̂ + δx and b = b̂ + δb,
where δx and δb are the unkwown correction to be applied to the initial estimates, so that
(the error is considered negligible for the following computations):

δρ(k) = ρ(k)
c − ρ̂(k) = a(k)

x δx + a(k)
y δy + a(k)

z δz + δb (1.6)

where the cofficient are:

a(k)
x = x(k) − x̂

r̂(k) , a(k)
y = y(k) − ŷ

r̂(k) , a(k)
z = z(k) − ẑ

r̂(k) (1.7)

with r̂(k) =
ñ

(x(k) − x̂)2 + (y(k) − ŷ)2 + (z(k) − ŷ)2 defined as the geometrical distance
between the linearization point and the satellite.
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The set of K linear equations (1.6) can be written in matrix notation as:

δρ =


δρ(1)

δρ(2)

...
δρ(K)

 =


a

(1)
x a

(1)
y a

(1)
z 1

a
(2)
x a

(2)
y a

(2)
z 1

...
...

...
...

a
(K)
x a

(K)
y a

(K)
z 1




δx

δy

δz

δb

 (1.8)

or more compactly as:
δρ = Hδx (1.9)

If K = 4, the solution can be easily found directly as:

δx = H−1δρ (1.10)

Otherwise if K > 4, least square solution is tipically used. The solution is given by the
value of δx which minimizes the square of the residual:

RSE(δx) = (Hδx − δρ)2 (1.11)

The solution can be obtained by differentiating with respect to δx to compute the gradient
of RSE :

∇RSE = 2(δx)THTH − 2(δρ)TH (1.12)

This gradient is set to zero and solved for δx to find a minimum value. By taking the
transpose and setting it to zero, (1.12) becomes:

2HTH(δx) − 2HT (δρ) = 0 (1.13)

If (HTH)−1 is non-singular, the solution is:

δx = (HTH)−1HT δρ (1.14)

This equation can be commonly solved by recursive methods or Kalman Filter, by assuming
pseudorange errors as independent and identically distributed Gaussian random variables
[1].
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Chapter 2

Cooperative Positioning in
GNSS

2.1 Overview of Auxiliary Ranging Systems for GNSS

GNSSs are exploited by a large number of Intelligent Transportation System (ITS) ap-
plications for positioning measurements. However, the evolution of vehicular applications
such as collision avoidance, speed advisory, road reservation, etc. requires more and more
accuracy and reliability regarding positioning data information [4].
Despite a stand-alone GNSS model represents the most suitable solution for this kind of ap-
plications, in some contexts GNSS suffers from inaccuracy of varying degrees and errors up
to tens of meters [4] and this is not acceptable due to strict safety-related constraints. De
facto, some scenarios, such as urban canyons, significantly degrade the received navigation
signal due to the increase of multipath and interference, affecting the GNSS positioning
accuracy. This led to the development of auxiliary systems to enhance positioning perfor-
mance by cooperating with the GNSS [11].
A first typology of auxiliary systems refers to relative positioning sensors, such as radar
sensors, which have been available in commercial vehicles for almost a decade. Besides
radar sensors, 3D laser scanners can be exploited to obtain an accurate representation of
the surrounding environment, while camera systems have found an application for collision
avoidance, lane-keeping assistance in-vehicle and traffic sign recognition. The high preci-
sion of these devices makes possible for vehicles to obtain a detailed representation of the
external scenario including the exact position of buildings, vegetation, other vehicles and
further obstacles. In this way, the vehicles are able to self-localize themself and navigate
through traffic [12].
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The development of the Vehicle-to-Vehicle (V2V) communication has contributed to ex-
tend the capabilities of ranging sensors towards Cooperative Positioning applications by
employing the exchange of ranging information among neighbor vehicles. Therefore, in a
cooperative context, each vehicle is able to periodically broadcast cooperative messages
towards other vehicles regarding position, speed and heading. In particular, position infor-
mation can be exploited to compute ranging measurements in GNSS coordinates, providing
support to the classic GNSS receiver [12].
Since sensors are very expensive and highly increase the system computational complex-
ity, Cooperative Positioning methods based on GNSS-based ranging measurements have
started being proposed. They are focused on the exchange of GNSS-only information
between vehicles (or more generally agents) to provide better positioning accuracy and
reliability, without the employment of any sensor. [6].

2.2 Sensor-base Cooperative Positioning

Before discussing the Cooperative Positioning, a general overview on the Sensor-based
cooperative approaches for relative positioning is presented. When exploited in a non-
cooperative scenario, a common problem with the sensor systems is their line-of-sight
characteristic. In many situations these sensors are not able to offer a relative position
and velocity estimate due to limited range, limited field of view or sight obstruction by
other vehicles or surrounding objects (Figure 2.1). To overcome this issue, the relative
positioning information provided by ranging sensors can be handled in a collaborative way,
by making sensor-equipped vehicles able to communicate directly with each other with the
purpose to improve their relative positioning estimates.

Figure 2.1. Situations of limited ranging sensor performances [12].
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2.2 – Sensor-base Cooperative Positioning

Radar, laser scanners and vision-based systems tipically work by first performing the mea-
surement step, where they extract raw measurement data from a raw signal by applying
signal processing algorithms. These raw measurement data consist on a cloud of reflecting
points for radar and laser scanners or pixel matrices for vision-based systems. In the de-
tection step, the raw measurement data are segmented and clustered into objects, which
are then classified into different classes such as vehicles, bicycles and pedestrians. After
the detection, the position of the vehicle needs to be estimated over time by a tracking
step. Usually, movement models that predict the future path of the vehicle are employed.
In the last step, a semantic classification provides an extensive knowledge and awareness
of the surrounding environment [12].
In cooperative approaches based on V2V communication the measurement, detection and
classification steps disappear, since these kinds of information are provided directly from
the vehicles by the exchange of ranging data among them. [12].

2.2.1 Radio Ranging

The first descripted technique to estimate the range with respect to another vehicle con-
sists of using electromagnetic waves and measuring the Received Signal Strength (RSS)
of a signal transmitted by another vehicle. The level of this signal is proportional to the
distance between the transmitter and receiver antenna. Considering a power decay model
over distance given by the path loss exponent, a rough estimate of the range between two
vehicles can be computed.
However, the measurement uncertainty for the RSS measurements is a key issue for this
kind of application, since shadowing and multipath cause large variations in the received
signal strength. Additionally, the RSS method is very sensitive to the estimated path loss
exponent.
Radar sensors exploit high-frequency electromagnetic waves to measure the range and the
relative speed of target objects. They have already found application for forward colli-
sion warning, lane change assistance or automatic cruise control. Two radar technologies
are mainly employed in ITSs: impulse radar and Frequency-Modulated Continuous Wave
(FMCW) radar.
The impulse radar works by measuring the time needed for a short pulse to travel from
the radar sensor to the object, reflect and travel back to the sensor.
Instead, the FMCW radar transmits a frequency-modulated signal with a constant power
envelope. The frequency difference between the outgoing and incoming waves is directly
proportional to the relative distance to the target object.
The relative speed is computed by exploiting the Doppler effect. Radars are robust against
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environmental conditions, such as changes in light or fog and rain, but suffers from multi-
path and shadowing effects [12].

2.2.2 Laser Scanners

A first model of lased-based ranging system refers to Light Detection and Ranging (LIDAR)
devices. Similarly to radars, they rely on the time-of-flight of reflected light pulses to
measure the distance towards an object. They usually work in the near infrared region of
the electromagnetic spectrum at 905nm. However, their transmit power is limited due to
eye-safety regulations, which impose a practical limit on the measuring range capability of
the sensor.
A second model is instead given by laser scanners, which consist of a rotating device with
few laser light sources to scan points in space. 2D laser scanners measure points in a plane,
while 3D laser scanners are able to also take into account the elevation angle. They are
principally implemented for obstacle detection, collision mitigation, stop-and-go assistance
and recently also automatic cruise control. A first drawback of laser scanners is that
they are not able to measure the relative speed between vehicles directly, but they need
to differentiate the range of successive scans. Moreover, the availability of laser scanners
is sensibly limited by environmental conditions such as fog, rain, dust, dirt and water
which heavily degrade the performance of the sensor. Incident sunlight in the morning and
afternoon hours can also affect the laser performance. At last, their cost is very high [12].

2.2.3 Time-Of-Flight Cameras

Time-Of-Flight (TOF) or 3D cameras have many fields of application. For what regards
automotive applications they are principally used for driver assistance and safety appli-
cations, such as pedestrian recognition or pre-crash detection. Unlike laser scanners, the
TOF camera captures the entire environment with just one single light pulse, since each
camera pixel measures the time delay of modulated infrared light by comparing the phase
of the outgoing and the incoming signal. Therefore the distance information is captured
simultaneously for the entire surrounding scenario.
A typical value for the ranging accuracy is around 1 cm considering a maximum working
range of 10 meters. TOF cameras have higher frame update rates, ranging from 20 fps
up to 200 fps. The main advantage of TOF cameras is that they do not make use of
mechanical components unlike laser scanners. On the contrary, TOF camera sensors, just
like laser scanner sensors, are highly affected by incident sunlight, which represents a great
drawback for automotive applications. Additionally, they are expensive in terms of cost
[12].
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2.2.4 Vision-Based Methods

Machine vision techniques are able to detect and localize objects by processing the images
drawn from an imaging device like a camera. For automotive vision sensors, image pro-
cessing of road scenario can provide highly valuable information which other sensors fail to
obtain. For instance, vision-based solutions was recently applied for pedestrian detection,
in the cases where radar sensors or laser scanners would fail. Cameras work usually at
frame rates between 15 fps and 25 fps, therefore they have measuring rates comparable to
radar sensors and laser scanners. However, relative velocity cannot be directly measured,
but has to be differenced from successive images. Camera sensors are also sensitive to
adverse lighting and atmospheric conditions. Furthermore, image processing techniques
are complicated, computationally expensive and still under research [12].

2.2.5 Ultra-Wideband

Another possible Sensor-based Cooperative Positioning solution is to employ radar sensor
models at lower frequencies. However, due to the larger wavelength, vehicles appear rather
small and cannot provide a sufficiently big surface to reflect radio waves. For this reason,
an antenna can be installed on vehicles so that the signals are amplified and reflected back
to the transmitter vehicle. The relative distance from a vehicle can be estimated by mea-
suring the Round Trip Delay (RTD) and multiplying it by the speed of light. The main
issue with RTD is that the delay caused by the vehicle which reflects the signal back has
to be estimated [13].
Many applications based on Ultra-Wideband (UWB) technology was implemented for col-
laborative radio ranging, providing estimations with precision of decimeters for a maximum
distance of 300 meters [13]. In general, UWB solutions allow to achieve high localization
accuracy, due to its ability to resolve multipath and penetrate obstacles [14]. Since the
wide bandwidth of UWB allows very fine time resolution, several localization techniques
exploiting UWB rely on Time-of-Arrival (ToA) estimation of the first path to measure the
range between a receiver and a transmitter. In a cooperative scenario, the anchor nodes
placed in known location and emitting UWB signals perform ranging measurements among
them and not only with the target node, improving the overall accuracy and coverage. The
accuracy of range-only localization systems depends mainly on the geometric configuration
of the system and the quality of the range measurements, which typically degenerate in
presence of multipath, LOS blockage and excess propagation delays through materials.
Another drawback of UWB methods is the limited working range [14].
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2.3 GNSS-based Cooperative Positioning Methods

Most of the recent studies about Cooperative Positioning has been directed towards Sensor-
based models, while few contributions was focused on GNSS-based Cooperative Positioning
models and measurements, obtained by means of non-Line-of-Sight network communication
for absolute (vehicle self-localization on Earth) and relative (between two vehicles) posi-
tioning [15]. The previous overview of Sensor-based ranging solutions led to the conclusion
that relying on Cooperative Sensor-based meeasurements requires high computational com-
plexity and cost. Moreover, the sensors lose most of their ranging accuracy in a difficult
environment.
The proposal of this thesis consists on the integration of GNSS-only auxiliary ranging
measurements with the GNSS pseudorange measurements, without the deployment of any
sensor. The goal is to re-evaluate the utilization of raw GNSS data in the form of auxiliary
relative ranging information to improve both accuracy and precision of the navigation solu-
tion [15]. With respect to Sensor-based collaborative methods, GNSS-based ones requires
less cost and less computational complexity. Moreover, since the ranging information is ex-
changed directly among GNSS receivers, there is no need to identify the type of the object,
unlike ranging sensors which have to understand the type of object for each detection. In
general, GNSS-based Cooperative Positioning methods consist in obtaining solutions from
a network of peers/agents which collaborate by exchanging GNSS data, such as Inter-Agent
Ranges (IARs). In a V2V communication, for instance over a Vehicular Ad-hoc Network
(VANET), the GNSS-based relative localization relies on the information sent over this
communication link, in particular about vehicle absolute positions in Earth coordinates,
their speed and heading along with their associated uncertainty [12].

2.3.1 Belief Propagation

A possible Cooperative Positioning GNSS-based model regards the belief propagation
method. It has developed for critical wireless scenario where GNSS is not available or
affected by a large uncertainty. Nevertheless this application can be exploited as auxiliary
ranging system of GNSS, creating a Hybrid GNSS + terrestrial localization model. The
Belief Propagation technique relies on location information messages (beliefs) which reduce
the uncertainty inside the network [8].
In this hybrid model the nodes deal with pseudoranges (distances from satellites) and
terrestrial ranging measurements (tipically Peer-to-Peer distances) [11].
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2.3.2 Differential Methods

The methods to estimate IARs are similar to Differential GPS, with the unique difference
that both the involved nodes are mobile and no one works as base station. GNSS observ-
ables can be classified in raw code measurements and carrier measurements, however the
second category is not preferred due to cycle slipping phenomenons and the need to resolve
carrier phase ambiguity [6]. Four different methods exploiting GNSS code pseudoranges
can be proposed to estimate IARs: absolute position provided by GNSS receivers, raw
code pseudoranges, Single Difference (SD) and Double Differences (DD) of raw code pseu-
doranges. It was shown in literature that DD method is better in condition of negligibly
small uncorrelated error term contribution on range measurements and assuming no or
small multipath error [6].

2.3.3 Classic Double Difference Pseudorange Solution

Considering a satellite i and an user a in a GPS system and taking into account all the error
contribution sources in the measurements, the pseudorange can be expressed as follows

PRi
a = Ri

a + ta + xi + εia (2.1)

where Ra is the true range between satellite i and user a; ta is the errore due to user a’s
clock bias; xi is the common noise related to satellite i; and εia is the non-common noise
related to both receiver of user a and satellite i. Then, if we take the difference between
the pseudoranges of two users a and b with respect to the same satellite i, the common
noise due to satellite i can be removed as

Siab = PRi
a − PRi

b = ∆Ri
ab + (ta − tb) + (εia − εib) (2.2)

where Siab is the single difference of pseudorange measurements and ∆Ri
ab is the difference

between the true ranges.
As the ranges from satellite i to users a and b are much larger than the distance between a

and b, the two vectors pointing from a to i and from b to i are practically parallel to each
other. As shown in Figure 2.2, ∆Ri

ab can be appoximated by

∆Ri
ab = þei · þrab (2.3)

where þei is the unit vector pointing from user a or b to satellite i, and þrab is the distance
vector between users a and b. If a new satellite j is available to both of the users, also the
clock bias of a and b can be removed by taking the double difference based on 2.2 and 2.3
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Figure 2.2. Pseudorange Double Difference [4].

as follows:
Dij
ab = Siab − Sjab = [þei − þej ] · þrab + [(εia − εib) − (εja − εjb)]. (2.4)

Given a set of satellites {0, 1, ..., n} shared by the users a and b, and suppose satellite 0
is selected as the reference satellite for double difference (i.e. j = 0), then (2.4) can be
generalized as

Dab = Hþrab + ε (2.5)

where Dab is the column vector of pseudorange double differences with respect to the
satellites 0 and i (1 ≤ i ≤ n) (Dab = [D10

ab D20
ab · · · Dn0

ab ]T ), H is the column vector of the
difference between two unit vectors (H = [(þe1 − þe0)(þe2 − þe0) · · · (þen − þe0)]T ), and ε is the
column vector of aggregated non-common noise (ε = [((þε1

a−þε1
b) − (þε0

a−þε0
b)) · · · ((þεna −þεnb ) −

(þε0
a − þε0

b))]T ). Assuming ε zero mean and equal variance, then þrab can be computed by the
linear least square estimator

þrab = (HTH)−1HTDab. (2.6)

When computing the unit vector of þei (0 ≤ i ≤ n), the positioning error by the GPS can
be ignored since its negligible with respect to the satellite-Rx distance. Therefore, þei can
be obtained by the GPS corrections and the corresponding ephemeris [4].

2.3.4 Weighted Least Square Double Difference

In (2.5), ε is referred to as the aggregated non-common noise of pseudorange measure-
ments, including both multipath and random code acquisition errors. The i-th element of
ε represents the non-common noise when computing the double difference using satellite i
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(1 ≤ i ≤ n) and satellite 0 (i.e., the reference satellite) and it is defined as:

εi = (εia − εib) − (ε0
a − ε0

b). (2.7)

In a scenario where the multipath effect is not serious, such as highways, suburbs, rural
areas, etc., ε is dominated by code acquisition errors, which is directly linked to the Carrier-
to-Noise Ratio (CNR) of the received satellite signal. To mitigate the impact of ε, only
the pseudorange measurements with high CNR values can be selected for double difference
processing. A possible implementation of this is to set a threshold for selecting satellites
with a good signal [5]. Although choosing satellites by setting a high CNR threshold could
improve the accuracy, the number of valid samples of pseudorange measurements would be
reduced significantly. Lack of valid samples for double difference processing will result in
substantial delays between successive distance detections, which is not tolerable in highly
dynamic vehicular networks [4].
Therefore, a new method to improve the accuracy without causing unacceptable delays
in successive distance detections is needed. A Weighted Least Square Double Difference
(WLS-DD) ranging technique is proposed in [4]. Assuming a non-equal variance of each
εi, the weighted least squares estimator, i.e.

þrab = (HTWH)−1HTWDab (2.8)

can be implemented as the best linear unbiased estimator, where W is the weight matrix
corresponding to the inverse of the covariance matrix of ε.
The first operation of WLS-DD is the selection of the reference satellite. Given the reference
satellite 0, if (ε0

a − ε0
b) can be kept small, then εi can be approximated as:

εi ≈ (εia − εib). (2.9)

Assuming independent and zero-mean random variables for ε0
a and ε0

b , (2.9) holds only if
the standard deviations of both ε0

a and ε0
b ε0

a and ε0
b are kept small. Therefore, the chosen

reference satellite is expected to have high CNR values to both the GPS receivers a and
b. By denoting Φ0

a and Φ0
b as the CNR values from satellite 0 to receivers a and b, it is

required that Φ0
a ≥ CNRth and Φ0

b ≥ CNRth, where CNRth is the threshold. If more than
one satellite satisfies this condition, the reference one is randomly selected among them.
On the contrary, if no satellites satisfy the condition, the operation is terminated.
The second operation of WLS-DD consists in the computation of the weight matrix. From

23



Cooperative Positioning in GNSS

(2.9), each εi is assumed to be uncorrelated, so that W can be simplified as

W = diag

3 1
(σ1)2 , ...,

1
(σn)2

4
(2.10)

where diag()̇ denotes a diagonal matrix and σi is the standard deviation of εi. However, σi

cannot be directly measured, unlike Φi
a and Φi

b. Therefore, assuming the noise is reversely
proportional to the CNR, the variance can be expressed as

(σi)2 ∝ 1
(Φi

a)2 + 1
(Φi

b)2 . (2.11)

Subsequentially, the Weight Matrix W is obtained by

W = diag

A
(Φ1

a)2 · (Φ1
b)2

(Φ1
a)2 + (Φ1

b)2 , ...,
(Φn

a)2 · (Φn
b )2

(Φn
a)2 + (Φn

b )2

B
. (2.12)

The third operation regard the selection of the candidate satellites. (2.8) can be applyed
only when there are at least four satellites shared by the two receivers. Therefore, in
addition to the reference satellite, at least other three candidate satellites have to be
selected. First of all, a minumum threshold CNRmin is set to prevent the use of pseudorange
measurements with very high noise. Thus, only the satellites with CNR values higher than
CNRmin can be selected. If the number of candidate satellites is less than three, the
operation stops. It has to be notices that CNRmin ≤ CNRref should hold, since the
reference satellite is expected to have the highest CNR value.
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Chapter 3

Bayesian estimation for Hybrid
PVT: Extended Kalman Filter
and Particle Filter

3.1 Bayesian estimation for Hybrid PVT

In the previous chapter it was discussed how a stand-alone GNSS suffers difficult environ-
ments, such as urban canyons, under dense foliage and indoors, where the LoS between
satellites and user receiver is often obstructed and so the positioning degrades or fails
completely. To overcome this issue, hybrid positioning models have been proposed to im-
prove availability and positioning accuracy by integrating auxiliary measurements. Thus,
a proper receiver design able to combine the standard GNSS solution with the auxiliary
one for the PVT estimation is required.
Bayesian Filters are a powerful statistical tool to jointly combine data measurements from
heterogeneous sources to increase positioning accuracy and precision. The Bayesian estima-
tion follows a probabilistic approach to determine a Probability Density Function (PDF)
recursively over time by processing the incoming measurements. Then, they estimate a
dynamic state (or set of states) which in a positioning context can be the location and the
velocity of a target [11].
More specifically, given a set of observations z, a Bayesian estimator propose to estimate
the state vector x as a realization of an unknown random variable X with a priori distribu-
tion pX(x). The state vector x corresponds to the position and other quantities of interest
at a discrete time instant k, while z identify the measurements coming from a GNSS re-
ceiver or other auxiliary systems (intertial sensors, BSs, etc.). We define p(xk|z1:k) as
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the a-posteriori density function which allows to determine the most probable state xk at
time k, given the history of observations z1:k. It can be computed recursively through two
stages: prediction and update [11].
The integration of cooperative measurements is tipically performed by means of the Kalman
Filter (KF), which can properly perform the PVT computation of a GNSS receiver with a
good compromise in terms of accuracy and computational complexity [15].
Recent studies have instead started proposing a Hybrid PVT implementation based on
Particle Filter (PF), since it can achieve higher accuracy by implementing a sequential
Monte Carlo approach, becoming a serious alternative to the KF Hybrid PVT models [15].

3.2 Extended Kalman Filter

3.2.1 Kalman Filter and its limit for Non-Linear Applications

Bayesian Filters start by considering the problem of estimating the sequence of hidden
states Xk = [x0, ..., xk], with initial distribution p(x0) and given the set of the observation
Zk = [z1, ..., zk] which is related to the hidden states, at the time instant k. Following a
first-order Markov chain approach, the discrete-time state-space model can be expressed
by the two equations:

xk = fk−1(xk−1, uk−1, vk−1) (3.1)

zk = hk(xk, uk, wk) (3.2)

where xk ∈ ÙNx is the target state vector of order Nx at time k, uk−1 is the set of known
system input at time index k −1 and vk−1 is the model noise sequence. Similarly, zk ∈ ÙNz

is the observation vector of order Nz at time k and wk is the observation noise. fk−1 and
hk are respectively the state transition function and the observation function and they
can be linear or non-linear. Equation 3.1 is called state (or process) equation, while (3.2)
is known as observation (or measurement) equation and models the relationship between
the measurements and the state. The two noise contribution vk and wk are assumed with
known statistic and mutually independent [11].
KF is an optimal Bayesian recursive filter that estimates the state of a linear dynamic
system from a sequence of noisy measurements. To be applied, the following assumption
must hold for (3.1) and (3.2): vk−1 and wk are described by Gaussian densities of known
parameter and they are additive; fk−1 is a known linear function of (xk−1,uk−1) and vk−1;
hk is also a known linear function of xk and wk. The KF achieves an optimal solution only
if these constraints are verified.
However, a positioning system is non-linear by nature as well as most of the real-world
systems, hence this assumption may not hold in some applications. Moreover, noise cannot
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always be considered as normally distributed [11].
To overcome this limitation, suboptimal Bayesian filters has been adopted. Among the
suboptimal filters, the Extended Kalman Filter is the most exploited for navigation in ve-
hicular mobility and for integration of cooperative measurements [15], since it was designed
to deal with system with non-linear state update and measurements equations.
The main idea of EKF is to linearize the state transition and observation equations around
the mean of the relevant Gaussian RV by means of a Taylor-series expasion and then apply
the linear KF to this linearized model. Thus, the performance of EKF depends mainly on
how the system dynamics and measurements are modeled [11].
A general EKF algorithm following this model is described in the following paragraph.

3.2.2 Extended Kalman Filter Algorithm

We assume to be at a certain time instant k. The algorithm starts with the Prediction
step, where the predicted state is estimated as follows:

x̂k|k−1 = Fk · x̂k−1|k−1 + Bk · uk (3.3)

where Bk is the input matrix, uk is the input to the system and Fk represents the linearized
state transition matrix defined as:

Fk = ∇xfk(x, u)|x=x̄ (3.4)

where ∇x is the Jacobian operator with respect to the vector x and x̄ is the point where
the linearization occurs. The next step regards the estimation of the predicted covariance
matrix P̂k|k−1 related to the current a priori state vector x̂k|k−1:

P̂k|k−1 = Fk · P̂k−1|k−1 · F T
k + Qk (3.5)

Now, the algorithm starts the Update procedure, by computing the innovation vector
as the residual between the observed measurement zk and the predicted measurement
h(x̂k|k−1):

ỹk = zk − h(x̂k|k−1). (3.6)

Next, The Kalman Gain is computed as:

Kk = P̂k|k−1 · HT
k · (Hk · P̂k|k−1 · HT

k + Rk)−1 (3.7)

27



Bayesian estimation for Hybrid PVT: Extended Kalman Filter and Particle Filter

where Hk is the linearized observation matrix and Rk the covariance matrix related to the
observation vector. The observation matrix Hk is given by:

Hk = ∇xhk(x) (3.8)

Then, the a-posteriori state estimate is computed as:

h(x̂k|k) = h(x̂k|k−1) + Kk · ŷk (3.9)

Similarly for the a-posteriori state covariance matrix:

P̂k|k = (In − Kk · Hk) · P̂k|k−1 (3.10)

where In is the identity matrix of dimension n.

3.3 Particle Filter

3.3.1 Particle Filter Overview

Previous works [15] has shown how a suboptimal implementation of PF achieves better
performance with respect to EKF in terms of more accuracy in the state estimate by mak-
ing use of a sequential Monte Carlo method. Nevertheless, the actual strength of PF is
the capacity to handle Non-Gaussian and Non-Linear measurement models, when an op-
timized implementation is given.
At each iteration, PF is able to focus its resources (particles) on the region of the state
space with high probability. However, since the complexity grows esponentially with the di-
mensions of the state space, we need to be very careful when dealing with high-dimensional
estimation problems [11].
More specifically, it works approximating the discrete a-posteriori distribution of a generic
state vector xk at time tk by generating and propagating a set of N particles to which a
set of weights {x̂ik, wi

k}Ni=1 is associated. The estimated a-posteriori distribution is given
by:

p(xk|z1:k) ≈
NØ
i=1

wi
kδ(xk − x̂ik) (3.11)

where z1:k represents the observation up to tk, wi
k is the weight associated to the i-th

particle, δ(x) is the Dirac delta function and x̂ik is a propagated particle [16].
The weights are recursively set at each iteration according to a certain Likelihood function
pre-defined as

p(zk|x̂ik) (3.12)
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and updated by means of a Resampling procedure [16].

3.3.2 Particle Filter Algorithm

A generic PF algorithm tipically consists on five steps (Figure 3.1). The first is the Ini-
tialization, where a set of particles x̂ik is generated according to

x̂ik ∼ p(xk|x̂ik−1) (3.13)

where p(xk|x̂ik−1) is the a priori density.
The second step is represented by the Prediction, where the all the generated particles
are propagated following the dynamic system model

x̂ik,pred = Φ(x̂ik, vk) (3.14)

where Φ denotes the state transition matrix and vk the noise affecting the states.
At this point the Weights Computation is performed, based on the likelihood function
described in (3.12). The weights are defined as:

wi
k =

r
n p(zn,k − zin,k)qN

i=1
r
n p(zn,k − zin,k)

(3.15)

The following step is the Resampling, where the particles are recombined according to
the weights previously assigned. This is a highly critical operation, since it has to deal
with degeneracy problem and sampling impoverishment (exhaustive discussion about Re-
sampling in Chapter 4.2).
Finally, the Bayesian Estimation of the state is given by the average of the resampled
particle set as:

x̂k ≈
NØ
i=1

x̂ik,res (3.16)
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Figure 3.1. Particle Filter steps.
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Chapter 4

Particle Filter Implementation
for GNSS-based Cooperative
Positioning

4.1 Particle Filter for Agent Network Models

4.1.1 Agent Network Implementation

By addressing the collaborative positioning of moving vehicles immersed in a urban sce-
nario, an Agent Network (AN) is implemented with the intent of locating and tracking a
vehicular target T by employing some static collaborative agents Ci. The static location of
the collaborative agents does not imply a lack of generality in terms of relative dynamics
with respect to the GNSS satellites.
The intent of this kind of AN consists in locating and tracking the target, by estimating its
state vector xktarget at each time instant k. An integration of cooperative ranging measure-
ments is performed, since the local target pseudorange measurements may not be sufficient
to obtain accurate and reliable position estimates.
In this cooperative scenario, the agents interact with the target providing an estimate of
their position at each time instant, along with the set of the available GNSS measurements
(i.e. Doppler and pseudoranges). Target-agent distances are computed by means of WLD-
DD method (previously discussed in Chapter 2.3.3). The geometry of the network must
be certainly taken into account when considering the reliability of the agents, since the
accuracy of the target-agent distances depends strongly on the local position of the target
with respect to the agents at each time instant.
To evaluate the system performance a Bernoullian trajectory is considered, along which the
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vehicular target T travels according to a uniformly accelerated dynamics. The collaborative
agents Ci consist on stationary peers located in different points of the trajectory, as shown
in Figure 4.1. A set of 8 visible satellites is applied to simulate the GPS constellation. The

Figure 4.1. Agent positions on the trajectory

corresponding RF signals were generated by means of a high-end, professional IFENTM

NavX Signal Generator. The choice of a reduced number of satellites aim at addressing
poor sky visibility for harsh environment. RF signals were then digitalized using an SDR
USRPTM B210 Front-end and then processed through a propretary MATLABTM GNSS
software receiver.

4.1.2 Particle Filter Solution

As pointed out in Chapter 3.2.1, positioning systems include non-linear elements, i.e. the
state equation (3.1) and the observation equation (3.2), and non-Gaussian elements, i.e.
the probability distribution of the GNSS-based ranging measurements. As shown in Figure
4.2, one of the error distributions of the target-agent relative distance is not Gaussian.
In Chapter 3.3 it was stated how Particle Filter povides better performance for non-linear
systems and non-Gaussian measurements compared to other Bayesian Filters. In general,
PF works well in many situations where KF-based methods diverge. The drawback is an
increase of the computationally complexity with respect to the EKF [17] [15], as the num-
ber of particles increases.
Given a Hybrid PVT model based on PF, when auxiliary ranging measurements are in-
tegrated (at least one agent collaborates with the target) and an optimized implementa-
tion of PF is provided, the algorithm is able to process simultaneously the pseudoranges
(target-satellite distances) and the auxiliary ranges (target-agent distances) by applying
respectively and separately a Gaussian distributed and a non-Gaussian distributed like-
lihood. Then they are combined and employed for the weight computation. The set of
particles is generated over a region the state space according to a Gaussian model:
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Figure 4.2. Error Distribution for one of the agents.

x̂ik ∼ N (xk−1, σx) (4.1)

where xk−1 is the previous state estimate and σx is the state covariance matrix. A
particle i represent a possibile realization of the state space vector at time k, defined as:

x̂ik = [xik yik zik bik ẋik ẏik żik ḃik] (4.2)

where [xik yik zik] refers to the spatial coordinates, [ẋik ẏik żik] to the velocity compo-
nents, while bik and ḃik are respectively the bias and the drift of the local clock. After each
particle i is predicted according to the algorithm described in Chapter 3.3, the nominal
measurement vector zik is computed. At this point, the auxiliary ranges are integrated by
adding them to zik, creating a new nominal measurements vector zik,int as

zik,int = [zik zik,aux]. (4.3)

If a suboptimal PF is considered, the likelihood function is forced to be Gaussian even if
the auxiliary ranges are not normally distributed. Differently, the proposed optimized PF
has the capability to separately process the pseudoranges as Gaussian distributed and the
auxiliary ranges by adopting a different distribution (GEV, Rayleigh, etc.), generating two
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different likelihood function p(zk|x̂ik) and paux(zk,aux|x̂ik):

p(zk|x̂ik) ∼ N (0, σLH) (4.4)

paux(zk,aux|x̂ik) ∼ D(0, σLH) (4.5)

where σLH is the so called observation noise covariance matrix and D(0, σLH) is a generic
non-Gaussian distribution. The two likelihoods are then combined and employed for weight
computation.

4.2 Resampling Methods

4.2.1 Degeneracy Problem and Sample Impoverishment

A common problem of PF is the degeneracy phenomenon. If a resampling procedure is
not considered, after few iterations a particle weight will converge to 1, while all the other
particles will have negligible weight [19]. This implies that a large part of computational
resources are dedicated to update particles whose contribution is nearly zero [18]. Further-
more, PF will collaps to a single point processing losing its peculiarity. Previous studies
[21] have shown that the variance of the importance weights can only increase over time,
therefore the degeneracy problem cannot be avoided.
Degeneracy problem represents the key point which highlights why the resampling step
is required to prevent high concentration of the probability mass on a few particles. The
resampling step consist in generating a new set of particle x̂ik,res by statistically replacing
time by time, each particle from the original set x̂ik according to the a-posteriori distribu-
tion shown in (3.11), so that particles with higher weights have an higher probability to be
drawn in the resampled set. This corresponds to the most easy and common resampling
algorithm defined as Sampling Importance Resampling, based on:

Pr(x̂ik,res = x̂jk) = wj
k (4.6)

where Pr(x̂ik,res = x̂jk) describes the probability that a particle j from the original set is
resampled as the i-th particle of the resampled one and this probability corresponds to
the weight wj

k of the particle j. The resulting resampled particles are unweighted, since
the weights are reset to 1/N . Other resampling algorithms, such as stratified, residual
and systematic resampling may be applied as alternatives to this algorithm (see next
paragraphs).
Although the resampling step efficiently reduces the effects of degeneracy, it introduces a
new problem, defined as sample impoverishment. Due to resampling, the particles having
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high weights are statistically selected many times. This leads to a loss of diversity among
the particles since the resampled particle set will contain many repeated points. The risk is
again that all particles will collapse to a single point after few iterations [18]. The proposed
solution is to use resampling only when a significant degeneracy is detected. A reliable
measure of degeneracy is given by the effective number of particles Neff , expressed as [18]
[19]

Neff = 1q
i(wi

k)2 (4.7)

This Neff is compared with a threshold, set as Nth = 2N
5 . A small value of Neff means

high degeneracy, therefore the resampling is perormed only if Neff ≤ Nth.

4.2.2 Stratified and Systematic Resampling Algorithm

The main principle of these two resampling algorithms is to set N numbers from the
uniform distribution

ui ∼ U [0,1), i = 1, ..., N (4.8)

and selecting particle xjk for replication, if

ui ∈

j−1Ø
p=1

wp,
jØ

p=1
wp

 . (4.9)

Stratified resampling algorithm works by considering a division into strata (layers) ac-
cording to the number of particles. Inside each stratum, the resampling is performed
simultaneously. The algorithm, which can be easily implemented with complexity O(N),
assumes that the range [0,1) is subdivided into equal parts, and the draw occurs in each
such stratum

ui ∼ U
5

i − 1
N

,
i

N

4
(4.10)

Particles xj are then selected for replication according to (4.9). The main Stratified algo-
rithm advantage is the possibility to be implemented by means of parallel computing [20].
Systematic resampling algorithm follows the same principle of Stratified one, the only dif-
ference is that the random number ustart is drawed only once and remains constant for
that whole resampling step:

ustart ∼ U
5
0,

1
N

4
(4.11)

ui = i − 1
N

+ ustart (4.12)

Again, particles xj are selected for replication according to (4.9). Both of the algorithms
have a very high operation speed [20].
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4.2.3 Residual Resampling Algorithm

Residual Resampling (RR) starts from the assumption that the particles with large weight
can be assigned to the resampled set without drawing. The algorithm proceeds at first
computing the number of residual particles R. Then, it performs two different procedures:
in the first part, the first N −R particles are assigned to those with wj > 1

N in deterministic
way; in the second part, the weights of the already assigned particles are reduced and a
new weight set is computed, then the residual R particles are assigned in stochastic way.

4.2.4 Resampling Methods Comparison

To perform the comparison among the previously discussed Resampling algorithm, the
same simulation conditions are assumed for each one of them. In particular, a PF imple-
mentation with 10000 particles is exploited, considering 5 minutes of PVT computation
along the trajectory shown in Figure 4.1, with no cooperative agents involved. The com-
parison analyzes the overall performance in terms of ECDF and computational time.

Figure 4.3. CDF comparison of Resampling methods

The result represented in Figure 4.3 reveals how the performance in terms of CDF slightly
changes depending on the selected Resampling method, with errors that differ in the order
of centimeters. Since a very large number of particles is considered, the effects of each
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method becomes less noticeable.
A more interesting result emerges from the analysis of the execution time of the four
considered methods.

Resampling Algorithm Execution time (s)
Sampling Importance 1196
Systematic 68
Residual 115
Stratified 76

Table 4.1. Execution time comparison of Resampling methods.

The Table 4.1 points out how the three proposed methos extremely reduce the computa-
tional time of the overall simulation, in particular the Systematic and Stratified algorithms.
The last one is preferred, due to the possibility to be implemented with parallel computing
for future works.

4.3 A Real-Time Adaptive Covariance Model for Par-
ticle Generation Control

4.3.1 Static Covariance Model Case

From literature [19], a well-known problem with the Particle Filter is that its performance
degrades quickly when a large number of states has to be estimated. From (4.2) it is
known that the considered PF model estimates 8 states, thus a positionin error increase is
predictable as the duration of the PVT computation increases.
From simulations, while the vehicular target is travelling along a curved trajectory (see
Figure 4.4), a loss of performance in terms of divergence from the true trajectory is eval-
uated. When approaching a curve, the target starts to brake performing a rapid decrease
of the velocity. On the contrary, at the end of the curve, it accelerates increasing rapidly
the velocity. It can be assumed that PF is not able to track in a sufficiently reactive way
these fast state variations, due to the high number of state dimensions it has to estimate
time by time.

From (4.1), a particle is defined as a possibile realization of the state space vector xk

according to a Gaussian model with mean xk−1 and a predefined state covariance matrix
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Figure 4.4. Curve detail of a PF trajectory approximation

σx,stat set as:

σx,stat =



200 0 0 0 0 0 0 0
0 200 0 0 0 0 0 0
0 0 200 0 0 0 0 0
0 0 0 2000 0 0 0 0
0 0 0 0 200 0 0 0
0 0 0 0 0 200 0 0
0 0 0 0 0 0 200 0
0 0 0 0 0 0 0 20


(4.13)

Each value corresponds to the variance of one state according to (4.1). At each time instant
and at each position along the trajectory, the state covariance matrix remains static and
so the generated particle cloud x̂ik,stat as shown in Figures 4.5 and 4.6. On this particular
case, a section of the trajectory where the target is moving highly along the dimension yk
and less on the dimension xk is considered.

To mitigate this problem and make the PF more reactive to the state evolution over time,
a control on the particle cloud generation can be proposed.
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Figure 4.5. Particle cloud generated with static covariance matrix

4.3.2 Real-time Adaptive Covariance Model Proposal

The proposal discussed on this section consists on the possibility to implement a new
model of the state covariance matrix σx,adap which is able to dinamically adapt itself to the
state evolution over time. At each time instant, the covariance of each state dimension is
computed by relying on the previous state estimates xk−4:k−1 (the last four are considered
for this study) which provide a projection of how much the states are varying. Accordingly
to this model, PF can generate the particle cloud x̂ik,adap by adapting it to the sector of
the trajectory that the target is traveling at that time. In particular the covariance of the
state xk and yk depends on ẋk and ẏk previous values, since they provide an estimates of
the space variation along the two dimensions. To analyze how this new model affects the
particle cloud, we consider the same section of the trajectory evaluated for the static case.
By implementing a real-time adaptive model for σx, the evaluated covariance values on a
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Figure 4.6. Detail of Particle cloud generated with static covariance matrix

point of the trajectory sector are:

σx,adap =



2 0 0 0 0 0 0 0
0 42 0 0 0 0 0 0
0 0 5 0 0 0 0 0
0 0 0 5 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 5


(4.14)

Since we are moving mainly along the yk dimension, an higher value of covariance is eval-
uated and assigned to it (σx,adap(yk) = 42). On the contrary, xk obtains a low covariance,
since the target is moving slowly along this dimension (σx,adap(xk) = 2). The corresponding
particle cloud modification is shown in Figure 4.7 and Figure 4.8.
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Figure 4.7. Particle cloud generated with adaptive covariance matrix

Figure 4.8. Detail of Particle cloud generated with adaptive covariance matrix
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4.3.3 Static vs Adaptive Covariance Model Comparison

In conclusion, an error CDF performance comparison between the two cases is performed,
considering as simulation settings: 10000 particles, 5 minutes of PVT computation along
the trajectory and no cooperative agents involved (Figure 4.9).

Figure 4.9. CDF Comparison between static and adaptive covariance model

An average accuracy improvement of 20.02% is achieved at the 50-th percentile (Table 5.7),

Covariance Model 50-th percentile
Error (m)

75-th percentile
Error (m)

95-th percentile
Error (m)

Static Model 4.34 8.03 11.84
Adaptive Model 3.47 6.76 10.90
Improvement 20.02 15.78 7.91

Table 4.2. Error evaluation for static and adaptive covariance model.

while a general reduced but positive improvement is evaluated for the error distribution
on the other percentiles by looking at Figure 4.9.
To better understand how this adaptive model works, a detail of the trajectory section
considered in Figures 4.5 and 4.7 is given in Figure 4.10. From this figure it can be noticed
how, considering two passages along the same curve, the real-time adaptive model for the
state covariance matrix produces a smoother trajectory approximation, with respect to
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static one, and it allows PF to better track the state variations, even in case of rapid state
changes. A higher divergence on the second passage along the curve is present, since the
PF accuracy degrades as the PVT computation time increases, due to the high number of
estimated dimensions.

Figure 4.10. Curve detail comparison between Static and Adaptive Covariance models
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Chapter 5

Results

In the previous chapter, the general PF model was enhanced to improve the accuracy and
precision of the estimates when dealing with GNSS measurements, without considering
the cooperative scenario. The computational complexity was sensibly reduced by means
of a computationally-efficient resampling algorithm, while the positioning accuracy was
enhanced by making PF able to adapt the particle cloud shape to the current trajectory.
At this point, the auxiliary ranging measurements are integrated in the model. A first set
of result is obtained by considering a suboptimal implementaion of the PF, which processes
the non-Gaussian auxiliary measurements by approximating their statistical distribution
through a Gaussian likelihood model. A comparison between non-Cooperative and Coop-
erative case is given. Then, an optimized implementation of PF is realized by applying
non-Gaussian models for the computation of the likelihood of the auxiliary measurements,
according to (4.5). More specifically, General Extreme Value (GEV) and Rayleigh distri-
bution models are considered according to previous investigations on the statistics of the
DD ranging method, requiring an analysis of their performance behaviour by varying their
parameters (k for GEV and σ for Rayleigh). Finally, a comparison between these two mod-
els with respect to the Gaussian one is shown. An additional proposal for an a-posteriori
adaptive implementation for the likelihood distribution of the auxiliary measurements is
presented.
For all the simulation described in this chapter they were considered: 10000 particles,
Stratified Resampling algorithm and Adaptive covariance model for the particle genera-
tion.
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5.1 Non-Cooperative Case vs Cooperative Case

This first result compares the accuracy of s-PF without cooperation and s-PF with the
integration of the auxiliary measurements by considering a different agent per each simu-
lation. Performances are estimated by ECDF evaluation. A first comparison is performed
by considering only 90 seconds of PVT computation along a rectilinean trajectory (Figure
5.1). Instead, the second one is extended up to 3 minutes covering a full lap along the
trajectory (Figure 5.2).

Figure 5.1. ECDF of Non-Cooperative case vs Cooperative case assuming Gaussian
auxiliary measurement model, along a rectilinean trajectory.

Aiding Peer 50-th percentile
Improvement (%)

75-th percentile
Improvement (%)

95-th percentile
Improvement (%)

Agent #1 14.07 1.89 2.31
Agent #2 2.35 -0.24 -3.92
Agent #3 10.17 -6.6 6.90
Agent #4 -2.60 -8.64 -1.9

Table 5.1. Improvement for each agent assuming Gaussian auxiliary measurement
model, along a rectilinean trajectory.

In both cases the evaluated errors differ in the order of centimeters, therefore on this con-
sidered scenario the cooperation provides only a slight improvement, although for some
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Figure 5.2. ECDF of Non-Cooperative case vs Cooperative case assuming Gaussian
auxiliary measurement model, along a full lap of the trajectory

agents and percentiles it is negative (Table 5.1). For what concerns the first scenario, a
rectilinean trajectory is easier to be predicted and tracked, since the applied propagation
model of the motion is linear. Therefore cooperation does not necessarely produce a sensi-
bly higher improvement. When considering the full trajectory, the geometry of the system
and the relative position of the target with respect to the agents have to be taken into ac-
count, since they affect the accuracy and precision of the auxiliary ranging measurements.
These results are obtained by employing a suboptimal PF, which forces the Non-Gaussian
error distributed ranging measurements to match Gaussian likelihood models. This justi-
fied the investigation of a more accurate model for the statistics of the auxiliary measure-
ments.

5.2 Optimized PF Implementation for Cooperative
Positioning

To enhance Cooperative Positioning by PF, an optimized implementation of the filter is
required. It can be performed by exploiting non-Gaussian distribution models for the gen-
eration of the likelihood function of the auxiliary measurements. Preliminary investigations
about the error distribution of DGNSS range measurements provided they can follow GEV
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or Rayleigh distributions when they are obtained from Gaussian-distributed pseudoranges.
Both of them depends on two parameters (k for GEV and σ for Rayleigh) which modify the
shape of their PDF. When the two distribution models are integrated inside the PF, these
parameters affect the generation of the likelihood hence the accuracy of the estimation.
Before comparing the performance of the optimized PF model with respect to s-PF, an
analysis of these two distributions by varying the shape parameters is needed.
For these measurements, only the Agent #1 is considered.

5.2.1 General Extreme Value Distribution

The GEV distribution is a family of continuous probability distributions developed within
extreme value theory, which provides the statistical framework to make inferences about
the probability of very rare or extreme events. The GEV distribution combine together the
Gumbel, Fréchet and Weibull distributions into a single family to allow a continuous range
of possible shapes. These three distributions are also known as type I, II and III extreme
value distributions. Its characteristic parameters are the shape paramater k, the location
parameter µ and the scale parameter σ and it belongs to the type I, II and III respectively
when the shape parameter is equal to 0, greater than 0 and lower than 0. Based on the
extreme value theorem the GEV distribution is the limit distribution of properly normalized
maxima of a sequence of independent and identically distributed random variables. Thus,
the GEV distribution is used as an approximation to model the maxima of long (finite)
sequences of random variables [26].
The PDF of the GEV distribution, given the previous parameters is

f(x|k, µ, σ) = 1
σ

e−(1+k x−µ
σ

)− 1
k (1 + k

x − µ

σ
)−1− 1

k (5.1)

for
1 + k

x − µ

σ
> 0

. For k = 0 the PDF becomes:

f(x|0, µ, σ) = 1
σ

e−e
− x−µ

σ − x − µ

σ
(5.2)

In Figure 5.3, a generic GEV-shaped likelihood for k = 0 is shown.
To evaluate what is the best value (or values) of the parameter k for the GEV distribution
when employed to model the statistics of the auxiliary measurements, four different portion
of the Bernoullian trajectory are considered: starting from the rectilinean one traveled
in the first 90 seconds of PVT computation, the duration of the PVT computation is
extended simulation by simulation as well as the traveled trajectory up to 5 minutes which
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Figure 5.3. Likelihood function applying a GEV Distribution with k = 0.

corresponds to almost two laps. The considered set for the k values is k = {−0.5, 0, 0.5, 1}.
The results are evaluated in terms of ECDF curves by varying the k parameter according
to the chosen set of values.
From Figures 5.4, 5.5, 5.6 and 5.7, the best value of k in terms of positioning error per-
formance changes depending on the considered trajectory. GEV Distribution with k = 0
better approximates the error distribution of the auxiliary measurements along a recti-
linean trajectory, while k = 0.5 and k = 1 starts providing better accuracy when the
trajectory becomes longer and more complicated, therefore when the target-agent distance
varies a lot and quickly.

5.2.2 Rayleigh Distribution

Rayleigh distribution is defined as a continuous probability distribution for nonnegative-
valued random variables. Its PDF can be expressed as:

f(x|σ) = x

σ
e

−x2
2b2 (5.3)

In Figure 5.8, a generic likelihood obtained by applying a Rayleigh Distribution with
σ = 0.5 is shown.
The same sequence of simulations used for the GEV distribution is performed considering
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Figure 5.4. ECDF of optimized PF assuming GEV distributed likelihood for auxiliary
measurements, after 90 seconds of PVT computation along a rectilinean trajectory.

Figure 5.5. ECDF of optimized PF assuming GEV distributed likelihood for auxiliary
measurements, after 2 minutes of PVT computation.
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Figure 5.6. ECDF of optimized PF assuming GEV distributed likelihood for auxiliary
measurements, after 3 minutes of PVT computation.

Figure 5.7. ECDF of optimized PF assuming GEV distributed likelihood for auxiliary
measurements, after 5 minutes of PVT computation.
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Figure 5.8. Likelihood function applying a Rayleigh Distribution with σ = 0.5.

instead the Rayleigh distribution for the set σ = {0.5, 1, 2, 3}. Only the last one simulation
(5 minutes of PVT computation is shown in Figure 5.9, since the performance behaviour by
varying σ is practically the same along the different portions of the Bernoullian trajectory.

5.2.3 Distribution Comparison

According to the previous results, k = {0, 0.5, 1} for the GEV Distribution and σ = 0.5
for the Rayleigh one correspond to the values which provide the best likelihood models for
the auxiliary measurements in an optimized PF implementation. At this point, a compar-
ison between GEV and Rayleigh distributions (setting the collected optimal k and sigma

values) with respect to the Gaussian one is performed by considering the same four dura-
tions of PVT computation and related trajectory lengths. The performance comparison in
terms of ECDF is evaluated in Figures 5.10, 5.11, 5.12 and 5.13 considering respectively
90 seconds, 2, 3 and 5 minutes of PVT computation. Error estimates at the percentiles of
interests are shown in Tables 5.2, 5.3, 5.4, 5.5.
The first clear result is that Rayleigh distribution is not a good model for this kind of
measurements, since the related PF performance is highly below the Gaussian model for
each considered case.
Regarding the GEV Distribution, in general there is always at least one ECDF curve which
is better than the Gaussian one. In the rectilinear portion of the Bernoullian trajectory
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Figure 5.9. ECDF of optimized PF assuming Rayleigh distributed likelihood for auxiliary
measurements, after 5 minutes of PVT computation.

(Figure 5.10), a slight improvement is provided by the GEV Distribution with k = 0,
with a maximum one corresponding to 7.70% at the 75-th percentile. When a full lap of
trajectory is considered (Figure 5.12), GEV Distribution with k = 0.5 and k = 1 provides
better improvement for all the percentiles higher than the 50-th one, varying from 1.9% to
13%. In a full 5 minutes of PVT computation (Figure 5.13), the maximum improvement
increases up to 16.56%, considering the 95-th percentile of the ECDF curve for k = 1.
An important consideration on these results is that the general GEV Distribution achieves
a better accuracy and precision with respect to the Gaussian Distribution, for this typol-
ogy of auxiliary measurements. However, the performance behaviour of the single GEV
distributions by varying the k parameter are quite different when different parts of the
trajectory are considered. Thus, an adaptive implementation for the distribution of the
likelihood of the auxiliary measurements according to the specific portion of the traveled
trajectory can be proposed.
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Figure 5.10. Comparison among the different distributions for auxiliary measurements,
after 90 seconds of PVT computation.

Distribution Model 50-th percentile
Error (m)

75-th percentile
Error (m)

95-th percentile
Error (m)

Gaussian Distr. 1.08 1.79 2.86
GEV Distr. [k = 0] 1.08 1.65 2.86
GEV Distr. [k = 0.5] 1.25 2.34 4.15
GEV Distr. [k = 1] 1.60 3.36 5.18
Rayleigh Distr. [σ = 0] 2.17 2.96 4.75

Table 5.2. Error evaluation for different models of the probability distribution of the
auxiliary measurements considering 1 minute of PVT computation.

5.3 A-Posteriori Adaptive Implementation for the Like-
lihood Distribution of the Auxiliary Measurements

To better exploit the potentiality of the GEV Distribution for this particular agent network
and vehicular scenario, an adaptive selection of the best likelihood distribution of the
auxiliary measurements is proposed in this section. The full trajectory is divided into six
sectors as shown in Figure 5.14. For each sector, a PVT computation is performed and the
distribution for the likelihood of the auxiliary measurements which best matches the error
distribution of the auxiliary measurements along that sector is selected. In Figure 5.15,
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Figure 5.11. Comparison among the different distributions for auxiliary measurements,
after 2 minutes of PVT computation.

Distribution Model 50-th percentile
Error (m)

75-th percentile
Error (m)

95-th percentile
Error (m)

Gaussian Distr. 1.64 3.12 4.53
GEV Distr. [k = 0] 1.58 3.25 4.65
GEV Distr. [k = 0.5] 1.98 2.92 4.65
GEV Distr. [k = 1] 2.27 3.48 4.97
Rayleigh Distr. [σ = 0] 2.57 4.02 5.78

Table 5.3. Error evaluation for different models of the probability distribution of the
auxiliary measurements considering 2 minutes of PVT computation.

the error distributions of the auxiliary ranging measurements are showed sector by sector.
Table 5.6 shows how the GEV Distribution with k = 0 provides better positioning accuracy
along rectilinear trajectories, while it achieves better accuracy along curved trajectories
with the values k = 0.5 and k = 1, in particular with the last one.
The results obtained so far are then combined and a final simulation is performed by
applying for each sector the a-posteriori selected distribution. A comparison with the
Gaussian Distribution is presented in Figure 5.16. From the provided ECDFs, it can be
noticed how the new model accounting for all the considered GEV distributions exhibits a
general better accuracy with respect to the Gaussian one. An improvement of 19.48% is
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Figure 5.12. Comparison among the different distributions for auxiliary measurements,
after 3 minutes of PVT computation.

Distribution Model 50-th percentile
Error (m)

75-th percentile
Error (m)

95-th percentile
Error (m)

Gaussian Distr. 2.29 4.31 8.05
GEV Distr. [k = 0] 2.40 4.38 8.21
GEV Distr. [k = 0.5] 2.25 3.71 7.50
GEV Distr. [k = 1] 2.59 4.33 7.29
Rayleigh Distr. [σ = 0] 3.25 5.29 8.56

Table 5.4. Error evaluation for different models of the probability distribution of the
auxiliary measurements considering 3 minutes of PVT computation.

achieved at the 50-th percentile (around 40 centimeters for errors of the order of 2 meters),
while reduced improvements of 17.41% (around 70 centimeters for errors of the order of 4
meters) and 6.23% (around 50 centimeters for errors of the order of 8 meters) are obtained
respectively for the 75-th and 95-th percentiles (Table 5.6).
This final result shows how PF with an optimized implementation can achieve higher
performance with respect to the suboptimal one, by exploiting GEV distributed models for
the generation of the likelihood function of the auxiliary measurements, when cooperative
ranging measurements present non-Gaussian error distributions.
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Figure 5.13. Comparison among the different distributions for auxiliary measurements,
after 5 minutes of PVT computation.

Distribution Model 50-th percentile
Error (m)

75-th percentile
Error (m)

95-th percentile
Error (m)

Gaussian Distr. 3.50 6.98 11.04
GEV Distr. [k = 0] 3.66 7.21 11.18
GEV Distr. [k = 0.5] 3.19 6.13 9.78
GEV Distr. [k = 1] 3.64 5.90 9.21
Rayleigh Distr. [σ = 0] 4.18 7.57 12.02

Table 5.5. Error evaluation for different models of the probability distribution of the
auxiliary measurements considering 5 minutes of PVT computation.

Trajectory
Sector

Selected
Distribution Model

Sector 1 GEV Distr. [k = 0]
Sector 2 GEV Distr. [k = 1]
Sector 3 GEV Distr. [k = 0.5]
Sector 4 GEV Distr. [k = 0]
Sector 5 GEV Distr. [k = 1]
Sector 6 GEV Distr. [k = 1]

Table 5.6. A-posteriori adaptive selection of the distribution models for the likeli-
hood of the auxiliary measurements
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Figure 5.14. Trajectory divided in sectors.

Distribution Model 50-th percentile
Error (m)

75-th percentile
Error (m)

95-th percentile
Error (m)

Gaussian Model 2.31 4.25 8.02
Adaptive GEV Model 1.86 3.51 7.52
Improvement 19.48 17.41 6.23

Table 5.7. Error and improvement evaluation applying a-posteriori adaptive
distribution model selection.
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Figure 5.15. Sectorization of the trajectory according to a-priori knowledge of the noise
statistical distribution of the inter-receiver distances.

Figure 5.16. ECDF curve of PF with adaptive distribution implementation and
s-PF with Gaussian distribution.
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Chapter 6

Conclusions

This thesis investigated the possible advantages of exploiting an optimized PF model to
integrate GNSS-based auxiliary ranging measurements for Cooperative Positioning in a
vehicular scenario.
The evaluation of the performance along the considered trajectory pointed out the limit of
the PF in tracking fast state variations in reactive way, when a high number of states has
to be estimated, and how a real-time adaptive covariance model for the particle generation
can provide a valid support for avoiding high divergency from the actual trajectory.
It was shown how the cooperation does not always work properly when s-PF is considered,
due to the forcing of non-Gaussian error distribution of the auxiliary measurements to
match Gaussian likelihood function. By implementing an optimized PF model and com-
paring its performance with s-PF, an enhancement of the accuracy and precision along all
the portions of the trajectory was observed, in particular by exploiting GEV distribution
with some k parameters for the generation of the likelihood function of the auxiliary mea-
surements.
However, the single GEV distributions, by varing k, provide different performance be-
haviours depending on the traveled trajectory sector. Thus, an a-posteriori adaptive im-
plementation of the likelihood distribution is performed by choosing sector by sector the
best performing GEV distribution by varying k, obtaining a solid model which is able to
achieve higher accuracy and precision performance with respect to s-PF, when cooperative
ranging measurements show non-Gaussian error distributions, as in the case of weighted
double differences ranging.
Furthermore, if a parallel architecture can be implemented to compensate for the increased
complexity of the sequential filter, PF can replace other Bayesian estimation filters such as
EKF/UKF. Possible future works are expected to focus on a possibile real-time implemen-
tation of the dynamic adaptation of the likelihoods related to the auxiliary measurements,
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if an estimation of the noise probability distribution can be performed about these mea-
surements. Such estimated distributions can hence be used to dynamically build and use
proper likelihood functions within the position estimation routine.
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