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Abstract
This thesis work consists in studying Neural Network models in order

to predict, as well as possible, the Internet traffic in a mobile network
environment and use it in the 5G context for MEC (Multi-access Edge
Computing) dimensioning.
In particular, the first chapter gives a brief introduction about AI and
Machine Learning. Basic concepts needed to understand the mechanism
behind Deep Learning are provided through the second chapter. Third
chapter supplies a description of used datasets. Analysis and results of
Neural Network models are presented in chapter four. Finally, the last
chapter shows an application of the whole study for MEC dimensioning.
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Chapter 1

AI and Machine Learning tech-
niques

1.1 Artifical Intelligence

Artificial Intelligence (AI) is a wide computer science branch that aims to
mimic the human behavior, abilities and intelligence in order to perform
tasks in a reliable manner without or with the minimum effort. Nowadays,
it is a very relevant component of the society. In fact, it is applied in
a very large number of contexts providing different services and benefits:
think about Home Automation Systems that improve and connect many
typical technologies present in a house in order to make more comfortable
the daily experiences; or to Virtual Assistants, capable of doing little and
frequent tasks just by means of some commands; or more important and
larger applications, designed mainly to improve safety, as the incoming
Autonomous Vehicles.
All these different AI systems have a common factor: they are the result
of learning process based on observations. This means that AI is able to
build machines/systems devoted to a clearly specialized task by iteratively
processing a large amount of data, obtained from observations, in order
to find and recognize patterns and learn features from them. The amount
of data needed to get a reliable application depends on its complexity:
the more complex it is the larger must be the data from which has to be
extracted the peculiar structure. This implies a certain level of required
computational resources.
So, Artificial Intelligence is based on many methods and technologies able
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to study the characteristic of human discipline and replicate its peculiar
behaviors. The most used are Machine Learning algorithms.

1.2 Machine Learning

Machine Learning, subset of the Artificial Intelligence, is a statistical tool
that defines how to learn from experience without being explicitally pro-
grammed. The learning process consists of observation of data, called
training dataset, in order to find structure and regularities. From them
a mathematical model is built. It is able to make its own conclusions, clas-
sification and predictions on new data, called test dataset.
The entire process is iterative. It can be described as a sequence of op-
erations that are repeated until a certain performance level is reached:
train the system, get results, collect feedbacks and use them to repeat the
sequence. Obviously, the performance strongly depends on the problem
complexity.

Machine Learning algorithms can be classified into:

• Supervised Learning: both input and output data are provided and
labeled1. The built model, result of the learning process, is able to
create a mapping function between input and output in such a way
to make predictions on testing data. There are two main techniques
defined by this category:

– Classification: the model is a classifier. Given new input data, it
assigns a discrete value which represents the corresponding pre-
dicted label. Image classification is the main example.

– Regression: the trained model returns a continuous value, that
is an estimation or a prediction, expressed in function of features
values.

1Generally, with "Features" is denoted the input data, with "Label" or "Class" the
output.
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• Unsupervised Learning: only unlabeled input data is provided to the
machine for the training process; as a consequence, a well defined out-
put value is not obtained as in Supervised Learning but the model
finds unknown patterns allowing to make classifications. In this way,
they can be used to categorize input data. Clustering is a typical Un-
supervised Learning technique that groups input according similarities
basis.

• Reinforcement Learning: the algorithm focuses on making a sequence
of decision to achieve a certain goal. It is based on trials and errors:
actions are made starting from a random trial. For each action the
system gets rewards or penalties. The object is to maximize the total
reward. Several application fields exploit this kind of algorithm as AI
gaming and real time decision.

Figure 1.1: Machine Learning algorithms classification.
Figure taken from [1].

It is possible to combine Supervised and Unsupervised Learning to get
the Semi-Supervised Learning: it uses a small amount of labeled data and
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a large amount of unlabeled data. In this way costs in labeling process are
reduced. Generally, it presents improvement in learning accuracy.

So, the used algorithm depends the specific task problem. In this case,
particular attention goes on Supervised Machine Learning algorithms.

1.2.1 Supervised Machine Learning

Supervised Machine Learning algorithms relate input and output in order
to make classification or prediction. Several types of this algorithms have
been defined along the time. Common algorithms are:

• Linear Regression: based on linear model, it computes target value
through a linear combination of the input values.

Figure 1.2: Linear regression model. Figure taken from [2].

• Decision Tree: it is based on a tree structure. Starting from the root
node the input data is split according to its features values. The
process is repeated for each created node (decision nodes) up to the
leaf nodes that represent labels.
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Figure 1.3: Decision tree model.

• Random Forest: considering an ensemble of decision trees, the final
output value is the more occurred label among single trees in case of
classification problem, the average among all the prediction in case of
regression problem. This algorithm produces a more accurate output
than single Decision Tree since models have a low correlation between
them.

Figure 1.4: Neural Network model. Figure taken from [3].

• Neural Network: inspired by human brain model, is a network com-
posed by nodes organized in layers (input, hidden and output layer).
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Each node layer has a direct connection with the following nodes layer
in order to forward the information elaborated on data according to a
specific rule. The final layer produces a value (or values) that is either
the predicted value is case of regression problem or the predicted label
(or the probability to belong to each label of target data) in case of
classification problem.

• Deep Leaning: it is based on Neural Network and is characterized by
a higher number of hidden layers. It provides a very powerful solution
able to find and learn very complex pattern in data.
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Chapter 2

Deep Learning: analysis
methodologies

2.1 Neural Networks and Deep Learning

Neural Networks (NN) are a particular type of Machine Learning algo-
rithm that allows to define a model, given some data in input, in order to
determine a final decision rule or a function to predict values.

Figure 2.1: Neuron model. Figure taken from [5].

A Neural Network is composed by layers of nodes, called neurons, which
are connected to all the adjcent layer nodes. Each neuron, leading actor,
is responsible to combine the input features xi with weights wi in order to
assign significance to them. To the sum q

iwixi is added a parameter b
called bias. The result2 z = w ·x, at this point, goes through the activation

2It is used the compact notation of the dot product w · x =
q

i wixi + b, where w
and x are vectors whose components are weights and input features.
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function σ which is a non-linear complex function that produces an output
signal3 according to a rule σ(z). This output becomes the input for each
neuron in the next layer. This mechanism to feed as input the output of
the previous layer, repeated up to the final one, defines the feed-forward
property of the Neural Network.

Deep Learning is sub-field of Machine Learning based on Neural Net-
works. It exploits Deep Neural Networks that differs from the classic con-
figuration for the presence of several layers between the input and output
layer, called hidden layers.

Figure 2.2: Deep Learning model. Figure taken from [6]

This system allow to discover complex structures in data that are not
possible to find with a "simple" Neural Network. Hidden layers lead to
another abstraction level: is like each one of them focuses on a particular
feature of input data in order to recognize very complex pattern. Follows
that the number of hidden layers is a parameter to define according to the
task complexity: in general, a large number of hidden layers fit better a
problem that presents very complex of data to be processed. Obviously,
are required huge computational resources to guarantee high performance

3Whenever a neuron propoagates the signal producing an output different from 0 is
defined activated.
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levels.

2.1.1 Neural Network model

Given some input data x, composed by [x1, x2, ..., xi] features, and cor-
responding label y(x), the Neural Network computes a model, through
weights w = [w1, w2, ..., wi] and bias b, that it is able to calculate a predic-
tion ŷ.
Learning process consists of finding optimal weights and biases4 in such
a way that the so called cost function is minimized. The cost function5

C(w, b) is a term, clearly dependent on learning parameters, that expresses
the difference between the predicted value ŷ and the original label value
y(x): the closer ŷ is to y(x) value the smaller is the loss; on the other hand,
if C(w, b) is large means that ŷ is not a good approximation of y(x).

Figure 2.3: Cost function. Figure taken from [7].

One of the most used cost function is the quadratic cost function, also
know as MSE (Mean Squared Error):

C(w, b) = 1
2n

Ø
x

ëy(x) − ŷë2 (2.1)

The technique used in learning process to train the system is called
gradient descent: current values of weights and biases are updated in an

4Weights and biases are often referred as learning parameters.
5Cost function is also called loss or objective function.
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iterative way with smaller ones in order to get the minimum value of the
loss function. Actually, due to the not convexity of the cost function, there
will be several local minimum values obtaining, generally, a sub-optimal
solution to the minimization problem.

Figure 2.4: Ideal cost function vs. Real cost function.
Figure taken from [8].

Gradient descent updates weights and biases as follows:

wk → w
Í

k = wk − η
∂C

∂wk
(2.2)

bl → b
Í

l = bl − η
∂C

∂bl
(2.3)

where η is a parameter called learning rate that must be small enough
otherwise it may lead to an increment of the cost function value. This
algorithm works computing the gradient of the cost function6, from which
the derivatives with respect to weights and biases can be obtained for each
input in order to evaluate correctly the cost function through their average.

6The gradient of the cost function is computed through the backpropagation algo-
rithm.
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So, it requires a lot of computation with a consequent slow down of learning
process, particularly for large input data. In order to overcome this problem
it is introduced the stochastic gradient descent which computes derivatives
for small groups of m randomly chosen input, called batches. In this way
learning parameters are updated as follows:

wk → w
Í

k = wk − η

m

Ø
j

∂CXj

∂wk
(2.4)

bl → b
Í

l = bl − η

m

Ø
j

∂CXj

∂bl
(2.5)

where Xj are the random inputs belonging to the batch j. This technique
allows to obtain a speedup factor in the estimation of the gradient equal
to n

m . Equations in this section are taken from [4].

2.1.2 Overfitting problem

Stressed many times, learning process is based on the analysis of input data
from which weights and biases are computed in order to build a model.
Generally, the amount of input data has to be sufficiently large in order to
avoid what is called underfitting problem: Neural Network is not able to
learn enough patterns to create a model to make predictions.

Figure 2.5: Fitting problems.
Figure taken from [9].

On the other hand, even if a large number of input data samples is pro-
vided, it could be small with respect the dimension of the Neural Network
and, after an initial phase, the generalization of learning process stops
adapting weights and biases on input data. Consequently, the obtained
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model is not able to make correct prediction on test data. This describe the
overfitting problem. It is a very big common problem in Neural Networks,
particularly for Deep Neural Networks which have a very large number of
hidden layers and neurons that means a lot of weights and biases.
One possible solution to this problem is to increase the number of input
data samples. Actually, it does not provide a practicable solution since a
further acquisition could be expensive or difficult to get. Thus, are intro-
duced some techniques to help against overfitting allowing to have fixed
input data:

• Regularization: the cost function is modified adding a penalty term,
called regularization term. In particular, there are:

– L2 regularization: it adds the sum of the squares of weights in the
network

C(w, b) = 1
2n

Ø
x

ëy(x) − ŷë2 + λ

2n
Ø
w
w2 = C0 + λ

2n
Ø
w
w2 (2.6)

where C0 denotes the original and unregularized cost function, λ
(greater than 0) is the so-called regularization parameter and n is
the input data size. Follows that weights are updated according
to the formula:

w → w
Í
=
A

1 − ηλ

n

B
w − η

∂C0

∂w
(2.7)

When λ is large enough, weights are updated with smaller ones7,
iteration after iteration; when the regularization parameter is small
the minimization of the cost function C0 prevails. Small weights
allow to generalize better the model response to pattern that are
seen often in input data. A large λ means also large weights which
may cause considerable variation of the network output even in

7The continuous smaller updating weights explain why L2 regularization is also called
weight decay and 1 − λ

2n is known as weight decay factor.
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case of small changes in input. Large weights are also obtained
when a decrease in the unregularized cost function occurs avoiding
to weights to go to 0. So, the regularization parameter λ synthe-
sizes a compromise between finding small weights and minimizing
the original cost function.
In case of stochastic gradient descent, L2 regularization weights
updating becomes:

w → w
Í
=
A

1 − ηλ

n

B
w − η

m

Ø
x

∂Cx

∂w
(2.8)

– L1 regularization: penalty term is the sum of the absolute value
of the weights. The regularized cost function is:

C(w, b) = 1
2n

Ø
x

ëy(x) − ŷë2 + λ

n

Ø
w

|w| = C0 + λ

n

Ø
w

|w| (2.9)

The resulting update rule is:

w → w
Í
= w − λ

n
sign(w) − η

∂C0

∂
(2.10)

For large weights it does not have a strong impact on updating
operation. Instead, when weight values are small, regularization
effects are significant, more than the ones provided by L2. So L1
regularization produces a concentration of weights a small number
of high-importance connections, while the other weights tend to
zero.

Biases terms are not involved in regularization since having large values
does not imply high neuron sensitivity to its inputs as well as having
large weights.

• Dropout: it is a particular regularization technique that acts directly
on the Neural Network structure. For each batch learning session, a
random subset of hidden layers neurons is deleted in order to update
weights and biases through the "new" network. At this point, dropped
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neurons are restored and the process is repeated picking up another
random group of neurons.

(a) Before dropout application. (b) After dropout application.

Figure 2.6: Dropout technique.
Figures taken from [10].

This procedure has the effect of training different Neural Networks and
averages their results. Since different networks will overfit in different
ways, the total Neural Network will be affected by reduced overfitting.

2.2 Neural Network implementation

Neural Network and Deep Neural Network implementation goes through
different definitions and settings: datasets, hyper-parameters, activation
function and regularization parameters.

2.2.1 Datasets

Different groups of data are required for a correct implementation of Neural
Networks:

• Training dataset: it is composed by samples of data which are used for
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learning process. Neural Networks identify patterns and learns from
them, updating weights and biases.

• Validation dataset: group of data used to provide an evaluation of
the model during the learning process. So, it allows to tune correctly
hyper-parameters8 and detect overfitting problems.

• Test dataset: data given in input to the built model on which it is
intended to get a classification or a prediction.

2.2.2 Hyper-parameters

Hyper-parameters have an enormous impact on learning process: the pro-
duced model and its predictive capacity strongly depends on them. They
are the following:

• Batch size: number of training samples used in one single iteration of
training process. In general, the smaller is the batch size value the
better is the accuracy obtained for the model requiring a larger num-
ber of updates, that means larger computations and slower learning
process.

• Epoch: number of steps through the entire training dataset during
the training session. Good model performance is achieved exploiting
several epochs.

• Learning rate: formally denoted with η, it controls the speed at which
Neural Network learning parameters are updated. If it is too small,
weights and biases move slowly in direction of the optimal values for
cost function minimization. Moreover, the probability to get stuck in a
local minima, without improvement during learning process, becomes
higher. If it is too large the process could be unstable, overshooting
weights and bias optimal value, and the algorithm might not converge.

8Hyperparameters are described in section 2.2.2.
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• Hidden layers number.

• Number of neurons per layer.

In all hyper-parameters there is an intrinsic trade-off between perfor-
mance level and computational costs: high accuracy values require ideal
settings which involve very high number of computations, as learning pa-
rameters updating or cost function gradient evaluation, with consequent
larger time and resources needs.

2.2.3 Activation function

The activation function is fundamental component in Neural Networks.
It is a non-linear function that allows to extract information on high-
dimensional and non-linear dataset in order to create complex mappings
between inputs and outputs of the network.

For this thesis the following activation functions are used:

• Linear: the output signal is proportional to the neuron input

σ(z) = z

Figure 2.7: Linear activation function.
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Since the derivative is constant, the gradient does not depend on the
input value and both weights and biases are updated with the same
updating factor. In this way, Neural Network will not understand
which weights allow to improve the prediction.

It is usually employed as output layer activation function for regression
problems.

• ReLU (Rectified Linear Unit): neurons are activated only if its input
is greater than 0

σ(z) = max(0, z)

Figure 2.8: ReLU activation function.

Therefore, ReLU activation function does not activate all the neurons
at the same time, providing a better computational efficiency and a
faster convergence than other activation functions. By contrast, for
input values smaller or equal to 0 the gradient is zero. This implies that
some neurons can never be activated since their learning parameters
are not updated.

It is commonly used in modern Neural Networks.
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• Leaky ReLU: variation of ReLU activation function in which is present
a linear component also for negative input values

σ(z) = max(α · z, z)

This modification allows to avoid dead neurons since gradient of input
is always different from 0.

Figure 2.9: Leaky ReLU activation function.

• ELU (Exponential Linear Unit): differently from Leaky ReLU, this
activation function relates negative inputs and the output of a neuron
through a logarithmic curve

σ(z) =


z z ≥ 0

α(ez − 1) z < 0

• Swish: the ouput of a neurons is obtained through

σ(z) = z

1 + e−z

Since it is a not monotonic function, output values may decrease even
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when the input values are increasing.

Swish has very computational efficiency properties showing better per-
formance than ReLU on Deep Neural Network.

Figure 2.10: ELU activation function.

Figure 2.11: Swish activation function.
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2.2.4 Regularization parameters

In Neural Networks, particularly in Deep Neural Networks, overfitting prob-
lem often occurs. In order to detect its action it is suggested to trace the
cost function, or loss, on validation dataset.
As shown in section 2.1.2, some preventive techniques can be applied to
reduce its effect. This implies that some terms must be defined:

• Regularization: the parameter λ must be defined. In particular, for
L2 regularization, if it is too small the penality term has no effect, and
unregularized cost function is minimized. If it is too large, weights are
driven toward 0 with consequent underfitting problem.

• Dropout: the only parameter to be defined is the dropout rate: it is
a number between 0 and 1 that represents the fraction of "deleted"
neurons during the learning process.
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Chapter 3

Dataset

3.1 Milano datasets

In order to study the Internet traffic through a Neural Network model,
some dataset taken from [11] are exploited.

3.1.1 Grid dataset

Given Milano map it is defined a grid, through which the city and its
suburbs is divided into 10.000 cells, each one of 250x250 meters.

Figure 3.1: Milano grid.
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The grid dataset, in .geoJSON format, gives information about the ge-
ographical coordinates that delimit each square9.

3.1.2 Traffic dataset

Traffic dataset describes the information about the telecommunication ac-
tivities over Milan city. It is composed by a set of files, one for each
day, that contains the activities in November and December 2013. It is
obtained from Call Detail Records (CDRs)10 generated by Telecom Italia
cellular network. In particular, CDRs are generated whenever:

• an SMS is sent or received.

• a call is generated or received.

• an Internet connection starts or ends and each time 15 minutes or 5
MB limits are reached from the last generated CDR.

Aggregating these information, the traffic dataset is defined according the
following features:

• Square ID: it is represented by a number that is the identifier of the
considered square of the Milan grid.

• Time Interval: this information is about the beginning of the time
interval11. Each time interval has length of 10 minutes.

• Country Code: it is a country code of nation.

• SMS-in Activity: activity measurement of received SMS.

9The grid dataset will be useful in Chapter 5 in order to understand the traffic
demand in a given area that will determine MECs position.

10CDRs are records generated by telecommunication companies for network manage-
ment and building purpose: for any traffic activity of a mobile terminal it is recorded
any entry with some information as IDs and BTS IDs.

11Time is provided in Unix Epoch format, which is the time elapsed, from January
1st, 1970 at UTC, expressed in milliseconds.
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• SMS-out Activity: activity measurement of sent SMS.

• Call-in Activity: activity measurement of received calls.

• Call-out Activity: activity measurement of generated calls.

• Internet Traffic Activity: activity measurement of Internet traffic.

These fields are grouped according two policies which are: spatial aggre-
gation, through which activity measurements are provided for each square
Milano grid map, and temporal aggregation, through which activity mea-
surements are grouped in 10 minutes time slots.

Figure 3.2: Traffic activity dataset - I.

NaN values mean no activity was recorded for that specific field.
This traffic dataset, as will be shown in Chapter 4, is given as input to
a Neural Network in order to build a model that is able to predict the
Internet traffic demand. In order to allow a better generalization, it is
modified expressing Time Interval field in terms of day hours.
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Figure 3.3: Traffic activity dataset - II.

Internet Traffic Activity is the subject of the Neural Network study.
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(a) Monday (b) Tuesday

(c) Wednesday (d) Thursday

(e) Friday (f) Saturday

(g) Sunday

Figure 3.4: Internet traffic activity over days of the week

Despite just one week of Internet Traffic Activity is plotted, it presents
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its typical behavior. It is possible to notice how during the week, from
Monday to Friday, the traffic activity seems to be regular, both in terms of
time and quantity. Instead, the traffic trend is pretty different in Saturday
and Sunday. For this reason, another modification on traffic dataset has
been made inserting the day of the week in order to discriminate different
days behavior.

Figure 3.5: Traffic activity dataset - III.
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Chapter 4

Analysis and results

4.1 TensorFlow

Neural Networks in this chapter are implemented exclusively by means of
Python language. In particular, it is exploited TensorFlow, an open source
Machine Learning library that applies classes for applying ML algorithms
to a lot of different data. It has a flexible environment of tools and libraries,
like Keras, that allow to easily train and build Machine Learning models
for very large number of applications through intuitive high-level API .

One of the most powerful functionalities provided by TensorFlow is
data pipelines which enables to build complex input pipelines reading large
amount of data from distributed files, that could even be of different for-
mats, and performing transformation, as the division in batches or the
shuffling operation.

Figure 4.1: TensorFlow: get dataset function.

TensorFlow allows to build simple Machine Learning algorithm, espe-
cially through Estimators API, as well as more complex Deep Learning
models, through Keras that provides high-level API in order to build com-
plex Deep Neural Networks.
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Figure 4.2: TensorFlow: build model function.

4.2 Internet traffic model

This thesis work has the goal to build a model using Neural Networks in
order to predict Internet traffic demand. In particular, it is done exploiting
traffic dataset12 (described in section 3.1.2) as follows: Square ID, Day13,
Time Interval, SMS-in Activity, SMS-out Activity, Call-in Activity, Call-
out Activity are input features, used to predict Internet Traffic Activity
label values.

Two cases are analyzed:

• No hidden layer analysis: using a Neural Network made up only of
input and output layers, it focuses on hyper-parameters settings.

• One hidden Layer analysis: placing a hidden layer between input and
output layer of the Neural Network, it looks for the best configuration.

Performances are evaluated in terms of validation loss, test loss and
computational time. Validation loss is also used as reference to follow the
model trend in order to tune correctly hyper-parameters.

4.3 No hidden layer analysis

The first step is to define datasets:

12All data are normalized in order to get a coherent model.
13The Day feature is introduces during the Dataset analysis.
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• Training dataset: traffic data of the week November 4th − 10th, 2013.

• Validation dataset: from Training dataset14, traffic data of Sunday,
November 10th, 2013.

• Test dataset: traffic data of the week November 11th − 17th, 2013.

Hyper-parameters (Section 2.2.2) determine the behavior of the Neural
Network and the capacity of learn patterns from training dataset. In order
to find the best performing model, are analyzed different settings:

• Batch size: [64, 128, 256, 512, 1024].

• Epochs: 1015.

• Learning rate: [0.001, 0.01].

• Neurons:

– Input layer: [64, 128, 256, 512, 1024].

– Output ayer: 1.

Any combination of hyper-parameters is considered.
The number of learning parameters, that affects significantly computa-

tional complexity, is strictly related to input neurons number.

Neurons Learning parameters
64 512
128 1,025
256 2,049
512 4,097
1024 8,193

Table 4.1: No hidden layer analysis learning parameters.

14Actually, it is obtained subtracting data to Training dataset. Practically, the Train-
ing dataset is composed by November 4th − 09th, 2013 files.

15The number of epochs is imposed by computational limits.
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4.3.1 Activation function analysis

Several activation functions are tested in order to understand which is the
one that suits better the problem, improving Neural Network performance.
In particular, are used ReLU, Leaky-ReLU, ELU and Swish activation func-
tions.

Figure 4.3: No hidden layer analysis validation loss:
activation functions.

The plot shows the effect of each activation function: the ReLU seems
to be the best one since it allows efficiently to minimize the cost function.
For this reason, it is used for the rest of the analysis.

4.3.2 Batch size and learning rate analysis

Starting from batch size equal to 1024, both learning rate setting cases are
examined obtaining the following results:
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(a) Learning rate = 0.001

(b) Learning rate = 0.01

Figure 4.4: No hidden layer analysis validation loss:
batch size = 1024.

• Learning rate = 0.001: from Figure 4.4a it is possible to notice how
validation loss decreases as the number of epochs increases, for each
input neurons number. Best performances in terms of Losses, accord-
ing to Table 4.2a, are reached using the highest number of neurons.
Instead, computational time increases with input layer size.
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• Learning rate = 0.01: Figure 4.4b shows how validation loss trend
starts to oscillate after some epochs for each neuron number. This
suggests that learning rate 0.01 value is larger than the optimal one
producing an unreliable model. Increasing loss values are gotten with
respect to neurons number (Table 4.2b).

Neurons Validation loss Test loss Time
64 0.2442 0.1844 53m 18s
128 0.2409 0.1824 55m 13s
256 0.2330 0.1738 56m 22s
512 0.2322 0.1741 58m 16s
1024 0.2289 0.1723 1h 9m 8s

(a) Learning rate = 0.001
Neurons Validation Loss Test Loss Time

64 0.2085 0.1550 47m 38s
128 0.2085 0.1596 49m 8s
256 0.2120 0.1582 53m 43s
512 0.2216 0.1767 56m 8s
1024 0.2246 0.1819 1h 10m 8s

(b) Learning rate = 0.01

Table 4.2: No hidden layer analysis evaluations:
batch size = 1024.

Setting batch size equal to 512, validation losses still decrease epoch
after epoch with 0.001 learning rate value (Figure 4.5a) but faster: ac-
cording to formulas 2.4 and 2.5 (Section 2.1.1), the speedup factor in the
gradient estimation improves as batch size goes down. Consequently, are
obtained better values in terms of losses. Instead, computational times
become larger. Learning rate 0.01 is still too high.
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(a) Learning rate = 0.001

(b) Learning rate = 0.01

Figure 4.5: No hidden layer analysis validation loss:
batch size = 512.
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Neurons Validation loss Test loss Time
64 0.2351 0.1764 48m 52s
128 0.2238 0.1711 50m 21s
256 0.2233 0.1670 53m 47s
512 0.2156 0.1619 1h 2m 40s
1024 0.2084 0.1644 1h 16m 10s

(a) Learning Rate = 0.001
Neurons Validation Loss Test Loss Time

64 0.2132 0.1657 50m 54s
128 0.2060 0.1550 50m 51s
256 0.2260 0.1777 53m 10s
512 0.2235 0.1808 1h 3m 38s
1024 0.2108 0.1633 1h 12m 35s

(b) Learning Rate = 0.01

Table 4.3: No hidden layer analysis evaluations:
batch size = 512.

As expected, changing over and over the batch size it is consolidate the
fact that smaller values allow to increase speedup factor in learning process
getting better performances in terms of validation and test Losses for 0.001
learning rate, in spite of larger computation operations (larger learning
parameters updates).

(a) Learning rate = 0.001
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(b) Learning rate = 0.01

Figure 4.6: No hidden layer analysis validation loss:
batch size = 256.

Neurons Validation loss Test loss Time
64 0.2257 0.1689 55m 57s
128 0.2184 0.1636 56m 38s
256 0.2085 0.1587 57m 47s
512 0.2126 0.1721 1h 2m 31s
1024 0.2057 0.1591 1h 35m 26s

(a) Learning rate = 0.001
Neurons Validation loss Test loss Time

64 0.2030 0.1499 55m 42s
128 0.2115 0.1603 55m 49s
256 0.2263 0.1823 56m 19s
512 0.2210 0.1782 1h 4m 21s
1024 0.2309 0.1870 1h 38m 30s

(b) Learning rate = 0.01

Table 4.4: No hidden layer analysis evaluations:
batch size = 256.
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(a) Learning rate = 0.001

(b) Learning rate = 0.01

Figure 4.7: No hidden layer analysis validation loss:
batch size = 128.
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(a) Learning rate = 0.001

(b) Learning rate = 0.01

Figure 4.8: No hidden layer analysis validation loss:
batch size = 64.
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Neurons Validation loss Test loss Time
64 0.2199 0.1651 1h 7m 33s
128 0.2127 0.1594 1h 5m 51s
256 0.2110 0.1576 1h 18m 27s
512 0.2070 0.1565 1h 25m 52s
1024 0.2052 0.1563 1h 44m 39s

(a) Learning rate = 0.001
Neurons Validation loss Test loss Time

64 0.1942 0.1544 1h 14m 20s
128 0.2060 0.1574 1h 17m 6s
256 0.2104 0.1613 1h 11m 35s
512 0.2145 0.1722 1h 21m 57s
1024 0.2309 0.1868 1h 43m 34s

(b) Learning rate = 0.01

Table 4.5: No hidden layer analysis evaluations:
batch size = 128.

Neurons Validation Loss Test Loss Time
64 0.2149 0.1619 1h 56m 42s
128 0.2154 0.1619 1h 55m 51s
256 0.2080 0.1564 2h 2m 52s
512 0.2092 0.1580 2h 6m 41s
1024 0.2081 0.1581 2h 22m 18s

(a) Learning rate = 0.001
Neurons Validation Loss Test Loss Time

64 0.2081 0.1550 1h 18m 40s
128 0.2155 0.1641 1h 56m 1s
256 0.2139 0.1657 2h 15m 6s
512 0.2261 0.1819 2h 8m 20s
1024 0.2314 0.1870 2h 27m 46s

(b) Learning rate = 0.01

Table 4.6: No hidden layer analysis evaluations:
batch size = 64.
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Best performance models are mostly obtained using large input layer.
As proof:

(a) Learning rate = 0.001

(b) Learning rate = 0.01

Figure 4.9: No hidden layer analysis test loss

Learning rate 0.01 setting always leads to an oscillating trend that can
be defined random, proving that this value is too large and does not allow
to reach minimum weights value. As a matter of fact, scatter plot shows
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the random behavior of computed models.

Running over 50 Epochs

Fixing the number of input neurons to 1024 and exploiting the "optimal"
learning rate found (0.001), are computed models for each batch size over
50 epochs. Validation loss Figure 4.11 shows significant fluctuations also in
this case. This is due to the large size of the Neural Network with respect
to the input: overfitting problem starts to occur, with consequent gener-
alization capacities loss. As a matter of fact, plotting the Training Loss
and looking to its continuous decrease, it is evident that models continue
to learn from Training dataset peculiarities.

Figure 4.10: No hidden layer analysis train loss:
epochs = 50.

Smaller batch sizes anticipate oscillating behavior with respect to the
larger ones: this is due to their higher learning speedup factor that allows to
reach sooner to the optimum achievable learning parameters configuration.
Once again, from Table 4.7, losses improves while computational times get
worse with increasing batch size.
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Figure 4.11: No hidden layer analysis validation loss:
epochs = 50.

Batch size Validation loss Test loss Time
1024 0.2043 0.1508 5h 30m 6s
512 0.2040 0.1424 5h 47m 34s
256 0.2034 0.1418 6h 13m 23s
128 0.1991 0.1410 8h 34m 13s
64 0.1971 0.1405 13h 49m 23s

Table 4.7: No hidden layer analysis validation loss:
epochs = 50.

Validation and test losses comparison

Analyzing Figure 3.4 it is possible to notice how Internet traffic demand is
different in terms of time and quantity between week-end days and the other
days. In order to explain the significant gaps between validation losses and
test losses, has to be specified that in all previous models validation loss
is computed on Sunday, November 10th, 2013 while test loss on the entire
week November 11th − 17th, 2013. So, it is easily understandable why
built models produce a larger error on a single day of the week-end than
the one computed over a complete week in which errors are compensated.
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Therefore, the significant difference between the two values, for each case,
is mostly determined by validation dataset choice. Indeed, changing the
validation dataset, are obtained results in Figure 4.12. A further proof is
given by Table 4.8 that shows all losses.

Figure 4.12: No hidden layer analysis validation loss:
validation dataset choice.

Day Validation loss Test loss
Monday 0.1473 0.1633
Tuesday 0.1408 0.1615

Wednesday 0.1471 0.1633
Thursday 0.1428 0.1629
Friday 0.1520 0.1630

Saturday 0.1957 0.1625
Sunday 0.2289 0.1723

Table 4.8: No hidden layer analysis validation loss:
validation dataset choice.
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4.3.3 Datasets analysis

In order to improve performances, dataset are modified. In particular, are
analyzed two cases:

• First case:

– Training dataset: traffic data of two weeks, from November 4th to
November 17th, 2013.

– Validation dataset: from Training dataset, traffic data of Saturday,
November 9th and Wednesday, November 13th, 2013.

– Test dataset: traffic data of the week November 18th − 24th, 2013.

• Second case:

– Training dataset: traffic data of two weeks, from November 4th to
November 24th, 2013.

– Validation dataset: from Training Ddtaset, traffic data of Satur-
day, November 9th and Wednesday, November 13th, 2013.

– Test dataset: traffic data of the week from November 25th to De-
cember 1st, 2013.

Validation dataset is composed of Saturday, November 9th and Wednes-
day, November 13th in both cases in order to get a more reliable values that
approximates properly the test loss. Fixing the neuron number to 1024,
learning rate equal to 0.001 and using the 1024 batch size, the following
results are obtained:
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Figure 4.13: No hidden layer analysis validation loss:
training datasets comparison.

Training dataset Validation loss Test loss Time
2 Weeks 0.1625 0.1581 2h 24m 46s
3 Weeks 0.1601 0.1610 3h 22m 11s

Table 4.9: No hidden layer analysis evaluations:
training datasets comparison.

Though losses values are very close, there are some differences. 2 weeks
training dataset allows to get a smaller Test Loss. However, 3 weeks train-
ing dataset produces a better validation loss on the same validation dataset.
This means it returns a better model and test losses differences could be
explained by some unpredictable Internet traffic activities in the second
case test dataset that determine a larger value.

At this point, according to the diversity of the traffic demand during the
week, the idea is to split the training dataset. In particular, using 3 weeks
training dataset and splitting it, are computed two different models:

• Weekdays model: Neural Network is trained on days that goes from
Monday to Friday reacting very well producing a small Losses.
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• Week-End model: trained on Saturdays and Sundays, presents a large
validation loss. Probably it is due to the fact that the training dataset
is very small.

Figure 4.14: No hidden layer analysis validation loss:
weekdays and week-end models.

Training dataset Validation loss Test loss
Week 0.1601 0.1610

Weekdays 0.1394 0.1480
Week-End 0.2150 0.2228

Table 4.10: No hidden layer analysis validation loss:
weekdays and week-end models.

Last result suggests in some way to separate different days in order to
take into account the diversity of traffic. For this reason, the entire traffic
dataset is modified adding an extra information that identifies the day, as
shown in Figure 3.5. In this way, it is obtained the best result up to now.
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Figure 4.15: No hidden layer analysis validation loss:
final dataset.

Day definition Validation loss Test loss Time
No 0.1601 0.1610 3h 22m 11s
Yes 0.1561 0.1563 3h 31m 25s

Table 4.11: No hidden layer analysis evaluations:
final dataset

New traffic dataset application produces a gain in terms of losses without
implying a significant increment of computational operations. Moreover,
up to the 10th epoch there is no oscillation in the validation loss trend,
guaranteeing more stability.

4.3.4 L2 regularization analysis

Running training session over 50 epochs for the best found model it is pos-
sible to notice, from Figure 4.16, that for large epochs train loss continues
to decrease while validation loss starts to oscillate16: overfitting problem

16In general, simple Neural Network presents achievable performance level limits.
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occurs. L2 regularization is exploited in order to provide a more robust
model that does not suffer overfitting problem.

Figure 4.16: No Hidden Layer Analysis Validation Loss:
Overfitting.

Figure 4.17: No hidden layer analysis validation loss:
underfitting.

L2 parameter, from Section 2.1.2, has effect on the flexibility of the
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obtained model: if it is equal to 0 the penalty term has no effect, obtaining
only the minimization of the cost function; if it is too large the penalty
term grows very much producing an underfitting problem. As matter of
fact, setting the regularization parameter equal to 0.1 it is possible to check
from Figure 4.17 the described underfitting problem.

Changing the L2 parameter, in order to get a more reliable model, the
goal is to find the right one in such a way that validation loss oscillations
do not occur with high frequency.

Figure 4.18: No hidden layer analysis validation loss:
L2 regularization.

Plot shows the different behaviors: smaller L2 parameters allow to get
values very close to the ones produced by the model with no regularization
providing a more stable trend while the larger ones are very far from the
optimal performance.

The following table shows numerical results produced applying L2 reg-
ularization.
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L2 parameter Validation loss Test loss Time
None 0.1456 0.1458 19h 17m 23s
0.1 0.0.1969 0.1957 19h 20m 41s
0.01 0.1738 0.1722 18h 58m 55s
0.001 0.1522 0.1523 19h 2m 1s
0.0001 0.1459 0.1461 18h 59m 24s
0.00001 0.1449 0.1452 19h 11m 53s

Table 4.12: No hidden layer analysis evaluations:
L2 regularization.

4.4 One hidden layer analysis

To get higher performance models it is introduced a hidden layer between
input and output layers. This leads to another level of complexity since
the number of learning parameters increases very much, quadratic in the
worst case.

Datasets used in this section are:

• Training dataset: traffic data of two weeks, from November 4th to
November 24th, 2013.

• Validation dataset: from Training dataset, traffic data of Saturday,
November 9th and Wednesday, November 13th, 2013.

• Test dataset: traffic data of the week from November 25th to December
1st, 2013.

Hyper-parameters are set as follows:

• Batch size: 1024.

• Epochs number: 10.

• Learning rate: 0.001.

• Neurons:

– Input Layer: [64, 128, 256, 512, 1024].
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– Hidden Layer : [64, 128, 256, 512, 1024]17.

– Output Layer: 1.

Both batch size and epochs hyper-parameters are imposed by computa-
tional limits. For each layer it is used a ReLU activation function, except
the output one that exploits linear activation function in order to provide
a continuous value that can range all over the real domain.

4.4.1 Neurons analysis

At first, exploiting results obtained in "No hidden layer analysis", this study
focuses on the research of best Neural Network configuration in terms of
neurons number.

Models evaluation starts from the Neural Network in which the input
layer is made up of 1024 neurons. A preliminary operation, called batch
normalization, is done in order to obtain a more reliable model, improving
stability and learning speed. This technique consists in the normalization
of a layer output data (in this case, the input layer), before to go in input
to the next layer (in this case, hidden layer). In this way, the input data
distribution, at each layer, is much more reasonable with respect to the
original one that may present coefficients concentration. As proof, consid-
ering the Neural Network composed by 1024 neurons for both input layer
and hidden layer, the following result on the validation loss is obtained:

17Considered number of hidden neurons is always smaller or equal to input neurons
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Figure 4.19: One hidden layer analysis validation loss:
batch normalization

The size of the Neural Network, which depends on the number of hidden
neurons, is mostly large since the learning parameters can go from 80,001
up to 1,064,961.

Hidden neurons Learning parameters
64 80,001
128 145,665
256 276,993
512 539,649
1024 1,064,961

Table 4.13: One hidden layer analysis learning parameters:
input Layer = 1024 Neurons.

Checking the validation loss plot stands out how the larger is the network
the more unstable is the behavior of the model. In particular, for 1024 and
512 hidden neurons cases, the oscillations become significant. This is due
to to the fact that these networks are very large and overfitting phenomena
are more probable to occur.
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Figure 4.20: One hidden layer analysis validation loss:
input layer = 1024 neurons.

In terms of final losses, values seems to be not so better compared to the
ones achieved in "No hidden layer analysis". What seems to be different is
the speed through which the model improves, epoch after epoch. Indeed,
extending the learning process over more epochs an improvement could
be obtained. Last consideration, not least, is the computational time: it
becomes larger and always more significant as the network size increases.

Hidden neurons Validation loss Test loss Time
64 0.1631 0.1659 5h 31m 10s
128 0.1563 0.1570 6h 25m 56s
256 0.1541 0.1559 7h 35m 40s
512 0.1643 0.1667 14h 9m 42s
1024 0.1547 0.1567 18h 0m 6s

Table 4.14: One hidden layer analysis evaluations:
input layer = 1024 neurons.

512 input layer neurons case is characterized by smaller losses, with
computation time clearly reduced. Despite the best loss values are obtained
using 256 hidden neurons, the 128 hidden neurons configuration, as the 64,
marks out a continuous decreasing trend.

59



Figure 4.21: One hidden layer analysis validation loss:
input layer = 512 neurons.

Hidden neurons Validation loss Test loss Time
64 0.1560 0.1560 4h 21m 8s
128 0.1570 0.1574 4h 41m 30s
256 0.1528 0.1541 6h 8m 15s
512 0.1633 0.1651 7h 22m 33s

Table 4.15: One hidden layer analysis evaluations:
input layer = 512 neurons.

Hidden neurons Learning parameters
64 40,065
128 72,961
256 138,753
512 270,377

Table 4.16: One hidden layer analysis learning parameters:
input layer = 512 neurons.
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The behavior of each 256 input layer neurons study case is almost the
same, and built models return very close loss values. This is probably
due to the fact that sizes of the Neural Networks are of the same order of
magnitude.

Hidden neurons Learning parameters
64 20,097
128 36,609
256 69,633

Table 4.17: One hidden layer analysis learning parameters:
input layer = 256 neurons.

Figure 4.22: One hidden layer analysis validation loss:
input layer = 256 neurons.

Hidden neurons Validation loss Test loss Time
64 0.1582 0.1584 3h 26m 28s
128 0.1581 0.1585 3h 34m 24s
256 0.1577 0.1583 4h 9m 59s

Table 4.18: One hidden layer analysis evaluations:
input layer = 256 neurons.
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In last two cases, Neural Networks of 128 and 64 input layer neurons are
quite small.

Hidden neurons Learning parameters
64 10,113
128 18,433

Table 4.19: One hidden layer analysis learning parameters:
input Layer = 128 neurons.

Hidden neurons Learning parameters
64 5,121

Table 4.20: One hidden layer analysis learning parameters:
input Layer = 64 neurons.

As a matter of fact, they behaves approximately as a no hidden layer
Neural Network with a validation loss that is going to stabilize. A signifi-
cant difference is that there are no oscillations: this is due to the fact that
small Neural Network are more robust, in general, against the overfitting
problem.

Figure 4.23: One hidden layer analysis validation loss:
input layer = 128 neurons.
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Figure 4.24: One hidden layer analysis validation loss:
input layer = 64 neurons.

Hidden neurons Validation loss Test loss Time
64 0.1669 0.1670 3h 4m 32s
128 0.1557 0.1562 3h 16m 36s

Table 4.21: One hidden layer analysis evaluations:
input layer = 128 neurons.

Hidden neurons Validation loss Test loss Time
64 0.1566 0.1577 2h 56m 26s

Table 4.22: One hidden layer analysis evaluations:
input layer = 64 neurons.

In each case analyzed, results are similar to the one obtained previously
with the Neural Network composed just of the input and the output layer.
What is different is the speed through which the model learns, improving
faster the performance. This effect may be clearer running the training
sessions over more epochs.
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In the following scatter plot are reported all the test losses obtained.

Figure 4.25: One hidden layer analysis test loss.

4.4.2 Dropout and L2 regularization analysis

In order to get improvements, the analysis continues focusing on large Neu-
ral Networks. In particular, dropout and regularization techniques are ap-
plied on Neural Networks configured according to the following table:

Input neurons Hidden neurons Learning parameters
512 256 138,753
512 512 270,377
1024 256 276,993
1024 512 539,649
1024 1024 1,064,961

Table 4.23: One hidden layer analysis learning parameters:
input layer = 64 neurons.

Dropout

Dropout is applied to the hidden layer: for each batch learning session
some random neurons are zeroed-out according to a fraction defined by the
dropout rate. Setting the rate to 0.2, the following results are obtained:
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(a) Hidden neurons = 256

(b) Hidden neurons = 512

Figure 4.26: One hidden layer analysis validation loss:
dropout on 512 input neurons Neural Networks.
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(a) Hidden neurons = 256

(b) Hidden neurons = 512
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(c) Hidden neurons = 1024

Figure 4.27: One hidden layer analysis validation loss:
dropout on 1024 input neurons Neural Networks.

Dropout technique allows to get benefits for Neural Network in which
the hidden layer is composed by a conspicuous number of neurons. In fact,
in both input layer cases the configuration with 256 hidden neurons does
not react very well to the dropout application, both in terms of validation
loss trend and performance.

Input neurons Hidden neurons Validation loss Test loss
512 256 0.1555 0.1560
512 512 0.1564 0.1578
1024 256 0.1591 0.1607
1024 512 0.1496 0.1504
1024 1024 0.1536 0.1552

Table 4.24: One hidden layer analysis evaluations:
dropout on Neural Networks.

This phenomenon can be better observed grouping all validation losses:
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Figure 4.28: One hidden layer analysis validation loss:
dropout on Neural Networks.

L2 Regularization

Using these new results, L2 regularization is applied in order to get even
more reliable models. Actually, at first glance, the validation loss seems to
be affected in a negative manner by the L2 application:

(a) Hidden neurons = 512

68



(b) Hidden neurons = 512

Figure 4.29: One hidden layer analysis validation loss:
L2 regularization on 512 input neurons Neural Networks.

(a) Hidden neurons = 256
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(b) Hidden neurons = 512

(c) Hidden neurons = 1024

Figure 4.30: One hidden layer analysis validation loss:
L2 regularization on 1024 input neurons Neural Networks.

70



In order to get an idea of the effect of the regularization on these Neural
Networks more epochs are needed. In particular, due the huge computa-
tional complexity, the comparison between L2 application and no applica-
tion performances is done just on the 1024 - 512 Neural Network.

Figure 4.31: One hidden layer analysis validation loss:
L2 regularization effect over 30 epochs.

L2 regularization allows to get small performance improvements and
provides more stability and reliability of the model.

Extending learning process of the so defined large Neural Network over
30 epochs, the following results are obtained:

Input neurons Hidden neurons Validation Loss Test Loss
512 256 0.1429 0.1439
512 512 0.1413 0.1420
1024 256 0.1382 0.1385
1024 512 0.1353 0.1356
1024 1024 0.1306 0.1314

Table 4.25: One hidden layer analysis evaluations:
L2 regularization - I.
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Figure 4.32: One hidden layer analysis validation loss:
L2 regularization.

Therefore, the larger is the Network the better will be the loss result.
By contrast, enlarging the number of epochs produces a significant increase
of computations, requiring too much time.

Input neurons Hidden neurons Time
512 256 22h 15m 31s
512 512 1d 4h 5m 57s
1024 256 1d 9h 14m 21s
1024 512 1d 23h 41m 30s
1024 1024 2d 17h 21m 39s

Table 4.26: One hidden layer analysis evaluations:
L2 regularization - II.

This means that Deep Neural Networks analysis produce very likely
a better performance in terms of losses while becomes very expensive in
terms of computational time. For this reason, are needed more powerful
computational resources.
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Chapter 5

MEC Dimensioning

5.1 Multi-access Edge Computing for 5G

Fifth Generation Mobile Network (5G) is going to bring with it some im-
portant improvements with respect to older generations. Its main use-cases
are:

• Enhanced Mobile Broadband: mobile users will be served with very
high bit rate (1 Gbps for user experience, 10 Gbps fot peak rate)

• Massive Machine-Type Communication: it will provide communica-
tion to a huge number of connected devices.

• Ultra-Reliable Low Latency Communication: connections will be char-
acterized by ultra low message error rate (FER of the order 10−9) and
extremely low end-to-end latency (smaller than 1 ms).

From the network architectural point of view are introduced some con-
cepts and technologies: this is the case of Multi-access Edge Computing.
The idea behind MEC is to support could computing capabilities at the
edge of the mobile network18 in such a way that data process is done in
proximity of the users. In this way, latency becomes significantly smaller
and higher speed are achieved. This is due mainly to congestion reduction
in core and backhaul networks, produced by traffic that is exponentially
growing through different kind of application as IoT, UHD and gaming.

18In general, MEC cloud computing capabilities are implemented through data center
on edges nodes as antenna infrastructures, called gNodeB (gNB) in 5G.
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Moreover, it allows to enable IT service environment in order to get lo-
cal context information as RAN (Radio Access Network) analysis or traffic
characteristics in order to improve efficiency.

5.2 Deep Learning for MEC Dimensioning

MEC dimensioning is a well posed problem: to get higher performance in
terms of rate and latency in 5G, cloud computing resources have to be
placed as closer as possible to the user. It is easy to understand that over-
provisioning mobile network with MEC platforms at each gNB can be very
expensive. By means of the study of the Internet traffic activity and the
creation of a prediction model faced out in the previous Chapter, the idea
becomes to estimate the traffic request19 to check where it is higher in order
to allocate MEC resources according to an optimization algorithm.

Figure 5.1: Milano Porta Garibaldi station area.

For this purpose it is considered an area of Milano, around Porta Garibaldi
station, through the grid dataset (Section 3.1.1). Then the location of gNBs

19Nowadays, Internet traffic network defines the greatest part of total traffic activities.
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infrastructure, taken from [12]20 is added. In order to get traffic distribu-
tion, it is defined also a possible cell coverage area for each tower, respecting
squares limits.

Figure 5.2: Milano Porta Garibaldi station area divided in cells.

gNBs are connected to a datacenter forming a star topology. This ele-
ment is in charge of communications.

Figure 5.3: Milano Porta Garibaldi station area divided in topologies.

In this specific case, two subsets are defined over the area: the first one

20[12] provides the current infrastructures location that will be used also by 5G.
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takes infrastructures belonging to the left part of the map while the second
is composed by the rest.

5.2.1 Optimization model

Optimization model identifies number and location of gNB towers that can
host an installation of a MEC platform in function of the traffic demand
coming from users.

Assuming that an area is completely served and covered by cells that
are fed by A tower infrastructures. This area can be equipped with up
to M MEC datacenters, each co-located with a gNB infrastructure site,
at the cost of installation/maintenance of mi. Each MEC platform has
capacity Ki. Load in units of traffic resulting from service requests coming
from all cells served by antenna j is denoted as lj, with j = 0, . . . , A. If a
cell is not served by a gNB tower with a co-located MEC, (i.e., antenna j
needs to access the MEC at antenna i), its traffic will incur a penalty cost
cij, which is meant to represent a combination of effects stemming from
the additional latency and possible bottlenecks that it may encounter as
it connects to a MEC co-located at a nearby antenna. If the traffic comes
from a cell whose infrastructure is co-located with a MEC, its penalty cost
would be expressed as cij = 0. It is to be remarked that in this model does
not taking into account the traffic that is exchanged with the core network
but only the traffic that remains local and needs to be routed through a
MEC (either co-located with the gNB or on a nearby one).

Three additional variables are defined:

• xi: binary decision variable denoting the presence of a MEC datacenter
at a gNB site (equal to 0 if no MEC is colocated; equal to 1 if MEC is
co-located).

• yij: binary auxiliary variable denoting whether MEC i is connected to
tower j (equal to 0 if it is not connected; equal to 1 if it is connected).

• fij: real decision variable denoting the traffic flow (in units of traffic)
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from tower j to MEC i.

So, the goal of the optimization is to find the minimum cost of installa-
tion that at the same time minimizes the penalties incurred in by having
multiple cells using distant MECs for their local traffic:

min
x,f

MØ
i=1

ximi +
AØ

j=1
fijcij


It needs to be solved taking into account several constraints:

• Variable constraints:

– the auxiliary variable yij is 0 when the corresponding MEC location
is empty

yij ≤ xi ∀i, j

– traffic flow can only appear if the MEC i is connected to tower j,
and then it cannot be larger than the load from service requests
from that tower

fij ≤ yijli ∀i, j

• Capacity constraints:

– the sum of all traffic flows entering a MEC datacenter cannot ex-
ceed the capacity of the MEC

MØ
i=1

fij ≤ Ki ∀i

• Flow constraints:

– traffic flows cannot be negative

fij ≥ 0 ∀i, j

• Flow conservation:
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– all traffic flows resulting from service requests at tower j must
reach a MEC

MØ
i=1

fij = lj ∀j

– all traffic from all service requests in the network must account for
all the traffic flows found in the network

AØ
j=1

li =
MØ

i=1

AØ
j=1

fij ∀i, j

This is a Mixed-Integer Linear Programming category (MILP). These
problems are generally NP-hard, so a solution can be found only for rela-
tively small values of A and M .

5.2.2 Dimensioning

Described optimization model is applied with the following optimization
parameters:

• Installation cost mi: [5, 10].

• Penalty cost cij:

– 0 if MEC datacenter is within the gNB infrastructure from which
the traffic comes.

– 1 if MEC is co-located on a different gNB infrastructure that is
possible to reach just with one hop (belong to the same star topol-
ogy).

– 2 if MEC is co-located on a different gNB infrastructure that is
possible to reach just with mote than one hop (belong to a different
star topology).

• MEC capacity Ki: [3, 6, 9] Gb/s.

The efficiency of the prediction model in MEC dimensioning context is
evaluated applying optimization on two scenarios:
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• Worst case: from traffic dataset are extracted Internet traffic peaks
of each cell over the entire period that goes from November 25th to
December 31st, 2013.

• Predicted case: it is used a prediction model in order to get an esti-
mation of the Internet traffic over a complete week, November 25th to
December 1st, 2013. In particular, the model is obtained through a
Neural Network with one hidden layer and with hyper-parameters set
as follows:

– Batch size: 1024.

– Epochs number: 30.

– Learning rate: 0.001.

– Neurons:

∗ Input layer: 1024.

∗ Hidden layer : 1024.

∗ Output layer: 1.

Finally, is taken an average over the traffic of each cell for a more
reliable dimensioning.

Internet traffic analyzed so forth describes the activity as slot of bytes.
In order to express it directly in terms of bytes it is exploited the fact that
each connection between towers and the datacenter of the star topology
has capacity 3 Gb/s, value used as normalization factor for traffic over all
the cells. The hypothesis done in order to get this normalization factor is
that each gNB tower provides communication between users and the rest
of the network by means of three cells. Each one of these cells has 1 Gb/s
capacity21.

21The communication between each cell and the gNB tower a Gb-Ethernet cable.
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So, the lj optimization parameter is defined, for each cell, according to
the following values:

(a) Worst case traffic (b) Predicted case
traffic

Figure 5.4: 5G normalized traffic.
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5.2.3 Results

Optimization results indicate, for each gNB infrastructure, if MEC data-
center has to be co-located on that node or not. Although installation cost
mi is the most critical parameter, it is reported a unique case for both
values since results are identical.

gNB MEC co-location
1 No
2 Yes
3 Yes
4 No
5 No
6 No
7 No
8 Yes
9 Yes
10 Yes
11 Yes
12 Yes
13 No
14 Yes
15 Yes
16 Yes
17 No
18 Yes
19 No
20 No
21 No
22 Yes
23 Yes
24 Yes
25 No

Total MEC: 14
(a) Worst case.

gNB MEC co-location
1 No
2 No
3 Yes
4 No
5 No
6 No
7 No
8 Yes
9 Yes
10 Yes
11 Yes
12 Yes
13 No
14 No
15 Yes
16 Yes
17 No
18 Yes
19 No
20 Yes
21 No
22 Yes
23 Yes
24 No
25 No

Total MEC: 12
(b) Predicted case.

Table 5.1: MEC co-location site: MEC capacity = 3 Gb/s.
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gNB MEC co-location
1 No
2 No
3 No
4 No
5 No
6 No
7 No
8 Yes
9 Yes
10 Yes
11 No
12 Yes
13 No
14 No
15 Yes
16 Yes
17 No
18 No
19 No
20 No
21 No
22 No
23 Yes
24 No
25 No

Total MEC: 7
(a) Worst case.

gNB MEC co-location
1 No
2 No
3 No
4 No
5 No
6 No
7 No
8 Yes
9 Yes
10 Yes
11 No
12 No
13 No
14 No
15 Yes
16 Yes
17 No
18 No
19 No
20 No
21 No
22 Yes
23 No
24 No
25 No

Total MEC: 6
(b) Predicted case.

Table 5.2: MEC co-location site: MEC capacity = 6 Gb/s.
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gNB MEC co-location
1 No
2 No
3 No
4 No
5 No
6 No
7 No
8 Yes
9 No
10 Yes
11 No
12 Yes
13 No
14 No
15 Yes
16 Yes
17 No
18 No
19 No
20 No
21 No
22 No
23 No
24 No
25 No

Total MEC: 5
(a) Worst case.

gNB MEC co-location
1 No
2 No
3 No
4 No
5 No
6 No
7 No
8 No
9 Yes
10 Yes
11 No
12 No
13 No
14 No
15 Yes
16 Yes
17 No
18 No
19 No
20 No
21 No
22 No
23 No
24 No
25 No

Total MEC: 4
(b) Predicted case.

Table 5.3: MEC co-location site: MEC capacity = 9 Gb/s.

MEC capacity represents a very important parameter: the higher it is
the smaller is the number of installed MECs platforms. So, there is an
important trade-off between cost installation and capacity.

Most important consideration is that comparing the two cases it is pos-
sible to notice how worst case optimization places a larger number of MEC
datacenter. Therefore, using prediction and applying optimization algo-
rithm on corresponding estimated traffic data it is possible to dimension
MECs over a specific area satisfying efficiently user requests.
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Conclusions
This thesis work particularly focused on the research of a prediction model
able to estimate Internet traffic activity over a geographical area, which is
Milan. This study is then addressed to the MEC dimensioning problem.
In particular, given an area, it is proved that predicted traffic allows to get
a number reduction of MEC infrastructures installation with respect to a
dimensioning done on worst case hypothesis.

The prediction model is obtained through Neural Networks implemen-
tation. Specifically, a first analysis is done on a Neural Network with just
input and output layer in order to look for the best hyper-parameters that
allow minimization of the error produced on each predicted element. Re-
sults revealed that smaller batch size allow to get benefits in terms of losses,
despite larger computation are needed. Moreover, larger networks (higher
number of neurons) perform better, through right datasets definition and
regularization techniques application managing. Finally, by means of "One
hidden layer analysis" the best prediction model is found: even if results
are not optimal, they showed that the more complex the Neural Network
is the better are the performances achieved in terms of losses.

This suggests to go toward Deep Neural Networks implementation to get
better loss results. The problem is that they will require huge computation
resources. As a matter of fact, best found model (composed of just input,
hidden and output layer) required up to a few days of computation.

Therefore, the study could be further examined moving toward Deep
Neural Networks with the introduction of several hidden layers that could
improve significantly model performance in terms of loss although requiring
much higher computational resources.
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